MUSIC LITERACY AND SIGHT-SINGING TECHNIQUES USED BY
ELEMENTARY AND MIDDLE SCHOOL MUSIC TEACHERS

WENDIE JOYCE CONRAD

Bachelor of Music Education
The Ohio State University
June, 1977

Submitted in partial fulfillment of requirements for the degree

MASTER OF MUSIC
at the

CLEVELAND STATE UNIVERSITY
December, 2007
This thesis has been approved

For the department of MUSIC

And the College of Graduate Studies by

Thesis Committee Chairperson, Dr. Rita Klinger

Department/Date

Dr. Birch Browning

Department/Date

Dr. Betsy Burleigh

Department/Date
ACKNOWLEDGEMENTS

I would like to acknowledge the following people for consenting to be on my thesis committee panel, Dr. Birch Browning and Dr. Betsy Burleigh, and to Dr. Rita Klinger for being my thesis committee chairperson.

I would also like to thank the area music teachers who completed my survey questionnaire, and a special thank you goes to Uday Kandula, a Ph.D. student at Cleveland State who helped me with my survey results. I would not have been able to complete this thesis without their input.

Most importantly, I would like to thank my family and friends, and especially my husband, Hank for the understanding and overwhelming support they have given me during these past four years. It has been a very long road, and I couldn’t have completed my Master’s degree without them.
The purpose of this study was to examine the types of music literacy and sight-singing techniques and/or approaches that elementary and middle school general music teachers and choir directors employ in their classroom. Data from this study includes survey questionnaire responses from 66 elementary and middle school general music and choral directors from urban, suburban, and rural school districts in the Northeastern Ohio area. The survey asked the music teachers to indicate the methods and materials they prefer, and how much time they spend on sight-singing instruction. Results revealed that the majority of teachers include weekly sight-singing instruction teach in the suburban schools, but almost 40% of them spend 10 minutes or less a week on sight-singing in their music classrooms. Movable-do was preferred over mixed-do, numbers, and neutral syllables by the respondents for teaching pitch recognition, and the Kodaly method and count singing were the rhythm reading systems that were being used more often. In addition, the Kodaly hand signs were the most frequently used sight-singing visual aids, and only 25% of the subjects listed certain instructional books as a way to enhance sight-singing training. Such findings could help present and future music teachers decide which systems they prefer, which could increase the sight-singing retention levels of their
students.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Sight-Singing Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Need for the Study</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Statement of Purpose</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Research Questions</td>
<td>5</td>
</tr>
<tr>
<td>II. REVIEW OF LITERATURE</td>
<td>6</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Sight-Singing Pitch and Rhythm Reading Practices</td>
<td>6</td>
</tr>
<tr>
<td>2.3 Sight-Singing Systems Most Widely Used & Their Effects</td>
<td>26</td>
</tr>
<tr>
<td>2.4 Summary</td>
<td>35</td>
</tr>
<tr>
<td>III. METHOD AND PROCEDURE</td>
<td>39</td>
</tr>
<tr>
<td>3.1 Method</td>
<td>39</td>
</tr>
<tr>
<td>3.2 Procedure</td>
<td>39</td>
</tr>
<tr>
<td>3.3 Instrumentation</td>
<td>40</td>
</tr>
<tr>
<td>IV. RESULTS OF THE STUDY</td>
<td>44</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>44</td>
</tr>
<tr>
<td>4.2 Make-Up of the Respondents</td>
<td>44</td>
</tr>
<tr>
<td>4.3 Sight-Singing Results</td>
<td>46</td>
</tr>
<tr>
<td>V. DISCUSSION, CONCLUSIONS, AND RECOMMENDATIONS</td>
<td>61</td>
</tr>
<tr>
<td>5.1 Discussion</td>
<td>61</td>
</tr>
</tbody>
</table>
5.2 Conclusions...68

5.3 Recommendations...70

REFERENCES..75

APPENDICES..83

A. Consent Form...84

B. Survey Questionnaire...86
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Melody in d minor</td>
<td>34</td>
</tr>
<tr>
<td>2.</td>
<td>Percentages of Pitch Reading Systems used by Choir Directors</td>
<td>34</td>
</tr>
<tr>
<td>3.</td>
<td>Percentages of Reading Rhythm Reading Systems</td>
<td>35</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td># of Times Music Classes Held Per Week</td>
</tr>
<tr>
<td>2.</td>
<td>Length of General Music Classes</td>
</tr>
<tr>
<td>3.</td>
<td>American Indian Students</td>
</tr>
<tr>
<td>4.</td>
<td>Chinese Students</td>
</tr>
<tr>
<td>5.</td>
<td>Kodaly Methodology – Elementary Music Teacher</td>
</tr>
<tr>
<td>6.</td>
<td>Count Singing – Middle School Music Teacher</td>
</tr>
<tr>
<td>7.</td>
<td>Count Singing – Major Instrument-String Family</td>
</tr>
<tr>
<td>8.</td>
<td>Count Singing – Major Instrument-Brass Family</td>
</tr>
</tbody>
</table>
CHAPTER I
INTRODUCTION

1.1 Sight-Singing Introduction

Although there are numerous sight-singing systems used in different types of music classes, many high school choral students can neither read nor sight-sing music they haven’t seen before. The inability to read notation even extends to the music they are about to perform at adjudicated events (Ernst, 1957; Miller, 1980; Scott, 1996). The choral selections that students perform are usually taught to them by rote because the majority of the students cannot read or sight-sing music in general. This is considered to be one of the most deficient qualities of choral teaching (Costanza & Russell, 1992). Most high school choral students have prior music experiences in elementary general music and, perhaps, middle school choruses. Therefore, it is crucial to review the kind of activities that occur in these classrooms, which could provide a better basis for sight-singing and music reading at the high school level. Elementary general music teachers should instruct their students how to develop proper singing and listening skills, teach them to identify the various intervals of the scale and interval skips, and provide practice on different rhythmic patterns in order to increase their rhythmic reading abilities. One of the most important goals that a music educator should strive for is assisting their students to become self-sufficient learners (Patty, 1997). Once these techniques and
goals have been accomplished, several types of sight-singing approaches can then be implemented. Although previous research has not been able to prove which sight-singing systems work best, there are many systems that are available to music teachers.

Commonly used teaching approaches and systems of sight-singing differ considerably. The Kodály system merges the use of a movable-do solfege system with Curwen hand signs and rhythmic mnemonics such as “ta,” and “ti ti,” in that sequential order respectively (Autry, 1975). The movable-do system consists of using the same intervals of a major scale in any key (Bentley, 1959), in which do is identified as the tonic or starting pitch of the major key of the sight-singing piece, and the remaining solfege syllables re, mi, fa, sol, la, and ti follow in sequential order as the second thru the seventh degrees of the scale. On the other hand, the fixed-do system entails using solfege syllables that are “fixed” to the notes of the staff and never change (Silver, 1956). Music educators also use other sight-singing systems. These include pitch numbers, which requires the use of numbers from 1-7 to represent the notes or steps of the scale, letter note names, which distinguishes pitches of the scale by the actual name of the note, and neutral syllables, which utilizes a single syllable such as “la” or “loo” on all degrees of the scale (Autry, 1975).

Although there are many sight-singing systems available to music educators, one of the main goals should be finding a system that will enable their students to retain what they have learned, and perform music literacy skills at the grade level that is designated by the National Standards for Arts Education (1994). Daniels (1986) and Patty (1997)
studied the unusual characteristics that influence the student’s sight-singing skills. The studies found that the particular method or system employed was not as significant as the individual “make-up” (Patty, 1997) of the students and their schools, and how the music teacher actually felt towards the teaching of sight-singing.

In light of this, music teachers continue to search for solutions on teaching sight-singing effectively, and what constitutes successful sight-singing instruction. One way is to study the different techniques, methods and/or approaches the music teachers use to introduce sight-singing to their students. According to Mason, “The best teacher will not be confined to any previously laid out plan, but will from the different methods make out one of his own; not indeed one that is stereotyped and unalterable, but one that he may modify and adapt to the varying wants and circumstances of his different classes” (Mason in Demorest, 2001, p. 37).

1.2 Need for the Study

Despite the many studies that have investigated which sight-singing systems most music educators prefer, few have studied the different techniques, methods and/or approaches music teachers use to introduce sight-singing to their students in both the elementary and middle school grade levels. This study will examine the different types of sight-singing techniques or approaches that general music teachers and choir directors are employing in their classrooms, which could in turn benefit them since they are closely related to music literacy and sight-singing skills.

1.3 Statement of Purpose

The purpose of this study is to determine the variety of approaches used by
elementary and middle school general music and choral teachers to develop music literacy skills with a particular emphasis on sight-singing. High school choral directors are constantly looking for ways to better their overall performance levels and sight-singing ratings at adjudicated events. Determining what elementary and middle school music educators do to promote literacy and sight-singing skills might provide useful information for high school choral directors.

This research deals with the specific types of methods, approaches or techniques the elementary general music teachers and choral directors are utilizing in their music classrooms. The researcher sent surveys to 120 elementary general music teachers and middle school choral directors in Northeastern Ohio. Prior research suggests further analysis should be collected from states that include sight-singing as an overall rating at adjudicated events. Since Ohio does have such a requirement, it was logical to survey Ohio music teachers. The researcher may then come to a reliable conclusion in order to “help develop a uniform, sequential system of content, materials, and assessment” (Norris, 2004, p.16). Norris also proposes that choral teachers would gain additional knowledge from more studies of developed state sight-singing assessment models (2004). It might be possible for Ohio music educators to include regular assessment of sight-singing into their daily lesson plans because they would then have proper assessment guidelines to follow.

Music teachers from various geographic areas and socioeconomic backgrounds were surveyed. The music teachers involved in this study were from schools that differed
in size and student populations, and came from the public school settings of either urban, suburban or rural school areas. The subjects were chosen by accessing the Northeastern Ohio Music Education Association member website of elementary general music teachers and middle school choral directors.

1.4 Research Questions

The following research questions were raised in order to complete the goals or explain the purpose of this study. They were: (a) What type of sight-singing system is utilized in your classroom? (b) What specific teaching methodology is used or followed? (Kodály, Orff, Dalcroze, or Suzuki)? (c) What type of system is used to teach pitch recognition? (solfege syllables, neutral syllables, pitch numbers of the scale, or letter names of the notes)? (d) What is the technique used to teach rhythmic notation (counting, rhythmic syllables such as “ta” and “ti ti”)? (e) Does teaching in an urban, rural, or suburban school environment determine whether or not sight-singing instruction is included? (f) What visual aids and materials are used to enhance the teaching of sight-singing? (hand signs, flash cards, transparencies, CD’s, videos, etc.)?
CHAPTER II
A REVIEW OF LITERATURE

2.1 Introduction

This chapter will review literature on the development of proper reading and rhythmic skills during the primary and middle school grade levels as well as the various sight-singing techniques that are available in print. Utilizing these particular sequential teaching approaches might eventually lead to improving the student’s sight-singing and music literacy knowledge. The chapter will be divided into three sections: (1) sight-singing pitch and rhythm reading practices; (2) sight-singing approaches most widely used and their effects; (3) and a summary. The literature chosen for this review is confined to topics that explain the different types of singing techniques, and the assortment of sight-singing systems that music teachers use to eventually develop their students’ sight-singing and music literacy capabilities.

