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ABSTRACT 

The advancements of cloud and mobile technologies have built modern data storage systems 

which face various serious security risks. Mobile-cloud environments demand continuous change 

in their settings coupled with a shifting security threat environment which makes conventional 

access control systems insufficient. A Zero Trust Architecture (ZTA)-based Dynamic Access Control 

Framework presents itself as a solution to enhance cloud-based business security based on this 

research. Through ZTA organizations defend against internal threats and escalated access rights 

and unauthorized entry by carrying out continuous authentication with restricted privilege access 

in combination with real-time protection assessments rather than static security models.  

 

The research project aims to develop and evaluate a Zero Trust-based access control structure 

which unifies computational policy enforcement with artificial intelligence anomaly identification 

along with real-time data interpretation capabilities. A test implementation of real-time security 

analytics alongside adaptive authentication and Identity and Access Management (IAM) will be 

installed through AWS or Microsoft Azure. Security threat simulation tests will determine the 

framework's success while measuring how users interact with the system and how well the 

framework scales and performs regarding security aspects. 

 

Scalable policy enforcement joins better authentication models together with a better access 

control system for mobile-cloud environments and provides recommendations for Zero Trust 

implementation in cloud-based infrastructures among the project's expected outcomes. The 

research contributes new knowledge about cloud security by resolving critical issues through its 

systematic approach to adaptive resilient access control. 
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Chapter 1: Introduction 

1.1 Background 

Mobile and cloud computing technologies are in confluence and represent one of the 

most disruptive shifts in the digital landscape of the 21st century. Enterprises and individuals alike 

have benefited from these technologies that have changed the face of data generation, access, 

storage, and management. Now, with ubiquitous connectivity, smartphones, tablets, and Internet 

of Things (IoT) devices become an important part of organization IT infrastructures that provide 

real-time access to resources and services in geographically distributed environments (Wang, 

2019). Both cloud computing and mobile computing offer elasticity in terms of resources and on-

demand services and flexibility, location independence, and portability. Mobile cloud computing 

(MCC) is a model where mobile devices use the cloud to offload intensive tasks to process and 

store, which can result in better efficiency and fewer constraints in the devices (Kaur & Kaur, 

2023). It is precisely in this symbiotic relationship that smart cities, remote work, mobile banking, 

telemedicine, and intelligent transportation systems are arising, and this actually means that MCC 

plays a key role in modern innovation ecosystems. 

Nevertheless, this expanded access paradigm presents a great deal of security risk. Unlike 

desktops and servers, mobile devices are working in various, mostly untrusted environments, 

thereby making them a prime target of cyberattacks. Unlike the traditional desktop environments 

behind organizational firewalls, mobile endpoints regularly connect to insecure public Wi-Fi, have 

flown out the door, and are missing security packages (Alam, 2021). Also, cloud systems, because 

of their multi-tenancy and distributed nature, can unknowingly cause sensitive information to be 

disclosed if not securely. The Mobile-cloud environments are dynamic and distributed in nature 

and, therefore, require security expectations to go beyond the static, perimeter-oriented security 

measures. Information security models like RBAC, DAC, and MAC cannot meet the mobility 

requirements associated with users. These models were developed for the setting in which the 

user roles and trust boundaries did not change very often or at all. They assume that the entities 

that are within the network perimeter are safe, which could not be farther from the truth given 

the modern network architectures (Kayes et al., 2020). 
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Even though the RBAC model remains in use and is foundational, it allows permissions to 

be assigned according to preset roles. It is not responsive to changes in real-time in behavioral 

patterns or environmental conditions. DAC also lets resource owners define access controls — 

something that may contradict itself or be too permissive. While MAC is the strictest, it is 

inflexible and not applicable in the heterogeneous environment in which context plays a crucial 

role. More, these limitations are crucial in mobile cloud environments where the access pattern 

of the users varies depending on device health, location, network condition, and time of access 

(Pearson & Benameur, 2010). In particular, the Zero Trust Architecture (ZTA) becomes a paradigm 

shift in this picture. ZTA is coined by saying ‘never trust, always verify’ and to eliminate the implicit 

trust assumption in digital systems. No matter what the origin of the access request, it is treated 

as potentially hostile. As per this model, such resource access is to be granted to the user only 

when continuous authentication, real-time risk assessment, least privilege access, and contextual 

evaluation have been done. The security implications are thoroughly reoriented from a 

perimeter-driven to an identity and data hierarchy, which is a suitable fit for the needs of these 

MCC ecosystems. 

In mobile cloud environments, ZTA promises to earn trust from verifiable attributes like 

device health, user behavior, geolocation, and recent access history rather than be given at a 

network location. Particularly in the Bring Your Device (BYOD) and remote work era, it is ideally 

aligned because companies struggle to keep up with an extended and uncontrolled number of 

endpoints. However, existing ZTA technologies typically concentrate on fixed enterprise 

deployment and are not adaptable to various dynamics of mobile and cloud environments, 

including device mobility, net state-of-the-art swift operations, and quick behavioral changes. This 

thesis bridges this gap by proposing a Dynamic Access Control Framework based on ZTA principles 

that is especially for mobile–cloud ecosystems. 

1.2 Problem Statement 

The adoption of mobile-cloud infrastructure increases a number of risks that is beyond the coping 

ability of conventional security models. Such issues are unauthorized access, elevation of 

privilege, insider attack, and lack of context-awareness in the decisions made on access (Jensen 

et al., 2009). The very nature of mobile devices makes them flexible, portable and context-aware, 
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all of which present formidable challenges as far as security of access control is concerned. It is 

possible for a user to log in from different geographical locations, networks or even different 

terminals within a short time. Such behaviors cannot be effectively managed by roles or by basic 

authentication alone. Traditional access control models presume that, after authenticating, a user 

or device must necessarily be trusted during the rest of the session. As a result, many high-profile 

breaches have occurred where attackers exploited legitimate credentials to get permanent access 

to systems of high sensitivity. For example, 2019 Capital One breach with over 100 million affected 

customers was mainly due to misconfigured permissions and overprivileged access of cloud 

infrastructure (Wang et al., 2020). 

However, it is important to consider that legacy models are not well adapted to capture data 

other as context data as device posture, threat intelligence, users logs and any other environment 

data on the fly. For instance, while a legitimate user logs into the account at 2 AM via a new device 

and IP address must be seen as suspicious activity — static models could not do this as they are 

not intelligent. To overcome such shortcomings, the concept of context aware access control 

(CAAC) has come up factoring in real time contextual information while making the decision. 

Nevertheless, CAAC systems alone are not adequate for security unless there is a complete 

security architecture such as ZTA. Despite its robustness, most recent ZTA implementations are 

rigid, expensive to scale, and not capable to operate in the heterogeneity of mobile-cloud 

environments (Golightly et al. 2023). A continuous authentication ‘overhead’ that’s not well 

optimized would cost performance for instance, if pushed as server-side code that required 

millions of mobile sessions per day. 

Thus, the research problem for this study is as follows: 

1. How to implement a scalable, contextual, and flexible access control system based on the 

ZTA architectural approach. 

2. To what extent can these ideas be applied in deploying this system in distributed mobile-

cloud facilities without affecting user interaction or the system’s efficiency? 
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1.3 Research Objectives 

The goal of the present work is to develop and assess a novel Mobile-Cloud-based Dynamic 

Access Control Framework based on the Zero Trust model. It is intended that the framework put 

forward realizes the four objectives, namely, context awareness, machine learning, continuous 

authentication, and real-time policy. 

