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Abstract 

 

Developers spend a majority of their efforts searching and navigating code with 

the retention and management of context being a considerable challenge to their 

productivity. We aim to explore the contextual patterns followed by software developers 

while working on change tasks such as bug fixes. So far, only a few studies have been 

undertaken towards their investigation and the development of methods to make software 

development more efficient. Recently, eye tracking has been used extensively to observe 

system usability and advertisement placements in applications and on the web, but not 

much research has been done on context management using this technology in software 

engineering and how developers work.  

In this thesis, we analyze an existing dataset of eye tracking and interaction 

history that were collected simultaneously in a previous study. We look into exploring 

navigational patterns of developers while they solve tasks. Our goal is to use this dataset 

to determine if we can perform prediction and recommendations solely based on eye gaze 

patterns. In order to do this, we conduct three experiments on Microsoft Azure on 

developer expertise recommendation and class recommendation for developers using 

only eye tracking data. Our results are quite promising. We find that eye tracking data 

can be used to predict expertise of developers with 85% accuracy. It is further able to 

recommend classes with good performance (a normalized discounted cumulative gain, 

NDCG ranging between 0.85 and 0.88). These findings are discussed with a view to 
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designing systems that can adapt to the individual user in real time and make intelligent 

adaptive suggestions while developers work. 
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INTRODUCTION 

Software is inherently quite complex. In this work, we aim to understand and 

evaluate the contextual patterns followed by software developers towards bug fixing and 

to use them towards the exploration of technologies and methods to make this process 

more efficient. 

1.1 Motivation 

Software developers spend a majority of their time working on change tasks, such 

as bug fixes or feature additions. They use complex Integrated Development 

Environments (IDE) such as MS Visual Studio or Eclipse making them more productive. 

The challenges faced by all developers often include searching and navigating to relevant 

blocks of code, retention and management of context upon change of tasks and across a 

long timeframe and wastage of time and effort on non-productive contemplation among 

other things. However, only a few studies have been undertaken towards their 

investigation and the development of methods to make software development more 

efficient. This is mainly due to the significant effort required towards acquiring the time 

of professional software developers to participate, the lack of any detailed, automatic and 

efficient method of capturing, transcribing and coding the long sessions of these 

developers' working environments and the fact that most context management systems 

are strictly event and/or interaction based. 
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In recent years, eye tracking has been used extensively to observe system usability 

and advertisement placements in applications and on the web, not much research has 

been done on context management using this technology. In previous work, Kevic et al.  

conducted a study [1] with 22 software developers both from industry and academia. 

They recorded the eye movements of these developers along with the interaction history 

data simultaneously. Interaction history data consists of mouse clicks and keyboard 

events including searches made by the developer. Eye tracking data consists of where the 

developer is looking and for how long. The elements captured by eye tracking were 

source code elements such as method signatures, method calls, variable declarations, and 

variable usage among others. The eye tracking data was gathered using iTrace [2] and the 

interaction history data was collected using a well-known interaction history manager, 

Mylyn [3]. In this work, we use this first-of-a-kind dataset for predictions and 

recommendations.   

This dataset is unique in that it is the first eye tracking study that is conducted on a 

large open-source code base that supports scrolling and viewing multiple files without 

loosing context of what the developer is looking at. This was made possible by the 

Eclipse plugin iTrace [2] developed at the Software Engineering Research and Empirical 

Studies Lab at YSU, that interfaces with the Java Abstract Syntax Tree within Eclipse to 

automatically map the eye gaze to a source code element such as a variable name or a 

method call.   
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1.2 Contributions 

We explore how eye gaze features such as time spent looking at source code 

elements and the pupil diameter when the user is looking at these elements. These 

features can be used to record probabilistic impressionable context that may transform 

into actions.  We further try to place how our findings can be used in the evolution of 

development tools towards making the developers more efficient while working on 

change tasks.  

We use machine-learning algorithms to predict expertise of a developer based on 

his/her eye tracking sessions. In addition, we also use machine learning algorithms to 

recommend relevant classes to a developer based on his/her eye gaze during the session. 

We find that predicting the expertise of a developer based on where the eye is focusing is 

feasible and works well 85% of the time. This research seeks to lay the groundwork for 

future research based on knowledge discovery and prediction algorithms. 

 

1.1 Research Questions 

Of the range of questions that arise, we shall focus our research to seek answers 

towards the following questions.  All these questions relate to the context of fixing bugs.  

 RQ1: Can we predict the expertise of a developer based on gaze data and 

interactions with the IDE for a specific task? 

 RQ2: Can we use the class-based eye gaze and interaction of a developer to 

intelligently suggest classes of interest?  
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 RQ3: Can we also use pupil dilation/contraction information alongside class-

based gaze interaction to intelligently suggest classes of interest? 

The first research question, RQ1 deals with prediction while RQ2 and RQ3 deal with 

recommendations. In particular, we are interested in predicting expertise of developers 

solely based on their eye gaze activity.  The expertise prediction is useful to determine if 

an eye gaze pattern belongs to an expert or a novice.  Such a prediction is useful during 

job interviews where the interviewer could possibly be eye tracking the candidate to 

determine if they are looking at relevant parts of the code. But more importantly, it could 

be used to suggest different recommendations to experts compared to novices in an 

online setting while they are programming in the IDE. This transitions into RQ2 and RQ3 

that deal with recommending classes of interest to developers based on how they have 

been looking at classes so far. Hence, the result of RQ1 could be used as input to RQ2 

and/or RQ3. However, in this thesis, we deal with them separately.  

The main difference between RQ2 and RQ3 is that in RQ3 we use an additional eye 

gaze feature, i.e., pupil dilation.  The pupil diameter is a measure that the eye tracker 

reports and is listed in millimeters for both the right eye and the left eye. The reason we 

chose pupil deviation based on pupil dilation and pupil contractions as a possible feature 

was because research in the past has shown that systematically chosen stimuli 

significantly affected the subjects’ physiological reactions and subjective experiences. 

This consequently affects the pupil dilation/contraction and so it is possible to use pupil 

size variation as a computer input signal [4][5]. 
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1.2 Organization 

The thesis is organized as follows.  The next chapter gives a brief introduction to 

eye tracking and related work. Chapter 3 presents the details of the experimental setup 

and an overview of all experiments conducted. Chapter 4 discusses observations and 

results and finally, Chapter 5 concludes the thesis and presents future work.   
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BACKGROUND AND RELATED WORK  

 This chapter presents an overview of existing work in program comprehension and 

eye tracking. We first start with giving some terminology on eye tracking.  

