

Development of an Internet of Things Gateway for Interfacing with Bluetooth Low Energy
Peripherals

by

Joshua Porter

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Master of Science in Engineering

in

Electrical Engineering

YOUNGSTOWN STATE UNIVERSITY

May 2025

Development of an Internet of Things Gateway for Interfacing with Bluetooth Low Energy
Peripherals

Joshua Porter

I hereby release this thesis to the public. I understand that this thesis will be made available from
the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also
authorize the University or other individuals to make copies of this thesis as needed for scholarly
research.

Signature:

 Joshua Porter, Student Date

Approvals:

 Vamsi Borra, PhD, Thesis Advisor Date

 Frank X. Li, PhD, Committee Member Date

 Ghassan Salim, Committee Member Date

 Severine Van slambrouck, PhD, Graduate Studies Date

iii

ABSTRACT

Internet of Things (IoT) devices, such as thermostats, lighting systems, and fitness trackers,

have revolutionized both residential and industrial environments, enabling users to remotely

control and manage them. Although many IoT devices are often manageable through Original

Equipment Manufacturer (OEM) software applications, overseeing devices from various OEM

origins simultaneously, or even customized hardware, can be complex and tedious. To address this

challenge, an IoT gateway serves as a centralized hub that supports wireless connectivity across

various protocols. Bluetooth Low Energy (BLE), a widely adopted wireless communication

protocol in low-power-consuming devices such as sensors, is therefore employed in many IoT

gateways. Large-scale IoT networks significantly benefit from an IoT gateway, as it provides a

unified management point for all connected devices. OEMs of IoT gateways may offer a software

development kit (SDK) to facilitate application customization, enabling the attainment of specific

design requirements. This thesis presents the design, development, and implementation of two

software applications to acquire real-time sensor data from custom BLE-enabled printed circuit

boards (PCBs). Leveraging an IoT gateway, its compatible SDK, and a library of sample programs,

two applications are developed to monitor sensor data: a serial terminal interface and a dynamic

web-based dashboard.

iv

ACKNOWLEDGMENTS

First, I would like to thank my thesis advisor, Dr. Vamsi Borra, and the director of the Rayen

School of Engineering at Youngstown State University (YSU), Dr. Frank Li, for appointing me as

a graduate assistant in the department of electrical and computer engineering at YSU to support

my thesis research and for their invaluable guidance.

Next, I would like to thank my numerous teachers and professors throughout my education,

especially Mr. Ghassan Salim. Their enthusiasm, expertise, and commitment to helping students

succeed have left a lasting impact on my life. Without these select few, I would not have developed

a significant enthusiasm for learning or pursued the daunting challenge of completing a master's

thesis.

Next, I would like to thank my fellow graduate assistants, who brightened each day in the lab,

provided knowledgeable assistance, and offered meaningful words of encouragement.

Additionally, I would like to thank my undergraduate lab students, who welcomed me as a teaching

assistant, enabling me to strengthen both my teaching skills and expertise.

Finally, I would like to thank my family and friends for their enduring love and support. Their

invaluable guidance has encouraged me to keep striving for my life goals, and I could not be more

grateful for that.

This thesis is dedicated to my grandmother, who regrettably passed away during its writing.

Although she could not see its completion, she always believed I could achieve anything I set my

mind to.

v

TABLE OF CONTENTS

ABSTRACT--- iii

ACKNOWLEDGMENTS ---iv

LIST OF FIGURES -- vii

LIST OF TABLES --ix

LIST OF ABBREVIATIONS --- x

CHAPTER 1 – INTRODUCTION --- 1

1.1 Background Information --- 2

1.1.1 Emerging IoT Applications -- 2

1.1.2 Bluetooth Overview --- 6

1.2 Research Overview --- 7

1.2.1 Significance -- 7

1.2.2 Objectives -- 8

1.3 Thesis Structure --- 9

CHAPTER 2 – LITERATURE REVIEW -- 10

2.1 IoT Gateway Solutions -- 10

2.2 BLE – Synopsis and Applications --- 12

2.2.1 BLE Stack --- 13

2.2.2 BLE Applications -- 15

CHAPTER 3 – METHODOLOGY -- 17

3.1 Network Requirements and Architecture --- 17

3.2 BLE Peripheral – YSU Tag --- 19

3.2.1 BME688 --- 20

3.2.2 ADXL343 --- 21

3.2.3 AD5941 -- 22

3.2.4 BLE Data Organization --- 23

3.3 IoT Gateway – xPico 250 Evaluation Kit -- 25

3.3.1 Terminal Development -- 27

3.3.2 Website Development --- 35

CHAPTER 4 – RESULTS AND DISCUSSION -- 41

4.1 Terminal Output -- 42

vi

4.2 Website Output --- 44

4.3 Discussion of Results -- 46

CHAPTER 5 – CONCLUSION AND FUTURE WORK -- 47

5.1 Conclusion -- 47

5.2 Future Work --- 47

REFERENCES --- 49

vii

LIST OF FIGURES

Figure 1: Worldwide IoT connections forecast (2023-2034) [2]. -------------------------------------- 1

Figure 2: Emerging IoT applications [1]. -- 3

Figure 3: BLE stack architecture. -- 13

Figure 4: IoT network architecture – Terminal application. --- 18

Figure 5: IoT network architecture – Website application. -- 18

Figure 6: YSU Tag A next to a CR2032 battery. -- 19

Figure 7: Storing raw BME688 measurement data. --- 21

Figure 8: Storing raw ADXL343 measurement data. --- 22

Figure 9: Storing raw AD5941 measurement data. -- 23

Figure 10: xPico 250 Evaluation Kit. -- 25

Figure 11: Global declaration of “YSU_Tag” structure. --- 28

Figure 12: Initialization for a four-element array of “YSU_Tag” structures. ----------------------- 28

Figure 13: Terminal connection process to four YSU Tags. --- 30

Figure 14: “enableSensors” function definition. --- 31

Figure 15: Terminal enabling sensor measurements process. -- 31

Figure 16: BME688 measurement characteristic translation. -- 32

Figure 17: ADXL343 measurement characteristic translation. -- 33

Figure 18: AD5941 measurement characteristic translation. -- 34

Figure 19: Terminal sensor measurement readout process. -- 35

Figure 20: YSU Tag connection and sensor reading in the API. -------------------------------------- 36

Figure 21: Sending sensor data into a JSON object, part 1. -- 37

Figure 22: Sending sensor data into a JSON object, part 2. -- 38

Figure 23: “tagView.html”. --- 39

Figure 24: Sensor data formatting functions in “main.js”. --- 40

Figure 25: IoT network implementation. --- 41

Figure 26: TagView – Terminal. Start-up sequence. -- 42

Figure 27: TagView – Terminal. DAQ from YSU Tags A and B. ------------------------------------ 43

Figure 28: TagView – Terminal. DAQ from YSU Tags C and D. ------------------------------------ 43

Figure 29: TagView – Website. DAQ from four YSU Tags. -- 44

Figure 30: JSON response – DAQ from four YSU Tags. -- 45

viii

Figure 31: TagView – Website. DAQ from two YSU Tags. --- 45

ix

LIST OF TABLES

Table 1: YSU Tag – BLE attributes. -- 24

Table 2: Hardware-defined MAC addresses of YSU Tags. -- 29

x

LIST OF ABBREVIATIONS

API – Application Programming Interface

BLE – Bluetooth Low Energy

CCS – Code Composer Studio

CSS – Cascading Style Sheets

DAQ – Data Acquisition

HTML – Hypertext Markup Language

HTTP – Hypertext Transfer Protocol

IIoT – Industrial Internet of Things

IoT – Internet of Things

JSON – JavaScript Object Notation

JS – JavaScript

JTAG – Joint Test Action Group

MAC – Media Access Control

MCU – Microcontroller Unit

OEM – Original Equipment Manufacturer

PCB – Printed Circuit Board

SIG – Special Interest Group

SDK – Software Development Kit

TI – Texas Instruments

UI – User Interface

URI – Uniform Resource Identifier

USB – Universal Serial Bus

UUID – Universally Unique Identifier

YSU – Youngstown State University

1

CHAPTER 1 – INTRODUCTION

The Internet has become a fundamental component of modern infrastructure, revolutionizing

communication, information exchange, and business operations. Devices like computers,

smartphones, and wearables are prime examples of how the Internet has permeated modern

society. These devices, along with others, comprise the Internet of Things (IoT), a broad term

encompassing interconnected devices that collect, control, analyze, and share data in real-time

over the Internet [1]. In 2024, industry leaders estimated a worldwide total of 17.9 billion IoT-

connected devices, with this number expected to have doubled by 2032 [2]. This graphical forecast

is displayed in Figure 1.

