

UNDERSTANDING HOW DEVELOPERS WORK ON CHANGE TASKS USING

INTERACTION HISTORY AND EYE GAZE DATA

By

Ahraz Husain

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Master of Computing and Information Systems

YOUNGSTOWN STATE UNIVERSITY

December 2015

UNDERSTANDING HOW DEVELOPERS WORK ON CHANGE TASKS USING

INTERACTION HISTORY AND EYE GAZE DATA

Ahraz Husain

I hereby release this thesis to the public. I understand that this thesis will be made
available from the OhioLINK ETD Center and the Maag Library Circulation Desk for
public access. I also authorize the University or other individuals to make copies of this
thesis as needed for scholarly research.

Signature:

 Ahraz Husain, Student Date

Approvals:

 Bonita Sharif, Thesis Advisor Date

 Yong Zhang, Committee Member Date

 Feng Yu, Committee Member Date

 Sal Sanders, Associate Dean of Graduate Studies Date

iii

Abstract

Developers spend a majority of their efforts searching and navigating code with

the retention and management of context being a considerable challenge to their

productivity. We aim to explore the contextual patterns followed by software developers

while working on change tasks such as bug fixes. So far, only a few studies have been

undertaken towards their investigation and the development of methods to make software

development more efficient. Recently, eye tracking has been used extensively to observe

system usability and advertisement placements in applications and on the web, but not

much research has been done on context management using this technology in software

engineering and how developers work.

In this thesis, we analyze an existing dataset of eye tracking and interaction

history that were collected simultaneously in a previous study. We look into exploring

navigational patterns of developers while they solve tasks. Our goal is to use this dataset

to determine if we can perform prediction and recommendations solely based on eye gaze

patterns. In order to do this, we conduct three experiments on Microsoft Azure on

developer expertise recommendation and class recommendation for developers using

only eye tracking data. Our results are quite promising. We find that eye tracking data

can be used to predict expertise of developers with 85% accuracy. It is further able to

recommend classes with good performance (a normalized discounted cumulative gain,

NDCG ranging between 0.85 and 0.88). These findings are discussed with a view to

iv

designing systems that can adapt to the individual user in real time and make intelligent

adaptive suggestions while developers work.

v

Acknowledgements

I would like to express my gratitude to my supervisor, Dr. Bonita Sharif, whose

expertise, understanding, and patience, added considerably to my graduate experience. I

appreciate her vast knowledge and skills in many areas and her guidance, which has been

a key motivational factor towards completion of my research. Further, I would like to

thank the esteemed members of my committee, Dr. Yong Zhang and Dr. Feng Yu for the

assistance they provided at all levels of the research project and Dr. Alina Lazar for her

expert guidance in the field of Data Science.

A very special thanks goes out to my family without whose motivation and

encouragement I would not have considered a graduate career. They are among the many

people who truly made a difference in my life.

In conclusion, I recognize that this research would not have been possible without

the financial assistance from the Department of Computer Science and the STEM College

at YSU. I express my gratitude to them for supporting me during my graduate studies.

vi

TABLE OF CONTENTS

LIST OF FIGURES ... VIII	

LIST OF TABLES .. IX	

	 INTRODUCTION... 1	

1.1	 Motivation ... 1	

1.2	 Contributions... 3	

1.1	 Research Questions ... 3	

1.2	 Organization .. 5	

	 BACKGROUND AND RELATED WORK 6	

2.1	 Eye Tracking Basics and Terminology ... 6	

2.2	 Program Comprehension .. 7	

2.3	 Tracing Developers Interaction ... 8	

2.4	 Eye tracking Studies ... 10	

2.5	 Discussion ... 12	

	 EXPERIMENTS ... 14	

3.1	 Dataset Used ... 14	

3.2	 Subject System and Tasks ... 15	

3.3	 Participants .. 16	

3.4	 Results from Previous Work ... 18	

3.5	 Data Snapshot ... 19	

vii

3.6	 Experiments Overview.. 20	

3.7	 Data Pre-Processing .. 21	

3.7.1	 Data Congregation .. 21	

3.7.2	 Data Migration .. 22	

3.8	 Machine Learning Model Selection .. 23	

3.8.1	 Expertise Recommender Experiment ... 23	

3.8.2	 Class Recommender Experiments .. 24	

3.9	 Feature Engineering .. 25	

3.10	 Experiment Instrumentation.. 30	

	 RESULTS AND ANALYSES .. 37	

4.1	 RQ1: Can we predict the expertise of a developer based on gaze data and

interactions with the IDE for a specific task? ... 37	

4.2	 RQ2: Can we use the class-based eye gaze and interaction of a developer to

intelligently suggest classes of interest? ... 39	

4.3	 RQ3: Can we also use pupil dilation/contraction information alongside class-

based gaze interaction to intelligently suggest classes of interest? 41	

4.4	 Threats to Validity .. 43	

4.5	 Discussion of Results .. 45	

	 CONCLUSIONS AND FUTURE WORK .. 47	

viii

LIST OF FIGURES

Figure 1: Subjects’ Relative Experience Levels between Amateurs and Professionals .. 17	

Figure 2: Sample iTrace XML Snippet ... 20	

Figure 3: Sample Mylyn XML Snippet .. 20	

Figure 4: A Subset of the Cleaned-up Master Dataset .. 23	

Figure 5: Classifiers Generated by ML Models .. 24	

Figure 6: Simple K-Means++ Clustering Result on the iTrace Dataset 25	

Figure 7: Sample of “Rating_quantized” for Exp II ... 27	

Figure 8: The “Rating_quantized” Feature Statistics for Exp III 28	

Figure 9: “Rating_quantized” distribution bar plot for Exp III .. 28	

Figure 10: Mylyn Dataset used towards the Recommender System in Exp V 29	

Figure 11: Exp I: Data Cleanup and Feature Type Updating for Exp I 33	

Figure 12: Training, Scoring and Evaluation in Exp I .. 34	

Figure 13: Training, Scoring and Evaluation in Exp II and III. .. 35	

Figure 14: Preprocessing Data for Exp III .. 36	

Figure 15: Model for Expertise Prediction for TaskID 4 using iTrace logs 45	

Figure 16: Model for Expertise Prediction for TaskID 4 using Mylyn logs 46	

ix

LIST OF TABLES

Table 1: Study Tasks conducted by Kevic et al. in [1]. .. 16	

Table 2: Overview of Experiments Conducted ... 21	

Table 3: Feature Importance Scores for Exp I .. 26	

Table 4: The Initial “Rating” vs. “Rating_quantized” Feature Statistics for Exp II 26	

Table 5: Feature Importance Scores for Expertise Prediction in Exp IV 29	

Table 6: Subset used for Expertise Prediction .. 33	

Table 7: Discovered and Used Parameters for Exp I .. 37	

Table 8: Model Evaluation for Exp I .. 38	

Table 9: Exp I: Model Cross Validation ... 38	

Table 10: Discovered and Used Parameters for Exp II ... 39	

Table 11: Recommender Evaluation for Exp II .. 40	

Table 12: Recommender Pool Sample for Task 2 in Exp II ... 40	

Table 13: Recommender Evaluation for Exp III ... 42	

Table 14: Recommender Pool Sample for Task 2 in Exp III .. 42	

Table 15: Recommender Pool Exp II vs. III for User 2 and Task 2. 42	

1

INTRODUCTION

Software is inherently quite complex. In this work, we aim to understand and

evaluate the contextual patterns followed by software developers towards bug fixing and

to use them towards the exploration of technologies and methods to make this process

more efficient.

1.1 Motivation

Software developers spend a majority of their time working on change tasks, such

as bug fixes or feature additions. They use complex Integrated Development

Environments (IDE) such as MS Visual Studio or Eclipse making them more productive.

The challenges faced by all developers often include searching and navigating to relevant

blocks of code, retention and management of context upon change of tasks and across a

long timeframe and wastage of time and effort on non-productive contemplation among

other things. However, only a few studies have been undertaken towards their

investigation and the development of methods to make software development more

efficient. This is mainly due to the significant effort required towards acquiring the time

of professional software developers to participate, the lack of any detailed, automatic and

efficient method of capturing, transcribing and coding the long sessions of these

developers' working environments and the fact that most context management systems

are strictly event and/or interaction based.

2

In recent years, eye tracking has been used extensively to observe system usability

and advertisement placements in applications and on the web, not much research has

been done on context management using this technology. In previous work, Kevic et al.

conducted a study [1] with 22 software developers both from industry and academia.

