Search Results (1 - 4 of 4 Results)

Sort By  
Sort Dir
 
Results per page  

Lee, YousubSimulation of Laser Additive Manufacturing and its Applications
Doctor of Philosophy, The Ohio State University, 2015, Welding Engineering
Laser and metal powder based additive manufacturing (AM), a key category of advanced Direct Digital Manufacturing (DDM), produces metallic components directly from a digital representation of the part such as a CAD file. It is well suited for the production of high-value, customizable components with complex geometry and the repair of damaged components. Currently, the main challenges for laser and metal powder based AM include the formation of defects (e.g., porosity), low surface finish quality, and spatially non-uniform properties of material. Such challenges stem largely from the limited knowledge of complex physical processes in AM especially the molten pool physics such as melting, molten metal flow, heat conduction, vaporization of alloying elements, and solidification. Direct experimental measurement of melt pool phenomena is highly difficult since the process is localized (on the order of 0.1 mm to 1 mm melt pool size) and transient (on the order of 1 m/s scanning speed). Furthermore, current optical and infrared cameras are limited to observe the melt pool surface. As a result, fluid flows in the melt pool, melt pool shape and formation of sub-surface defects are difficult to be visualized by experiment. On the other hand, numerical simulation, based on rigorous solution of mass, momentum and energy transport equations, can provide important quantitative knowledge of complex transport phenomena taking place in AM. The overarching goal of this dissertation research is to develop an analytical foundation for fundamental understanding of heat transfer, molten metal flow and free surface evolution. Two key types of laser AM processes are studied: a) powder injection, commonly used for repairing of turbine blades, and b) powder bed, commonly used for manufacturing of new parts with complex geometry. In the powder injection simulation, fluid convection, temperature gradient (G), solidification rate (R) and melt pool shape are calculated using a heat transfer and fluid flow model, which solves the mass, momentum and energy transport equations using the volume of fluid (VOF) method. These results provide quantitative understanding of underlying mechanisms of solidification morphology, solidification scale and deposit side bulging. In particular, it is shown that convective mixing alters solidification conditions (G and R), cooling trend and resultant size of primary dendrite arm spacing. Melt pool convexity in multiple layer LAM is associated not only with the convex shape of prior deposit but also with Marangoni flow. Lastly, it is shown that the lateral width of bulge is possibly controlled by the type of surface tension gradient. It is noted that laser beam spot size in the powder injection AM is about 2 mm and it melts hundreds of powder particles. Hence, the injection of individual particles is approximated by a lumped mass flux into the molten pool. On the other hand, for laser powder bed AM, the laser beam spot size is about 100 µm and thus it only melts a few tens of particles. Therefore, resolution of individual powder particles is essential for the accurate simulation of laser powder bed AM. To obtain the powder packing information in the powder bed, dynamic discrete element simulation (DEM) is used. It considers particle-particle interactions during packing to provide the quantitative structural powder bed properties such as particle arrangement, size and packing density, which is then an inputted as initial geometry for heat transfer and fluid flow simulation. This coupled 3D transient transport model provides a high spatial resolution while requiring less demanding computation. The results show that negatively skewed particle size distribution, faster scanning speed, low power and low packing density worsen the surface finish quality and promote the formation of balling defects. Taken together, both powder injection and powder bed models have resulted in an improved quantitative understanding of heat transfer, molten metal flow and free surface evolution. Furthermore, the analytical foundation that is developed in this dissertation provides the temperature history in AM, a prerequisite for predicting the solid-state phase transformation kinetics, residual stresses and distortion using other models. Moreover, it can be integrated with experimental monitoring and sensing tools to provide the capability of controlling melt pool shape, solidification microstructure, defect formation and surface finish.

