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ABSTRACT 

Internet of Things (IoT) devices, such as thermostats, lighting systems, and fitness trackers, 

have revolutionized both residential and industrial environments, enabling users to remotely 

control and manage them. Although many IoT devices are often manageable through Original 

Equipment Manufacturer (OEM) software applications, overseeing devices from various OEM 

origins simultaneously, or even customized hardware, can be complex and tedious. To address this 

challenge, an IoT gateway serves as a centralized hub that supports wireless connectivity across 

various protocols. Bluetooth Low Energy (BLE), a widely adopted wireless communication 

protocol in low-power-consuming devices such as sensors, is therefore employed in many IoT 

gateways. Large-scale IoT networks significantly benefit from an IoT gateway, as it provides a 

unified management point for all connected devices. OEMs of IoT gateways may offer a software 

development kit (SDK) to facilitate application customization, enabling the attainment of specific 

design requirements. This thesis presents the design, development, and implementation of two 

software applications to acquire real-time sensor data from custom BLE-enabled printed circuit 

boards (PCBs). Leveraging an IoT gateway, its compatible SDK, and a library of sample programs, 

two applications are developed to monitor sensor data: a serial terminal interface and a dynamic 

web-based dashboard.  
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CHAPTER 1 – INTRODUCTION

The Internet has become a fundamental component of modern infrastructure, revolutionizing 

communication, information exchange, and business operations. Devices like computers, 

smartphones, and wearables are prime examples of how the Internet has permeated modern 

society. These devices, along with others, comprise the Internet of Things (IoT), a broad term 

encompassing interconnected devices that collect, control, analyze, and share data in real-time 

over the Internet [1]. In 2024, industry leaders estimated a worldwide total of 17.9 billion IoT-

connected devices, with this number expected to have doubled by 2032 [2]. This graphical forecast

is displayed in Figure 1.

Figure 1: Worldwide IoT connections forecast (2023-2034) [2].

For instance, low-power-consuming devices, such as sensors and antennas [3], [4], [5], utilize 

communication protocols optimized for low power consumption. Bluetooth Low Energy (BLE) is 

a widespread protocol that facilitates communication between low-power peripheral devices and 

high-power central devices [6]. Unlike the need for special controllers for high-energy applications 

and heavy industrial equipment [7], [8], end devices in the day-to-day are primarily operated on 
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low power. BLE centrals, unlike BLE peripherals, typically establish Internet connections; 

therefore, when a peripheral connects and transfers data to a central, the central handles the 

peripheral’s data transfer to the Internet, thus completing a local IoT network. Bluetooth is a widely 

used communication standard in many IoT networks and can be further classified into two 

protocols: Bluetooth Classic and BLE. Evidently, BLE consumes less energy than Bluetooth 

Classic, making it a more sensible choice for integrating into technology with low-power 

requirements, such as sensors and wearables. 

BLE stands out from other low-power wireless communication protocols such as Zigbee due to 

its high data rate, low power consumption, and seamless integration into modern smartphones. 

Even though Zigbee is widely used in low-power applications and is more reliable than BLE for 

large IoT networks, it has a significantly lower data rate, and it requires a centralized hub with the 

Zigbee protocol [1]. Therefore, BLE will suffice for the design outlined in this thesis, as the 

working IoT network consists of only a handful of devices integrated with the BLE protocol. 

The rest of this chapter will provide background information on emerging IoT applications and 

a summary of Bluetooth’s history. Subsequently, the significance of the research and its objectives 

will be presented, followed by a structural outline of this thesis. 

1.1 Background Information 

Before examining the research presented in this thesis, it is essential to present current and 

emerging IoT applications to emphasize their relevance in modern society. Additionally, a brief 

history of Bluetooth technology will highlight its development and discuss its role in supporting 

many of these IoT applications. 

1.1.1 Emerging IoT Applications 
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Industries are utilizing IoT devices to automate tasks that once required manual labor. In 

turn, they can expect more efficient output and more accurate data recordings, as humans cannot 

compete with the speed and precision of a computer. Actions that once required considerable 

time are now nearly instantaneous as users acquire data from wirelessly connected devices, 

such as computers or smartphones. Swamy and Kota [1] describe the domains within their 

defined ten emerging IoT applications, displayed in Figure 2. 

Figure 2: Emerging IoT applications [1]. 

The following are concise examinations of all ten applications, starting with Infrastructure 

Monitoring and moving clockwise with respect to the layout of Figure 2: 

• Infrastructure Monitoring: Civil structures with sensors efficiently scan for damage, 

reducing ecological, financial, and humanitarian risks. Intelligent military surveillance 

systems swiftly and precisely detect threats and rescue victims using advanced 
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identification systems. Data acquired manually in the infrastructure industry is not cost-

efficient; therefore, deploying IoT devices will save companies valuable resources. 

• Smart Agriculture: Deep learning models detect crop diseases and weeds at initial stages, 

smart greenhouses maintain optimal conditions, and livestock behavior and health are 

monitored from afar. Most farmers still rely on traditional farming techniques. However, 

integrating IoT devices helps mitigate traditional farming issues, save resources, and 

increase crop yield. 

• Smart Homes: Appliances are automated with a controlling device, such as a smartphone. 

Air quality is monitored to alert residents to pollutants, garden plant nutrition is observed 

and maintained remotely, intelligent surveillance quickly identifies threats near the 

property, and elderly residents at risk of fatal diseases can monitor their health remotely. 

Homeowners who utilize IoT devices experience an increased quality of life, as manual 

intervention is no longer required, and security is maintained. 

• Smart Health: Diseases and disorders are diagnosed early with integrated sensors. Remote 

real-time health monitoring systems for hospital patients are available. Smart devices 

track calories burned, sleep cycles, and heart rate, and emergency care operators quickly 

locate nearby hospitals. The presence of IoT devices in the healthcare industry helps 

prevent mistakes that could lead to further injury or death. 

• Smart Retail: Sensors enable customers to locate items quickly, Radio frequency 

identification tags assist store owners in managing inventory, self-checkouts are 

automated to scan barcodes using cameras, and virtual reality (VR) will soon facilitate 

remote shopping. With enhanced algorithms to personalize the customers’ shopping 

experience, retailers will benefit from IoT technology. 
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• Smart Power and Water Grids: Power grids have power loss monitoring and load 

balancing systems. Water grids monitor parameters such as water flow, pressure, and 

quality. Management systems for power and water monitor electrical energy and water 

consumption, respectively. With IoT devices, power and water grids maximize 

efficiency. 