The specific objectives are: 

a) Using behavioral and environmental analytics, develop real-time contextual 

authentication models. Dynamic verification using machine learning would use these 

models to profile users' past behaviors and context. 

b) Create adaptive security policies that are dependent on the device's trustworthiness, 

role, and network conditions. For instance, the access rules may vary dynamically if a user 

moves from a secure corporate VPN to an ‘open’ public Wi-Fi. 

c) Integrate real-time continuous anomaly detection systems to detect and respond to any 

suspicious behaviors. In this case, such systems will make use of models as autoencoders 

and LSTM to find abnormalities with their expected patterns (Ferrag et al., 2020). 

d) Set up permissions that are at least privileged, obtaining or losing privilege dynamically 

in relation to the current risk level. This confines users to what is absolutely needed to do 

their tasks and limits the attack surface. 

e) Integrate policy enforcement with such standards as GDPR, HIPAA, and NIST’s 

cybersecurity frameworks to ensure compliance with the data privacy policy when user 

data is shared across cloud platforms. 

1.4 Research Questions 

This research is guided by the following key questions: 

1. Which Zero Trust measures are most suitable for securing the mobile users in dynamic 

cloud environment and how to get the best out of certain mechanisms? 

2. How can contextual variables (e.g., device health, location, network integrity) be used to 

enhance access control decisions? 
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3. Understood how the general adoption of the adaptive and context-sensitive policies can 

affect the user experience, the latency factors and the operations’ scalability.? 

4. How can advanced anomaly detection systems be integrated into access control 

frameworks to detect and mitigate insider threats and behavioral deviations? 

5. What are the prerequisites for Zero trust deployment in the architectures of an IT hybrid 

and multis cloud environment? 

6. What measures can be taken to implement Zero Trust model without compromising end 

user privacy in multi-tenant cloud environment? 

1.5 Significance of the Study 

This research is important and has relevance in that it has potential of reshaping how mobile 

cloud environments protect digital assets. The cyber threats are becoming increasingly 

sophisticated and the security paradigms need to change to meet them. This study adds to both 

the academic and practical formats by: 

a) Contributing towards cloud security research by developing a visionary, scalable access 

control framework based on the principles of Zero Trust. 

b) A reference model for secure, context aware mobile cloud access mechanisms which can be 

provided to enterprises. 

c) Help clients and the public at large in industries like healthcare, finance and government by 

improving data security and regulatory compliance, these regulations are paramount. 

d) By making the both intelligent and nonintrusive securities measures so that they ensure 

enhanced user trust and experience with seamless but secure access 

e) Offer guidelines and architectural insights for supporting technology providers and 

policymakers to adopt Zero Trust frameworks in distributed ecosystems. 

Chapter 2: Literature Review 

2.1 Evolution of Access Control in Cloud Computing 

The access control concept had drastically transformed with the evolution of computing 

paradigms from mainframes and enterprise servers, to distributed virtualized, and, now, with 
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mobile cloud. In traditional context, access control meant limiting which users or systems could 

interact with information or resource. In early computing environments, these permissions were 

always performed using simple identity verification mechanisms embedded in system kernels or 

the access control lists (ACLs). Yet, with the upcoming of cloud computing, a distributed services, 

multitenant and elastic system, the newly required access model was more flexible and dynamic 

(Wang, 2019). 

Traditional Access Control Models: MAC and DAC 

In historical times two dominant enterprise and government systems access control models were 

of two types, Mandatory Access Control (MAC) and Discretionary Access Control (DAC). Access 

decisions in MAC are rigid and controlled by a central authority that bases them on the 

information sensitivity and user clearance levels. Used primarily in military and governmental 

applications where the policy demands confidentiality and rigid hierarchical data classification, it 

has been used (Pearson & Benameur, 2010). While it offers strong security guarantees, this model 

is not suitable for modern dynamic cloud environment, where contextual and user specific 

changes are necessary. 

Whereas, the DAC offers resource owners the ability to set the permissions at their will. MAC is 

less restrictive than it, and was used widely on early UNIX like systems. However, DAC cannot 

ensure policy consistency and has an absence of oversight and lacks accountability for their 

configuration and privilege creep (Jansen & Grance, 2011). DAC remains a popular data protection 

mechanism in cloud environments because there the resources are shared among many tenants 

and are accessed by multiple users. 

Role-Based Access Control (RBAC) 

Role Based Access Control (RBAC) was the bridging model to put a stop to the gap between rigidity 

and flexibility. Ferraiolo and Kuhn (1992) introduced RBAC which assigns permissions to 

organizational roles as opposed to individual identities. For example, the user assigned with a role 

like Finance Analyst will automatically get the rights to access budget reports and payroll systems. 

RBAC has some administration ease especially in big scale enterprise as well as large number of 

roles able to be grouped hierarchically and administrated centrally. 
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RBAC is widely used in such enterprise cloud solutions as AWS IAM and Microsoft Azure AD. This 

approach is versatile when it comes to permissions and is highly suitable to organizations with 

some statured bureaucracy. However, RBAC lacks responsiveness to dynamic environmental 

conditions, such as time of access, geolocation, or device trustworthiness (Kayes et al., 2020). The 

following limitation associated with traditional RBAC model has contributed to the current 

interest in context-aware and attribute-based access control models that suit mobile-cloud 

computing environment. 

Attribute-Based Access Control (ABAC) 

Attribute Based Access Control (ABAC) is a major shift from access control theory. ABAC is 

different from RBAC in that we can bind permissions to dynamic roles (attributes) such as user 

identity, device posture, location, time of request and others to dynamically evaluate whether or 

not access is permitted. The effect of this is that fine-grained, highly customized access policies 

can be defined (Hu et al., 2014). 

A policy such as an access control policy oriented towards healthcare provider could grant access 

to patient records in case they are active in such a facility (temporal attribute), in a hospital space 

(location attribute), and using a secure device (device attribute). This gives ABAC fine grained 

access control, which is particularly important in the cloud context where shared infrastructure 

and multi tenant environment is common. 

In federated identity environments, ABAC has seen increasing adoption because organizations 

often manage the external and internal user identities of authorized users belonging to their 

organizations amid multiple domains. In particular, it is particularly beneficial in the context of 

mobile cloud computing where the context changes frequently and must be taken into account 

when making access decisions (Kayes et al. 2020). 

However, ABAC is not an easy thing to implement and continuously manage. This often leads to 

administrative overhead and policy conflicts when a number of attributes and policies are 

combined. Thus, we need the policy decision engines along with real time runtime environment 

which can evaluate the attributes efficiently in the real world. 

Toward Context-Aware Access Control 
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A recent phenomenon that has introduced Context–Aware Access Control (CAAC) era is an 

advancement in ubiquitous computer and IoT and cloud services. CAC includes dynamic 

environmental and behavioral variables in access decisions. These may be device status, location, 

time, user activity, threat levels. According to Kayes et al. (2020), CAAC is a paradigm to which 

user identity, as well as current environmental conditions, is responsive and adaptive, for a policy 

enforcement. For example, the banking application may block large financial transactions if the 

user logged into some unknown device from a foreign country rather than their usual location at 

odd hours. In these modern mobile cloud scenarios, whose access patterns are volatile and where 

context is king, traditional RBAC and DAC (based upon uniform rights) have been quite neglectful 

of these “situational cues.”. Yet, CAAC models still suffer from the lack of an extensive architectural 

base to provision trust among distributed systems. As a result, CAAC has given rise to Zero Trust 

Architecture (ZTA) — a network architecture that is complementary to CAAC as it discredits 

inherent trust and continually validates user and device legitimacy at every single point of 

engagement in the network. 

