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Abstract 

In the highly structured and cost-sensitive environment of automotive manufacturing, the 

efficiency of delivery scheduling plays a critical role in determining overall supply chain 

performance. Traditional shipment planning methods, often static and heuristic in nature, fail to 

exploit available flexibility in delivery windows—leading to frequent inefficiencies such as 

underutilized truck capacity, excessive setup frequency, and fragmented shipments. This thesis 

addresses these operational shortcomings through the development of a progressive suite of 

deterministic optimization models designed to reallocate deliveries across fixed time slots. 

Three mixed integer linear programming (MILP) models are proposed, each adding successive 

layers of real-world complexity. The basic model introduces a time-windowed reallocation 

framework aimed at balancing delivery volumes and reducing setup and holding costs. The 

enhanced model builds upon this by incorporating truck capacity constraints and underutilization 

penalties to simulate more realistic logistics scenarios. Finally, the supplier-integrated model 

introduces supplier selection logic, binary activation decisions, and inter-supplier constraints, 

offering a more holistic view of cost and operational feasibility in multi-source environments. 

All models are implemented using Python and the PuLP optimization library and validated using 

synthetic data reflective of real-world automotive delivery patterns. Results demonstrate that 

reallocation, even within a deterministic and disruption-free environment, can yield substantial 

logistics cost reductions in some cases while improving resource utilization and scheduling 

efficiency. The models serve not only as theoretical constructions but also as practical decision-

support tools that can be embedded within existing enterprise planning systems. By systematically 

restructuring delivery plans before execution, this research bridges the gap between strategic 

supply chain theory and actionable, mid-horizon logistics planning.
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CHAPTER 1: INTRODUCTION 

1.1. The History and Evolution of Supply Chain Management 

Supply chain management (SCM) has evolved dramatically over the years. What once was a 

simple back-end function mainly handling the movement of goods has now become a key part of 

a company's strategy. Initially, supply chains focused on basic logistics like procurement and 

delivery [1]. In the early 20th century, the rise of mass production and assembly lines, especially 

through companies like Ford, required more structured logistics [2]. Still, concepts like inventory 

or transportation were treated as individual functions. It was not until the mid-20th century that 

supply chain thinking started to get more scientific. With the introduction of operations research, 

companies began using mathematical tools like linear programming and simulations to better plan 

their resources [3]. By the 1970s, new practices like lean manufacturing and just-in-time systems 

(mainly popularized in Japan) required companies to work more closely with their suppliers [4]. 

These developments laid the foundation for integrated supply chain management. 

By the 1990s, SCM was officially recognized as a discipline, fueled by globalization, outsourcing, 

and the introduction of ERP systems [5]. It became clear that managing everything materials, data, 

and money across a network of partners was crucial. SCM turned into a multi-disciplinary field 

that combined logistics, IT, operations, and strategic sourcing. Today, in a technology-driven era, 

tools like artificial intelligence and real-time analytics have taken SCM to a new level [6]. As noted 

by Christopher (2016), SCM has shifted from being a separate function to becoming a core, 

strategic operation [7]. Chopra and Meindl (2016) emphasized how modern supply chains rely 

more on tech-driven collaboration and integration [8]. 

1.2 Overview of Supply Chain Processes 

A supply chain is the full system of people, organizations, technology, activities, and resources 

that work together to move a product or service from the supplier to the final customer [9]. It 

includes everything from raw material sourcing and production to the delivery of finished goods 

and handling customer returns. The complexity of modern supply chains makes their coordination 

essential for achieving efficiency, reducing costs, and delivering customer satisfaction. 
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Modern supply chains are typically broken into five key functions: planning, sourcing, 

manufacturing, delivery, and returns [10]. These are formalized by the Supply Chain Operations 

Reference (SCOR) model developed by the Supply Chain Council, which provides a standard 

framework and performance metrics [11]. Planning is the foundation of all supply chain activity. 

It involves forecasting customer demand, designing the supply chain network, determining 

inventory levels, and allocating resources efficiently. Effective planning ensures that production 

meets demand without resulting in overproduction or shortages [12]. Sourcing focuses on supplier 

selection, procurement strategies, and managing relationships with vendors. Choosing the right 

supplier is not just about cost, it also involves evaluating quality, reliability, capacity, and 

responsiveness [13]. 

Manufacturing covers all the activities involved in converting raw materials into finished products. 

This includes production scheduling, quality control, facility management, and labor deployment 

[14]. Here, operational efficiency is critical, as delays or inefficiencies can quickly spoil the rest 

of the supply chain. Delivery and logistics are responsible for getting the product to the end user. 

This involves warehousing, inventory management, order processing, transportation, and 

distribution. Logistics also include coordinating with third-party logistics providers, optimizing 

shipping routes, and ensuring that deliveries are made on time and in full [15]. Returns 

management, often called reverse logistics, handles everything coming back from the customer, 

such as product returns, warranty claims, repairs, recycling, or disposal. This part of the supply 

chain is often overlooked but is essential for maintaining customer trust and managing 

environmental responsibility [16]. 

What makes supply chain processes particularly challenging is the need to coordinate across these 

areas while managing the flow of materials, information, and finances. For example, a delay in 

raw material delivery (sourcing) impacts production (manufacturing), which in turn affects when 

products can be shipped (delivery). These dependencies create a chain reaction, so decisions in 

one area must consider their downstream effects. 

To model and manage these interdependencies, modern supply chains rely on analytics and 

optimization tools to manage these interdependencies. As delays in one stage affect others, 

companies use mathematical models like MILP to simulate and improve decisions across the entire 

chain [17]. This approach enables businesses to evaluate trade-offs, consider constraints, and find 
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the most cost-effective and feasible solutions. The SCOR model, developed by the supply chain 

council, provides a useful framework to understand and structure these processes. It defines 

standardized components and performance metrics, which help businesses benchmark and 

continuously improve their supply chain operations. 

1.3 Supply Chain Management in the Automotive Industry 

SCM in the automotive industry is highly complex due to the large volume of parts and global 

sourcing practices [18]. A single car can include over 30,000 individual parts, sourced from 

suppliers all over the world. These parts are delivered through a tiered supplier system. Tier 1 

suppliers work directly with manufacturers, while Tier 2 and Tier 3 supply the upstream suppliers. 

To manage this massive web of suppliers, car manufacturers rely heavily on systems like Just-In-

Time (JIT) and Just-In-Sequence (JIS) delivery [19]. JIT ensures parts arrive exactly when needed, 

which minimizes inventory costs. JIS takes this further by ensuring that parts show up not just on 

time, but in the precise order they’ll be used during assembly. While this increases efficiency, it 

also makes the system more fragile, any small delay can cause a chain reaction. 

Customization adds another layer of complexity. With customers expecting personalized vehicle 

features, manufacturers must handle low-volume, high-mix components alongside standard ones. 

This requires precise scheduling, tight delivery windows, and constant coordination with suppliers. 

Even slight inefficiencies, like sending half-empty trucks or poor delivery timing, can drive up 

logistics costs significantly. The optimization models in this thesis aim to tackle those issues by 

rethinking delivery schedules rather than reacting to problems after they happen [20]. 

1.4 The Concept of Supply Chain Reallocation 

Supply chain reallocation is about making the most of existing delivery plans by shifting shipments 

across different time windows or delivery slots in a planned, strategic way. Unlike disruption 

management, which reacts to unexpected issues, reallocation works with a known set of inputs 

such as costs, demands, and capacities and looks for ways to improve efficiency proactively [21]. 

For example, a delivery originally scheduled for 7 PM could be rescheduled to an earlier slot, such 

as 11 AM the same day, if truck capacity and operational constraints allow. This type of proactive 

rescheduling may help reduce inventory holding costs or improve truck utilization by 

consolidating loads. We could also combine multiple small deliveries into a single full truckload, 
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cutting transportation costs. Or we might even decide to place an order from a different supplier if 

it is cheaper. 

This introduces a significant operational challenge. We must balance many different cost factors 

like unit cost, holding fees, setup charges, and penalties for unused truck space. On top of that, we 

need to work within limits like truck capacity, time windows, and which suppliers are available. 

Hence the reason why in this study we use MILP models to approach the problem [22]. These 

tools are well-suited for handling complex decisions within strict constraints. 

1.5 Background and Problem Statement 

In traditional supply chain operations, shipment schedules are usually set in advance and followed 

with little to no change unless a disruption occurs. These plans are often developed based on 

estimated demand and fixed time slots and are designed more for stability than optimization. While 

this static approach may work under predictable conditions, it can lead to various inefficiencies 

that increase overall logistics costs [23]. This is especially true in complex industries like 

automotive manufacturing, where frequent deliveries, tight deadlines, and thousands of moving 

parts create a highly dynamic environment. 

One major issue with fixed scheduling is the underutilization of transportation resources. For 

example, companies may dispatch trucks that are only partially loaded simply to meet a planned 

delivery slot. Each of these trips incurs a setup or usage cost regardless of whether the truck is 

fully loaded. In environments where multiple deliveries occur daily such as a supplier making five 

separate trips to a manufacturing plant, this can result in high logistics expenses due to frequent 

setups, fragmented shipments, and underused truck capacity. 

Another issue arises from uneven shipment distribution throughout the planning horizon. If 

deliveries are unevenly spread. say, heavier loads in the morning and lighter ones in the evening, 

this imbalance may lead to bottlenecks, increased inventory holding costs, and poor utilization of 

time-sensitive resources. Additionally, when multiple product types are involved, there may be 

missed opportunities to consolidate shipments or reassign items to more efficient time windows, 

which could reduce overall costs significantly [24]. 
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What makes this problem more challenging is the presence of multiple real-world constraints that 

must be respected. Deliveries can only be reallocated within a defined time window (referred to as 

the pull-ahead limit), and truck capacities cannot be exceeded. Each delivery also triggers a setup 

cost, whether it is necessary or not. Furthermore, when more than one supplier is involved, 

additional factors such as supplier-specific costs, delivery availability, and operational limitations 

further complicate decision-making. 

In the absence of a structured optimization approach, most logistics planners rely on heuristics or 

experience-based rules to adjust delivery plans, often leading to sub-optimal results. While these 

manual adjustments may address immediate needs, they do not guarantee cost-effective outcomes 

across the entire supply chain. 

This thesis addresses this gap by developing a series of optimization models designed to 

intelligently reallocate shipment plans within a feasible planning horizon. The models aim to 

minimize total logistics costs including unit cost, setup cost, holding cost, trucking cost, and 

penalties for underutilized truck space while satisfying all relevant operational constraints [25]. 

These models are built using MILP, which is well-suited for representing discrete decisions (such 

as whether a truck is used or not) and continuous flows (such as quantities delivered). 

The models are implemented in Python and tested with synthetic data that mimics conditions in 

automotive logistics. Through a progression of models starting with a basic MILP framework and 

moving toward a supplier-integrated, multi-item environment this study demonstrates how 

mathematical optimization can lead to smarter, more cost-efficient planning in complex supply 

chain networks. 

1.6 Research Objectives 

This research is focused on building mathematical models that help improve delivery plans across 

a supply chain by reallocating shipments to lower total logistics costs. The models do this while 

respecting real-world constraints like truck capacity, delivery windows, and supplier activity. 

The specific goals are: 

•  Build a basic MILP model for a simple supply chain with a single item and supplier, 

optimizing unit, setup, and holding costs. 
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• Expand the model to handle multiple items and include truck constraints for a more realistic 

logistics scenario. 

• Add supplier-related decisions into the model to handle inter-supplier reallocations and 

unused truck penalties. 

• Implement all three models in Python and test them using synthetic data. 

• Compare the performance of each model in terms of cost, scalability, and delivery 

efficiency. 

1.7 Research Questions 

The study is guided by these research questions: 

• How can shipment reallocation be modeled to reduce logistics costs without missing 

delivery targets? 

• What is the impact of including truck usage and setup costs in reallocation planning? 

• How does factoring in supplier selection influence total cost and efficiency? 

• Can these models handle large-scale, complex logistics scenarios? 

• Can the models help logistics managers make better delivery planning decisions in 

automotive supply chains? 

1.8 Significance of the Study 

With increasing market pressures and global competition, organizations are expected to do more 

with less deliveries faster, more reliably, and at a lower cost. Traditional planning methods, which 

often lack optimization and flexibility, are no longer sufficient. This is where the research becomes 

especially relevant. 

Most existing research has concentrated on handling uncertainty and risk, whereas this study 

explores how to improve efficiency even when all variables are known in advance. The 

introduction of a progressive modeling approach starting from a basic model and evolving into an 

enhanced and then supplier-integrated model presents a novel methodology that is both scalable 

and adaptable. The use of MILP is particularly noteworthy, by developing models that reflect real-

world operational constraints like time windows, truck capacity limits, and supplier activation 

costs, this research bridges the gap between theoretical modeling and practical implementation 
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[27]. These models are not just academic exercises but are designed to serve as decision support 

tools that logistics planners and supply chain managers can adopt and apply in real industrial 

settings. 

On a practical level, the findings offer valuable insights for supply chain professionals looking to 

optimize logistics operations without needing major infrastructure investments or complex IT 

overhauls. The models help identify how minor adjustments such as reallocating shipments or 

better utilizing truck capacity can lead to substantial cost savings. This is especially beneficial for 

companies operating in tightly scheduled, cost-intensive supply chains like those in automotive, 

electronics, or fast-moving consumer goods. 

Moreover, the modular design of the models makes them flexible and extendable. Depending on 

the company’s size and complexity, the models can be scaled up or down. For smaller businesses, 

the basic MILP model offers a simplified optimization path. For larger enterprises dealing with 

multiple suppliers and thousands of SKUs, the supplier-integrated model provides a 

comprehensive solution. 

In essence, this research empowers supply chain professionals with data-driven tools to make 

smarter, more informed decisions. It promotes the idea that significant improvements in efficiency 

and cost-effectiveness can be achieved not through drastic change, but through smarter planning 

based on mathematical models. This makes the study highly relevant for organizations aiming to 

remain competitive in today’s fast-paced and cost-conscious markets. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Automotive Supply Chain Structure and Reallocation Needs 

The automotive supply chain is a multi-tiered, synchronized system structured around JIT and JIS 

principles, which require parts to be delivered precisely and in sequence [28]. Modern vehicle 

manufacturing is driven by just-in-time (JIT) and just-in-sequence (JIS) philosophies, where 

components must arrive at the assembly line not only on time but in the precise order of assembly. 

Unlike traditional inventory based industries, the automotive supply chain is designed to operate 

with minimal stock buffers, which elevates the importance of accurate, slot-based delivery 

planning. A typical car comprises between 15,000 and 25,000 individual components, sourced 

globally from Tier 1, Tier 2, and Tier 3 suppliers [29]. These suppliers operate under tightly 

negotiated contracts, delivering goods to OEM plants across defined delivery windows often in 

multi-slot daily time frames. 

In this context, delivery planning is not merely about assigning quantities to a calendar date, but 

about sequencing shipments into defined time slots, optimizing transport assets like trucks, and 

avoiding the costly overhead of underutilized vehicles or unplanned supplier setups. The frequency 

of deliveries, especially for high-demand parts such as seats, dashboards, or electronics, results in 

multiple shipments per day. This exposes Inefficiencies arise from partial truck loads and frequent 

supplier setups, which increases logistics cost [30]. Reallocation of shipments across known slots, 

rather than responding to disruptions, provides deterministic cost optimization opportunities [31]. 

