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ABSTRACT

The Classification of Finite Simple Groups was a prominent goal of algebraists. The
Classification Theorem was complete in 1983 and many textbooks from the 1980s
include detailed proofs and explorations of many aspects of this subject. For example,
J.J. Rotman devotes an entire chapter to the Mathieu groups [13].

It seems that there is still disagreement amongst mathematicians as to whether the
Classification Theorem should be deemed thorough or without major error. Looking
into the entire Classification Theorem would be a huge undertaking, so in this paper
we are discussing only the five sporadic Mathieu groups. Looking at these small
sporadic simple groups opened up a discussion of transitivity and k-transitivity.

In addition to traditional abstract algebra material, this paper explores a relation-
ship between the five sporadic Mathieu groups and the combinatorial Steiner Systems.
Included in this discussion is the relationship of My, with the Binary Golay Code.

This thesis ends in a proof of the simplicity of the Mathieu Groups. The proof of
the simplicity of My, and M3 which was developed by R. Chapman in his note, An
elementary proof of the Mathieu groups My1 and M3, makes the preliminary theorems
to the simplicity proof in J.J. Rotman’s book look much less perfunctory |2],[13|. This
raises the question of whether there could possibly be a more succinct proof of the

simplicity of M, Moy and Moy.
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1 Background Information

1.1 Some History of the Classification of Finite Simple Groups

A group is a set of elements with a binary operation on that set in which four basic
properties hold. The set must be closed under the operation, there exists an identity
element, there exists an inverse for each element, and all the elements exhibit an
associative property under the operation. A subgroup, H, of a group G is a subset of
GG which is a group under the same operation. The subgroup consisting of only the
identity element is called the trivial subgroup and every subgroup H such that H C G
is called a proper subgroup. Special subsets of a group are called cosets; specifically
left cosets of H in G are defined as gH = {gh : h € H} and right cosets of H in G
are Hg = {hg : h € H} for some g € G. If for every g € G the left and right cosets
are equal, the subgroup H is said to be a normal subgroup. A simple group is one
which has no nontrivial proper normal subgroups.

Dealing with only the finite simple groups makes further classification of these
groups more palatable. There are five different types of finite simple groups. These

types include:

—_

. the cyclic groups of prime order;
2. the alternating groups;

3. the groups of Lie type over the Galois field of order ¢, where ¢ is odd, which is

denoted GF(q):
4. the groups of Lie type over GF(q) where ¢ is even; and

5. the 26 sporadic groups.



In this paper, we will concentrate on some particular sporadic simple groups.

The classification of all finite simple groups began in 1861 with the discovery of
two of the sporadic simple groups by French mathematician Emile Mathieu. In 1861
and 1873, Emile Mathieu published two papers revealing the first five sporadic simple
groups, aptly named the Mathieu groups. It took until 1965 for the next sporadic
group, Ji, to be discovered by Zvonimir Janko.

Most of the theorems involving the classification of finite simple groups were pub-
lished between 1955 and 1983 [15]. At the beginning of this important period in
classifying these groups, mathematicians were trying to deduce a general classifica-
tion strategy. The first of these was suggested by Richard Brauer in 1954 at the

International Congress of Mathematicians in Amsterdam. This proposal was:

In a finite nonabelian simple group G, choose an involution z...and con-
sider its centralizer Cg(2).... Show that the isomorphism type of Cg(2)

determines the possible isomorphism types of G [15].

Between 1950 and 1965, some mathematicians (including Brauer) spent time work-
ing on perfecting the techniques of classification. This work, along with the proof of
Burnside’s odd order conjecture by Thompson and Feit, helped make this particular
strategy more viable [15].

Consequently, a flood of articles and papers were published in the late 1960s and
the 1970s by mathematicians such as Thompson, Walter, Alperin, Brauer, Goren-
stein, Harada, and Aschbacher on classification of particular simple group types. In
conjunction with this, many new sporadic simple groups were being discovered. Many
of these groups were discovered by finding evidence of a group satisfying certain con-

ditions rather than constructing the group itself. During this uncertain time, people



thought that maybe the sporadic groups would be an infinite set. Then there was a
pivotal conference in Duluth, Minnesota in 1976 which presented key theorems that
illustrated that the production of a complete classification of finite simple groups
would take place in the near future [7]. This insight proved to be true as the mathe-
matical endeavor of classifying all finite simple groups essentially ended in 1981 with
Englishman Simon Norton and his proof of the uniqueness of one of the other sporadic

simple groups |7].

1.2 Emile Mathieu

Emile Mathieu was born in Metz, France in 1835. He was a promising student
even in his younger days, earning awards for academics and behavior; he was honored
mostly in the areas of Latin and Greek studies, but also excelled in mathematics. As a
teenager, Mathieu entered the Ecole Polytechnique in Paris to study mathematics. His
bachelor’s degree was earned partially due to a paper he published which extended
some algebraic theorems about derivatives and differentials originally published by
Descartes and Budan [6].