They recorded the eye movements of these developers along with the interaction history

data simultaneously. Interaction history data consists of mouse clicks and keyboard

events including searches made by the developer. Eye tracking data consists of where the

developer is looking and for how long. The elements captured by eye tracking were

source code elements such as method signatures, method calls, variable declarations, and

variable usage among others. The eye tracking data was gathered using iTrace [2] and the

interaction history data was collected using a well-known interaction history manager,

Mylyn [3]. In this work, we use this first-of-a-kind dataset for predictions and

recommendations.

This dataset is unique in that it is the first eye tracking study that is conducted on a

large open-source code base that supports scrolling and viewing multiple files without

loosing context of what the developer is looking at. This was made possible by the

Eclipse plugin iTrace [2] developed at the Software Engineering Research and Empirical

Studies Lab at YSU, that interfaces with the Java Abstract Syntax Tree within Eclipse to

automatically map the eye gaze to a source code element such as a variable name or a

method call.

3

1.2 Contributions

We explore how eye gaze features such as time spent looking at source code

elements and the pupil diameter when the user is looking at these elements. These

features can be used to record probabilistic impressionable context that may transform

into actions. We further try to place how our findings can be used in the evolution of

development tools towards making the developers more efficient while working on

change tasks.

We use machine-learning algorithms to predict expertise of a developer based on

his/her eye tracking sessions. In addition, we also use machine learning algorithms to

recommend relevant classes to a developer based on his/her eye gaze during the session.

We find that predicting the expertise of a developer based on where the eye is focusing is

feasible and works well 85% of the time. This research seeks to lay the groundwork for

future research based on knowledge discovery and prediction algorithms.

1.1 Research Questions

Of the range of questions that arise, we shall focus our research to seek answers

towards the following questions. All these questions relate to the context of fixing bugs.

 RQ1: Can we predict the expertise of a developer based on gaze data and

interactions with the IDE for a specific task?

 RQ2: Can we use the class-based eye gaze and interaction of a developer to

intelligently suggest classes of interest?

4

 RQ3: Can we also use pupil dilation/contraction information alongside class-

based gaze interaction to intelligently suggest classes of interest?

The first research question, RQ1 deals with prediction while RQ2 and RQ3 deal with

recommendations. In particular, we are interested in predicting expertise of developers

solely based on their eye gaze activity. The expertise prediction is useful to determine if

an eye gaze pattern belongs to an expert or a novice. Such a prediction is useful during

job interviews where the interviewer could possibly be eye tracking the candidate to

determine if they are looking at relevant parts of the code. But more importantly, it could

be used to suggest different recommendations to experts compared to novices in an

online setting while they are programming in the IDE. This transitions into RQ2 and RQ3

that deal with recommending classes of interest to developers based on how they have

been looking at classes so far. Hence, the result of RQ1 could be used as input to RQ2

and/or RQ3. However, in this thesis, we deal with them separately.

The main difference between RQ2 and RQ3 is that in RQ3 we use an additional eye

gaze feature, i.e., pupil dilation. The pupil diameter is a measure that the eye tracker

reports and is listed in millimeters for both the right eye and the left eye. The reason we

chose pupil deviation based on pupil dilation and pupil contractions as a possible feature

was because research in the past has shown that systematically chosen stimuli

significantly affected the subjects’ physiological reactions and subjective experiences.

This consequently affects the pupil dilation/contraction and so it is possible to use pupil

size variation as a computer input signal [4][5].

5

1.2 Organization

The thesis is organized as follows. The next chapter gives a brief introduction to

eye tracking and related work. Chapter 3 presents the details of the experimental setup

and an overview of all experiments conducted. Chapter 4 discusses observations and

results and finally, Chapter 5 concludes the thesis and presents future work.

6

BACKGROUND AND RELATED WORK

 This chapter presents an overview of existing work in program comprehension and

eye tracking. We first start with giving some terminology on eye tracking.

2.1 Eye Tracking Basics and Terminology

Eye trackers have been around since the 1970’s. Due to the affordability and

smaller form factor, they are becoming popular in different areas of research. They

capture the eye movements of the user on a screen/area based on how infrared light

reflects back after it hits the retina. After an initial setup and calibration, the eye tracking

system is able to calculate the point of interest with very good precision. The system

usually consists of hardware and software. The output is a time series with several

parameters such as validity codes for both eyes, the (x, y) coordinate of where the gaze

was focused, and pupil dilation among others. All the parameters are discussed in Section

3.7. The granularity of modern eye trackers usually lies in the millisecond range. For the

study that collected the data used in this thesis, the Tobii X60 eyetracker [6] was used

that does not require the developer to wear any gear. Tobii X60 has an on-screen

accuracy of 0.5 degrees and spits out 60 eye gaze locations per second. To accommodate

for this and still have line-level accuracy of the eye gaze data, the font size should be set

larger (usually to 20 points) for source code within Eclipse. We ran several tests to

validate the accuracy of the collected data.

7

2.2 Program Comprehension

Current research into software comprehension models, suggests that programmers

attempt to understand code using the somewhat clichéd taxonomy of ‘bottom-up

comprehension’, ‘top-down comprehension’, and various combinations of these two

processes [7]. Bottom-up comprehension models, propose that as source code is read,

abstract concepts are formed by chunking together low-level information [8] [9]. In other

words, reading the code and then mentally chunking or grouping these lines of code into

higher-level abstractions builds understanding from the bottom up. The bottom-up model

of software comprehension primarily addresses situations where the programmer is

unfamiliar with the domain. Several ‘top-down’ models of software comprehension have

been proposed to address the alternative situation, where the programmer has had some

previous domain exposure. Essentially, these top-down models of comprehension suggest

that the programmer utilizes knowledge about the domain to build a set of expectations

that are mapped on to the source code [7][10].

Over time, several cognitive models of program comprehension have been

suggested and researched all of which attempt to explain how a software developer goes

about the process of understanding and navigating code. However, research has

suggested that there is no one ‘all encompassing’ cognitive model that can explain the

behavior of all the developers [11] and that it is more likely that they will swap between

various models as per the need [12]. Further, eye tracking can provide us significant

insight into capturing traceability links between different artifacts [13] and assistance

towards software development [14] and computing education [15] among others.

8

2.3 Tracing Developers Interaction

For decades, researches have unceasingly aimed at understanding the way

developers apprehend code. Initial researches aimed to do this via interviews and

questionnaires after the participants had interacted with the code [7][18]. With

advancements in processing and storage capabilities and reducing costs [15], Altmann

analyzed a ten minute interval of an expert programmer performing a task and used

computational simulation to study the near-term memory [19]. However, the cost of

hand-coding developers’ actions is very high, which have in turn led to only a limited

number of studies providing detailed insights on the developers' behaviors.

With the availability of more advanced technology, newer ways of automatically

recording such data have been brought about. Two of the most popular ones being: User

Interaction Monitoring [20][21] and Biometric Sensing [22][23]. Based on the captured

monitoring logs based on the interaction with code elements (also known as Areas of

interest or AOIs’) that the developer interacted with, we can use this knowledge for

defect prediction [24] and towards determining a developers’ cognitive abilities in real

time [25] among other uses. Additional information such as navigation patterns

[26][27][28] within an IDE further helps in defect prediction [24]. Even the Eclipse team

themselves undertook a major data collection project called the Usage Data Collector

[29] that, at its peak, collected data from thousands of developers using Eclipse. Overall,

the automatic monitoring of user interactions was able to significantly reduce the cost for

certain empirical studies [30]. Along with this, a popular context management tool called

Mylyn [3] was developed. Mylyn is a plugin for the Eclipse IDE, which further

9

strengthened this approach towards research. However, these studies are limited to the

granularity and detail of the monitoring approach. In case of user interaction monitoring,

the granularity is predominately at the method or class level and detailed information

such as the time a developer spends reading a code element or when the developer is not

looking at the screen, is missing and this not only makes it more difficult to fully

understand the developers' traces in detail but also effects the precision of such studies.

In recent times, the interaction of developers with IDE’s have been a good source

of learning and has led to the development of Mylyn. Mylyn is an open source execution

of the Task-Focused Interface; it’s additionally an application lifecycle management

(ALM) structure for Eclipse [3]. It provides an interface to developers and can help

proficiently with a wide range of errands, (for example, bugs, issue reports or new

elements). Mylyn can incorporate with archives, for example, Bugzilla, Trac, Redmine,

Mantis, JIRA, Unfuddle and GitHub. It focuses on improving productivity by reducing

searching, scrolling, and navigation. By making task context explicit, Mylyn is also

meant to facilitate multitasking, planning, reusing past efforts, and sharing expertise. The

log files generated by Mylyn have been used to explore the interaction patterns and

methods between developers and IDEs.