Importantly, unlike disruption-oriented supply chain models that rely on stochastic programming, 

the need here is for deterministic optimization: reallocating known quantities within fixed delivery 

frameworks to reduce cost while maintaining service level adherence. 

From an operational standpoint, current enterprise resource planning (ERP) systems often generate 

static shipment schedules based on demand forecasts and lead times. These plans lack the 

flexibility to dynamically reshuffle or pull deliveries ahead into earlier windows to exploit 

opportunities for truck consolidation or setup reduction [32]. Reallocation, therefore, becomes a 

mid-term planning decision that can be mathematically optimized, especially in a deterministic 

environment where all variables -demand, capacity, costs are known at planning time. This thesis 

directly addresses this context by proposing MILP models that reallocate delivery quantities across 
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slots within strict operational boundaries, aiming to reduce unit, setup, and transportation costs 

without altering the total demand or introducing uncertainty [33]. 

2.2 Operational Challenges in Slot-Based Automotive Delivery Planning 

In high-frequency automotive supply chains, the challenge is not only about fulfilling orders on 

time but doing so with optimal use of resources such as trucks, supplier setups, and storage space. 

Most suppliers face daily or sub-daily shipment schedules, often delivering to multiple OEMs and 

plants. Each delivery may incur fixed setup costs such as production line activation, order 

processing, or paperwork irrespective of the quantity shipped. When deliveries are fragmented 

across many time slots, these setup costs can escalate rapidly. Similarly, trucks dispatched at low-

capacity utilization incur transportation inefficiencies, increasing per-unit cost due to wasted 

volume [34]. However, existing shipment schedules generated by basic planning tools often fail to 

address these inefficiencies holistically. 

One of the core operational pain points in delivery planning is lack of reallocation flexibility. While 

ERP systems assign quantities to time slots based on earliest requirement dates, they do not assess 

the impact of moving deliveries slightly forward (within a pull-ahead limit) to fill trucks more 

efficiently or reduce redundant setups. The reallocation problem, therefore, is about restructuring 

shipment volumes within the same total horizon, ensuring that no future demand is lost, while 

reducing the cost of logistics execution [35]. This is a deterministic optimization problem by 

nature, with clear and fixed inputs: delivery dates, item quantities, supplier capacities, truck 

dimensions, and cost coefficients. 

Reallocation also becomes a multi-dimensional problem when multiple items are involved. A 

supplier may send several SKUs per shipment, each with distinct volumetric profiles, costs, and 

delivery urgencies. Consolidating such deliveries requires careful capacity balancing, where 

pulling ahead one item may crowd out others. Furthermore, suppliers often operate under strict 

capacity constraints both in production and logistics and cannot absorb arbitrary reallocations 

without consequences [36]. To optimize such a system, one needs a model that simultaneously 

respects the binary nature of setup decisions, capacity constraints of trucks, time-slot constraints 

of delivery windows, and volumetric penalties for underutilization. Such a problem fits squarely 
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within the domain of MILP modeling, where continuous (quantity) and binary (activation) 

variables are combined in a cost-minimizing objective function. 

The literature reveals a lack of integrated models that deal with these practical realities of 

automotive logistics. While vehicle routing problems (VRPs) and inventory-location models have 

been widely studied, few deterministic formulations exist that specifically target delivery 

reallocation across fixed time slots, with simultaneous modeling of setup, unit, and transport costs. 

This gap motivates the need for advanced MILP formulations, like those proposed in this thesis, 

which begin with a basic reallocation logic and progressively incorporate real-world constraints 

such as multi-item planning and supplier integration [37]. 

2.3 Deterministic MILP Models for Slot-Based Delivery Optimization 

MILP has long been established as a mathematical framework for handling constrained 

optimization problems in supply chains. For deterministic environments where all input 

parameters such as demand, capacity, costs, and delivery time windows are known MILP enables 

highly granular modeling of logistics processes [38]. Unlike stochastic or heuristic approaches that 

account for uncertainty or randomness, deterministic MILP models are ideal for structured mid-

term planning, such as reallocation of deliveries across known future time slots. This makes them 

especially suitable for automotive industry scenarios where shipment volumes, supplier capacities, 

and time-window structures are defined upfront. 

Several studies have explored deterministic MILP for delivery and vehicle planning. For instance, 

Guerrero et al. developed a deterministic inventory-location-routing MILP model that incorporates 

vehicle fixed costs and delivery scheduling within a known planning horizon. Their model 

explicitly addresses vehicle usage patterns and penalizes underutilization [39]. Similarly, Díaz-

Madroñero et al. proposed a deterministic MILP model that integrates production and procurement 

transport decisions, emphasizing delivery synchronization and cost balancing—a vital 

consideration in the model where multi-slot delivery windows require coordination of suppliers 

and transport assets [40]. 

More recently, Fontaine et al. introduced a MILP model specifically for automotive inbound 

logistics. Their formulation considers truck utilization, fixed transport costs, and supplier delivery 

patterns across a deterministic time horizon. They highlight how truck underutilization can be 
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penalized via cost terms, using linear penalties. The study validates the importance of modeling 

truck cost as a function of volume occupied, not just binary usage [41]. 

Another closely aligned study is by Borumand & Nookabadi, who formulated a deterministic 

MILP for integrated fleet sizing and routing with simultaneous delivery and pickup. While their 

focus is a closed-loop supply chain, the model structure incorporates fixed vehicle usage costs and 

load balancing over time windows, offering methodological blueprint for reallocation scenarios 

[42]. 

What unites these works is the shared objective of optimizing shipment allocations, vehicle 

loading, and setup costs within known operational boundaries. These models emphasize binary 

variables for truck usage and supplier activation, linear variables for quantity flows, and constraints 

for volume, demand satisfaction, and capacity [43].  

2.4 Delivery Reallocation Logic in Slot-Based Supply Chains 

The core motivation behind the basic Model of this thesis is the realization that static shipment 

schedules those pre-assigned by traditional ERP and planning systems often do not reflect cost-

efficient delivery patterns. In real-world automotive logistics, deliveries are organized into 

predefined time slots, often segmented into multiple delivery windows per day over a fixed 

planning horizon (typically weekly or bi-weekly) [44]. Once the shipment schedule is generated, 

these assignments are rarely revisited or optimized further. However, the shipment landscape is 

inherently dynamic in terms of capacity utilization, supplier readiness, and delivery urgency. Yet, 

the actual data used in planning quantities, due dates, and available delivery slots are typically 

deterministic and known in advance, making the case for optimizing the use of these resources 

before execution begins. 

The concept of delivery reallocation, as introduced in this thesis, specifically targets this 

underexplored but operationally critical phase. It refers to the process of shifting planned quantities 

from their original assigned slots into earlier available slots within a permissible time window 

(e.g., a 72-hour pull-ahead limit) to consolidate deliveries, reduce fixed costs, and optimize 

logistics usage. Importantly, the model does not alter total delivery volumes or introduce new slots. 

Rather, it redistributes existing demand across time to improve cost efficiency [45]. This is 

particularly relevant in deterministic settings, where future demand and operational boundaries are 
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known and reliable. The model assumes no stochastic behavior such as demand fluctuation, lead 

time uncertainty, or unplanned disruption allowing the optimization process to focus solely on cost 

structure improvements through smart allocation. 

Existing literature has rarely addressed this specific problem formulation in depth. Guerrero et al.  

proposed an inventory-location-routing model that integrates delivery scheduling, but it lacks 

intra-horizon reallocation logic; the focus is on determining routes rather than improving shipment 

density through timing. Fahmy et al. introduced delivery volume consolidation over defined slots, 

allowing for early delivery (pull-ahead) strategies [46], which is conceptually aligned with our 

thesis. However, their model is focused on hub design and did not isolate the value of reallocation 

logic on its own. In contrast, our model isolates reallocation as a standalone strategic decision and 

measures its impact in terms of reduced unit cost and minimized fragmentation without involving 

supplier or trucking constraints. 

A key insight from the reallocation model is the trade-off between shipment smoothing and cost 

minimization. While moving quantities forward can lead to cost savings (e.g., reducing fixed setup 

cost per slot), it also risks overloading earlier slots or creating inefficient space utilization if truck 

constraints are not considered. Therefore, in the model, we introduce constraints that allow shifting 

only within defined bounds (e.g., within 72 hours), ensuring that real-world operational feasibility 

is preserved. The objective function in this context is relatively simple but practical minimize the 

sum of delivery costs across slots while preserving demand fulfillment per item and per day. This 

sets the foundation for more complex models in subsequent sections, where truck and supplier 

constraints are layered in. 

Recent papers have also acknowledged the importance of slot-based delivery logic. Zhang et al. 

worked on time-windowed delivery consolidation for JIT systems and highlighted how 

deterministic planning can lead to cost-effective improvements without disrupting downstream 

operations [47]. Their work confirms that even in stable environments, cost savings of 10–20% 

are possible through intra-week delivery reallocation. However, their model did not consider 

multi-slot intra-day reallocation or fine-grained pull-ahead rules, both of which are critical in the 

automotive context where multiple deliveries occur per day and components must meet plant-level 

just-in-sequence requirements. 
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In essence, the basic model proposed in this thesis serves as a minimal but powerful extension to 

standard delivery planning logic. It introduces a mathematical reallocation layer that allows 

logistics planners to reshuffle shipment quantities across allowable slots, with no need to change 

suppliers, vehicle types, or scheduling policies. It is this foundational logic reallocation under 

deterministic conditions that sets the stage for more integrated models that include truck 

utilization, multi-item bundling, and supplier activation, all of which are explored in subsequent 

chapters [48]. 

2.5 Truck Volume Utilization & Cost Optimization in Reallocation Planning 

As delivery frequencies increase and shipment windows narrow in modern automotive logistics, 

the inefficiency of underutilized transport assets becomes a key cost driver. While traditional 

delivery planning systems ensure that material reaches assembly lines on time, they often ignore 

the economic implications of sending trucks partially full [49]. This oversight results in significant 

transportation waste, especially when suppliers ship small loads across multiple time slots rather 

than consolidating deliveries. The enhanced model in this thesis responds directly to this 

operational inefficiency by integrating truck volume utilization and cost minimization into the 

reallocation decision process [50]. The focus shifts from merely assigning quantities to slots (as in 

the basic model) to strategically selecting delivery configurations that optimize space usage, 

minimize setup frequency, and reduce costs per unit delivered. 

Truck utilization optimization in this context involves a combination of binary and continuous 

decisions. Binary variables capture whether a truck is used in a particular slot (which triggers a 

fixed cost), while continuous variables represent the volume or quantity loaded. Rather than 

maximizing utilization, the enhanced Model minimizes cost due to underutilization more 

realistically with how logistics budgets are structured in actual automotive plants. Fontaine et al. 

developed a delivery optimization model for automotive inbound logistics that explicitly penalized 

underused truck volume using linear cost terms. Their results demonstrated that small shifts in 

delivery timing could produce 12–18% reductions in transport cost, purely through better truck fill 

rates [41]. Similarly, Baykasoğlu et al. reviewed deterministic fleet sizing models and highlighted 

that fixed truck activation costs, when not combined with volume constraints, lead to fragmented 

and cost-inefficient delivery networks [51]. 
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The enhanced model improves upon the basic model by introducing volumetric constraints, 

ensuring that any reallocated quantity must not only satisfy delivery requirements but also fit 

within the truck’s physical space. This is essential for automotive parts, where delivery batches 

may include items with different dimensional profiles, some bulky but light, others compact but 

dense. The model can be extended to include SKU-specific volumetric conversion factors, 

enabling even more realistic packing simulations. However, even in its simplest form (aggregate 

volume constraints per slot), the enhanced model allows planners to identify “thin deliveries” that 

could be reallocated forward and packed alongside other shipments to achieve cost-effective 

consolidation. 

An equally important component of the enhanced model is the trade-off between setup frequency 

and delivery volume per slot. Frequent deliveries increase setup costs and resource consumption 

at both ends (supplier and receiver). Reducing delivery frequency through volume bundling helps 

reduce these fixed costs. This mirrors the logic presented in Ghiani et al. who noted that reducing 

the number of activated deliveries per planning period could lower operational costs by up to 20% 

in high-frequency systems [52]. However, they did not apply this insight to reallocation logic. 

From a methodological perspective, integrating truck usage logic into reallocation planning 

ensures that delivery plans not only fulfill operational requirements but also satisfy economic 

constraints. The enhanced model strikes a balance between flexibility and realism. It retains the 

deterministic foundation of the basic model but layers on a realistic representation of how 

underused transport assets drive up total cost. In doing so, it bridges the gap between planning 

(which ERP systems handle) and execution (where costs are incurred), allowing logistics decision-

makers to simulate and select delivery patterns that optimize transport efficiency without requiring 

systemic changes to suppliers or routing plans. 

In summary, the enhanced model provides a practical middle layer between idealized planning and 

complex real-world logistics. It builds upon reallocation logic and grounds it in economically 

sound delivery cost modeling, specifically focusing on the real financial waste of underutilized 

trucks [53]. By doing so, it sets the stage for the supplier integrated model, where truck logic must 

interact with supplier-specific constraints raising the complexity but also the fidelity of the 

optimization framework. 



19 
 

2.6 Supplier Activation, Setup Costs, and Multi-Supplier Coordination 

One of the defining complexities in modern automotive logistics is the need to coordinate 

deliveries from multiple suppliers, each with their own production constraints, setup requirements, 

and cost structures. While many traditional delivery optimization models assume a uniform 

supplier source or treat all suppliers as interchangeable nodes, this assumption fails to reflect the 

operational realities in multi-tier automotive networks. The supplier integrated model in this thesis 

is built precisely to capture this inter-supplier diversity by introducing setup costs and binary 

activation logic, allowing the delivery plan to selectively engage suppliers only when beneficial 

[54]. This ensures that the delivery network is not only cost-efficient from a transportation 

perspective but also operationally lean in terms of supplier effort and capacity use. 

The inclusion of setup costs in supplier activation logic is more than just a modeling feature, it 

reflects real costs incurred in practice. These may include line setup time, administrative work, 

overtime premiums, packaging processes, or staff assignment for each delivery slot. Even if the 

quantity shipped is small, the moment a supplier must initiate a shipment, these costs are incurred. 

Traditional models that ignore this fixed setup cost component can mistakenly spread delivery 

quantities across multiple suppliers and slots, creating a fragmented, high-cost logistics plan. The 

Supplier integrated model mitigates this risk by using binary decision variables for supplier 

activation per slot. This enables the model to enforce realistic cost penalties for unnecessary 

delivery fragmentation while optimizing multiple supplier and truck options. 

This approach is well-supported by recent literature. Fahmy et al. developed a deterministic 

planning model for supplier aggregation hubs, incorporating setup penalties for each supplier-truck 

combination. Their study showed that delivery costs could be reduced by over 15% simply by 

limiting the number of active suppliers per day and reallocating delivery volumes across fewer, 

better utilized shipments [46]. Similarly, Goel and Gruen emphasized that supplier-related 

overheads are often underrepresented in MILP models, and that including setup costs can improve 

the feasibility and profitability of tactical delivery plans [55].  

A reallocation model that shifts volume forward must verify whether the intended supplier can 

support the consolidated delivery without breaching daily or slot-based capacity constraints. 

Furthermore, the model supports selective supplier engagement, allowing planners to route 
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delivery volumes to the most cost-effective supplier at any given time. This resembles a multi-

source allocation problem, where the system can choose not only how much to deliver and when, 

but also who should fulfill the order. However, unlike classic supplier selection models which 

optimize over periods or products, this model works at a higher resolution per slot, per item, 

incorporating setup costs and truck utilization simultaneously. The result is a much more 

operationally relevant model that reflects real-world constraints and allows for intelligent trade-

offs between supplier engagement, shipment consolidation, and transportation cost. 

