Search Results (1 - 1 of 1 Results)

Sort By  
Sort Dir
Results per page  

Zhao, YueAutomatic Prevention and Recovery of Aircraft Loss-of-Control by a Hybrid Control Approach
Doctor of Philosophy (PhD), Ohio University, 2016, Electrical Engineering & Computer Science (Engineering and Technology)
In this dissertation, an integrated automatic flight controller for fixed-wing aircraft Loss-of-Control (LOC) Prevention and Recovery (iLOCPR) is designed. The iLOCPR system comprises: (i) a baseline flight controller for six degrees-of-freedom (6DOF) trajectory tracking for nominal flight designed by trajectory linearization, (ii) a bandwidth adaption augmentation to the baseline controller for LOC prevention using the timevarying PD-eigenvalues to trade tracking performance for increased stability margin and robustness in the presence of LOC-prone flight conditions, (iii) a controller reconfiguration for LOC arrest by switching from the trajectory tracking task to the aerodynamic angle tracking in order to recover and maintain healthy flight conditions at the cost of temporarily abandoning the mission trajectory, (iv) a guidance trajectory designer for mission restoration after the successful arrest of a LOC upset, and (v) a supervisory discrete-eventdriven Automatic Flight Management System (AFMS) to autonomously coordinate the control modes (i) - (iv). Theoretical analysis and simulation results are shown for the effectiveness of the proposed methods.


Jim Zhu (Advisor); Douglas Lawrence (Committee Member); Frank Van Grass (Committee Member); Robert Williams (Committee Member); Aili Guo (Committee Member); Sergiu Aizicovici (Committee Member)


Aerospace Engineering; Engineering


Aircraft Loss-of-control; hybrid; arrest; prevention; recovery; flight control system; arrest; guidance; trajectory linearization control; switching mode; reconfiguration; bandwidth adaptation; multiple-time-scale nested loop