Apart from Mylyn, a more conventional method to capture interactions is to

obtain a video screen capture of tasks performed by developers. This is a long and tedious

process since, the videos then have to be manually studied frame by frame and flags need

to be noted down. This makes the process manual and hence, is prone largely to human

errors and inconsistencies. People have in the recent past, attempted to develop and use

10

video scraping tools to obtain the interactions but they are heavily limited by the platform

in question and hence, cannot be used on a diversity of environments.

Another straightforward but tedious approach was followed Ko et al. [16]. In this

study, the authors screen captured ten developers' desktops while they worked on five

distinct tasks on a small program and then hand-coded and analyzed each of the 70

minute sessions. Similarly, in a study on developers performing more realistic change

tasks, Fritz et al. [17] used a similar technique and manually transcribed and coded the

screen-captured videos of all participants.

2.4 Eye tracking Studies

Alongside to the IDE instrumentation efforts, researchers in the software

development domain have also started to take advantage of the maturing of biometric

sensors. Most of this research focuses on eye-tracking [22], while only few studies have

been conducted so far that also use other signals, such as an fMRI to identify brain

activation patterns for small comprehension tasks. Sharif et al. conducted an eye tracking

study to determine the effectiveness and efficiency of identifier styles such as camel case

and underscore [31]. A combination of eye-tracking, EDA, and EEG sensors to measure

aspects such as task difficulty, developers' emotions and progress, or interruptibility

[32][33] have also been done but cannot be completely generalized. Eye tracking ensures

not only automatic capturing where a developer is looking (eye gaze) but also has helped

researchers gain deeper insights into developers' code comprehension. Walters et al.

11

conducted an eye tracking study to automatically capture traceability links between bug

reports and source code [13].

Crosby et al. carried out one of the first studies in program comprehension using

eye tracking. It was discovered that experts and novices vary in they way they looked at

English and Pascal versions of an algorithm [34]. Ever since, various researchers have

used visual monitoring methods to examine the impact of developers' eye gaze on their

comprehension of different kinds of representations and visualizations including but not

limited to UML diagrams [35][32], graphs [25], 3D visualizations [36], design pattern

layouts [37], programming languages [38], and identifier styles [31][39]. Some

researchers have also discovered that developers usually read the entire source code first

to get an overview though this study was limited to small code snippets [40]. Other

researches focused on the examination of the different strategies novice and expert

developers employ towards program comprehension and debugging [41][42], as well as

the developers time consuming areas when reading a method in order to help devise a

better method summarization technique [43]. In addition, researchers have also attempted

to explore the potential of eye tracking towards the detection of software traceability

links [13][44][45]. Finally, Conati et al. in their research [25] attempted to provide a

detailed analysis of different eye gaze feature sets, as well as over-time accuracies and

inferred that these predictions are significantly better than a baseline classifier even

during the early stages of visualization usage and therefore can adapt to the individual

user in real time. Their work was not in the field of software engineering.

12

2.5 Discussion

In the previous section, a short description of relevant studies using eye tracking

in software engineering is given. This is not an exhaustive list. Since 2006, there has been

a surge in the number of software engineering papers using eye tracking. To date, there

are about 35 papers in the area. This trend is expected to continue.

Most of the aforementioned studies lay a good basis for further research but are

either limited to very small toy applications or single-page code tasks that do not involve

scrolling. Furthermore, the link between the eye gaze (e.g. a developer looking at pixel at

x, y coordinate on the screen) to the elements in source code (i.e., method class within a

method) had to be done manually which raises human error, accuracy and precision

concerns. The study conducted by Kevic et al. [1] changed that. It made use of an eye

tracking plugin namely, iTrace that was capable of recording eye gaze on longer

documents and not limited to a single screen of text.

Through our research, we aim to explore how change tasks are handled by

developers and how we can assist/streamline this process for them in real time. We aim to

develop efficient real-time recommender systems such as used by Netflix to

recommend/customize their users’ dashboard [46][47][48]. This should save developers

significant time wasted in scanning and finding areas of interest [49][50].

To maximize productivity and to ensure the quality of collected data, we used our

in-house developed plugin for Eclipse called iTrace and bundled it with the data collected

by Mylyn. This helped us collect good quality data, while reducing the need of manual

mapping. This further helped us overcome the single page code task limitation of

13

previous studies, allowing for change tasks on a realistic-sized code base with developers

being able to naturally scroll and switch editor windows.

We see the experiments conducted in this thesis as a first step towards showing

that using eye tracking data from a bug fixing session can be used to predict and

recommend relevant source code items to developers. The next section introduces the

experiments.

14

EXPERIMENTS

This chapter presents the details of the various experiments we conducted on

Microsoft Azure that use machine learning algorithms.

3.1 Dataset Used

Good quality data is the biggest need of data science [51]. We now explain how

the dataset was collected by Kevic et al. [1]. In order to ensure we had high quality

reliable data, we used data collected across 22 participants. So, as to get the best accuracy

possible, calibration were done before every study. The participants in Kevic’s study [1]

were asked to fill out a background questionnaire on their previous experiences with

programming. The tasks recorded had the goal to fix the specified bugs based on user

generated bug reports. All participants were seated in front of a 24- inch LCD monitor.

The total time spent by each participant was one hour spread across three tasks (or bugs

to fix). Further, the participants were requested to type their answer (i.e. the

class(es)/method(s)/attribute(s) where they might fix/find the bug) in a text file. The

source code in question belonged to JabRef [52] - an open source bibliography reference

manager the details of which are discussed in Section 3.2. Each participant was able to

make any necessary edits to this code and run it. They were also able to switch back and

forth between the Eclipse IDE and the JabRef application. The eye tracking data was only

collected when Eclipse was in focus.

15

3.2 Subject System and Tasks

JabRef (http://jabref.sourceforge.net/) was the subject system used in the study

conducted in [1]. JabRef is a graphical application for managing bibliographic databases

that uses the standard LaTeX bibliographic format BibTeX, and can also import and

export many other formats. JabRef is an open source, Java based system available on

SourceForge [52] and consists of approximately 38 KLOC spread across 311 files. The

version of JabRef was 1.8.1, release date 09/16/2005. To have realistic change tasks, the

tasks were directly taken from the bug descriptions submitted to JabRef on SourceForge.

Information about each task is provided in Table 1. These are from [1] and are listed here

for easy reference.

All of these change tasks represent actual JabRef tasks that were reported by

someone on SourceForge and that were eventually fixed in a later JabRef release. The

tasks were randomly selected from a list of closed bug reports with varied difficulty as

determined by the scope of the solution implemented in the repository. Three change

tasks were performed by all participants. This is a reasonable number of tasks without

causing fatigue in the one hour of the study. A time limit of 20 minutes was placed for

each task so that participants would work on all three tasks during the one-hour study. To

familiarize participants with the process, each participant was also given a sample task

before starting with the three main tasks for which we did not analyze the tracked data.

The task order of the three tasks was randomly chosen for each participant.

16

Table 1: Study Tasks conducted by Kevic et al. in [1].
ID Bug ID Date

Submitted
Title Scope of Solution in

Repository
2 1436014 02/21/2006 No comma added to

separate keywords
Multiple classes: EntryEditor,

GroupDialog
FieldContentSelector,

JabRefFrame
3 1594123 11/10/2006 Failure to import big

numbers
Single method:

BibtexParser.parseFieldContent
4 1489454 05/16/2006 Acrobat Launch

fails on Win98
Single method:

Util.openExternalViewer

3.3 Participants

We describe the participants of the study conducted in [1]. Kevic et al. gathered

two sets of participants: twelve professional developers working at ABB Inc. that spend

most of their time developing and debugging production software, and ten undergraduate

and graduate computer science students. Participants were recruited through personal

contacts and via a recruiting email. All participants were compensated with a gift card for

their participation. All professional developers reported having more than five years of

programming experience. Seven of the twelve reported having more than five years of

experience programming in Java, while the other five reported having about one year of

Java programming experience. Nine of the twelve professional participants also rated

their bug fixing skills as above average or excellent. With respect to IDE usage, four of

the twelve stated that they mainly use Visual Studio for work purposes and that they were

not familiar with the Eclipse IDE, and one participant commented on mainly being a vim

and command line user. Two of the professional developers were female and ten were

male.