By the age of 24, Mathieu earned the degree of Doctor of Mathematical Sciences
with his thesis titled On the Number of Values a Function Can Assume, and on the
Formation of Certain Multiply Transitive Functions. His thesis concentrated on the
theory of substitutions which led to two articles which were published in Liouville’s
Journal de mathématiques pures et appliquées. In the second of these articles, the first
two sporadic groups were discussed. These two and another article he published in
1862 on the solution of equations with prime degree helped attract the notice of the

scientific community. As a consequence, Mathieu was placed on the list of candidates



for the Paris Academy of Sciences in the area of geometry. He was never elected into
the Academy, however.

Mathieu spent much time in scientific research, but earned his living as a private
tutor and working for both public and private schools in France. Most of his research
was in applied mathematics, particularly mathematical physics. He returned to pure
mathematics in his papers On the theory of biquadratic remainders, published in 1867,
and Sur la fonction cing fois transitive de 2/ quantités, published in 1873. The latter
of these articles details the last of the Mathieu groups. These things, though, were
only a brief interlude in his studies in applied mathematics. He mainly concentrated
on his work in mathematical physics along with analytical and celestial mechanics.

Mathieu explained this in a quote found in Duhem’s article (translated from French):

Not having found the encouragement I had expected for my researches in
pure mathematics, I gradually inclined toward applied mathematics, not
for the sake of any gain that I might derive from them, but in the hope
that the results of my investigations would more engage the interest of

scientific men [6].

In 1867, Mathieu was offered a job teaching a course in mathematical physics
at the Sorbonne. But, with the death of Lamé, one of the last notable applied
mathematicians of his day in France, mathematical physics was going out of style
[6]. Thus, in 1869, Mathieu applied for and received the position of the chair of pure
mathematics at Basancon. In 1873, he transferred to Nancy and worked in the same
position. After this point, he was overlooked several times for a position as a chair at
the Sorbonne’s Collége de France.

He died at the age of 55 in relative anonymity for a man of his talent and early



promise. He is most remembered for the Mathieu Groups and the Mathieu Functions,

C(a,q,z) and S(a,q, z) which for ¢ = 0 are:
C(a,0,2) = cos(v/az) and S(a,0, z) = sin(y/az).

These are part of the solutions of the Mathieu differential equation:

2

d—;; + (a + 16q cos 2z)u = 0,

for which the general solutions are y = k1C(a, q, 2) + k25(a, ¢, z) where k; and ky are
constants.

According to P. Duhem in his biography of Emile Mathieu,

After a life full of disappointments, he died at a time when the official men
of science hardly had begun to suspect that somewhere in the provinces
|of France|, far away from the capital, there lived a mathematician whose

works were an honor to his country [6].

2 Mathematical Background

2.1 Essential Definitions and Theorems

We begin the mathematical portion of this paper with a discussion of the basic def-
initions in group theory which will be essential when exploring the Mathieu groups.
Many of the definitions will be very general, but most will be referred to in later

proofs and statements.
Definition 2.1. A set G is a group under an operation x if:

5



1. Forall a,b € G, axb € G;

2. There exists e € GG, such that for all a € G, exa=a*xe = q;

3. For all a € G, there exists a=! € G such that axa ' =a"! *a = e; and
4. For all a,b,c € G, (axb)xc=ax (bxc).

Many examples of groups are very obvious to any mathematician. It is imperative,
however to be careful not to assume that if a set is a group under one operation, it

must be a group under any common operation.

Example 2.2. The set of integers, Z, forms a group under the operation of addition.
It is clear that the integers are closed under addition and exhibit the associative
property under addition. We have a property of 0 such that a +0 =04 a = a. We
also know that each integer has a unique opposite, so for any a € Z, there exists

—a € Z such that a + —a = 0.

Example 2.3. The set of integers under the operation of multiplication is not a
group. Note that for any a € Z, 1-a =a-1 = a. So 1 is our identity for this set. But
the inverse of any integer a is the reciprocal of a which is not an integer. Therefore

7 is not a group under multiplication.

There are other commonly used groups which are not so apparent to those outside
of the abstract algebra field. Many of these groups are collections of functions or

other elements which are not numbers.

Definition 2.4. Let X = {1,2,...,n} and Sx be the collection of all permutations
of X. Then Sx is a group under the operation of function composition called the

symmetric group of degree n.
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Figure 1: Visual Representation of S5

Example 2.5. Consider the symmetric group, S3. This is the group consisting of rota-
tions and reflections of an equilateral triangle. The elements are {po, p, p?, fi1, ft2, /13 }-
These elements are also permutations of the numbers 1,2, and 3. See Figure 1. The
operation is composition and therefore works from right to left. Table 1 shows the
multiplication table of S3;. Note that pp = ps and puy = ps so the group is non-

commutative.

