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Abstract

The purpose of this thesis is to extend previous research on Out-of-Core column-store

databases. Following use of the Asynchronous Out-of-Core update, which kept track of

data using timestamps, an appendix is created which holds the newest timestamps and

updated data by appending entries to the tables as new tuples. The appendix is naturally

unsorted and unindexed by nature, causing need for a linear search that is not only slow,

but causes ever-increasing query time as the volume of data within the appendix expands.

Although measures exist to merge the appendix with the original body of the data, which

is sorted and indexed, it only makes searching on the data swifter once the merging of

tuples is complete. For this reason, the use of an offset B-Tree index to allow for more

efficient searches on the appendix is proposed.
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1 Introduction

Column oriented database systems (column-stores) have existed since the 1970’s. Although

their use has caught on slowly, recent advances in hardware have made them an efficient and

viable option for data warehouse and other read-heavy workloads. Given the physical layout

of a column-stores, read optimizations are simple, because a query will only retrieve the

attributes necessary, and rarely will any query require all attributes in a table. Optimizing

a column-stores’ write operations can be more challenging, given that a single tuple can

be spread across multiple blocks or even pages on disk. The efforts of this research seek

to continue advancing write optimizations by making reads following an Asynchronous

Out-of-Core update more feasible through use of offset B-tree indexes.

The methods discussed later in the research are an attempt at replacing the lin-

ear search following updates, thereby making use of column-stores a more well-rounded

approach. Section 2, Background on the Column-Store Database, discusses general appli-

cations of column-stores and their various optimizations. Section 3, OOC Update Opti-

mization, takes a look at past research in using timestamped binary association tables for

write optimizations. Section 4, Experiment Results, takes a look at how well the indexed

approach with offset B-trees performed when compared to the old linear-search method.

Lastly, Section 5, Conclusion and Future Works, will give a brief summary of the findings

and layout potential plans on future research topics. All methods used in the paper focus on

out-of-core column-stores.
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2 Background on the Column-Store Database

Modern column-store applications are able to take advantage of a plethora of efficiency

increases unavailable to older column-oriented systems. Abadi [1] documents many profi-

cient increases in query optimizations that make modern column stores faster than row-stores

under nearly any condition. One of the features available and most easily optimized for

database systems is the use of different materialization strategies. Materialization is the

building of result (intermediate or final) tuples that pass the query predicate(s).

A classic row-store system will construct intermediate tuples after each predicate

(query condition) has been passed. This means that the query engine must construct

unnecessary results and then apply more predicates to these intermediate results. It is,

in many cases, an inefficient waste of time. There now exists the ability to do “late”

materialization; “late” because the query will only build result tuples when the finalized

product is available. In most cases this saves on time and allows for a much faster query.

The way in which the query engine keeps track of the results is by storing the

object-identifiers (OIDs) in memory [10]. Sometimes these are referred to as row-identifiers

or tuple-identifiers. Database files are usually stored as dense indexes which keep track

of the entire set of tuples, or the location of the elements belonging to some attribute of a

table. It will keep track of the record in format: record-1, record-2, ...record-n, and will

contain all relevant database information for that attribute in a column-store. Intermediate

results contain a subset of this dense index, called a sparse index. A sparse index contains

those tuples or elements that pass the predicate(s). If the query optimizer is using a late-
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materialization strategy, only the OID(s) necessary for the other query predicates are kept

in memory. In most cases this adds to a great increase in efficiency because keeping

track of which OIDs are needed, and therefore which data values will later be extracted, is

simpler than constructing new tuples every time a predicate is passed. Late materialization,

factored in with less data to be read by only accessing relevant attributes, can lead to several

orders-of-magnitude efficiency increases for column-stores over row-stores.

Compression on column-stores allows for greater use of in-memory database

systems. By keeping columns in memory, the query can be further enhanced by not needing

to take data off of disk. The format of column-stores further makes this a possibility when

paired with compression algorithms like Lempel-Ziv (LZ), which can further decrease the

amount of data to be stored, making in-memory database systems more easily achieved.

According to Plattner’s research [9], the average compression rate for column-stores is a

factor of 10 higher than row-stores. Queries can be sped up by several orders of magnitude

for the I/O savings received from transferring a set of data several orders of magnitude

smaller (in its compressed state) off of disk.