Recent advancements in integrated delivery planning echo the need for such models. In their study 

on supplier-capacitated delivery planning, Yan and Tang incorporated binary activation and 

supplier constraints in a deterministic framework, showing how delivery fragmentation can be 

reduced with coordinated supplier planning [56]. Their work, although not specific to the 

automotive industry, supports the notion that granular supplier modeling enhances plan robustness 

and cost efficiency. 

What distinguishes this supplier integrated model from prior literature is its simultaneous 

integration of three critical layers: 

• Delivery reallocation across fixed slots, 

• Truck volume utilization and cost penalties, 

• Supplier activation and capacity limits. 

While many studies address these components in isolation, this model fuses them into a cohesive 

deterministic planning framework that can be solved using MILP [57]. It offers a structured way 

for logistics managers to simulate and compare delivery configurations, reducing not only 

transport waste but also supplier workload and delivery overheads. As a result, it bridges the gap 

between long-term strategic supplier selection models and short-term execution-based shipment 

planning tools.  
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2.7 Case Studies Supporting Delivery Reallocation and Coordination in Automotive 

Logistics 

While many supply chain models are conceptual or simulation-based, a growing body of case 

studies demonstrates the practical value of deterministic planning, especially in high-volume, time-

sensitive industries like automotive. These studies validate the premise of this thesis: that fixed, 

mid-horizon reallocation of delivery volumes combined with truck and supplier constraints can 

lead to measurable cost savings and operational gains. 

One of the most notable studies comes from Carvalho, Naghshineh, and Govindan, who 

investigated a Tier-1 automotive supplier’s upstream network to analyze how inventory and 

delivery decisions impact just-in-time performance. They applied a deterministic framework to 

evaluate delivery delays, capacity imbalances, and supplier activation frequency [58]. Their 

findings confirmed that capacity-aware, deterministic reallocation could mitigate delays without 

increasing inventory holding costs, directly supporting the logic of this thesis’s basic and enhanced 

models. 

Another foundational example is Holweg and Pil, who conducted a longitudinal case study across 

three automotive manufacturers. They analyzed delivery structuring under different organizational 

and planning models. Their work demonstrated that deterministic decision-making includes fixed 

time slots and supplier coordination offers better control over cost, especially in complex multi-

tier networks [59]. 

A third contribution comes from Pan and Nagi, who presented a deterministic planning algorithm 

for synchronizing production and vehicle loading in agile automotive manufacturing. Their study 

showed that slot-based coordination with truck constraints (fixed cost per vehicle, minimum fill 

rate) can reduce overall transport costs by 14–21%, compared to static ERP-generated plans. This 

aligns closely with enhanced model for underutilized trucks [60]. 

From a supplier coordination perspective, Ghasemi et al.  developed a decentralized supply chain 

model for the British automotive sector that incorporated deterministic planning of delivery 

schedules and supplier activation [61]. Their framework handled multi-supplier decision-making 

with fixed setup costs just as in supplier integrated model and used real case data to demonstrate 

that supplier rationalization combined with reallocation reduced costs by 18%. 



22 
 

Bagul and Mukherjee investigated centralized vs. decentralized coordination in a multi-tier 

automotive supply chain in India [62]. Their model integrated deterministic lead times, truck 

constraints, and slot-based delivery decisions. Their empirical case highlighted the benefits of 

unified planning systems over fragmented supplier-led decisions and provided evidence for 

integrating truck utilization and supplier activation cost logic into central models. 

These case studies collectively support the structural logic of this thesis: 

• Reallocation within a deterministic horizon leads to better consolidation and reduced 

shipment cost. 

• Truck usage penalties (fixed cost or volume inefficiency) create real incentives for re-

optimization. 

• Supplier activation and slot-based constraints must be respected to build practically 

feasible delivery schedules. 

Yet, despite this alignment, no single case integrates all three components delivery slot shifting, 

volumetric truck modeling, and supplier activation into a unified deterministic MILP framework. 

2.8 Research Gaps and Thesis Motivation 

The preceding literature review illustrates significant progress in delivery optimization and 

supplier coordination across automotive supply chains. Numerous studies have employed 

deterministic models to improve planning performance, reduce transportation waste, and manage 

supplier engagement. However, this thesis identifies a critical methodological and practical gap 

that remains largely unaddressed: the absence of an integrated reallocation framework that 

combines slot-based delivery planning, truck utilization, and supplier activation, within a purely 

deterministic and executable planning window. 

Firstly, while many models address delivery scheduling or truck routing, few explore delivery 

reallocation across fixed slots within a defined mid-term horizon, the cornerstone of this research. 

Most ERP systems generate shipment schedules based on earliest requirement dates, without 

revisiting those decisions unless there are disruptions. Yet, in a deterministic context where 

demand, volume, capacity, and truck dimensions are known mid-horizon reallocation presents a 
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high impact opportunity for cost optimization. Existing works such as Zhang et al. or Fontaine et 

al. acknowledge this but treat it either implicitly or as a secondary effect of routing or hub design 

[41][47].  

Secondly, truck utilization is often considered only at the macro level (fleet sizing or total load 

planning), not in the slot-specific volumetric framework proposed in the enhanced model. The 

review shows that while truck capacity constraints are common, few deterministic planning models 

penalize partial loads in fixed slots, especially in conjunction with reallocation decisions. 

While supplier selection models incorporate setup costs at a strategic level, operational reallocation 

models rarely simulate binary supplier activation decisions at the slot level. This thesis addresses 

that omission by modeling supplier availability, slot-based engagement, and maximum delivery 

capacities per slot, allowing for a realistic and cost-driven selection of which supplier should be 

active, when, and for which items. 

Most importantly, no existing study or model fully integrates all three dimensions reallocation 

logic, truck volume penalties, and supplier setup constraints into a unified deterministic MILP 

framework as proposed here. This is the primary contribution of the thesis: to present and compare 

three models (basic, enhanced, and supplier integrated), each building upon the last to more closely 

mirror the complexities of real-world automotive logistics without relying on stochastic parameters 

or simulation assumptions. 

Furthermore, most case studies do not provide modular model comparisons. This thesis offers a 

rare, structured progression, showing how each model layer reallocation, truck efficiency, supplier 

constraints add explanatory and cost-saving power. The design allows practitioners to selectively 

implement models depending on the level of operational control and data availability, making the 

research both theoretically sound and practically relevant. 

2.9 Using MILP and Python-Based Implementation in Model Development 

A central methodological foundation of this thesis lies in the use of MILP to formulate and solve 

the delivery reallocation problem in a deterministic automotive logistics context. MILP is a 

mathematical optimization framework capable of handling both continuous variables (e.g., 

delivery volumes, truck capacity usage) and discrete or binary variables (e.g., supplier activation, 
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setup status). Its deterministic nature makes it ideal for structured mid-term planning problems 

where all parameters such as demand, slot availability, truck capacity, and supplier constraints are 

known and stable [38]. This precisely mirrors the scope of this study, which explicitly excludes 

stochastic elements such as demand variability or disruption modeling. 

MILP has been widely adopted in academic and industrial literature for its flexibility and accuracy 

in modeling real-world logistics systems. Studies such as Fontaine et al. and Guerrero et al. 

demonstrate how MILP enables granular modeling of delivery patterns, fixed cost penalties, and 

truck loading decisions under deterministic assumptions [41][39]. These models have achieved 

significant reductions in cost and setup frequency by optimizing delivery assignments across 

available time slots. Furthermore, Ghiani et al. showed that MILP based slot scheduling can 

improve truck fill rates and reduce unnecessary supplier dispatches [52]. These works validate 

MILP as a sound theoretical and practical basis for deterministic logistics planning, particularly in 

environments where high-frequency deliveries and supplier coordination are required. 

In the context of this thesis, MILP serves as the backbone for all three proposed models: 

• The basic model leverages time-indexed continuous variables and constraints to 

reallocate delivery volumes within a pull-ahead window, minimizing overall delivery 

cost. 

• The enhanced model introduces binary truck usage variables, allowing the MILP 

formulation to capture volume-related cost inefficiencies and fixed transport charges. 

• The supplier integrated model expands further with binary supplier activation variables, 

supplier-specific setup costs, and capacity constraints an area where MILP’s hybrid 

variable structure is particularly effective. 

Equally important is the computational implementation of these MILP models. This thesis employs 

the PuLP library in Python, an open-source modeling tool that allows for seamless construction 

and solving of linear and integer programming problems. PuLP serves as an interface to MILP 

solvers like CBC (default), CPLEX, or Gurobi. Its choice is justified for several reasons: 
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• Transparency and Accessibility: Python is widely used in academic and professional 

environments, and PuLP offers a readable, adaptable codebase that aligns with 

reproducibility goals. 

• Integration with Data Pipelines: Python integrates easily with Excel, CSV, and databases, 

making it ideal for future extensions of the models to real industry datasets. 

• Solver Flexibility: PuLP is solver-agnostic, meaning it can be connected to high-

performance solvers like Gurobi or CPLEX when computational scalability is required. 

• Validation in Literature: Recent studies such as Borumand & Nookabadi and Fahmy et al. 

have used Python-based MILP modeling environments to simulate complex supply chain 

problems, validating both its practicality and accuracy for deterministic multi-constraint 

planning scenarios. 

The use of PuLP and Python also facilitate structured experimentation with model variations and 

instance scaling. This is essential for this thesis, where each model (basic, enhanced, and supplier 

integrated) needed to be compared across multiple delivery scenarios, including single-item, multi-

item, and multi-supplier test cases. 

System Configuration for Model Execution:  

The models were executed on a personal computer with the following specifications:  

• Processor: Intel® Core™ i7-12700H CPU @ 2.30GHz  

• RAM: 16 GB DDR4  

• Operating System: Windows 11 Pro (64-bit)  

• Solver: CBC (Coin-or branch and cut) default PuLP solver  

For larger datasets or industrial applications, more advanced solvers (e.g., Gurobi or CPLEX) and 

higher-performance hardware may be recommended.  
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CHAPTER 3: MODELS AND METHODOLOGY 

3.1 Introduction 

This chapter presents the basic, enhanced and supplier integrated (MILP) models that are created 

to address the reallocation of the supply chain by optimizing the logistics costs within the 

constraints of operations. Its major constraints costs related to setting up processes as well as 

serving demand in the best possible way with available resources. It presents a framework for 

solving such intricacies of supply chain optimization through the implementation of this model 

using a python environment. The model's outcome is discussed to demonstrate the strengths and 

weaknesses of the model and pave the way for further improvements. 

3.2 Basic Model 

This basic MILP model is the starting point for developing a solution for the supply chain 

reallocation problem. It also employs the techniques of linear optimization to cut expenses that 

would be incurred in satisfying the needs of the logistics system. This is especially the case bearing 

in mind that all the components of the model are concentrated in relation to the objective function, 

decision variables, and constraints. The problem focuses on optimizing the supply chain system 

for a single supplier delivering a single item type to a manufacturing plant over a predefined 

planning horizon. The objective is to develop a reallocation plan that minimizes total costs while 

ensuring all demand is met.  

We assume that a single supplier delivers a single item type to a manufacturing plant. The planning 

horizon consists of 5 to 35 discrete time periods (it is assumed that there are 5 time slots per day 

over a 7-day period). An initial shipment plan is created to meet the plant's demand, specifying the 

quantity of items to be shipped in each period. The shipment plan can be adjusted by reallocating 

items to earlier time periods within a predefined pull-ahead period (e.g., 72 hours). The following 

assumptions are considered for developing this basic model 

• Multiple delivery schedules are available per day. 

• Delivery schedules specify the time the truck departs from the supplier to the plant. 

• Each day has the same number of time frames during the planning period. 
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• Shipment quantities can be reallocated to earlier time frames within a predefined period, 

referred to as the "pull-ahead period." For example, if we fix the pull-ahead period in hours 

(e.g., 6 hours). Items scheduled for a 7 PM time slot on day 4 can be reallocated to the 1

PM time slot on day 4, but not earlier than that.

• Reallocate demand to the time slot with zero delivery plan

Table 3.1 Reallocation Example (6-hour Pull-ahead period)

11:00 AM 1:00 PM 3:00 PM 5:00 PM 7:00 PM
Day 1 100 0 50 200 100
Day 2 100 0 200 200 50
Day 3 50 50 150 50 0
Day 4 0 0 0 100 100

As observed in Table 3.1 certain time slots (e.g., 1:00 PM on Days 1 and 2) have no scheduled 

shipments, while others (such as 5:00 PM on Day 1) show significant volume. This uneven 

distribution presents potential opportunities for shipment reallocation.

3.2.1 MILP formulation

Optimization models typically include the following elements: Objective function, decision 

variables and constraints. The proposed problem considers only one type of item being delivered. 

Truck-related constraints, such as space utilization or trucking costs, are not considered. There is 

no cost associated with reallocating items to earlier time periods. Penalties for empty space or 

trucking costs are excluded. The goal is to minimize the total operational cost, which can be 

expressed as the sum of unit, setup, and holding costs. 

For the decision variables let us consider,

𝑥𝑖𝑗 ≥ 0: Quantity moved from period i to period j, where i ≥ j. It is a positive integer variable.

𝑦𝑖 ∈ {0,1}: Binary variable indicating if a setup occurs in period i.

The main objective function in this model will mainly focus on minimizing the basic costs 

incurred, mainly the unit cost, setup cost and the holding costs.

Minimize Total Cost (Z) = Unit Cost + Setup Cost + Holding Cost
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Unit Costs: unit costs are calculated based on the units moved from period j to period i, multiplied 

by the unit cost per unit for the destination period i. so, we  generalize the equation 

Unit Cost = ∑ ∑ 𝑐𝑗𝑥𝑖𝑗

𝑖

𝑗=1

𝑛

𝑖=1

                                                                         (3.1) 

• 𝑐𝑗  is the unit cost per unit in period j. 
• 𝑥𝑖𝑗is the amount of demand relocated from period j to period i. 

Setup Costs: Setup costs are incurred if there is a setup in period i, indicated by the binary variable 
𝑦𝑖 . 

Setup Cost = ∑ 𝑠𝑗𝑦𝑗

𝑖

𝑗=1

                                                                               (3.2) 

• 𝑠𝑗   is the setup cost for period j. 
• 𝑦𝑗 is a binary variable indicating a setup in period j (1 if setup occurs, 0 otherwise). 

Holding Costs: Holding costs are incurred by holding inventory from earlier periods until it is used 
to meet the demand in later periods. 

 

Holding Cost = ∑ ∑ ℎ𝑗𝑥𝑖𝑗

𝑖

𝑗=1

𝑛

𝑖=1

                                                                  (3.3) 

• ℎ𝑗  is the holding cost per unit per period for period j. 
• 𝑥𝑖𝑗 is the amount of demand relocated from period j to period i. 

Combined Objective Function: 

Minimize 𝑍 = ∑ ∑ 𝑐𝑗𝑥𝑖𝑗

𝑖

𝑗=1

𝑛

𝑖=1

+ ∑ 𝑠𝑗𝑦𝑗

𝑖

𝑗=1

+ ∑ ∑ ℎ𝑖𝑥𝑖𝑗

𝑖

𝑗=1

𝑛

𝑖=1

                            (3.4) 

                                                                                                                                                     

To ensure that solutions remain feasible with respect to real-world limitations, several constraints 

are imposed: 

Demand Satisfaction: The total amount of demand satisfied in each period i, must equal the 

demand 𝑑𝑖  for that period 
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 ∑ 𝑥𝑖𝑗 = 𝑑𝑖

𝑖

𝑗=1

 ∀i = 1, … , n                                                         (3.5)        

                                                           

Setup Constraints: Setup constraints ensure that if any amount of demand is met in period i, then 

a setup cost must be incurred (enforced by 𝑦𝑖). 