• Factory Automation and Industry 4.0: Industry 4.0, the latest stage of the industrial 

revolution, leverages IoT technology to enhance manufacturing efficiency. Intelligent 

surveillance predicts and analyzes injuries in the workplace, while supply management 

operations are simplified through real-time tracking of products. Additionally, smart 

quality control operations analyze products in the final production stage. 

• Environmental Monitoring: IoT technology deployed in urban areas enhances residents’ 

quality of life. Detection models identify forest fires at early stages, water distribution 

and sanitization services are optimized with digital metering systems, outside air quality 

is continuously monitored, and alert systems alert residents of natural disasters. 

• Smart Cities: Smart cities are designed to improve societal well-being by providing IoT 

services to city officials and residents. Smart infrastructure systems optimize resource 

allocation, e-governance systems enable faster decision-making in government 

organizations and transparency in governing agencies, surveillance systems increase 

public safety by detecting and preventing crime, and urban residents control energy, 

water, and waste management. 

• Intelligent Transportation: Transportation forms, including roads, air, sea, and rail, are 

improved with integrated IoT technology. Cameras in vehicle-dense areas constantly 

control and monitor traffic, providing travelers with accurate traffic updates. Traveler 
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information systems provide travelers with live updates along the desired route, and 

vehicle-to-vehicle communication offers information about surrounding vehicles and 

infrastructure in autonomous vehicles [1]. 

Swamy and Kota’s report on emerging IoT technologies [1] supports the projected growth 

of worldwide IoT connections over the next decade, as shown in Figure 1 [2]. Many industries, 

including agriculture, manufacturing, and infrastructure, are utilizing this technology to help 

maximize product output, mitigate hazards, and increase societal well-being [1]. Therefore, the 

importance of IoT technologies in present times is evident, as well as their continued growth in 

usage in the years to come. 

1.1.2 Bluetooth Overview 

The foundation of Bluetooth dates to 1994, when Dr. Jaap Haartsen, a Dutch electrical 

engineer working for Ericsson in the United States at the time, devised a system that would 

enable wireless connectivity between electronic devices. Initially intended as a convenient 

alternative to wired voice calls, it eventually expanded to support a broader range of devices, 

including computers, smartphones, microphones, speakers, and more. Haartsen admitted, “To 

be honest, I did not have any idea of how big Bluetooth could become.” Haartsen later played 

a critical role in the founding of the Bluetooth Special Interest Group (SIG) in 1998 [9], a non-

profit international standards development organization comprising over 40,000 companies, 

which oversees the regulations, licensing, and development of Bluetooth technology [10], [11]. 

While Bluetooth technology grew in popularity, a concern was its power demand and the 

desire to integrate Bluetooth into smaller, low-power-consuming devices [12]. In 2001, Nokia 

started working on its wireless connectivity technology called Wibree, a lower power-
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consuming alternative to Bluetooth, also referred to as Bluetooth Classic [13], but operating on 

the same 2.4 GHz frequency band [14]. Nokia officially launched Wibree five years later, in 

2006 [12], and the Bluetooth SIG, seeing an opportunity, later absorbed Wibree in 2010 in 

Bluetooth Core Specification 4.0, renaming it to Bluetooth Low Energy [13], [15]. 

In 2023, the Bluetooth SIG reported an estimated 5 billion Bluetooth-enabled devices 

shipped worldwide, forecasted to grow to 7.5 billion worldwide shipments in 2028, a projected 

eight percent compound annual growth rate over five years [16]. Three decades after its 

inception, Bluetooth remains a market leader in wireless connectivity, and this trend is expected 

to continue for years to come. 

Today, Bluetooth technology, specifically BLE, plays a pivotal role in the IoT. BLE is 

widely integrated into modern smartphones, enabling seamless connectivity with other BLE-

enabled devices such as thermostats, lighting systems, and fitness trackers. Original Equipment 

Manufacturers (OEMs) often provide software applications that facilitate real-time control and 

monitoring, offering user-friendly solutions for consumers. 

1.2 Research Overview 

1.2.1 Significance 

Each IoT network is unique, varying in complexity, size, and protocols. A residential 

network, for example, may consist of only a handful of devices, whereas an industrial network 

may comprise hundreds of devices. Regardless of network scale or protocol diversity, many 

IoT environments can significantly benefit from an IoT gateway, a central hub that supports 

numerous protocols and concurrent connections. IoT gateways can vary in scalability, 

robustness, security, and protocol support, so users must select the correct gateway to meet their 

network’s requirements [17], [18]. OEMs of IoT gateways may provide a compatible Software 
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Development Kit (SDK) to customize their applications, allowing developers to meet specific 

design requirements. 

This thesis presents the design, development, and implementation of a unique IoT network, 

where an IoT gateway interfaces with customized printed circuit boards (PCBs) integrated with 

sensors via BLE, enabling tailored data acquisition (DAQ) applications. The system presented 

in this thesis is an addition to previous work conducted by Yarwood, Garretto, and Kuzior [19], 

[20], [21]. This included designing the BLE-enabled PCB, developing its sensor firmware, and 

implementing a custom smartphone DAQ application. However, the smartphone application 

has limitations: it can only connect to one PCB at a time due to Bluetooth hardware limitations 

and requires constant proximity between the smartphone and the PCB. In our previous study, 

we demonstrated that it is possible to detect the presence of Bovine Serum Albumin (BSA) at 

varying concentrations through a portable and cost-effective BLE-enabled device [22]. The 

newly proposed IoT gateway addresses these limitations by supporting at least four concurrent 

BLE connections and providing broader wireless access for users. 

1.2.2 Objectives 

The primary objective of this research is to develop embedded software applications for an 

IoT gateway that enable real-time sensor DAQ from custom BLE-enabled PCBs. Two 

applications will be created using the gateway’s SDK: a serial terminal program for convenient 

local monitoring, and a dynamic website for remote access from virtually any Internet-

accessible device. This dual-interface approach significantly improves the previous system, 

which supported DAQ from only one PCB at a time. 

To accomplish the primary objective, several sub-objectives must first be addressed: 
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1. Select an IoT gateway that meets the design requirements. 

2. Analyze the sensor’s functionality and the BLE data transmission structure of the 

custom PCBs. 

3. Identify a suitable development starting point within the IoT gateway’s SDK 

framework. 

4. Develop the website interface after confirming the successful implementation of the 

terminal application. 

1.3 Thesis Structure 

This thesis is organized into four additional chapters following this first introductory chapter. 