2.1 Eye Tracking Basics and Terminology 

Eye trackers have been around since the 1970’s. Due to the affordability and 

smaller form factor, they are becoming popular in different areas of research. They 

capture the eye movements of the user on a screen/area based on how infrared light 

reflects back after it hits the retina. After an initial setup and calibration, the eye tracking 

system is able to calculate the point of interest with very good precision. The system 

usually consists of hardware and software. The output is a time series with several 

parameters such as validity codes for both eyes, the (x, y) coordinate of where the gaze 

was focused, and pupil dilation among others. All the parameters are discussed in Section 

3.7. The granularity of modern eye trackers usually lies in the millisecond range. For the 

study that collected the data used in this thesis, the Tobii X60 eyetracker [6] was used 

that does not require the developer to wear any gear. Tobii X60 has an on-screen 

accuracy of 0.5 degrees and spits out 60 eye gaze locations per second. To accommodate 

for this and still have line-level accuracy of the eye gaze data, the font size should be set 

larger (usually to 20 points) for source code within Eclipse. We ran several tests to 

validate the accuracy of the collected data. 
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2.2 Program Comprehension 

Current research into software comprehension models, suggests that programmers 

attempt to understand code using the somewhat clichéd taxonomy of ‘bottom-up 

comprehension’, ‘top-down comprehension’, and various combinations of these two 

processes [7]. Bottom-up comprehension models, propose that as source code is read, 

abstract concepts are formed by chunking together low-level information [8] [9].  In other 

words, reading the code and then mentally chunking or grouping these lines of code into 

higher-level abstractions builds understanding from the bottom up. The bottom-up model 

of software comprehension primarily addresses situations where the programmer is 

unfamiliar with the domain. Several ‘top-down’ models of software comprehension have 

been proposed to address the alternative situation, where the programmer has had some 

previous domain exposure. Essentially, these top-down models of comprehension suggest 

that the programmer utilizes knowledge about the domain to build a set of expectations 

that are mapped on to the source code [7][10]. 

Over time, several cognitive models of program comprehension have been 

suggested and researched all of which attempt to explain how a software developer goes 

about the process of understanding and navigating code. However, research has 

suggested that there is no one ‘all encompassing’ cognitive model that can explain the 

behavior of all the developers [11] and that it is more likely that they will swap between 

various models as per the need [12]. Further, eye tracking can provide us significant 

insight into capturing traceability links between different artifacts [13] and assistance 

towards software development [14] and computing education [15] among others. 
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2.3 Tracing Developers Interaction 

For decades, researches have unceasingly aimed at understanding the way 

developers apprehend code. Initial researches aimed to do this via interviews and 

questionnaires after the participants had interacted with the code [7][18]. With 

advancements in processing and storage capabilities and reducing costs [15],  Altmann 

analyzed a ten minute interval of an expert programmer performing a task and used 

computational simulation to study the near-term memory [19]. However, the cost of 

hand-coding developers’ actions is very high, which have in turn led to only a limited 

number of studies providing detailed insights on the developers' behaviors. 

With the availability of more advanced technology, newer ways of automatically 

recording such data have been brought about. Two of the most popular ones being: User 

Interaction Monitoring [20][21] and Biometric Sensing [22][23]. Based on the captured 

monitoring logs based on the interaction with code elements (also known as Areas of 

interest or AOIs’) that the developer interacted with, we can use this knowledge for 

defect prediction [24] and towards determining a developers’ cognitive abilities in real 

time [25]  among other uses. Additional information such as navigation patterns 

[26][27][28] within an IDE further helps in defect prediction [24]. Even the Eclipse team 

themselves undertook a major data collection project called the Usage Data Collector 

[29] that, at its peak, collected data from thousands of developers using Eclipse. Overall, 

the automatic monitoring of user interactions was able to significantly reduce the cost for 

certain empirical studies [30]. Along with this, a popular context management tool called 

Mylyn [3] was developed. Mylyn is a plugin for the Eclipse IDE, which further 
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strengthened this approach towards research. However, these studies are limited to the 

granularity and detail of the monitoring approach. In case of user interaction monitoring, 

the granularity is predominately at the method or class level and detailed information 

such as the time a developer spends reading a code element or when the developer is not 

looking at the screen, is missing and this not only makes it more difficult to fully 

understand the developers' traces in detail but also effects the precision of such studies. 

In recent times, the interaction of developers with IDE’s have been a good source 

of learning and has led to the development of Mylyn. Mylyn is an open source execution 

of the Task-Focused Interface; it’s additionally an application lifecycle management 

(ALM) structure for Eclipse [3]. It provides an interface to developers and can help 

proficiently with a wide range of errands, (for example, bugs, issue reports or new 

elements). Mylyn can incorporate with archives, for example, Bugzilla, Trac, Redmine, 

Mantis, JIRA, Unfuddle and GitHub. It focuses on improving productivity by reducing 

searching, scrolling, and navigation. By making task context explicit, Mylyn is also 

meant to facilitate multitasking, planning, reusing past efforts, and sharing expertise. The 

log files generated by Mylyn have been used to explore the interaction patterns and 

methods between developers and IDEs. 

Apart from Mylyn, a more conventional method to capture interactions is to 

obtain a video screen capture of tasks performed by developers. This is a long and tedious 

process since, the videos then have to be manually studied frame by frame and flags need 

to be noted down. This makes the process manual and hence, is prone largely to human 

errors and inconsistencies. People have in the recent past, attempted to develop and use 
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video scraping tools to obtain the interactions but they are heavily limited by the platform 

in question and hence, cannot be used on a diversity of environments.  

Another straightforward but tedious approach was followed Ko et al. [16]. In this 

study, the authors screen captured ten developers' desktops while they worked on five 

distinct tasks on a small program and then hand-coded and analyzed each of the 70 

minute sessions. Similarly, in a study on developers performing more realistic change 

tasks, Fritz et al. [17] used a similar technique and manually transcribed and coded the 

screen-captured videos of all participants. 

 

2.4 Eye tracking Studies 

Alongside to the IDE instrumentation efforts, researchers in the software 

development domain have also started to take advantage of the maturing of biometric 

sensors. Most of this research focuses on eye-tracking [22], while only few studies have 

been conducted so far that also use other signals, such as an fMRI to identify brain 

activation patterns for small comprehension tasks. Sharif et al. conducted an eye tracking 

study to determine the effectiveness and efficiency of identifier styles such as camel case 

and underscore [31]. A combination of eye-tracking, EDA, and EEG sensors to measure 

aspects such as task difficulty, developers' emotions and progress, or interruptibility 

[32][33] have also been done but cannot be completely generalized. Eye tracking ensures 

not only automatic capturing where a developer is looking (eye gaze) but also has helped 

researchers gain deeper insights into developers' code comprehension. Walters et al. 
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conducted an eye tracking study to automatically capture traceability links between bug 

reports and source code [13]. 