∑ 𝑥𝑖𝑗 ≤ M𝑦𝑖

𝑖

𝑗=1

 ∀i = 1, … , n       

                                                           (3.6) 

where M is a sufficiently large number to effectively enforce the constraint. 

Pull ahead time window Constraints: 

𝑥𝑖𝑗 = 0 ∀𝑖, 𝑗 ∈ 𝑇 where 𝑖 − 𝑗 > 𝑊   

                                                           (3.7) 

3.2.2 Limitations and suggestions 

The basic MILP model, while providing a foundational approach to supply chain reallocation, has 

several limitations that stem directly from its methodology. Firstly, the model assumes pre-defined 

demand and costs, which can be unrealistic given the variability in real-world scenarios. Demand 

can fluctuate due to market trends, seasonal variations, or unexpected events, and unit costs can 

vary due to factors like inflations. This deterministic approach may lead to solutions that are not 

robust to real-world variability, potentially resulting in suboptimal performance when faced with 

unexpected changes. Secondly, the model's focus on a single item type limits its applicability to 

scenarios where multiple items are managed within the supply chain, as real-world supply chains 

often involve multiple products with different demand patterns and logistical requirements. 

Furthermore, the model assumes no cost associated with reallocating items to earlier time periods, 

which can be unrealistic as reallocations can incur costs due to changes in transportation schedules, 

additional handling, or other operational adjustments. By understanding these limitations, the 

development of the model can focus on addressing these issues, potentially through the 

incorporation of multi-item reallocation capabilities, and improved computational efficiency, 
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thereby making the model more applicable to the complexities of real-world supply chain 

management. 

3.3 Enhanced Model 

From the previous work shared in section 3.2 that lays down the basic (MILP) model, this chapter 

continues to work on improving the current basic MILP model. The extended model proposes to 

consider more aspects of supply chain reallocation, The presence of multiple item types in the 

system. These enhancements capture the richness and complexity of the contemporary automotive 

supply chains that are required to consider various products’ characteristics, demand volatility, 

and finite resources over multiple time horizons. This chapter clearly describes the formulation of 

the enhanced MILP model, the programming of the model via a Python environment and 

optimization tools, and the testing of the model. This model demonstrates enhancement by 

comparing the performance of the basic model and determining the extent of the improvements in 

cost efficiency and resource utilization. 

The problem focuses on optimizing the supply chain operations of delivering items to a 

manufacturing plant over a predefined planning horizon. The initial shipment plan determines the 

quantity of items to be shipped from supplier to the plant, ensuring that all demand is met within 

the specified time frames. However, the shipment plan allows for reallocation of quantities to 

earlier time slots within a defined pull-ahead period, introducing flexibility to adjust for 

operational constraints. The challenge lies in minimizing the total cost, which includes trucking, 

setup, holding, and unit costs while adhering to constraints such as truck capacity, time frame 

limits, and efficient utilization of resources. This problem becomes increasingly complex when 

considering multiple items, as it requires accounting for item-specific constraints, shared 

resources, and interactions between items, making it essential to develop an optimization model to 

address these challenges effectively. 

3.3.1 MILP formulation 

The decision variables in this model are revised to reflect a more realistic approach that effectively 

incorporates real world operational constraints. 

 The variables are defined as follows 
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• 𝑥𝑖𝑗𝑘 ∈ 𝑍+: Integer variable representing the quantity of item 𝑘 relocated in period 𝑗 to 
satisfy demand in period 𝑖. 

• 𝑌𝑗 ∈ {0,1}: Binary variable, 1 if a setup occurs in period 𝑗; 0 otherwise. 

• 𝑇𝑗𝑡 ∈ {0,1}: Binary variable, 1 if truck 𝑡 is used in period 𝑗; 0 otherwise. 

Considering these decision variables, we represent the following parameters where we incurred 

the trucking cost, unit cost, setup cost and holding cost terms. 

• 𝑢𝑗𝑘: Unit cost for item 𝑘 in period 𝑗 

• 𝐶𝑗𝑡: Cost of using truck 𝑡 in period 𝑗 

• ℎ𝑡𝑘: Holding cost for item 𝑘 in period 𝑡 

• 𝑆𝑗: Setup cost in period 𝑗 

• 𝑑𝑖𝑘: Demand for item 𝑘 in period 𝑖 

• 𝑉𝑘: Volume per item of type 𝑘 

• 𝐶𝑉: Capacity of each truck 

• 𝑀: A large constant 

• 𝑊: Time window limit  

Unit cost: This term is derived from the need to minimize the unit cost across periods. The unit 

cost 𝑢𝑗𝑘 reflects the cost of unit of product k from period j, and the total cost is calculated by 

summing over all products and periods. The decision variable 𝑥𝑖𝑗𝑘  represents the quantity of 

products relocated, ensuring the model captures the total relocation cost. 

 Unit Cost =  ∑ ∑ 𝑢𝑗𝑘  

𝑛

𝑗=1

∑ 𝑥𝑖𝑗𝑘  

𝑛

𝑖=𝑗

𝐾

𝑘=1

                                                         (3.8) 

Trucking costs: Truck costs are derived from the operational expense of using trucks for relocation. 

Each truck has a fixed cost 𝐶𝑗𝑡 per period, and the binary variable 𝑇𝑖𝑡 indicates whether a truck is 

used. By summing up all trucks and periods, this term ensures that the model accounts for the total 

cost of truck usage while optimizing the number of trucks required. 

Trucking Cost =  ∑  

𝑛

𝑗=1

∑ 𝐶𝑗𝑡𝑇𝑖𝑡 

𝑇𝑚𝑎𝑥

𝑡=1

                                                      (3.9) 
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Holding costs: Holding costs are derived from the expense of storing products over time. The cost 

per unit ℎ𝑡𝑘  increases with the duration of storage, and the model sums over all products and 

periods to capture the total holding cost. This term ensures that the timing of relocations is 

optimized to minimize storage expenses. 

Holding Cost =  ∑ ∑ ℎ𝑡𝑘  

n−1

𝑡=1

∑ ∑ 𝑥𝑖𝑗𝑘 

t

𝑗=1

𝑛

𝑖=𝑡+1

 

𝐾

𝑘=1

                                  (3.10) 

Setup costs: Setup costs are derived from the fixed expense of activating a facility for relocation. 

The cost 𝑆𝑖𝑘 is incurred only if a setup is active, as indicated by the binary variable 𝑌𝑖𝑘. This term 

ensures that facilities are only activated when necessary, reducing unnecessary setup costs. 

Setup Cost =  ∑ ∑ 𝑆𝑖𝑘𝑌𝑖𝑘 

n

𝑖=1

𝐾

𝑘=1

                                                     (3.11) 

The combined objective function is 

Minimize 𝑍 =  ∑  

𝑛

𝑗=1

∑  

𝐾

𝑘=1

𝑢𝑗𝑘 ∑  

𝑛

𝑖=𝑗

𝑥𝑖𝑗𝑘 + ∑  

𝑛

𝑗=1

∑  

𝑇max

𝑡=1

𝐶𝑗𝑡𝑇𝑗𝑡 + ∑  

𝑛−1

𝑡=1

∑  

𝐾

𝑘=1

ℎ𝑡𝑘 ∑ ∑ 𝑥𝑖𝑗𝑘 

t

𝑗=1

𝑛

𝑖=𝑡+1

+ ∑  

𝑛

𝑗=1

𝑆𝑗𝑌𝑗  

                                                                        (3.12) 

To ensure that solutions remain feasible with respect to real-world limitations, several constraints 

are imposed: 

Setup constraints: This constraint is derived from linking the relocation quantity 𝑥𝑖𝑗𝑘  with the 

setup decision 𝑌𝑗. It ensures that products can only be relocated if a facility is active, using a large 

constant M to enforce this relationship 

∑ 𝑥𝑖𝑗𝑘

𝑛

𝑖=𝑗

  ≤ 𝑀 ⋅ 𝑌𝑗  ∀𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾                                                  (3.13) 

This ensures that the relocation quantity 𝑥𝑖𝑗𝑘 for each item 𝑘 in each period 𝑗 can only be positive 

if there is a setup 𝑌𝑗 in that period. 
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Demand satisfaction: The demand satisfaction constraint is derived to ensure that the total 

quantity of products relocated meets the demand 𝑑𝑖𝑘 for each product and period. This ensures 

that the model fulfills all customer requirements without over or under-supplying. 

∑ 𝑥𝑖𝑗𝑘

𝑖

𝑗=1

  = 𝑑𝑖𝑘 ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾                                                    (3.14) 

This constraint ensures that the total quantity relocated to satisfy demand in each period 𝑖 for each 

item 𝑘 is equal to the demand 𝑑𝑖𝑘. 

Pull ahead time window constraints: This constraint is derived to enforce a feasible time window 

(W) for relocations. It ensures that products are not relocated outside the allowable time frame, 

reflecting practical limitations in scheduling. 

𝑥𝑖𝑗𝑘 = 0 ∀𝑖, 𝑗 ∈ 𝑇, 𝑘 ∈ 𝐾 where 𝑖 − 𝑗 > 𝑊                                    (3.15) 

Volume capacity constraint: The volume capacity constraint is derived to ensure that the total 

volume of relocated products does not exceed the combined capacity of the trucks used. By 

summing up the product volumes 𝑉𝑘 and linking them to truck capacity 𝐶𝑉, the model ensures 

that relocations are feasible within the available resources. 

∑  

𝐾

𝑘=1

𝑉𝑘 ∑  

𝑛

𝑖=𝑗

𝑥𝑖𝑗𝑘 ≤ 𝐶𝑉 ⋅ ∑  

𝑇max

𝑡=1

𝑇𝑗𝑡 ∀𝑗 ∈ 𝐽                               (3.16) 

This limits the total volume of items relocated in each period 𝑗 to the combined capacity of the 

trucks used in that period. 

Truck usage constraint: This constraint is derived to limit the total quantity of items relocated to 

the combined capacity of the trucks used. It ensures that the number of items moved in each 

period is within the physical limits of the available trucks. 

∑  

𝐾

𝑘=1

∑  

𝑛

𝑖=𝑗

𝑥𝑖𝑗𝑘 ≤ 𝐶𝑉 ⋅ ∑  

𝑇max

𝑡=1

𝑇𝑗𝑡  ∀𝑗 ∈ 𝐽                                          (3.17) 
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This constraint restricts the total number of items relocated in each period 𝑗 to the combined 

capacity of the trucks used in that period. 

Truck-setup linkage: The truck-setup linkage constraint is derived to ensure that trucks can only 

be used if a facility setup 𝑌𝑗 is active. This reflects the practical requirement that trucks are only 

deployed when a facility is operational. 

𝑇𝑗𝑡 ≤ 𝑌𝑗  ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇                                                          (3.18) 

This ensures that trucks 𝑇𝑗𝑡 can only be used if there’s an active setup in that period (𝑌𝑗 = 1). 

Integer and binary constraints: 

• 𝑥𝑖𝑗𝑘 ∈ 𝑍+: 𝑥𝑖𝑗𝑘 is a non-negative integer, representing the quantity of items relocated. 

• 𝑌𝑗 ∈ {0,1}: 𝑌𝑗 is binary, indicating if a setup is active in period 𝑗. 

• 𝑇𝑗𝑡 ∈ {0,1}: 𝑇𝑗𝑡 is binary, indicating if truck 𝑡 is used in period 𝑗. 

3.3.2 Limitations and suggestions 

This improved model effectively managed to lower the total cost and at the same time to meet 

demand and optimize the resources needed. Due to the consideration of capacity dependence and 

product specificity, it has good applicability in actual projects. 

Despite its improvements, the enhanced model has certain limitations. The added functionality 

enlarges computing complexity and may have an impact on the product’s capability to scale up. 

As the number of items increases, the total cost (both initial and optimized) increases due to higher 

relocation and setup costs. Similarly, increasing the number of trucks allowed for better allocation 

of resources, reducing the optimized total cost. The computational time of the solver increased 

with the number of items and trucks, reflecting the increased complexity of the optimization 

problem.  

3.4 Enhanced Model with Supplier Integration 

Scaling up the model in section 3.3, this model adds supplier integration to the model, an essential 

dimension of many supply chains that directly affect performance since supplier selection and the 

allocation of orders are often key decision areas. The proposed supplier integration MILP model 
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aims to optimize supply chain operations by minimizing total costs, including setup costs, holding 

costs, reallocation costs, supplier costs, trucking costs, and penalties for unused truck space, while 

satisfying demand and operational constraints. 

The proposed model integrates supplier-related parameters into the existing framework, enabling 

a more comprehensive approach to supply chain optimization. It considers multiple suppliers, 

products, and time periods, reflecting the complexity of real-world supply chains. The 

methodology involves solving the model using python and advanced optimization tools, with the 

outcomes analyzed to demonstrate the benefits of supplier integration. By comparing the results 

with the baseline model, this chapter highlights the advantages of incorporating supplier dynamics, 

such as improved cost efficiency, better resource utilization, and enhanced decision-making 

capabilities. The supplier integration model adds new decision variables, constraints, and 

objectives into supply chain decisions to reflect supplier decisions. 

3.4.1 MILP formulation 

The objective function extends the enhanced MILP model by incorporating supplier-related costs, 

including reallocation costs, unit cost, holding cost, setup cost and penalty costs for unused truck 

space in this case we consider this by volume. The model is formulated by considering the 

parameters and decision variables as below 

• 𝑇: Number of time windows (periods), 𝑖, 𝑗 = 1, … , 𝑇 

• 𝑆: Number of suppliers, 𝑠 = 1, … , 𝑆 

• w: Pull-ahead time window limit 

• 𝐾: Number of item types, 𝑘 = 1,2, … , 𝐾 

• 𝑅: Number of trucks available for a period 

• 𝑢𝑗𝑘𝑠: Unit cost of item 𝑘 in period 𝑗 offered by supplier 𝑠 

• ℎ𝑗𝑘: holding cost of item 𝑘 in period 𝑗 

• 𝑏𝑗: Setup cost in period 𝑗 (identical for all suppliers) 

• 𝑙𝑗: Reallocation cost in period 𝑗 (identical for all suppliers) 

• 𝑐𝑗𝑟𝑠: Trucking cost of truck 𝑟 in period 𝑗 from supplier 𝑠 

• 𝑑𝑗𝑘: Demand for item 𝑘 in period 𝑖 

• 𝑉𝑘: Volume per item of type 𝑘 
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• 𝑝𝑗: Truck usage cost in period 𝑗 per volume ( 𝑚3 ) 

• 𝐶𝑉: Capacity of each truck 

• 𝑀: A large constant 
 

As we see in the previous model, let us update the Decision Variables integrating suppliers 

𝑥𝑖𝑗𝑘
𝑠′𝑠: Reallocated amount of item 𝑘 from period 𝑖 to 𝑗 from supplier 𝑠′ to 𝑠, 𝑗 < 𝑖 

𝑦𝑗
𝑠: Binary variable, if 𝑥𝑖𝑗𝑘

𝑠′𝑠 > 0, 𝑦𝑗 = 1, otherwise zero 

𝑍jrs : Binary variable, if truck 𝑟 from supplier 𝑠 used in 𝑗, 𝑧𝑗𝑟𝑠 = 1, otherwise zero 

Setup cost: The setup cost term accounts for the fixed expenses incurred when activating a supplier 

for a specific period. where 𝑏𝑗is the setup cost for period j, and 𝑦𝑗
𝑠 is a binary variable indicating 

whether supplier s is active in period j. This term ensures that the model captures the cost of 

engaging suppliers only when necessary, encouraging efficient supplier selection and minimizing 

unnecessary activations. The inclusion of this term reflects the practical reality that activating a 

supplier involves fixed costs, such as administrative or contractual expenses. 

setup cost =   ∑ ∑ 𝑏𝑗𝑦𝑗
𝑠

𝑇

𝑗=1

𝑠

𝑠=1

                                                     (3.19) 

Holding cost: The holding cost represents the expenses associated with storing inventory over 

time. where ℎ𝑗𝑘 is the holding cost per unit of item k and 𝑥𝑖𝑗𝑘
𝑠′𝑠 is the quantity of item k reallocated 

from supplier s′ to s between periods i and j. This term ensures that the model penalizes excessive 

inventory storage, encouraging timely reallocation and reducing costs associated with prolonged 

storage, such as warehousing fees or inventory depreciation. 