Figure 1: Worldwide IoT connections forecast (2023-2034) [2].

For instance, low-power-consuming devices, such as sensors and antennas [3], [4], [5], utilize

communication protocols optimized for low power consumption. Bluetooth Low Energy (BLE) is

a widespread protocol that facilitates communication between low-power peripheral devices and

high-power central devices [6]. Unlike the need for special controllers for high-energy applications

and heavy industrial equipment [7], [8], end devices in the day-to-day are primarily operated on

15.8
17.9

20.0
22.2

24.4
26.8

29.1
31.5

33.9
36.3

38.6
41.0

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034

of

 C
on

ne
ct

io
ns

 (b
ill

io
ns

)

Year

Worldwide IoT Connections Forecast (2023-2034)

2

low power. BLE centrals, unlike BLE peripherals, typically establish Internet connections;

therefore, when a peripheral connects and transfers data to a central, the central handles the

peripheral’s data transfer to the Internet, thus completing a local IoT network. Bluetooth is a widely

used communication standard in many IoT networks and can be further classified into two

protocols: Bluetooth Classic and BLE. Evidently, BLE consumes less energy than Bluetooth

Classic, making it a more sensible choice for integrating into technology with low-power

requirements, such as sensors and wearables.

BLE stands out from other low-power wireless communication protocols such as Zigbee due to

its high data rate, low power consumption, and seamless integration into modern smartphones.

Even though Zigbee is widely used in low-power applications and is more reliable than BLE for

large IoT networks, it has a significantly lower data rate, and it requires a centralized hub with the

Zigbee protocol [1]. Therefore, BLE will suffice for the design outlined in this thesis, as the

working IoT network consists of only a handful of devices integrated with the BLE protocol.

The rest of this chapter will provide background information on emerging IoT applications and

a summary of Bluetooth’s history. Subsequently, the significance of the research and its objectives

will be presented, followed by a structural outline of this thesis.

1.1 Background Information

Before examining the research presented in this thesis, it is essential to present current and

emerging IoT applications to emphasize their relevance in modern society. Additionally, a brief

history of Bluetooth technology will highlight its development and discuss its role in supporting

many of these IoT applications.

1.1.1 Emerging IoT Applications

3

Industries are utilizing IoT devices to automate tasks that once required manual labor. In

turn, they can expect more efficient output and more accurate data recordings, as humans cannot

compete with the speed and precision of a computer. Actions that once required considerable

time are now nearly instantaneous as users acquire data from wirelessly connected devices,

such as computers or smartphones. Swamy and Kota [1] describe the domains within their

defined ten emerging IoT applications, displayed in Figure 2.

Figure 2: Emerging IoT applications [1].

The following are concise examinations of all ten applications, starting with Infrastructure

Monitoring and moving clockwise with respect to the layout of Figure 2:

• Infrastructure Monitoring: Civil structures with sensors efficiently scan for damage,

reducing ecological, financial, and humanitarian risks. Intelligent military surveillance

systems swiftly and precisely detect threats and rescue victims using advanced

4

identification systems. Data acquired manually in the infrastructure industry is not cost-

efficient; therefore, deploying IoT devices will save companies valuable resources.

• Smart Agriculture: Deep learning models detect crop diseases and weeds at initial stages,

smart greenhouses maintain optimal conditions, and livestock behavior and health are

monitored from afar. Most farmers still rely on traditional farming techniques. However,

integrating IoT devices helps mitigate traditional farming issues, save resources, and

increase crop yield.

• Smart Homes: Appliances are automated with a controlling device, such as a smartphone.

Air quality is monitored to alert residents to pollutants, garden plant nutrition is observed

and maintained remotely, intelligent surveillance quickly identifies threats near the

property, and elderly residents at risk of fatal diseases can monitor their health remotely.

Homeowners who utilize IoT devices experience an increased quality of life, as manual

intervention is no longer required, and security is maintained.

• Smart Health: Diseases and disorders are diagnosed early with integrated sensors. Remote

real-time health monitoring systems for hospital patients are available. Smart devices

track calories burned, sleep cycles, and heart rate, and emergency care operators quickly

locate nearby hospitals. The presence of IoT devices in the healthcare industry helps

prevent mistakes that could lead to further injury or death.

• Smart Retail: Sensors enable customers to locate items quickly, Radio frequency

identification tags assist store owners in managing inventory, self-checkouts are

automated to scan barcodes using cameras, and virtual reality (VR) will soon facilitate

remote shopping. With enhanced algorithms to personalize the customers’ shopping

experience, retailers will benefit from IoT technology.

5

• Smart Power and Water Grids: Power grids have power loss monitoring and load

balancing systems. Water grids monitor parameters such as water flow, pressure, and

quality. Management systems for power and water monitor electrical energy and water

consumption, respectively. With IoT devices, power and water grids maximize

efficiency.

• Factory Automation and Industry 4.0: Industry 4.0, the latest stage of the industrial

revolution, leverages IoT technology to enhance manufacturing efficiency. Intelligent

surveillance predicts and analyzes injuries in the workplace, while supply management

operations are simplified through real-time tracking of products. Additionally, smart

quality control operations analyze products in the final production stage.

• Environmental Monitoring: IoT technology deployed in urban areas enhances residents’

quality of life. Detection models identify forest fires at early stages, water distribution

and sanitization services are optimized with digital metering systems, outside air quality

is continuously monitored, and alert systems alert residents of natural disasters.

• Smart Cities: Smart cities are designed to improve societal well-being by providing IoT

services to city officials and residents. Smart infrastructure systems optimize resource

allocation, e-governance systems enable faster decision-making in government

organizations and transparency in governing agencies, surveillance systems increase

public safety by detecting and preventing crime, and urban residents control energy,

water, and waste management.

• Intelligent Transportation: Transportation forms, including roads, air, sea, and rail, are

improved with integrated IoT technology. Cameras in vehicle-dense areas constantly

control and monitor traffic, providing travelers with accurate traffic updates. Traveler

6

information systems provide travelers with live updates along the desired route, and

vehicle-to-vehicle communication offers information about surrounding vehicles and

infrastructure in autonomous vehicles [1].

Swamy and Kota’s report on emerging IoT technologies [1] supports the projected growth

of worldwide IoT connections over the next decade, as shown in Figure 1 [2]. Many industries,

including agriculture, manufacturing, and infrastructure, are utilizing this technology to help

maximize product output, mitigate hazards, and increase societal well-being [1]. Therefore, the

importance of IoT technologies in present times is evident, as well as their continued growth in

usage in the years to come.

1.1.2 Bluetooth Overview

The foundation of Bluetooth dates to 1994, when Dr. Jaap Haartsen, a Dutch electrical

engineer working for Ericsson in the United States at the time, devised a system that would

enable wireless connectivity between electronic devices. Initially intended as a convenient

alternative to wired voice calls, it eventually expanded to support a broader range of devices,

including computers, smartphones, microphones, speakers, and more. Haartsen admitted, “To

be honest, I did not have any idea of how big Bluetooth could become.” Haartsen later played

a critical role in the founding of the Bluetooth Special Interest Group (SIG) in 1998 [9], a non-

profit international standards development organization comprising over 40,000 companies,

which oversees the regulations, licensing, and development of Bluetooth technology [10], [11].

While Bluetooth technology grew in popularity, a concern was its power demand and the

desire to integrate Bluetooth into smaller, low-power-consuming devices [12]. In 2001, Nokia

started working on its wireless connectivity technology called Wibree, a lower power-

7

consuming alternative to Bluetooth, also referred to as Bluetooth Classic [13], but operating on

the same 2.4 GHz frequency band [14]. Nokia officially launched Wibree five years later, in

2006 [12], and the Bluetooth SIG, seeing an opportunity, later absorbed Wibree in 2010 in

Bluetooth Core Specification 4.0, renaming it to Bluetooth Low Energy [13], [15].

In 2023, the Bluetooth SIG reported an estimated 5 billion Bluetooth-enabled devices

shipped worldwide, forecasted to grow to 7.5 billion worldwide shipments in 2028, a projected

eight percent compound annual growth rate over five years [16]. Three decades after its

inception, Bluetooth remains a market leader in wireless connectivity, and this trend is expected

to continue for years to come.