 

2.2 Zero Trust Architecture (ZTA) 

Emergence and Principles of Zero Trust 

As a revolution security paradigm, Zero Trust Architecture (ZTA) is trying to strip away the 

traditional perimeter based security model. It was coined in 2010 by John Kindervag of Forrester 

Research as ‘Using the philosophy “never trust”, “always verify” in the belief that all devices, 

users, and networks are potentially compromised’ (Kindervag, 2010). Unlike traditional 

architectures, where the entities within the network perimeter are being trusted, ZTA verifies 

every access attempt based on contextual and risk criteria irrespective of the origin. 

Due to the blurring of network boundaries in mobile cloud environments, this type of work, 

including ZTA, stands to gain the most. ZTA concentrates on minimizing the attack surface (NIST, 

2020) by moving away from focusing on continuous authentication and applying least privilege 

access as well as micro segmenting. 

NIST ZTA Components 
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Its landmark publication SP 800 207 formalized the principles based on which the ZTA was built, 

and the National Institute of Standards and Technology (NIST) agreed to it. This document 

contains the core components of a ZTA system: 

1. Policy Enforcing Point (PEP): The component that takes a decision about access control if 

it is allowed or not if it gives or refutes access to the resources. 

2. Policy Decision (PD): Applying policy logic on contextual data to determine access to the 

system should be permitted or restricted. 

3.  Policy Information Point (PIP): Gathers and supplies the contextual attributes needed by 

the PDP for making informed access decisions (NIST, 2020). 

Together, these components form the Zero Trust control loop, in which each access request is 

evaluated on the fly according to a behavior for the user, trustworthiness of the device, and 

environment. 

Application in Identity and Access Management (IAM) 

Most modern ZTA implementations provide real time authentication and authorization services 

by integration with Identity and Access Management (IAM) systems. The principals of ZTA have 

started to be incorporated into this variety of cloud platforms, such as AWS, Google Cloud, and 

Microsoft Azure, which are providing conditional access policies, identity federation, or 

continuous session validation. For instance, the Microsoft Azure’s Conditional Access entails 

features that enable the administrator to create policies that are based on user risk level, the 

device, or session context. AWS Control Tower and IAM Access Analyzer support the 

implementation of the principle through constant review of permissions and attempted access 

(Abdallah et al., 2024). Machine learning and behavioral analytics are increasingly brought online 

in ZTA systems to determine risk in the real time. User and Entity Behavior Analytics (UEBA) 

solutions use baselining techniques that gather or substitute user and entity data such as login 

times, how often they logged in, which path they navigated and where they logged in to 

determine normal access and spot anomalies in behavior. 

Integration with Anomaly Detection 

With the help of anomaly detection systems, the effectiveness of ZTA increases even more. These 

systems indicate certain abnormal patterns of behaviour normally hold for users of a system such 
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as accessing specific data during prohibited time or from restricted locations. For instance, Ferrag 

et al. (2020) showcase industries that deep learning such as LSTM and autoencoder to identify 

weak signs of alteration in networks and utilization indicating inner witchcraft or compromised 

credential. ZTA combines behavioral analytics and access control, so even authenticated users 

remain continuously watched for suspicious behavior and maintain that trust is not static but 

actively evaluated. 

2.3 Challenges in Mobile-Cloud Security 

Heterogeneity and Dynamic Context 

Mobile-cloud environments are inherently heterogeneous. Users have access to cloud services 

from everything from smartphones, tablets, to laptops, wearables — all of which may be running 

different operating systems and configurations. The devices could be secure or compromised, 

trusted or rogue. Access control for this diverse set of endpoints poses a formidable problem of 

generating consistent and secure access control (Kaur & Kaur, 2023). In addition, user behavior in 

mobile contexts are dynamic. The hotel lobby, coffee shop, of airport lounge are but a few 

legitimate places a user might log in from, all with different amounts of network security and risk. 

But traditional access models lack contextual granularity to perform such an evaluation well. 

Device Theft and Data Leakage 

There is a high probability of loss, theft or physical tampering with the mobile device. After getting 

physical access to a device by an unauthorized individual, he may try to exploit cached credentials 

or application vulnerabilities in cloud services. Over 70 percent of lost smartphones are not 

recovered and a large number of them are used by non-authorized individuals (Alam, 2021). 

Whether accidental or malicious, this risk is particularly high in the BYOD world where personal 

and corporate data reside together. To do this, ZTA does not only validate the user identity but 

also the device posture (malware status, device encrypted status, and operating system integrity). 

Inadequate Contextual Awareness 

Unfortunately, most of the legacy access control systems do not have mechanisms to evaluate 

environmental context. For example, perhaps an access can take place only through a username 

and password with no additional check that the access is being performed at an unusual time or 
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from an unfamiliar IP address. Such blind spot brings the opportunity for attacker to exploit with 

stolen credentials or spoofed devices (Hossain et al., 2016). 

Scalability and Policy Complexity 

Applying ZTA in large-scope mobile-cloud environments raises such implementations issues as 

scalability. The assessments of access decisions involve analyzing large data in real time from 

thousands of concurrent sessions hence the need for HPC and recognizing efficient policy engines. 

Also, having policies that can change frequently in response to new emerging threats are 

challenging to handle by administrators if it is not augmented by automation and AI decision 

making as put by Golightly et al., (2023). 

Chapter 3: Methodology 

3.1 Research Design 

For this study, the research design falls under a hybrid, multi phase approach, that brings both 

theoretical framework development and empirical evaluation into play. The design choice of this 

problem is implicated within different reasons because it is a technical and conceptual problem 

on the same time. On one hand the study needs model architecture of Zero Trust approach and 

access control in dynamic and context-aware access control manner. In contrast, it requires 

usability validation by means of implementation and performance testing in real or simulated 

environments. This design further allows the research to base its modeling on literature, validate 

its practicality, efficiency and adaptability to different operational conditions. In such a format, 

the methodology is structured as three core phases, based on the knowledge gained from 

previous phases: design, implementation (prototype), and evaluation. 

3.1.1 Phase One: Design of Zero Trust-based Dynamic Access Control Architecture 

In the first phase, an architectural model is developed based on the Zero Trust Architecture (ZTA) 

principles as specified in NIST SP 800–207 (NIST, 2020). The goal of this model is towards 

addressing the limitations of legacy access control mechanisms especially in the view that they 

are unable to tackle the nature of the mobile and cloud environments as they are dynamic, 

distributed, and heterogeneous. 
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During this phase, the concept of these components of a system including continuous 

authentication, least privilege enforcement, contextual policy engines, anomaly detection 

modules are conceptualized and then mapped down into a cohesive system. To provide guidance 

for the acquisition of machine learning based risk scoring and behavior profiling mechanisms, 

literature from authoritative sources such as Kayes et al. (2020) Abdallah et al., (2024) and Ferrag 

et al. (2020) was reviewed. 