Crosby et al. carried out one of the first studies in program comprehension using 

eye tracking. It was discovered that experts and novices vary in they way they looked at 

English and Pascal versions of an algorithm [34]. Ever since, various researchers have 

used visual monitoring methods to examine the impact of developers' eye gaze on their 

comprehension of different kinds of representations and visualizations including but not 

limited to UML diagrams [35][32], graphs [25], 3D visualizations [36], design pattern 

layouts [37], programming languages [38], and identifier styles [31][39]. Some 

researchers have also discovered that developers usually read the entire source code first 

to get an overview though this study was limited to small code snippets [40]. Other 

researches focused on the examination of the different strategies novice and expert 

developers employ towards program comprehension and debugging [41][42], as well as 

the developers time consuming areas when reading a method in order to help devise a 

better method summarization technique [43]. In addition, researchers have also attempted 

to explore the potential of eye tracking towards the detection of software traceability 

links [13][44][45]. Finally, Conati et al. in their research [25] attempted to provide a 

detailed analysis of different eye gaze feature sets, as well as over-time accuracies and 

inferred that these predictions are significantly better than a baseline classifier even 

during the early stages of visualization usage and therefore can adapt to the individual 

user in real time. Their work was not in the field of software engineering.  
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2.5 Discussion 

In the previous section, a short description of relevant studies using eye tracking 

in software engineering is given. This is not an exhaustive list. Since 2006, there has been 

a surge in the number of software engineering papers using eye tracking. To date, there 

are about 35 papers in the area. This trend is expected to continue.  

Most of the aforementioned studies lay a good basis for further research but are 

either limited to very small toy applications or single-page code tasks that do not involve 

scrolling. Furthermore, the link between the eye gaze (e.g. a developer looking at pixel at 

x, y coordinate on the screen) to the elements in source code (i.e., method class within a 

method) had to be done manually which raises human error, accuracy and precision 

concerns. The study conducted by Kevic et al. [1] changed that.  It made use of an eye 

tracking plugin namely, iTrace that was capable of recording eye gaze on longer 

documents and not limited to a single screen of text.  

Through our research, we aim to explore how change tasks are handled by 

developers and how we can assist/streamline this process for them in real time. We aim to 

develop efficient real-time recommender systems such as used by Netflix to 

recommend/customize their users’ dashboard [46][47][48]. This should save developers 

significant time wasted in scanning and finding areas of interest [49][50]. 

To maximize productivity and to ensure the quality of collected data, we used our 

in-house developed plugin for Eclipse called iTrace and bundled it with the data collected 

by Mylyn. This helped us collect good quality data, while reducing the need of manual 

mapping. This further helped us overcome the single page code task limitation of 
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previous studies, allowing for change tasks on a realistic-sized code base with developers 

being able to naturally scroll and switch editor windows. 

We see the experiments conducted in this thesis as a first step towards showing 

that using eye tracking data from a bug fixing session can be used to predict and 

recommend relevant source code items to developers. The next section introduces the 

experiments.  
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EXPERIMENTS 

This chapter presents the details of the various experiments we conducted on 

Microsoft Azure that use machine learning algorithms.  

3.1 Dataset Used 

Good quality data is the biggest need of data science [51]. We now explain how 

the dataset was collected by Kevic et al. [1]. In order to ensure we had high quality 

reliable data, we used data collected across 22 participants. So, as to get the best accuracy 

possible, calibration were done before every study. The participants in Kevic’s study [1] 

were asked to fill out a background questionnaire on their previous experiences with 

programming. The tasks recorded had the goal to fix the specified bugs based on user 

generated bug reports. All participants were seated in front of a 24- inch LCD monitor. 

The total time spent by each participant was one hour spread across three tasks (or bugs 

to fix). Further, the participants were requested to type their answer (i.e. the 

class(es)/method(s)/attribute(s) where they might fix/find the bug) in a text file. The 

source code in question belonged to JabRef [52] - an open source bibliography reference 

manager the details of which are discussed in Section 3.2. Each participant was able to 

make any necessary edits to this code and run it. They were also able to switch back and 

forth between the Eclipse IDE and the JabRef application. The eye tracking data was only 

collected when Eclipse was in focus. 
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3.2 Subject System and Tasks  

JabRef (http://jabref.sourceforge.net/) was the subject system used in the study 

conducted in [1]. JabRef is a graphical application for managing bibliographic databases 

that uses the standard LaTeX bibliographic format BibTeX, and can also import and 

export many other formats. JabRef is an open source, Java based system available on 

SourceForge [52] and consists of approximately 38 KLOC spread across 311 files. The 

version of JabRef was 1.8.1, release date 09/16/2005. To have realistic change tasks, the 

tasks were directly taken from the bug descriptions submitted to JabRef on SourceForge. 

Information about each task is provided in Table 1. These are from [1] and are listed here 

for easy reference.  

All of these change tasks represent actual JabRef tasks that were reported by 

someone on SourceForge and that were eventually fixed in a later JabRef release. The 

tasks were randomly selected from a list of closed bug reports with varied difficulty as 

determined by the scope of the solution implemented in the repository. Three change 

tasks were performed by all participants. This is a reasonable number of tasks without 

causing fatigue in the one hour of the study. A time limit of 20 minutes was placed for 

each task so that participants would work on all three tasks during the one-hour study. To 

familiarize participants with the process, each participant was also given a sample task 

before starting with the three main tasks for which we did not analyze the tracked data. 