LZ works by encoding the data with a pointer or dictionary to a previous occur-

rence of the same value [8]. Therefore, if the DBA uses LZ to encode a name attribute,

every occurrence of the name “John” (except the first) will be compressed into a pointer

to the original appearance of the name. In a large column-store database where certain

values can be repeated multiple times at various points in the entries, this algorithm will

greatly reduce the amount of space needed. LZ compressed data usually appears as triples

with one of the fields of the triple being an offset, which will show any matches made in
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the dictionary window, otherwise a “0” will take the place of non-match. [7] makes use

of a block dictionary window as opposed to a sliding window by dividing input streams

into equal size blocks, and the block can be accessed directly to only decode the parts of

the blocks needed. By using a cached-results buffer, the join results can be stored later to

speed up queries once more. Since LZ decoding is a procedure that is swiftly done, the join

operation can be done quickly to allow it to operate on compressed data, especially when

later combined with the cached-results buffer.

Modern CPU systems can aid in the encoding of data to make writes more

efficient. Parallel algorithms exist which can use multiple processor cores, using their own

local cache memory to encode the data [6][5] can make it faster with a small sacrifice to

general compression ratio, which isn’t consequential given today’s cheap price for storage.

Column-Stores are also able to make better use of general compression algorithms

because they can make use of column-specific compression schemes. In row-stores the

compression would have to factor into the entire tuple, and if the tuples are variable in size it

can severely limit the amount of compression applied. Since columns are stored separately,

a column for "age" can benefit more than if it were stored alongside non-numerical data

types. If a table or view is sorted by some attribute it can make it even more compressible

in certain cases.

Run-Length Encoding (RLE) [2], combines multiple consecutive elements of the

same value into a single value by storing a triple; the start position, value, and how many

values are in the run. If a “people” table were to be sorted by age, then the age column
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could store only a single value for each specific age, no matter how many people it stored.

Three-thousand entries for age 20 would be stored as one triple, showing the start position,

20 (age value), and 3000 for the number of runs. An additional type of compression, called

bit-vector encoding, which is best used for a small range of possible values, such as the

provinces or states of a given nation. The values encoded will be assigned a binary value

and repeats of that value are replaced throughout the column by that value.

The two algorithms mentioned above, RLE and bit-vector encoding, are what are

known as “lightweight” compression algorithms, compared with LZ which is a “heavy-

weight” compression algorithm. LZ is more versatile and able to handle a wider range of

data values than either RLE or bit-vector encoding. It does, however, have a drawback in

that LZ is unable to do operations directly on compressed data. In [11] there is displayed a

sequential algorithm for LZ encoding as well as several advanced parallel (PLZ) encoding

techniques which, although slightly reducing compression ratio, add to the swiftness of the

encoding and decoding of the data. This makes swift decompression a possibility allowing

for LZ to remain a contender in column-store applications and helps in query optimization.

To overcome the handicap LZ suffers in comparison to RLE, [7] has come up with a method

called the “LZ join” which allows for joins to take place directly on compressed data. LZ

join is a late-materialization strategy which performs its joins as late in the query-plan as

possible to speed up the query.

The algorithm used in [4] was specifically LZOP, a variant of LZ which allows

for greater decompression speeds. It is essentially a performance optimized version which

allows for greater use in real-time systems and makes the use of LZ in a DBMS far
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more viable, especially in the case of column-store analytical workloads. There is a

sacrifice of some compression space involved, however, it is well worth the significant gains

received in the reductions of CPU overhead costs. [10] shows the results of various tests

run using different algorithms which awards LZOP fastest compression in multiple data

categories. Data blocks compressed in the traditional LZO variant are stored in sets of

sliding dictionaries called ‘matches’ which help to quickly identify query results during

standard decompression.

For distributed systems compression can also play a big role. In [3], Douglis

states that compression algorithms can greatly aid in tackling the problem of bandwidth

bottlenecks in situations of resource contention. In database systems, as well as other

systems, reducing the amount of data consuming bandwidth over a LAN or WAN connection

can speed up queries. The reason being is that if data-transfer can occur more quickly,

than the query can finish more swiftly. More nodes in the distributed system may share

information more readily and swiftly in the presence of compression algorithms. The data

in this compressed format can even be more likely to fit into the cache, allowing for greater

reuse of queries and better propagation of queries over the network which thereby can help

to avoid I/O as much as possible.