2.2 Sight-Singing Pitch and Rhythm Reading Practices

For over two hundred years, educational theorists such as Pestalozzi, Mursell, Bruner, Gagne, and Gordon have endorsed the theory that musical learning and literacy should proceed from “sound to symbol” (Pierce in Guzy, 1984, p.19; DeCarbo, 1997, p. 34; Bartholomew & Bennett, 1999; Ester, Scheib & Inks, 2006, p. 60). Snyder (1963) compares this same concept of understanding how to examine and grasp the meaning of
printed characters on the musical stave to comprehending how to communicate with others in their own indigenous tongue. Children listen to words that are spoken to them, and when they understand what these words mean, they begin to speak using these words as well. Later on, the child can grasp how to read by linking these printed characters on the page with words they have already learned how to pronounce. Learning how to read music should follow the same process. The children grasp how to link the printed characters on the page to musical sounds they have been exposed to before. Snyder goes on to say, “Music reading is music understanding. It is much more than the ability to read notes, rests, and musical terms accurately. It is the ability to interpret the printed page, to capture the spirit of the music by sight, and to discover, through symbols, the message and beauty of music” (1963, p. 68). In addition, Bertalot (1968), conveys a similar view to Pierce’s thoughts that “musical learning should proceed from “sound to symbol” (Pierce in Guzy, 1984, p.19; DeCarbo, 1997, p. 34; Bartholomew & Bennett, 1999; Ester, Scheib & Inks, 2006, p. 60) but also lists twelve steps a teacher should follow in order that their students can read music without difficulty and with confidence. They are as follows:

Step 1: Singing one note on middle G.

a. Learn about pulse – singing one note for four counts, then five counts, six counts, etc. Holding a note for different lengths of time will teach the students when to stop singing.

b. Learn about the stave. Every theoretical point must be made
practical and vice versa. Remember to Sing-See, See-Sing, which
indeed reinforces the “sound to symbol” (Pierce in Guzy, 1984, p.
19) theory.
c. Learn singing techniques.

Step 2: Increase the range of notes until a scale is formed. Sing and
name each note, one at a time. Sing downward scales and point to each
of the notes as the children are singing. Play the piano when the choir is
singing the starting pitches of the different scales, and only when it is
needed.

Step 3: Sing simple step-wise melodies from the great scale. Use
repeated notes as well.

Step 4: Clap simple rhythms written on the board.

Step 5: Clap the same rhythms while looking at the music.

Step 6: Clap the rhythms again but play the melody as the children are
clapping the rhythms from the printed page.

Step 7: Singing pitch from the hymnal – no rhythm yet.

Step 8: Sing pitch and rhythm from the hymnal but this time clap the
rhythm also.

Step 9: Speaking the words in rhythm.

Step 10: Combine pitch, rhythm and the word.

Step 11: Teach everything else – dotted notes, 8th notes, ties and bar
lines, accidentals, rests, intervals – 3rds and other intervals, etc.

Step 12: Continue to practice everything that was taught beginning with steps on through eleven over and over again (Bertalot, 1993, p. 49-114).

Despite the overwhelming views of scholarly educational theorists from the past and present that music literacy instruction should proceed from “sound to symbol” (Pierce in Guzy, 1984, p.19; DeCarbo, 1997, p. 34; Bartholomew & Bennett, 1999; Ester, Scheib & Inks, 2006, p. 60), sight-singing and instrumental method books in many cases present notation to beginning students first (Ester, Scheib & Inks, 2006, p. 60). The method books typically include the introduction of the staff, time signature, clef, key signature, dynamic and tempo markings as well as some rhythm and tonal notation. However, the beginning student is inundated with new notational information so the main concept of proceeding from “sound to symbol” (Pierce in Guzy, 1984, p.19; DeCarbo, 1997, p. 34; Bartholomew & Bennett, 1999; Ester, Scheib & Inks, 2006, p. 60) is usually overshadowed (Ester, Scheib & Inks, 2006, p. 60). Therefore, more emphasis should be placed on rhythm and tonal instruction rather than notational instruction in beginning method books.

Atterbury and Richardson (1995) emphasize the significance of teaching children musical literacy skills at the primary grade levels. They believe students should not enter middle school without knowing how to read music. Atterbury and Richardson also state that children should not be exposed to the rote method alone when they want to learn how to sing or play the music of their choice. The students should be able to grasp and make
sense of musical notes when they see them. However, there are a certain number of children who are able to sing or play music by ear. They do not have to learn how to read music because they can play or sing any type of music as soon as they hear it the first time (Atterbury & Richardson, 1995).

Even though familiarizing students with music without seeing it on paper is key at the beginning learning stages and is compared to learning how to talk before reading, music educators should give children the chance to feel, listen and/or perform music going from sound to sight (Abeles, Hoffer, & Klotman, 1994) or “sound to symbol” (Pierce in Guzy, 1984, p.19; DeCarbo, 1997, p. 34; Bartholomew & Bennett, 1999; Ester, Scheib & Inks, 2006, p. 60) at the early years of age as well. Acquainting them with music notation is a vital part of teaching music literacy in the elementary grades (Campbell & Scott-Kassner, 2002).

Consequently, when the musical staff is used as an illustration of pitch and interval associations, the children are more likely to see and feel these relationships when the printed music is actually placed in front of them to read. Nevertheless, when choir students are taught by rote, a mental picture of how pitches interact with each on the staff is less evident to them unless it is supported with some type of sight-singing system such as the movable-do or fixed-do system (Brown, 2003). Although many children may be able to mimic their music teacher singing or recite a particular melody from memory, they may have problems visualizing how pitches move up, down or stay the same, and how they relate to one another unless the particular notes are identified or tagged (Brown,
Music teachers often use sight-singing systems as educational aids to help students increase sound and auditory capabilities through pitch recognition. Many choral directors use a sight-singing system to teach notation as a warm-up at the start of rehearsals. On the other hand, when it comes to learning the choral music itself, sight-singing is sometimes put on hold, thus preventing any connection between the warm-up at the beginning of the rehearsal and the actual choral music (Demorest, 1998b). In fact, sight-singing has become less frequent inside the school’s walls during choir rehearsals (Smith, 1987). Nonetheless, when a particular high school choir decides to compete in an upcoming district and state adjudicated event that includes sight-singing as part of their overall scoring, the director will find a way to incorporate sight-singing into every rehearsal.

Even so, if the director does not include sight-singing into every rehearsal, the students will not be able to visualize how pitches relate to each other, and will end up either depending on the piano or the teacher as a crutch. Sight-singing can assist the students in becoming better music readers, listeners, and writers, offer them pleasure, fulfillment, satisfaction, and gratification as well as give them an understanding of the music literature all at the same time (Brown, 2003).

Kodaly was focused on developing a music education program for children in Hungary beginning in nursery school and extending throughout their adult lives. This music education program expanded into a system that was the basis of folk singing,
composition, and “relative solmization” (Choksy, 2000). Kodaly’s goals were to assist in the creative and communal growth of the child, and to teach and retain music literacy with ease (Choksy, 2000). He wanted an educational system that evolved from a population who made music a “way of life” (Choksy, 2000).

The Kodaly music system is a sequence (Choksy, 2000) is based on the various stages of child growth rather than one that is derived from subject logic (Choksy, 2000). In the subject logic approach, there is no connection among the music that is being presented and the simplest way in which the child can retain the information. Rhythmically, this way of teaching involves starting with the explanation of the whole note, and then breaking it down into half notes, etc., which is a logical succession in mathematics. However, because the beat has not been introduced to the child first, it would be a huge challenge for him or her to comprehend reading music in this order (Choksy, 2000). Melodically, the diatonic major scale (Chosky, 2000) is normally the logical way to begin teaching music. Nevertheless, previous research has shown that children do not have the capability to sing all of the pitches of the diatonic major scale because their voice range does not extend beyond five or six notes. It is also next to impossible for them to match half-step pitches as well (Duell & Anderson in Choksy, 2000). Therefore, it would be very hard for a music educator to teach this type of music rational and expect their students to retain it if it “does not exist in their own experience” (Choksy, 2000, p. 10).

However, the Kodaly system that is based on the various stages of child growth
necessitates the sequential organization of the topic at hand. Therefore, rhythms in motion are associated more with the stages of child growth than extended notes. Quarter notes could be connected to children walking, eighth notes to children skipping, and sixteenth notes to children running. In addition, children’s singing games consist mostly of the quarter note and eighth note rhythm patterns, and are written in duple meter. It would make more sense to the children to begin teaching them these particular rhythm sequences than it would to start with the whole notes first. As far as the melody is concerned, the songs children are the most familiar with are the ones that consist essentially of major seconds, minor thirds, and perfect fourths, which are so, mi, and la in solfege or what is sometimes called solfa (Choksy, 2000).

Children seem to grow the same with music all over the world. The games they play and chant usually stem from two or three notes. They may not appear in the same sequence but the major second, minor third, and perfect fourth have emerged as a musical language for children worldwide. It would seem logical then as a “developmental approach to the teaching of vocal music that children would use the above-mentioned notes within various quarter and eighth note duple meter patterns as its starting point” (Choksy, 2000, p.11).

Moreover, findings from Hungarian people working on the Kodaly method, results from a research team in California (Moorhead & Pond in Choksy, 2000), and even findings from individuals of the Orff Institute in Austria have revealed more distinctive attributes of the stages of musical child growth, and play in important role in establishing
sequential organization (Choksy, 2000). They are as follows:

1. “The range in which a young child can sing songs comfortably and correctly is limited – usually encompassing not more than five or six tones, and these of whole steps or larger intervals. Half steps are difficult for the young child to sing in tune.
2. Descending tones are easier for children to learn and reproduce accurately than ascending ones. This indicates that the initial lesson on new tonal patterns should be approached through songs in which the interval occurs in a descending melody line.
3. Small skips are easier for the young child to sing in tune than small steps: G to E is easier than G to F#. Wide skips, such as a sixth or an octave, are difficult.
4. In terms of range, one study has shown that left to his own devices the young child will most often pitch the upper noted of the minor third around F#. Thus, the keys of D, E♭, and E would seem to be indicated for pitching teacher-initiated rote songs” (Choksy, 2000, p. 11).

Kodaly, aware of these characteristics in the melodic growth of children, believed that the pentatonic scale (the five-pitch scale) was the foundation for teaching musical techniques. The notes of the pentatonic scale is one of the fundamental scales used in folk songs written around the world, although the Hungarian pentatonic folk music is normally centered around the minor la, and in the United States it is usually centered around major do (Choksy, 2000).

The melodic pattern that eventually developed in Hungary was

1. “so to mi, a minor third
2. la and its intervals with so and mi
3. do, the “home tone” in major modes, and the intervals it forms with so, mi, and la
4. re, the last remaining tone of the pentatonic scale” (Choksy, 2000, p. 12)

After these five pitches of the pentatonic scale are taught, the octaves of low la, low so, and high do are introduced, and finally, the half steps of fa and ti are then
During 1986 and 1987, Moss studied whether or not electric piano instruction influenced the music-reading skill of sixth grade middle school students. Ten weeks of vocal and electric piano training were given to the sixth graders to establish the effectiveness of both and whether or not they improved in pitch and rhythm capabilities. Although the amount of time that each student spent in class or the total number of classes given to the children during the ten-week study was not disclosed, the study revealed that the electric piano lessons greatly enhanced the children’s combined pitch and rhythm skills “as measured by the Music Achievement Test 2 by Colwell” (Moss, 1987, p. 1).

Kendall (1988) examined whether or not music reading helps to increase listening and instrumental skills of students who are just starting out in band. Kendall explored two different types of tactics for this study. All of the band students were given a form of training that they could emulate. The first group of students received instruction without any music notation, and the second group was given music notation. Kendall’s results confirmed that both groups showed performance and auditory increases, whereas, the second group that was given music notation training revealed substantial increases in the growth of melodic and rhythmic sight-reading capabilities (1988).