The next example is often introduced as an example with elements which are
matrices. For the purposes of this paper, we will discuss the Klein four group in a

more general sense.

Example 2.6. The Klein four group, denoted V| is the group of four elements
{e,a,b,c} where e is the identity. Refer to Table 2 for the multiplication table. This

is an example of a commutative, or abelian, group.
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‘/ﬁ

PollPo| P | P | M1

Pl P P | Po|Hs

P P | Po| P | He

M1 B | B2 | B3] Po

‘ 2 ‘ 3 ‘
H2 | H3
Hi | pe2
M3 | H1
p | r
Po | P
P> | po

O|TH® |

DI |T|IO|O

Table 2: Multiplication Table for the Klein four Group

Definition 2.7. A group G is said to be abelian if G is commutative.

Many times in abstract algebra it becomes useful to discuss the internal structure

of a group. To discuss this, we must begin with the definition of a subgroup.

Definition 2.8. A subgroup of a group G is a subset H of G where H is a group

under the same operation as . This is denoted by H < G.

Theorem 2.9. Let G be a group. Then H C

G is a subgroup if and only if the

following conditions are true under the same operation as the group G:

1. H #0;

2. for all a,b € H ab € H;

3. for every a € H there exists a=* € H such that aa™' = a~'a = e, where e is the

identity in G.



Proof. Suppose H is a subgroup of GG. Then these conditions are met by the Definition
2.8.

Conversely, suppose the three conditions are true. By (1), there exists some a € H.
Then by (3), there exists a~! such that aa™ = a7'a = e. By (2), ¢ € H is an identity
element. Let b € H. Then since H C G, b € G. Therefore, since G is a group,
be = eb = b. Similarly, for any a,b,c € H, these elements are also in G and inherit

the associative property of GG. Therefore H is a group under the same operation as

G. ]

There is a relationship between subgroups and elements in a group, and this
relationship forms sets. It will become apparent that these sets are used to classify

groups further.

Definition 2.10. Let G be a group, H a subgroup of GG, and g € G. A left coset
of H in G is the set gH = {gh : h € H}. A right coset of H in G is the set
Hg = {hg:h € H}. The number of left cosets of H in G or equivalently, the number
of right cosets of H in G is known as the index of H in G, denoted |G : H|. The
identity in a set of cosets is 1H = H. Note that aH = H means that a € H. (Often

we will refer to the left cosets of a subgroup in a group as the cosets.)

Now we must look at special types of subgroups and how we use them to classify

their respective groups. These next definitions will be the basic foundation of this

paper.

Definition 2.11. Let G be a group and H a subgroup of G. Then H is a normal

subgroup of G, denoted H < G, if Hg = gH for all g € G.

Definition 2.12. A group is simple if it has no nontrivial proper normal subgroups.



pol = H

pH = {p2, p}
p°H = {3, p*}
pH = {po, p1 }
poll = {p, jis}
psH = {p* ps}

polX = K
pK = {107 1027p0}
p*K = {p* po, p}

K = {p, ps, po}

Example 2.13. Let H = {p1, po}. The cosets of H in S are:

Hpy=H

Hp = {ps. p}
Hp* = {2, p*}
Hyy = {p07,u1}
Hyo = {p?, p2}
Hus = {p, us}

The left and right cosets are only equal for some elements of S3. Thus H is not a

normal subgroup of S3. Let K = {py, p, p*}. The cosets of K in Sz are:

Kpo =K
Kp={p,p°po}
Kp* = {p*, po, p}

Kp = {M1;M27M3}

po K = {M%Mlaﬂs} Ky = {M27M3,M1}

ps S = {ps, pg, pn} Kpg = {3, pr, o}
All of the left and right cosets are equal. So K is a normal subgroup of S3. In

fact, K = Aj is called the alternating group. Thus S3 is an example of a finite group

that is not simple.

Theorem 2.14. Let G be an abelian group. Every nontrivial, proper subgroup of G

18 also a normal subgroup of G.

Proof. Let G be an abelian group and H a nontrivial, proper subgroup of G. Let
g € G. Let x € gH. Then z = gh for some h € H. Since G is abelian, x = gh = hg €
Hg. So gH C Hyg. Since the left and right cosets have the same size, |gH| = |Hg|.
Therefore H < G. O]

10



Next we will see many properties of groups and their internal structure. It is

important to be able to explore various aspects of a group’s basic construction.
Lagrange’s Theorem. Let G be a group and H < G. Then

1. |H| | |G| and

2. |G|/|H]| is the number of distinct cosets of G in H.