Today, Bluetooth technology, specifically BLE, plays a pivotal role in the IoT. BLE is

widely integrated into modern smartphones, enabling seamless connectivity with other BLE-

enabled devices such as thermostats, lighting systems, and fitness trackers. Original Equipment

Manufacturers (OEMs) often provide software applications that facilitate real-time control and

monitoring, offering user-friendly solutions for consumers.

1.2 Research Overview

1.2.1 Significance

Each IoT network is unique, varying in complexity, size, and protocols. A residential

network, for example, may consist of only a handful of devices, whereas an industrial network

may comprise hundreds of devices. Regardless of network scale or protocol diversity, many

IoT environments can significantly benefit from an IoT gateway, a central hub that supports

numerous protocols and concurrent connections. IoT gateways can vary in scalability,

robustness, security, and protocol support, so users must select the correct gateway to meet their

network’s requirements [17], [18]. OEMs of IoT gateways may provide a compatible Software

8

Development Kit (SDK) to customize their applications, allowing developers to meet specific

design requirements.

This thesis presents the design, development, and implementation of a unique IoT network,

where an IoT gateway interfaces with customized printed circuit boards (PCBs) integrated with

sensors via BLE, enabling tailored data acquisition (DAQ) applications. The system presented

in this thesis is an addition to previous work conducted by Yarwood, Garretto, and Kuzior [19],

[20], [21]. This included designing the BLE-enabled PCB, developing its sensor firmware, and

implementing a custom smartphone DAQ application. However, the smartphone application

has limitations: it can only connect to one PCB at a time due to Bluetooth hardware limitations

and requires constant proximity between the smartphone and the PCB. In our previous study,

we demonstrated that it is possible to detect the presence of Bovine Serum Albumin (BSA) at

varying concentrations through a portable and cost-effective BLE-enabled device [22]. The

newly proposed IoT gateway addresses these limitations by supporting at least four concurrent

BLE connections and providing broader wireless access for users.

1.2.2 Objectives

The primary objective of this research is to develop embedded software applications for an

IoT gateway that enable real-time sensor DAQ from custom BLE-enabled PCBs. Two

applications will be created using the gateway’s SDK: a serial terminal program for convenient

local monitoring, and a dynamic website for remote access from virtually any Internet-

accessible device. This dual-interface approach significantly improves the previous system,

which supported DAQ from only one PCB at a time.

To accomplish the primary objective, several sub-objectives must first be addressed:

9

1. Select an IoT gateway that meets the design requirements.

2. Analyze the sensor’s functionality and the BLE data transmission structure of the

custom PCBs.

3. Identify a suitable development starting point within the IoT gateway’s SDK

framework.

4. Develop the website interface after confirming the successful implementation of the

terminal application.

1.3 Thesis Structure

This thesis is organized into four additional chapters following this first introductory chapter.

Chapter 2 provides a comprehensive review of related post-graduate research, highlighting the

current state of technologies and addressing existing knowledge gaps. Chapter 3 outlines the

methodology employed in this study, beginning with a general overview and progressing to

technical specifics. Chapter 4 presents the research results along with a detailed discussion and

analysis. Lastly, Chapter 5 delivers concluding remarks and proposes prospective additions and

improvements to the system.

10

CHAPTER 2 – LITERATURE REVIEW

This chapter reviews published works with applications pertinent to this thesis. Each discussed

paper will be thoroughly examined and concisely presented, stating its purpose, key findings, and

relevance to this paper. Ultimately, this chapter aims to highlight relevant applications, draw

similarities between the research described in this paper and existing literature, and emphasize the

originality and benefits of the research conducted for this thesis.

2.1 IoT Gateway Solutions

IoT gateways enable seamless communication across diverse networks by supporting various

communication protocols. Unlike traditional network gateways that only handle Internet service,

IoT gateways provide multi-protocol support, including Wi-Fi, Ethernet, dual-mode Bluetooth

(Bluetooth Classic and BLE), Zigbee, LoRaWAN, and more. This ability to facilitate connections

with various communication protocols makes them essential for IoT deployments. When

interfacing with an extensive network of devices, IoT gateways are especially beneficial since they

can translate and display large data streams in real-time for user management and monitoring

through a custom web browser page or a cloud platform like Amazon Web Services (AWS) or

Microsoft Azure.

One practical application of an IoT gateway can be seen in the work of Glória et al. [23], who

developed a Raspberry Pi, a small computer that features Internet connectivity, as an IoT gateway

for real-time monitoring and control of a swimming pool. Although this is a simulated prototype

design, it includes various sensors for measuring the water’s temperature and humidity, water

level, a light detector, and a motor driver for water circulation. The Raspberry Pi sends this

information to be viewed in a web browser via the Message Queueing Telemetry Transport

(MQTT) protocol, a widely used data transmission protocol within the IoT due to its low

11

bandwidth consumption. Although this design was successful, many physical connections were

used, which is unsafe for real-life swimming pool environments. Therefore, this design could be

improved with waterproof wireless sensors that use a low-power communication protocol like

BLE, Zigbee, or LoRaWAN.

While consumers enjoy IoT technologies at home, industries utilize IoT technologies to create

a safe and efficient working environment. IoT technologies implemented in industrial settings are

categorized within the Industrial Internet of Things (IIoT) [1], [24]. Liu et al. [24] investigate the

implementation of IIoT technologies in a cloud manufacturing system with an IIoT gateway. A 3-

D printer and a computer numerical control (CNC) machine were evaluated for feasibility and the

advantages of the approach, with a Raspberry Pi as the acting IIoT gateway for both machines.

Both case studies concluded that the open-source cloud-based solutions efficiently manage real-

time data and decisions. However, the studies rely too much on open-source software rather than

developing customized software. Adding tailored functions to perform specific tasks could

enhance the overall user experience.

Lojka et al. [25] proposed an IIoT gateway architecture that integrates sensor networks with

Human-Machine Interfaces (HMI) and Manufacturing Execution Systems (MES) to enhance

remote monitoring and control. Their solution utilizes Service-Oriented Architecture (SOA),

context-based services, and machine learning (ML) techniques to manage data flow and reduce

human intervention. The gateway dynamically groups sensors based on contextual parameters

such as temperature and location, enabling efficient event detection and query processing through

a publish and subscribe model. Although the simulation validated the system, it lays the

groundwork for intelligent, scalable, and flexible DAQ in industrial environments. The proposed

architecture aligns with Industry 4.0 objectives by improving communication between operational

12

and business layers while enabling real-time decision-making at the network's edge. While the

focus of their work is relevant for industrial settings, the following steps would involve deploying

the gateway with real hardware to evaluate performance and reliability in live industrial settings,

which is a focal point that this thesis will aim to cover.

Altogether, these studies showcased the effectiveness of IoT gateways in enabling data

transmission across the Internet. A recurring pattern in several works is using a Raspberry Pi to

act as an IoT gateway. However, this thesis will adopt a different IoT gateway to be integrated into

a custom network, expanding the range of implementation strategies. Additionally, some studies

rely heavily on open-source software for DAQ, something this thesis will address by embedding

custom-developed applications into the IoT gateway. By diverging from commonly used methods

for DAQ, this research will provide new insights into the full potential of custom software

applications for real-time sensor monitoring.

2.2 BLE – Synopsis and Applications

Traditional methods of communication rely on wires to send and receive data. Ethernet, for

example, has been a staple in Internet communication for several decades and is more stable and

secure than its wireless counterpart, Wi-Fi. Due to the consumer demands of fast data transfer

rates, the tradeoff is greater power consumption and a higher probability of wireless network

instability. Meanwhile, wireless communication protocols such as BLE, Zigbee, and LoRaWAN

do not transmit at high data rates and are consequently low-power consuming and sufficiently

stable. These protocols and more are integral in the continuously evolving IoT landscape, which

includes sensors and wearable technology powered by low-power coin cell batteries.

This thesis involves interfacing with BLE-enabled devices, making it essential to provide a

detailed background about the BLE protocol. The first subsection will examine BLE’s theory of

13

operation, including its layered software architecture called the BLE stack. The second subsection

will highlight custom BLE applications in scholarly writing to support BLE’s importance and

developments within the IoT.

2.2.1 BLE Stack

The BLE protocol is commonly visualized as a layered structure called the BLE stack. As

seen in Figure 3, there are three distinct layers: the application layer (APP), the host, and the

controller [26]. This section will briefly discuss each layer and its sub-layers, if applicable.

Figure 3: BLE stack architecture.