Holding cost = ∑ {∑ (∑ ℎ𝑗𝑘

𝑇−1

𝑗=1

∑ ∑ ∑ 𝑥𝑖𝑗𝑘
𝑠′𝑠

𝑐

𝑗=1

𝑇

𝑖=𝑐+1

𝑆

𝑠=1

)

𝑘

𝑘=1

}  

𝑆

𝑠′=1

                      (3.20) 

Unit cost: The unit cost term captures the cost of purchasing items from suppliers. where 𝑢𝑗𝑘𝑠 is 

the unit cost of item k in period j offered by supplier s. This term ensures that the model accounts 

for the cost of acquiring products from suppliers, which varies depending on the supplier, product 
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type, and time. By minimizing this term, the model selects suppliers and allocates orders in a cost-

effective manner. 

Unit cost = ∑ {∑ ∑ (∑ 𝑢𝑗𝑘𝑠 ∑ 𝑥𝑖𝑗𝑘
𝑠′𝑠

𝑇

𝑖=𝑗

𝑇

𝑗=1

)

𝑠

𝑠=1

𝑘

𝑘=1

}

𝑠

𝑠′=1

                                    (3.21) 

Reallocation cost: The reallocation cost term represents the expenses incurred when transferring 

inventory between facilities or suppliers. where 𝑙𝑖 is the reallocation cost in period i, and 𝑥𝑖𝑗𝑘
𝑠′𝑠 is 

the quantity of item k reallocated. This term ensures that the model penalizes unnecessary 

reallocation, encouraging efficient inventory management and reducing costs associated with 

inter-facility or inter-supplier transfers. 

Reallocation cost = ∑ {∑ ∑ (∑ 𝑙𝑖 ∑ 𝑥𝑖𝑗𝑘
𝑠′𝑠

𝑖−1

𝑗=1

𝑇

𝑖=2

)

𝑠

𝑠=1

𝑘

𝑘=1

}

𝑠

𝑠′=1

                                   (3.22) 

Trucking cost: The trucking cost term accounts for the fixed costs of using trucks for 

transportation. where 𝑐𝑗𝑟  is the cost of using truck r in period j, and 𝑧𝑗𝑟𝑠 is a binary variable 

indicating whether truck r is used by supplier s in period j. This term ensures that the model 

captures the cost of transportation and encourages the efficient use of trucks to minimize logistics 

expenses.                      

Trucking cost = ∑ ∑ ∑ 𝑐𝑗𝑟𝑧𝑗𝑟𝑠

𝑅

𝑟=1

𝑇

𝑗=1

𝑆

𝑠=1

                                                  (3.23) 

Penalty cost for unused space in a truck: The penalty cost term addresses the inefficiency of 

underutilized truck capacity. where 𝑝𝑗 is the penalty cost per unit of unused truck volume in period 

j, 𝐶𝑉 is the truck capacity, and 𝑣𝑘  is the volume of item k. This term ensures that the model 

penalizes underutilized truck space, encouraging better load planning and maximizing the 

efficiency of transportation resources. 



38 
 

Penalty cost = ∑  

𝑠

𝑠′=1

  [∑  

𝑠

𝑠=1

 {∑  

𝑇

𝑗=1

 𝑝𝑗 (𝐶𝑉 ∑  

𝑅

𝑟=1

 𝑧𝑗𝑟𝑠 − ∑  

𝐾

𝑘=1

 ∑  

𝑇

𝑖=𝑗

 𝑣𝑘𝑥𝑖𝑗𝑘
𝑠′𝑠)}]                    (3.24)

 

The combined objective function is  

Minimize Z= 

∑ ∑ 𝑏𝑗𝑦𝑗
𝑠

𝑇

𝑗=1

𝑠

𝑠=1

+ ∑ {∑ (∑ ℎ𝑗𝑘

𝑇−1

𝑗=1

∑ ∑ ∑ 𝑥𝑖𝑗𝑘
𝑠′𝑠

𝑐

𝑗=1

𝑇

𝑖=𝑐+1

𝑆

𝑠=1

)

𝑘

𝑘=1

}  

𝑆

𝑠′=1

+ ∑ {∑ ∑ (∑ 𝑢𝑗𝑘𝑠 ∑ 𝑥𝑖𝑗𝑘
𝑠′𝑠

𝑇

𝑖=𝑗

𝑇

𝑗=1

)

𝑠

𝑠=1

𝑘

𝑘=1

}

𝑠

𝑠′=1

+ ∑ {∑ ∑ (∑ 𝑙𝑖 ∑ 𝑥𝑖𝑗𝑘
𝑠′𝑠

𝑖−1

𝑗=1

𝑇

𝑖=2

)

𝑠

𝑠=1

𝑘

𝑘=1

}

𝑠

𝑠′=1

+ ∑ ∑ ∑ 𝑐𝑗𝑟𝑧𝑗𝑟𝑠

𝑅

𝑟=1

𝑇

𝑗=1

𝑆

𝑠=1

+ ∑  

𝑠

𝑠′=1

  [∑  

𝑠

𝑠=1

 {∑  

𝑇

𝑗=1

 𝑝𝑗 (𝐶𝑉 ∑  

𝑅

𝑟=1

 𝑧𝑗𝑟𝑠 − ∑  

𝐾

𝑘=1

 ∑  

𝑇

𝑖=𝑗

 𝑣𝑘𝑥𝑖𝑗𝑘
𝑠′𝑠)}]                                (3.25) 

To ensure that solutions remain feasible with respect to real-world limitations, constraints are 

modified as follows: 

Modified demand constraint: This constraint ensures that the total quantity of item k reallocated 

across all suppliers and periods satisfies the demand 𝑑𝑖𝑘 for that item in each period i. This 

constraint is critical for maintaining supply chain balance, as it guarantees that customer or 

production demands are met without over or under supplying. By enforcing this equality, the 

model ensures that the supply chain operates efficiently and avoids shortages or excess inventory 

∑  

𝑠

𝑠′=1

(∑  

𝑠

𝑠=1

 ∑  

𝑖

𝑗=1

 𝑥𝑖𝑗𝑘
𝑠′𝑠) = 𝑑𝑖𝑘  ∀𝑖 = 1, … , 𝑇, 𝑘 = 1, … , 𝐾                              (3.26) 

Modified setup constraint: This constraint links the reallocation decision to the activation of 

suppliers. The binary variable 𝑦𝑗
𝑠 indicates whether supplier s is active in period j. If 𝑦𝑗

𝑠=0 the 

constraint ensures that no reallocation 𝑥𝑖𝑗𝑘
𝑠′𝑠 can occur for that supplier in that period. The large 

constant M acts as an upper bound, allowing reallocation only when the supplier is active. This 



39 
 

constraint prevents unnecessary supplier activations, reducing setup costs and ensuring that 

suppliers are only engaged when required. It reflects the practical reality that supplier activation 

involves fixed costs and operational overhead, which should be minimized. 

∑  

𝑠

𝑠=1

(∑  

𝐾

𝑘=1

 ∑  

𝑇

𝑖=𝑗

 𝑥𝑖𝑗𝑘
𝑠′𝑠) ≤ 𝑀𝑦𝑗

𝑠  ∀𝑗 = 1, … , 𝑇, 𝑠′ = 1, … , 𝑆                         (3.27) 

Modified trucking constraint: This constraint ensures that the total volume of items transported in 

each period does not exceed the combined capacity of the trucks used. The term 𝑣𝑘 represents the 

volume of item k, and 𝐶𝑉 is the capacity of each truck. The binary variable 𝑧𝑗𝑟𝑠indicates whether 

truck r is used by supplier s in period j. By summing up all trucks, the model ensures that the total 

volume of items reallocated is within the available truck capacity. This constraint is essential for 

maintaining logistical feasibility, as it prevents overloading and ensures that transportation 

resources are utilized efficiently. 

∑  

𝑠

𝑠′=1

(∑  

𝐾

𝑘=1

 𝑣𝑘 ∑  

𝑇

𝑖=𝑗

 𝑥𝑖𝑗𝑘
𝑠′𝑠) ≤ 𝐶𝑉 ∑  

𝑅

𝑟=1

𝑧𝑗𝑟𝑠  ∀𝑗 = 1, … , 𝑇, 𝑠 = 1, … , 𝑆            (3.28) 

Pull-ahead time window limit constraints: This constraint enforces a pull-ahead time window limit, 

ensuring that items are not reallocated outside a specified time frame. The parameter w defines the 

maximum allowable time difference between the source period j and the destination period i. If 

𝑖 − 𝑗 > 𝑤, the reallocation quantity 𝑥𝑖𝑗𝑘
𝑠′𝑠 is forced to zero.  

𝑥𝑖𝑗𝑘
𝑠′𝑠 = 0  ∀𝑖, 𝑗 = 1, … , 𝑇, 𝑘 = 1, … , 𝐾, 𝑠′, 𝑠 = 1, … , 𝑆, 𝑖 − 𝑗 ≤ 𝑤                   (3.29) 

Additional integer and binary constraints 

• 𝑥𝑖𝑗𝑘
𝑠′𝑠 ∈ 𝑍+ : This constraint ensures that the quantity of items k reallocated from supplier 

s′ to supplier s between periods j and i must be a non-negative integer. 

• 𝑍jrs ∈ {0,1} : This binary variable equals 1, if truck r is used by supplier s in period j. 
otherwise, it is 0. 

• 𝑦𝑗
𝑠 ∈ {0,1}: This binary variable equals 1, if supplier s is activated (i.e., used for 

supplying items) in period j. 
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3.4.2. Limitations and suggestions 

While the proposed supplier-integrated MILP model offers a comprehensive framework for 

optimizing supply chain operations by incorporating supplier dynamics, it is not without 

limitations. One major challenge lies in its computational complexity, as the inclusion of multiple 

suppliers, items, and time periods significantly increases the number of integer and binary 

variables, making the model less scalable for large networks. Additionally, the model assumes all 

parameters such as costs, demands, and capacities must be known and fixed in advance, which 

limits its applicability in dynamic or uncertain environments. The trucking component is simplified 

and does not account for routing, geographic constraints, or multi-drop deliveries, while cost 

functions are linear, ignoring real-world pricing structures like bulk discounts or tiered logistics 

fees. Furthermore, the model lacks support for multi-layered supply chains, and it treats all supplier 

setup costs as identical, which may oversimplify real-world scenarios where onboarding costs 

vary. To address these issues, future extensions could incorporate heuristic algorithms for 

scalability and use stochastic optimization to handle uncertainties in demand and supply. 

Additionally, incorporating dynamic replanning mechanisms and supplier-specific attributes 

would make the model more adaptive and better aligned with real-world supply chain 

complexities. 
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CHAPTER 4: EXPERIMENTATION AND RESULTS 

4.1 Overview 

This chapter presents the results obtained from the implementation of the optimization models 

discussed in Chapter 3. The focus is on evaluating the performance of the basic, enhanced, and 

supplier-integrated (MILP) models in addressing supply chain reallocation challenges. The 

analysis includes a detailed comparison of the model’s outcomes in terms of cost efficiency, 

resource utilization, and demand satisfaction. By applying these models to real-world scenarios, 

this chapter aims to highlight their practical applicability and effectiveness in optimizing supply 

chain operations. 

The analysis highlights the strengths and weaknesses of each model. Key factors like total cost 

savings, setup efficiency, and inventory holding costs are examined to understand how well the 

models handle the complexities of supply chain operations. We also explore how different 

parameters, such as changes in demand, truck capacity, and supplier integration, affect the 

performance of the models. This helps to provide a clearer picture of the trade-offs involved in 

optimizing supply chains and point out areas where the models can be improved. 

Additionally, we discuss some of the challenges faced during the implementation of these models, 

especially with the enhanced and supplier-integrated versions. While these advanced models offer 

more flexibility and accuracy, they also require more computational resources and time to solve. 

This section emphasizes the importance of finding a balance between making the models more 

sophisticated and ensuring they remain practical for real-world use. These ideas aim to refine the 

models further and make them more adaptable to the dynamic and complex nature of modern 

supply chains 

4.2 Implementation of the Model 

The optimization models are implemented using a systematic approach, to evaluate the 

performance of these models, multiple instances with synthetic data sets are considered. Every 

model ensures that demand is met in each period while adhering to operational constraints. 

Each period has specific demand requirements, and the model allows for the reallocation of 

demand from one period to another, provided it satisfies the constraints. The MILP model is solved 
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in a Python environment because this is a very flexible and extendable tool in solving 

combinatorial optimization problems. PuLP solver, which is used to solve linear programming 

problems, is used in the construction of the model as well as to solve the problem. The decision 

variables, the objective function, and the constraints of the problem are formulated based on the 

PuLP modeling language. As a boasting solver, PuLP can solve large-size problems with multiple 

variables and constraints as a MILP problem which suits this study. The optimization results are 

visualized using Python libraries, specifically Matplotlib, to generate analytical plots that illustrate 

cost trends, resource utilization, and model performance metrics. 

4.3 Results of basic model 

The results of  3.2 Basic Model3.2 Basic Model highlight its effectiveness in optimizing the supply 

chain for a single item type over a planning horizon of 5,10,15,20,25,30 and 35 time periods. 

Considering random instances for all parameters(𝑐𝑗, 𝑠𝑖, ℎ𝑖) ranging between 1-10 to reduce the 

complexity we conducted multiple tests where it was found that for every test the solver gave a 

better optimal solution than the initial cost. Below, the key findings are discussed in detail. 

Table 4.1 Test settings for basic MILP model 

Test Set A (Time Periods) B (Items) C (Time Windows) 

T-1 5 1 5 
T-2 10 1 5 
T-3 10 1 10 
T-4 15 1 5 
T-5 15 1 10 
T-6 20 1 5 
T-7 20 1 10 
T-8 25 1 5 
T-9 25 1 10 
T-10 30 1 5 
T-11 30 1 10 
T-12 35 1 5 

Table 4.1 displays the test settings for the basic MILP model where each test set (T-1 through T-

13) is constructed using a unique combination of three parameters: A (number of time periods), 
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B (number of items), and C (number of allowable time windows). The primary goal is to 

examine the scalability and performance of the proposed MILP model under increasing temporal 

complexity and varying time window constraints. 

• Parameter A (Time Periods) increases gradually from 5 to 35, representing small to 

large-scale planning horizons. 