Chapter 2 provides a comprehensive review of related post-graduate research, highlighting the 

current state of technologies and addressing existing knowledge gaps. Chapter 3 outlines the 

methodology employed in this study, beginning with a general overview and progressing to 

technical specifics. Chapter 4 presents the research results along with a detailed discussion and 

analysis. Lastly, Chapter 5 delivers concluding remarks and proposes prospective additions and 

improvements to the system.  
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CHAPTER 2 – LITERATURE REVIEW 

This chapter reviews published works with applications pertinent to this thesis. Each discussed 

paper will be thoroughly examined and concisely presented, stating its purpose, key findings, and 

relevance to this paper. Ultimately, this chapter aims to highlight relevant applications, draw 

similarities between the research described in this paper and existing literature, and emphasize the 

originality and benefits of the research conducted for this thesis. 

2.1 IoT Gateway Solutions 

IoT gateways enable seamless communication across diverse networks by supporting various 

communication protocols. Unlike traditional network gateways that only handle Internet service, 

IoT gateways provide multi-protocol support, including Wi-Fi, Ethernet, dual-mode Bluetooth 

(Bluetooth Classic and BLE), Zigbee, LoRaWAN, and more. This ability to facilitate connections 

with various communication protocols makes them essential for IoT deployments. When 

interfacing with an extensive network of devices, IoT gateways are especially beneficial since they 

can translate and display large data streams in real-time for user management and monitoring 

through a custom web browser page or a cloud platform like Amazon Web Services (AWS) or 

Microsoft Azure. 

One practical application of an IoT gateway can be seen in the work of Glória et al. [23], who 

developed a Raspberry Pi, a small computer that features Internet connectivity, as an IoT gateway 

for real-time monitoring and control of a swimming pool. Although this is a simulated prototype 

design, it includes various sensors for measuring the water’s temperature and humidity, water 

level, a light detector, and a motor driver for water circulation. The Raspberry Pi sends this 

information to be viewed in a web browser via the Message Queueing Telemetry Transport 

(MQTT) protocol, a widely used data transmission protocol within the IoT due to its low 
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bandwidth consumption. Although this design was successful, many physical connections were 

used, which is unsafe for real-life swimming pool environments. Therefore, this design could be 

improved with waterproof wireless sensors that use a low-power communication protocol like 

BLE, Zigbee, or LoRaWAN. 

While consumers enjoy IoT technologies at home, industries utilize IoT technologies to create 

a safe and efficient working environment. IoT technologies implemented in industrial settings are 

categorized within the Industrial Internet of Things (IIoT) [1], [24]. Liu et al. [24] investigate the 

implementation of IIoT technologies in a cloud manufacturing system with an IIoT gateway. A 3-

D printer and a computer numerical control (CNC) machine were evaluated for feasibility and the 

advantages of the approach, with a Raspberry Pi as the acting IIoT gateway for both machines. 

Both case studies concluded that the open-source cloud-based solutions efficiently manage real-

time data and decisions. However, the studies rely too much on open-source software rather than 

developing customized software. Adding tailored functions to perform specific tasks could 

enhance the overall user experience. 

Lojka et al. [25] proposed an IIoT gateway architecture that integrates sensor networks with 

Human-Machine Interfaces (HMI) and Manufacturing Execution Systems (MES) to enhance 

remote monitoring and control. Their solution utilizes Service-Oriented Architecture (SOA), 

context-based services, and machine learning (ML) techniques to manage data flow and reduce 

human intervention. The gateway dynamically groups sensors based on contextual parameters 

such as temperature and location, enabling efficient event detection and query processing through 

a publish and subscribe model. Although the simulation validated the system, it lays the 

groundwork for intelligent, scalable, and flexible DAQ in industrial environments. The proposed 

architecture aligns with Industry 4.0 objectives by improving communication between operational 
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and business layers while enabling real-time decision-making at the network's edge. While the 

focus of their work is relevant for industrial settings, the following steps would involve deploying 

the gateway with real hardware to evaluate performance and reliability in live industrial settings, 

which is a focal point that this thesis will aim to cover. 

Altogether, these studies showcased the effectiveness of IoT gateways in enabling data 

transmission across the Internet. A recurring pattern in several works is using a Raspberry Pi to 

act as an IoT gateway. However, this thesis will adopt a different IoT gateway to be integrated into 

a custom network, expanding the range of implementation strategies. Additionally, some studies 

rely heavily on open-source software for DAQ, something this thesis will address by embedding 

custom-developed applications into the IoT gateway. By diverging from commonly used methods 

for DAQ, this research will provide new insights into the full potential of custom software 

applications for real-time sensor monitoring. 

2.2 BLE – Synopsis and Applications 

Traditional methods of communication rely on wires to send and receive data. Ethernet, for 

example, has been a staple in Internet communication for several decades and is more stable and 

secure than its wireless counterpart, Wi-Fi. Due to the consumer demands of fast data transfer 

rates, the tradeoff is greater power consumption and a higher probability of wireless network 

instability. Meanwhile, wireless communication protocols such as BLE, Zigbee, and LoRaWAN 

do not transmit at high data rates and are consequently low-power consuming and sufficiently 

stable. These protocols and more are integral in the continuously evolving IoT landscape, which 

includes sensors and wearable technology powered by low-power coin cell batteries. 

This thesis involves interfacing with BLE-enabled devices, making it essential to provide a 

detailed background about the BLE protocol. The first subsection will examine BLE’s theory of 
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operation, including its layered software architecture called the BLE stack. The second subsection 

will highlight custom BLE applications in scholarly writing to support BLE’s importance and 

developments within the IoT. 

2.2.1 BLE Stack 

The BLE protocol is commonly visualized as a layered structure called the BLE stack. As 

seen in Figure 3, there are three distinct layers: the application layer (APP), the host, and the 

controller [26]. This section will briefly discuss each layer and its sub-layers, if applicable. 

Figure 3: BLE stack architecture. 

The controller at the bottom of the BLE stack consists of two sublayers: the physical layer 

(PHY) and the link layer (LL) [26]. The PHY represents the 2.4 GHz radio that the BLE device 

uses to wirelessly send and receive data. Specifically, the radio operates within the 2.4 to 2.4835 

GHz frequency range, with 40 active channels spaced apart by 2 MHz. Three channels: 37, 38, 

and 39, are reserved for device advertising, while the other channels are used for data packet 
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exchange between devices [6], [26]. The LL directly interfaces with the PHY and defines the 

type of communications that can be created between BLE devices by managing the radio link 

state. Additionally, LL defines four device roles: master, slave, advertiser, and scanner [26]. 

The host-controller interface (HCI) does not exist within the host or the controller, however 

it is a crucial link between both layers. A set of rules exists within the HCI for translating raw 

data into packets, sending them via serial communication to the host from the controller, or vice 

versa [26]. 