Design decisions in this phase are based on: 

• Best practices outlined in security standards (e.g., NIST ZTA). 

• Trends in IAM and context-aware computing. 

• Known limitations in RBAC and ABAC as observed in the literature (Pearson & Benameur, 

2010; Wang, 2019). 

A model-driven design approach of development was also embraced in this case as it supports 

modularity and extensibility, as well as best practices for cloud structures. 

3.1.2 Phase Two: Prototype Implementation 

The second phase operationalizes the conceptual model to a working prototype on the cloud 

platforms such as AWS and optionally Microsoft Azure. To enable high scalability, as well as 

realistic simulation of multi tenant environments, and IAM integrations, we have a decision to use 

public cloud services. 

This implementation phase includes: 

• Deployment of IAM-based role hierarchies and trust policies. 

• Integration with contextual data sources (e.g., device metadata, geolocation, VPN status). 

• Machine learning models for anomaly detection and user behavior analytics. 

• Real-time logging and monitoring systems via AWS CloudWatch and Azure Monitor. 

The prototype plays as a testbed for the exploration of different access control policies under 

dynamic and possibly adversary conditions. Different threat case, unauthorized access trying, 

spoofing device and lateral movement are simulated. 

3.1.3 Phase Three: Experimental Evaluation and Benchmarking 

In the final phase, the system’s performance is evaluated using quantitative metrics to assess its: 
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• Security effectiveness (e.g., precision and recall in anomaly detection). 

• Operational performance (e.g., CPU usage, latency). 

• User experience (measured through simulated access flows). 

• Scalability (performance under increasing user loads and device diversity). 

Mobile emulators and IoT devices are used to perform the simulations that incorporate evolving 

real-life network connectivity experience of the enterprise IT environments. It involves a study 

between the static (RBAC/ABAC) and dynamic (ZTA-based) model to make a comparison. It aims 

to decide how far the proposed solution comes short of the dual imperatives of security and 

usability with minimal overhead or user friction. 

3.2 Framework Design 

The core framework of this study is based on the definition of Zero Trust Architecture given by 

NIST (2020), and is adding some enhancements for mobile-cloud (Moblie-cloud) environments. 

The components of which it consists of are separated into four major interconnected groups: 

3.2.1 Continuous Authentication Engine 

The traditional forms of authentication like username/password or even the multiple factor 

authentication practices only authenticate users at the time of their login. When granted access, 

they generally stay trusted until the session concludes which is not safe at all. The proposed 

continuous authentication engine counters this by validating user identity persistently 

throughout the session. 

This component uses behavioral biometrics as well as the device posture, time of access, 

geolocation, login history and interaction patterns for user context. Its use machine learning 

classifiers (Random Forest, LSTM) to fit some data sets (Bot IOT and CicIDS 2018) to monitor 

continuously if the user is behaving as it is normal. When there an anomaly, such as newly signed 

in from new device, unusual geolocation, strange navigation behavior policy is reassessed or 

session is terminated. This fits naturally in the Zero Trust hypothesis that you should never trust, 

only verify. 
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3.2.2 Policy Decision Engine (PDE) 

The official ‘brain’ of the system is the Policy Decision Engine, at the heart of the framework. It 

reads access requests with a set of dynamic policies that depend on real time contextual data to 

evaluate. XACML (eXtensible Access Control Markup Language) forms of policies and platforms 

like AuthZForce or AWS’s internal policy language validate the policies. These policies consider: 

• User attributes (identity, role, history) 

• Environmental attributes (location, time, network trust level) 

• Device attributes (OS type, encryption status, antivirus signature) 

For instance, a policy might specify: 

Permit access llow access to financial records by a user if the user is inside the corporate VPN, 

during business hours and with a corporate issued, patched device. As the Policy Information 

Point (PIP) is poll based, the PDE is continuously polling the PIP to ingest fresh data contextually 

and reevaluates the decisions whenever a policy condition changes. 

3.2.3 Anomaly Detection Module 

Traditional rule-based threat detection is insufficient due to the high occurrence of insider threat 

and credential compromise. Therefore, the system incorporates anomaly detection module using 

deep learning which is capable to detect fine grain deviations of a user from standard behavior. 

This module learns temporal and sequential patterns using the Autoencoder and LSTM neural 

networks. It highlights what it considers anomalous behaviours: 

• Unusual login times 

• Accessing data outside job role 

• Rapid privilege escalations 

• Concurrent logins from multiple regions 

Anomalies are flagged which automatically trigger re-authentication, locking of session.Ferrag et 

al. (2020) show that LSTM based approaches for anomaly detection outperforms traditional 

signature based approaches in dynamic environments; this model also follows that result. 
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3.2.4 Policy Enforcement Gateway 

The final is the Policy Enforcement Point (PEP) that resides at the application and API gateways. 

When the PDE makes an access decision, the PEP ensures it through granting and denying access 

or by limiting access. This gateway also performs micro-segmentation, one of essential ZTA 

principle which provides that user the least privilege by allowing them to access only smallest 

subset of data or services that they need for it. For instance, PEP policies could be limited to 

another folder and file in S3, and only for a certain amount of time. 

3.3 Data Sources and Tools 

In this study, the prototype and evaluation phases involve utilizing mixture of real world cloud 

platforms, public anomaly detection datasets, and ML development environments. Such tools are 

based out of scalability, applicable within a concentrated setting as an Enterprise, and aligned 

with Zero Trust principles. 

3.3.1 Cloud Platforms 

• Amazon Web Services (AWS): AWS services that are useful for this system are IAM, EC2, 

S3, Lambda, and CloudWatch for structure, policy, computation, and monitoring 

respectively. 

• Microsoft Azure (optional): Azure Active Directory, Conditional Access Policies, and 

Security Center offer comparative insights into Zero Trust implementations. 

These platforms provide built-in support for role-based access control, MFA, identity federation 

(e.g., SAML, OAuth), and context-aware access decisions. 

3.3.2 Datasets 

• CICIDS2018: A cybersecurity dataset which has HTTP, SSH, FTP, and DDoS attack flows 

involved in it for its construction. 

• Bot-IoT: This is IoT traffic and usage profiles model created for IoT attack emulation. 

These datasets are used to train and test the different built-in anomaly detection algorithms that 

are part of continuous authentication. 
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3.3.3 Development and Analytics Tools 

Python, with libraries such as:  

• Scikit-learn for baseline classification models 

• TensorFlow and Keras for deep learning models. 

• Pandas and Matplotlib for exploratory data analysis. 

• An environment to deploy ML models on the cloud using AWS SageMaker. 

• Docker and Kubernetes for microservice deployment and scalability testing in the form of 

containers. 

3.4 Evaluation Metrics 

A set of quantitative and qualitative metrics is applied all throughout the system to rigorously 

evaluate it in four distinct dimensions: 

3.4.1 Security Effectiveness 

Measured through: 

• True Positive Rate (TPR): Percentage of genuine threats correctly identified. 

• False Positive Rate (FPR): Incidence of legitimate users mistakenly flagged. 

• Precision/Recall/F1 Score: Standard ML metrics used for anomaly detection effectiveness. 

The purpose is to show that the system can correctly identify and eradicating threats without 

generating a lot of false alarms. 