• Parameter C (Time Windows) alternates between 5 and 10 to simulate different levels of 

delivery flexibility and constraint tightness. 

• Parameter B (Items) is fixed at 1 throughout all test sets to isolate the effects of A and C 

on model performance. 

 

 

Figure 4.1: Initial Costs Vs Optimal Costs 

Figure 4.1 illustrates a clear comparison between the initial total cost and the optimized total cost 

across thirteen test scenarios (T-1 to T-13). An upward trend is observed in the initial costs, 

indicating increasing inefficiency as the complexity of test sets grows. In contrast, the optimized 

costs remain relatively stable, highlighting the effectiveness of the proposed MILP models in 

maintaining cost efficiency regardless of scale. 
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Figure 4.2: Percentage improvement Vs Time periods 

Figure 4.2 shows a clear positive relationship between the number of time periods and the 

percentage improvement in logistics cost. As the number of periods increases, the optimization 

model becomes more effective. Overall, the trend highlights that increasing the number of 

available time periods and allowing greater reallocation flexibility significantly boosts the model’s 

ability to reduce costs. 

  

Figure 4.3 Computational Time Vs Time periods 
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Figure 4.3 displays the relationship between computational time and the number of time periods, 

evaluated for two different time windows (5 and 10). As expected, the computational time 

increases with the number of time periods, reflecting the expanding solution space and increasing 

complexity. However, an unexpected drop in average solve time is observed between 30 and 35 

time periods. This observation, while statistically marginal, was based on five instances per time 

period, which may not be sufficient to draw a robust conclusion. 

One possible reason for this drop is that certain structural patterns in the T=35 instances made the 

MILP problem more tractable — for example, by increasing scheduling flexibility or allowing the 

solver to prune infeasible branches more efficiently. Another possibility is that solver heuristics 

incidentally converged faster on these specific instances 

In contrast, the optimized plan reduced the number of setups and balanced inventory levels 

across the planning horizon. This led to a significant overall cost reduction, demonstrating the 

model's ability to generate cost-efficient solutions. The model made effective use of the pull-

ahead period, which allowed items to be shifted to earlier time periods within a predefined 

window. This reallocation strategy played a key role in reducing holding costs. The results 

showed that most reallocations occurred within the immediate pull-ahead window, ensuring that 

demand is met without creating excessive inventory in earlier periods. The reallocation process is 

carefully balanced to avoid unnecessary setups, which further contributed to cost savings. 

The model is computationally efficient, solving all test instances within a fraction of seconds. 

Computational time varied depending on the complexity of the demand patterns and the initial 

shipment plan, but it consistently demonstrated scalability for the 35-period planning horizon. 

This indicates that the model can handle larger planning horizons or more complex scenarios in 

future applications. 

4.4 Results of Enhanced Model 

This section presents the results of the enhanced MILP model, comparing its performance with the 

basic MILP model in optimizing supply chain logistics. The improvements in cost efficiency, 

demand satisfaction, and resource utilization are analyzed through computational experiments. 

The enhanced model introduces a refined optimization framework that addresses the limitations of 

the basic model by incorporating multi-item dependencies, truck utilization constraints, and 
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dynamic reallocation strategies. This model effectively enhances cost efficiency, demand 

fulfillment, and resource utilization while maintaining feasible computational complexity.  

In this study, twenty test sets (T-1 to T-20) are constructed to evaluate the scalability and 

performance of the proposed MILP model for supply chain reallocation in the automotive industry. 

The experimental design includes four parameters: A (Number of Items), B (Number of Time 

Periods), C (Number of Allowable Time Windows), and D (Number of Trucks). 

The experiment is conducted for a fixed number of time periods (T = 35) and varying numbers of 

items K and trucks T_max. Here the data we considered for all parameters (𝑢𝑗𝑘, 𝐶𝑗𝑡, ℎ𝑡𝑘 ,𝑆𝑗,𝑑𝑖𝑘)are 

random synthetic data ranging between 1-50 for conducting experiments. Truck capacity CV is set 

to 100 and a large constant M. For each combination of items and trucks, 5 random test instances 

are generated.  The initial total cost is calculated by assuming all demands are satisfied in the same 

period they occurred, with no holding costs. 

Table 4.2 Test settings for enhanced MILP model 

A (Items) D = 10 D = 20 D = 30 D = 40 D = 50 

1 T-1 T-2 T-3 T-4 T-5 

10 T-6 T-7 T-8 T-9 T-10 

15 T-11 T-12 T-13 T-14 T-15 

25 T-16 T-17 T-18 T-19 T-20 

Table 4.2 displays the test settings for the enhanced MILP model to ensure consistency in temporal 

structure and scheduling flexibility, the parameters B and C are fixed across all test sets: B=35 and 

C=10. The focus of the test design is on varying two parameters: 

• A – Number of Items: Values tested are A = 1, 10, 15, 25. Increasing A increases the 

dimensionality and size of the optimization problem, allowing analysis of the model’s 

behavior under increased workload and problem scale. 
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• D – Number of Trucks: Values tested are D = 10, 20, 30, 40, 50. Changing D simulates 

varying levels of transport resource availability, influencing the feasibility and distribution 

strategies within the model.     

By maintaining B and C constant, the experiment isolates the effect of increasing problem scale 

and logistic support. This enables an in-depth evaluation of the MILP model’s scalability, cost-

efficiency, and adaptability under changing operational constraints  

 

 

Figure 4.4 Enhanced model Initial Vs Optimized Total Costs  

Figure 4.4 compares initial and optimized total costs across 20 test sets (T-1 to T-20), showing a 

consistent cost-saving trend after optimization. In each test case, the optimized cost is visibly lower 

than the initial cost, with the gap becoming more pronounced in higher-cost scenarios (from T-11 

onward).  
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Figure 4.5 Enhanced model Computational Times Vs Test Index

Figure 4.5 illustrates the computational time (in seconds) across varying values of parameter A

(1, 10, 15, and 25). As parameter A increases, there is a general upward trend in computational 

time. In contrast, for smaller values of A, the computational time remains relatively low and stable. 

This suggests that the computational time escalates more sharply in later tests when A is large, 

potentially due to increased data complexity or algorithmic demand.

Figure 4.6 Enhanced model Percentage (%) Improvement Distribution
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Figure 4.6 visualizes the distribution of improvement percentages across 20 different tests (T-1 to 

T-20). Each box represents the improvement scores for a specific test, with the central line 

indicating the median and the whiskers showing variability outside the upper and lower quartiles. 

Outliers are marked as individual points. The plot reveals a noticeable upward trend in median 

improvement percentages from early to later tests suggesting that performance becomes more 

stable and optimized as testing progresses. 

The significant improvement of nearly 90% observed in several instances of the enhanced MILP 

model stems from the contrast between a naive initial plan and a highly optimized allocation 

strategy. The initial total cost is computed under the assumption that all demands are satisfied in 

the same period they occur, without any consolidation, reallocation, or cost-saving measures 

effectively representing a worst-case scenario in logistics planning. In contrast, the optimized plan 

leverages the full capabilities of the MILP formulation, which includes temporal reallocation of 

items, joint delivery through truck capacity maximization, setup cost minimization, and intelligent 

activation of suppliers. These mechanisms lead to much more efficient use of resources, 

dramatically reducing costs. Thus, the nearly 90% improvement does not imply that real-world 

systems are currently operating at such inefficiencies, but rather that the baseline used is 

intentionally simplistic to illustrate the full potential of the optimization model under idealized, 

controlled conditions. 

Unlike the basic model, which focuses on unit, setup, and holding costs in a simplified manner, 

the enhanced model integrates trucking costs. This addition leads to a more realistic representation 

of supply chain logistics, resulting in a more balanced cost distribution. Furthermore, improved 

truck utilization minimizes transportation costs by ensuring that shipments are consolidated 

efficiently, reducing the number of underutilized trucks in operation. 

By incorporating truck constraints and volume capacity limitations the model optimizes 

transportation logistics. This improvement translates into lower operational costs and a more 

sustainable use of transportation resources. The model effectively reduces wasted capacity, 

ensuring that shipments are consolidated and routed efficiently, which is especially beneficial for 

large-scale supply chain operations. The introduction of multi-item dependencies and truck 

constraints increases the number of decision variables and constraints, leading to a moderate rise 
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in computation time. However, this added complexity is justified by the significant cost savings 

and operational efficiency improvements 

4.5 Results of Supplier-Integrated Model  

The supplier-integrated MILP model represents the most advanced version of the optimization 

framework, extending the previous enhanced model by integrating supplier-related constraints, 

costs, and decision variables. The addition of supplier selection, reallocation costs, and penalties 

for underutilized truck space allows for a more realistic and adaptable representation of supply 

chain logistics. By considering multiple suppliers, their associated costs, and the efficient 

distribution of orders, this model significantly enhances cost efficiency and transportation 

utilization.  

In this study, a series of test scenarios are developed to evaluate the effectiveness of this MILP 

approach. Each test set is constructed based on five core parameters: the number of suppliers (A), 

number of items (B), number of time periods (C), number of available trucks (D), and the pull-

ahead time window (E). The tests are carefully designed to incrementally increase the complexity 

of the supply chain problem by varying the number of suppliers and items, while keeping the time 

horizon (C = 35 periods), logistics resources (D = 10 trucks), and delivery flexibility (E = 25 pull 

ahead time) constant across all scenarios. 

The objective is to understand how the MILP model performs under varying problem sizes, 

especially in terms of cost reduction and computational efficiency. Table 4.3 displays the test 

settings for supplier integrated MILP model and  each configuration, three instances with random 

data for all parameters (𝑢𝑗𝑘𝑠 , ℎ𝑗𝑘 , 𝑏𝑗 , 𝑙𝑗 , 𝑐𝑗𝑟𝑠, 𝑑𝑗𝑘 , 𝑝𝑗) ranging between 1-50 are run, and key cost 

parameters are measured before and after optimization. The total cost, both pre and post 

optimization, is calculated as the sum of these components. Additionally, the percentage 

improvement and computational time in seconds are recorded to assess the optimization's 

effectiveness and scalability. 

 

 



51 
 

Table 4.3 Test Settings for supplier- integrated MILP model 

Test Set A (Suppliers) B (Items) 
T-1 1 1 
T-2 1 5 
T-3 1 10 
T-4 1 15 
T-5 1 25 
T-6 2 1 
T-7 2 5 
T-8 2 10 
T-9 2 15 
T-10 2 25 
T-11 3 1 
T-12 3 5 
T-13 3 10 
T-14 3 15 
T-15 3 25 

 

Figure 4.7 Supplier Integrated model Initial Cost vs Optimized Cost  

Figure 4.7 illustrates the total cost behavior across all test sets, showcasing both initial and 

optimized costs at the instance level. Each test set (T-1 to T-15) represents a distinct configuration 

based on supplier and item parameters. A consistent and significant reduction in total cost is 

observed after applying the MILP optimization, demonstrating the model’s effectiveness. The 

visual spread also emphasizes the optimization across different problem sizes and conditions. 
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Figure 4.8 Supplier Integrated model Computational time Vs Test index 

Figure 4.8 presents the variation in computational time across different test sets (T-1 to T-15), 

grouped by the number of suppliers (A = 1, 2, and 3). This trend indicates that as supplier count 

increases, the MILP solver approaches its time ceiling, reinforcing the computational intensity of 

multi-supplier configurations and the need for scalable optimization strategies. 

 

Figure 4.9 Supplier Integrated model Percentage (%) Improvement Distribution  
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Figure 4.9 illustrates the distribution of percentage improvement across all test sets (T-1 to T-15), 

highlighting the consistency and variability of the optimization results. Each box represents the 

spread of improvement values among multiple instances within a test, while the lines (whiskers) 

show the range, and any outliers are indicated individually.  

The results show a significant reduction in overall supply chain costs, primarily driven by better 

supplier selection, more effective truck utilization, and optimized shipment reallocation strategies. 

The introduction of penalties for underutilized truck space ensures that shipments are consolidated 

more efficiently, thereby lowering total trucking costs. Additionally, the model incorporates 

reallocation cost constraints, which prevent excessive movement of inventory between suppliers 

unless it is cost-effective. 

However, as expected, the computational time tended to rise with problem complexity, especially 

in instances with higher item counts. Unlike the basic model, which does not consider truck 

utilization, and the enhanced model, which optimizes transportation costs based on demand, the 

supplier-integrated model ensures that trucks are utilized efficiently across multiple suppliers and 

shipment periods. The following results demonstrate how the supplier-integrated model 

outperforms both the basic and enhanced models, highlighting improvements in total supply chain 

costs, supplier allocation efficiency, and truck utilization. 

4.6 Comparative Analysis 

In this section, a comparative analysis is presented to evaluate the performance of the three MILP 

models based on key metrics such as cost efficiency, truck utilization, computational complexity, 

and scalability. Each model introduces new constraints and decision variables to improve supply 

chain optimization, leading to progressive advancements in overall performance. 

The basic model serves as the foundational framework for supply chain reallocation, focusing on 

minimizing unit costs, setup costs, and holding costs while ensuring demand fulfillment. However, 

it does not account for truck utilization or supplier selection, leading to inefficient resource 

allocation and higher operational expenses. The enhanced model builds on this by introducing 

truck constraints and time-window-based shipment reallocation, allowing for better cost 

optimization and improved demand fulfillment. However, it still lacks supplier-related constraints, 

which limits its adaptability in complex multi-supplier environments. 
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The supplier-integrated MILP model further advances the optimization framework by integrating 

supplier selection, reallocation costs, and penalties for underutilized truck space. This model 

effectively reduces overall costs, enhances order reallocation flexibility, and ensures optimal truck 

utilization, making it the most comprehensive and efficient approach among the three. However, 

the increase in constraints and decision variables results in higher computational complexity, 

requiring more processing power to generate optimal solutions. 

Compared to existing models in the literature, the models proposed in this thesis offer a unique 

level of integration and operational realism. While earlier works such as Guerrero et al. [39] and 

Fontaine et al. [41] address specific logistics challenges such as vehicle routing or truck utilization, 

most of them do so in isolation. This thesis advances the field by developing a progressive 

modeling framework that incorporates three critical dimensions:  

• reallocation of deliveries across fixed time slots  

• truck volume utilization and associated cost penalties and 

• Supplier activation decisions with setup cost modeling.  

Unlike traditional models that assume uniform delivery patterns or focus on static routing, the 

proposed MILP models allow slot-level, multi-item and multi-supplier planning under 

deterministic constraints [43] [46] [54]. This adds both practical flexibility and computational 

transparency. However, the models are limited by their deterministic assumption, they do not 

currently handle uncertainty in demand or disruptions, as seen in stochastic or robust optimization 

models [36] [45]. Additionally, while the models are scalable for mid-sized instances, solving very 

large networks may require advanced solvers (e.g., Gurobi) or decomposition techniques [65]. 

Despite these constraints, the modularity of the framework allows it to be adapted and extended 

for real-world logistics environments. 

The following Table 4.4 provides a detailed comparison of the three models, highlighting their 

strengths, weaknesses, and practical applications in different supply chain environments.  

The proposed MILP-based reallocation models demonstrate that shipment plans can be effectively 

optimized within a deterministic environment, significantly reducing logistics costs without 

missing delivery targets. By integrating setup costs, truck usage penalties, and supplier activation 

constraints, the models reveal that considering vehicle and supplier-level parameters in 
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reallocation decisions leads to superior cost performance compared to traditional static schedules. 