The host in the middle of the BLE stack is entirely software-based, and it is comprised of 

five sublayers: the logical link control and adaptation protocol (L2CAP), the security manager 

(SM), the attribute protocol (ATT), the generic attribute profile (GATT), and the generic access 

profile (GAP). The L2CAP handles data from the LL and multiplexes it for the ATT and SM 

in a process called recombination or vice versa, which is called fragmentation [26]. The SM 

utilizes security algorithms for encrypting and decrypting data packets, which ensure secure 

connections, prevent man-in-the-middle attacks (MITM), and reduce power consumption 

during the connection process. 

The ATT defines the communication roles of client and server, in which the client is the 

device that requests data from the server [6], [26]. Upon receiving the request, the server sends 

data back to the client. Additionally, the ATT organizes data into attributes. Each attribute is 

assigned a handle, a Universally Unique Identifier (UUID), a set of permissions, and a value 

[26]. Using the ATT, GATT establishes the framework for organizing and exchanging data on 

a BLE server. This data is organized into hierarchical structures called services, which group 

related characteristics together characteristics. Each characteristic includes a value and may be 

accompanied by descriptors that provide additional metadata or configuration. Access control, 
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such as reading and writing permissions, is applied in the ATT. The Bluetooth SIG defines 

standard services and characteristics using 16-bit UUIDs, while developers can define custom 

ones using 128-bit UUIDs. Fundamentally, services, characteristics, and descriptors are all 

implemented as attributes within the ATT [26]. 

The GAP specifies modes and procedures for device and service discovery, as well as 

managing connection establishment and security. Additionally, the GAP defines four device 

roles: peripheral, central, broadcaster, and observer. A peripheral, typically a device with low 

power consumption, establishes a connection to a central. However, centrals are generally high-

power-consuming and can establish concurrent connections to multiple peripherals. 

Broadcasters, similar to peripherals, and observers, similar to centrals, do not establish 

connections. Consequently, all the broadcasters' data must be sent through their BLE 

advertisements, in which case the observer can receive these advertisements [6]. 

The APP at the top of the BLE stack represents the layer seen from the user’s perspective. 

Application profiles defined by the Bluetooth SIG are placed in the APP for simple 

interoperability across devices from different OEMs. Additionally, the Bluetooth specification 

permits the creation of custom profiles for specialized usages not defined by the SIG [26]. 

In previous work, a custom profile was created to organize the custom services that the 

custom BLE-enabled PCB hosts. Its attributes will be examined later in this thesis, which hold 

characteristics tied to each of its sensors. These BLE characteristics are essential links for 

developing custom applications. 

2.2.2 BLE Applications 

Due to its low power consumption and integration into modern smartphones, BLE has 

numerous applications ranging from healthcare and sports medicine to home integration and 
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environmental monitoring. De Fazio et al. [27] present a wearable chest band respiratory 

monitor to aid those with respiratory issues. This chest band utilizes just one sensor: a custom 

piezoresistive strain sensor (EeonTex LTT-SLPA-20K). Data is processed efficiently using 

various filtering techniques and is sent to a microcontroller unit (MCU) to facilitate BLE 

communication. A mobile application was also created for real-time DAQ from the EeonTex 

LTT-SLPA-20K. Alfian et al. [28] propose a BLE-enabled personalized healthcare monitoring 

system for diabetic patients. This includes utilizing commercial sensors, processing real-time 

data through Apache Kafka, storing data on MongoDB, and integrating machine learning 

techniques. Hughes et al. [29] investigate the development of a BLE sensor network for 

identifying construction noise and sound locating. The authors also test and compare wireless 

nodes that use different protocols to evaluate power consumption, range, data rate, etc. These 

developments are critical to understanding the current state of Bluetooth technology, more 

specifically, BLE. 
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CHAPTER 3 – METHODOLOGY 

This chapter presents an overview of the IoT network’s requirements and overall architecture, 

followed by detailed descriptions of its components' functional roles and development processes. 

3.1 Network Requirements and Architecture 

The initial requirement of this design was to locate an IoT gateway that would support at least 

four concurrent BLE connections to the YSU Tags, provide a compatible SDK for development, 

offer serial port communication for the serial terminal application, and feature an embedded 

Hypertext Transfer Protocol (HTTP) server for the dynamic website. The xPico 250 Evaluation 

Kit from Lantronix Inc. [30] satisfied all these design requirements. 

In previous work, four identical PCBs, designated as “YSU Tag,” were manufactured. The 

device’s name is derived from its manufacturing origin at Youngstown State University (YSU), 

with “Tag” indicating that it incorporates sensors. Each YSU Tag was given a letter label between 

A and D. Therefore, they will be referred to as “YSU Tag A,” “YSU Tag B,” “YSU Tag C,” and 

“YSU Tag D.” 

The proposed IoT network architectures for the terminal and website applications are shown in 

Figures 4 and 5, respectively. Both networks integrate the xPico 250 into the design to enable 

concurrent BLE connectivity for up to four YSU Tags. “Concurrent” implies that the BLE central 

(xPico 250) appears to connect to all the BLE peripherals (YSU Tags) simultaneously. In theory, 

however, the BLE central scans for BLE peripherals’ Radio Frequency (RF) advertisements [6], 

establishes a connection to one peripheral, and periodically switches connections to other 

peripherals. 
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Figure 4: IoT network architecture – Terminal application. 

Figure 5: IoT network architecture – Website application. 

The primary distinction between the two networks is how the xPico 250 interfaces with each 

application. Figure 4 shows that the terminal application utilizes wired communication via an RS-

232 to Universal Serial Bus (USB) cable for serial data transmission. In contrast, Figure 5 shows 

that the website application uses wireless communication via the xPico 250’s Wi-Fi access point. 

Additionally, the terminal application can only be accessed from a terminal emulator on a 
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computer, whereas the website can be accessed from virtually any Internet-accessible device. 

Ultimately, both applications accomplish similar tasks using different methods, resulting in 

distinct visual outputs. 

3.2 BLE Peripheral – YSU Tag 

The customized BLE-enabled PCB, “YSU Tag”, shown in Figure 6, is integrated with three 

distinct sensors. First is Bosch’s BME688: a four-in-one environmental sensor that measures 

temperature, relative humidity, barometric pressure, and gas resistance. The other two sensors, 

manufactured by Analog Devices, are the ADXL343, a 3-axis accelerometer that measures 

acceleration along each defined axis, and the AD5941, an electrical impedance sensor that 

measures an external load’s impedance in polar form: magnitude and phase. Figure 6 also displays 

a CR2032 3V coin cell battery capable of powering the YSU Tag when inserted into the battery 

placeholder on its reverse side. 