17

Among the ten student participants, one participant had more than five years of

programming experience, five students had between three and five years programming

experience, and four of them had less than two years programming experience. Three of

the students had between three and five years of Java programming experience, and

seven students had less than two years. Three of the ten students rated their bug fixing

skills as above average, and seven rated them as average. All but one student stated that

they were familiar with the Eclipse IDE. There was one female and nine male among the

student population.

Figure 1: Subjects’ Relative Experience Levels between Amateurs and
Professionals

As stated in [1], data across a total of 66 change task investigations were collected

and for each of these investigations. In order to maintain highest quality in terms of data

selection, Kevic et al. excluded 11 change task investigations whose collected data was

0

0.2

0.4

0.6

0.8

1
Programming	Exp

Java	Exp

BugFixing

IDE
Professional

Amateur

18

inconsistent and therefore, ended up with 55 investigations (18 subjects investigating task

2, 16 subjects investigating task 3, and 21 subjects investigating task 4). With respect to

all participants and tasks, Kevic at al. use a total of 688 method investigation instances;

collected by iTrace and Mylyn simultaneously. We use the same dataset from Kevic et al.

[1] for the experiments in this thesis.

3.4 Results from Previous Work

The dataset used in this thesis was generated by the study conducted in [1].

Towards investigating the developers' detailed behavior while performing a change task,

that study [1] showed that gaze data contains substantially more data, as well as more

fine-grained data than other similar sources. The study further added that gaze data is in-

fact different and captures more aspects about each interaction event as compared to just

interaction-based data. The analysis also showed that developers working on a realistic

change tasks only looked at a very few lines within a method rather than read the whole

method as was often found in studies on single method tasks. Also, when it comes to

switches between methods, the eye traces reveal that developers only rarely follow call

graph links and mostly only switch to the elements in proximity of the method within the

class.

These detailed findings provide insights and opportunities for future developer

support. For instance, the findings demonstrate that method summarization techniques

could be improved by applying some program slicing first and focusing on the lines in

the method that are relevant to the current task rather than summarizing all lines in the

19

whole method. In addition, the findings suggested that a fisheye view of code zooming in

on methods in close proximity and blurring out others might have potential to focus

developers' attention on the relevant parts and possibly speed up code comprehension. To

avoid this, iTrace automatically links eye gazes to source code entities in the IDE and

overcomes limitations of previous studies by supporting developers in their usual

scrolling and switching behavior within the IDE. This approach indeed opened up new

opportunities for our experiments, which have been extended, based on this previous

research.

In this thesis, we use the dataset from our earlier work in [1] for prediction and

recommendations. In particular, we are trying to predict developer expertise based on

gaze data. For recommendations, we are trying to recommend classes to developers based

on gaze data. None of these types of experiments on eye gaze data have been conducted

before and hence the results derived from this thesis provide some food for thought to

improve future prediction and recommendations based on gaze data alone.

3.5 Data Snapshot

In this section, we show a small snippet of the fields contained in the iTrace data

and the Mylyn data for a task. The data for iTrace was collected in XML and JSON

formats. The data for Mylyn was in XML. The XML files for a single entry for iTrace

and Mylyn can be seen in Figure 2 and Figure 3 respectively. The relevant features are

discussed in detail in Section 3.9.

20

Figure 2: Sample iTrace XML Snippet

Figure 3: Sample Mylyn XML Snippet

3.6 Experiments Overview

Moving towards our research goal, we design five experiments, the details of

which can be seen in Table 2. The first three experiments were only based on eye

21

tracking data. The last two were based on interaction history data generated from Mylyn.

Even though we wanted to focus on eye tracking data, we also ran experiments on Mylyn

data which was collected simultaneously with the eye tracking data during the study

conducted in [1]. Since we had this data, we wanted to be able to see if we can determine

similar findings from the interaction history data as well.

Table 2: Overview of Experiments Conducted
Experiment

ID
Experiment

Name
Description Data

Source
RQ

Exp I Expertise
Recommender

Expertise Prediction iTrace 1

Exp II Simple Class
Recommender

Class Recommender System based
on gaze interaction events

iTrace 2

Exp III Class
Recommender with

Pupil Deviation

Class Recommender System based
on gaze interaction events and

respective pupil
dilation/contraction.

iTrace 3

Exp IV Expertise
Recommender

Expertise Prediction Mylyn 1

Exp V Class
Recommender

Class Recommender System based
only on interaction events

Mylyn 2

3.7 Data Pre-Processing

Since the dataset we had was spread across several XML log files which used

different formats based on their derivative tools i.e. iTrace or Mylyn, we had to first make

the data consistent. The following subsections explain the steps we took to pre-process

the data.

3.7.1 Data Congregation

In this step, we used a Python script to parse all the XML files and extract data

into a single csv file. The resultant file was 6704696 rows and 24 columns strong for the

22

iTrace dataset and 3789 rows and 17 columns strong for Mylyn logs. The aim of this was

to have all data in one place for time efficient manipulation or access and it did help us in

terms of time and space complexities by saving on time and space while designing the

experiments.

3.7.2 Data Migration

In this step we first uploaded all the data to the Azure Machine Learning Studio.

Here, we used the inbuilt modules to transform the dataset into a consistent format by

splitting the FullyQualifiedNames into classes/ methods in question. The fields available

in master dataset included File, Type, x, y, left-validation, right-validation, left-pupil-

diameter, Fixation, right-pupil-diameter, tracker-time, system-time, nano-time,

line_base_x, Line, Col, SCE-Count, hows, types, fullyQualifiedNames, line_base_y,

Difficulty, Expertise, PID, TaskID, Class and Method. We use combinations and

extractions of these fields towards our experiments, which are discussed below. It is

important to note that up till this step, we obtain a generic master file with the

aforementioned fields. Up ahead, we narrow down these features and even create new

features as per the need of the experiments. A subset example can be seen in Figure 4.

23

Figure 4: A Subset of the Cleaned-up Master Dataset

The data collected by Mylyn did not need much preprocessing since Mylyn collects data

aggregated to a session so this does not leave many null values.

3.8 Machine Learning Model Selection

We designed and executed several experiments to gain better insight into our

dataset and to explore optimal models for them. Towards our conclusive experiments, we

used the supervised learning approach and put to use Classification and Recommender

systems towards our exploratory research.

3.8.1 Expertise Recommender Experiment

Towards Exp I, we opted to go for Two-Class boosted Decision Trees based on its high

accuracy and relative moderate training time as compared to other models. As a

somewhat generic rule, boosted decision trees yield are strong classifiers [53] specially

when features have a low degree of entropy (i.e. they are related), which in our case they

24

are since they are strongly bound to a same event. In addition, our training and testing set

was exponentially larger than the features used and hence, protected our model from over

fitting. The way a good model should fit the data can be seen in Figure 5. We can see that

a good classifier divides the data using a simple function, which varies with values but

can divide the objects into clear labels. An over fitted model cannot adapt to newer data

i.e. is not generalized and hence, will fail in the longer run. Similarly, a very simple

classifier may not get the desired accuracy/ precision.

Figure 5: Classifiers Generated by ML Models

3.8.2 Class Recommender Experiments

Towards Exp II and III, we opted to go for the Matchbox Recommender [54]. The

objective of a recommendation system is to recommend one or more "items” to “users”

of the system, which in our case are “classes” being served to “developers”. The

Matchbox recommender is hybrid recommender, which combines collaborative filtering

with a content-based approach. This means that in case of a new system user, predictions

are initialized based on items and their general popularity and improved or personalized

as more information about the user is gathered. This successfully takes care of the “cold-

25

start” problem. This is done via a smooth transition from content-based recommendations

to recommendations based on collaborative filtering. Even if user or item features are not

available, Matchbox will still work in its collaborative filtering mode, which made it an

ideal choice in our case.

3.9 Feature Engineering

The goal of feature engineering is to find an “optimal” subset of relevant features towards

enhancing the overall accuracy and consistency while minimizing the size of the training

dataset [55]. Of all the steps in feature engineering, feature selection is one of the major

problems in areas of machine learning and data mining [56]. Further, a slight possibility

of classification emerges due to clear emergence of almost perpendicular axes when

clustered into two distinct clusters using K-Means++ Clustering on our cleaned features.

A sample of various clusters we generated can be seen in Figure 6 that follows.