The controller at the bottom of the BLE stack consists of two sublayers: the physical layer

(PHY) and the link layer (LL) [26]. The PHY represents the 2.4 GHz radio that the BLE device

uses to wirelessly send and receive data. Specifically, the radio operates within the 2.4 to 2.4835

GHz frequency range, with 40 active channels spaced apart by 2 MHz. Three channels: 37, 38,

and 39, are reserved for device advertising, while the other channels are used for data packet

14

exchange between devices [6], [26]. The LL directly interfaces with the PHY and defines the

type of communications that can be created between BLE devices by managing the radio link

state. Additionally, LL defines four device roles: master, slave, advertiser, and scanner [26].

The host-controller interface (HCI) does not exist within the host or the controller, however

it is a crucial link between both layers. A set of rules exists within the HCI for translating raw

data into packets, sending them via serial communication to the host from the controller, or vice

versa [26].

The host in the middle of the BLE stack is entirely software-based, and it is comprised of

five sublayers: the logical link control and adaptation protocol (L2CAP), the security manager

(SM), the attribute protocol (ATT), the generic attribute profile (GATT), and the generic access

profile (GAP). The L2CAP handles data from the LL and multiplexes it for the ATT and SM

in a process called recombination or vice versa, which is called fragmentation [26]. The SM

utilizes security algorithms for encrypting and decrypting data packets, which ensure secure

connections, prevent man-in-the-middle attacks (MITM), and reduce power consumption

during the connection process.

The ATT defines the communication roles of client and server, in which the client is the

device that requests data from the server [6], [26]. Upon receiving the request, the server sends

data back to the client. Additionally, the ATT organizes data into attributes. Each attribute is

assigned a handle, a Universally Unique Identifier (UUID), a set of permissions, and a value

[26]. Using the ATT, GATT establishes the framework for organizing and exchanging data on

a BLE server. This data is organized into hierarchical structures called services, which group

related characteristics together characteristics. Each characteristic includes a value and may be

accompanied by descriptors that provide additional metadata or configuration. Access control,

15

such as reading and writing permissions, is applied in the ATT. The Bluetooth SIG defines

standard services and characteristics using 16-bit UUIDs, while developers can define custom

ones using 128-bit UUIDs. Fundamentally, services, characteristics, and descriptors are all

implemented as attributes within the ATT [26].

The GAP specifies modes and procedures for device and service discovery, as well as

managing connection establishment and security. Additionally, the GAP defines four device

roles: peripheral, central, broadcaster, and observer. A peripheral, typically a device with low

power consumption, establishes a connection to a central. However, centrals are generally high-

power-consuming and can establish concurrent connections to multiple peripherals.

Broadcasters, similar to peripherals, and observers, similar to centrals, do not establish

connections. Consequently, all the broadcasters' data must be sent through their BLE

advertisements, in which case the observer can receive these advertisements [6].

The APP at the top of the BLE stack represents the layer seen from the user’s perspective.

Application profiles defined by the Bluetooth SIG are placed in the APP for simple

interoperability across devices from different OEMs. Additionally, the Bluetooth specification

permits the creation of custom profiles for specialized usages not defined by the SIG [26].

In previous work, a custom profile was created to organize the custom services that the

custom BLE-enabled PCB hosts. Its attributes will be examined later in this thesis, which hold

characteristics tied to each of its sensors. These BLE characteristics are essential links for

developing custom applications.

2.2.2 BLE Applications

Due to its low power consumption and integration into modern smartphones, BLE has

numerous applications ranging from healthcare and sports medicine to home integration and

16

environmental monitoring. De Fazio et al. [27] present a wearable chest band respiratory

monitor to aid those with respiratory issues. This chest band utilizes just one sensor: a custom

piezoresistive strain sensor (EeonTex LTT-SLPA-20K). Data is processed efficiently using

various filtering techniques and is sent to a microcontroller unit (MCU) to facilitate BLE

communication. A mobile application was also created for real-time DAQ from the EeonTex

LTT-SLPA-20K. Alfian et al. [28] propose a BLE-enabled personalized healthcare monitoring

system for diabetic patients. This includes utilizing commercial sensors, processing real-time

data through Apache Kafka, storing data on MongoDB, and integrating machine learning

techniques. Hughes et al. [29] investigate the development of a BLE sensor network for

identifying construction noise and sound locating. The authors also test and compare wireless

nodes that use different protocols to evaluate power consumption, range, data rate, etc. These

developments are critical to understanding the current state of Bluetooth technology, more

specifically, BLE.

17

CHAPTER 3 – METHODOLOGY

This chapter presents an overview of the IoT network’s requirements and overall architecture,

followed by detailed descriptions of its components' functional roles and development processes.

3.1 Network Requirements and Architecture

The initial requirement of this design was to locate an IoT gateway that would support at least

four concurrent BLE connections to the YSU Tags, provide a compatible SDK for development,

offer serial port communication for the serial terminal application, and feature an embedded

Hypertext Transfer Protocol (HTTP) server for the dynamic website. The xPico 250 Evaluation

Kit from Lantronix Inc. [30] satisfied all these design requirements.

In previous work, four identical PCBs, designated as “YSU Tag,” were manufactured. The

device’s name is derived from its manufacturing origin at Youngstown State University (YSU),

with “Tag” indicating that it incorporates sensors. Each YSU Tag was given a letter label between

A and D. Therefore, they will be referred to as “YSU Tag A,” “YSU Tag B,” “YSU Tag C,” and

“YSU Tag D.”

The proposed IoT network architectures for the terminal and website applications are shown in

Figures 4 and 5, respectively. Both networks integrate the xPico 250 into the design to enable

concurrent BLE connectivity for up to four YSU Tags. “Concurrent” implies that the BLE central

(xPico 250) appears to connect to all the BLE peripherals (YSU Tags) simultaneously. In theory,

however, the BLE central scans for BLE peripherals’ Radio Frequency (RF) advertisements [6],

establishes a connection to one peripheral, and periodically switches connections to other

peripherals.

18

Figure 4: IoT network architecture – Terminal application.

Figure 5: IoT network architecture – Website application.

The primary distinction between the two networks is how the xPico 250 interfaces with each

application. Figure 4 shows that the terminal application utilizes wired communication via an RS-

232 to Universal Serial Bus (USB) cable for serial data transmission. In contrast, Figure 5 shows

that the website application uses wireless communication via the xPico 250’s Wi-Fi access point.

Additionally, the terminal application can only be accessed from a terminal emulator on a

19

computer, whereas the website can be accessed from virtually any Internet-accessible device.

Ultimately, both applications accomplish similar tasks using different methods, resulting in

distinct visual outputs.

3.2 BLE Peripheral – YSU Tag

The customized BLE-enabled PCB, “YSU Tag”, shown in Figure 6, is integrated with three

distinct sensors. First is Bosch’s BME688: a four-in-one environmental sensor that measures

temperature, relative humidity, barometric pressure, and gas resistance. The other two sensors,

manufactured by Analog Devices, are the ADXL343, a 3-axis accelerometer that measures

acceleration along each defined axis, and the AD5941, an electrical impedance sensor that

measures an external load’s impedance in polar form: magnitude and phase. Figure 6 also displays

a CR2032 3V coin cell battery capable of powering the YSU Tag when inserted into the battery

placeholder on its reverse side.

Figure 6: YSU Tag A next to a CR2032 battery.

BME688

ADXL343

AD5941

20

The YSU Tag’s firmware [31], written entirely in C, is uploaded to it via a Joint Test Action

Group (JTAG) connection to a Texas Instruments (TI) MCU. To initiate the firmware upload, the

MCU must be connected to a computer with TI’s Integrated Development Environment (IDE),

Code Composer Studio (CCS), via USB. Once CCS detects the MCU’s connection to the

computer, firmware uploads will be permitted.

The following subsections detail the sensors' configuration for this system and the BLE data

packets. Lastly, the YSU Tag’s complete BLE transmission structure will be examined.

3.2.1 BME688

Bosch, the manufacturer of the BME688, states that it is the first gas sensor integrated with

Artificial Intelligence (AI). Its gas sensor can detect various gases such as Volatile Organic

Compounds (VOCs), volatile sulfur compounds (VSCs), as well as gases like carbon monoxide

and hydrogen at concentrations as low as parts per billion (ppb) [32]. Although the AI gas-

sensing feature has not yet been implemented in this design, it could be utilized in future

development to train different gases to be detected.