Furthermore, the extended models show that supplier selection and time-slot reallocation together 

improve both efficiency and flexibility, enabling logistics managers to handle complex delivery 

networks more intelligently. Computational results confirm that the models scale reasonably well 

and can accommodate large, multi-item, multi-supplier scenarios, suggesting practical 

applicability in high-frequency environments such as automotive manufacturing. Overall, the 

research highlights that data-driven reallocation models can support more strategic delivery 

planning, providing cost savings and operational resilience even in the absence of uncertainty. 

Table 4.4 Comparative analysis among proposed models 

 

 

Dimension Basic Model Enhanced Model Supplier-Integrated 

MILP Model 
Model Complexity Simplest structure; 

single item and 
supplier; no truck 
logic. 

Moderate: Includes truck 
constraints, multi-item 
handling. 

Highly complex; includes 
suppliers, truck utilization, 
and penalty for unused 
space. 

Objective Function 
Components 

Unit cost, setup cost, 
holding cost. 

Adds trucking cost. Adds supplier cost, 
reallocation cost, and 
penalty for unused truck 
volume. 

Real-World 
Relevance 

Limited; ideal for 
small or controlled 
environments. 

Good for mid-sized 
operations with delivery 
fleets. 

Best for real-world supply 
chains with multi-supplier 
dynamics. 

Scalability High; quick solve 
time. 

Moderate; computing time 
increases with items and 
trucks. 

Lower; computing time 
increases significantly 
with complexity. 

Applicability Academic or early-
stage modeling. 

Factory or warehouse 
logistics. 

Industrial-grade supply 
chains with suppliers and 
trucks. 

Key Limitations No multi-
item/truck/supplier 
logic. 

Lacks supplier dynamics. Most computationally 
intensive. 
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CHAPTER 5: CONCLUSION AND FUTURE RESEARCH 

This thesis sets out to address inefficiencies in slot-based delivery planning within the automotive 

supply chain by proposing a structured reallocation framework using MILP. Across a progressive 

suite of three optimization models, the basic, enhanced, and supplier-integrated MILP models. 

This study successfully demonstrated that proactive, deterministic reallocation of shipments leads 

to measurable cost savings, better truck utilization, and improved scheduling efficiency. 

The basic model validated the concept that even a single-item, single-supplier delivery plan can 

be significantly improved by reallocating shipments within a pull-ahead time window. The model 

minimized holding and setup costs through simple rebalancing logic, resulting in smoother demand 

distribution and a clear reduction in fragmented deliveries. 

Building on this, the enhanced model introduced truck utilization constraints and multi-item 

scenarios. This inclusion addressed one of the most persistent operational issues in automotive 

logistics: the dispatch of underutilized trucks. The model accounted for both volume-based 

constraints and truck activation costs, revealing that consolidation across time slots reduced total 

logistics costs without compromising demand fulfillment. The results showed a notable drop in 

setup frequency and unit delivery cost, emphasizing the value of bundling deliveries within 

feasible capacity thresholds. 

The supplier-integrated model further enhanced realism by incorporating multiple suppliers, 

supplier-specific constraints. This layer brought the optimization closer to real-world application 

by addressing not just transportation costs but also supplier setup penalties and inter-supplier 

dependencies. The results illustrated that intelligent supplier engagement selecting when and 

which supplier should fulfill an order enabled better cost-performance outcomes. More 

importantly, this model provided operational insights into how logistics managers can strategically 

deactivate or engage suppliers to minimize total expenditure while maintaining service levels. 

This thesis provides a structured methodology for mid-horizon logistics planning distinct from 

traditional disruption-based or heuristic scheduling methods. It fills a vital research gap by 

integrating deterministic reallocation, truck optimization, and supplier logic into a unified MILP 

framework. The modular nature of the models offers flexibility for implementation in various 

operational contexts from small-scale suppliers to large OEM networks. While the models 
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performed well under deterministic assumptions, real-world logistics systems often face stochastic 

elements such as demand uncertainty, traffic delays, and production disruptions.  

However, it is important to note that this research serves as a prototype framework, and its 

performance has been tested using synthetic datasets composed of small-scale, numerically 

simplified instances designed to validate model logic and structure. While these controlled 

experiments help illustrate the core benefits of reallocation and integrated planning, they do not 

fully capture the complexities of live industrial data, including large-scale variability, uncertainty, 

and real-time constraints. Therefore, the models presented should be viewed as foundational tools 

rather than final, deployable systems. Future research should focus on scaling the models for 

industrial-scale datasets, incorporating stochastic elements such as variable demand or lead times, 

and integrating real-time decision-making to enhance practical applicability. Moreover, refining 

the models to support multi-level logistics, nonlinear cost structures, and dynamic supplier 

behavior would significantly enhance their operational relevance and adaptability to complex 

supply chain networks. 
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APPENDIX 

Basic model experiment results 
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TEST-1 {5, 1, 5} 
1 432 23 267 722 227 3 128 358 50.42 0.05 
2 363 30 331 724 174 2 151 327 54.83 0.03 
3 49 22 76 147 52 2 94 148 -0.68 0.03 
4 213 22 173 408 156 1 156 313 23.28 0.03 
5 186 32 184 402 164 7 188 359 10.70 0.01 
6 312 21 153 486 155 1 119 275 43.42 0.01 
7 323 34 256 613 162 1 150 313 48.94 0.02 
8 136 31 174 341 107 2 108 217 36.36 0.02 
9 212 36 248 496 167 5 137 309 37.70 0.04 

10 343 21 389 753 184 1 198 383 49.14 0.01 
Avg 256.9 27.2 225.1 509.2 154.8 2.5 142.9 300.2 35.41 0.03 

TEST-2{10, 1, 5} 
1 1035 22 1480 2537 293 1 421 715 71.82 0.06 
2 598 57 417 1072 291 2 202 495 53.82 0.06 
3 958 71 686 1715 347 4 276 627 63.44 0.03 
4 674 53 902 1629 246 1 244 491 69.86 0.04 
5 1165 55 1567 2787 334 1 401 736 73.59 0.04 
6 928 64 847 1839 258 1 257 516 71.94 0.09 
7 1172 53 699 1924 381 1 244 626 67.46 0.11 
8 738 49 1259 2046 325 1 468 794 61.19 0.07 
9 708 38 390 1136 334 1 246 581 48.86 0.25 

10 949 53 658 1660 300 1 206 507 69.46 0.15 
TEST-3{10, 1, 10} 

1 892 60 895 1847 270 2 313 585 68.33 0.14 
2 662 40 863 1565 275 1 297 573 63.39 0.06 
3 838 35 798 1671 403 1 358 762 54.40 0.09 
4 873 53 1091 2017 361 1 439 801 60.29 0.09 
5 1267 60 1176 2503 468 1 379 848 66.12 0.05 
6 716 52 514 1282 275 1 245 521 59.36 0.10 
7 912 75 754 1741 362 3 282 647 62.84 0.14 
8 953 36 754 1743 309 1 232 542 68.90 0.10 
9 1096 54 1053 2203 251 2 300 553 74.90 0.17 

10 425 36 963 1424 187 1 282 470 66.99 0.17 
Avg 892.5 51.5 890.5 1834.5 310.9 1.4 296.5 608.8 65.14 0.09 
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Test-4{15, 1, 5} 
1 1450 66 1950 3466 353 1 412 766 77.90 0.10 
2 2417 75 2395 4887 511 1 537 1049 78.53 0.07 
3 2293 91 2217 4601 590 1 651 1242 73.01 0.17 
4 1537 75 2174 3786 290 1 426 717 81.06 0.15 
5 2516 83 2224 4823 589 1 452 1042 78.40 0.19 
6 1548 85 1322 2955 399 1 330 730 75.30 0.27 
7 1597 85 2121 3803 466 1 544 1011 73.42 0.13 
8 1651 67 2393 4111 366 1 464 831 79.79 0.12 
9 1786 81 2220 4087 424 1 564 989 75.80 0.09 

10 2407 89 1311 3807 526 1 351 878 76.94 0.08 
TEST-5{15,1,10} 

1 830 85 608 1523 272 1 242 515 66.19 0.04 
2 1900 94 1680 3674 442 2 412 856 76.70 0.20 
3 1874 94 2423 4391 445 1 584 1030 76.54 0.19 
4 1949 72 2336 4357 383 1 501 885 79.69 0.18 
5 2848 87 2328 5263 666 1 535 1202 77.16 0.22 
6 2250 63 1919 4232 548 1 542 1091 74.22 0.08 
7 2306 95 2310 4711 521 1 517 1039 77.95 0.04 
8 2023 90 1891 4004 565 2 493 1060 73.53 0.04 
9 1960 81 1108 3149 386 2 289 677 78.50 0.04 

10 1865 96 1811 3772 402 1 417 820 78.26 0.05 
Avg 1920.2 79.7 2032.7 4032.6 451.4 1 473.1 925.5 77.01 0.14 

Test-6 {20, 1, 5} 
1 2840 102 3275 6217 488 1 557 1046 83.18 0.14 
2 2785 99 1787 4671 642 1 410 1053 77.46 0.16 
3 3122 112 1804 5038 594 1 312 907 82.00 0.23 
4 3274 109 2716 6099 710 1 544 1255 79.42 0.07 
5 3250 109 2769 6128 628 1 616 1245 79.68 0.10 
6 3898 95 3119 7112 698 1 559 1258 82.31 0.08 
7 4732 95 3511 8338 758 1 536 1295 84.47 0.18 
8 3527 118 2858 6503 699 1 578 1278 80.35 0.07 
9 4102 109 3501 7712 727 1 661 1389 81.99 0.09 

10 3774 97 3279 7150 737 1 634 1372 80.81 0.09 
TEST-7 {20, 1, 10} 

1 4347 105 4679 9131 797 1 856 1654 81.89 0.09 
2 2498 97 3300 5895 414 1 617 1032 82.49 0.07 
3 2663 101 3303 6067 441 2 559 1002 83.48 0.07 
4 2296 123 2418 4837 512 1 587 1100 77.26 0.25 
5 3509 118 3197 6824 605 1 561 1167 82.90 0.30 
6 1866 135 2767 4768 328 2 526 856 82.05 0.16 
7 2947 114 3477 6538 580 2 728 1310 79.96 0.17 
8 3149 113 2906 6168 612 1 571 1184 80.80 0.12 
9 2705 127 2777 5609 458 2 517 977 82.58 0.09 

10 2413 123 2855 5391 480 1 529 1010 81.27 0.09 
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Avg 3530.4 104.5 2861.9 6496.8 668.1 1 540.7 1209.8 81.17 0.12 
TEST-8 {25, 1, 5} 

1 4250 144 5386 9780 716 1 862 1579 83.85 0.08 
2 4770 117 4849 9736 724 1 755 1480 84.80 0.09 
3 4838 152 5404 10394 816 1 936 1753 83.13 0.08 
4 6123 131 5380 11634 913 1 821 1735 85.09 0.07 
5 5383 122 5452 10957 817 1 859 1677 84.69 0.07 
6 4749 163 4674 9586 747 1 635 1383 85.57 0.08 
7 3900 139 4835 8874 538 1 745 1284 85.53 0.07 
8 5470 116 5530 11116 762 1 801 1564 85.93 0.07 
9 6431 131 5844 12406 917 1 929 1847 85.11 0.07 

10 5250 133 3454 8837 869 1 700 1570 82.23 0.08 
TEST-9 {25, 1, 10} 

1 6924 153 5646 12723 975 1 777 1753 86.22 0.07 
2 5527 128 6157 11812 792 1 866 1659 85.95 0.07 
3 5810 125 6770 12705 830 1 1035 1866 85.31 0.07 
4 5375 144 4842 10361 720 2 679 1401 86.48 0.08 
5 4155 136 4773 9064 692 1 810 1503 83.42 0.07 
6 4551 159 4654 9364 731 2 704 1437 84.65 0.08 
7 4539 133 4000 8672 825 1 733 1559 82.02 0.07 
8 5934 129 5366 11429 817 1 757 1575 86.22 0.07 
9 5585 115 5679 11379 773 1 914 1688 85.17 0.07 

10 3297 110 3156 6563 570 1 578 1149 82.49 0.07 
Avg 5116.4 134.8 5080.8 10332 781.9 1 804.3 1587.2 84.59 0.07 

TEST-10 {30, 1, 5} 
1 6017 164 5794 11975 733 1 712 1446 87.92 0.10 
2 6319 159 7167 13645 858 1 978 1837 86.54 0.10 
3 7491 171 7727 15389 783 1 861 1645 89.31 0.10 
4 7963 152 8644 16759 1079 1 971 2051 87.76 0.10 
5 7909 145 6882 14936 984 1 786 1771 88.14 0.10 
6 7810 125 7011 14946 1117 1 889 2007 86.57 0.10 
7 6430 194 5640 12264 1027 1 892 1920 84.34 0.11 
8 7650 179 7600 15429 929 1 963 1893 87.73 0.10 
9 9493 151 5556 15200 1152 1 714 1867 87.72 0.10 

10 7691 214 7637 15542 908 1 829 1738 88.82 0.10 
TEST-11 {30, 1, 10} 

1 6704 156 9946 16806 761 1 1092 1854 88.97 0.09 
2 6717 167 7976 14860 890 1 929 1820 87.75 0.09 
3 5902 159 4671 10732 939 1 729 1669 84.45 0.10 
4 9363 185 8449 17997 1097 1 982 2080 88.44 0.10 
5 8155 141 8235 16531 1121 1 965 2087 87.38 0.09 
6 7536 159 7905 15600 925 1 877 1803 88.44 0.09 
7 6777 142 8615 15534 925 1 1123 2049 86.81 0.09 
8 6837 156 6241 13234 922 1 945 1868 85.88 0.11 
9 7010 156 4387 11553 859 1 642 1502 87.00 0.09 
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10 6686 167 5412 12265 883 1 784 1668 86.40 0.21 
Avg 7477.3 165.4 6965.8 14608.5 957 1 859.5 1817.5 87.49 0.10 

TEST-12 {35, 1, 5} 
1 8481 202 7531 16214 1050 2 953 2005 87.63 0.13 
2 7732 192 5922 13846 842 1 708 1551 88.80 0.13 
3 12978 208 12015 25201 1247 1 1183 2431 90.35 0.13 
4 9512 205 8594 18311 1016 1 920 1937 89.42 0.13 
5 9553 180 8559 18292 1023 1 1019 2043 88.83 0.14 
6 10521 188 9609 20318 1055 1 924 1980 90.25 0.14 
7 7507 209 8768 16484 864 1 1063 1928 88.30 0.13 
8 8387 238 8398 17023 927 1 904 1832 89.24 0.13 
9 8316 159 8802 17277 949 1 923 1873 89.16 0.14 

10 9991 209 8554 18754 1151 1 947 2099 88.81 0.13 
TEST-13 {35, 1, 10} 

1 10273 214 11759 22246 1135 1 1193 2329 89.53 0.13 
2 12749 209 10236 23194 1167 2 1003 2172 90.64 0.12 
3 12155 190 10676 23021 1298 2 1113 2413 89.52 0.13 
4 9469 207 10137 19813 971 1 1161 2133 89.23 0.13 
5 7955 191 10235 18381 890 1 1147 2038 88.91 0.12 
6 9403 206 6285 15894 1010 1 792 1803 88.66 0.12 
7 7914 230 7981 16125 870 1 1044 1915 88.12 0.12 
8 9655 216 8501 18372 1143 1 983 2127 88.42 0.12 
9 6979 167 7936 15082 898 1 1139 2038 86.49 0.13 