Modern hardware advances make column-stores more feasible and more efficient

for a wide range of applications. In [1] it was mentioned that the SIMD applications on

processors can allow a single processor core to make use of multiple threads and execute

operations on up to 4 values with a single CPU instruction. Despite the file structure of

column-stores making writes more difficult, encoding the data with compression algorithms
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can be done at up to four times the speed, aiding in insertion of data. Added with the fact

that advances in column-stores have allowed for direct operation on compressed data,

(which again aids in late materialization strategies) this has allowed for huge gains in query

optimization. If a compression ratio of 2 is achieved this means that the I/O savings can be

enhanced by reading through 8 values at once. Since it was mentioned above that column-

stores achieve far greater compression ratios, this number in reality is likely to be far higher,

even in near worst-case scenarios.
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(a) Row-Based Table

customer

id name balance

1 Alissa 100.00

2 Bob 200.00

3 Charles 300.00

(b) BAT customer_id

oid int

101 1

102 2

103 3

(c) BAT customer_name

oid varchar

101 Alissa

102 Bob

103 Charles

(d) BAT customer_balance

oid float

101 100.00

102 200.00

103 300.00

Figure 1: customer Data in Row-Based and Column-Store (BAT) Format

3 OOC Update Optimization

In general, column-store databases work well in data warehouse environments given their

read optimizations. Typically a column-store’s tuples are BUNs (Binary UNits) that are

composed of pairs; Object Identifiers (OIDs) and attribute-values. OIDs are required to

keep track of tuples that are decomposed into BUNs. A grouping of BUNs is referred to

as a BAT (Binary Association Table), and the OID is used to keep track of attribute values

spread across different BATs. Figure 1 shows a visual representation of a three-attribute

customer table stored as a set of BATs.

One of the main problems with column-stores is that write optimizations can

be very difficult. The challenge stems from the physical storage model used. Since row-

stores physically store their tuples one after another on disk, the tuples are neatly arranged,

making writes a straight-forward and simple task. In the case of column-stores, however,

the physical storage of a tuple is decomposed over several BATs and writes require accessing

several different locations on disk. The multiple ad-hoc accesses over disk can add greatly
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to I/O time, making any write a difficult and potentially time-consuming procedure. Even

performing an update on tow attributes requires accesses to different storage-locations on

disk.

3.1 Timestamped BAT

Other works often focused on a study of in-memory database systems, but this line of

research has always worked with Out-of-Core (OOC) secondary storage. Since multiple

ad-hoc searches are required to perform most updates, a more efficient measure was sought

out to improve query optimization. Traditional OOC updates on a column-store takes

places in two phases. The first phase requires the seeking of target OIDs of values that

match update predicates. The second phase is the update on the values stored with the

OIDs. The traditional seek-update could incur great costs in I/O due to added data-block

seeking and writing.

In [12], a new structure called a Timestamped Binary Association table (TBAT)

was created to make use of a new procedure called the Asynchronous OOC (AOC) Up-

date. A TBAT, is a traditional BUN/BAT stored with a timestamp. The format of these

Timestamped-BUNs (TBUNs) is a triple; timestamp, OID, and attribute-value. A visual

representation can be seen in Figure 2, which takes the customer_balance and customer_id

BATs and forms them into a TBATs by adding the timestamp. Note that all of the original

data is said to be “Time1” because this data is considered to be a single batch-insert.
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(a) TBAT customer_balance

optime oid float
time1 101 100.00

time1 102 200.00

time1 103 300.00

(b) TBAT customer_id

optime oid id
time1 101 1

time1 102 2

time1 103 3

Figure 2: TBAT Examples

3.2 Asynchronous Out-of-Core Update

3.2.1 An example of an AOC Update

The AOC Update was created to try and prevent the constant ad-hoc data-seeking required

for a traditional update on a column-store. It does so by appending new updates to the

bottom of the TBATs. The updates will have a later timestamp than the existing data with

the same OID(s). The original sorted and indexed data is referred to as the body, and the

unsorted and unindexed stream of updates is referred to as the appendix. Figure 3 shows

a visual representation in which 1.00 is added to the customer balance of the customer

with OID 102. The database, during non-peak times, will be placed into an offline data-

cleaning mode, where the appendix will be merged into the body to save on space and make

search-times more efficient.