In CCS, the BME688’s firmware outputs four different measurements: temperature in

hundredths of degrees Celsius, barometric pressure in Pascals, relative humidity in thousandths

of a percent, and gas resistance in ohms. Temperature is stored in 16 bits in memory, while the

other three measurements are stored in 32 bits. Bosch provided an open-source firmware

package for the BME688, reducing the overall development time. However, the four

measurements will be transmitted via BLE, a function that Bosch did not provide. The data is

split into one-byte chunks, bit-masked to ensure no overflow bits, and organized into a fourteen-

element array of 8 bits as shown in Figure 7 to be sent to the BME688’s measurement

characteristic [19].

21

Figure 7: Storing raw BME688 measurement data.

3.2.2 ADXL343

The ADXL343 is a flexible and robust 3-axis accelerometer configurable for resolution,

sensitivity, and offsets for measurement error [33]. Acceleration is measured with the

ADXL343 using Micro-Electro-Mechanical Systems (MEMS) technology, meaning it

combines micro-mechanical and electronic functions using silicon and semiconductor

processes, which are compact, lightweight, energy-efficient, low-cost, reliable, and resistant to

vibration and shock [34]. Higher sensitivity configurations are ideal for fall detections, where

large and less precise acceleration values are required [35]. In contrast, lower sensitivity

configurations would be suitable for vibrational detections, where smaller and more precise

acceleration values are required [36].

In CCS, the ADXL343’s firmware outputs tri-axial acceleration measurements in terms of

gravitational acceleration (g), a constant defined as the gravitational acceleration near the

surface of the Earth, equaling 9.81 m/s2 [35]. With the ADXL343 oriented upwards (See Figure

6), the x and y axes reside on the horizontal plane, and the z-axis resides on the vertical plane.

Each axis’ acceleration measurement is stored in 16 bits, later split into a most-significant byte

and a least-significant byte, with the increase in bit significance corresponding to higher

measurement value. When read, acceleration data is stored in an eight-element array of 8 bits

22

as shown in Figure 8 to be sent to the ADXL343’s measurement characteristic [19], [20], with

two array elements initialized to zero that could output other data in future designs.

Figure 8: Storing raw ADXL343 measurement data.

3.2.3 AD5941

The AD5941 is a high-precision, impedance, and electrochemical front-end. It has numerous

applications, such as potentiostat, skin and body impedance, voltammetry, and glucose

monitoring [37]. The AD5941 generates a fixed frequency in this design and measures an

external load’s 2-wire impedance at the designated frequency. Impedance is measured through

the AD5941’s Discrete Fourier Transform (DFT) engine, returning its real and imaginary parts

and later converted to its polarized form of magnitude and phase. To take this measurement,

users must connect wires to pins CE0 and AIN2 on the YSU Tag and connect the other ends of

the wires to an impedance load.

In CCS, the AD5941’s firmware outputs the generated frequency for impedance measuring

and the connected external load’s polarized impedance components of magnitude and phase.

All three measured values: frequency, magnitude, and phase, are stored in 16 bits of memory,

later split into a most significant byte and a least significant byte, with the increase in bit

significance corresponding to higher measurement value. When the reading process is

complete, frequency and impedance data are stored in a fourteen-element array of 8 bits as

shown in Figure 9 to be sent to the AD5941’s measurement characteristic [21], with eight array

elements initialized to zero that could output other data in future designs.

23

Figure 9: Storing raw AD5941 measurement data.

3.2.4 BLE Data Organization

The YSU Tag is a BLE peripheral, meaning it is connectable to a BLE central. Once the

central has indicated that it wants to connect to the peripheral and the connection is established,

the peripheral will start sending previously locked data that was unavailable before the

connection was established. Additionally, the device roles of central and peripheral change to

client and server, respectively, when they establish a connection. The locked data is referred to

as attributes, which are data structures that store information about the server and are

categorized as either services, characteristics, or descriptors. Characteristics are what hold

attainable values, such as sensor measurements. Also, characteristics are assigned different

permissions, such as reading and writing. The BLE protocol governs the organization of

attributes in a table-like structure, where each attribute is assigned a handle. Handles, analogous

to array indices in programming, start with the 16-bit hexadecimal value of 0x0001 for the first

attribute and increment by one until all the server’s attributes are accounted for. This structure

is known as the Generic Attribute Profile (GATT), and each attribute will always be assigned

the same handle as long as the server’s BLE stack remains unchanged [6], [26]. This

24

consistency in handle assignments will affect how each sensor’s characteristics are read from

and written to. The YSU Tag’s attribute table is shown in Table 1.

Attribute Description Handle(s)
Generic Access Profile (GAP) 0x0001-0x000C
Primary Service Declaration 0x000D
Characteristic Declaration 0x000E

BME688 Measurement 0x000F
Client Characteristic Configuration 0x0010

Characteristic User Description 0x0011
Characteristic Declaration 0x0012
BME688 Configuration 0x0013

Characteristic User Description 0x0014
Characteristic Declaration 0x0015

BME688 Period 0x0016
Characteristic User Description 0x0017

Primary Service Declaration 0x0018
Characteristic Declaration 0x0019
ADXL343 Measurement 0x001A

Client Characteristic Configuration 0x001B
Characteristic User Description 0x001C

Characteristic Declaration 0x001D
ADXL343 Configuration 0x001E

Characteristic User Description 0x001F
Characteristic Declaration 0x0020

ADXL343 Period 0x0021
Characteristic User Description 0x0022

Primary Service Declaration 0x0023
Characteristic Declaration 0x0024

AD5941 Measurement 0x0025
Client Characteristic Configuration 0x0026

Characteristic User Description 0x0027
Characteristic Declaration 0x0028

AD5941 Configuration 0x0029
Characteristic User Description 0x002A

Characteristic Declaration 0x002B
AD5941 Period 0x002C

Characteristic User Description 0x002D
Table 1: YSU Tag – BLE attributes.

The attributes of the Generic Access Profile (GAP) were condensed in Table 1 since this is

outside the focus of this thesis. The GAP’s attributes store data such as the device name,

25

connection parameters, etc. The noteworthy attributes for this design include each sensor’s

measurement and configuration characteristics, with their corresponding handle values, which

will be utilized to perform specific tasks in both embedded software applications.

3.3 IoT Gateway – xPico 250 Evaluation Kit

The xPico 250 Evaluation Kit, as shown in Figure 10, was chosen for this system because it

meets all design requirements: supports at least four concurrent BLE connections, provides a

compatible SDK for customized development, offers serial port communication for the terminal

application, and features an HTTP server for the website.

Figure 10: xPico 250 Evaluation Kit.

Robustness and security are two key priorities of the SDK, which performs a validation check

on the developer uploading firmware to the xPico by verifying their signature. If the firmware is

not signed with the correct private key, it will fail to upload. The SDK includes an extensive library

of sample programs that can be modified, thereby hastening the development stage. The terminal

and website applications originate from sample programs and will be merged into a unified

26

program, “TagView” [38]. By design, TagView’s terminal and website applications will be

functionally independent, allowing users to choose between them based on convenience.

The SDK’s library includes the sample terminal program, a serial application that connects to

and interfaces with BLE peripherals. Once a connection is established with a peripheral, the

program can perform operations such as reading and writing to the peripheral’s BLE

characteristics. The sample program is limited to outputting only raw hexadecimal data from BLE

characteristics, and the interface is inefficient, as users must enter many commands in the terminal

to accomplish what could be reduced to just two commands.

The sample website is an open-source application available on Lantronix’s GitHub profile. It is

designed to scan BLE heart rate monitors and display their real-time measurements on a

customized website hosted on the xPico 250’s embedded HTTP server. Since the sample website

was developed with an obsolete SDK version, attempting to compile the entire program with the

latest SDK version resulted in unresolvable errors attributed to the outdated SDK version it relied

on. Instead of modifying the base website package, it is used as a structural reference. Custom

functions will be written to ensure sensor data arrives at the correct destination. The open-source

Bootstrap framework will also enable dynamic functionality for the website’s user interface (UI)

by adding stylized buttons to initiate specific functions.

TagView will address the shortcomings of the sample programs. TagView’s terminal will

display cohesive sensor measurements for each connected YSU Tag based on the corresponding

BLE characteristics. Also, the inefficiency of the sample program will be eliminated, reducing

manual intervention to only a starting command and a stopping command. TagView’s website will

be similar to the sample website's vision: collecting real-time sensor data from specific BLE

peripherals. Instead of heart rate monitors, however, the website will be updated to support only

27

YSU Tags, acquiring cohesive sensor measurements at periodic intervals. The following sections

will thoroughly examine each application, evaluating the development and derivation of key

functions.