Figure 6: Simple K-Means++ Clustering Result on the iTrace Dataset

26

In order to choose optimal features, we extracted the feature importance using the

‘Permutation Feature Importance’ module in the Azure ML Studio. This module

computes the permutation feature importance scores of feature variables given a trained

model and a test dataset. We ran this on several experiments and based on our prior

choice of models, discovered that towards Exp I, the “Class” field held the most

importance in general followed by “Line” and “Method” as seen in Table 3. Other

features had negligible weights, so we could safely neglect them.

Table 3: Feature Importance Scores for Exp I
TaskID Class Line Method

2 0.280722 0.189896 0.022244

3 0.107471 0.196431 0.018746

4 0.263595 0.155731 0.033794

Towards Exp II and III, we created a new feature called “Rating” since we needed

only one feature to weight the “users” to their recommended or navigated “class”. For

Exp II, we used the class-based event count for each user. We used it to create a

“Rating_quantized” feature that referred to the relative time a user spent interacting with

a class and the elements associated with it. We clipped peak-outliers based on 98%

quartiles and then binned based on PQuartiles into 10 equal bins to get a normally

distributed rating. The details and samples can be seen in Table 4 and Figure 7.

Table 4: The Initial “Rating” vs. “Rating_quantized” Feature Statistics for Exp II
Type Mean Median Min Max S.D. Unique Values

Actual 586.0654 83 1 4890 1211.3128 499
Binned 5.4741 5 1 10 2.9084 10

27

Figure 7: Sample of “Rating_quantized” for Exp II

Finally, for Exp III, since we wanted to also make use of Pupil deviations, the

“Rating” feature was a combination of quantized and binned class-based event counts and

relative pupil diameters for each event. As an additional step, we extracted the average

pupil diameter for each user per task and then the relative pupil deviation for each

interaction event. Proceeding further as before, we clipped peak-outliers based on 98%

quartiles and then binned based on PQuartiles into 10 equal bins to get a normally

distributed rating for pupil dilation/contraction as well. Towards merging both the

features i.e. class-based event count and relative pupil deviation, we simply added both

the binned/quantized values. This new feature was renamed as “Rating”- and the values

of “Rating_quantized” were binned into 10 bins. The statistics of “Rating_quantized” can

28

be seen in Figure 8 and the distribution in Figure 9. Finally, we use three features for Exp

II and III – PID, Class and Rating to develop to our recommender system with.

Figure 8: The “Rating_quantized” Feature Statistics for Exp III

Figure 9: “Rating_quantized” distribution bar plot for Exp III

Similarly, for the Mylyn log dataset i.e. for Exp V, we binned and quantized the

“Interest” rating to obtain the “Ranking”. This single manipulation after cleaning

duplicate values gave us a dataset that can be seen in

29

Figure 10.

Figure 10: Mylyn Dataset used towards the Recommender System in Exp V

Towards Expertise prediction i.e. Exp IV, we had the Rating, Kind, Navigation,

OriginId, and StructureHandle features to classify into the Expertise label. However,

upon the evaluation, we found the Feature importance scores to be non-consistent to carry

out any further experimentation since the trained model may be severely over/under fitted

based on these features. These scores can be seen in Table 5. This possibly was due to log

aggregation by Mylyn, which led to ambiguous feature values for all logical labels, thus

rendering machine learning useless.

Table 5: Feature Importance Scores for Expertise Prediction in Exp IV
TaskID Rating Kind Navigation OriginID StructureHandle

2 0 0 0 0 0
3 -0.02907 -0.011628 0.017442 0.023256 0
4 0.094118 -0.011765 0 -0.035294 0

30

3.10 Experiment Instrumentation

Microsoft Azure ML gave us a scalable and powerful set of tools known as modules to

design our experiments with. The various modules we used in our experiments are:

1. Clean Missing data: This is the step which allows us to remove rows with missing

critical values or to replace null values with a default value (could be a constant or

mathematical operation)

2. Remove Duplicate Rows: The name tells us all. We used this to preserve the first

unique row and then to eliminate all duplicates. This was done in cases where all

unique rows had to be given equal weightage for the ML models to come up with

unbiased functions.

3. Project Columns: This is the step where we can select the columns to be selected

from the entire dataset. We used this to select relevant columns so as to obtain

logical relationships.

4. Metadata Editor: This module is used to make values of a feature categorical or to

modify the data type of all values in a column.

5. Indicator Values: This module converted all the values under a feature into

indicator-features and assigned them Boolean values. The output of this module

added columns to the input dataset to achieve this.

6. Split: This step allows us to select rows based on different parameters such as cell

value, column name among others. We can split our input dataset into two parts

31

based on a ratio of the first dataset to the input dataset (We used between 0.5 and

0.7). Another options include randomization of the outputs -which we used to be

able to train our models with a variety of samples. A seed value helps in retrieving

the randomly generated dataset again, if needed.

7. Train Model: This is the step where the selected model is used on the Split dataset

to train it. This step is moderately time consuming.

8. Sweep Parameters: This module uses the training algorithm and comes up with

the most optimal parameter values for the training and testing dataset. This

though, takes up a lot of time but is useful since we can optimize the predictions

based on accuracy or precision apart from others.

9. Cross Validate Model: Cross-validates parameter estimates for classification or

regression models by partitioning the data. We use this on the data to be classified

based on our model selection.

10. Permutation Feature Importance: Computes the permutation feature importance

scores of feature variables given a trained model and a test dataset.

11. Score Model: We use the trained model on the non-trained dataset from the prior

split. This is a time consuming process based on the dataset size. A column is

added to our dataset for cross checking and evaluation purposes.

12. Evaluate Model: This is the final step where we evaluate the results of a

classification or regression model with standard metrics. For most of our

experiment, we obtained and used the following parameters:

a. Accuracy: It measures the goodness of a classification model as the

32

proportion of true results to total cases.

b. Precision: It is the proportion of true results over all positive results.

c. Recall: The fraction of all correct results returned by the model.

d. F-score: The computed weighted average of precision and recall between

0 and 1, where the ideal F-score value is 1.

e. AUC: This is the measured area under the curve plotted with true positives

on the y-axis and false positives on the x-axis. This metric is useful

because it provides a single number that lets us compare models of

different types.

f. Average log loss: It is a single score used to express the penalty for wrong

results. It is calculated as the difference between two probability

distributions – the true one, and the one in the model.

g. Training log loss: It is a single score that represents the advantage of the

classifier over a random prediction.

h. NDCG (Normalized discounted cumulative gain): This measures the

performance of a recommendation system based on the graded relevance

of the recommended entities. It varies between 0.0 and 1.0, with the latter

representing the ideal ranking of the entities. This metric is commonly

used in information retrieval and to evaluate the performance of

recommenders such as web search engines.

As previously discussed, we used Two-Class Boosted Decision Tree for Exp I i.e.

towards Expertise Prediction. The details of the dataset used for this experiment can be

33

seen in Table 6. We split our experiment into three parts as per the three tasks we have.

This allowed for more accurate classifications since the values of each feature varies

significantly across tasks. The experiment flow can be seen in Figure 11 and Figure 12.

Table 6: Subset used for Expertise Prediction
Column Value Type Variable Type Unique Values

Line Numeric Value Feature 975

Class Categorical Feature Feature 1224

Method Categorical Feature Feature 733

Expertise Categorical Feature Label 2

Figure 11: Exp I: Data Cleanup and Feature Type Updating for Exp I

34

Figure 12: Training, Scoring and Evaluation in Exp I

Towards Exp II and III i.e. for designing the recommender systems, we used a

Bayesian Recommender using the Matchbox algorithm. The details of the dataset used

for this experiment can was represented in Figure 7. We yet again, split our experiment

into three parts as per the three tasks we have. The experiment flow can be seen in Figure

13 and Figure 14.

35

Figure 13: Training, Scoring and Evaluation in Exp II and III.

36

Figure 14: Preprocessing Data for Exp III

37

RESULTS AND ANALYSES

This chapter presents the performance of our trained models on the scoring

dataset based on the Evaluate Model module parameter as discussed in Section 3.5.

4.1 RQ1: Can we predict the expertise of a developer based on gaze data and

interactions with the IDE for a specific task?

After several tweaks of our process flows, the optimal parameters discovered and

used for the various modules can be seen in Table 7 and the results of scoring can be seen

in Table 8.

Table 7: Discovered and Used Parameters for Exp I
S.No. Parameter Final Value

1 Training Split 0.7 (Random)

2 Sweep Parameters – Split 0.6 (Random)
3 Sweep Parameters – Runs 5

4 Model - Max Leaves/ Tree 36
5 Model - Min Samples/ Node 7
6 Model – Learning Rate 0.333
7 Model – Number of Trees 182

Parameter 1 is the training/testing split i.e. 70% to train and 30% to score and evaluate.