Proof. Let g € G. We claim that the equivalence class of g is the left coset, gH, under
the relation of coset equality, for all a,b € G, aH = bH or a~'b € H. To prove
this claim, we must show the three equivalence relation properties. Let a € GG. Then
a'a = e € H. So the relation is reflexive. For a,b € G, suppose a~'b € H. Then
aH = bH. This implies that b='a € H. Therefore the relation is also symmetric. Let
a,b,c € G. Then suppose a~'b € H and b~'c € H. Then (a 'b)(b~'c) € H which
implies that a~tec = a~'c € H. Thus, the relation is transitive. Hence the left cosets
are equivalence classes. So these cosets partition G. So if a;H, 1 = 1,..., k form the
set of cosets of H in G, |G| = |a1H| + -+ + |apH|. We claim that |H| = |a;H| for
all i =1,... k. Let a; € G for a fixed j, 1 < j <. Define a map, ¢ : H — a;H by
¢(h) = a;jh. Note this is one-to-one since if ¢(hy) = ¢(hs), then a;hy = a;hs. Hence,
by applying aj_l to both sides of the equation, we obtain h; = hsy. To see that ¢ is
onto, let a;hs € a;H for some hy € H. Then since ¢(hs) = a;hs, ¢ is onto. Hence our
claim is proven. So since |G| = |a1H| + -+ + |axH|, |G| = k|H|. So |H| | |G]. Also,
|G|/|H| = k which is the number of distinct cosets of G in H. O

Definition 2.15. The centralizer of an element z in G is the collection of elements

in G which commute with z. This set is denoted Cg(2) = {g € G : gz = zg}.

Example 2.16. In the group, S, the centralizer of p is Cs,(p) = {po, p, p*}

11



The centralizer is instrumental in many proofs involving the classification of finite

simple groups. The centralizer of an element a € G is also a subgroup of G.

Definition 2.17. Let G be a group and H a subgroup of G. Then the normalizer
of Hin Gis Ng(H)={g€e G:gHg ' = H}.

Note that the normalizer of H < Ng(H) < G.

Example 2.18. One subgroup of S5 is H = {u1,po}. Its normalizer is Ng(H) =

{po, p1}.

Definition 2.19. Let G be a group. Then the center of G, Z(G), is the set of

elements in G which commute with every other element in G.
The center of a group is also a subgroup of the group.
Example 2.20. In S5, Z(G) ={oc € S3: o7 =710 forall 7€ S5} = {po}.

Definition 2.21. Let G be a group with a € GG. Then the order of a is the smallest
positive integer k such that a* = 1, where 1 is the identity element in G. If no such

integer exists, we say that a has infinite order.

Example 2.22. In S3, |p| = |p?| = 3, || = |p2| = |us| = 2, and |po| = 1.
Definition 2.23. An involution is an element of order two.

Example 2.24. In S5, 1, p2, and us are involutions.

Example 2.25. In V| every element except e is an involution.

As in many areas of mathematics, it is important in Algebra to discuss how two
groups may be related. We use several different levels of morphisms to achieve this

goal.

12



Definition 2.26. Let (G,*) and (G’,¢) be groups under the operations * and ©

respectively. Then the map ¢ : G — G’ is a homomorphism if for all a,b € G,

o(axb) = o(a) o P(b).

Example 2.27. Define ¢ : Z — 27Z by ¢(x) = 2z. Then ¢ is a homomorphism since

forall z,y € Z, ¢(x +y) = 2(z +y) =22+ 2y = ¢(z) + ¢(y).

Definition 2.28. An isomorphism is a homomorphism which is a bijection. The
groups G and G’ are said to be isomorphic if there is an isomorphism between G

and G’. This is denoted G == G".

Example 2.29. The homomorphism defined in Example 2.27 is an isomorphism. Let
o(z) = ¢(y). Then 2z = 2y for z,y € Z. This implies that x = y. So ¢ is an injection.
To see that ¢ is a surjection, let ¢ € 2Z. Then by the definition of 27Z, there exists
z € Z such that ¢ = 2z. Also, ¢(z) = 2z = ¢. Thus ¢ is onto. Therefore ¢ is an

isomorphism.

Definition 2.30. Let G and H be groups. An isomorphism class (or type) is the

equivalence class {H : H = G}.

Definition 2.31. A function ¢ : X — X is a permutation of a set X if ¢ is a

bijection.

A field is a set which is an abelian group under one operation and is commutative,
has closure, inverses of nonzero elements, and an identity under another operation as

well as a distributive property over both operations.

Definition 2.32. Let p be a prime and n € Z,n > 1. The fields with p” elements are

called Galois Fields, denoted by GF(q) where ¢ = p".

13



The following definitions present special types of matrix groups which will be used

in specific proofs in later sections of this paper.