Figure 6: YSU Tag A next to a CR2032 battery. 

BME688 

ADXL343 

AD5941 
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The YSU Tag’s firmware [31], written entirely in C, is uploaded to it via a Joint Test Action 

Group (JTAG) connection to a Texas Instruments (TI) MCU. To initiate the firmware upload, the 

MCU must be connected to a computer with TI’s Integrated Development Environment (IDE), 

Code Composer Studio (CCS), via USB. Once CCS detects the MCU’s connection to the 

computer, firmware uploads will be permitted. 

The following subsections detail the sensors' configuration for this system and the BLE data 

packets. Lastly, the YSU Tag’s complete BLE transmission structure will be examined. 

3.2.1 BME688 

Bosch, the manufacturer of the BME688, states that it is the first gas sensor integrated with 

Artificial Intelligence (AI). Its gas sensor can detect various gases such as Volatile Organic 

Compounds (VOCs), volatile sulfur compounds (VSCs), as well as gases like carbon monoxide 

and hydrogen at concentrations as low as parts per billion (ppb) [32]. Although the AI gas-

sensing feature has not yet been implemented in this design, it could be utilized in future 

development to train different gases to be detected. 

In CCS, the BME688’s firmware outputs four different measurements: temperature in 

hundredths of degrees Celsius, barometric pressure in Pascals, relative humidity in thousandths 

of a percent, and gas resistance in ohms. Temperature is stored in 16 bits in memory, while the 

other three measurements are stored in 32 bits. Bosch provided an open-source firmware 

package for the BME688, reducing the overall development time. However, the four 

measurements will be transmitted via BLE, a function that Bosch did not provide. The data is 

split into one-byte chunks, bit-masked to ensure no overflow bits, and organized into a fourteen-

element array of 8 bits as shown in Figure 7 to be sent to the BME688’s measurement 

characteristic [19]. 
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Figure 7: Storing raw BME688 measurement data. 

3.2.2 ADXL343 

The ADXL343 is a flexible and robust 3-axis accelerometer configurable for resolution, 

sensitivity, and offsets for measurement error [33]. Acceleration is measured with the 

ADXL343 using Micro-Electro-Mechanical Systems (MEMS) technology, meaning it 

combines micro-mechanical and electronic functions using silicon and semiconductor 

processes, which are compact, lightweight, energy-efficient, low-cost, reliable, and resistant to 

vibration and shock [34]. Higher sensitivity configurations are ideal for fall detections, where 

large and less precise acceleration values are required [35]. In contrast, lower sensitivity 

configurations would be suitable for vibrational detections, where smaller and more precise 

acceleration values are required [36]. 

In CCS, the ADXL343’s firmware outputs tri-axial acceleration measurements in terms of 

gravitational acceleration (g), a constant defined as the gravitational acceleration near the 

surface of the Earth, equaling 9.81 m/s2 [35]. With the ADXL343 oriented upwards (See Figure 

6), the x and y axes reside on the horizontal plane, and the z-axis resides on the vertical plane. 

Each axis’ acceleration measurement is stored in 16 bits, later split into a most-significant byte 

and a least-significant byte, with the increase in bit significance corresponding to higher 

measurement value. When read, acceleration data is stored in an eight-element array of 8 bits 



 

22 
 

as shown in Figure 8 to be sent to the ADXL343’s measurement characteristic [19], [20], with 

two array elements initialized to zero that could output other data in future designs. 

Figure 8: Storing raw ADXL343 measurement data. 

3.2.3 AD5941 

The AD5941 is a high-precision, impedance, and electrochemical front-end. It has numerous 

applications, such as potentiostat, skin and body impedance, voltammetry, and glucose 

monitoring [37]. The AD5941 generates a fixed frequency in this design and measures an 

external load’s 2-wire impedance at the designated frequency. Impedance is measured through 

the AD5941’s Discrete Fourier Transform (DFT) engine, returning its real and imaginary parts 

and later converted to its polarized form of magnitude and phase. To take this measurement, 

users must connect wires to pins CE0 and AIN2 on the YSU Tag and connect the other ends of 

the wires to an impedance load. 

In CCS, the AD5941’s firmware outputs the generated frequency for impedance measuring 

and the connected external load’s polarized impedance components of magnitude and phase. 

All three measured values: frequency, magnitude, and phase, are stored in 16 bits of memory, 

later split into a most significant byte and a least significant byte, with the increase in bit 

significance corresponding to higher measurement value. When the reading process is 

complete, frequency and impedance data are stored in a fourteen-element array of 8 bits as 

shown in Figure 9 to be sent to the AD5941’s measurement characteristic [21], with eight array 

elements initialized to zero that could output other data in future designs. 
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Figure 9: Storing raw AD5941 measurement data. 

3.2.4 BLE Data Organization 

The YSU Tag is a BLE peripheral, meaning it is connectable to a BLE central. Once the 

central has indicated that it wants to connect to the peripheral and the connection is established, 

the peripheral will start sending previously locked data that was unavailable before the 

connection was established. Additionally, the device roles of central and peripheral change to 

client and server, respectively, when they establish a connection. The locked data is referred to 

as attributes, which are data structures that store information about the server and are 

categorized as either services, characteristics, or descriptors. Characteristics are what hold 

attainable values, such as sensor measurements. Also, characteristics are assigned different 

permissions, such as reading and writing. The BLE protocol governs the organization of 

attributes in a table-like structure, where each attribute is assigned a handle. Handles, analogous 

to array indices in programming, start with the 16-bit hexadecimal value of 0x0001 for the first 

attribute and increment by one until all the server’s attributes are accounted for. This structure 

is known as the Generic Attribute Profile (GATT), and each attribute will always be assigned 

the same handle as long as the server’s BLE stack remains unchanged [6], [26]. This 
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consistency in handle assignments will affect how each sensor’s characteristics are read from 

and written to. The YSU Tag’s attribute table is shown in Table 1. 

