Search Results (1 - 2 of 2 Results)

Sort By  
Sort Dir
 
Results per page  

Maschino, Tyler StephenFREQUENCY-SELECTIVE DESIGN OF WIRELESS POWER TRANSFER SYSTEMS FOR CONTROLLED ACCESS APPLICATIONS
Master of Science, Miami University, 2016, Computational Science and Engineering
Wireless power transfer (WPT) has become a common way to charge or power many types of devices, ranging from cell phones to electric toothbrushes. WPT became popular through the introduction of a transmission mode known as strongly coupled magnetic resonance (SCMR). This means of transmission is non-radiative and enables mid-range WPT. Shortly after the development of WPT via SCMR, a group of researchers introduced the concept of resonant repeaters, which allows power to hop from the source to the device. These repeaters are in resonance with the WPT system, which enables them to propagate the power wirelessly with minimal losses to the environment. Resonant repeaters have rekindled the dream of ubiquitous wireless power. Inherent risks come with the realization of such a dream. One of the most prominent risks, which we set out in this thesis to address, is that of accessibility to the WPT system. We propose the incorporation of a controlled access schema within a WPT system to prevent unwarranted use of wireless power. Our thesis discusses the history of electromagnetism, examines the inception of WPT via SCMR, evaluates recent developments in WPT, and further elaborates on the controlled access schema we wish to contribute to the field.

Committee:

Dmitriy Garmatyuk, PhD (Advisor); Mark Scott, PhD (Committee Member); Herbert Jaeger, PhD (Committee Member)

Subjects:

Computer Engineering; Electrical Engineering; Electromagnetics; Electromagnetism; Engineering

Keywords:

wireless power transfer; WPT; resonance; magnetic resonance; electromagnetism; power security; power encryption; wireless power transfer security; wireless power transfer encryption; SCMR; strongly coupled magnetic resonance; power transfer;

Lien, E-JenEFFICIENT IMPLEMENTATION OF ELLIPTIC CURVE CRYPTOGRAPHY IN RECONFIGURABLE HARDWARE
Master of Sciences (Engineering), Case Western Reserve University, 2012, EECS - Electrical Engineering
Elliptic curve cryptography (ECC) has emerged as a promising public-key cryptography approach for data protection. It is based on the algebraic structure of elliptic curves over finite fields. Although ECC provides high level of information security, it involves computationally intensive encryption/decryption process, which negatively affects its performance and energy-efficiency. Software implementation of ECC is often not amenable for resource-constrained embedded applications. Alternatively, hardware implementation of ECC has been investigated – in both application specific integrated circuit(ASIC) and field programmable gate array (FPGA) platforms – in order to achieve desired performance and energy efficiency. Hardware reconfigurable computing platforms such as FPGAs are particularly attractive platform for hardware acceleration of ECC for diverse applications, since they involve significantly less design cost and time than ASIC. In this work, we investigate efficient implementation of ECC in reconfigurable hardware platforms. In particular, we focus on implementing different ECC encryption algorithms in FPGA and a promising memory array based reconfigurable computing framework, referred to as MBC. MBC leverages the benefit of nanoscale memory, namely, high bandwidth, large density and small wire delay to drastically reduce the overhead of programmable interconnects. We evaluate the performance and energy efficiency of these platforms and compare those with a purely software implementation. We use the pseudo-random curve in the prime field and Koblitz curve in the binary field to do the ECC scalar multiplication operation. We perform functional validation with data that is recommended by NIST. Simulation results show that in general, MBC provides better energy efficiency than FPGA while FPGA provides better latency.

Committee:

Swarup Bhunia (Advisor); Christos Papachristou (Committee Member); Frank Merat (Committee Member)

Subjects:

Electrical Engineering

Keywords:

Elliptic curve cryptography; ECC; MAHA; MBC; FPGA; low-power; encryption; security