Definition 2.33. Let F' be a field. The General Linear Group, GL(m, F), is
the set of m x m matrices, with nonzero determinants, whose entries are from F. If

F = GF(q), then GL(m, F') may be written as GL(m, q).

Definition 2.34. Let F' be a field. The Special Linear Group, SL(m, F') is
the set of m x m matrices, with a determinant of one, whose entries are from F. If

F = GF(q), then SL(m, F') may be written as SL(m,q).

Definition 2.35. Let F' be a field. Let E denote the mxm identity matrix. The group
Zy(m, F) is the group of scalar multiples kE with £ = 1. Again, if F = GF(q),

then Z;(m, F') may be written as Z;(m, q).

Definition 2.36. Let G be a group. Let H be a normal subgroup of GG. Then the
quotient group G/N read G mod N is the set of cosets of N in G. Since N is

normal, this set is also a group.

Definition 2.37. Let F' be a field. The Projective Special Linear Group,
PSL(m,F),isthe group SL(m, F),/Z,(m, F). When F' = GF(q), then SL(m, F),/Z,(m, F)

may be written as SL(m,q),/ Z1(m,q).

2.2 Group Actions and Transitivity

Group actions connect the idea of general groups with permutations and allow us to
study transitivity in groups. The subject of transitivity is extremely important when
discussing the Mathieu groups. Emile Mathieu discovered these groups while seeking

highly transitive permutation groups |7|.

14



Definition 2.38. Let GG be a group and X a set. The left group action of G on

X is a map from G x X to X which fulfills the following conditions:
1. e-x = x for all z € X where e is the identity element in G.
2. g-(h-z)=(gh)-xforall g,h € Gand z € X.

Note: The operation - represents the group action and the regular multiplication

represents the group operation in G.

Example 2.39. The permutation group Ss has a very natural group action on the
three vertices of the triangle, X = {1,2,3}. The action is the rotation or reflection
as illustrated in Example 2.5. For example, p; - 1 = 1, since p; does not move the
vertex 1. So pp -2 = 3 since py moves the vertex 2 into the 3rd vertex position.
Then gy - 3 = 2 since p; moves vertex 3 into the 2nd vertex position. This is a
group action because the identity, p fixes every element of X. Also, for the second
property, consider G\{po}. Using the multiplication table, Table 1, (pp) -z = p* - x.
By inspection, we see that p-(p-1) = p-(2) = 3 and p*- 1 = 3. Checking all cases

gives the conclusion that the action of S3 on X is a group action.
Theorem 2.40. Let G be a group acting on a set X. Then
1. for each g € G, 04 : X — X defined by o4(x) = g - = is a permutation of X.
2. the map ¢ : G — Sx defined by ¢(g) = 0,4 is a group homomorphism.
Proof.

1. To see that for each g € G, 0, : X — X defined by o (x) = ¢g-2 is a permutation

of X, or a bijection, we must check to see if o, is one-to-one and onto. Suppose

15



o4(x) = 0y(y), for z,y € X. Then g- 2 =g-y. Thus g ' - (g-2) =g " (g9-v).

Therefore, v =e-z = (¢7'g)-a =g " (g:2) =g ' (9y) =(g7'9) y=cy=y
by the definition of left group action. Let w € X. Thus ¢~!-w € X. Note that

1

since o,(g7t - w)=g- (97" -w) =(997") - w=e-w=w, g, is onto. Thus o, is

an injection.

2. Let g,h € G. Recall that the operation in Sx is composition. Then ¢(gh)(x) =

ogn(®) = (gh) - v = g - (h-x) = o4(on(2)) = (g4 0 on)(x) = d(g) o ¢(h)(x).

Therefore, ¢ is a group homomorphism.
O

Theorem 2.41. Let G be a group and Sx the group of permutations of a set X.
For a given group homomorphism, ¢ : G — Sx, the map G x X — X defined by

(g,2) — g-x = ¢(g)(x) is a group action on X.

Proof. To show that this map is a group action on X, the conditions in Definition

2.38 must be verified.

1. Let id denote the identity function in Sx. Then e -z = ¢(e)(z) = id(z) = .

2. Let g1,92 € G. Then g1 - (g2 - 7) = ¢(g1)(#(92)(7)) = ¢(g1) © d(g2)(z) =

&(g192)(x) = (g192) - « since ¢ is a homomorphism.
Therefore, the defined map is a group action on X. ]

Definition 2.42. Let ¢ : G — G’ be a homomorphism. Then the kernel of ¢,

denoted Kerng, is the set {g € G : ¢(g) = €'} where € is the identity in G’

Theorem 2.43. A homomorphism ¢ : G — G’ is an injection, or one-to-one, if and

only if Kerng = {e}, where e is the identity element in G.
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Proof. Suppose ¢ is one-to-one. Then z € Kern¢ if and only if ¢(z) = €. But
o(e) = €. So ¢(x) = ¢(e). Since ¢ is an injection, x = e. Therefore x € Kern¢ if and
only if z = e.