Shehan (1987) reviewed the results of rhythm knowledge and retention through rote versus note demonstrations. The rhythm was played four different ways: the first time the rhythm was performed on a wood block, the second time the rhythm was sung
using syllables as an aid to enhance the memory, the third time the rhythm was written on paper and played on a wood block, and the last time the rhythm was written on paper and sung using syllables as an aid to enhance the memory. The students involved in this study were asked to play the rhythm sequence they had just heard on a wood block. Shehan discovered that for the primary grade children, both the visibility of the rhythms notated on paper and the audio examples resulted in the least amount of mistakes when asked to imitate the rhythms on the wood block. Hearing the syllables sung decreased the number of times it took for the rhythm to be played correctly on the wood block, however, not drastically (1987). Both Kendall (1988) and Shehan (1987) appear to illustrate that if music educators practice “notation reading” in their classrooms, it will aid in the development of music literacy, and other music skills or abilities as well (Tobey, 1996).

 Appropriately, the ability that it takes to read rhythms is a very important aspect as far as sight-singing is concerned. Darazs states:

When a person reads music, his skill depends largely upon his grasp and sense of the musical meaning of rhythmic symbols. His level of accomplishment in reading music will depend upon his understanding of rhythmic concepts as an expressive pattern of accent, duration and pause (Darazs in Guzy, 1984, p. 42).

Many systems that consist of either vocal or speaking aids such as syllable and counting systems subsist, which enables students to imitate rhythmic associations denoted by notation. Then again, it is not so much the type of system the director uses but how the director feels towards the system (Patty, 1997), and how the system is
introduced to the students. Magnell says:

A person can make any system for rhythmic reading at sight work if he is completely sold on this technical approach to this problem and continuously refers to it in his teaching (Magnell in Guzy, 1984, p. 43).

There are a number of systems that include mnemonic devices to aid in reading rhythmic patterns. Some of these systems are: measure counting, value counting, rhythmic syllables, word chanting, saying the words of the music in rhythm, and singing or chanting the rhythms on a neutral syllable (Magnell in Guzy, 1984, p. 43-46).

Many music educators use the measure counting system. The students are instructed to count each beat and sub-divide each beat depending on where it is placed in a measure as in example one (Magnell in Guzy, 1984).
Example 1 – Measure Counting System

Note: from Techniques for developing sight reading skills as used by high school choral directors in Ohio. (Master’s thesis, Bowling Green State University, Bowling Green, Ohio), Magnell in Guzy, 1984, p. 43.

The benefit of using this system is the students know where they are at any given point within a measure. The problem with using this system is the students must use these same numbers when counting unlike rhythmic sequences (Magnell in Guzy, 1984) as in
Example 2 – Measure Counting System Using Same Numbers With Unlike Rhythmic Sequences

Note: from Techniques for developing sight reading skills as used by high school choral directors in Ohio. (Master’s thesis, Bowling Green State University, Bowling Green, Ohio), Magnell in Guzy, 1984, p. 43.

Next, when teachers use the value counting system as a means of educating their students in rhythmic reading, the students will learn the duration of each note is always
counted the same way. With this system, one note value is deemed to be the essential element and the rest of notes are counted in comparison to it. In examples 3 and 4 below, the quarter note in the first example is the essential element and in the second example, it is the eighth note (Magnell in Guzy, 1984).

Example 3 – Value Counting System With Quarter Note Receiving One Beat

Example 4 – Value Counting System With Eighth Note Receiving One Beat

Note: from *Techniques for developing sight reading skills as used by high school choral directors in Ohio*. (Master’s thesis, Bowling Green State University, Bowling Green, 20
Ohio), Magnell in Guzy, 1984, p. 44.

Even though this system does not maintain the student's place when counting within a measure, it is a more reliable system because the duration of each note never changes the way it is counted. In addition, Magnell says that using this system creates “… an excellence in the spacing of the notes” (Magnell in Guzy, 1984, p. 44).

The Kodaly system, uses a rhythmic syllable system comparable to the one used in French solfege, namely, “the quarter note is “ta” and the eighth note is “ti” (Choksy, 2000, p. 12), in which Kodaly and his teachers chose to utilize. It first originated from the nineteenth-century French music educator, Emile Cheve.

A syllable is designated to each note denomination, and integers are not exploited to count the rhythm patterns like the two systems mentioned. Therefore, these syllables “are not names” (Choksy, 2000, p. 12) but terms of time values. They are always spoken, and are not intended to be “written as words” (Choksy, 2000, p. 12). When written on paper, these syllables denote “stem notation” (Choksy, 2000, p. 12). It is possible with rhythmic syllables to chant or say a pattern of notes in rhythm, which is not the case if children were to use the note value names such as quarter note and eighth note as in Example 5 on the next page. The words “quar-ter note” (Choksy, 2000, p. 12) has three syllables, which would denote two sixteenth notes for the word “quarter,” (Choksy, 2000, p. 12) and an eighth note for the word “note” (Choksy, 2000, p. 12) if it was notated on paper. The words “eighth note” (Choksy, 2000, p. 12) has two syllables, which would represent on eighth note for the word “eighth,” (Choksy, 2000, p. 12), and another eighth
note for the word “note” (Choksy, 2000, p. 12) if it were notated on paper.

Example 5 – The Kodaly System

Example 5. \(\text{ta} \, \text{ti-ti} \, \text{ta-a} \) \(\text{ti-ri-ti-ri} \, \text{ti} \, \text{ti-ri} \, \text{ti-ri} \, \text{ti} \, \text{ti} \)
This does not mean the child should not learn to recognize and say the actual note values by name. But, the children must have rhythm syllables that convey the time values of each note in order to read the rhythms correctly. Once they comprehend their specific duration, the children should also be taught the appropriate language of all of the notes (Choksy, 1984).

When the Kodaly system is notated as stick notation, only the note stems are formed for reading rhythms. The body of the note is left off except when half notes and whole notes are used. In all other circumstances the note stems establish the rhythm. The syllables are easy for grade school children to enunciate and memorize, and they can sing these various rhythmic sequences while employing the syllables as well. The different types of notes are always allocated to the same syllable so the students can link the syllables with the note values as in example 5 (Magnell in Guzy, 1984).

On the other hand, the downside of using this system is the children may lose their place when counting with the Kodaly syllables. Plus, this type of system may not work for high school students because they may associate it with being too juvenile for their age group (Magnell in Guzy, 1984). Then again, it is the music educator’s job to persuade the students that the Kodaly syllables are an important instrument that will help them to become better rhythmic sight-singers (Magnell in Guzy, 1984). It is not necessarily the type of system that is used, but how it is presented and how the music
teacher feels about the system that makes the difference (Patty, 1997; Demorest, 2001; Mason, 1837).

The word chanting system (Magnell in Guzy, 1984, p. 45) is another system that connects fundamental rhythmic patterns with specific words as shown in example 6.

Example 6 – Word Chanting System

Note: from *Techniques for developing sight reading skills as used by high school choral*
Magnell explains that this system is not that hard to learn, and can eventually help the students increase their capabilities to combine the different rhythmic sequences. In spite of this, the students must remember to chant each designated word on one beat only as in example 7, otherwise it will not work (Magnell in Guzy, 1984, p. 45).

Example 7 – Chanting Name on One Beat Only

Note: from Techniques for developing sight reading skills as used by high school choral directors in Ohio. (Master’s thesis, Bowling Green State University, Bowling Green,
Ohio), Magnell in Guzy, 1984, p. 45.

Like the Kodaly rhythm mnemonics, this type of system may be construed as being childish to the older students; consequently, they may respond indifferently to it (Magnell in Guzy, p. 45)

Saying or chanting the words of the music in rhythm, and singing rhythms on a neutral syllable are the concluding examples of either vocal or speaking aids to enhance the rhythm reading practices. Both of these skills may be implemented if the music teacher wants to separate the rhythmic fundamentals of a piece of music and study it more cautiously. It is important to note that neither of these two systems offers the students a methodical way of relating rhythmic notation with the musical correlation it exemplifies (Magnell in Guzy, 1984).

2.3 Sight-Singing Systems Most Widely Used and Their Effects

According to Ernst (1957):

There is need for objective research in regard to the methods used in teaching music reading. When 69 percent of the cities report that more than half of their classes are unable to read new songs at grade level, it is a serious indictment of the music reading methods (Ernst in Demorest, 2001, p. 20).

Jones (in Hutton, 1953), found that the use of visual and audio-visual resources such as recordings, flash cards, musical games, transparencies, and movies aided or increased the sight-reading ability of the students involved as opposed to the students that were not given the opportunity to employ the visual and audio-visual resources. Results of the study also indicated that the majority of subjects who participated in this study had
previous listening skills training.

In spite of the number of studies conducted on the effectiveness of sight-singing systems, it is hard to determine which sight-singing system is the most proficient. Larson (1993), concluded that even though it is extremely difficult to choose which solfege method is of greater value or importance over the other, the system that is selected should be based on what is best for each individual student, educational intentions, and the sight-singing repertoires that are required. On the contrary, the majority of music educators opt for a system that is their personal preference, but also take into consideration what sight-singing technique their district or state’s curriculum favors.

In another study, Mann (1991) assessed college flute students that were given Kodaly sight-singing training with flute students that did not receive Kodaly sight-singing lessons. Mann discovered both groups improved in instrumental reading at sight, sight-singing, and pitch accuracy. Although, she did not find any significant discrepancies between the two groups, she concluded that students who participated in the Kodaly sight-singing training improved the most since they were the group that originally sight-read the worst.

Lucas (1994) observed the effects that “harmonic context” had on the sight-singing skills of 79 middle school students from three beginning choirs at the same school. They were divided into three groups and exposed to learning and rehearsing sight-singing in either a “melody-only,” “piano-harmony,” or “vocal-harmony setting” (Lucas, 1994). Lucas’ posttest ANOVA revealed that the students in the “melody-only”
group increased their sight-singing skills considerably more than the “vocal-harmony”
group. Because no difference was found between the “melody-only” and “piano-
harmony” group, one could come to the conclusion that the “piano-harmony” group also
enhanced their sight-singing abilities more than the “vocal-harmony” group as well
(Lucas, 1994).

Colwell’s study in 1963 consisted of 4,000 students who were enrolled in the
vocal and instrumental music programs in grades 5-12 inclusively, and was carried out
during the whole school year. The instrumental students scored consistently higher than
the vocal students, and the students who had received some type of piano instruction
scored much higher than those who did not, whether they were involved in instrumental
or vocal music.

Colwell stated:

Throughout the entire study, indications were present that piano
training is the most significant factor in high achievement. For
example, when sixth grade students and instrumental students
were compared, four items were not significantly different:
grade average, intelligence quotient, music aptitude and attitude.
In the area of achievement measured by the Knuth tests and by
the grades given in classroom music, however, the piano students
were significantly higher (Colwell in Demorest, 2001, p. 24).

Music educators realize that teaching sight-singing efficiently has been an
ongoing problem for many years. This is why research is continually being done to
reduce the percentages of students that cannot read choral music at sight. Although this
subject has been on the forefront of many choral researchers’ minds, the bulk of the
research has been done at the elementary level, which is actually where sight-singing
training starts.

Music educators have introduced many sight-singing systems; the method that is used more prominently than any of the others is the movable-do or otherwise known as the movable tonic solfege system. The procedures used within this system are the “melody pitch numbers” (McClung, 2001), and “solfege syllables” (McClung, 2001) respectively. However, previous research has found that without the proper musical training provided by elementary general music teachers, students are not able to grasp the system mentioned above (Demorest & Henry, 1994; Hutton, 1953; Johnson, 1987; Szabo, 1992) or any other for that matter. Additionally, supplementary research has noted that many universities or colleges have been unsuccessful supplying music education majors the proper instruction and materials needed in order to teach sight-singing efficiently (McClung, 1996; Smith, 1998; Verrastro and Leglar, 1992). In fact, further studies associated with sight-singing imply that the type of system the choral director uses is not as significant as the way the music teacher educates the students on the subject itself (Brittain, 1998; Daniels, 1986, 1988; Henry & Demorest, 1994; Stebleton, 1987). Stegall (1993), Ozeas (1991), Munn, (1990), White (1983), and Cutietta (1979) agree that proper practice along with the utilization of some type of sight-singing system or technique will create a successful outcome. Hence, Daniels determined in her 1986 study that a very important factor whether or not students were able to grasp sight-singing was the “attitude” of the music teacher. If the teacher feels the choral students should learn to sight-sing, he or she will incorporate it into their daily lesson plans.
Actually, Patty (1997) also came to the conclusion in a majority of her studies that the method or technique used to teach sight-singing was not as key as the implementing of some sort of system, and sticking with that particular method. As previously mentioned, most vocal students improved their skills when sight-singing practice was incorporated into their daily rehearsals, and when the practice was “consistent” (Patty, 1997).