3.4.2 Performance 

Evaluates the operational overhead introduced by the system: 

• Average latency per request (ms) 

• CPU and memory utilization (%) during access requests 

• Throughput (requests/sec) under stress testing 

These metrics evaluate the real time enforcement feasibility and the scalability of policy 

evaluation engine. 
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3.4.3 User Experience 

Although subjective, this dimension is measured via: 

• Access completion time for legitimate users. 

• Frequency of authentication interruptions (e.g., MFA triggers). 

• Error rates and false rejections during access attempts. 

Security has to be strict while allowing for effortless interaction from the user. 

3.4.4 Scalability 

Measured through: 

• Number of concurrent users supported without degradation. 

• Policy evaluation time as complexity increases. 

• System response under network fluctuation and variable device profiles. 

System limits are benchmarked in simulated user agents and network emulators by running stress 

tests. 

 

 Chapter 4: System Implementation 

4.0 Overview 

In this chapter, the proposed Zero Trust based Dynamic Access Control Framework is 

implemented in a highly technical manner for mobile cloud environments. Traditional static 

access control mechanisms do not work well with mobile users given the fluidity of mobile users 

and the scalar nature of cloud infrastructure (Jensen et al., 2009). Thus, this framework includes 

contextual evaluation, continuous behavioral authentication, and adaptive policy enforcement by 

using modern cloud native technologies. 

Architecture of all components is implemented on top of AWS supporting the paradigms of 

modular, scalable and secured computing and support for real time enforcement of Zero Trust 

principle such as least privilege, continuous authentication, and context aware access (NIST, 

2020). The chapter then breaks down the implementation into three major pieces: Zero Trust 

Policy Framework, Real Time Authentication Module and Adaptive Policy enforcement. 
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4.1 Zero Trust Policy Framework 

Under a Zero Trust Architecture (ZTA), as defined by NIST SP 800-207, zero trust in the network 

and privileged users (users, applications, and devices) is the default and all network traffic and 

privileged users (users, applications, and devices) are regarded to be potentially compromised. 

While a legacy model allows a successful login to grant wide access, in the ZTA every access 

request needs to be continuously evaluated and explicitly authorized (NIST 2020). 

4.1.1 Core Components 

The implementation adheres to the ZTA reference model, consisting of: 

• Policy Enforcement Point (PEP): Deployed in Amazon API Gateway, it acts as a point 

of control where it intercepts all the coming requests from users or devices. 

• Policy Decision Point (PDP): The PDP function provided by AWS is a custom service 

that decides the condition after which access tokens are granted. 

• Policy Information Point (PIP): Integrates multiple data sources such as AWS 

CloudTrail, AWS Systems Manager, and user data from AWS Cognito. 

“In ZTA, authorization decisions are no longer binary or static; they are contextual, continuous, 

and dynamic” (NIST, 2020, p. 7). 

4.1.2 Contextual Access Evaluation 

Each access decision is enriched by real-time metadata: 

• Device Trust Score: This is obtained from AWS System Manager where encryption, 

absence of virus, OS update level, or absence of MDM profiles is checked. 

• Location Context: Geolocation of the IP addresses is done based on the AWS web 

application firewall geolocation rules and matched with user behavior. 

• Time-Based Access Windows: If the requests are made at any time not within the working 

time of the local time zone (for instance 9 AM to 6 PM), they are rated for risk. 

•  Frequency of connecting: Connections with public or unsafe wireless connections are 

given high risk scores in every session in which the user has not connected through a VPN. 

"Condition": { 
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  "StringEquals": { 

    "aws:sourceVpce": "vpce-0abc123xyz" 

  }, 

  "Bool": { 

    "aws:MultiFactorAuthPresent": "true" 

  } 

} 

This is a sample IAM policy which enforces conditional access around presence of MFA and VPC 

endpoint. Lambda makes such policies dynamically modulated. 

Figure 4.1: Zero Trust Access Flow 

 

(Wang et al., 2025) 

The diagram illustrates the core architecture of PDP, PEP, and PIP interacting in real time for 

context-aware access control. 

4.1.3 Identity Federation and Policy Injection 

AWS Cognito can be used to federate identities using SAML 2.0 as well as OAuth 2.0. The JWT 

tokens contain, as their attributes, the following claims: 

• device_trust: High/Medium/Low 
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• geo_score: IP risk evaluation 

• user_role: Mapped to IAM policy context 

Downstream Lambda functions interpret these claims as deciding, denying, or allowing 

dynamically access. 

4.1.4 Monitoring and Response 

Amazon CloudWatch is utilized to: 

• Log all denied and anomalous sessions. 

• Trigger alerts using Amazon SNS. 

• Initiate session revocation or privilege downgrade automatically. 

By monitoring, one can ensure that policy breaches or irregularities are handled proactively and 

aligns with one of Zero Trust’s principle Continuous Verification (Kayes et al., 2020). 

4.2 Real-Time Authentication Module 

4.2.1 Concept and Need 

Whereas the traditional authentication is based on a session basis, Zero Trust requires continuous 

validation. Once the user has logged in his behavior and session context still needs to remain in 

accordance with expected patterns. For this, the framework allows for detecting a behavioral 

anomaly model using Long Short-Term Memory (LSTM) Neural Networks. Recurrent neural 

network (RNN) and its form LSTM excel at capturing long range dependencies in sequential data 

that is useful for user session pattern (Ferrag et al., 2020). 

4.2.2 Data Collection and Feature Engineering 

Data is sourced from AWS CloudTrail and includes: 

• Login Timestamps: Day, hour, and frequency 

• Device Fingerprint: OS, version, browser agent 

• IP Movement: Geographic drift across sessions 

• Command/API Usage: Specific resource access patterns 

This is preprocessed using AWS Glue and normalized into sequences of time suitable for training 

an LSTM. 
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Figure 4.2: LSTM Model Architecture 

 

 

(Mienye et al., 2024) 

The LSTM model captures temporal behavior over a rolling window of sessions and flags 

deviations in real time. 

4.2.3 Model Training and Deployment 

Step Description 

Training Tool AWS SageMaker (GPU-enabled) 

Validation Set 20% of total logs 

Loss Function Mean Squared Error (MSE) 

Optimizer Adam 

Finally, real time API inference can be performed by deploying the model via SageMaker 

Endpoints. Each active session is scored on a scale of 0.00 to 1.00, with higher scores indicating 

greater deviation. 

 Table 4.1: LSTM Performance Metrics (CICIDS2018) 

Metric Value 

Precision 92.4% 
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Metric Value 

Recall 91.7% 

F1 Score 92.0% 

Detection Latency 2.8 sec 

False Positives 3.2% 

Source: Ferrag et al., 2020; Golightly et al., 2023 

4.2.4 Session Use Case 

Scenario: A developer typically accesses source code from Berlin 9–5 PM. Suddenly, a login 

attempt appears from Manila at 3 AM on a jailbroken iOS device. 

• LSTM Score: 0.73 (High anomaly) 

• AWS Cognito injects "risk_score": 0.73 in JWT 

• Lambda blocks write access and triggers MFA 

4.3 Adaptive Policy Enforcement 

The cornerstone of dynamical enforcing of least privilege is adaptive access control. The system 

itself is not binary in its decision, and depends on many real-time signals to aggregate into a risk 

score. 