The query is: update customer set balance=201.00 where id=2

The new tuple appended on the TBAT will be given an update on its timestamp,

making it Time2 (>Time1). Note that Time2 refers to the later, correct data. Incoming

update streams will repeat the same process, and any updates to the customer-balance TBAT

at OID 102 will be made with a value equivalent of Time3, Time4...Time-n.
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optime oid float
time1 101 100.00

time1 102 200.00

time1 103 300.00

time2 102 201.00

body

appendix

Figure 3: TBAT partitioning customer_balance following AOC Update

Despite the updates, data-consistency is maintained. All OIDs corresponding to

a query target will pass the query predicates despite the timestamps, but the result-tuples

will be filtered again by keeping only the OID with the latest timestamp only as output to

the user. In this way there are no dirty reads or excess data returned by a query to the user.

3.2.2 Partition of TBAT after AOC Updates

Following the AOC update on a TBAT file, the TBAT is partitioned into the body and the

appendix as shown in Table 2 above. The appendix consists of those OIDs that were the

targets of various updates. While the body is sorted and indexed, the appendix is not. The

body can be scanned over with a binary search while the appendix requires a linear search.

This method of partitioning the TBATs on the basis of updates makes sense in

practice when write-optimization is the goal. An update can be appended at the end of a

TBAT file more quickly than the various locations on the OOC storage can be found and

updated. The goal of quick writes for column-stores can be easily achieved by the AOC

update. So long as there exists enough space on disk for the appendix, write speeds will see

a more efficient AOC update that requires less overhead.
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3.2.3 Cost Analysis of the AOC Update

An experiment was performed using two tables, a BAT and TBAT, both consisting of

10,000 records. Five update streams ranging from 10% - 50% (ten-percent increments)

were applied to each table to measure the results of the two update methods. The update

experiment, Figure 4, shows significant findings. Results of the AOC update showed an

extreme increase to query efficiency and update-query speed. The average running time of

a standard BAT update was 7.14 seconds, whilst being only 4.81 milliseconds for the AOC

update. This equates to a 1466.436 times faster on average.
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Figure 4: AOC update on TBAT vs traditional update on BAT

Given that most of that standard column-store update costs are associated with

the cost for I/O, this significant boost to efficiency is explained. Figure 5 shows the order of

magnitude speed increase for the AOC update on a TBAT vs the traditional update on a BAT.

Costly random ad-hoc searches, with attributes sometimes spanning multiple disk-blocks
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(or even disk pages), taking into account that most updates change multiple attributes inside

a tuple, can amount to significant overhead costs.
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Figure 5: AOC update speed increases compared to traditional updates

3.3 Selection after the AOC Update

In [13] the drawbacks of the AOC update method are discussed in detail, and solutions are

proposed to make its use more efficient. There were two main problems with the AOC

update. Firstly, conducting the AOC update partitions the TBAT into two sections: body

and appendix. As the appendix would grow, the need for data-cleaning became evident, for

the search times would would increase as the volume of data in the appendix expands.

Secondly, there existed no means to perform data cleaning without turning the

database off (offline data-cleaning). In this context, data cleaning means the merging of the

appendix with the body to have the most up-to-date data exist in a fully sorted and indexed
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way.

3.3.1 Selection Algorithm

Searching on a BAT file is straightforward. There exists only the BAT itself, which allows

for a swift binary search to locate any specific OID targeted by a query predicate. Any

search conducted on a TBAT before an AOC update is equally straightforward. It is only

after the first AOC update that the search complexity increases. If a selection query is run

on any TBAT containing an appendix, it must first search the appendix for any OIDs that

pass the predicate(s). Only then does the search move into the body of the TBAT, where

any new OIDs are kept but any matching those gathered from the appendix are discarded.

Figure 6 shows how this added query overhead increases overall complexity when dealing

with an appendix.

For searching on a TBAT file with an appendix the selection query overhead is

T BAT
BAT X100%.

3.3.2 Selection Speed Degeneration after AOC Updates

Given that the overhead increase, so too does the query time. As mentioned earlier, the

unsorted nature of the appendix, since it is a random update stream, doesn’t allow for use

of a binary search. Instead, a linear search must be conducted to check each OID within the

appendix.
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Figure 6: TBAT selection overhead compared to a BAT

If the size of the data in the appendix is small there may be no noticeable difference

in query performance. This is true at first, but as the input stream increase the size of the

appendix, the degrading of query performance becomes an issue.

3.4 Data Cleaning for AOC Updates

Naturally, the larger the appendix on the TBAT, the greater the increase the query time.