3.3.1 Terminal Development

TagView’s terminal application is written entirely in C. Each step of its algorithm is defined

in one function, “TagView_CLI”, which will be called with a single command, “start”, in the

serial terminal emulator of choice. The following algorithm is required for the TagView

terminal:

1. Connect to all powered-on and in-range YSU Tags.

2. Enable sensor measurement readouts.

3. Read and translate sensor measurements.

4. Print sensor measurements to the terminal.

5. Repeat step 4 and stop the program when the user enters any key on the keyboard.

Before writing the algorithm, however, there must be a global struct that stores essential data

for each YSU Tag. Since there are four YSU Tags, each having unique properties at any given

time, a four-element array of this global structure is initialized. The parameters of this global

structure will be showcased later, with most being initialized to zero until data is collected. The

declaration of this global struct, “YSU_Tag”, is shown in Figure 11, and the initialization of a

four-element array of “YSU_Tag” is shown in Figure 12.

28

Figure 11: Global declaration of “YSU_Tag” structure.

Figure 12: Initialization for a four-element array of “YSU_Tag” structures.

The first step of TagView’s terminal algorithm requires a modification of a function from

the sample program. This function would connect to the corresponding BLE device's specified

Media Access Control (MAC) address. For example, the user would enter the following

command in the terminal to connect to a BLE device with the MAC address of

“00:11:22:33:44:55”: “connect 001122334455”. Instead of performing this operation on one

device at a time, the modified connection function will attempt to connect to all powered-on

and in-range YSU Tags, referring to their hardware-defined MAC addresses. Table 2 shows the

hardware-defined MAC addresses of each YSU Tag.

29

Device Name Hardware-Defined MAC Address
YSU Tag A 84:C6:92:FD:EF:36
YSU Tag B 84:C6:92:FD:EF:44
YSU Tag C B0:D2:78:65:74:2D
YSU Tag D B0:D2:78:65:74:2F

Table 2: Hardware-defined MAC addresses of YSU Tags.

The modified connection function will first attempt to connect to YSU Tag A and display

status messages in the terminal based on the connection result. An SDK-defined BLE

connection callback function assigns connection identification numbers to connected BLE

devices; therefore, if the connection to the requested YSU Tag is successful, it will store the

resulting connection ID in its struct parameter, “connection_id”, from Figure 11. If the

connection to the requested YSU Tag is unsuccessful, the connection ID value of 0 will be

stored in its corresponding struct parameter, which will be used for additional logic in later

processes. This process is completed in alphabetical order of the tag’s later label, starting with

YSU Tag A and ending with YSU Tag D. Additionally, delay functions were utilized to prevent

the program from moving on to the next device too quickly and prevent connection failures, as

well as implementing connection status messages to display in the terminal. Step 1 of the

TagView’s terminal algorithm is shown in Figure 13.

30

Figure 13: Terminal connection process to four YSU Tags.

The second step of TagView’s terminal algorithm requires enabling sensor measurement

readouts. First, the connection status of each YSU Tag is determined by reading its connection

ID struct parameter, with a non-zero ID indicating it is connected. Following connection

verification, a one-byte value of “0x01” is written to each connected device’s corresponding

sensor configuration characteristics using the SDK-defined BLE write function. Since there are

three sensors on the YSU Tag, each device has three characteristic writes. The feature of

enabling each sensor was previously configured in the YSU Tag’s firmware to conserve power

by adding user control for enabling or disabling sensors based on their necessity at a given time.

Additionally, users can disable sensor measurement readouts by writing a one-byte value of

31

“0x00” to the requested sensors’ BLE configuration characteristics. This feature of disabling

sensors will not be implemented in this design, but it could be a future addition to increase

device power efficiency.

Referring to Table 1, the handles associated with the sensor configuration characteristics are

0x0013, 0x001E, and 0x0029. This process is implemented in a separate function named

“enableSensors”, the full definition of which is shown in Figure 14. Once the “enableSensors”

function has been called in “TagView_CLI”, there will be an added delay of three seconds

before moving on to the next step of the algorithm, which is shown in Figure 15.

Figure 14: “enableSensors” function definition.

Figure 15: Terminal enabling sensor measurements process.

The third step of TagView’s terminal algorithm requires reading and translating sensor

measurements from all connected YSU Tags. Immediately after the process highlighted in

Figures 14 and 15, the “TagView_CLI” function will enter an infinite while loop, performing

the sensor measurement characteristic reads from each connected YSU Tag. Similar to the

second step of the terminal’s algorithm, the process of reading the requested YSU Tag’s sensor

32

measurements will only do so if its stored connection ID is non-zero. Following connection

verification, the program will call a separate function, “getSensorData,” to acquire the specified

device’s sensor measurements.

Two arguments are passed to the “getSensorData” function: the index of the YSU Tag array

of structures and the handle value attempting to be read from. The same two arguments will

then be passed to the SDK-defined BLE read function. Referring to Table 1, “getSensorData”

will perform characteristic reads from three handles: 0x000F, 0x001A, and 0x0025. The

resulting sensor measurement data fills a buffer array with raw hexadecimal data. Based on the

requested handle, the buffer array is decoded. The BME688, ADXL343, and AD5941 data

processing is shown in Figures 16, 17, and 18, respectively.

Figure 16: BME688 measurement characteristic translation.

33

Figure 17: ADXL343 measurement characteristic translation.

34

Figure 18: AD5941 measurement characteristic translation.

The fourth step of TagView’s terminal algorithm requires printing sensor measurements to

the terminal. Once all a specific YSU Tag’s sensors have been read, the translated sensor

measurements will be displayed in the terminal emulator of choice for real-time monitoring.

Finally, the fifth step of the algorithm requires the process explained in the fourth step to repeat

until the user enters any key on the keyboard into the terminal. This step was added due to user

convenience; instead of rebooting the xPico 250 and reloading TagView in the terminal

emulator, the user can quickly stop the repeated cycle of reading YSU Tags’ sensor

measurements. The fourth and fifth steps of the terminal algorithm are shown in Figure 19.

35

Figure 19: Terminal sensor measurement readout process.

3.3.2 Website Development

Unlike TagView’s terminal application, its website is written in several languages. This

includes C for back-end development of the function handling, as well as JavaScript (JS),

Cascading Style Sheets (CSS), and HyperText Markup Language (HTML) for front-end

development of the UI on the website. TagView’s website uses some of the same back-end

functions as the terminal, simplifying its development process significantly. The following

algorithm is required for the TagView website:

1. Connect to all powered-on and in-range YSU Tags.

2. Enable sensor measurement readouts.

3. Read and translate sensor measurements.

36

4. Display sensor measurements on the website.

Steps one through three of TagView’s website algorithm are identical to the terminal’s,

implementing the same functions the terminal application uses. The fourth step of the website’s

algorithm requires displaying sensor measurements. A separate C file defines an Application

Programming Interface (API) to transmit requested data to the xPico 250’s embedded HTTP

server. API requests are managed through Uniform Resource Identifiers (URIs). Figure 20

shows the “/getDAQ” URI endpoint on the first line of code, with steps one through three

executing under this endpoint. The full URI is “/tagView/getDAQ” and will be requested when

a button is asserted on the website.

Figure 20: YSU Tag connection and sensor reading in the API.

Immediately following the process highlighted in Figure 20, each connected YSU Tag’s

structure data is stored in a JavaScript Object Notation (JSON) object. This JSON object can

be transmitted over HTTP, making it a popular choice for establishing communication between

the back-end and front-end sides of applications. This process is shown in Figures 21 and 22.

This concludes the back-end development of the website.

37

Figure 21: Sending sensor data into a JSON object, part 1.

38

Figure 22: Sending sensor data into a JSON object, part 2.

The website's structure is written in HTML, relying on the open-source Bootstrap framework

to enable dynamic functionality for the website’s UI by adding stylized buttons to initiate

specific functions and enhanced visual displays. Each YSU Tag’s sensor data will be split into

different columns, supporting up to four concurrent BLE connections. As previously

mentioned, the requested path to the URI endpoint in the API is called when a user clicks a

specific button on the website. This button is labeled “Scan YSU Tags” on the website and calls

the “getSensors” function in the “main.js” file when it is clicked. The developed

“tagView.html” file is shown in Figure 23.

39

Figure 23: “tagView.html”.