The task order of the three tasks was randomly chosen for each participant. 
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Table 1: Study Tasks conducted by Kevic et al. in [1]. 
ID Bug ID Date 

Submitted 
Title Scope of Solution in 

Repository 
2 1436014 02/21/2006 No comma added to 

separate keywords 
Multiple classes: EntryEditor, 

GroupDialog 
FieldContentSelector, 

JabRefFrame 
3 1594123 11/10/2006 Failure to import big 

numbers 
Single method: 

BibtexParser.parseFieldContent 
4 1489454 05/16/2006 Acrobat Launch 

fails on Win98 
Single method: 

Util.openExternalViewer 
 
 

3.3 Participants 

We describe the participants of the study conducted in [1]. Kevic et al. gathered 

two sets of participants: twelve professional developers working at ABB Inc. that spend 

most of their time developing and debugging production software, and ten undergraduate 

and graduate computer science students. Participants were recruited through personal 

contacts and via a recruiting email. All participants were compensated with a gift card for 

their participation. All professional developers reported having more than five years of 

programming experience. Seven of the twelve reported having more than five years of 

experience programming in Java, while the other five reported having about one year of 

Java programming experience. Nine of the twelve professional participants also rated 

their bug fixing skills as above average or excellent. With respect to IDE usage, four of 

the twelve stated that they mainly use Visual Studio for work purposes and that they were 

not familiar with the Eclipse IDE, and one participant commented on mainly being a vim 

and command line user. Two of the professional developers were female and ten were 

male.  
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Among the ten student participants, one participant had more than five years of 

programming experience, five students had between three and five years programming 

experience, and four of them had less than two years programming experience. Three of 

the students had between three and five years of Java programming experience, and  

seven students had less than two years. Three of the ten students rated their bug fixing 

skills as above average, and seven rated them as average. All but one student stated that 

they were familiar with the Eclipse IDE. There was one female and nine male among the 

student population. 

 

Figure 1:  Subjects’ Relative Experience Levels between Amateurs and 
Professionals 

 

As stated in [1], data across a total of 66 change task investigations were collected 

and for each of these investigations. In order to maintain highest quality in terms of data 

selection, Kevic et al. excluded 11 change task investigations whose collected data was 
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inconsistent and therefore, ended up with 55 investigations (18 subjects investigating task 

2, 16 subjects investigating task 3, and 21 subjects investigating task 4). With respect to 

all participants and tasks, Kevic at al. use a total of 688 method investigation instances; 

collected by iTrace and Mylyn simultaneously. We use the same dataset from Kevic et al. 

[1] for the experiments in this thesis.  

 

3.4 Results from Previous Work 

The dataset used in this thesis was generated by the study conducted in [1]. 

Towards investigating the developers' detailed behavior while performing a change task, 

that study [1] showed that gaze data contains substantially more data, as well as more 

fine-grained data than other similar sources. The study further added that gaze data is in-

fact different and captures more aspects about each interaction event as compared to just 

interaction-based data. The analysis also showed that developers working on a realistic 

change tasks only looked at a very few lines within a method rather than read the whole 

method as was often found in studies on single method tasks. Also, when it comes to 

switches between methods, the eye traces reveal that developers only rarely follow call 

graph links and mostly only switch to the elements in proximity of the method within the 

class.  

These detailed findings provide insights and opportunities for future developer 

support. For instance, the findings demonstrate that method summarization techniques 

could be improved by applying some program slicing first and focusing on the lines in 

the method that are relevant to the current task rather than summarizing all lines in the 
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whole method. In addition, the findings suggested that a fisheye view of code zooming in 

on methods in close proximity and blurring out others might have potential to focus 

developers' attention on the relevant parts and possibly speed up code comprehension. To 

avoid this, iTrace automatically links eye gazes to source code entities in the IDE and 

overcomes limitations of previous studies by supporting developers in their usual 

scrolling and switching behavior within the IDE. This approach indeed opened up new 

opportunities for our experiments, which have been extended, based on this previous 

research. 

In this thesis, we use the dataset from our earlier work in [1] for prediction and 

recommendations.  In particular, we are trying to predict developer expertise based on 

gaze data. For recommendations, we are trying to recommend classes to developers based 

on gaze data. None of these types of experiments on eye gaze data have been conducted 

before and hence the results derived from this thesis provide some food for thought to 

improve future prediction and recommendations based on gaze data alone.  

3.5 Data Snapshot 

In this section, we show a small snippet of the fields contained in the iTrace data 

and the Mylyn data for a task. The data for iTrace was collected in XML and JSON 

formats.  The data for Mylyn was in XML. The XML files for a single entry for iTrace 

and Mylyn can be seen in Figure 2 and Figure 3 respectively. The relevant features are 

discussed in detail in Section 3.9. 
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Figure 2: Sample iTrace XML Snippet 
 

 

 

Figure 3: Sample Mylyn XML Snippet 
 

3.6 Experiments Overview 

Moving towards our research goal, we design five experiments, the details of 

which can be seen in Table 2. The first three experiments were only based on eye 
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tracking data.  The last two were based on interaction history data generated from Mylyn. 

Even though we wanted to focus on eye tracking data, we also ran experiments on Mylyn 

data which was collected simultaneously with the eye tracking data during the study 

conducted in [1]. Since we had this data, we wanted to be able to see if we can determine 

similar findings from the interaction history data as well.   

Table 2: Overview of Experiments Conducted  
Experiment 

ID 
Experiment 

Name 
Description Data 

Source 
RQ 

Exp I Expertise 
Recommender 

Expertise Prediction iTrace 1 

Exp II Simple Class 
Recommender 

Class Recommender System based 
on gaze interaction events 

iTrace 2 

Exp III Class 
Recommender with 

Pupil Deviation 

Class Recommender System based 
on gaze interaction events and 

respective pupil 
dilation/contraction. 

iTrace 3 

Exp IV Expertise 
Recommender 

Expertise Prediction Mylyn 1 

Exp V Class 
Recommender 

Class Recommender System based 
only on interaction events 

Mylyn 2 

 

3.7 Data Pre-Processing 

Since the dataset we had was spread across several XML log files which used 

different formats based on their derivative tools i.e. iTrace or Mylyn, we had to first make 

the data consistent. The following subsections explain the steps we took to pre-process 

the data. 

3.7.1 Data Congregation 

In this step, we used a Python script to parse all the XML files and extract data 

into a single csv file. The resultant file was 6704696 rows and 24 columns strong for the 
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iTrace dataset and 3789 rows and 17 columns strong for Mylyn logs. The aim of this was 

to have all data in one place for time efficient manipulation or access and it did help us in 

terms of time and space complexities by saving on time and space while designing the 

experiments. 

3.7.2 Data Migration  

In this step we first uploaded all the data to the Azure Machine Learning Studio. 