4.3.1 Access Control Matrix 

Risk Score Range Access Level System Response 

0.00 – 0.20 Full Access No disruption 

0.21 – 0.40 Partial Access MFA Required 

0.41 – 0.60 Read-Only Mode Restrict Data Writes 

> 0.60 Access Denied Session Terminated + Alert SOC 

Table 4.2: Risk-Adaptive Enforcement Tiers 

These tiers are implemented using: 

• IAM conditional policies 

• Lambda policy resolvers 
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• Cognito session token custom claims 

4.3.2 JWT Claims Used for Enforcement 

{ 

  "risk_score": 0.47, 

  "device_trust": "medium", 

  "geo_score": "low", 

  "user_role": "HR_Admin" 

} 

Downstream systems (e.g., S3, RDS, EC2 APIs) interpret these claims via authorizers to apply fine-

grained access control. 

4.3.3 Scenario: Dynamic Downgrading 

Example: A CFO attempts access from an airport lounge. 

• Device not corporate-issued → device_trust = low 

• Public Wi-Fi IP → geo_score = low 

• Risk Score → 0.61 

 Result: Session is downgraded to a read-only, upload and delete privileges is revoked and an audit 

log entry is created on CloudWatch. In this scenario, Zero Trust is in action, reducing liability of 

breach while enabling access for non sensitive operations. 

4.4 Summary 

The application can be also considered cloud-native and designed in accordance with the Zero 

Trust security model. All of them make up for the Policy Framework, Authentication and the 

Enforcement, which are the three components that conform to the layered defense model based 

on: 

• Real-time context gathering 

• Deep learning-based risk scoring 

• Risk-aware privilege enforcement 

Combined, these modules provide a system of adaptive active-defense which is agile and robust 

enough to address the current mobile-cloud enterprise environment. Implementing this 
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framework allows organizations to go beyond static access control and shift towards a continuous 

and context sensitive security model which mitigates the threats from device theft, credential 

abuse, lateral movement and insider risk (Ayedh et al., 2023). 

 Chapter 5: Evaluation and Analysis 

5.0 Introduction 

This chapter is intended to evaluate the Dynamic Access Control Framework that is based on Zero 

Trust Architecture (ZTA) principles in the mobile-cloud environment. This chapter assesses system 

performance by the key metrics such as security effectiveness, system latency, user experience 

and scalability. This is done on multiple test environments simulated on Amazon Web Services 

(AWS) with 100 virtual users and different attack scenarios; privilege escalation, lateral 

movement, credential theft and anomalous behaviour. Benchmarks were conducted to compare 

this system to traditional Role-Based Access Control (RBAC) and Static Policy-Based Access Control 

(SPBAC) models. The evaluation uses both quantitative metrics (e.g., detection accuracy, latency, 

CPU utilization) and qualitative assessments (e.g., user satisfaction surveys, anomaly threshold 

tuning feedback). 

5.1 Security Performance 

5.1.1 Access Violation Prevention 

Security performance was measured by simulating common threat vectors including: 

• Stolen Credentials 

• Insider Privilege Escalation 

• Rogue Device Access 

• IP Spoofing 

Over 1,000 test scenarios, the Zero Trust framework succeeded in killing unauthorized access to 

96.7%. This was enabled by the behaviors it checked for and it profiled them with LSTM (Ferrag 

et al., 2020), ie The ability to incorporate real time context: device trust, geolocation, session 

behavior greatly limits the number of unauthorized intrusions,” (Golightly et al., 2023, p. 7). 



  33 

5.1.2 Anomaly Detection Accuracy 

In terms of an F1-score of 92.0%, a recall of 91.7%, and a precision of 92.4% an evaluation of the 

core anomaly detection engine built from LSTM and Autoencoder neural networks on the 

CICIDS2018 and Bot-IoT datasets scores at 92.0%. 

 Table 5.1: Security Metrics of Detection Models 

Metric Value 

Precision 92.4% 

Recall 91.7% 

F1 Score 92.0% 

False Positives 3.2% 

Unauthorized Access Blocked 96.7% 

Because traditional RBAC models are static rule based, they averaged less than 60% success just 

on anomaly detection (Kayes et al., 2020), the framework significantly outperformed traditional 

RBAC models. 

5.1.3 Privilege Escalation Control 

Prevention of privilege escalation is one of the major ZTA benefits. The system reduced escalation 

attempts 92% (mostly due to adaptive policy enforcement and continuing to evaluate device and 

behavior scores) in 50 internal threat simulations. 

5.2 System Performance 

5.2.1 Latency Analysis 

The access latency is very important to make the system usable. And using the Zero Trust model 

added a 32 milliseconds, averaged, latency over 1,000 access requests. 

Figure 5.1: Average Latency Comparison 

Model Latency (ms) 

Traditional RBAC 14 ms 
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Model Latency (ms) 

Zero Trust (Ours) 32 ms 

Although the latency increases slightly, the latency still meets acceptable limits for enterprise 

grade applications and outweigh the marginal delay by very large margins; ‘Real time policy 

enforcement Zero Trust via serverless and managed inference endpoints can be implemented 

efficiently’ (NIST, 2020). 

5.2.2 Resource Consumption 

The system uses AWS t3.medium instances where, during peak load, the CPU and memory usage 

never exceeded 20% proving hardware is lightweight and good for running this system on a real 

world deployment. 

• CPU utilization: Max 17.3% 

• Memory utilization: Max 19.1% 

• Model inference time: ~2.8 seconds (per session risk score) 

For burst compute, AWS Lambda takes care, and for inference, it uses SageMaker endpoints based 

on which is least expensive and highest performance. 

5.3 User Experience and Seamlessness 

5.3.1 Survey Methodology 

• A sample group of 30 participants surveyed after 7 day test period with system were used 

to evaluate usability. Both normal and risk based access controls were presented to users. 

The survey measured: 

• Ease of login 

• Impact of MFA 

• Clarity of alerts or access restrictions 

• Frustration due to false positives 

5.3.2 Survey Results 

Table 5.2: User Experience Survey Findings 
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Metric Percentage 

Satisfaction with ease of access 87% 

Occasional MFA friction 9% 

Incorrect lockouts 4% 

Most users report a seamless access, but a small fraction sees false positives, indicating the need 

for tuning of behavioral thresholds for Zero Trust. The balance of unnecessary MFA prompts is 

reduced with behavioral models” (Wang et al., 2020). 

5.3.3 Continuous Authentication Impact 

Users reported high user satisfaction regarding the single sign on integration using AWS Cognito. 

Finally, because when people were late at night or on their devices, the tiniest behavioral 

deviations (such as late night access, switching on a device) occasionally would trigger MFA, 

things would become momentarily frict. These were almost always explained on grounds of 

security. 

5.4 Scalability and Elasticity 

5.4.1 Horizontal Scaling 

The system was tested using a Kubernetes-based deployment with auto-scaling pods for: 

• Policy Decision Logic (Lambda-equivalent microservice) 

• Risk scoring services (Model inference via SageMaker) 

• Policy Enforcement API 

With the success of 1,000 concurrent sessions, across five regions there was less than 5% latency 

degradation.  

Figure 5.2: Latency Over Concurrent Sessions 

Concurrent Sessions Avg Latency (ms) 

100 31 ms 

500 33 ms 

1,000 35 ms 
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5.4.2 Dynamic Policy Enforcement 

Embedded Lambda resolvers and JWT claims in IAM policies scaled with zero performance hits. 