Committee:

Dave Farson (Advisor); Wei Zhang (Advisor); Ramirez Antonio (Committee Member)

Subjects:

Fluid Dynamics; Materials Science

Keywords:

Laser Additive Manufacturing, Powder Packing, Melt Pool Shape, Balling Defects, Solidification Microstructure, Dendrite Arm Spacing, Fluid Flow, Marangoni Flow

Jain, Akshay AshokDesign and LENS® Fabrication of Bi-metallic Cu-H13 Tooling for Die Casting
Master of Science, The Ohio State University, 2013, Industrial and Systems Engineering
Thermal fatigue is one of the most common causes leading to die failure in die casting. This thesis investigates and presents the results of thermal fatigue life in a bi-metallic H13-Copper die which can be manufactured using laser additive manufacturing technologies now commercially available. Using finite element method, computational models are developed to simulate the thermal fatigue tests of Wallace (Benedyk, Moracz, and Wallace 1970). Numerical solutions to the thermal-mechanical problem are obtained. The solutions include temperature, strain and stress distributions within the test sample. Solutions were obtained for varying amounts of copper in the test sample geometry. Results from the pure H13 sample computational model compared very well with experimental values obtained by Wallace (Benedyk, Moracz, and Wallace 1970). The maximum temperature reached by the test sample is shown to decrease with increasing amounts of copper. The fatigue life is calculated using the `method of universal slopes’ which relates the calculated cyclic strain ranges to the number of cycles necessary for fatigue crack initiation. The specimen geometry consisting of a half thickness of Cu and the other half thickness of H13 at the thinnest point in the full cross-section of the wall thickness was shown to provide the best balance between thermal and fatigue life performance.

Committee:

Jerald Brevick (Advisor)

Subjects:

Engineering; Industrial Engineering; Mechanical Engineering; Metallurgy

Keywords:

Die Casting; Bi-metallic tooling; Copper; H13; Die Casting Tooling; Ansys; Finite Element Analysis; FEA; Thermal Fatigue Die Casting; Laser Engineered Net Shaping; Laser Additive Manufacturing; Copper-H13; H13-Copper; Cu-H13; H13-Cu; Dunk Test;

Prabhu, Avinash WImproving Fatigue Life of LENS Deposited Ti-6Al-4V through Microstructure and Process Control
Master of Science, The Ohio State University, 2014, Welding Engineering
Laser Engineered Net Shaping (LENS) is a solid freeform fabrication process capable of producing net shape, custom parts through a layer-by-layer deposition of material using a laser energy source. LENS based Ti-6Al-4V parts are currently being explored for applications to aerospace and biomedical implant applications. To achieve satisfactory mechanical performance in the components, homogeneity of the microstructure and the physical structure is important. This study explores methods of improving the fatigue life of Ti-6Al-4V LENS deposits through the creation of defect free components with appropriate microstructure. The work focuses on the impact of beta grain refinement and the elimination of lack of fusion porosity defects on the fatigue life of the alloy. Further, a model is developed to predict the epitaxial grain growth in LENS builds of Ti-64. This model is used to augment the prediction capability of a simultaneous transformation kinetics (STK theory) based model developed previously. The beta grain refinement in the fatigue properties of Ti-64 is achieved through addition of boron in amounts < 3 wt%. The addition of boron is found to refine the columnar beta structure typically observed in LENS deposited Ti-64. However, at high concentrations of boron, it was difficult to discern the prior beta grain size to visualize the extent of grain refinement. The boron alloying further causes a significant change in the structure of alpha laths, leading the shorter and thicker individual laths. Grain boundary alpha is not observed in the microstructure on addition of boron above a certain threshold. The addition of boron is observed to improve the fatigue properties of deposited Ti-64 samples. The Ti-64 LENS builds are observed to contain lack-of-fusion porosity in the lower regions of the deposit close to the substrate. The effect of process parameters namely the power, travel speed, hatch width, pre-heating, powder flow rate, substrate surface quality, and the hatch path on the amount of porosity is analyzed through trial experiments followed by a more detailed design of experiments approach. At a fixed power setting of 400W, the hatch width and powder flow rate are observed to have a significant influence on the extent of porosity present in the deposit. The hatch width has been further optimized through a CFD based simulation based approach leading to an increased material efficiency and reduced time of building. These builds are observed to show a columnar beta grain structure growing epitaxially from the base of the deposit and consist of primarily basketweave alpha. The fatigue properties are analyzed at the combination of parameters determined through experiments and are found to show an improvement over previously reported values by 3 times. The epitaxial grain growth seen in the LENS deposits is modeled using the classical grain growth equation. The prediction is observed to be sensitive to the atomic mobility, starting grain size, activation energy for grain growth and alpha dissolution temperatures. This grain growth information is incorporated into simultaneous transformation kinetics (STK theory) based microstructure model to improve the predictions of microstructure fraction in Ti-6Al-4V LENS builds.