These rows are chosen randomly. Parameters 2 and 3 are those discovered by the Sweep

Parameters module. Finally, Parameters 4 to 7 describe the design of our classification

model.

38

Table 8: Model Evaluation for Exp I
TaskID Accuracy Precision Recall F1 Score AUC

(Per 0.5 Threshold)

2 0.905 0.941 0.906 0.923 0.971
3 0.794 0.787 0.828 0.807 0.883
4 0.853 0.875 0.860 0.867 0.937

Mean 0.851 0.868 0.865 0.866 0.930

In this experiment, since the AUC is way above 0.5, we can safely assume that the

system did not make random guesses. Further, based on the cross validation of our

selected model we can see that the Standard Deviation (Table 9) is very small for the

various parameters and hence, confirms the reliability of both the variability of our

training dataset and the selection of our model.

Table 9: Exp I: Model Cross Validation
 Examples

/Fold

Accuracy Precision Recall F-Score AUC Average

Log

Loss

Training
Log Loss

Mean 57126.7 0.89278 0.939846 0.88516 0.911681 0.960275 0.244246 63.073989

S.D. < 1 0.002 0.001373 0.003103 0.001803 0.00091 0.002556 0.388006

The terms accuracy and precision are discussed in detail in Section 3.10 under the

Evaluate Model module.

Based on a mean accuracy of 85% and after having obtained a satisfactory result

with Cross Validation, we can conclude that eye gaze data can be used to classify

developers across different tasks based on Expertise. This was possible due to significant

differences in gaze patterns between the two classes of Experts, which allowed the

39

Machine Learning model to define clear rules for assigning developers to either class.

Further, a narrow grey area helped us obtain a high amount of accuracy.

4.2 RQ2: Can we use the class-based eye gaze and interaction of a developer to

intelligently suggest classes of interest?

Similar to Exp I, the optimal parameters discovered and used for the various

modules towards Exp II can be seen in Table 10, the model evaluations in Table 11 and

the results of scoring in Table 12.

Table 10: Discovered and Used Parameters for Exp II
S.No. Parameter Final Value

1 Training Split 0.75 (Recommender Split)

2 Model – Number of Traits 20
3 Model – Algorithm Iterations 10

4 Model – Training Batches 4
5 Recommender – Max pool 5
6 Recommender – Min pool 2
7 Model – Number of Trees 182

Same as before, Parameter 1 is the training/testing split i.e. 75% to train and 25% to score

and evaluate. These rows are chosen as per the input requirements of the Matchbox

Recommender. Parameters 2 to 4 are those discovered by the Sweep Parameters module

and Parameters 5 and 6 are those set up by us. Min pool defines the minimum classes to

be recommended and Max pool, the maximum. Finally, Parameter 7 describes the design

of our recommender model.

40

Table 11: Recommender Evaluation for Exp II
TaskID Exp II: NDCG

2 0.899

3 0.905

4 0.843

Mean 0.882

Table 12: Recommender Pool Sample for Task 2 in Exp II
User Item 1 Item 2 Item 3 Item 4 Item 5

29 net.sf.jabref.groups

.GroupsPrefsTab

javax.swing.

AbstractButton

net.sf.jabref.

Util

net.sf.

jabref.

Globals

net.sf.jabref.

BibtexEntry

26 javax.swing.

AbstractButton

java.util.HashMap net.sf.jabref.

Util

net.sf.jabre

f.Globals

net.sf.jabref.JabRef

Preferences

4 net.sf.jabref.

groups.

GroupsPrefsTab

javax.swing.

AbstractButton

net.sf.jabref.

Globals

net.sf.

jabref.Util

java.awt.

Component

9 java.util.Hashtable net.sf.jabref.label.

KeyWord.

keyWordTable

‐ ‐ ‐

2 java.util.HashMap net.sf.jabref.

BibtexEntry

net.sf.jabref.

Util

net.sf.jabre

f.Globals

net.sf.jabref.JabRef

Preferences

As discussed in Section 3.10 under the Evaluate Model module, NDCG stands for

Normalized discounted cumulative gain (NDCG). It measures the performance of a

recommendation system based on the graded relevance of the recommended entities. It

varies from 0.0 to 1.0, with 1.0 representing the ideal ranking of the entities. In this

experiment the mean being 0.882, our recommender can be considered a success and

performs quite well. Further, the Recommendation Pool has recommendations ranging

between 2 and 5 classes since; they were the parameters we chose in the previous section.

41

Most users are recommended 5 classes but user 9 is not - possibly due to the fact that no

other classes had a higher enough predicted ranking to be considered of relevance.

However, had we increased the min pool size, more recommendations would have been

made. Therefore, based on the mean NDCG of 0.882, we can say that we designed a

successful recommender system using class-based eye gaze information of a developer.

4.3 RQ3: Can we also use pupil dilation/contraction information alongside class-

based gaze interaction to intelligently suggest classes of interest?

Similar to Exp II, the optimal parameters discovered and used for the various

modules towards Exp III are the same as Table 10; the model evaluations can be seen in

Table 13 and the results of scoring in Table 14.

Similar to RQ2, in this experiment the mean being 0.836, our recommender can

be considered a success though it falls behind the earlier one. Further, all users are

recommended 5 classes due to the fact that all classes had significant predicted ranking to

be considered of relevance. One interesting thing to note is that the recommendations

pools of the two experiments though not entirely different, allocate different probabilities

based ranking to the same item. An example of recommendation pool comparison for

TaskID 2 and UserID 2 can be seen in Table 15.

42

Table 13: Recommender Evaluation for Exp III
TaskID Exp III: NDCG

2 0.787

3 0.890

4 0.830

Mean 0.836

Table 14: Recommender Pool Sample for Task 2 in Exp III
User Item 1 Item 2 Item 3 Item 4 Item 5

23 net.sf.jabref.
JabRefPrefer
ences

net.sf.jabref.Util Buffer net.sf.jabref.Util.o
penExternalViewer
.cmdArray

javax.swing.JOptionP
ane

1 net.sf.jabref.
JabRefPrefer
ences

net.sf.jabref.BaseP
anel

java.util.Set net.sf.jabref.Conte
ntSelectorDialog2

net.sf.jabref.Content
SelectorDialog2.field
Pan

28 net.sf.jabref.
EntryCompa
rator

java.awt.Container net.sf.jabref.Fi
eldContentSel
ector

net.sf.jabref.FieldC
ontentSelector.acti
onPerformed.chos
en

net.sf.jabref.EntryCo
mparator.sortField

2 net.sf.jabref.
JabRefPrefer
ences

javax.swing.text.JT
extComponent

java.util.Hash
Map

net.sf.jabref.group
s.KeywordGroup.m
_pattern

java.io.PrintStream

6 net.sf.jabref.
JabRefPrefer
ences

java.util.HashMap javax.swing.tex
t.JTextCompon
ent

net.sf.jabref.group
s.KeywordGroup.m
_pattern

net.sf.jabref.groups.K
eywordGroup.add.ol
dContent

Table 15: Recommender Pool Exp II vs. III for User 2 and Task 2.
Exp Item 1 Item 2 Item 3 Item 4 Item 5

II java.util.

HashMap

net.sf.jabref.

BibtexEntry

net.sf.

jabref.

Util

net.sf. jabref.

Globals

net.sf.jabref.

JabRefPreferences

III net.sf.jabr

ef.JabRefP

references

javax.swing.text.JTe

xtComponent

java.util.

HashMa

p

net.sf.jabref.grou

ps.KeywordGrou

p.m_pattern

java.io.PrintStream

43

On the basis of the mean NDCG of 0.836, we can say that we have designed

successful recommender system using pupil dilation/contraction information alongside

class-based gaze interactions in RQ2. Though, the performance of this system falls a little

short of our previous recommender system, it still performs at a satisfactory level.

4.4 Threats to Validity

The quality of data is the most critical requirement of a good machine learning

system. In our case, one threat to validity could be the short time period each participant

had for working on a change task since, we were limited by the time availability of the

participants and had to restrict the study to one hour with 20 minutes given for each task.