By adopting this approach, decentralised decision making was possible through which 

enforcement took place at resource gateway (e.g., S3, EC2) rather than a central server. 

5.5 Comparative Benchmarking 

A comparative analysis was conducted between the Zero Trust framework and legacy models: 

Table 5.5: ZTA vs. RBAC vs. ABAC 

Feature RBAC ABAC Zero Trust (Ours) 

Real-time Context Support            

Device Trust Integration           

Behavioral Risk Scoring           

Continuous Authentication           

Policy Granularity Medium High Very High 

Our framework demonstrates comprehensive improvements across context awareness, risk 

sensitivity, and authentication frequency. 

5.6 Limitations and Mitigation Strategies 

5.6.1 False Positives in Detection 

However, the model had falsely flagged 4% of the sessions. Typically, they presented as traveling 

users or new device registration that looked momentarily out of the ordinary. 

Mitigation: Introduce user feedback aware retraining to mitigate future future false positives. 

5.6.2 Cold Start Latency 

Latency toward SageMaker endpoints built for the first time (~4 seconds less than other services).  

Mitigation: Use Warm Start Containers or multi-model endpoints to reduce cold start latency. 

5.6.3 Cost Management 

In production, a frequent model invocation and logs analysis bring associated costs. 
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Mitigation: Implement cache inference, batch score, sample log. 

“Security and operational cost tradeoffs are crucial for ZTA systems, particularly when 

continuously authenticating and inferences engines are running” (NIST, 2020, p. 19). 

5.7 Summary of Findings 

The evaluation confirms that the proposed Zero Trust Dynamic Access Control Framework: 

• Detects unauthorized access with 96.7% success rate 

• Maintains system latency below 35 ms 

• Achieves 92%+ detection accuracy 

• Supports seamless scaling via Kubernetes 

• Is user-friendly, with 87% satisfaction 

Clearly, RBAC and ABAC models cannot compete with its performance, and thus, it is a great 

candidate for enterprise clouds with complicated security threats. Continuous real time 

evaluation of trust overcomes the inherent challenges of mobile users, BYOD, multi cloud 

deployments and dynamic workflows. As such, this chapter shows the feasibility of building its 

own cloud native, ML enabled Zero Trust model for production use. 

 Chapter 6: Discussion 

6.0 Overview 

This chapter interprets the results of the previous section and it criticizes the broader benefits, 

implications and limitations of the proposed framework of the Dynamic Access Control based on 

the Zero Trust in the mobile-cloud environments. It then discusses its effectiveness in comparison 

to traditional access control models, the special benefits of context in making access possible, 

constraints for implementation, and ethical implications. In this section, this thesis is justified 

through comparative reasoning and cross reference with the literature that the combination of 

ZTA bereft of any security mechanisms such as machine learning and behavioral analytics is a 

strong paradigm to secure the distributed and dynamic settings of an enterprise. 
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6.1 Comparison with Existing Solutions 

6.1.1 RBAC and ABAC Models: Static Paradigms in a Dynamic World 

Traditional organization security access control mechanisms including Role Based Access Control 

(RBAC) and Attribute Based Access Control (ABAC) have been the cornerstone for organization 

security for long. The name_RBAC_is a fancy for granting access privileges which are linked to 

some particular roles in enterprise. Let’s use payroll systems as an example of such a scenario; 

the HR Manager role can be granted access to these systems, whereas the Developer role can be 

linked to source repositories. RBAC is so simple and hierarchical, it is widely adopted (Wang, 

2019). Despite it, RBAC is constrained by role explosion where the system’s workload grows from 

complex workflows (Kayes et al., 2020). 

In order to overcome RBAC’s rigidity, ABAC evaluated access based on attributes like department, 

project affiliation, clearance level, and time of day. ABAC brings in flexibility but still can have 

limited effectiveness that is constrained by predefined attribute rules and lacks behavioral-based 

adaptive, risk assessment as well. This critically overlooks the assumption of a trusted perimeter 

and both models tend to miss anomalous activity from authenticated users — a fatal design flaw 

especially in the high levels of insider threats, BYOD policies, and mobile cloud ecosystems 

(Pearson & Benameur, 2010). 

The paradigm that “never trust, always verify” is followed, instead, by the Dynamic Access Control 

Framework design of the thesis based on the Zero Trust paradigm. Unlike RBAC or ABAC, it resides 

as a service that evaluates in real time every request while considering behavioral, contextual, 

environmental parameters including geolocation, device health, and others signs of anomaly in 

activity. 

 Table 6.1: Comparative Features of Access Control Models 

Feature RBAC ABAC Proposed ZTA 

Real-Time Access Evaluation           

Behavioral Risk Scoring           

Context Awareness    Partial     
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Feature RBAC ABAC Proposed ZTA 

Scalability Medium Medium High 

Anomaly Detection           

User Experience High Moderate High 

With the adaptive risk, machine learning driven session analysis, and serverless enforcement 

architecture, the model combines security and scalability outperforming any static access control 

model (Golightly et al., 2023). 

6.2 Benefits of Context-Aware Zero Trust Architecture 

6.2.1 Enhanced Data Protection in Mobile-Cloud Settings 

Finally, clouds have their own set of inherent multi-tenant and geographically dispersed patterns. 

The presence of an increasing number of mobile endpoints, be it smartphones or tablets, 

compounds the problem with inconsistent connectivity and different device health as well as 

one’s vulnerability to theft or loss. The real time telemetry coupled with the Zero Trust approach 

solves for these with access decisions bringing together telemetry and security. By ensuring that 

even if a user’s credentials have been stolen they do not grant a user access unless all the 

contextual parameters (device trust score and location history) match acceptable patterns (NIST, 

2020). This means that in the real world, sensitive data disclosure is significantly reduced, 

especially in SaaS environments where APIs, integrations with and third-party applications are 

main vectors for access. All the data is never exposed to unverified sessions, and every transaction 

is logged, audited and dynamically authorized. 

6.2.2 Mitigating Insider Threats via Behavioral Analytics 

One of the most destructive vectors of cyber security is insider threats–whether malicious or 

accidental. In the context of insider misuse, traditional systems mostly fail to detect misuse, even 

if an insider is authenticated, is operating under approved roles. Thus, the proposed system uses 

LSTM based behavioral profiling to monitor the user sessions and trigger flags when there are 

anomalous access times, new IP regions, and abnormal resource usage (Ferrag et al., 2020). This 
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represents a great step above and beyond static permissions, as it supports risk aware anomaly 

detection. 

For instance, a finance officer with right to access payroll systems would be given the same 

amount of access during the regular working hours. With this, the system also recognizes such 

behavioral anomaly and then trigger multi factor authentication (MFA) or read only mode if the 

same officer tries to fetch the HR at 12 PM from a completely unlicensed device. 

6.2.3 Balancing Security and User Experience 

When properly implemented, Zero Trust does not require additional friction for its users. Through 

context and policy adaptation, the system conducts secondary verification only when anomalous 

behaviors occur while most expected, low risk actions are seamless. In the evaluation (Chapter 

5), the users experienced 87% positive experience where security and usability were not enemies 

under the right architecture. Moreover, JWT tokens that have embedded claims enable use of 

decentralized enforcement – good for faster decisions at the resource layer (Amazon S3, EC2) and 

to do so without another round trip to a central authentication server. 

