Search Results (1 - 2 of 2 Results)

Sort By  
Sort Dir
 
Results per page  

Barritt, Brian JamesThe Modeling, Simulation, and Operational Control of Aerospace Communication Networks
Doctor of Philosophy, Case Western Reserve University, 2017, EECS - Computer Engineering
A paradigm shift is taking place in aerospace communications. Traditionally, aerospace systems have relied upon circuit switched communications; geostationary communications satellites act as bent-pipe transponders and are not burdened with packet processing and the complexity of mobility in the network topology. But factors such as growing mission complexity and NewSpace development practices are driving the rapid adoption of packet-based network protocols in aerospace networks. Meanwhile, several new aerospace networks are being designed to provide either low latency, high-resolution imaging or low-latency Internet access while operating in non-geostationary orbits -- or even lower, in the upper atmosphere. The need for high data-rate communications in these networks is simultaneously driving greater reliance on beamforming, directionality, and narrow beamwidths in RF communications and free-space optical communications. This dissertation explores the challenges and offers novel solutions in the modeling, simulation, and operational control of these new aerospace networks. In the concept, design, and development phases of such networks, the dissertation motivates the use of network simulators to model network protocols and network application traffic instead of relying solely on link budget calculations. It also contributes a new approach to network simulation that can integrate with spatial temporal information systems for high-fidelity modeling of time-dynamic geometry, antenna gain patterns, and wireless signal propagation in the physical layer. And towards the operational control of such networks, the dissertation introduces Temporospatial Software Defined Networking (TS-SDN), a new approach that leverages predictability in the propagated motion of platforms and high-fidelity wireless link modeling to build a holistic, predictive view of the accessible network topology and provides SDN applications with the ability to optimize the network topology and routing through the direct expression of network behavior and requirements. This is complemented by enhancements to the southbound interface to support synchronized future enactment of state changes in order to tolerate varying delay and disruption in the control plane. A high-level overview of an implementation of Temporospatial SDN at Alphabet is included. The dissertation also describes and demonstrates the benefits of the application of TS-SDN in Low Earth Orbiting (LEO) satellite constellations and High Altitude Platform Systems (HAPS).

Committee:

Frank Merat (Committee Chair); Rabinovich Michael (Committee Member); Daniel Saab (Committee Member); Mark Allman (Committee Member)

Subjects:

Aerospace Engineering; Computer Engineering; Computer Science

Keywords:

temporospatial; SDN; TS-SDN; aerospace; networks; satellites; LEO; NGSO; constellations; HAPS; high-altitude platforms; STK; wireless; mesh; networking; modeling; simulation; ns-3

Makiewicz, Kurt TimothyDevelopment of Simultaneous Transformation Kinetics Microstructure Model with Application to Laser Metal Deposited Ti-6Al-4V and Alloy 718
Master of Science, The Ohio State University, 2013, Materials Science and Engineering
Laser based additive manufacturing has become an enabling joining process for making one-of-a-kind parts, as well as, repairing of aerospace components. Although, the process has been established for more than a decade, optimization of the process is still performed by trial and error experimentation. At the same time, deployment of integrated process-microstructure models has remained as a challenge due to some of the reasons listed below: (1) lack of good process models to consider the laser-material interactions; (2) inability to capture all the heat transfer boundary conditions; (3) thermo-physical-mechanical properties; and (4) robust material model. This work pertains to the development of robust material model for predicting microstructure evolution as a function of arbitrary thermal cycles (multiple heating and cooling cycles) that can be integrated into a process model. This study focuses on the development of a material model for Ti-6Al-4V and Alloy 718. These two alloys are heavily used in turbine engines and undergo complex phase transformations, making them suited to developing a material model for laser metal deposition (LMD). The model uses simultaneous transformation kinetics (STK) theory to predict the transformation of one parent phase into several products. The model uses calculated thermodynamic properties of the alloys for portions of the respective transformation characteristics. Being a phenomenological model there are several user defined calibration parameters to fit the predicted output to experimental data. These parameters modify the nucleation and growth kinetics of the individual transformations. Analyses of experimental LMD builds are used to calibrate the material model. A Ti-6Al-4V build made on a room temperature substrate showed primarily colony alpha morphology in the bottom half of the build with a transition to basketweave alpha in the top half. An increase in hardness corresponding to the microstructural transition was observed. This sample had an average of 340 HV hardness. Analysis of the calculated thermal profiles at the location of the morphology transition showed a transition from cooling below the beta transus to cooling above the beta transus. The Ti-6Al-4V STK model was calibrated using the experimental data from this sample. The substrate of a second build was heated above the Ti-6Al-4V beta transus. This build showed predominantly basketweave alpha without a microstructural transition. Large prior beta grains (>1mm) were observed growing epitaxially from the substrate. These large grains promoted the basketweave formation. Hardness testing showed an average of 344 HV. Samples built in this way were also fatigue tested in the as built condition. Results show that they match previous builds that had been stress relieved. A third build was performed at room temperature on a substrate with large prior beta grains. This build showed basketweave morphology like the second build even though the substrate was not thermally controlled. The hardness for this build averaged 396 HV which is ~50 HV higher than the previous two. This build shows that it may be possible to produce better mechanical properties by controlling the beta grain size rather than heating the substrate. Eighteen Alloy 718 builds were made using proprietary processing conditions. All of these builds were analyzed for nano-scale γ’ and γ’’ precipitates. Two of the builds were similar but had different laser powers. The low laser power build did not show nano-scale precipitates. The higher power build did show small amounts (<3%) of nano-scale precipitates and a corresponding increase in hardness at their locations. The higher power build was used to develop the STK model for Alloy 718. Sixteen of these builds were part of a design of experiments and are referred to as DOE samples. Eight of them have a single layer while the other eight have multiple layers. They were examined for nano-scale precipitates. The amounts of precipitates were correlated to hardness values and thermal profiles.

Committee:

Sudarsanam Babu (Advisor); Wolfgang Windl (Committee Member)

Subjects:

Aerospace Materials; Materials Science; Metallurgy

Keywords:

Simultaneous Transformation Kinetics; STK; Microstructure Modeling; Laser Additive Manufacturing; Laser Metal Deposition; aerospace repair; Ti-6Al-4V; Inconel 718; Alloy 718; Additive Manufacturing; LAM; LMD;