Overtime, the obvious need to clean the data emerged. In this line of research, "cleaning"

is used to refer to the merging of OIDs from the appendix into the body. In this way, the

body will contain all the data; its sorted and indexed format will allow for a binary search

upon clean, up-to-date data. In this state, the query performance will be at peak efficiency.

In [12] and [13] there was an offline data cleaning method and two online data cleaning

methods created, respectively.
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3.4.1 Offline Data Cleaning after the AOC Update

The offline data cleaning method, Algorithm 1, is flawed in that it requires the database to

be turned off, ignoring incoming query streams until cleaning is complete. While this may

be appropriate for databases that handle small workloads, it is entirely inappropriate for

databases that have to handle constant input streams. The continuing emergence of big-data

environments makes this approach increasingly less suitable for most environments.

Algorithm 1 merge_update � offline data cleaning

Input: tbat: the TBAT file to perform data cleaning on

1: tbat = merge_sort(tbat, oid) � merge sort tbat on oid in ascending order

2: tbat_output = new tbat_file � empty TBAT file

3: line1 = tbat.read() � read a line from input TBAT file

4: if tbat_output or line1 is NULL then
5: exit(FILE_ERROR)

6: while TRUE do
7: line2 = tbat.read() � read next line

8: if line2 is NULL then
9: tbat_output.write(line1)

10: break
11: if line2.oid>line1.oid then
12: � the tuple with next oid is read in

13: tbat_output.write(line1)

14: line1=line2 � line1 moves forward

15: else if line2.timestamp>line1.timestamp then
16: � oids are the same, but line2 is newer

17: line1=line2 � only keep the newer record

18: tbat_output.close() � cleaned TBAT file produced

19: return SUCCESS

The offline data cleaning algorithm is called "merge-update", displays how the

offline data cleaning works. Firstly a merge-sort is applied to the TBAT(s) and the oid are

placed in ascending order while the timestamp is placed in descending order. In the second

phase the file is read sequentially, picking out the first occurrence of each OID (the one with
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the newest timestamp) and removing the rest, thereby keeping only the up-to-date data with

the most recent timestamp. The entire complexity of the merge-update method for offline

data cleaning is O(n log n). The main problem of this method stems from the offline nature.

While the database is offline, incoming queries cannot run and must wait until the data

has been fully cleaned. For this reason, the eager data cleaning and the progressive data

cleaning methods were created, for speed priority and memory-usage priority, respectively.

3.4.2 Online Eager Data Cleaning

The online data-cleaning algorithms differ from offline data cleaning in that they do not

need to turn the database off, making it appropriate for a constant query stream. The online

methods also make use of a data-structure called a snapshot. The first online algorithm,

called "merge-eager" (online eager data-cleaning), is displayed in Algorithm 2. It begins

by making a snapshot of the body, and creating a new appendix file linked to the TBAT.

The older appendix will be merged into the body, making use of merge-sorting and binary

searching. During this time, the tuples in the appendix will be written to the snapshot as a

traditional update like that of a BAT file. When merging is finished, the snapshot’s body

will replace the original and the appendix file will be purged. Through use of the snapshot,

users can still run selection queries upon the body and appendix while the cleaning occurs.

The eager data-cleaning method is used for speed priority to merge the appendix into the

body swiftly. Typical for use in environments with abundant memory, the eager method

merges the entire appendix in one step to reach peak search performance as fast as possible.
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Algorithm 2 MERGE_EAGER � online eager data cleaning

Input: tbat: the TBAT file after AOC updates

1: function MERGE_EAGER(tbat)

2: appendix = tbat.appendix � get the current appendix

3: if appendix is empty then
4: exit(NO_NEED_TO_MERGE)

5: tbat.appendix=new_appendix � create a new empty appendix linked to TBAT

6: appendix = MERGE_SORT(appendix, oid, ascending, timestamp, descending) �
merge sorting the appendix by oid in ascending order and timestamp in descending

order

7: body = snapshot(tbat.body) � make a snapshot of the current body part of TBAT

8: line1 = appendix.read() � read a line from appendix

9: while TRUE do
10: line2=appendix.read()

11: if line2 is NULL then � end of appendix

12: BINARY_UPDATE(body, line1)