Attribute Description Handle(s) 
Generic Access Profile (GAP) 0x0001-0x000C 
Primary Service Declaration 0x000D 
Characteristic Declaration 0x000E 

BME688 Measurement 0x000F 
Client Characteristic Configuration 0x0010 

Characteristic User Description 0x0011 
Characteristic Declaration 0x0012 
BME688 Configuration 0x0013 

Characteristic User Description 0x0014 
Characteristic Declaration 0x0015 

BME688 Period 0x0016 
Characteristic User Description 0x0017 

Primary Service Declaration 0x0018 
Characteristic Declaration 0x0019 
ADXL343 Measurement 0x001A 

Client Characteristic Configuration 0x001B 
Characteristic User Description 0x001C 

Characteristic Declaration 0x001D 
ADXL343 Configuration 0x001E 

Characteristic User Description 0x001F 
Characteristic Declaration 0x0020 

ADXL343 Period 0x0021 
Characteristic User Description 0x0022 

Primary Service Declaration 0x0023 
Characteristic Declaration 0x0024 

AD5941 Measurement 0x0025 
Client Characteristic Configuration 0x0026 

Characteristic User Description 0x0027 
Characteristic Declaration 0x0028 

AD5941 Configuration 0x0029 
Characteristic User Description 0x002A 

Characteristic Declaration 0x002B 
AD5941 Period 0x002C 

Characteristic User Description 0x002D 
Table 1: YSU Tag – BLE attributes. 

The attributes of the Generic Access Profile (GAP) were condensed in Table 1 since this is 

outside the focus of this thesis. The GAP’s attributes store data such as the device name, 
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connection parameters, etc. The noteworthy attributes for this design include each sensor’s 

measurement and configuration characteristics, with their corresponding handle values, which 

will be utilized to perform specific tasks in both embedded software applications. 

3.3 IoT Gateway – xPico 250 Evaluation Kit 

The xPico 250 Evaluation Kit, as shown in Figure 10, was chosen for this system because it 

meets all design requirements: supports at least four concurrent BLE connections, provides a 

compatible SDK for customized development, offers serial port communication for the terminal 

application, and features an HTTP server for the website. 

Figure 10: xPico 250 Evaluation Kit. 

Robustness and security are two key priorities of the SDK, which performs a validation check 

on the developer uploading firmware to the xPico by verifying their signature. If the firmware is 

not signed with the correct private key, it will fail to upload. The SDK includes an extensive library 

of sample programs that can be modified, thereby hastening the development stage. The terminal 

and website applications originate from sample programs and will be merged into a unified 
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program, “TagView” [38]. By design, TagView’s terminal and website applications will be 

functionally independent, allowing users to choose between them based on convenience. 

The SDK’s library includes the sample terminal program, a serial application that connects to 

and interfaces with BLE peripherals. Once a connection is established with a peripheral, the 

program can perform operations such as reading and writing to the peripheral’s BLE 

characteristics. The sample program is limited to outputting only raw hexadecimal data from BLE 

characteristics, and the interface is inefficient, as users must enter many commands in the terminal 

to accomplish what could be reduced to just two commands. 

The sample website is an open-source application available on Lantronix’s GitHub profile. It is 

designed to scan BLE heart rate monitors and display their real-time measurements on a 

customized website hosted on the xPico 250’s embedded HTTP server. Since the sample website 

was developed with an obsolete SDK version, attempting to compile the entire program with the 

latest SDK version resulted in unresolvable errors attributed to the outdated SDK version it relied 

on. Instead of modifying the base website package, it is used as a structural reference. Custom 

functions will be written to ensure sensor data arrives at the correct destination. The open-source 

Bootstrap framework will also enable dynamic functionality for the website’s user interface (UI) 

by adding stylized buttons to initiate specific functions. 

TagView will address the shortcomings of the sample programs. TagView’s terminal will 

display cohesive sensor measurements for each connected YSU Tag based on the corresponding 

BLE characteristics. Also, the inefficiency of the sample program will be eliminated, reducing 

manual intervention to only a starting command and a stopping command. TagView’s website will 

be similar to the sample website's vision: collecting real-time sensor data from specific BLE 

peripherals. Instead of heart rate monitors, however, the website will be updated to support only 
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YSU Tags, acquiring cohesive sensor measurements at periodic intervals. The following sections 

will thoroughly examine each application, evaluating the development and derivation of key 

functions. 

3.3.1 Terminal Development 

TagView’s terminal application is written entirely in C. Each step of its algorithm is defined 

in one function, “TagView_CLI”, which will be called with a single command, “start”, in the 

serial terminal emulator of choice. The following algorithm is required for the TagView 

terminal: 

1. Connect to all powered-on and in-range YSU Tags. 

2. Enable sensor measurement readouts. 

3. Read and translate sensor measurements. 

4. Print sensor measurements to the terminal. 

5. Repeat step 4 and stop the program when the user enters any key on the keyboard. 

Before writing the algorithm, however, there must be a global struct that stores essential data 

for each YSU Tag. Since there are four YSU Tags, each having unique properties at any given 

time, a four-element array of this global structure is initialized. The parameters of this global 

structure will be showcased later, with most being initialized to zero until data is collected. The 

declaration of this global struct, “YSU_Tag”, is shown in Figure 11, and the initialization of a 

four-element array of “YSU_Tag” is shown in Figure 12. 
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Figure 11: Global declaration of “YSU_Tag” structure. 

Figure 12: Initialization for a four-element array of “YSU_Tag” structures. 

The first step of TagView’s terminal algorithm requires a modification of a function from 

the sample program. This function would connect to the corresponding BLE device's specified 

Media Access Control (MAC) address. For example, the user would enter the following 

command in the terminal to connect to a BLE device with the MAC address of 

“00:11:22:33:44:55”: “connect 001122334455”. Instead of performing this operation on one 

device at a time, the modified connection function will attempt to connect to all powered-on 

and in-range YSU Tags, referring to their hardware-defined MAC addresses. Table 2 shows the 

hardware-defined MAC addresses of each YSU Tag. 
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Device Name Hardware-Defined MAC Address 
YSU Tag A 84:C6:92:FD:EF:36 
YSU Tag B 84:C6:92:FD:EF:44 
YSU Tag C B0:D2:78:65:74:2D 
YSU Tag D B0:D2:78:65:74:2F 

Table 2: Hardware-defined MAC addresses of YSU Tags. 

The modified connection function will first attempt to connect to YSU Tag A and display 

status messages in the terminal based on the connection result. An SDK-defined BLE 

connection callback function assigns connection identification numbers to connected BLE 

devices; therefore, if the connection to the requested YSU Tag is successful, it will store the 

resulting connection ID in its struct parameter, “connection_id”, from Figure 11. If the 

connection to the requested YSU Tag is unsuccessful, the connection ID value of 0 will be 

stored in its corresponding struct parameter, which will be used for additional logic in later 

processes. This process is completed in alphabetical order of the tag’s later label, starting with 

YSU Tag A and ending with YSU Tag D. Additionally, delay functions were utilized to prevent 

the program from moving on to the next device too quickly and prevent connection failures, as 

well as implementing connection status messages to display in the terminal. Step 1 of the 

TagView’s terminal algorithm is shown in Figure 13. 
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Figure 13: Terminal connection process to four YSU Tags. 