In addition, Patty (1997) determined that when a particular sight-singing system is included within a daily rehearsal schedule, it helps the students to become better sight-readers. This entails pitch and interval training, drilling of different rhythmic patterns, and other criteria such as private piano instruction, and instrumental and vocal experience of some kind. Moreover, it was equally noteworthy to mention that the Northeastern Ohio choral directors are utilizing a mixture of instructional methods and materials, but none have proved to be any more successful than the other. Patty recommended the materials that were being used should be changed from year to year in order to correspond with the students’ different learning patterns if needed. What is more, Patty (1997) added that an assortment of “activities” could be called for or necessitated as the students’ sight-singing skills increase.

Demorest and May (1995), conducted a study of 414 choral students from four different high schools in Texas. Two of the schools that utilized the movable-do system were evaluated using this system for Demorest and May’s study, and the other two schools that employed the fixed-do system were evaluated using this system for their
study as well. The participants were randomly given two melodies of different complexities to sight-sing. The findings disclosed that the vocal students in the movable-do groups tested considerably higher than those students placed in the fixed-do groups. Results indicated that scores were much lower when subjects sight-sang the more difficult melody. An examination of the choral students’ musical backgrounds, number of years in the choirs, number of years the pupils had taken piano lessons, played an instrument, and taken private vocal lessons were the principal factors of individual achievement.

Nonetheless, the results were weighted towards the students in the movable-do groups because of the number of students taking private lessons, their previous solfege instruction, sight-singing measures that each school district implemented for evaluation purposes, and the type of sight-singing system the district and state required for adjudicated events (Demorest & May, 1995). However, the choir directors from the movable-do groups “used a systematic program of individual testing throughout the semester and included sight-singing as an important part of students’ grades (Demorest, 2001, p. 23). Demorest then went on to say, “We suggested the possibility that individual testing rather than the sight-singing system was the cause of the difference in scores” (Demorest, 2001, p. 23). What is more, in a study of Texas choral directors, May (1993) found that 68% of the music educators who used the movable-do system also used the relative “la” minor approach.

In 2004, Demorest conducted a web survey of 270 choral directors from 45 states
and two choral directors from Canada. Out of the 272 choral directors that responded to the web survey, only 28 (10.3 percent) confirmed they did not teach sight-singing. These percentages conflict with other findings (Hales, 1961; von Kampen, 2003), which suggested that those music educators who did not incorporate sight-singing into their daily lesson plans were probably less likely to respond to the survey. However, Von Kampen’s (2003) survey was conducted in the western part of Nebraska, and established that sight-singing was more prevalent in the eastern part of the state, and confirmed that Von Kampen’s survey was confined to a particular geographic area. In addition, Kuehne’s (2003) study that surveyed Florida middle school choral directors found that sight-singing instruction was utilized more often in the suburban schools, as opposed to the rural and urban school systems.

Even so, the choral directors that did participate in Demorest’s survey were asked to select the pitch (movable-do/minor-la) and rhythm reading system they would use in order to read the melody as shown in figure 1 written in a minor key (Demorest, 2004).
Figure 1 – Melody in d minor

Sixty-four percent of the directors indicated that movable-do would be their sight-singing system of choice for reading pitches (see figure 2). A larger portion of the directors who took the survey preferred the minor *la* within the movable-do system more than two to one. Next in line, 21% of the music teachers chose to use numbers, and the remaining 15% favored fixed-do, neutral syllables or other types of systems (Demorest, 2004).
Figure 3 indicates that 47\% of choral directors use some sort of counting system to read rhythm, 21\% use syllables (ex. “ta” and “ti”), while the rest were divided among neutral syllables, Gordon’s syllables and “other.” Most who responded “other” use some alternative system of either counting or “ta” and “ti.” These results indicate that there was more discrepancy of approaches to reading rhythm than there was on the pitch reading systems (Demorest, 2004).
Figure 3. Percentages of Rhythm Reading Systems Used by Choir Directors

<table>
<thead>
<tr>
<th>System</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counting</td>
<td>47%</td>
</tr>
<tr>
<td>Syllables (Ta & Ti)</td>
<td>9%</td>
</tr>
<tr>
<td>Neutral Syllables</td>
<td>21%</td>
</tr>
<tr>
<td>Ta-Ti-To</td>
<td>14%</td>
</tr>
<tr>
<td>Other</td>
<td>8%</td>
</tr>
<tr>
<td>Gordon</td>
<td>1%</td>
</tr>
</tbody>
</table>

2.4 Summary

The three key features of sight-singing training involve daily practice, consistency, and a vocal director with a good attitude (Daniels, 1986; Patty, 1997). The type of sight-singing system used is not necessarily as important as how the teacher presents the system to the students. This corresponds with the music teacher’s attitude and his or her knowledge of the sight-singing system that is being utilized.

Despite the fact that most music teachers value sight-singing as a vital skill for their students, the results of surveys indicate that a large number of choral directors still do not dedicate enough rehearsal time to it.

Demorest who has conducted many of these surveys, explains there are several
reasons for this (2001). The first issue is the old saying “teachers teach as they have been taught” (Demorest, 2001, p. 1). If sight-singing was not a part of the teacher’s schooling or training in college, then it is doubtful that he or she will be including it as part of their daily rehearsals (Demorest, 2001, p. 1). Many music teachers do not know “how” to teach sight-singing to their students (Demerest & Henry, 1994; Hutton, 1953; Johnson, 1987; Szabo, 1992).

Demorest (2001 says the second issue is the possibility that the music teacher is not comfortable with sight-singing or reading at sight, therefore, their uncertainties and/or lack of confidence prevent them from educating their choral students on the subject. But, when the music educator realizes that he or she should not be reading at sight when introducing a sight-singing lesson, it will help them overcome their own inhibitions. The director should go over the sight-singing exercises before class time so that he or she will be able to anticipate any problems the students will have. When the directors actually teach sight-singing, they usually become better readers themselves because they are more cognizant of the new sight-readers’ insecurities.

Although the two issues mentioned above are excuses that music teachers give for not including sight-singing into their daily curriculum, they are not the top reasons on the list. The number one reason is the concept that sight-singing is dull, tedious and very monotonous. Again, this is where the director’s attitude (Daniels, 1986; Patty, 1997) comes into play. If the teacher presents sight-singing as an inspiring, motivating, stimulating, and exciting technique, the students will be able to grasp the idea, and at the
same time receive pleasure in the knowledge as well. Conversely, if sight-singing is presented as a necessary misfortune or an academic task (as seen in many college courses), then the students will only confirm what many directors fear, that sight-singing is a boring, uninteresting technique that they must try and undertake (Demorest, 2001).

Another reason why many choral directors are not teaching sight-singing is the thinking that there isn’t enough time during the course of the school day. Middle school and high school choirs are usually rushed for time practicing and getting ready for concerts, contests, and various performances that they give throughout the year. The director is hesitant to just take five minutes out of their rehearsal time to teach sight-singing because it is normally unrelated to the repertoire they are singing. The complexity of the repertoire is usually well beyond the level at which the students can sight-sing; therefore, they feel as though they are wasting precious practice time. The irony of this is most of the students cannot read the music they are about to perform anyhow, and consequently, the students must be taught by rote in order to learn the vocal compositions. If, the students were originally taught how to sight-sing, then the directors would not have to teach by rote because they would be able to read the music in the first place. Thus, they would learn their parts sooner, and would have enough time during the course of the school day to learn and practice the art of sight-singing (Standards in Demorest, 2001).

Succinctly, music educators are aware that the National Standards for Arts Education includes sight-singing as an achievement standard in grades 5-12 for school

37
choir. It reads vocal students in grades 9-12 should be able to “sight-read, accurately and expressively, music with a difficulty of 3, on a scale of 1-6” (Demorest, 2001, p. 3). In order to fulfill these standards, directors are required to demonstrate that this is being done, and that they can evaluate and chart their students’ developments and/or progress. Nevertheless, there are more essential reasons to train students to sight-sing. The self-assurance and self-sufficiency that goes along with evolving one’s skill of performing music on their own are two very important assets that will last for years to come.

Therefore, the following chapters will discuss the methods, procedures and instrumentation used for this study, the results of the questionnaire that was sent to elementary general music teachers and middle school choir directors in Northeastern Ohio, compared conclusions from previous research with conclusions found from the results research in this study, and provided recommendations for future research based on the findings of the sight-singing and music literacy survey will be included. Such findings could aid music teachers in choosing their particular curriculum, and which sight-singing system or a combination of systems would complement their teaching style in the best possible manner.
CHAPTER III

METHOD AND PROCEDURE

3.1 Method

The main purpose of this descriptive survey, which is a non-experimental quantitative research study, was to determine what efficient methods, approaches or techniques elementary general music teachers and middle school choral directors in Northeastern Ohio utilize to develop music literacy skills with a particular emphasis on sight-singing instruction. The music teachers were asked which sight-singing systems and music literacy skills they employ in their classrooms. Hence, those who are dedicated to practicing these skills regularly may benefit from the results of this study (refer to appendix B for the actual survey questions that were distributed).

3.2 Procedure

The survey questionnaire was sent to 120 elementary general music teachers and middle school choir directors of Northeastern Ohio at urban, rural, or suburban school systems during the winter of 2006. Addresses of the elementary general music teachers and middle school choral directors’ schools were obtained by accessing the MENC member website. The questionnaires were addressed to the attention of either the “Elementary General Music Teacher” or Middle School Choir Director.” A consent form (see Appendix A) was mailed along with the questionnaire explaining to the music
teachers that they had been chosen to participate in a research study, the reason why, the importance of signing the consent form and the significance of completing it by Wednesday, January 31, 2007.

Out of the 120 surveys that were mailed to the area general music teachers and middle school choir directors, 66 (N = 66) were returned to the researcher from which the results of this study were tallied. This equals a response rate of 55 percent. In spite of this, caution should be noted before relying on the survey results alone. The sampling of the data may not reveal a true picture of the total number of music teachers who do not include sight-singing into their daily lesson plans. It is possible that the music educators who do not teach sight-singing techniques decided not to fill out the questionnaires and send them back simply because it did not interest them. If the survey pertains to something they do not teach, then they are less likely to respond and send it back (Demorest, 2004). Consequently, the percentages of the music teachers that do not teach sight-singing could be a lot higher than what the results from these questionnaires reveal.

3.3 Instrumentation

The instrumentation used to collect the data was a survey questionnaire (see Appendix B) that was prepared by the researcher and mailed to 120 elementary general music teachers and middle school choir directors in the surrounding areas of Northeast Ohio. The completed surveys that were mailed back to the researcher were entered onto a computer using Microsoft Excel and the business computer software SPSS to calculate all of the responses from the questionnaires.
Frequencies or repeated responses, and percentages of the different and like responses were obtained, and in some instances the Pearson’s Correlation Coefficient was used for tallying the findings. “The Pearson Correlation Coefficient is a measure of linear association between two variables. The values of the correlation coefficient range from –1 to 1. The sign of the correlation coefficient indicates the direction of the relationship [positive or negative]. The absolute value of the correlation coefficient indicates the strength with larger absolute values indicating stronger relationships” (Kandula, personal communication, August, 2007).