13: break
14: else if line2.oid > line1.oid then
15: BINARY_UPDATE(body, line1) � only merge the line with the latest

timestamp

16: line1=line2

17: temp_body=tbat.body � the original body of TBAT

18: tbat.body=body � TBAT links to the updated body snapshot

19: delete(temp_body) � purge the original body

20: delete(appendix) � purge the original appendix

21: return SUCCESS
1: function BINARY_UPDATE(body, line) � update line to mirror of body using binary

search by line.oid

2: rownum=BINARY_SEARCH(body, line.oid) � search the row number in body

containing line.oid

3: if rownum is NULL then
4: body.append(line) � append line to the end of body

5: else
6: body.update(rownum, line) � update line to the body at the rownum-th line
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3.4.3 Online Progressive Data Cleaning

The second online algorithm, “merge-progressive” (online progressive data cleaning),

shown in Algorithm 3, is used for environments where memory is scarce. In these ex-

treme cases, the entire appendix will be unable to fit inside memory, thus requiring the

need for the progressive data cleaning method. This method encapsulates the online eager

data cleaning method, but differs in that the appendix file must be partitioned into smaller

appendix-blocks. These data blocks, whose size are manually defined by the DBA (block

size < available memory), are placed into an appendix queue where each TBAT can contain

more than one appendix. The appendix queue will be attached to the TBAT instead of the

individual appendix, and will contain enough appendix-blocks to hold the entire appendix.

One-by-one an appendix is removed from the appendix queue, and the above online eager

data-cleaning method is applied until the entire appendix of the TBAT has been merged

into the snapshot and it replaces the body. Any streaming updates can also be added to the

appendix queue.

Algorithm 3 MERGE_PROGRESSIVE � online progressive data cleaning

Input: tbat: the TBAT file after AOC updates; appendix_queue: the queue of the split

appendixes; streaming_update: streaming update input; block_size: the block size of

an individual split appendix

1: function MERGE_PROGRESSIVE(tbat, appendix_queue)

2: while appendix_queue is not NULL do
3: appendix=appendix_queue.dequeue()

4: MERGE_EAGER(tbat, appendix)

5: return SUCCESS

One experiment was conducted, Figure 7, on a randomly generated 64MB BAT

file to mimic the minimum block-size of a big-data environment. Following this the BAT
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file was converted into TBAT file with an original-time timestamp. Five update streams

were created at 1% - 5% of the original size (1% increments) and searches were applied to

each. An appendix queue was created with a block size of 10% of the appendix so that it

would take ten increments of data-cleaning to fully merge the appendix with the body. The

results show that with each increment the searching speeds increased, because the volume

of data inside the appendix requiring a linear search became smaller and smaller.

Figure 7: Selection execution time during progressive data cleaning

After ten steps the search speed for each stream merged into its peak performance

as the entire appendix was merged into the body of the TBAT. While the greater the size

of the appendix, the greater the need is to perform a data-cleaning, but it is important

to note that the more data there is the faster it will merge into the TBAT and meet peak

performance. Table 1 shows the results of select queries before the cleaning, and after each

step is implemented.
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cleaning (%)

update

(%)

0 10 20 30 40 50 60 70 80 90 100

1 3526 3180 2833 2486 2141 1795 1451 1106 762 418 70

2 6901 6224 5549 4868 4188 3502 2815 2129 1443 757 70

3 10248 9244 8239 7229 6215 5200 4181 3155 2125 1100 70

4 13574 12250 10918 9581 8238 6891 5538 4179 2811 1441 70

5 16865 15221 13572 11915 10249 8574 6893 5197 3496 1782 70

Table 1: Selection Execution Time (sec) after Online Progressive Data Cleaning (%) with

respect to AOC Update from 1% to 5%

4 Experiment Results

While the online-data cleaning methods for the AOC update were efficient, they did not

optimize searching on the appendix. Since the appendix can be a rapidly changing envi-

ronment, a B-Tree can easily index this workload. By indexing the appendix with a B-Tree

it will make search speeds more efficient. In this case, the experiments will include an

offset B-Tree which will keep the positions of the OIDs. It is expected that searching with a

B-Tree will be more efficient than standard linear search through the appendix of the TBAT.

4.1 Tests of Updates on TBAT and BAT

These experiments are designed to compare searching on a TBAT file’s appendix using a

linear search, and searching using an offset B-tree index. It is expected that performance

will be significantly improved as the volume of data becomes greater and greater. The

experiment was performed with an Ubuntu 14.04 Virtualbox utilizing an Intel Core i7-4770

3.4GHz CPU with four processor-cores, 11GB memory, and a 40GB SATA 7200RPM
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hard disk. All data for these experiments are kept on disk, however, the B-trees will be

constructed to reside in memory.