Here, we used the inbuilt modules to transform the dataset into a consistent format by 

splitting the FullyQualifiedNames into classes/ methods in question. The fields available 

in master dataset included File, Type, x, y, left-validation, right-validation, left-pupil-

diameter, Fixation, right-pupil-diameter, tracker-time, system-time, nano-time, 

line_base_x, Line, Col, SCE-Count, hows, types, fullyQualifiedNames, line_base_y, 

Difficulty, Expertise, PID, TaskID, Class and Method. We use combinations and 

extractions of these fields towards our experiments, which are discussed below. It is 

important to note that up till this step, we obtain a generic master file with the 

aforementioned fields. Up ahead, we narrow down these features and even create new 

features as per the need of the experiments. A subset example can be seen in Figure 4. 
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Figure 4: A Subset of the Cleaned-up Master Dataset 
 

The data collected by Mylyn did not need much preprocessing since Mylyn collects data 

aggregated to a session so this does not leave many null values. 

3.8 Machine Learning Model Selection 

We designed and executed several experiments to gain better insight into our 

dataset and to explore optimal models for them. Towards our conclusive experiments, we 

used the supervised learning approach and put to use Classification and Recommender 

systems towards our exploratory research.  

3.8.1 Expertise Recommender Experiment 

Towards Exp I, we opted to go for Two-Class boosted Decision Trees based on its high 

accuracy and relative moderate training time as compared to other models. As a 

somewhat generic rule, boosted decision trees yield are strong classifiers [53] specially 

when features have a low degree of entropy (i.e. they are related), which in our case they 
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are since they are strongly bound to a same event. In addition, our training and testing set 

was exponentially larger than the features used and hence, protected our model from over 

fitting. The way a good model should fit the data can be seen in Figure 5. We can see that 

a good classifier divides the data using a simple function, which varies with values but 

can divide the objects into clear labels. An over fitted model cannot adapt to newer data 

i.e. is not generalized and hence, will fail in the longer run. Similarly, a very simple 

classifier may not get the desired accuracy/ precision. 

 

 

Figure 5: Classifiers Generated by ML Models 
 

3.8.2 Class Recommender Experiments 

Towards Exp II and III, we opted to go for the Matchbox Recommender [54]. The 

objective of a recommendation system is to recommend one or more "items” to “users” 

of the system, which in our case are “classes” being served to “developers”. The 

Matchbox recommender is hybrid recommender, which combines collaborative filtering 

with a content-based approach. This means that in case of a new system user, predictions 

are initialized based on items and their general popularity and improved or personalized 

as more information about the user is gathered. This successfully takes care of the “cold-
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start” problem. This is done via a smooth transition from content-based recommendations 

to recommendations based on collaborative filtering. Even if user or item features are not 

available, Matchbox will still work in its collaborative filtering mode, which made it an 

ideal choice in our case. 

3.9 Feature Engineering 

The goal of feature engineering is to find an “optimal” subset of relevant features towards 

enhancing the overall accuracy and consistency while minimizing the size of the training 

dataset [55]. Of all the steps in feature engineering, feature selection is one of the major 

problems in areas of machine learning and data mining [56]. Further, a slight possibility 

of classification emerges due to clear emergence of almost perpendicular axes when 

clustered into two distinct clusters using K-Means++ Clustering on our cleaned features. 

A sample of various clusters we generated can be seen in Figure 6 that follows. 

 

Figure 6: Simple K-Means++ Clustering Result on the iTrace Dataset 
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In order to choose optimal features, we extracted the feature importance using the 

‘Permutation Feature Importance’ module in the Azure ML Studio. This module 

computes the permutation feature importance scores of feature variables given a trained 

model and a test dataset. We ran this on several experiments and based on our prior 

choice of models, discovered that towards Exp I, the “Class” field held the most 

importance in general followed by “Line” and “Method” as seen in Table 3. Other 

features had negligible weights, so we could safely neglect them.  

Table 3: Feature Importance Scores for Exp I 
TaskID Class Line Method 

2 0.280722 0.189896 0.022244 

3 0.107471 0.196431 0.018746 

4 0.263595 0.155731 0.033794 

 

Towards Exp II and III, we created a new feature called “Rating” since we needed 

only one feature to weight the “users” to their recommended or navigated “class”. For 

Exp II, we used the class-based event count for each user. We used it to create a 

“Rating_quantized” feature that referred to the relative time a user spent interacting with 

a class and the elements associated with it. We clipped peak-outliers based on 98% 

quartiles and then binned based on PQuartiles into 10 equal bins to get a normally 

distributed rating. The details and samples can be seen in Table 4 and Figure 7. 

Table 4: The Initial “Rating” vs. “Rating_quantized” Feature Statistics for Exp II 
Type Mean Median Min Max S.D. Unique Values 

Actual 586.0654 83 1 4890 1211.3128 499 
Binned 5.4741 5 1 10 2.9084 10 
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Figure 7: Sample of “Rating_quantized” for Exp II 
 

Finally, for Exp III, since we wanted to also make use of Pupil deviations, the 

“Rating” feature was a combination of quantized and binned class-based event counts and 

relative pupil diameters for each event. As an additional step, we extracted the average 

pupil diameter for each user per task and then the relative pupil deviation for each 

interaction event. Proceeding further as before, we clipped peak-outliers based on 98% 

quartiles and then binned based on PQuartiles into 10 equal bins to get a normally 

distributed rating for pupil dilation/contraction as well. Towards merging both the 

features i.e. class-based event count and relative pupil deviation, we simply added both 

the binned/quantized values. This new feature was renamed as “Rating”- and the values 

of “Rating_quantized” were binned into 10 bins. The statistics of “Rating_quantized” can 
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be seen in Figure 8 and the distribution in Figure 9. Finally, we use three features for Exp 

II and III – PID, Class and Rating to develop to our recommender system with.  

 

 

Figure 8: The “Rating_quantized” Feature Statistics for Exp III 
 

 

Figure 9: “Rating_quantized” distribution bar plot for Exp III 
 

Similarly, for the Mylyn log dataset i.e. for Exp V, we binned and quantized the 

“Interest” rating to obtain the “Ranking”. This single manipulation after cleaning 

duplicate values gave us a dataset that can be seen in  
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Figure 10. 

 

Figure 10: Mylyn Dataset used towards the Recommender System in Exp V 
 

Towards Expertise prediction i.e. Exp IV, we had the Rating, Kind, Navigation, 

OriginId, and StructureHandle features to classify into the Expertise label. However, 

upon the evaluation, we found the Feature importance scores to be non-consistent to carry 

out any further experimentation since the trained model may be severely over/under fitted 

based on these features. These scores can be seen in Table 5. This possibly was due to log 

aggregation by Mylyn, which led to ambiguous feature values for all logical labels, thus 

rendering machine learning useless. 