Conversely, let Kerng = {e}. Let g, h € G such that ¢(g) = ¢(h). Then ¢(g)(¢(h))~! =
¢/, which implies that ¢(gh™!) = ¢/, so gh™! € Kerng. By the assumption, gh™! = e.
Therefore g = h. [l

Definition 2.44. Let G be a group acting on X. Then the kernel of a group action
is the kernel of the group homomorphism, ¢ : G — Sx which was defined in Theorem

2.41.

Cayley’s Theorem. FEvery group is isomorphic to a subgroup of a group of permu-

tations.

Proof. Let G be a group acting on itself by left multiplication, i.e., G x G — G,
where (g,z) — gx. By Theorem 2.40 there exists a group homomorphism ¢ : G — Sx
defined by ¢(g) = 0, € Sx where o4(x) = gx for all z € G. To see that ¢ is one-to-one,

consider the Kern¢. We can see that x €Kerng

if and only if ¢(g)(x) = id(x) for all z € G
if and only if ,(z) =z for all x € G
if and only if gx = z for all x € G

if and only if g = e.

Therefore Kerng = e and ¢ is one-to-one. This implies that G = Im(¢) < Sx. O
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Definition 2.45. Let G be a group and X a set. The homomorphism ¢ : G — Sx
associated with the action of G on X is called the permutation representation of

the action.

Definition 2.46. Let GG be a group acting on a set X. The stabilizer of x in G is
G,={9eG:g-z=nuz}.

Example 2.47. Let S3 act on X where X = {1,2,3}, the three vertices of the

triangle. The stabilizer of 1 is everything in S; that leaves 1 fixed. In this case,

Gl - {p07 /“Ll}
Theorem 2.48. Let G be a group acting on a set X with x € X. Then G, < G.

Proof. Let x € X. It is clear that G, C G by the definition of G,. Note that if e
is the identity in G, e - x = z by Definition 2.38 and so e € G,. Thus G, # 0. Let
a,b € G,. Then a -z =2 and b-x = 2. So (ab) -z = a - (b- z) by Definition 2.38.
Then a- (b-xz) =a-x =z since a,b € G,. Thus (ab) - =z so ab € G,. Let ¢ € G,.

L. 2. Simplifying the left side of this equation

Then ¢- o = x. Thus ¢! (¢ 2) = ¢
using Definition 2.38, ¢! (c-z) = (¢ '¢)r =ex =2. Sox = c ' - x. Thus ¢! € G,.

Therefore by Theorem 2.9, G, < G. O]

Definition 2.49. Let GG be a group acting on a set X, with a € X. The orbit of G

in X containing ais O, ={g-a:g € G}.

Example 2.50. Let S3 act on X where X = {1,2,3}, the three vertices of the
triangle. Recall that the elements of S3 are pq, p, p%, i, i1, po. Note that py-1 = 1,

p-1=23,and p?-1 = 2. So without considering the other two elements, we know that

O, ={1,2,3} = X.
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The Orbit-Stabilizer Relation. Let G be a group acting on a set X and a € X.
The size of the orbit of a, |Oql, is equal to the order of the index of the stabilizer of

ain G. If G is finite, then |O,| = |G|/|Gal.

Proof. Note that by Definition 2.10, |G : G, is the number of left cosets of G, in
G. To show that |G : G,| = |O,|, we must show there exists a bijection between the
cosets of GG, in G- call this set K- and O,. Let b € O,. Then by Definition 2.49, there

exists g € G such that b = g - a. Define the map:

v:0, - K

by ¥(b) = gG,, where b = g-a € O,. To see that v is well-defined, let z =y € O,.
Then there exist g;, g2 € G such that x = ¢g; - a and y = g5 - a. So ¥(z) = ¢1G, and
¥(y) = g2G,. But z =y implies that g -a = go - a. Thus (95 'g1) - a=g3" - (g1-a) =
9" (g2-a) = (95'92) ~a = a. So g;'g1 € G,. By Definition 2.10, ¢, 'g1G, = G,
and therefore ¢,G, = g2G,. Hence v is well-defined. In order to show that ¢ is a
one-to-one function, let ¢ (c) = ¢ (d) € K. So there exist g,h € G with ¢ = g - a and
d = h-a. Since ¥(c) = ¥(d), gG, = hG,. But then h~'gG, = G,, which implies
that h™'g € G,. By Definition 2.46, (h"'g) - @ = a. Therefore h™! - (g - a) = a and
soc=g¢g-a=h-a=d. Hence v is a one-to-one function. All that is left to prove
is that @ is onto. Let k € G such that kG, € K. Then g € kG, if and only if
g-a=k-g-a=k-aforsome gy € G. Thus g-a € O, and (g-a) = Y(k-a) = kG,.
Hence 1) is onto. We can now conclude that there exists a bijection from O, to the

left cosets of G, in G. Thus, |G : G,| = |O,]. O

Example 2.51. The Orbit-Stabilizer relation is demonstrated very clearly using the

action of G = S3 on the vertices of a triangle. Note that |G| = 3! = 6, and from

19



Examples 2.47 and 2.50 that |O;| = 3 and |G| = 2. So the these results agree with

the Orbit-Stabilizer relation.