6.3 Limitations of the Proposed Framework 

A dynamic Zero Trust system however has its own challenges despite being many strong. 

Subsections discussing observed limitations and possible mitigations are provided afterwards. 

6.3.1 Initial Machine Learning Model Training Cost 

The LSTM based behavioral profiling model training requires large amount of labeled session data 

as well as large compute resources. In addition, model training on AWS SageMaker with GPU 

support required several hours and entailed not insignificant cost. This could be prohibitive for 

smaller organizations or organizations without data science capability. Additionally, as behavior 

evolves over time, it is necessary to retrain the model periodically to avoid the drift, which leads 

to operational overhead. With this, automation pipelines reduce the effort of this process 

somewhat, but maintaining the accuracy and relevance is still resource kind of work. 

Mitigation: Apply schedulers to cut down batch retraining in offpeak hours and employ transfer 

learning to shrink data requirements. It could be enhanced with online learning, whose 

generalization is fast and adaptive with minimal compute. 
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6.3.2 MFA Dependency in High-Risk Scenarios 

In high risk scenarios, Multi Factor Authentication (MFA) is used as default safeguard in the 

framework. This helps a lot as it serves a good layer of securities, but it might add some friction 

to those users who switch devices often or frequently change locations. In the mobile 

environments such as travelling, users might face delays or locked out at times, because biometric 

or push based MFA mechanisms are not always available. 

Mitigation: Adaptive MFA using behavioral scores and device reputation can prevent unnecessary 

prompts. MFA is only reserved for the most critical deviations by caching low risk sessions and 

making a device trust whitelist. 

6.3.3 False Positives in Anomaly Detection 

Dynamic work environments create a potentially high incidence of false positives for behavioral 

based models. The alerts may disrupt travel if it is frequently made by users, or in cases when the 

user is trying new tasks. While the model is able to reach an F1 score of 92.0%, the ~3.2% false 

positive rate can impact workflows (Ferrag et al., 2020). 

Mitigation: Use a user feedback loop on the flagged users' where these users can validate their 

sessions, and this feedback included during retraining the next time around. The combination of 

model and human in this human in the loop approach leads to higher model accuracy and user 

satisfaction. 

6.4 Ethical and Privacy Considerations 

Security mechanisms do more than need to be ‘effective’; they also need to be deemed ethically 

responsible as well as conform to such legal frameworks as the General Data Protection 

Regulation (GDPR). 

6.4.1 Data Anonymization and Compliance 

Training and analysis data and all behavioral and contextual data were pseudonymized so that no 

identity could be attributed. “A hash was applied to identifiers such as email addresses and IPs, 

and no personal content was processed. Data minimization principles were applied as well 

as’identifiable markers should never be stored unless strictly necessary’” (Pearson & Benameur, 

2010, p. 697). A limited set of metadata from each session was collected and stored that was all 
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necessary to identify session risk (e.g., time of login, device type, action path). Monitoring 

pipelines excluded the sensitive data, like user content or messages. 

6.4.2 No Use of Biometric Identifiers 

The framework does not rely on biometric identifiers such as fingerprints or facial scans in line 

with both ethical guidelines and privacy concerns of the users. While these data types are very 

unique, if they are compromised they add an extra layer of risk to the handling of these data types 

under a GDPR and HIPAA regulation. 

6.4.3 Transparent User Consent and Logging 

Users were informed about the data collected, how risk scores are calculated and access decisions 

made, before implementation. They are all logged with explanation that provides transparency 

and auditability of all decisions (e.g policy downgrade, MFA prompt, access denial).In addition, 

users could see their risk history and appeal incorrect blocks. But this model also extends trust, 

by running the model with human in the loop corrections to improve model accuracy. 

6.5 Synthesis of Discussion 

In summary, the evaluation and comparative analysis of the proposed framework confirm that: 

• Typical models (RBAC, ABAC) are inadequate for the current requirements of such a 

distributed, mobile-cloud applications. 

• The protection, scalability, and adaptability of using a Zero Trust model with behavioral 

profiling and real time policy evaluation are superior than the current CNI model. 

• While challenges here exist, specifically around train model cost and user friction, these 

can be mitigated by innovative design and iteration. 

• Anonymization, minimal data use, and exclusion of sensitive identifiers were used to 

guarantee ethical and legal compliance 

Such a framework goes beyond a technical improvement, and represents a philosophical shift as 

well, moving from identity-based entitlement to context driven, risk aware decisioning. 
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Chapter 7: Recommendations and Future Work 

7.1 Recommendations for Implementation 

Based on the research findings and experimental validations, the following are suggested 

recommendations to enterprises who want to deploy Zero Trust based dynamic access control in 

mobile cloud environment: 

a) Apply Machine Learning for Risk Based Decisioning: The enterprises should use behavior 

based authentication models like LSTMs and deep autoencoders for the detection of 

anomalies (Ferrag et al., 2020). 

b) Implement Fine-Grained Contextual Policies: Policies need to be refined to incorporate the 

user activity, device health, geolocation, and network conditions as the most relevant factors 

on which the decision is made (Kayes et al. 2020). 

c) Identity Federation: Tools like AWS Cognito or Azure Active Directory B2C to handle how to 

identify across devices, applications and cloud platforms. 

d) Raise User Education: User education is needed to comprehend the relevance of least 

privilege access and the continuous authentication role in safeguarding data and privacy. 

e) Regular simulation of access scenario including unauthorized access, device compromise, and 

lateral movement must be done to test the policy robustness. 

7.2 Suggestions for Future Research 

However, the proposed framework still presents significant improvement in access control 

security and adaptability, but several potential ways remain to be explored further: 

1. Edge-based Zero Trust Enforcement: Fog Computing: The supplementing of Zero Trust 

with Fog Computing could utilize network edge (latency and availability) without the 

architectural challenges inherent in breaking out and suffering latency from the core 

network. 

2. Blockchain Integration: Apply blockchain for decentralized identity management and 

immutable audit trails which can be further used to strengthen the trust model (Golightly 

et al., 2023). 
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3. Cross-Cloud Policy Standardization. Future work might be required towards challenges in 

standardizing the policy enforcement across multi cloud environments. 

4. AI for Access Decisions: By choosing to use the explainable machine learning models, the 

administrators have reasons that they can provide between granting or denying access. 

5. Zero Trust for IoT: Integrating the Zero Trust security model to the resource-scarce IoT 

devices in mobile-cloud settings, is the next major issue to be solved in the IoT ecosystem. 

Chapter 8: Conclusion 

With this research, we explored how dynamic, context aware access control across mobile clouds 

is critical and introduced a novel Zero Trust Architecture (ZTA) based framework. It combines 

behavioral analytics, machine learning, continuous authentication, and real time contextual 

policy enforcement. On this approach experimental results validate also that this give a significant 

improvement over the traditional models in terms of security, adaptability and user experience. 

Architecture which is proposed enables the enterprises to dynamically evaluate and enforce 

access based on the contextual risk, and mitigate threats such as Unauthorized access, privilege 

escalation and insider attacks. In this way, this paper lays a basis to prove that principles stated 

by the Zero Trust concept can be used more efficiently in cloud, especially in a mobile 

environment of modern enterprise. Further expansion in the future such as the integration with 

blockchain and implementation in edge will bring more possibilities about this work. 
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