This means that while the data does not represent the completion of a task but does

provide insight into represent the navigation of users. Another threat to validity is the

choice of JabRef as the subject system. JabRef is written in a single programming

language and its code complexity and quality might influence the study. For instance,

code with low quality and/or high complexity might result in developers spending more

time to read and understand it, and thus longer eye gaze times and consequently the

higher class “Ranking”. We tried to mitigate this risk by choosing a generally available

system that is an actively used and maintained open source application and that was also

used in other studies and by developing a second recommender system making use of

pupil deviation. Constricted pupils in general refer to active interaction - usually known

as accommodative response and vice versa. Further studies, however, are needed to

examine other factors, such as code quality, to generalize the results.

44

As stated in Kevic et al.’s work [1], JabRef had to be run through the command

prompt using ANT and not directly in Eclipse. This meant that participants were not able

to use breakpoints and the debugger within Eclipse and might have influenced the results.

In addition, iTrace collects eye gazes only within Eclipse editors. This means that we do

not record eye gaze when the developer is using the command prompt or running JabRef.

However, since we were interested in the navigation between the code elements within

the IDE, this does not pose any limitations to our analysis. If the user opens the “Find in

File” or “Search Window" within Eclipse, or a tooltip pops up when hovering over an

element in the code, the eye gaze is not recorded as this overlaps a new window on top of

the underlying code editor window and iTrace did not support gazes on search windows

at the time of the study.

To minimize the time in which eye gazes could not be recorded, we requested the

participants to close these windows so gaze recording can continue. Finally, most

professional developers were mainly Visual Studio users for their work; we conducted

our study in Eclipse. However, all professional developers stated that they did not have

problems using Eclipse during the study.

For a lab-based study, our machine learning system performs to satisfactory levels

but this may vary in real time and under various circumstances. The beauty of

implementing this system as a cloud service would be that we could train the system to

adopt if any patterns are found in the deviations of our classifications/ recommendations

to the real world usage, which is part of our future work.

45

4.5 Discussion of Results

Based on the above findings, we can confidently say that these experiments lay a

basis for further research in recommender systems and classification of expertise. This

was made possible by the granularity of data collected by iTrace. We failed to obtain

satisfactory results from the Mylyn logs towards designing similar systems. For sake of

comparison, we did go ahead and design Exp IV, the results of which were over fitted as

can be seen in Figure 16. As can be seen in comparison to Figure 15, the Mylyn log based

model is way over fitted.

Figure 15: Model for Expertise Prediction for TaskID 4 using iTrace logs

46

Figure 16: Model for Expertise Prediction for TaskID 4 using Mylyn logs

So far, based on our findings, we can say that tracing developers' eyes during their

work on change tasks does in fact offers a variety of new insights and opportunities to

support developers at work. Especially, the richness and granularity of the data provided

by iTrace provides to the potential for new and improved tool support, which was not

possible earlier. This support may include but is not limited to navigational

recommendations and expertise classification among others. We can in fact put these two

approaches together and train out recommender model based on the real time feed of

Professionals. This may have the ability to enhance the performance of amateurs by

helping them navigate code.

47

CONCLUSIONS AND FUTURE WORK

To explore the possibilities of categorizing developers as amateurs or

professionals based on their eye tracking patterns, we developed a machine learning

system using the two-class Boosted Decision Tree algorithm with satisfactory results. We

further strengthen our previous study’s premise that eye gaze based interaction data has

more possibilities in terms of applications and research. The future work may include

adding and modifying features from the iTrace dataset to scale this system to work for a

more generalized set of data and in real time while maintaining or improving the

accuracy while the system keeps learning online. This system also needs to be tested

under wide array of circumstances to observe the performance and learning mechanisms

in real time. Several other types of classifications such as determining the task difficulty

or interest levels based contextual processing via pupil dilation data [4] are also possible

as future work.

Towards the recommender systems, we came up with two systems using Bayesian

recommenders and Matchbox Algorithms. One of them only made use of the time spent

interacting with the various elements of a class as the “Rating” whereas the other also

made use of the pupil contractions. Though their recommendation pools varied, they did

perform well in terms of the NDCG metrics. In additional to the NDCG metrics, we also

48

plan to report more standard measures such as the sum of errors to have our experiment

easily compared to others in the future.

Other possible future modifications include more parameters to the “Rating”

while enhancing the recommendations. Also, the evaluation of the evolution of the

recommender pool in real time scenarios can be studied to enhance the aforementioned

“Rating”. Sentimental analysis on bug fixing reports combined with the iTrace logs can

be used towards a newer formula for “Rating”. This can be further extended to analyze

reports or comments in real time to alter the recommendation pools and can provide

assistance in remote working environments.

Finally, the granularity of eye tracking data can give us a different insight into the

contextual process of a developer and when coupled with other biometric logs on a time

series can provide us an unparalleled amount of understanding of the developers’ thought

and development process.

49

References

[1] K. Kevic, B. M. Walters, T. R. Shaffer, B. Sharif, D. C. Shepherd, and T. Fritz,

“Tracing Software Developers’ Eyes and Interactions for Change Tasks,” in

Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering, New York, NY, USA, 2015, pp. 202–213.

[2] T. R. Shaffer, J. L. Wise, B. M. Walters, S. C. Müller, M. Falcone, and B. Sharif,

“iTrace: Enabling Eye Tracking on Software Artifacts Within the IDE to Support

Software Engineering Tasks,” in Proceedings of the 2015 10th Joint Meeting on

Foundations of Software Engineering, New York, NY, USA, 2015, pp. 954–957.

[3] Mik Kersten, “eclipse.org/mylyn/.” .

[4] T. Partala and V. Surakka, “Pupil size variation as an indication of affective

processing,” Int. J. Hum.-Comput. Stud., vol. 59, no. 1–2, pp. 185–198, Jul. 2003.

[5] J. Hyönä, J. Tommola, and A.-M. Alaja, “Pupil Dilation as a Measure of Processing

Load in Simultaneous Interpretation and Other Language Tasks,” Q. J. Exp.

Psychol. Sect. A, vol. 48, no. 3, pp. 598–612, Aug. 1995.

[6] www.tobii.com/. .

[7] R. Brooks, “Towards a Theory of the Comprehension of Computer Programs,” Int.

J. Man-Mach. Stud., vol. 18, pp. 543–554, 1983.

[8] N. Pennington, “Stimulus Structures and Mental Representations in Expert

Comprehension of Computer Programs,” Cognit. Psychol., no. 19, pp. 295–341,

1987.

50

[9] Shneiderman B. and R. Mayer, “Syntactic Semantic Interactions in Programmer

Behavior: A Model and Experimental Results,” Intl J Comp Info Sci., vol. 18, pp.

219–238, 1979.

[10] Teresa M. Shaft and I. Vessey, “The Relevance of Application Domain Knowledge:

The Case of Computer Program Comprehension,” Inf. Syst. Res., vol. 6, no. 3, pp.

286–299, 1995.

[11] Letovsky S. and E. Soloway, “Delocalized Plans and Program Comprehension,”

IEEE Softw., pp. 41–49, 1986.

[12] T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J. Paterson, C. Schulte, B. Sharif,

and S. Tamm, “Eye Movements in Code Reading: Relaxing the Linear Order,” in

International Conference on Program Comprehension, 2015, pp. 255–265.

[13] B. Walters, T. Shaffer, B. Sharif, and H. Kagdi, “Capturing software traceability

links from developers’ eye gazes,” in Proceedings of the 22nd International

Conference on Program Comprehension, 2014, pp. 201–204.

[14] Bonita Sharif and T. Shaffer, “The Use of Eye Tracking in Software Development,”

presented at the Augmented Cognition for Daily Living - HCI International (HCII

2015), Los Angeles, CA, USA, 2015.

[15] A. Begel, M. Hansen, R. Bednarik, P. Orlov, P. Ihantola, G. Shchekotova, and M.

Antropova with T. Busjahn, C. Schulte, and B. Sharif, Simon, “Eye Tracking in

Computing Education,” in Proceedings of the Tenth Annual Conference on

International Computing Education Research, New York, NY, USA, 2014, pp. 3–

10.

51

[16] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An Exploratory Study of

How Developers Seek, Relate, and Collect Relevant Information during Software

Maintenance Tasks,” Softw. Eng. IEEE Trans. On, vol. 32, no. 12, pp. 971–987,

Dec. 2006.

[17] T. Fritz, A. Begel, S. C. Müller, S. Yigit-Elliott, and M. Züger, “Using Psycho-

physiological Measures to Assess Task Difficulty in Software Development,” in

Proceedings of the 36th International Conference on Software Engineering, New

York, NY, USA, 2014, pp. 402–413.