Definition 2.52. The conjugation of G on X is the group action of G on X

defined by g -2 = gxg~! for g € G and x € X.

Definition 2.53. Let G be a group. Then a,b € G are said to be conjugate in G
if there exists a g € G such that b = gag~'. In other words, if G is acting on itself by

conjugation, a and b are conjugate in G if a and b are in the same orbit.

Definition 2.54. Let G be a group acting on itself by conjugation and let a € G.
The conjugacy class of a in G, denoted Cl(a) = {gag™' : g € G}, is the set of
all conjugates of a. In this case, the conjugacy class of a is also the orbit of @ in this

action.

Note: Let G be a group acting on itself by conjugation and let a € G. Then,
recalling Definition 2.15, the centralizer of a in G is Cg(a) = {g € G : ga = ag} =
{9 € G : gag™ = a}. So from Definition 2.46 we can see that the centralizer of an

element in a group acting on itself by conjugation is the same as the stabilizer.

Theorem 2.55. Let G be a finite group acting on itself by conjugation and let a € G.
Then |Cl(a)| = |G|/|Cq(a)].

Proof. By the Orbit Stabilizer Relation, we know that |O,| = |G|/|G,|. Definition

2.54 and the above comment implies that |Cl(a)| = |G|/|Cq(a)]. O

Definition 2.56. Let GG be a group acting on a set X. The action is called faithful

if ¢ : G — Sx is injective, i.e. Kern¢ = {e} where e is the identity element in G.
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Example 2.57. The action of S3 on X = {1,2,3}, the set of vertices of a triangle, is
faithful. We can test this by looking at the kernel of the action, or the set of elements
in S3 which fix every element in X. We can see that pg fixes every element of S3. But
p-1=2p"1=3 u1-2=3, up-1=3,and pu3 -1 = 2. So no element besides p

fixes every element of X.

Definition 2.58. Let GG be a group acting on a set, X. A group G is transitive on

X if G has only one orbit.

Example 2.59. The group action of S3 on its vertices, X = {1,2, 3} is an example of

a transitive action since p-1 = 2, p*-1 = 3, and po-1 = 3. Therefore O; = {1,2,3} = X.

Example 2.60. Another example of a group action involves the group D,, which
is a subgroup of the symmetric group S4. The group D, consists of the rotations
and reflection of a square. The elements of D, are pq, p, p2, p°, 7, pT, p?>7 and p37
and can be represented as in Figure 2. This group has a group action on X =
{1,2,3,4, s1, S, 3, 84, dq, da, ¢} where these elements are illustrated in Figure 3. This
action is not transitive since every element of Dy of type s; with 1 < i < 4 is sent
to another element of type s;. So O, = {s1, $2, 83, 84}. Similarly, O; = {1,2,3,4},
O4 = {d1,ds}, and O, = {c}.

Definition 2.61. Let k& be a positive integer less than |X|. Then G is k-transitive
on X if it acts transitively on the set of k-tuples of distinct elements of X. In other
words, for (z1,x9,...,2%) and (y1,v2,...,yx) where z;,y; € X, for all i = 1,2,... k,
there exists some g € G such that x; = gy; for all « = 1,2,... k. Often we call

k-transitive actions, for £ > 2, multiply transitive actions.

Emile Mathieu discovered that M, and My, are 5-transitive, or quintuply transi-

tive and My, and Ms3 are 4-transitive or quadruply transitive permutation groups. In
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fact, these four are the only quintuply and quadruply transitive permutation groups,

aside from the alternating and symmetric groups |7|.

Example 2.62. Consider the group Sy acting on X = {1,2,3,4}. The group can be
viewed as the permutations of the set X. In order to simplify notation of the elements
of this group, we may write them in “cycle notation.” The identity element which
holds everything fixed is simply 1. The element which moves 1 to 2, 2 to 3, 3 to
4, and 4 to 1 is denoted (1 2 3 4). The action simply moves an element to the one
directly to its right in the cycle. The last element is moved back to the first element
of the cycle. Thus the elements of Sy are {1, (123 4), (1324),(1423),(1432),
(1342),(1243),(13)(24),(12)(34),(14)(23),(123),(132),(124),(142),
(234),(243),(134),(143), (12), (13), (14), (23), (24), (34)}. Since 9y is
by definition all the possible permutations of X = {1,2,3,4}, it is clear that Sy is
4-transitive. Using this representation of S, allows us to see that all the possible

4-tuples of X can be rearranged into any other 4-tuple of X. This result can be

generalized to S, for any positive integer n.