Table 5: Feature Importance Scores for Expertise Prediction in Exp IV 
TaskID Rating Kind Navigation OriginID StructureHandle 

2 0 0 0 0 0 
3 -0.02907 -0.011628 0.017442 0.023256 0 
4 0.094118 -0.011765 0 -0.035294 0 
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3.10 Experiment Instrumentation 

Microsoft Azure ML gave us a scalable and powerful set of tools known as modules to 

design our experiments with. The various modules we used in our experiments are: 

1. Clean Missing data: This is the step which allows us to remove rows with missing 

critical values or to replace null values with a default value (could be a constant or 

mathematical operation) 

2. Remove Duplicate Rows: The name tells us all. We used this to preserve the first 

unique row and then to eliminate all duplicates. This was done in cases where all 

unique rows had to be given equal weightage for the ML models to come up with 

unbiased functions. 

3. Project Columns: This is the step where we can select the columns to be selected 

from the entire dataset. We used this to select relevant columns so as to obtain 

logical relationships. 

4. Metadata Editor: This module is used to make values of a feature categorical or to 

modify the data type of all values in a column. 

5. Indicator Values: This module converted all the values under a feature into 

indicator-features and assigned them Boolean values. The output of this module 

added columns to the input dataset to achieve this. 

6. Split: This step allows us to select rows based on different parameters such as cell 

value, column name among others. We can split our input dataset into two parts 
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based on a ratio of the first dataset to the input dataset (We used between 0.5 and 

0.7). Another options include randomization of the outputs -which we used to be 

able to train our models with a variety of samples. A seed value helps in retrieving 

the randomly generated dataset again, if needed.  

7. Train Model: This is the step where the selected model is used on the Split dataset 

to train it. This step is moderately time consuming. 

8. Sweep Parameters: This module uses the training algorithm and comes up with 

the most optimal parameter values for the training and testing dataset. This 

though, takes up a lot of time but is useful since we can optimize the predictions 

based on accuracy or precision apart from others. 

9. Cross Validate Model: Cross-validates parameter estimates for classification or 

regression models by partitioning the data. We use this on the data to be classified 

based on our model selection. 

10. Permutation Feature Importance: Computes the permutation feature importance 

scores of feature variables given a trained model and a test dataset. 

11. Score Model: We use the trained model on the non-trained dataset from the prior 

split. This is a time consuming process based on the dataset size. A column is 

added to our dataset for cross checking and evaluation purposes. 

12. Evaluate Model: This is the final step where we evaluate the results of a 

classification or regression model with standard metrics. For most of our 

experiment, we obtained and used the following parameters: 

a. Accuracy: It measures the goodness of a classification model as the 
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proportion of true results to total cases.  

b. Precision: It is the proportion of true results over all positive results. 

c. Recall:  The fraction of all correct results returned by the model.  

d. F-score: The computed weighted average of precision and recall between 

0 and 1, where the ideal F-score value is 1.  

e. AUC: This is the measured area under the curve plotted with true positives 

on the y-axis and false positives on the x-axis. This metric is useful 

because it provides a single number that lets us compare models of 

different types.  

f. Average log loss: It is a single score used to express the penalty for wrong 

results. It is calculated as the difference between two probability 

distributions – the true one, and the one in the model. 

g. Training log loss: It is a single score that represents the advantage of the 

classifier over a random prediction. 

h. NDCG (Normalized discounted cumulative gain): This measures the 

performance of a recommendation system based on the graded relevance 

of the recommended entities. It varies between 0.0 and 1.0, with the latter 

representing the ideal ranking of the entities. This metric is commonly 

used in information retrieval and to evaluate the performance of 

recommenders such as web search engines. 

As previously discussed, we used Two-Class Boosted Decision Tree for Exp I i.e. 

towards Expertise Prediction. The details of the dataset used for this experiment can be 
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seen in Table 6. We split our experiment into three parts as per the three tasks we have. 

This allowed for more accurate classifications since the values of each feature varies 

significantly across tasks. The experiment flow can be seen in Figure 11 and Figure 12. 

Table 6: Subset used for Expertise Prediction  
Column Value Type Variable Type Unique Values 

Line Numeric Value Feature 975 

Class Categorical Feature Feature 1224 

Method Categorical Feature Feature 733 

Expertise Categorical Feature Label 2 

 

 

 

Figure 11: Exp I: Data Cleanup and Feature Type Updating for Exp I 
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Figure 12: Training, Scoring and Evaluation in Exp I 
 

Towards Exp II and III i.e. for designing the recommender systems, we used a 

Bayesian Recommender using the Matchbox algorithm. The details of the dataset used 

for this experiment can was represented in Figure 7. We yet again, split our experiment 

into three parts as per the three tasks we have. The experiment flow can be seen in Figure 

13 and Figure 14.  
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Figure 13: Training, Scoring and Evaluation in Exp II and III. 
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Figure 14: Preprocessing Data for Exp III 
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RESULTS AND ANALYSES 

This chapter presents the performance of our trained models on the scoring 

dataset based on the Evaluate Model module parameter as discussed in Section 3.5. 

4.1 RQ1: Can we predict the expertise of a developer based on gaze data and 

interactions with the IDE for a specific task? 

After several tweaks of our process flows, the optimal parameters discovered and 

used for the various modules can be seen in Table 7 and the results of scoring can be seen 

in Table 8. 

Table 7: Discovered and Used Parameters for Exp I 
S.No. Parameter Final Value 

1 Training Split 0.7 (Random) 

2 Sweep Parameters – Split 0.6 (Random) 
3 Sweep Parameters – Runs 5 

4 Model - Max Leaves/ Tree 36 
5 Model - Min Samples/ Node 7 
6 Model – Learning Rate 0.333 
7 Model – Number of Trees 182 

 

Parameter 1 is the training/testing split i.e. 70% to train and 30% to score and evaluate. 

These rows are chosen randomly. Parameters 2 and 3 are those discovered by the Sweep 

Parameters module. Finally, Parameters 4 to 7 describe the design of our classification 

model. 
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Table 8: Model Evaluation for Exp I 
TaskID Accuracy Precision Recall F1 Score AUC  

(Per 0.5 Threshold) 

2 0.905 0.941 0.906 0.923 0.971 
3 0.794 0.787 0.828 0.807 0.883 
4 0.853 0.875 0.860 0.867 0.937 

Mean 0.851 0.868 0.865 0.866 0.930 
 

In this experiment, since the AUC is way above 0.5, we can safely assume that the 

system did not make random guesses. Further, based on the cross validation of our 

selected model we can see that the Standard Deviation (Table 9) is very small for the 

various parameters and hence, confirms the reliability of both the variability of our 

training dataset and the selection of our model. 