[18] Soloway E. and K. Ehrlich, “Plans in Programming: Definition, Demonstration and

Development,” Empir. Stud. Program. Knowl. IEEE Trans. Softw. Eng., pp. 595–

609, 1984.

[19] E. M. Altmann, “Near-term memory in programming: a simulation-based analysis,”

Int. J. Hum. Comput. Stud., vol. 54, no. 2, pp. 189–210, 2001.

[20] M. Kersten and G. C. Murphy, “Mylar: A Degree-of-interest Model for IDEs,” in

Proceedings of the 4th International Conference on Aspect-oriented Software

Development, New York, NY, USA, 2005, pp. 159–168.

[21] M. Kersten and G. C. Murphy, “Using task context to improve programmer

productivity,” in Proceedings of the 14th ACM SIGSOFT international symposium

on Foundations of software engineering, 2006, pp. 1–11.

[22] K. Rayner, “Eye movements in reading and information processing: 20 years of

research.,” Psychol. Bull., vol. 124, no. 3, p. 372, 1998.

52

[23] M. Just and P. Carpenter, “A Theory of Reading: From Eye Fixations to

Comprehension,” Psychol. Rev., vol. 87, pp. 329–354, 1980.

[24] T. Lee, J. Nam, D. Han, S. Kim, and H. P. In, “Micro Interaction Metrics for Defect

Prediction,” in Proceedings of the 19th ACM SIGSOFT Symposium and the 13th

European Conference on Foundations of Software Engineering, Szeged, Hungary,

2011, pp. 311–321.

[25] B. Steichen, C. Conati, and G. Carenini, “Inferring Visualization Task Properties,

User Performance, and User Cognitive Abilities from Eye Gaze Data,” ACM Trans

Interact Intell Syst, vol. 4, no. 2, pp. 11:1–11:29, Jul. 2014.

[26] C. Parnin and C. Gorg, “Building Usage Contexts During Program

Comprehension,” in Program Comprehension, 2006. ICPC 2006. 14th IEEE

International Conference on, 2006, pp. 13–22.

[27] D. Piorkowski, S. D. Fleming, C. Scaffidi, L. John, C. Bogart, B. E. John, M.

Burnett, and R. Bellamy, “Modeling programmer navigation: A head-to-head

empirical evaluation of predictive models,” in Visual Languages and Human-

Centric Computing (VL/HCC), 2011 IEEE Symposium on, 2011, pp. 109–116.

[28] D. Čubranić and G. C. Murphy, “Hipikat: Recommending Pertinent Software

Development Artifacts,” in Proceedings of the 25th International Conference on

Software Engineering, Washington, DC, USA, 2003, pp. 408–418.

[29] “Usage Data Collector.” [Online]. Available: https://eclipse.org/epp/usagedata/.

[Accessed: 21-Sep-2015].

53

[30] C. Bird, T. Menzies, and T. Zimmermann, The Art and Science of Analyzing

Software Data: Analysis Patterns. Elsevier, 2015.

[31] B. Sharif and J. I. Maletic, “An Eye tracking Study on camelCase and Under_score

Identifier Styles,” in 18th IEEE International Conference on Program

Comprehension (ICPC’10), pp. 196–205.

[32] S. Yusuf, H. Kagdi, and J. I. Maletic, “Assessing the Comprehension of UML Class

Diagrams via Eye Tracking,” in Program Comprehension, 2007. ICPC ’07. 15th

IEEE International Conference on, 2007, pp. 113–122.

[33] S. Müller and T. Fritz, “Stuck and Frustrated or In Flow and Happy: Sensing

Developers’ Emotions and Progress.”

[34] M. E. Crosby and J. Stelovsky, “How Do We Read Algorithms? A Case Study,”

Computer, vol. 23, no. 1, pp. 24–35, Jan. 1990.

[35] B. de Smet, L. Lempereur, Z. Sharafi, Y.-G. Guéhéneuc, G. Antoniol, and N. Habra,

“Taupe: Visualizing and Analysing Eye-tracking Data,” Sci. Comput. Program. J.

SCP, vol. 87, 2011.

[36] B. Sharif, G. Jetty, J. Aponte, and E. Parra, “An Empirical Study Assessing the

Effect of SeeIT 3D on Comprehension,” in 1st IEEE International Working

Conference on Software Visualization (VISSOFT 2013), pp. 1–10.

[37] B. Sharif and J. I. Maletic, “An Eye tracking Study on the Effects of Layout in

Understanding the Role of Design Patterns,” in 26th IEEE International Conference

on Software Maintenance (ICSM’10), pp. 1–10.

54

[38] R. Turner, M. Falcone, B. Sharif, and A. Lazar, “An eye-tracking study assessing

the comprehension of C++ and Python source code,” in Proc. of the Symposium on

Eye Tracking Research & Applications, Safety Harbor, Florida, 2014, pp. 231–234.

[39] D. Binkley, M. Davis, D. Lawrie, J. I. Maletic, C. Morrell, and B. Sharif, “The

Impact of Identifier Style on Effort and Comprehension,” Empir. Softw. Eng. J.

Invit. Submiss., vol. 18, no. 2, pp. 219–276, 2013.

[40] H. Uwano, M. Nakamura, A. Monden, and K. Matsumoto, “Analyzing individual

performance of source code review using reviewers’ eye movement,” in Proc. of the

Symposium on Eye Tracking Research & Applications, San Diego, California, 2006,

pp. 133–140.

[41] R. Bednarik, “Expertise-dependent Visual Attention Strategies Develop over Time

During Debugging with Multiple Code Representations,” Int. J. Hum.-Comput.

Stud., vol. 70, no. 2, pp. 143–155, Feb. 2012.

[42] R. Bednarik and M. Tukiainen, “An eye-tracking methodology for characterizing

program comprehension processes,” in Proc. of the Symposium on Eye Tracking

Research & Applications, 2006, pp. 125–132.

[43] P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch, and S. D’Mello,

“Improving Automated Source Code Summarization via an Eye-tracking Study of

Programmers,” in Proceedings of the 36th International Conference on Software

Engineering, New York, NY, USA, 2014, pp. 390–401.

55

[44] B. Walters, M. Falcone, A. Shibble, and B. Sharif, “Towards an Eye-tracking

Enabled IDE for Software Traceability Tasks,” in 7th International Workshop on

Traceability in Emerging Forms of Software Engineering (TEFSE), pp. 51–54.

[45] B. Sharif and H. Kagdi, “On the Use of Eye Tracking in Software Traceability,” in

6th ACM International Workshop on Traceability in Emerging Forms of Software

Engineering (TEFSE’11), pp. 67–70.

[46] Y. Koren, “The BellKor Solution to the Netflix Grand Prize,” Aug-2009.

[47] Andreas Toscher, Michael Jahrer, and Robert M. Bell, “The BigChaos Solution to

the Netflix Grand Prize.”

[48] Martin Piotte and Martin Chabbert, “The Pragmatic Theory solution to the Netflix

Grand Prize.”

[49] B. Sharif, M. Falcone, and J. I. Maletic, “An Eye-tracking Study on the Role of

Scan Time in Finding Source Code Defects,” in Symposium on Eye Tracking

Research and Applications (ETRA), pp. 381–384.

[50] C. Aschwanden and M. Crosby, “Code Scanning Patterns in Program

Comprehension,” in Proceedings of the 39th Hawaii International Conference on

System Sciences, 2006.

[51] G. E. A. P. A. Batista and M. C. Monard, “An analysis of four missing data

treatment methods for supervised learning,” Appl. Artif. Intell., vol. 17, no. 5–6, pp.

519–533, May 2003.

[52] “jabref.sourceforge.net/.” .

56

[53] K. M. Svore and C. J. C. Burges, “Large-scale Learning to Rank using Boosted

Decision Trees,” in Scaling Up Machine Learning: Parallel and Distributed

Approaches, Cambridge University Press, 2011.

[54] D. Stern, R. Herbrich, and T. Graepel, “Matchbox: Large Scale Bayesian

Recommendations,” in Proceedings of the 18th International World Wide Web

Conference, 2009.

[55] M. Dash and H. Liu, “Consistency-based search in feature selection,” Artif. Intell.,

vol. 151, no. 1–2, pp. 155–176, Dec. 2003.

[56] Y. Qian, J. Liang, W. Pedrycz, and C. Dang, “Positive approximation: An

accelerator for attribute reduction in rough set theory,” Artif. Intell., vol. 174, no. 9–

10, pp. 597–618, Jun. 2010.

		2016-01-07T09:26:04-0500
	College of Graduate Studies