The second step of TagView’s terminal algorithm requires enabling sensor measurement 

readouts. First, the connection status of each YSU Tag is determined by reading its connection 

ID struct parameter, with a non-zero ID indicating it is connected. Following connection 

verification, a one-byte value of “0x01” is written to each connected device’s corresponding 

sensor configuration characteristics using the SDK-defined BLE write function. Since there are 

three sensors on the YSU Tag, each device has three characteristic writes. The feature of 

enabling each sensor was previously configured in the YSU Tag’s firmware to conserve power 

by adding user control for enabling or disabling sensors based on their necessity at a given time. 

Additionally, users can disable sensor measurement readouts by writing a one-byte value of 
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“0x00” to the requested sensors’ BLE configuration characteristics. This feature of disabling 

sensors will not be implemented in this design, but it could be a future addition to increase 

device power efficiency. 

Referring to Table 1, the handles associated with the sensor configuration characteristics are 

0x0013, 0x001E, and 0x0029. This process is implemented in a separate function named 

“enableSensors”, the full definition of which is shown in Figure 14. Once the “enableSensors” 

function has been called in “TagView_CLI”, there will be an added delay of three seconds 

before moving on to the next step of the algorithm, which is shown in Figure 15. 

Figure 14: “enableSensors” function definition. 

Figure 15: Terminal enabling sensor measurements process. 

The third step of TagView’s terminal algorithm requires reading and translating sensor 

measurements from all connected YSU Tags. Immediately after the process highlighted in 

Figures 14 and 15, the “TagView_CLI” function will enter an infinite while loop, performing 

the sensor measurement characteristic reads from each connected YSU Tag. Similar to the 

second step of the terminal’s algorithm, the process of reading the requested YSU Tag’s sensor 
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measurements will only do so if its stored connection ID is non-zero. Following connection 

verification, the program will call a separate function, “getSensorData,” to acquire the specified 

device’s sensor measurements. 

Two arguments are passed to the “getSensorData” function: the index of the YSU Tag array 

of structures and the handle value attempting to be read from. The same two arguments will 

then be passed to the SDK-defined BLE read function. Referring to Table 1, “getSensorData” 

will perform characteristic reads from three handles: 0x000F, 0x001A, and 0x0025. The 

resulting sensor measurement data fills a buffer array with raw hexadecimal data. Based on the 

requested handle, the buffer array is decoded. The BME688, ADXL343, and AD5941 data 

processing is shown in Figures 16, 17, and 18, respectively. 

Figure 16: BME688 measurement characteristic translation. 
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Figure 17: ADXL343 measurement characteristic translation. 
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Figure 18: AD5941 measurement characteristic translation. 

The fourth step of TagView’s terminal algorithm requires printing sensor measurements to 

the terminal. Once all a specific YSU Tag’s sensors have been read, the translated sensor 

measurements will be displayed in the terminal emulator of choice for real-time monitoring. 

Finally, the fifth step of the algorithm requires the process explained in the fourth step to repeat 

until the user enters any key on the keyboard into the terminal. This step was added due to user 

convenience; instead of rebooting the xPico 250 and reloading TagView in the terminal 

emulator, the user can quickly stop the repeated cycle of reading YSU Tags’ sensor 

measurements. The fourth and fifth steps of the terminal algorithm are shown in Figure 19. 
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Figure 19: Terminal sensor measurement readout process. 

3.3.2 Website Development 

Unlike TagView’s terminal application, its website is written in several languages. This 

includes C for back-end development of the function handling, as well as JavaScript (JS), 

Cascading Style Sheets (CSS), and HyperText Markup Language (HTML) for front-end 

development of the UI on the website. TagView’s website uses some of the same back-end 

functions as the terminal, simplifying its development process significantly. The following 

algorithm is required for the TagView website: 

1. Connect to all powered-on and in-range YSU Tags. 

2. Enable sensor measurement readouts. 

3. Read and translate sensor measurements. 
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4. Display sensor measurements on the website. 

Steps one through three of TagView’s website algorithm are identical to the terminal’s, 

implementing the same functions the terminal application uses. The fourth step of the website’s 

algorithm requires displaying sensor measurements. A separate C file defines an Application 

Programming Interface (API) to transmit requested data to the xPico 250’s embedded HTTP 

server. API requests are managed through Uniform Resource Identifiers (URIs). Figure 20 

shows the “/getDAQ” URI endpoint on the first line of code, with steps one through three 

executing under this endpoint. The full URI is “/tagView/getDAQ” and will be requested when 

a button is asserted on the website. 

Figure 20: YSU Tag connection and sensor reading in the API. 

Immediately following the process highlighted in Figure 20, each connected YSU Tag’s 

structure data is stored in a JavaScript Object Notation (JSON) object. This JSON object can 

be transmitted over HTTP, making it a popular choice for establishing communication between 

the back-end and front-end sides of applications. This process is shown in Figures 21 and 22. 

This concludes the back-end development of the website. 
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Figure 21: Sending sensor data into a JSON object, part 1. 
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Figure 22: Sending sensor data into a JSON object, part 2. 

The website's structure is written in HTML, relying on the open-source Bootstrap framework 

to enable dynamic functionality for the website’s UI by adding stylized buttons to initiate 

specific functions and enhanced visual displays. Each YSU Tag’s sensor data will be split into 

different columns, supporting up to four concurrent BLE connections. As previously 

mentioned, the requested path to the URI endpoint in the API is called when a user clicks a 

specific button on the website. This button is labeled “Scan YSU Tags” on the website and calls 

the “getSensors” function in the “main.js” file when it is clicked. The developed 

“tagView.html” file is shown in Figure 23. 
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Figure 23: “tagView.html”. 

Lastly, to bridge the connection between the API and the website, a JS file, “main.js”, will 

handle this task. There are two notable functions in “main.js”. First, the “formatValue” function 

will handle several sensor data conditions: if data was received at all, printing the sign of the 

sensor measurement if applicable, and formatting the hundredths place precision for each 

measurement. Second, the “displaySensors” function will get the JSON response, send data to 

the “formatValue” function, and format data strings to link to “tagView.html”. This process is 

shown in Figure 24. 
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Figure 24: Sensor data formatting functions in “main.js”. 
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CHAPTER 4 – RESULTS AND DISCUSSION 

The system in Figure 25 was assembled for sensor DAQ in the TagView terminal and website 

applications. YSU Tags A and B are powered by a CR2032 coin cell battery, whereas two TI 

MCUs powered via USB provide power to YSU Tags C and D via JTAG. The xPico 250 

Evaluation Kit is powered on via a power adapter, and the RS-232 end of an RS-232 to USB cable 

is connected to it for the terminal application, with the USB end connected to the computer. Lastly, 

two antennas are connected to it, one for Bluetooth and the other for Wi-Fi to be utilized with the 

website. 