Table 9: Exp I: Model Cross Validation  
 Examples 

/Fold 

Accuracy Precision Recall F-Score AUC Average 

Log 

Loss 

Training 
Log Loss 

Mean 57126.7 0.89278 0.939846 0.88516 0.911681 0.960275 0.244246 63.073989 

S.D. < 1 0.002 0.001373 0.003103 0.001803 0.00091 0.002556 0.388006 

 

The terms accuracy and precision are discussed in detail in Section 3.10 under the 

Evaluate Model module. 

Based on a mean accuracy of 85% and after having obtained a satisfactory result 

with Cross Validation, we can conclude that eye gaze data can be used to classify 

developers across different tasks based on Expertise. This was possible due to significant 

differences in gaze patterns between the two classes of Experts, which allowed the 
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Machine Learning model to define clear rules for assigning developers to either class. 

Further, a narrow grey area helped us obtain a high amount of accuracy. 

4.2 RQ2: Can we use the class-based eye gaze and interaction of a developer to 

intelligently suggest classes of interest?  

Similar to Exp I, the optimal parameters discovered and used for the various 

modules towards Exp II can be seen in Table 10, the model evaluations in Table 11 and 

the results of scoring in Table 12.  

Table 10: Discovered and Used Parameters for Exp II 
S.No. Parameter Final Value 

1 Training Split 0.75 (Recommender Split) 

2 Model – Number of Traits 20 
3 Model – Algorithm Iterations 10 

4 Model – Training Batches 4 
5 Recommender – Max pool 5 
6 Recommender – Min pool 2 
7 Model – Number of Trees 182 

 

Same as before, Parameter 1 is the training/testing split i.e. 75% to train and 25% to score 

and evaluate. These rows are chosen as per the input requirements of the Matchbox 

Recommender. Parameters 2 to 4 are those discovered by the Sweep Parameters module 

and Parameters 5 and 6 are those set up by us. Min pool defines the minimum classes to 

be recommended and Max pool, the maximum. Finally, Parameter 7 describes the design 

of our recommender model. 
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Table 11: Recommender Evaluation for Exp II  
TaskID Exp II: NDCG 

2  0.899 

3  0.905 

4  0.843 

Mean  0.882 
 

Table 12: Recommender Pool Sample for Task 2 in Exp II 
User  Item 1  Item 2  Item 3  Item 4  Item 5 

29  net.sf.jabref.groups

.GroupsPrefsTab 

javax.swing. 

AbstractButton 

net.sf.jabref.

Util 

net.sf. 

jabref. 

Globals 

net.sf.jabref. 

BibtexEntry 

26  javax.swing. 

AbstractButton 

java.util.HashMap  net.sf.jabref.

Util 

net.sf.jabre

f.Globals 

net.sf.jabref.JabRef

Preferences 

4  net.sf.jabref. 

groups. 

GroupsPrefsTab 

javax.swing. 

AbstractButton 

net.sf.jabref.

Globals 

net.sf. 

jabref.Util 

java.awt. 

Component 

9  java.util.Hashtable  net.sf.jabref.label. 

KeyWord. 

keyWordTable 

‐  ‐  ‐ 

2  java.util.HashMap  net.sf.jabref. 

BibtexEntry 

net.sf.jabref.

Util 

net.sf.jabre

f.Globals 

net.sf.jabref.JabRef

Preferences 

 
As discussed in Section 3.10 under the Evaluate Model module, NDCG stands for 

Normalized discounted cumulative gain (NDCG). It measures the performance of a 

recommendation system based on the graded relevance of the recommended entities. It 

varies from 0.0 to 1.0, with 1.0 representing the ideal ranking of the entities. In this 

experiment the mean being 0.882, our recommender can be considered a success and 

performs quite well. Further, the Recommendation Pool has recommendations ranging 

between 2 and 5 classes since; they were the parameters we chose in the previous section. 
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Most users are recommended 5 classes but user 9 is not - possibly due to the fact that no 

other classes had a higher enough predicted ranking to be considered of relevance. 

However, had we increased the min pool size, more recommendations would have been 

made. Therefore, based on the mean NDCG of 0.882, we can say that we designed a 

successful recommender system using class-based eye gaze information of a developer.   

4.3 RQ3: Can we also use pupil dilation/contraction information alongside class-

based gaze interaction to intelligently suggest classes of interest? 

Similar to Exp II, the optimal parameters discovered and used for the various 

modules towards Exp III are the same as Table 10; the model evaluations can be seen in 

Table 13 and the results of scoring in Table 14.  

Similar to RQ2, in this experiment the mean being 0.836, our recommender can 

be considered a success though it falls behind the earlier one. Further, all users are 

recommended 5 classes due to the fact that all classes had significant predicted ranking to 

be considered of relevance.  One interesting thing to note is that the recommendations 

pools of the two experiments though not entirely different, allocate different probabilities 

based ranking to the same item. An example of recommendation pool comparison for 

TaskID 2 and UserID 2 can be seen in Table 15. 
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Table 13: Recommender Evaluation for Exp III 
TaskID  Exp III: NDCG 

2  0.787 

3  0.890 

4  0.830 

Mean  0.836 
 

Table 14: Recommender Pool Sample for Task 2 in Exp III 
User  Item 1  Item 2 Item 3 Item 4 Item 5

23  net.sf.jabref.
JabRefPrefer
ences 

net.sf.jabref.Util Buffer net.sf.jabref.Util.o
penExternalViewer
.cmdArray 

javax.swing.JOptionP
ane 

1  net.sf.jabref.
JabRefPrefer
ences 

net.sf.jabref.BaseP
anel 

java.util.Set net.sf.jabref.Conte
ntSelectorDialog2 

net.sf.jabref.Content
SelectorDialog2.field
Pan 

28  net.sf.jabref.
EntryCompa
rator 

java.awt.Container net.sf.jabref.Fi
eldContentSel
ector 

net.sf.jabref.FieldC
ontentSelector.acti
onPerformed.chos
en 

net.sf.jabref.EntryCo
mparator.sortField 

2  net.sf.jabref.
JabRefPrefer
ences 

javax.swing.text.JT
extComponent 

java.util.Hash
Map 

net.sf.jabref.group
s.KeywordGroup.m
_pattern 

java.io.PrintStream

6  net.sf.jabref.
JabRefPrefer
ences 

java.util.HashMap javax.swing.tex
t.JTextCompon
ent 

net.sf.jabref.group
s.KeywordGroup.m
_pattern 

net.sf.jabref.groups.K
eywordGroup.add.ol
dContent 

 

Table 15:  Recommender Pool Exp II vs. III for User 2 and Task 2. 
Exp Item 1 Item 2 Item 3 Item 4 Item 5 

II java.util. 