The Pearson Correlation Coefficient was utilized in this research study because it is a reliable way of proving the strength or weakness of two variables being compared, related or correlated. It was implemented in this study to compare whether or not sight-singing inclusion is contingent upon the ethnic groups of the students; whether or not the majority of the music educators are teaching in the elementary grade levels when the Kodaly methodology is employed; whether or not the majority of the music educators are teaching in the middle schools when count singing is employed; whether or not the music teachers’ major instruments fall within the string family when count singing is the preferred rhythmic reading practice; and finally, whether or not sight-singing inclusion is contingent upon the number of times music classes are held per week and/or the length of the music classes.

As the survey was being compiled, the decision was made to include both open-ended, close ended, and contingency questions. Open-ended questions allowed the
respondents to answer the questions as they saw fit, and the close-ended questions gave
the subjects the choice of responses that were already written out for them but still would
give the researcher the resources to possibly form valuable conclusions from the survey
and previous research as well. Contingency questions are examples of when the
respondents are asked a yes or no question, and depending on which answer is given,
another question is generated from that response (refer to Appendix B, questions 15, 16,
and 17). The researcher felt these types of survey questions would benefit other music
educators the most by supplying them with notable information they could conceivably
use in their own classrooms.

The music teachers in this study were asked to answer the following fundamental
questions: (a) Is sight-singing included in the weekly instruction? (b) If so, do you teach
in an urban, rural or suburban school? (c) Does the make-up of the student’s
demographics, gender or ethnic group determine whether or not sight-singing is being
taught? (e) What type of sight-singing system is utilized in your classroom? (f) Is there a
specific teaching methodology that is used or followed (Kodály, Orff, Dalcroze, or
Suzuki)? (g) How is pitch recognition taught (solfege syllables, neutral syllables, pitch
numbers of the scale, or letter names of the notes)? (h) What is the technique used to
teach rhythmic notation (counting, rhythmic syllables such as “ta” and “ti ti”? (i) How
much time per week is spent teaching sight-singing techniques? (j) Does the number of
times per week that the general music and/or choral classes are held and/or the length of
each class time influence whether or not sight-singing is included in the music teacher’s
curriculum? (k) What visual aids and materials are used to enhance the teaching of sight-singing, if any (hand signs, flash cards, transparencies, CD’s, videos, etc.)?
CHAPTER IV

RESULTS OF THE STUDY

4.1 Introduction

The results of the study were recorded and computed from the 66 responses to the survey questionnaires that were returned by elementary general music teachers and middle school choral directors from the Northeast Ohio region. This is an overall response rate of 55% of the original 120 surveys mailed to area music educators. Frequencies or repeated responses, and percentages of the different and like responses were obtained, and in some instances the Pearson’s Correlation Coefficient was utilized for tallying the findings. This chapter is divided into two sections. The first section is comprised of the respondents’ make-up, and the second section yields results concerning the actual responses to questions regarding sight-singing and music literacy.

RESULTS

4.2 Make-Up of the Respondents

Survey question number 1: Please check the type of school where you teach. The overall make-up of the respondents revealed that forty-five out of the 66 subjects teach in suburban schools, which is 68.18%, eleven of the 66 teach in rural schools, which is 16.167%, and ten of the 66 teach in urban schools, which is 15.15%. Out of the forty-six respondents (70%) that said they include sight-singing in their weekly instruction, thirty-
one of the 46 teach in suburban schools, which is 67.4%, eight of the 46 teach in rural schools, which is 17.4%, and seven out of the 46 teach in the urban area schools, which is 15.2% (refer to chart #1). These results concur with what Kuehne (2003) found to be true in the study that she conducted as well.

Chart # 1 – Respondents’ School Type that Teach Sight-Singing

70% of the Respondents (46 out of 66) said Sight-Singing is included in their weekly instruction. Of these 46 Respondents, 31 (67.4%) teach in the Suburbs, 8 (17.4%) teach in Rural Schools, and 7 (15.2%) teach in the Urban areas.

Survey question number 2: Please check the grades that you teach. The results of this survey showed that 32 out of the 66 respondents, which is 48.49% teach in the elementary grade levels. Twenty out of the 66 music educators, which is 30.30%, teach in the middle schools, and fourteen out of the 66 respondents, which is 21.21% teach in both the elementary and middle school grade levels. The grade level breakdown
from the respondents is pretty even; therefore, there is a good representation from both
the elementary and middle school music teachers.

The last question in this section involving information concerning the make-up of
the respondents is question number 5: *Please list your major instrument(s).* Seventeen
out of the 66 music teachers, which is 26%, listed voice as their major instrument.
Twelve out of the 66 respondents, which is 15.15%, checked woodwinds as their primary
instrument, while ten out of the 66 music educators, which is 15.15%, confirmed that
voice and piano were their two main instruments. Subsequently, seven out of the 66
respondents, which is a total of 10.61%, revealed the brass family as their major
instruments, while another seven out of the 66 respondents reported that the piano is their
focal instrument. A combination of the voice and woodwinds is four out of the 66
subjects’ main instruments, which is a total of 6.06%, while three people out of the 66
participants, which is 4.55%, listed the voice, piano, and woodwinds as their major
instruments. The rest of the respondents, which make-up a total of six music teachers
(which is 1.51% each), marked on the survey that their main instruments were as follows:
strings; voice and strings; piano and woodwinds; voice and brass; voice, piano, and
strings; and voice, piano, and brass.

4.3 Sight-Singing Results

The answers to the following questions were considered more consequential than
the rest of the replies of the survey because they may benefit music teachers since they
are closely related to music literacy and sight-singing skills.
Question number 15: Is sight-singing instruction included in your weekly curriculum? Seventy percent of the respondents (46 out of a total of 66) replied that sight-singing is included in their weekly curriculum. Responses from the remaining twenty varied. Eight teachers reported they do not have time for sight-singing, two confirmed that sight-singing is not suitable for their beginning students, and one music teacher mentioned that it was dropped from the weekly rehearsals after failed attempts. Others reported that equipment was not available to include sight-singing, there was not a choice to include it, or that sight-singing pedagogy was not a part of the collegiate curriculum that was offered. Six of the respondents did not mention their reasons for not including it.

Survey question number 16: How many minutes a week do you spend teaching sight-singing techniques? While 70% of the respondents said they include sight-singing as part of their weekly curriculum, twenty people (30.303%) replied that they spend ten minutes per week on sight-singing; nine (13.64%) music teachers expend fifteen minutes a week teaching sight-singing; six (9.09%) individuals said they spend more than thirty minutes a week on sight-singing, while five (7.575%) subjects checked that twenty-five minutes of sight-singing is being taught per week. Three (4.545%) general music teachers and choral directors spend thirty minutes per week teaching sight-singing; three (4.545%) music teachers include sight-singing into their curriculum twenty minutes a week; three (4.545%) music educators indicated they only spend five minutes per week teaching sight-singing; two (3.03%) people spend less than five minutes on sight-singing.
per week; and finally, one (1.515%) music teacher utilizes forty minutes of their teaching time per week on sight-singing.

There were fourteen teachers (21.212%) that did not answer the question because they had marked they do not include sight-singing into their weekly instruction. Consequently, none of them could give exact amounts of time they spend teaching sight-singing a week because they do not incorporate it into their daily schedules. Even though 70% of the survey’s music teachers utilize sight-singing as a very important tool for teaching music literacy skills, the results indicate 25 or 37.88% of those respondents spend ten minutes or less a week with their classes on sight-singing.

Survey questions number 11 and 12: *Please list the number of times your general music classes and/or choir classes meet per week.* And, does the number of times the music classes are held each week compare or have a relationship with whether or not sight-singing is taught? A Pearson Correlation Coefficient, r, was acquired to see if the number of times that the music classes are held per week is correlated with whether or not sight-singing is taught. A coefficient of 0.099 reflects a very weak correlation. Though the two variables are positively correlated, the strength of such relation is weak. The significance value of 0.213 indicates the correlation is not statistically significant. The significance figure would need to be less than .05 to be significant, and it is not. Therefore, the Pearson r is not significant (see Table 1). This result was yielded from a sample of 66 survey questionnaires of which 6 teachers did not respond to the number of times the music classes are held each week.
Table 1

of Times Music Classes Held Per Wk - Sight-Singing Taught or Not / Pearson Correlation

<table>
<thead>
<tr>
<th># of Times Music Classes Held Per Wk.</th>
<th># of Times Music Classes Held Per Wk.</th>
<th>Sight-Singing Taught or Not</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Correlation</td>
<td>Pearson Correlation</td>
<td></td>
</tr>
<tr>
<td>Significance</td>
<td>Significance</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>0.099</td>
<td>0.213</td>
</tr>
<tr>
<td>66</td>
<td>66</td>
<td>66</td>
</tr>
</tbody>
</table>

Survey question number 13: *Length of their general music classes* and does the length of the general music classes have anything to with whether or not sight-singing is being taught? The lengths of the respondents’ general music class times are going from highest to lowest: 33.3% held classes for 40 minutes, 25.8% held classes for 45 minutes, 12.1% held classes for 35 minutes, 10.6% held classes for 30 minutes, while 7.6% brought up the rear with class length times marked ‘other’ than those mentioned above. And finally, 10.6% of the music teachers left the question blank. Therefore, we can conclude that those participants do not teach general music classes, only choir classes.

A Pearson Correlation Coefficient, r, was acquired to see if the length of the general music classes is correlated with whether or not sight-singing is taught. A coefficient of –0.04 reflects a very weak correlation. Though the two variables are negatively correlated, the strength of such relation is weak. The significance value of 0.366 indicates the correlation is not statistically significant. The significance figure would need to be less than .05 to be significant, and it is not. Therefore, the Pearson r is
not significant (see Table 2). This result was yielded from a sample of 66 survey questionnaires of which 6 teachers did not respond to the length of the general music classes that are held each week.

Table 2

<table>
<thead>
<tr>
<th>Length of General Music Classes</th>
<th>Pearson Correlation Significance</th>
<th>Length of General Music Classes</th>
<th>Sight-Singing Taught or Not</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>1.00</td>
<td>-0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>66</td>
<td>0.366</td>
</tr>
<tr>
<td>Sight-Singing Taught or Not</td>
<td>Pearson Correlation Significance</td>
<td>-0.04</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>0.366</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>66</td>
<td></td>
</tr>
</tbody>
</table>

Survey question number 14: *Length of your middle school and/or elementary choir classes.* The answers from the music participants going from the highest to the lowest percentages are: 27.3% held choir classes for 45 minutes, 21.2% held choir classes for 35 minutes, 18.2% held choir classes for 40 minutes, 6.1% held choir classes for 50 minutes, 3.0% held choir classes with class length times marked ‘other’ than those mentioned above, and 1.5% held choir classes for 48 minutes. There were 22.7% of the teachers that left the question blank. As a result, we can conclude that they do not teach choir, only general music classes. A few notable percentages pertaining to the lengths of the general music and choir classes are as follows: 59.1% of the general music classes are held between 40-45 minutes long; 45.5% of the choir classes are also held between the 40-45 minute time frame, and 21.2% of the choir classes are 35 minutes in length. Over
half of the music teachers who completed the survey teach general music classes that are between 40 and 45 minutes long, and over half of the choir directors’ classes are over 35 minutes in length.