10 8860 214 8937 18011 989 1 961 1951 89.17 0.12 
Avg 9297.8 199 8675.2 18172 1012.4 1.1 954.4 1967.9 89.08 0.13 
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Test-1 : {A=1, B=35, C=10, D=10} 
1 366 0 54 71 491 192 73 32 17 314 63.95 0.14 
2 613 0 68 66 747 429 110 40 19 598 80.05 0.20 
3 397 0 69 66 532 335 37 51 24 447 84.02 0.20 
4 360 0 56 81 497 278 62 40 20 400 80.48 0.18 
5 384 0 59 65 508 269 54 39 21 383 75.39 0.22 

Test-2 : {A=1, B=35, C=10, D=20} 
1 537 0 66 79 682 408 73 45 23 549 80.50 0.23 
2 459 0 54 67 580 390 43 42 21 496 85.52 0.19 
3 640 0 66 77 783 501 84 46 20 651 83.14 0.26 
4 581 0 61 68 710 388 112 46 21 567 79.86 0.19 
5 499 0 68 79 646 379 107 40 20 546 84.52 0.30 

Test-3 : {A=1, B=35, C=10, D=30} 
1 471 0 53 67 591 369 57 35 20 481 81.39 0.23 
2 464 0 56 62 582 291 104 34 21 450 77.32 0.54 
3 535 0 60 74 669 304 102 38 18 462 69.06 0.37 
4 480 0 54 68 602 303 88 32 17 440 73.09 0.38 
5 466 0 57 66 589 368 50 38 20 476 80.81 0.48 

Test-4 : {A=1, B=35, C=10, D=40} 
1 415 0 62 59 536 251 121 40 21 433 80.78 0.71 
2 453 0 65 65 583 299 77 48 21 445 76.33 0.51 
3 559 0 50 68 677 409 106 31 18 564 83.31 0.63 
4 501 0 61 68 630 387 78 42 22 529 83.97 0.34 
5 494 0 66 71 631 354 96 38 18 506 80.19 0.53 

Test-5: {A=1, B=35, C=10, D=50} 
1 421 0 61 75 557 283 81 34 17 415 74.51 0.66 
2 423 0 59 72 554 302 71 42 19 434 78.34 0.53 
3 564 0 64 65 693 336 139 37 20 532 76.77 0.51 
4 592 0 63 67 722 408 145 41 20 614 85.04 0.53 
5 429 0 50 66 545 285 79 33 17 414 75.96 0.34 

Test-6: {A=10, B=35, C=10, D=10} 
1 5428 0 78 67 5573 3876 935 78 47 4936 88.57 0.66 
2 4708 0 70 76 4854 3273 766 70 39 4148 85.46 0.52 
3 4739 0 69 69 4877 3424 739 69 37 4269 87.53 0.49 
4 4680 0 69 78 4827 3420 694 69 36 4219 87.40 0.51 
5 4940 0 70 66 5076 3501 761 70 46 4378 86.25 1.47 
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Test-7 : {A=10, B=35, C=10, D=20} 
1 4782 0 72 69 4923 3279 763 72 37 4151 84.32 1.68 
2 4799 0 71 68 4938 3494 689 71 40 4294 86.96 1.53 
3 4571 0 70 79 4720 3366 613 70 41 4090 86.65 1.37 
4 4779 0 67 71 4917 3139 878 67 39 4123 83.85 1.66 
5 5042 0 61 85 5188 3515 846 61 35 4457 85.91 1.16 

Test-8 : {A=10, B=35, C=10, D=30} 
1 4842 0 64 71 4977 3550 765 64 36 4415 88.71 1.44 
2 4804 0 70 68 4942 3431 736 70 36 4273 86.46 1.95 
3 4799 0 63 67 4929 3532 640 63 42 4277 86.77 1.50 
4 4716 0 60 67 4843 3366 735 60 38 4199 86.70 1.35 
5 4872 0 77 65 5014 3526 723 74 34 4357 86.90 1.44 

Test-9 : {A=10, B=35, C=10, D=40} 
1 4912 0 75 72 5059 3587 726 75 42 4430 87.57 1.64 
2 4999 0 74 74 5147 3637 808 74 36 4555 88.50 1.53 
3 4726 0 68 69 4863 3348 691 68 49 4156 85.46 2.37 
4 5343 0 81 74 5498 3980 742 81 39 4842 88.07 2.01 
5 4885 0 66 71 5022 3571 716 66 36 4389 87.40 1.41 

Test-10 : {A=10, B=35, C=10, D=50} 
1 5010 0 70 65 5145 3490 864 70 42 4466 86.80 1.69 
2 4445 0 67 74 4586 3144 739 67 41 3991 87.03 1.78 
3 5164 0 76 72 5312 3705 743 76 36 4560 85.84 1.78 
4 5023 0 69 70 5162 3573 802 69 48 4492 87.02 2.27 
5 4554 0 62 77 4693 3197 793 62 40 4092 87.19 1.42 

Test-11 : {A=15, B=35, C=10, D=10} 
1 7013 0 68 74 7155 5187 1029 68 48 6332 88.50 0.82 
2 6851 0 78 69 6998 5059 950 78 53 6140 87.74 0.85 
3 7423 0 72 70 7565 5354 1184 72 60 6670 88.17 0.91 
4 7396 0 72 67 7535 5137 1344 72 53 6606 87.67 0.87 
5 6952 0 68 60 7080 4822 1102 68 64 6056 85.54 1.19 

Test-12 : {A=15, B=35, C=10, D=20} 
1 7319 0 73 84 7476 5307 1174 73 69 6623 88.59 1.11 
2 7989 0 74 66 8129 6115 1001 74 55 7245 89.13 1.20 
3 7237 0 68 70 7375 5143 1222 68 53 6486 87.95 2.14 
4 7048 0 72 72 7192 5154 1022 72 51 6299 87.58 2.07 
5 7663 0 65 75 7803 5736 1032 65 64 6897 88.39 0.99 

Test-13 : {A=15, B=35, C=10, D=30} 
1 6874 0 59 63 6996 4980 977 59 53 6069 86.75 3.16 
2 6323 0 63 69 6455 4323 1030 63 46 5462 84.62 1.88 
3 7291 0 66 77 7434 5363 1080 66 52 6561 88.26 2.65 
4 7351 0 68 77 7496 5096 1301 68 49 6514 86.90 2.64 
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5 7064 0 68 63 7195 5046 1156 68 58 6328 87.95 2.96 
Test-14 : {A=15, B=35, C=10, D=40} 

1 7261 0 73 73 7407 4895 1361 73 49 6378 86.11 2.29 
2 6975 0 64 76 7115 5085 1062 64 54 6265 88.05 2.94 
3 6927 0 71 74 7072 4993 1025 71 56 6145 86.89 3.73 
4 6938 0 74 65 7077 5286 962 74 56 6378 90.12 2.52 
5 6962 0 76 74 7112 4928 1047 76 55 6106 85.85 2.40 

Test-15 : {A=15, B=35, C=10, D=50} 
1 6984 0 76 69 7129 5195 944 76 48 6263 87.85 2.92 
2 7141 0 71 70 7282 4969 1157 71 47 6244 85.75 2.67 
3 7004 0 78 68 7150 4992 1180 78 56 6306 88.20 2.88 
4 7475 0 66 60 7601 5521 1090 66 53 6730 88.54 2.40 
5 7726 0 66 73 7865 5358 1279 66 65 6768 86.05 3.53 

Test-16 : {A=25, B=35, C=10, D=10} 
1 11631 0 80 73 11784 8476 1741 80 97 10394 88.20 1.59 
2 12102 0 64 80 12246 8517 1969 64 90 10640 86.89 1.58 
3 11967 0 66 73 12106 8545 1911 66 78 10600 87.56 1.59 
4 12223 0 64 72 12359 9155 1653 64 73 10945 88.56 2.09 
5 12304 0 66 79 12449 8773 1895 66 93 10827 86.97 1.74 

Test-17 : {A=25, B=35, C=10, D=20} 
1 11895 0 77 68 12040 8608 1855 77 78 10618 88.19 1.61 
2 12006 0 71 68 12145 8584 1913 71 77 10645 87.65 1.55 
3 12335 0 68 70 12473 8462 2143 68 84 10757 86.24 1.60 
4 11449 0 70 62 11581 8769 1500 70 73 10412 89.91 1.80 
5 12514 0 75 68 12657 8848 2027 75 81 11031 87.15 1.65 

Test-18 : {A=25, B=35, C=10, D=30} 
1 11719 0 74 74 11867 8025 1944 74 76 10119 85.27 1.55 
2 12428 0 68 61 12557 9214 1798 68 84 11164 88.91 1.66 
3 12083 0 62 74 12219 8835 1852 62 79 10828 88.62 2.28 
4 12845 0 64 73 12982 9412 1902 64 73 11451 88.21 1.66 
5 12026 0 70 73 12169 8339 2051 70 79 10539 86.61 1.75 

Test-19 : {A=25, B=35, C=10, D=40} 
1 11802 0 66 67 11935 8289 1866 66 81 10302 86.32 1.79 
2 11822 0 76 63 11961 8679 1806 76 69 10630 88.87 5.10 
3 12036 0 67 75 12178 8848 1707 67 70 10692 87.80 4.51 
4 12257 0 66 73 12396 8514 2074 66 81 10735 86.60 5.21 
5 12230 0 74 69 12373 8619 1951 74 70 10714 86.59 1.68 

Test-20 : {A=25, B=35, C=10, D=50} 
1 12007 0 71 77 12155 8597 1970 71 80 10718 88.18 8.66 
2 11610 0 71 74 11755 8091 1898 71 78 10138 86.24 5.19 
3 11883 0 77 82 12042 8437 1731 77 68 10313 85.64 5.41 
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Supplier integrated model experiment results 
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A=1 ,B=1,C=35,D=10,E=25 
1 359 100 0 0 302 9831 10592 33 6 100 218 4 85 446 95.79 106.7

0 2 482 94 0 0 298 9566 10440 8 6 86 245 7 33 385 96.31 2.90 
3 392 107 0 0 318 10366 11183 21 7 256 197 2 58 541 95.16 0.16 

A=1 ,B=5,C=35,D=10,E=25 
1 2430 111 0 0 308 7127 9976 233 40 484 838 25 56 1676 83.20 600.2

8 2 2391 106 0 0 312 8477 11286 174 15 412 982 11 14 1608 85.75 62.05 
3 2276 108 0 0 303 5960 8647 367 46 329 794 43 59 1638 81.06 600.2

1 A=1 ,B=10,C=35,D=10,E=25 
1 5237 98 0 0 315 1600 7250 1087 67 771 1736 72 86 3819 47.32 600.3

8 2 4854 117 0 0 319 3379 8669 906 61 724 1606 56 78 3431 60.42 600.4
8 3 4885 100 0 0 324 2665 7974 876 65 773 1726 58 70 3568 55.25 600.2
9 A=1 ,B=15,C=35,D=10,E=25 

1 6833 112 0 0 343 -367 6921 1188 92 1104 1939 102 65 4490 35.12 600.4
7 2 7066 105 0 0 311 -754 6728 1603 87 895 1957 75 64 4681 30.43 600.3
2 3 7200 120 0 0 307 1059 8686 1214 83 1052 2414 65 14 4842 44.26 600.4
6 A=1 ,B=25,C=35,D=10,E=25 

1 12235 102 0 0 329 -4114 8552 2673 95 1560 3825 114 7 8274 3.25 279.1
32 A=2 ,B=1,C=35,D=10,E=25 

1 930 210 0 0 624 19680 21444 29 15 86 264 9 40 443 97.93 600.2
0 2 961 200 0 0 629 20140 21930 32 3 146 186 3 106 476 97.83 0.51 

3 911 188 0 0 636 15304 17039 7 8 144 190 10 60 419 97.54 600.3
2 A=2 ,B=5,C=35,D=10,E=25 

1 5201 238 0 0 620 13322 19381 346 48 440 898 24 39 1795 90.74 600.4
5 2 4780 220 0 0 599 15480 21079 140 42 495 887 17 79 1660 92.12 600.3
4 3 5079 194 0 0 646 15146 21065 242 37 473 1001 16 81 1850 91.22 600.3
1 A=2 ,B=10,C=35,D=10,E=25 

1 9430 232 0 0 616 3644 13922 1137 89 675 966 59 91 3017 78.33 600.6
3 2 10072 210 0 0 595 3864 14741 1166 89 657 1273 45 83 3313 77.53 600.6
8 3 9572 194 0 0 604 2548 12918 1003 89 634 1252 64 53 3095 76.04 600.4
9                  

A=2 ,B=15,C=35,D=10,E=25 
1 14793 226 0 0 601 -6382 9238 1832 143 811 1661 81 135 4663 49.52 601.1

6 

4 11860 0 74 72 12006 8108 2080 74 90 10352 86.22 5.12 
5 11759 0 61 72 11892 7906 2237 61 71 10275 86.40 5.48 
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2 14824 224 0 0 568 -3188 12428 2024 128 754 1736 72 71 4785 61.50 600.7
7 3 13928 214 0 0 672 -2412 12402 1779 117 771 1653 76 11 4407 64.47 600.9
5 A=2 ,B=25,C=35,D=10,E=25 

1 25056 162 0 0 622 -12904 12936 3424 126 1023 2382 113 52 7120 44.96 600.9
5 2 23806 204 0 0 598 -16532 8076 3319 175 1070 2095 117 46 6822 15.53 601.3
2 3 25659 222 0 0 642 -18446 8077 3512 193 1132 2642 128 139 7746 4.10 601.3
8 A=3 ,B=1,C=35,D=10,E=25 

1 1290 306 0 0 941 26505 29042 25 15 100 226 6 95 467 98.39 600.2
0 2 1290 270 0 0 953 27180 29693 32 10 68 210 7 68 395 98.67 600.2
1 3 1127 327 0 0 948 30345 32747 18 8 65 218 6 45 360 98.90 600.3
8 A=3 ,B=5,C=35,D=10,E=25 

1 7532 354 0 0 944 21531 30361 239 27 386 1029 24 58 1763 94.19 600.6
0 2 7243 318 0 0 937 15792 24290 369 45 384 718 31 20 1567 93.55 600.8
4 3 7163 273 0 0 906 22626 30968 281 29 360 857 24 99 1650 94.67 600.5
8 A=3 ,B=10,C=35,D=10,E=25 

1 14145 327 0 0 926 3915 19313 1008 107 532 1357 64 63 3131 83.79 600.8
9 2 14323 333 0 0 966 13899 29521 909 75 716 1323 48 66 3137 89.37 600.7
5 3 14416 327 0 0 978 7404 23125 777 83 604 1383 53 27 2927 87.34 600.8
9 A=3 ,B=15,C=35,D=10,E=25 

1 22374 360 0 0 926 -7020 16640 1544 139 843 1664 82 123 4395 73.59 601.3
2 2 21296 339 0 0 894 -5211 17318 1477 136 768 1699 70 33 4183 75.85 601.0
6 3 21355 285 0 0 918 -2181 20377 1670 110 642 1814 84 33 4353 78.64 601.0
1 A=3 ,B=25,C=35,D=10,E=25 

1 35622 291 0 0 972 -20598 16287 2632 187 1171 1932 110 167 6199 61.94 601.5
6 2 38152 318 0 0 953 -29676 9747 3417 207 1006 2249 130 91 7100 27.16 601.6
4 3 36886 306 0 0 949 -23832 14309 3255 183 1046 1714 115 35 6348 55.64 601.5
4                  
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