HashMap 

net.sf.jabref. 

BibtexEntry 

net.sf. 

jabref. 

Util 

net.sf. jabref. 

Globals 

net.sf.jabref. 

JabRefPreferences 

III net.sf.jabr

ef.JabRefP

references 

javax.swing.text.JTe

xtComponent 

java.util.

HashMa

p 

net.sf.jabref.grou

ps.KeywordGrou

p.m_pattern 

java.io.PrintStream 
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On the basis of the mean NDCG of 0.836, we can say that we have designed 

successful recommender system using pupil dilation/contraction information alongside 

class-based gaze interactions in RQ2. Though, the performance of this system falls a little 

short of our previous recommender system, it still performs at a satisfactory level.  

4.4 Threats to Validity 

The quality of data is the most critical requirement of a good machine learning 

system. In our case, one threat to validity could be the short time period each participant 

had for working on a change task since, we were limited by the time availability of the 

participants and had to restrict the study to one hour with 20 minutes given for each task. 

This means that while the data does not represent the completion of a task but does 

provide insight into represent the navigation of users. Another threat to validity is the 

choice of JabRef as the subject system. JabRef is written in a single programming 

language and its code complexity and quality might influence the study. For instance, 

code with low quality and/or high complexity might result in developers spending more 

time to read and understand it, and thus longer eye gaze times and consequently the 

higher class “Ranking”. We tried to mitigate this risk by choosing a generally available 

system that is an actively used and maintained open source application and that was also 

used in other studies and by developing a second recommender system making use of 

pupil deviation. Constricted pupils in general refer to active interaction - usually known 

as accommodative response and vice versa. Further studies, however, are needed to 

examine other factors, such as code quality, to generalize the results.  



 

44 

 

As stated in Kevic et al.’s work [1], JabRef had to be run through the command 

prompt using ANT and not directly in Eclipse. This meant that participants were not able 

to use breakpoints and the debugger within Eclipse and might have influenced the results. 

In addition, iTrace collects eye gazes only within Eclipse editors. This means that we do 

not record eye gaze when the developer is using the command prompt or running JabRef. 

However, since we were interested in the navigation between the code elements within 

the IDE, this does not pose any limitations to our analysis. If the user opens the “Find in 

File” or “Search Window" within Eclipse, or a tooltip pops up when hovering over an 

element in the code, the eye gaze is not recorded as this overlaps a new window on top of 

the underlying code editor window and iTrace did not support gazes on search windows 

at the time of the study.  

To minimize the time in which eye gazes could not be recorded, we requested the 

participants to close these windows so gaze recording can continue. Finally, most 

professional developers were mainly Visual Studio users for their work; we conducted 

our study in Eclipse. However, all professional developers stated that they did not have 

problems using Eclipse during the study. 

For a lab-based study, our machine learning system performs to satisfactory levels 

but this may vary in real time and under various circumstances. The beauty of 

implementing this system as a cloud service would be that we could train the system to 

adopt if any patterns are found in the deviations of our classifications/ recommendations 

to the real world usage, which is part of our future work. 
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4.5 Discussion of Results 

Based on the above findings, we can confidently say that these experiments lay a 

basis for further research in recommender systems and classification of expertise. This 

was made possible by the granularity of data collected by iTrace. We failed to obtain 

satisfactory results from the Mylyn logs towards designing similar systems. For sake of 

comparison, we did go ahead and design Exp IV, the results of which were over fitted as 

can be seen in Figure 16. As can be seen in comparison to Figure 15, the Mylyn log based 

model is way over fitted. 

 

Figure 15: Model for Expertise Prediction for TaskID 4 using iTrace logs 
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Figure 16: Model for Expertise Prediction for TaskID 4 using Mylyn logs 
 

So far, based on our findings, we can say that tracing developers' eyes during their 

work on change tasks does in fact offers a variety of new insights and opportunities to 

support developers at work. Especially, the richness and granularity of the data provided 

by iTrace provides to the potential for new and improved tool support, which was not 

possible earlier.  This support may include but is not limited to navigational 

recommendations and expertise classification among others. We can in fact put these two 

approaches together and train out recommender model based on the real time feed of 

Professionals. This may have the ability to enhance the performance of amateurs by 

helping them navigate code. 
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CONCLUSIONS AND FUTURE WORK 

To explore the possibilities of categorizing developers as amateurs or 

professionals based on their eye tracking patterns, we developed a machine learning 

system using the two-class Boosted Decision Tree algorithm with satisfactory results. We 

further strengthen our previous study’s premise that eye gaze based interaction data has 

more possibilities in terms of applications and research. The future work may include 

adding and modifying features from the iTrace dataset to scale this system to work for a 

more generalized set of data and in real time while maintaining or improving the 

accuracy while the system keeps learning online. This system also needs to be tested 

under wide array of circumstances to observe the performance and learning mechanisms 

in real time. Several other types of classifications such as determining the task difficulty 

or interest levels based contextual processing via pupil dilation data [4] are also possible 

as future work. 

Towards the recommender systems, we came up with two systems using Bayesian 

recommenders and Matchbox Algorithms. One of them only made use of the time spent 

interacting with the various elements of a class as the “Rating” whereas the other also 

made use of the pupil contractions. Though their recommendation pools varied, they did 

perform well in terms of the NDCG metrics. In additional to the NDCG metrics, we also 
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plan to report more standard measures such as the sum of errors to have our experiment 

easily compared to others in the future.  

Other possible future modifications include more parameters to the “Rating” 

while enhancing the recommendations. Also, the evaluation of the evolution of the 

recommender pool in real time scenarios can be studied to enhance the aforementioned 

“Rating”. Sentimental analysis on bug fixing reports combined with the iTrace logs can 

be used towards a newer formula for “Rating”. This can be further extended to analyze 

reports or comments in real time to alter the recommendation pools and can provide 

assistance in remote working environments.  

Finally, the granularity of eye tracking data can give us a different insight into the 

contextual process of a developer and when coupled with other biometric logs on a time 

series can provide us an unparalleled amount of understanding of the developers’ thought 

and development process. 
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