Lastly, to bridge the connection between the API and the website, a JS file, “main.js”, will

handle this task. There are two notable functions in “main.js”. First, the “formatValue” function

will handle several sensor data conditions: if data was received at all, printing the sign of the

sensor measurement if applicable, and formatting the hundredths place precision for each

measurement. Second, the “displaySensors” function will get the JSON response, send data to

the “formatValue” function, and format data strings to link to “tagView.html”. This process is

shown in Figure 24.

40

Figure 24: Sensor data formatting functions in “main.js”.

41

CHAPTER 4 – RESULTS AND DISCUSSION

The system in Figure 25 was assembled for sensor DAQ in the TagView terminal and website

applications. YSU Tags A and B are powered by a CR2032 coin cell battery, whereas two TI

MCUs powered via USB provide power to YSU Tags C and D via JTAG. The xPico 250

Evaluation Kit is powered on via a power adapter, and the RS-232 end of an RS-232 to USB cable

is connected to it for the terminal application, with the USB end connected to the computer. Lastly,

two antennas are connected to it, one for Bluetooth and the other for Wi-Fi to be utilized with the

website.

Figure 25: IoT network implementation.

42

The following subsections display and explain the output of both TagView applications: the

serial terminal program and the dynamic website. Afterwards, the applications are compared,

highlighting their successes and shortcomings.

4.1 Terminal Output

The TagView terminal application was developed to acquire real-time data concurrently from

up to four YSU Tags and display it in a serial terminal emulator. Tera Term is the serial terminal

emulator of choice, an open-source application widely used for serial port communication. Users

write one command in the terminal to initiate the program: “start”. Several status messages appear

based on the connection result to each YSU Tag. Following the connection process, another status

message indicates that sensors are being enabled. This start-up process is shown in Figure 26.

Figure 26: TagView – Terminal. Start-up sequence.

Once the start-up process is complete, the program will begin reading, translating, and printing

sensor measurements. The program skips over YSU Tags that are not connected and will repeat

the measurement read cycle once all connected devices have been read. Users can terminate the

DAQ by pressing any key on the keyboard, which is shown in a message prompt in Figure 27. The

DAQ from four YSU Tags is displayed in Figures 27 and 28.

43

Figure 27: TagView – Terminal. DAQ from YSU Tags A and B.

Figure 28: TagView – Terminal. DAQ from YSU Tags C and D.

44

4.2 Website Output

The TagView website application was developed to acquire real-time data concurrently from

up to four YSU Tags and display it on a customized website hosted on the xPico 250’s HTTP

server. This website can be accessed when a connection has been established between the xPico

250’s Wi-Fi access point and virtually any Internet-accessible device, such as a computer or

smartphone. When the user clicks “Scan YSU Tags”, a similar process will happen as in the

terminal application: attempting to connect to all powered-on and in-range YSU Tags, enabling

sensor measurements, and reading and translating sensor measurements. The display shown in

Figure 29 is a DAQ from four YSU Tags. The corresponding JSON response from the API is

displayed in Figure 30, proving that sensor data was received from all four YSU Tags.

Figure 29: TagView – Website. DAQ from four YSU Tags.

45

Figure 30: JSON response – DAQ from four YSU Tags.

When fewer than four YSU Tags are connected, the website should display blank values for

each sensor’s measurement to indicate to users that the specified device is not connected. In this

case, a question mark will appear. Figure 31 shows that when the xPico 250 is connected to YSU

Tags A and B, it should perform DAQs normally from those devices. However, since YSU Tags

C and D are not connected, it displays question marks next to their sensor measurements.

Figure 31: TagView – Website. DAQ from two YSU Tags.

46

4.3 Discussion of Results

Overall, both applications resulted in successful DAQs from YSU Tags. The terminal

application implements two commands: one for starting the DAQ and the other for stopping it. On

the other hand, the website only implements one command, which is to begin the DAQ. Currently,

the terminal application’s DAQ is faster than the website’s, likely due to the API’s algorithm,

which requires all connected YSU Tags’ sensor measurements to be read before displaying all the

data on the website. Additionally, the terminal outputs status messages at various stages of the

program, whereas the website does not. However, the website has the potential to be a more user-

friendly experience with continued development, as the UI already has enhanced visuals, whereas

the terminal does not. For instance, the website could be accessed over the Internet; currently, it

can only be accessed through a Wi-Fi connection to the xPico 250’s access point.

Overall, both applications could be significantly improved in speed and user experience, since

they are new additions to the design. This features a significant improvement from the previous

work, which could interface with only one YSU Tag at a time.

47

CHAPTER 5 – CONCLUSION AND FUTURE WORK

5.1 Conclusion

This thesis successfully demonstrated the design, development, and implementation of two

software applications, a serial terminal program and a dynamic website, for real-time DAQ from

up to four custom BLE peripherals using an IoT gateway. Utilizing the xPico 250 Evaluation Kit

and its compatible SDK, the proposed system achieved concurrent BLE connectivity, overcoming

the previous design’s limitation of single-device communication.

The terminal application provides convenient local access through serial communication to a

computer, while the dynamic website offers cross-platform accessibility and enhanced visual

representation. Both applications effectively interface and acquire data from all three sensors on

the YSU Tag: BME688, ADXL343, and AD5941. These sensor measurements include

temperature, relative humidity, barometric pressure, gas resistance, tri-axial acceleration, and

impedance.

Compared to previous work, this thesis enhances the system by enabling multi-device

communication, centralized control, and dual-accessibility interfaces. The results validate the

feasibility of using an embedded IoT gateway as a robust, secure, and flexible solution for

managing custom sensor networks.

5.2 Future Work

Additional modifications could be implemented on the TagView website. For instance, adding

support to facilitate data exportation from the website for a data analysis project, comparing each

YSU Tag’s sensor measurements to traditional measurement methods, and composing necessary

firmware calibrations. Also, a system could be devised to have all connected YSU Tags

communicate with each other through the xPico 250, something that was not possible before

48

integrating the gateway into the IoT network. This could benefit future development, as certain

measurement thresholds could trigger other devices to perform specific functions. Additionally,

more URI endpoints could be created in the website’s API to handle different conditions and

inputs, such as a stop button to terminate the DAQ or to disable specific sensors. Furthermore, it

may be worthwhile to transfer functionality from the previously designed smartphone app over to

the website, its standout feature being that it has graphs to log each sensor’s measurements. Lastly,

support for website remote access could be introduced by registering a domain name, since it can

only be accessed by connecting to the xPico 250’s Wi-Fi access point.

Regarding the YSU Tag, the AD5941’s impedance measurements output zero for both

magnitude and phase. However, this should require minimal firmware adjustments as the correct

user-configured generated frequency is displayed. Furthermore, the AI gas-sensing feature of the

BME688 could be implemented to detect specific gases. Also, the sensors’ period characteristics

could be investigated, as this supposedly controls the speed of the corresponding sensor’s

measurement readouts. Lastly, modifying the YSU Tag’s BLE stack could optimize its power

efficiency by altering its advertisement and removing unnecessary attributes.

49

REFERENCES

[1] S. N. Swamy and S. R. Kota, “An Empirical Study on System Level Aspects of Internet of
Things (IoT),” IEEE Access, vol. 8, pp. 188082–188134, 2020, doi:
10.1109/ACCESS.2020.3029847.

[2] “Current IoT Forecast Highlights,” TransformaInsights.com. Accessed: Aug. 27, 2024.
[Online]. Available: https://transformainsights.com/research/forecast/highlights

[3] S. Lamsal, A. Uya, S. Itapu, F. X. Li, P. Cortes, and V. Borra, “Frequency selective
asymmetric coupled-fed (ACS) antenna using additive manufacturing,” Memories -
Materials, Devices, Circuits and Systems, vol. 8, p. 100111, Aug. 2024, doi:
10.1016/J.MEMORI.2024.100111.

[4] A. Uya, S. Lamsal, S. Itapu, … F. L.-2023 I. 23rd, and undefined 2023, “Design and
Fabrication of Terahertz (THz) Antenna Using Aerosol Jet Printing,” ieeexplore.ieee.org,
Accessed: Apr. 12, 2024. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/10231203/

[5] A. Islam, D. Adu-Gyamfi, S. Itapu, F. X. Li, P. Cortes, and V. Borra, “Design and
Fabrication of a Terahertz Antenna Using Two-Photon Polymerization,” in 2024 IEEE
Nanotechnology Materials and Devices Conference (NMDC), IEEE, 2024, pp. 169–174.