Survey question number 3: Please check the make-up of your student population. Then, does the ethnic group of the students’ dictate whether or not sight-singing is being taught? A Pearson Correlation Coefficient, r, was acquired to see if the ethnic group of the students’ is correlated with whether or not sight-singing is taught. A coefficient of – 0.25 of the American Indian students and whether they dictate if sight-singing is taught or not reflects a weak correlation. Though the two variables are negatively correlated, the strength of such relation is fairly weak. The significance value of 0.982 indicates the correlation is not statistically significant. The significance figure would need to be less than .05 to be significant, and it is not. Therefore, the Pearson r is not significant (see Table 3). The American Indians have the highest correlation, though weak but in a negative direction. In other words, while the variable of sight-singing increases, the ethnic group of American Indians decreases. Therefore, as the instruction of sight-singing increases, the amounts of American Indians decrease.
Table 3

American Indian Students-Sight-Singing Taught or Not/Pearson Correlation

<table>
<thead>
<tr>
<th></th>
<th>American Indian Students</th>
<th>Sight-Singing Taught or Not</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Indian Students</td>
<td>Pearson Correlation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Significance</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>-0.25</td>
</tr>
<tr>
<td></td>
<td>66</td>
<td>0.982</td>
</tr>
<tr>
<td>Sight-Singing Taught or</td>
<td>Pearson Correlation</td>
<td></td>
</tr>
<tr>
<td>Not</td>
<td>Significance</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>-0.25</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>0.982</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>66</td>
<td>66</td>
</tr>
</tbody>
</table>

The Pearson Correlation Coefficient, r, for the rest of the respective ethnic groups are 0.076 for Caucasian; 0.064 for African-American; 0.006 for Hispanic; 0.003 for Japanese; -0.006 for Asian, -0.005 for Chinese, and -0.122 for the ‘other’ group categories. Whereas Caucasian, African-American, Hispanic, and Japanese are positively correlated, Asian, Chinese, American Indian and the ‘other’ group categories have a negative correlation with the variable whether or not sight-singing is taught. The strength of each of the relations above is weak whether it is classified as a positive or negative correlation. Although, the ‘other’ group category is not as weak since the coefficient is -0.122.

The significance value for Caucasian students is 0.545; for the African-American students is 0.610; for the Hispanic students is 0.962; for the Japanese students is 0.962; for the Asian students is 0.986; and for the ‘other’ category is 0.328; which indicates that all of the above ethnic groups are not statistically significant. However, for the Chinese students the significance value is 0.043, which indicates that the correlation is statistically
significant (see Table 4).

Table 4

<table>
<thead>
<tr>
<th>Chinese Students-Sight-Singing Taught or Not</th>
<th>Pearson Correlation</th>
<th>Significance</th>
<th>N</th>
<th>Chinese Students-Taught or Not</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinese Students</td>
<td>Pearson Correlation</td>
<td></td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Significance</td>
<td></td>
<td></td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td>0.043</td>
</tr>
<tr>
<td></td>
<td>66</td>
<td></td>
<td></td>
<td>66</td>
</tr>
<tr>
<td>Sight-Singing Taught or Not</td>
<td>Pearson Correlation</td>
<td></td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Significance</td>
<td></td>
<td></td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td>0.043</td>
</tr>
<tr>
<td></td>
<td>66</td>
<td></td>
<td></td>
<td>66</td>
</tr>
</tbody>
</table>

The positive and negative correlations are not strong enough to really influence the results in a substantial way. In other words, the cultural make-up of the students is not dependent upon whether or not general music teachers and/or choral directors are teaching sight-singing and music literacy skills in Northeastern Ohio.

Survey question number 18: *What type of sight-singing system do you prefer to utilize?* Approximately 62.12% (41 out of 66) of the respondents prefer the movable-do system; 9.09% (6 out of 66) prefer a combination of movable-do, absolute letter names, and numbers; 7.58% (5 out of 66) prefer fixed-do, and 4.54% (3 out of 66) prefer ‘absolute letter names.’ There was a tie between using numbers alone, which came to 3.03% (2 out of 66); movable-do and numbers, which was 3.03% (2 out of 66) again; using movable-do and absolute letter names, which was also 3.03% (2 out of 66), and one music teacher replied that he or she uses fixed-do along with absolute letter names, and numbers which equaled 1.52% (1 out of 66). The rest of the music teachers chose not to
respond to this question, which came to a total of 6.06% (4 out of 66).

Survey question number 23: Please check the following methodologies that you follow or use. Most of the music educators indicated that they follow a combination of methodologies to teach sight-singing and improve their student’s music literacy skills. Kodaly and Orff are the most popular groupings of methodologies the music teachers favored, which computes to a total of 25.76% (17 out of 66). Following in order of prevalence was the coalescing of Kodaly, Orff, and Dalcroze approaches, which adds up to 24.24% (16 out of 66). The Kodaly system alone came in third as the next prominent methodology, which amounts to 16.67% (11 out of 66). There were six respondents that did not answer this question, which accounts for 9.09% of the replies. A tie, which consisted of the methodologies of Kodaly and Dalcroze, and Dalcroze alone, holds the second to last position of 3.0% (2 out of 66). And lastly, bringing up the rear were the combinations of Kodaly, Orff, Dalcroze and other; Kodaly and other; Kodaly, Suzuki and other; Kodaly, Orff and Suzuki; Kodaly, Dalcroze and other; Kodaly, Orff, Dalcroze, and Suzuki; Orff and Dalcroze, Orff and Suzuki; Orff and other; Orff alone; other alone, and one music teacher checked the category of none (none of the methods listed), which all equals a percentage of 1.52 (1 out 66) that utilizes these different types of methods.

Survey question number 20: What type of rhythmic counting system do you use? The Kodaly rhythmic counting system (“ta” & “ti-ti”) received the most votes with a total of 19 out 66 teachers incorporating it into their style of teaching, which equals a percentage rate of 28.79. The count singing system (1& 2& etc.) was second with 16
tallies, which add up to a percentage rate of 24.24. The amalgamation of Kodaly and the count singing system received the third highest votes with 15, which computes to 22.73%. Fourth place was the combination of the Kodaly, count singing, and names/fruits system, which recorded 6 marks, and is the equivalence of 9.09%, and in fifth position was the count singing and names/fruits system, which had 4 votes, and calculates to 6.06%. In last place, was a tie between the systems of counting singing and other (1 out of 66 with a total of 1.515%); Kodaly and names/fruits (1 out of 66 with a total of 1.515%); Kodaly, Gordon, and names/fruits (1 out of 66 with a total of 1.515%); count singing, Gordon and names/fruits (1 out of 66 with a total of 1.515%); Kodaly, count singing, and other (1 out of 66 with a total of 1.515%); and Kodaly, names/fruits, and other (1 out of 66 with a total of 1.515%).

An important element was uncovered from the music teachers that completed the researcher’s surveys. It was discovered the greatest portion of the music teachers that employ both the Kodaly and the counting singing systems teach students in the elementary grade levels, and in the middle schools. The music educators that teach in the elementary schools mostly prefer the Kodaly system way of counting, and the majority of the middle school music teachers favor the count singing system for teaching rhythm. Forty-three out of the 66 music teachers (65.15%) that completed the survey questionnaire prefer these two systems for rhythm learning.

A Pearson Correlation Coefficient, r, was acquired to see if when the Kodaly methodology is utilized, is it correlated with music educators teaching in the elementary
grades (K-4)? A coefficient of 0.16 reflects a weak correlation. Though the two variables are positively correlated, the strength of such relation is relatively weak. The significance value of 0.085 indicates the correlation is not statistically significant (although very close to being statistically significant). The significance figure would need to be less than .05 to be significant. Therefore, the Pearson r is not significant (see Table 5).

Table 5

Kodaly Methodology-Elementary Music Teacher/Pearson Correlation

<table>
<thead>
<tr>
<th>Kodaly Methodology</th>
<th>Pearson Correlation</th>
<th>N</th>
<th>Elementary Music Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kodaly Methodology</td>
<td>Pearson Correlation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Significance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>0.16</td>
<td></td>
<td>0.16</td>
</tr>
<tr>
<td>0.085</td>
<td>66</td>
<td></td>
<td>66</td>
</tr>
<tr>
<td>Elementary Music Teacher</td>
<td>Pearson Correlation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Significance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.16</td>
<td>0.085</td>
<td></td>
<td>1.00</td>
</tr>
</tbody>
</table>

A Pearson Correlation Coefficient, r, was acquired to see if when count singing is utilized, is it correlated with music educators teaching in the middle school grade levels (6-9)? A coefficient of 0.01 reflects a very weak correlation. Though the two variables are positively correlated, the strength of such relation is weak. The significance value of 0.003 indicates the correlation is statistically significant (see Table 6).
Table 6

Count Singing-Middle School Music Teacher/Pearson Correlation

<table>
<thead>
<tr>
<th></th>
<th>Count Singing</th>
<th>Middle School Music Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count Singing</td>
<td>Pearson Correlation</td>
<td>1.00</td>
</tr>
<tr>
<td>Significance N</td>
<td>66</td>
<td>0.003</td>
</tr>
<tr>
<td>Middle School Music Teacher</td>
<td>Pearson Correlation</td>
<td>0.01</td>
</tr>
<tr>
<td>Significance N</td>
<td>66</td>
<td>0.003</td>
</tr>
</tbody>
</table>

A Pearson Correlation Coefficient, r, was acquired to see if when count singing is utilized, is it correlated with when the respondents’ major instrument falls within the string family? A coefficient of 0.15 reflects a weak correlation. Though the two variables are positively correlated, the strength of such relation is relatively weak. The significance value of 0.346 indicates the correlation is not statistically significant. The significance figure would need to be less than .05 to be significant. Therefore, the Pearson r is not significant (see Table 7).

Table 7

Count Singing-Major Instrument-String Family/Pearson Correlation

<table>
<thead>
<tr>
<th></th>
<th>Count Singing</th>
<th>Major Instrument-String Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count Singing</td>
<td>Pearson Correlation</td>
<td>1.00</td>
</tr>
<tr>
<td>Significance N</td>
<td>66</td>
<td>0.346</td>
</tr>
<tr>
<td>Major Instrument-String Family</td>
<td>Pearson Correlation</td>
<td>0.15</td>
</tr>
<tr>
<td>Significance N</td>
<td>66</td>
<td>0.346</td>
</tr>
</tbody>
</table>

57
A Pearson Correlation Coefficient, r, was acquired to see if when count singing is utilized, is it correlated with when the participants’ major instrument falls within the brass family? A coefficient of 0.09 reflects a very weak correlation. Though the two variables are positively correlated, the strength of such relation is weak. The significance value of 0.002 indicates the correlation is statistically significant (see Table 8).

Table 8

<table>
<thead>
<tr>
<th>Count Singing-Major Instrument-Brass Family/Pearson Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count Singing</td>
</tr>
<tr>
<td>Count Singing Pearson Correlation</td>
</tr>
<tr>
<td>Count Singing Significance N</td>
</tr>
<tr>
<td>66</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>66</td>
</tr>
<tr>
<td>Major Instrument-Brass Family Pearson Correlation</td>
</tr>
<tr>
<td>Major Instrument-Brass Family Significance N</td>
</tr>
<tr>
<td>N</td>
</tr>
</tbody>
</table>

A Pearson Correlation Coefficient, r, was acquired to see if when the Kodaly Methodology is utilized, is it correlated with when the respondents’ major instrument is voice? A coefficient of -0.15 reflects a weak correlation. Though the two variables are negatively correlated, the strength of such relation is relatively weak. The significance value of 0.408 indicates the correlation is not statistically significant. The significance figure would need to be less than .05 to be significant. Therefore, the Pearson r is not significant (see Table 9).
Table 9

Kodaly Methodology-Major Instrument-Voice/Pearson Correlation

<table>
<thead>
<tr>
<th></th>
<th>Kodaly Methodology</th>
<th>Major Instrument-Voice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kodaly Methodology</td>
<td>Pearson Correlation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Significance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>-0.15</td>
</tr>
<tr>
<td></td>
<td>66</td>
<td>0.408</td>
</tr>
<tr>
<td>Major Instrument-Voice</td>
<td>Pearson Correlation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Significance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.15</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>0.408</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>66</td>
<td>66</td>
</tr>
</tbody>
</table>

Survey question number 22: Please list the names and authors of specific sight-singing books that are utilized. The surveys yielded results that 25% of the music teachers utilize specific sight-singing instructional books. The following sight-singing books were mentioned the most often: The Jenson Sight-Singing Book; Telfer’s Successful Sight-Singing; Snyder’s The Sight Singer; Stoke’s Sight-Singing; Wheeler’s Let’s Read Music; Crocker, Killian & Rann’s A Comprehensive Choral Method; McGraw-Hill Glencoe’s Experiencing Choral Music; Gries’ Let’s Get Started Sight-Singing; and Masterworks Press found online under www.masterworkspress.com.