The experiment is tested on a variety of datasets: 1000 lines, 1MB (47660

lines), 10MB, 32MB, and 64MB BAT files. These datasets consist primarily of OID and

value pairs. While each dataset is tested upon, the priority is the 64MB BAT. This is

because a 64MB dataset can be used to simulate the standard block size for the big data

Hadoop Distributed File System (HDFS). Then a TBAT file is constructed using the current

timestamp. Five update query tables are then constructed, consisting of 1% to 5% of the

dataset. Five updated BAT and TBAT tables are created to simulate these 1% to 5% input

streams; the updates on the TBAT are AOC updates that form an appendix. These updated

files replace the original files. Following this, a selection query consisting of a 10% selection

ratio will be conducted on the updated TBAT and BAT files.

There will be three methods used for simulating the selection. Firstly is the

method that requires a linear search on the appendix; the body is still sorted, allowing for a

binary search if the value isn’t first found in the appendix. The other two methods consist

of offset B-trees to search the appendix fist. A random number generator and a 10% update

file are used in these cases, respectively. Upon construction, the offset B-trees remain in

memory.

It is important to first look at the base-case – the linear search on the appendix.

Figure 8, shows the results of the linear search. As can be seen, the greater percentage of

update, the greater the gap between the search speeds. Each percentage increase steadily
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raised the search-time, because any search must first check the appendix for an updated

value before checking the body of the TBAT. For the 1MB dataset the difference is hardly a

hundred milliseconds between the update streams, but by 64MB the gap in the search times

for the update streams increase about 260 seconds with every 1% increase to the update

stream. The linear search on the appendix for a 5% update stream takes approximately

4396.994 seconds (73.28 minutes). The lack of performance efficiency is obvious in these

showings, making the need to index more apparent.

Figure 8: Selection execution time for a Linear Search

The results for the offset B-tree tests for a 10% selection ratio using random

number generation and a 10% update file can be seen in Figure 9 and Figure 10 respectively.

It can be seen that these graphs are nearly identical, lending no clear advantage to either

method. The random number generation is only a fraction of a percentage faster, given that

it does not first have to read its search OID from a separate file. It is important to note

that the higher the percentage of update on the TBAT, the more efficient the search speed

on average. The reason for this boost is that both an appendix “hit” (OID found in offset
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B-tree) and an appendix “miss” (OID not found in offset B-Tree) must first check to see

if a newer value exists within the B-tree first, and then check the file for the value. In the

case of an appendix hit, where the value exists within the index, the much larger body can

be skipped and the appendix searched at the point of offset that the B-tree indicated; on

average taking fewer steps than even a binary-search on a file. The higher the percentage of

update, the more likely an appendix hit will occur, and the search speeds actually decrease

gradually with a larger appendix.

Figure 9: Selection execution time for a Random Number Generator using an Offset B-Tree

In Figure 11 the results of the update file search can be seen and compared against

the linear search. Comparing the speed of these two methods at each dataset yields some

excellent results. On average the speed of the offset B-tree search is far more efficient than

that of a linear search. Figure 12 shows the comparison for the four largest datasets to see

how many times faster the indexed search is compared to the linear search. It is important

to note that the 1000 lines dataset was left off of this chart because such a small dataset

actually saw a degradation in performance. If we compare the 5% update stream search for
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Figure 10: Selection execution time using a 10% file and an Offset B-Tree

Figure 11: Selection time for a 10% file using an Offset B-tree

the linear method, which took 4396.994 seconds, vs the offset B-tree method, which took

50.626 seconds, we see that the order of magnitude speed increase is 86.852 times faster.
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Figure 12: Order of magnitude speed increase: Offset B-Tree vs Linear Search

5 Conclusion and Future Works

In this research, the use of offset B-trees following an AOC updates on TBATs in OOC

column-store databases was introduced. It was discovered that for any medium-to-large

file, the effect of offset B-trees could greatly increase search speeds on a TBATs appendix

section. Also, the larger the update percentage the faster the search-speeds due to an increase

in appendix hits. The indexed method, therefore, proved to be a successful optimization

and a more efficient alternative to the standard linear search for all but the smallest TBAT

files. Future research will seek to use the offset B-tree index to optimize the online data

cleaning methods.
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