[6] C. Gomez, J. Oller, and J. Paradells, “Overview and Evaluation of Bluetooth Low Energy:
An Emerging Low-Power Wireless Technology,” Sensors, vol. 12, no. 9, pp. 11734–
11753, Aug. 2012, doi: 10.3390/s120911734.

[7] J. Villamizar, V. Borra, and F. Li, “Building a fully digital controller with Altera Cyclone
FPGA and Nios Processor for Induction Heating application,” Discover Electronics, vol.
1, no. 1, p. 27, 2024.

[8] Y. Sapkota, S. Devkota, V. Borra, P. Cortes, S. Itapu, and F. Li, “Harmonic content
analysis of a soft starting variable frequency motor drive based on FPGA,” in 2023 IEEE
3rd International Conference on Sustainable Energy and Future Electric Transportation
(SEFET), IEEE, 2023, pp. 1–5.

[9] “NIHF Inductee Jaap C. Haartsen Invented Bluetooth Wireless Technology,” Invent.org.
Accessed: Aug. 27, 2024. [Online]. Available: https://www.invent.org/inductees/jaap-c-
haartsen

[10] “About Us,” Bluetooth® Technology Website. Accessed: Aug. 25, 2024. [Online].
Available: https://www.bluetooth.com/about-us/

[11] “About Us – Vision and Mission,” Bluetooth® Technology Website. Accessed: Aug. 25,
2024. [Online]. Available: https://www.bluetooth.com/about-us/vision/

[12] “Nokia builds a better Bluetooth - Technology - International Herald Tribune,” The New
York Times. Accessed: Aug. 27, 2024. [Online]. Available:
https://www.nytimes.com/2006/10/03/technology/03iht-nokia.3018027.html

[13] “Covered Core Package version: 4.0 Current Master TOC Specification Volume 0,” 2010.
[Online]. Available: http://www.bluetooth.com

[14] “Learn About Bluetooth – Bluetooth Technology Overview,” Bluetooth® Technology
Website. Accessed: Aug. 25, 2024. [Online]. Available: https://www.bluetooth.com/learn-
about-bluetooth/tech-overview/

[15] A. Barua, M. A. Al Alamin, Md. S. Hossain, and E. Hossain, “Security and Privacy
Threats for Bluetooth Low Energy in IoT and Wearable Devices: A Comprehensive

50

Survey,” IEEE Open Journal of the Communications Society, vol. 3, pp. 251–281, 2022,
doi: 10.1109/OJCOMS.2022.3149732.

[16] “2024 Bluetooth Market Update,” Bluetooth® Technology Website. Accessed: Aug. 27,
2024. [Online]. Available: https://www.bluetooth.com/2024-market-update/

[17] K. Nyako, S. Devkota, F. Li, and V. Borra, “Building Trust in Microelectronics: A
Comprehensive Review of Current Techniques and Adoption Challenges,” Nov. 01, 2023,
Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/electronics12224618.

[18] K. Nyako, U. Dhakal, F. Li, and V. Borra, “Trusted microelectronics: reverse engineering
chip die using U-Net convolutional network,” Engineering Research Express, vol. 6, no.
4, Dec. 2024, doi: 10.1088/2631-8695/ad7c06.

[19] R. J. Yarwood, “Multi-Sensor BLE Platform Using TI Wireless MCU and Mobile
Application,” 2022. Accessed: Jan. 03, 2025. [Online]. Available:
http://rave.ohiolink.edu/etdc/view?acc_num=ysu1651521574915615

[20] J. Garretto, “Bluetooth Low Energy Communication for Multi-Sensor Applications
Design and Analysis,” 2022. Accessed: Jan. 03, 2025. [Online]. Available:
http://rave.ohiolink.edu/etdc/view?acc_num=ysu167091921724991

[21] B. M. Kuzior, “Firmware Development and Applications of a Multi-Sensor Bluetooth
Low Energy Peripheral,” 2023. Accessed: Jan. 03, 2025. [Online]. Available:
http://rave.ohiolink.edu/etdc/view?acc_num=ysu1702669149346863

[22] B. Kuzior, V. Borra, F. Li, B.-W. Park, and P. Cortes, “Impedance Measurements Using a
High Precision, Low Power Analog Front End,” in 243rd ECS Meeting with the 18th
International Symposium on Solid Oxide Fuel Cells (SOFC-XVIII), ECS, 2023.

[23] A. Glória, F. Cercas, and N. Souto, “Design and implementation of an IoT gateway to
create smart environments,” Procedia Comput Sci, vol. 109, pp. 568–575, 2017, doi:
10.1016/j.procs.2017.05.343.

[24] C. Liu, Z. Su, X. Xu, and Y. Lu, “Service-oriented industrial internet of things gateway
for cloud manufacturing,” Robot Comput Integr Manuf, vol. 73, Feb. 2022, doi:
10.1016/j.rcim.2021.102217.

[25] T. Lojka, M. Bundzel, and I. Zolotová, “Industrial Gateway for Data Acquisition and
Remote Control,” Acta Electrotechnica et Informatica, vol. 15, no. 2, pp. 43–48, Jun.
2015, doi: 10.15546/aeei-2015-0017.

[26] J. Tosi, F. Taffoni, M. Santacatterina, R. Sannino, and D. Formica, “Performance
evaluation of bluetooth low energy: A systematic review,” Dec. 13, 2017, MDPI AG. doi:
10.3390/s17122898.

[27] R. De Fazio, M. De Vittorio, and P. Visconti, “A BLE-Connected Piezoresistive and
Inertial Chest Band for Remote Monitoring of the Respiratory Activity by an Android
Application: Hardware Design and Software Optimization,” Future Internet, vol. 14, no.
6, Jun. 2022, doi: 10.3390/fi14060183.

[28] G. Alfian, M. Syafrudin, M. F. Ijaz, M. A. Syaekhoni, N. L. Fitriyani, and J. Rhee, “A
personalized healthcare monitoring system for diabetic patients by utilizing BLE-based
sensors and real-time data processing,” Sensors (Switzerland), vol. 18, no. 7, Jul. 2018,
doi: 10.3390/s18072183.

[29] J. Hughes, J. Yan, and K. Soga, “DEVELOPMENT OF WIRELESS SENSOR
NETWORK USING BLUETOOTH LOW ENERGY (BLE) FOR CONSTRUCTION
NOISE MONITORING,” 2015.

51

[30] “xPico 250 Embedded IoT Gateway.” Accessed: Jan. 07, 2025. [Online]. Available:
https://www.lantronix.com/products/xpico-250/

[31] J. Porter, B. Kuzior, J. Garretto, and Y. Sapkota, “YSU Tag - Firmware,” GitHub.
Accessed: Oct. 02, 2023. [Online]. Available: https://github.com/YSU-Tag-Dev/ysu-tag-
firmware

[32] “BME688 Datasheet,” Bosch Sensortec. Accessed: Sep. 05, 2023. [Online]. Available:
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-
bme688-ds000.pdf

[33] “ADXL343 Datasheet,” Analog Devices. Accessed: Sep. 05, 2023. [Online]. Available:
https://www.analog.com/media/en/technical-documentation/data-sheets/adxl343.pdf

[34] W. Niu et al., “Summary of Research Status and Application of MEMS Accelerometers,”
Journal of Computer and Communications, vol. 06, no. 12, pp. 215–221, 2018, doi:
10.4236/jcc.2018.612021.

[35] F. A. S. Ferreira de Sousa, C. Escriba, E. G. Avina Bravo, V. Brossa, J.-Y. Fourniols, and
C. Rossi, “Wearable Pre-Impact Fall Detection System Based on 3D Accelerometer and
Subject’s Height,” IEEE Sens J, vol. 22, no. 2, pp. 1738–1745, Jan. 2022, doi:
10.1109/JSEN.2021.3131037.

[36] N. A. Prabatama, M. L. Nguyen, P. Hornych, S. Mariani, and J.-M. Laheurte, “Zigbee-
Based Wireless Sensor Network of MEMS Accelerometers for Pavement Monitoring,”
Sensors, vol. 24, no. 19, p. 6487, Oct. 2024, doi: 10.3390/s24196487.

[37] “AD5940/AD5941 Datasheet,” Analog Devices. Accessed: Sep. 05, 2023. [Online].
Available: https://www.analog.com/media/en/technical-documentation/data-
sheets/ad5940-5941.pdf

[38] J. Porter, “TagView,” GitHub. Accessed: Feb. 26, 2025. [Online]. Available:
https://github.com/YSU-Tag-Dev/tag_view

		2025-04-24T16:27:13-0400
	Youngstown State University