Survey question number 19: Which of the following materials and/or visual aids do you use to enhance the teaching of music literacy and sight-singing? Out of the 66 music teachers that replied, 76% make use of hand signs, 53% use flash cards, 45% use overhead projectors, 27% play compact discs, 20% show videos, 9% show DVDS, and 18% use computer software programs. A couple of the respondents replied they use ‘notes,’ ‘smart boards,’ ‘various icons,’ ‘sight-singing curriculum workbooks,’ ‘hand
outs,’ ‘dry erase boards,’ ‘power point presentations,’ and ‘perform work on the board’ as visual aids to enhance their teaching of sight-singing and music literacy.

The researcher did not list the many combinations that each music teacher uses as visual aids to supplement their sight-singing and music literacy teaching because there were too many of them. When adding all of the percentages together in the previous paragraph from the last page, the sum does not equal 100%. The percentages show the totals of visual aids that were listed and checked by each teacher. Because 76% of the 66 respondents who answered this survey replied they use hand signs as a means of supplementing their sight-singing and music literacy teaching, the Kodaly Methodology is favored over Orff, Dalcroze, Suzuki or any other technique.
CHAPTER V

DISCUSSION, CONCLUSIONS, AND RECOMMENDATIONS

5.1 Discussion

The purpose of this study was to investigate the variety of sight-singing approaches used by elementary general music teachers and middle school choral directors in order that these methods may help them improve their students’ music literacy skills in their classrooms. In addition, information from the respondents and their students’ backgrounds were examined. Such findings could assist teachers with choosing the system that will fit their personal teaching style, and might help them organize their music curriculum as well.

It is interesting to note that among the 46 (69.70%) respondents that include sight-singing in their weekly instruction, 31 of them teach in suburban schools. The results of this study show that almost 67.4% of the teachers that include sight-singing as part of their weekly curriculum come from the suburban school systems. These results coincide with what Kuehne (2003) found in her Florida study with middle school choir directors. She discovered that in the suburban schools, sight-singing was taught more frequently than in the urban or rural schools.

This percentage total concurs with the number of suburban high school choirs that participate in the District and State adjudicated events each year from the Northeastern
Ohio area. The majority of Ohio area choirs that participate in the District and State adjudicated events each year come from the surrounding suburban school systems. It has been only recently (this school year) that the Cleveland City Schools, which consist solely of urban schools, have reinstated instrumental music, general music, and choir back into their curriculum.

Still, only thirteen U.S. states include sight-singing in their overall ratings at adjudicated events (Norris, 2004). Therefore, it is crucial that we as music educators conduct more surveys to insure that the colleges are instructing the future music teachers on how to teach sight-singing. As Demorest (2001) reiterated, “teachers teach as they have been taught” (pg. 1). Demorest (2001) continued, “If sight-singing was not a part of the teacher’s own choral experience or college methods training, then they are unlikely to have either the skills or the awareness to teach it to their students” (p. 1). Hence, if future music teachers were exposed to a variety of sight-singing instruction while they were enrolled in the choral and instrumental methods classes in college, they might be able to design a compelling music literacy program for their students that they themselves did not receive.

Although almost seventy percent (46 out of 66) of the subjects from the survey said they include sight-singing as a part of their weekly curriculum, the results indicated that 25 or 37.88% of the music teacher respondents are spending ten minutes or less per week with their classes on sight-singing instruction. The above figures are misleading. Forty-six out the 66 respondents replied that they teach sight-singing every week.
However, 25 respondents checked that they spend ten minutes or less per week teaching sight-singing. Nine subjects responded that they expend 15 minutes a week teaching sight-singing; 6 individuals said they spend more than 30 minutes a week on sight-singing, while 5 music teachers claim replied that 25 minutes of sight-singing being taught per week. Three general music teachers and choir directors spend 30 minutes per week teaching sight-singing; three music teachers include sight-singing into their curriculum 20 minutes a week; and finally, 1 music teacher utilizes 40 minutes of their teaching time per week on sight-singing. The numbers directly above add up to a total of 52 subjects checking minutes that they include sight-singing instruction per week. On the other hand, only 46 respondents replied that they teach or include sight-singing into their weekly curriculums. Fifty-two does not equal 46, therefore, we can conclude that the respondents did not fill out the questionnaire correctly. Consequently, the percentages would not be correct as well.

It should be mentioned though, that Demorest (2001) found the more that future teachers become familiarized with the different types of sight-singing systems, the more likely they will teach it. And, the more that music educators teach sight-singing, the more likely they will spend longer periods of time practicing it with their classes. Once again, “teachers teach as they have been taught” (Demorest, 2001. p.1).

Keeping with the results of the participants’ make-up, it is worthy to note that 32 of the music educators (48.49%) teach in the elementary grade levels, while 20 (30.30%) teach in the middle schools, and 14 (21.21%) teach in both the elementary and middle
school grade levels. Moreover, it was revealed the majority of the respondents that employ both the Kodaly (“ta” & “ti-ti”) and the count singing systems (1& 2& etc.) teach in the elementary grade levels, and the middle schools. The subjects who teach in the elementary schools only mostly prefer the Kodaly system of counting, and the middle school music teachers favor the count singing system for teaching rhythm. Forty-three out of the 66 respondents (65.15%) that completed the survey, prefer these two rhythm counting systems, which is consistent with what Kuehne (2003) and Magnell (in Guzy, 1984) found to be true in both of their studies as well. The respondents follow Magnell’s theory that the Kodaly system is great for teaching rhythmic drills during the student’s elementary years but could be too juvenile for the middle school students (in Guzy, 1984).

A Pearson Correlation Coefficient, r, was obtained to see when the Kodaly methodology is utilized, if it is correlated with music educators teaching in the elementary grades. A coefficient of 0.16 reflected a positive but weak correlation (see Table 5, p. 45). A significance value of 0.085 was found. This indicates the correlation was not statistically significant, although since the significance figure needs to be less than 0.05, it was very close to being statistically significant. Again, these two figures corroborate with what Kuehne (2003) and Magnell (in Guzy, 1984) found to be true in both of their studies.

What is more, a Pearson Correlation Coefficient, r, was obtained to see when count singing is utilized, if it is correlated with music educators teaching in the middle
school grade levels (6-9). A coefficient of 0.01 reflected a positive but very weak correlation (see Table 6, p. 46). A significance value of 0.003 was found. This indicates the correlation was statistically significant. Once more, these two figures corroborate with what Kuehne (2003) and Magnell (in Guzy, 1984) found to be true in both of their studies.

Consequently, this study may well confirm what Patty (1997) and Daniels (1986) found to be true in previous research. If the choral teacher is able to choose the type of sight-singing system that he or she is the most comfortable with and incorporates it into their daily lesson plans, the result could produce a positive attitude. Therefore, the students will more than likely retain the information from that particular system because of the teacher’s positive attitude. Additionally, an optimistic approach could help the music teacher become more ingenious when introducing sight-singing to their students, which creates a fun filled environment of learning for everyone, and could aid in their retention level as well.

As far as the students’ make-up is concerned, the researcher did not find any significant results that would confirm the fact that the ethnic group of the children dictates whether or not sight-singing is being taught. Pearson Correlation Coefficients were obtained on such ethnic groups as: American Indians, Caucasians, African Americans, Hispanics, Japanese students, Asians, Chinese students, and ‘other’ group categories not listed above. The American Indians had the highest correlation coefficient of –0.25 (see Table 3, p. 41). However, even though the two variables were negatively
correlated (as sight-singing instruction increased, the amount of American Indians
decreased), the strength of such relation was fairly weak. The significance value was
0.982, which indicates the correlation is not statistically significant. Therefore, it might
be logical to conclude that the students’ cultural classification is not contingent upon
whether or not general music teachers and/or choral directors are teaching sight-singing
and music literacy skills in Northeastern Ohio.

It is interesting to note that 62.12% (41 out of 66) of the music teacher
respondents preferred the movable-do system to any of the other systems for teaching
pitch recognition. Similar results were found from previous research studies of May,
(1993); Demorest & May (1995); McClung, (2001); Brown, (2003); and Demorest alone
(2004). The survey questionnaire also revealed that a total of 25.76% (17 out of 66)
follow a combination of Kodaly and Orff methodologies to teach sight-singing and may
be used as skillful tools for comprehending sight-singing and music literacy practices.
These results verify music educators must believe that the Kodaly and Orff
methodologies work well with one another, which could in turn benefit new teachers to
assist them in planning their music curriculums.

It should be mentioned the present study discovered that only 25% (16.50 out of
66) of the music teachers utilize specific sight-singing instructional books. The present
survey indicates that approximately 75% of the rest of the music educators prefer other
materials for sight-singing instruction rather than purchasing sight-singing textbooks.
These figures concur with previous surveys (Hales, 1961; Johnson, 1987; May, 1993)
conducted, and found that “most directors seem to prefer using self-created materials or getting material from octavos and hymnals rather than purchasing commercial texts” (Demorest, 2004, p. 6). The present study revealed that the Jenson Sight-Singing book and Telfer’s Successful Sight-Singing were the most popular textbook publications, which coincide with what Kuehne (2003) found to be true in her Florida middle school study.

The present survey also discovered many of the music teachers that completed the survey use visual aids to enhance their teaching of music literacy and sight-singing. The most popular response was the exploitation of hand signs, which added up to a total of 76% of the respondents’ replies. Yet again, these percentage figures are similar with what Kuehne (2003) and Magnell (in Guzy, 1984) found to be true in both of their studies of the Kodaly approach. Hand signs are one of the three tools of which were chosen for use in the Kodaly Method and has been attributed to John Curwen for its origin, although there has been evidence of hand signs as far back as the “ancient Hebrews and Egyptians” (Choksy, 1999, p. 13).

In closing, this study found that music teachers in the suburban school systems are more likely to include sight-singing into their weekly curriculum, as opposed to urban and rural schools. On the other hand, the present study revealed that almost 40% of the teachers spend 10 minutes or less on sight-singing per week. In addition, the majority of the music educators employ methods consistent with both Kodaly and Orff approaches. Even though a combination of both Kodaly and Orff methods was discovered to be among the respondents’ overall favorites, the movable-do system was
found to be the choice system to teach pitch recognition to their students. Furthermore, the greater part of the subjects reported that they prefer the Kodaly (“ta” & “ti-ti”) and the count singing system (1 & 2 & etc.) for teaching rhythm. As a final point, the Kodaly hand signs, which are again associated with the Kodaly system was found to be the most popular visual aid for teaching sight-singing, and the majority of the music teacher respondents prefer utilizing other materials for sight-singing instruction rather than purchasing the actual sight-singing textbooks.

5.2 Conclusions

The purpose of this study was to discover the different types of systems area elementary and middle school music educators use to teach sight-singing, which might help them expand their music literacy skills as well as aid in arranging their curriculum. What is more, this study attempted to find if any of these preferred systems work better than the others, and if such results could assist future researchers in attempting to create a worldwide sight-singing system that is agreeable to everyone. This idea is not only impractical but would go against the educational choices to which music teachers look forward.