Committee:

Wei Zhang (Advisor); Dave Farson (Committee Member); Sudarsanam Babu (Committee Member)

Subjects:

Materials Science

Keywords:

Ti-6Al-4V; LENS; Additive Manufacturing; Laser Additive Manufacturing; Grain growth modeling; Boron alloyed Ti-6Al-4V;

Makiewicz, Kurt TimothyDevelopment of Simultaneous Transformation Kinetics Microstructure Model with Application to Laser Metal Deposited Ti-6Al-4V and Alloy 718
Master of Science, The Ohio State University, 2013, Materials Science and Engineering
Laser based additive manufacturing has become an enabling joining process for making one-of-a-kind parts, as well as, repairing of aerospace components. Although, the process has been established for more than a decade, optimization of the process is still performed by trial and error experimentation. At the same time, deployment of integrated process-microstructure models has remained as a challenge due to some of the reasons listed below: (1) lack of good process models to consider the laser-material interactions; (2) inability to capture all the heat transfer boundary conditions; (3) thermo-physical-mechanical properties; and (4) robust material model. This work pertains to the development of robust material model for predicting microstructure evolution as a function of arbitrary thermal cycles (multiple heating and cooling cycles) that can be integrated into a process model. This study focuses on the development of a material model for Ti-6Al-4V and Alloy 718. These two alloys are heavily used in turbine engines and undergo complex phase transformations, making them suited to developing a material model for laser metal deposition (LMD). The model uses simultaneous transformation kinetics (STK) theory to predict the transformation of one parent phase into several products. The model uses calculated thermodynamic properties of the alloys for portions of the respective transformation characteristics. Being a phenomenological model there are several user defined calibration parameters to fit the predicted output to experimental data. These parameters modify the nucleation and growth kinetics of the individual transformations. Analyses of experimental LMD builds are used to calibrate the material model. A Ti-6Al-4V build made on a room temperature substrate showed primarily colony alpha morphology in the bottom half of the build with a transition to basketweave alpha in the top half. An increase in hardness corresponding to the microstructural transition was observed. This sample had an average of 340 HV hardness. Analysis of the calculated thermal profiles at the location of the morphology transition showed a transition from cooling below the beta transus to cooling above the beta transus. The Ti-6Al-4V STK model was calibrated using the experimental data from this sample. The substrate of a second build was heated above the Ti-6Al-4V beta transus. This build showed predominantly basketweave alpha without a microstructural transition. Large prior beta grains (>1mm) were observed growing epitaxially from the substrate. These large grains promoted the basketweave formation. Hardness testing showed an average of 344 HV. Samples built in this way were also fatigue tested in the as built condition. Results show that they match previous builds that had been stress relieved. A third build was performed at room temperature on a substrate with large prior beta grains. This build showed basketweave morphology like the second build even though the substrate was not thermally controlled. The hardness for this build averaged 396 HV which is ~50 HV higher than the previous two. This build shows that it may be possible to produce better mechanical properties by controlling the beta grain size rather than heating the substrate. Eighteen Alloy 718 builds were made using proprietary processing conditions. All of these builds were analyzed for nano-scale γ’ and γ’’ precipitates. Two of the builds were similar but had different laser powers. The low laser power build did not show nano-scale precipitates. The higher power build did show small amounts (<3%) of nano-scale precipitates and a corresponding increase in hardness at their locations. The higher power build was used to develop the STK model for Alloy 718. Sixteen of these builds were part of a design of experiments and are referred to as DOE samples. Eight of them have a single layer while the other eight have multiple layers. They were examined for nano-scale precipitates. The amounts of precipitates were correlated to hardness values and thermal profiles.

Committee:

Sudarsanam Babu (Advisor); Wolfgang Windl (Committee Member)

Subjects:

Aerospace Materials; Materials Science; Metallurgy

Keywords:

Simultaneous Transformation Kinetics; STK; Microstructure Modeling; Laser Additive Manufacturing; Laser Metal Deposition; aerospace repair; Ti-6Al-4V; Inconel 718; Alloy 718; Additive Manufacturing; LAM; LMD;