Figure 25: IoT network implementation. 
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The following subsections display and explain the output of both TagView applications: the 

serial terminal program and the dynamic website. Afterwards, the applications are compared, 

highlighting their successes and shortcomings. 

4.1 Terminal Output 

The TagView terminal application was developed to acquire real-time data concurrently from 

up to four YSU Tags and display it in a serial terminal emulator. Tera Term is the serial terminal 

emulator of choice, an open-source application widely used for serial port communication. Users 

write one command in the terminal to initiate the program: “start”. Several status messages appear 

based on the connection result to each YSU Tag. Following the connection process, another status 

message indicates that sensors are being enabled. This start-up process is shown in Figure 26. 

Figure 26: TagView – Terminal. Start-up sequence. 

Once the start-up process is complete, the program will begin reading, translating, and printing 

sensor measurements. The program skips over YSU Tags that are not connected and will repeat 

the measurement read cycle once all connected devices have been read. Users can terminate the 

DAQ by pressing any key on the keyboard, which is shown in a message prompt in Figure 27. The 

DAQ from four YSU Tags is displayed in Figures 27 and 28. 
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Figure 27: TagView – Terminal. DAQ from YSU Tags A and B. 

Figure 28: TagView – Terminal. DAQ from YSU Tags C and D. 
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4.2 Website Output 

The TagView website application was developed to acquire real-time data concurrently from 

up to four YSU Tags and display it on a customized website hosted on the xPico 250’s HTTP 

server. This website can be accessed when a connection has been established between the xPico 

250’s Wi-Fi access point and virtually any Internet-accessible device, such as a computer or 

smartphone.  When the user clicks “Scan YSU Tags”, a similar process will happen as in the 

terminal application: attempting to connect to all powered-on and in-range YSU Tags, enabling 

sensor measurements, and reading and translating sensor measurements. The display shown in 

Figure 29 is a DAQ from four YSU Tags. The corresponding JSON response from the API is 

displayed in Figure 30, proving that sensor data was received from all four YSU Tags. 

Figure 29: TagView – Website. DAQ from four YSU Tags. 
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Figure 30: JSON response – DAQ from four YSU Tags. 

When fewer than four YSU Tags are connected, the website should display blank values for 

each sensor’s measurement to indicate to users that the specified device is not connected. In this 

case, a question mark will appear. Figure 31 shows that when the xPico 250 is connected to YSU 

Tags A and B, it should perform DAQs normally from those devices. However, since YSU Tags 

C and D are not connected, it displays question marks next to their sensor measurements. 

Figure 31: TagView – Website. DAQ from two YSU Tags. 
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4.3 Discussion of Results 

Overall, both applications resulted in successful DAQs from YSU Tags. The terminal 

application implements two commands: one for starting the DAQ and the other for stopping it. On 

the other hand, the website only implements one command, which is to begin the DAQ. Currently, 

the terminal application’s DAQ is faster than the website’s, likely due to the API’s algorithm, 

which requires all connected YSU Tags’ sensor measurements to be read before displaying all the 

data on the website. Additionally, the terminal outputs status messages at various stages of the 

program, whereas the website does not. However, the website has the potential to be a more user-

friendly experience with continued development, as the UI already has enhanced visuals, whereas 

the terminal does not. For instance, the website could be accessed over the Internet; currently, it 

can only be accessed through a Wi-Fi connection to the xPico 250’s access point. 

Overall, both applications could be significantly improved in speed and user experience, since 

they are new additions to the design. This features a significant improvement from the previous 

work, which could interface with only one YSU Tag at a time. 
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CHAPTER 5 – CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

This thesis successfully demonstrated the design, development, and implementation of two 

software applications, a serial terminal program and a dynamic website, for real-time DAQ from 

up to four custom BLE peripherals using an IoT gateway. Utilizing the xPico 250 Evaluation Kit 

and its compatible SDK, the proposed system achieved concurrent BLE connectivity, overcoming 

the previous design’s limitation of single-device communication. 

The terminal application provides convenient local access through serial communication to a 

computer, while the dynamic website offers cross-platform accessibility and enhanced visual 

representation. Both applications effectively interface and acquire data from all three sensors on 

the YSU Tag: BME688, ADXL343, and AD5941. These sensor measurements include 

temperature, relative humidity, barometric pressure, gas resistance, tri-axial acceleration, and 

impedance. 

Compared to previous work, this thesis enhances the system by enabling multi-device 

communication, centralized control, and dual-accessibility interfaces. The results validate the 

feasibility of using an embedded IoT gateway as a robust, secure, and flexible solution for 

managing custom sensor networks. 

5.2 Future Work 

Additional modifications could be implemented on the TagView website. For instance, adding 

support to facilitate data exportation from the website for a data analysis project, comparing each  

YSU Tag’s sensor measurements to traditional measurement methods, and composing necessary 

firmware calibrations. Also, a system could be devised to have all connected YSU Tags 

communicate with each other through the xPico 250, something that was not possible before 
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integrating the gateway into the IoT network. This could benefit future development, as certain 

measurement thresholds could trigger other devices to perform specific functions. Additionally, 

more URI endpoints could be created in the website’s API to handle different conditions and 

inputs, such as a stop button to terminate the DAQ or to disable specific sensors. Furthermore, it 

may be worthwhile to transfer functionality from the previously designed smartphone app over to 

the website, its standout feature being that it has graphs to log each sensor’s measurements. Lastly, 

support for website remote access could be introduced by registering a domain name, since it can 

only be accessed by connecting to the xPico 250’s Wi-Fi access point. 

Regarding the YSU Tag, the AD5941’s impedance measurements output zero for both 

magnitude and phase. However, this should require minimal firmware adjustments as the correct 

user-configured generated frequency is displayed. Furthermore, the AI gas-sensing feature of the 

BME688 could be implemented to detect specific gases. Also, the sensors’ period characteristics 

could be investigated, as this supposedly controls the speed of the corresponding sensor’s 

measurement readouts. Lastly, modifying the YSU Tag’s BLE stack could optimize its power 

efficiency by altering its advertisement and removing unnecessary attributes. 
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