Previous research (Daniels, 1986; Patty, 1997) revealed that if the general music teacher and/or choral director is able to choose the type of sight-singing system he or she will incorporate into their weekly lesson plans, their attitude towards the type of sight-singing system will be positive and not negative. Then, the students will be able to retain the information from that particular system because of the teacher’s positive attitude. A
positive attitude helps the music teacher become more creative when introducing sight-singing to their students, which creates a fun learning environment for all. And, when the subject is presented in a fun way, the children are more likely to remember the information for a longer period of time.

The findings from this study show that preferences such as the movable do system are being utilized for pitch recognition. The Kodaly and count singing systems are the techniques that the elementary and middle school music teachers prefer for rhythm counting respectively. Additionally, the area music teachers are implementing a combination of the actual Kodaly and Orff methods. However, many different types of systems were checked by the respondents other than the majority favorites, therefore, it confirms that many of the music teachers choose the system they are the most comfortable with.

This study confirms prior research (Kuehne, 2003), that the majority of the Northeastern Ohio music educators who teach sight-singing come from the suburban school systems. Additionally, the results indicate that 37.88% of the respondents spend ten minutes or less a week with their classes on sight-singing. This study confirms the fact that music teachers in general need to spend more class time on sight-singing. Bertalot (1993) summarized the conceptual idea of sight-singing quite well. He said,

You see, he went on: it’s no use at all teaching children to sight-sing if you aren’t going to allow them to exercise their skills so that they may get better and better with each practice. Some fairly enlightened choir directors practice sight-singing for five minutes. That’s no good! They have to practice sight-singing all the time. That way the children have to think
for themselves (p. 22).

Demorest (2001) went on to say, “The sense of accomplishment that students experience as they progress through a sight-singing curriculum can give them the confidence they need to begin to think of themselves as readers” (p. 123). Ultimately, this is what music educators strive for in the end, improving on their students’ abilities to read at sight. As a result, one of the primary goals a music teacher should work towards is encouraging their students to become self-sufficient learners (Patty, 1997). In order for students to become self-sufficient learners, music teachers must increase the amount of practice time they spend each day on sight-singing instruction. Increased sight-singing practice could possibly help current and future music educators determine the sight-singing systems with which they are the most comfortable.

5.3. Recommendations

Based on the findings of this study, several recommendations could be considered for future research. A survey study should be executed to find out whether or not the middle school and high school choral directors attend annual adjudicated events, and if the music teachers’ states throughout the U.S. include sight-singing as an overall rating at their district and state contests. The results of Demorest’s study in 2004 indicated if more U.S. states incorporated sight-singing into their overall ratings, it could become an efficient means to encourage additional music teachers to devote more classroom time to sight-singing since they would want to receive a respectful rating. Thus, more practice and more research on the subject could in due time improve the students’ reading
capabilities and sight-singing skills.

In addition, future research should be conducted to investigate which sight-singing systems various colleges are offering music education majors. As mentioned before, the type of system should be the preference of each individual music teacher. Exposing them to a variety of systems allows the future teachers to choose which system is more suitable to their own teaching style, and will most likely benefit their students the most.

The respondents in the current study did not agree with the types of published sight-singing materials that are being utilized as instructional aids in their choral classrooms. The most popular were Telfer’s *Successful Sight-Singing* and the *Jenson Sight-Singing Book*. However, there were many other sight-singing instructional materials that the subjects listed as well. Therefore, because one particular method book did not stand out among the others, future research should be performed to determine the types of structure the choral sight-singing books follow, and if music educators feel these published choral books are helping to develop the reading and rhythm skills of their students.

What is more, choral teachers could gain valuable insight from the information that is available from instrumental instruction itself. Future research should be completed in order to study the procedures and make-up of the instrumental course outlines as an example to enhance the sight-singing training of school choirs. For instance, school instrumental programs typically offer some sort of private lessons and/or group sectional
lessons of like instruments (such as flutes and clarinets; percussion; trumpets; saxophones; and trombones) that not only include instruction on how to play the instruments but lessons on reading notes and how they relate to the staff as well. The instrumental students are given assignments each week to practice, and assessed individually on how well they play and read music from the individual method books. These types of method books such as the ones the instrumental programs utilize are not available for choral programs. They do not include instructions on how to practice sight-singing exercises outside of the music classrooms. Results of research on how to incorporate the way instrumental students are taught could impact vital information that choral directors implement in order to broaden their choral educational views. The outcome of this type of research could expand the music reading abilities and music literacy skills of middle school and high school choral students (Demorest 2004).

The present study revealed that 26% of the respondents listed voice as their major instrument, and 15.15% confirmed that both voice and piano were their two main instruments. Previous research (Colwell, 1963; Daniels, 1986) established that private piano lessons are connected to sight-singing achievement. In view of that, there is a need to study how many area elementary and middle school music students that are enrolled in choir are taking piano lessons. It also would be interesting to find out how many of those students’ parents actually own a spinet piano, and not an electric piano. Purchasing an electric piano is a lot cheaper than buying a full size piano; therefore, it could be presented to the families that say they can’t afford a full size piano to persuade them to
purchase an electric piano instead. In addition, many of the present school systems have electric pianos that the children can practice on, so they would not necessarily have to buy one. If more students could obtain private piano instruction, then the probability of sight-singing achievement and music literacy skills could be increased.

This study also revealed that the student demographics have nothing to do with whether or not sight-singing is being taught. Therefore, future research should be conducted to see why sight-singing is not being taught in the urban and rural school districts. It would be interesting to find out why the music educators are not including sight-singing instruction in those particular school systems.

Given the fact that assessment has developed into an important focal point of music education today, there is a need to study resourceful ways in which to evaluate student sight-singing advancements and retention in the choral classrooms. Previous research (Keenan-Takagi in Demorest, 2001) has found that choral teachers who include routine assessment in their classrooms improve their students’ sight-singing abilities.

There is no question that individual assessment of sight-singing skills takes a lot of time from a busy rehearsal schedule, however, it is needed in order to generate student learning. The solution is to discover which sight-singing assessment methods work the best, and to continue to use them on a regular basis. The advantages of expanding the sight-singing capabilities of each student are apparent. Choral music would not take as long for the class to learn because they would probably become better readers (Demorest, 2001). Consequently, when competing in the district and state adjudicated events, the
scores would more than likely improve in the sight-singing portion of the contest (if they include it in the overall ratings) since individual sight-singing assessment would have been employed previously. This is one of the main goals choir directors work towards, and that is developing and increasing the sight-singing skills of their choral ensembles.
REFERENCES

Mason, L. (1837). *Manual of the Boston Academy of Music, for instruction in the* 78

Shehan, P.K. (1987). Effects of rote versus note presentations on rhythm learning and

Von Kampen, K.E. (2003). An examination of factors influencing Nebraska high school

APPENDICES
APPENDIX A

Consent Form

Dear General Music and/or Choir Director:

My name is Wendie Conrad, and I am conducting a survey in order to complete my Master’s Thesis in Music Education on the approaches that Elementary and Middle School teachers use to develop music literacy skills. I am however, especially interested in the sight-singing techniques that music teachers utilize.

Attached you will find a questionnaire that I am asking you to complete. It is being sent to a variety of Elementary and Middle school music teachers from the Northeast Ohio area. The purpose of this survey is to gain information regarding the types of systems or approaches that music teachers use or prefer in order to enhance student learning in music literacy and sight-singing. In addition, we would like to explore the possibilities of what systems or approaches work as far as student retention is concerned. It is our hope that the information gained from this survey will give music teachers more knowledge and insight as to what systems prove to be more successful, and are the most beneficial to student learning.

Your responses to this survey will be anonymous. Your name will not be used in any way or appear anywhere on the survey itself, and confidentiality will be guaranteed. Only the researcher will know the individual’s identity, and the information that is provided. There are no risks involved.

Please understand that your participation in completing this survey is strictly voluntary, and that you may chose to stop at any time. There aren’t any rewards for filling out the questionnaire or any penalties for not participating.

For further information pertaining to this research, please contact Dr. Rita Klinger at (216) 523-7176 or email her at: r.klinger@csuohio.edu. My email address is: SirBentleyBoy@aol.com and I can be reached at (216) 215-6171.

There are two copies of this letter attached. After signing them, please keep one copy for yourself, and return the other one by Wednesday, December 27, 2006 in the enclosed self-addressed stamped envelope. Thanking you in advance for your cooperation and support by participating in this survey questionnaire.

I understand that if I have any questions about my rights as a research subject, I can contact the CSU Institutional Review Board at (216) 687-3630.

Please indicate your agreement to complete this survey by signing below.
I am 18 years or older and have read and understand this consent form and agree to participate.

Signature:___ ______________________

Name:__ ____________________
(Please Print)

Date:___ _______________
APPENDIX B

Questionnaire for Elementary General Music Teachers and Middle School Choir Directors

1. Please check the type of school where you teach.
 _____ Urban _____ Rural _____ Suburban

2. Please check the grades that you teach.
 _____ 1st _____ 2nd _____ 3rd _____ 4th _____ 5th _____ 6th
 _____ 7th _____ 8th _____ 9th

3. Please check the make-up of your student population (student demographics).
 _____ Caucasian _____ African American _____ Hispanic _____ Asian
 _____ Chinese _____ American Indian _____ Japanese _____ Other

4. Please check the highest degree that you currently hold.
 _____ Bachelor’s _____ Master’s _____ Doctorate

5. Please list your major instrument(s).
 _____ Voice _____ Piano _____ Brass _____ Woodwind _____ Percussion
 _____ Strings

6. Please list the average number of students in each of your General Music classes.

7. Please list the average number of students in your Elementary and/or Middle School choir(s).

8. Number of sections of each grade level.
 _____ Middle School Choir _____ Elementary Choir
9. What is(are) the grade level(s) of your choir(s)?
 _____ 1st _____ 2nd _____ 3rd _____ 4th _____ 5th _____ 6th
 _____ 7th _____ 8th _____ 9th

10. What is the gender mix of your choir(s)?
 _____ Girls _____ Boys _____ Mixed

11. Please list the number of times your General Music classes meet per week.
 _____ One _____ Two _____ More the twice a week

12. Please list the number of times your Middle School and/or Elementary choir(s) meet per week.
 _____ One _____ Two _____ Three _____ Four _____ Five

13. Length of your General Music classes.
 _____ 30 Min. _____ 35 Min. _____ 40 Min. _____ 45 Min. _____ Other

14. Length of your Middle School and/or Elementary choir classes.
 _____ 35 Min. _____ 40 Min. _____ 45 Min. _____ 48 Min. _____ 50 Min.
 _____ Other

15. Is sight-singing instruction included in your weekly curriculum?
 _____ Yes _____ No

16. If yes, how many minutes a week do you spend teaching sight-singing techniques?
 _____ 10 Min. _____ 15 Min. _____ 20 Min. _____ 25 Min. _____ 30 Min.
 _____ More than 30 Min.

17. If not, why not?
18. What type of sight-singing system do you prefer to utilize?

_____ Movable do _____ Fixed do _____ Absolute letter names

_____ Numbers _____ Other

19. Which of the following materials and/or visual aids do you use to enhance the teaching of music literacy and sight-singing?

_____ Hand signs _____ Flash cards _____ Overhead transparencies _____ CD’s

_____ Videos _____ DVD’s _____ Computer Programs _____ Other

20. What type of rhythmic counting system do you use?

_____ Kodaly (ta & ti-ti) _____ Count singing (1 & 2 & etc.) _____ Gordon (du-de)

_____ Names/fruits (apple-eighth notes, pear-quarter notes) _____ Other

21. Do you use any specific sight-singing method books?

_____ Yes _____ No

22. If so, please list the name of the book(s) and author(s).

__

__

__

23. Please check the following methodologies that you follow or use.

_____ Kodaly _____ Orff _____ Dalcroze _____ Suzuki _____ Other