Definition 2.63. Let G be a group acting on a set, X. Let k be less than or equal
to | X|. Then G is sharply k-transitive if for any two distinct k-tuples of X, there

exists exactly one element g € G which maps the first k-tuple to the second.

Example 2.64. It is also true that the action of Sy on X = {1,2,3,4} is sharply

4-transitive.

Definition 2.65. Let GG be a group acting on a set X. Then G is called regular
if this action is sharply 1-transitive. If a group G acts on a set X and the action is

faithful and regular, then only the identity in G fixes any points in X.
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Example 2.66. The Klein four group, V, is a regular group under the action V' xV —
V such that g - x = gx. Referring to the multiplication table, Table 2, makes this

clear.

Definition 2.67. Let G be a group acting on a set X. A block of the set X is a
subset B of X with the following property. If gB = {gb : b € B}, then ¢B = B or
gBN B =10 for all g € G. Note that B = (), B = X, and any one-point subset of X

are called trivial blocks. Any other block is called nontrivial.

Definition 2.68. Let GG be a group acting on a set X. Then X is said to be primitive

if it contains no nontrivial blocks.

The following theorems and definitions will be used to prove Theorem 2.88 and
Corollary 2.89, which are used in Section 4 to prove the simplicity of three of the

Mathieu groups.

Theorem 2.69. Let GG be a group acting transitively on a set X and suppose the size

of X is n. Let B be a nontrivial block of X. Then the following are true:
1. If g € G then gB is a block.

2. There are elements g1, Go,...,gm of G such that Y = {B, 1B, ..., gnB} is a

partition of X.

Proof. 1. Assume gB N hgB # 0 for some h € G. Since B is a block, B = g thgB
or BNg thgB = 0. Since gBNhgB # (), BN g thgB # (. Along with the fact

that B = g 'hgB, this implies that ¢B = hgB. Therefore ¢gB is a block.

2. Let b € B with z; ¢ B. Then since G acts transitively on X, there exists g; € G

such that g;b = x1. This implies that B # ¢; B and therefore, since B is a block,
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BngB=10.1f BUg B = X then we are done. If not, then let x5 & (BUg;B).
Then there exists go € G with gob = x5. Therefore since B and ¢; B are blocks,
g2 B is disjoint from both B and ¢g;B. Using the same argument, you can see

that eventually we will have a partition of X.

]

Definition 2.70. Let GG be a group acting on a set X and let H < G. The orbit of

H in X containing x is Oy, = {hz:h € H}.

Theorem 2.71. Let G be a group acting on a set X with v,y € X. Let H be a
subgroup of G. Suppose that Oy, N Opy # 0. Then Op, = Opy. If H <G then Op,
for all x € X are blocks of X.

Proof. Let G be a group acting on a set X with z,y € X. Let H be a subgroup of G.
Suppose that Oy, NOg, # (. Note that since Op, N Opy, # 0, there exists an element
a in both of these orbits. So a = hix and a = hoy for some hqi, ho € H. But then
hix = hoy. So © = hl_lhgy and y = h;lhlx. Thus y € Op, and x € Op,. Suppose
b € Opy. Then b = hsy for some hy € H. Since y € Op,, y = hyx for some hy € H.
Therefore, b = hgy = hghax. Thus b € Op,. So Ony € Op,. Similarly, O, € Opy.
Therefore O, = Opy,.

Suppose that H < G and let g € G. Assume that gOp, N Oy, # 0. Note that
if a € 9Oy, then a = ghx for some h € H. Then since H is normal in G, a =
(ghg™Y)gx = hi(gz) for some hy = ghg™! € H. Since G is acting on a set X, gz € X.
Thus a € Oy (ge)- S0 §Ons € Op(ga). Let b € Op(gey. Then b = hyga for some hy € H.
By the normality of H in G, b = higx = g(g 'hig)x = ghsx for some hy € H. So
b € gOu,. Therefore, Op(g) € 9O0n ). S0 Op(gr)y = 9Om,. Then by assumption

9Ohs N Opy # 0. But then Op(gey N Opy # 0. So by the first part of this proof,
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Theorem 2.72. Let G act on a set X such that this action is multiply transitive.

Then X is primitive.

Proof. Proceed by contradiction. Assume X has a nontrivial block B. So |B| > 1
and B # X. Let z,y € B with  # y. Let z ¢ B. Note that (x,y,*,...,%) and
(x,z,%,...,%) are k-tuples in X. Since X is k-transitive, there exists g € G such that
gr = x and gy = z by definition of k-transitive. But then since z ¢ B and z € ¢gB,
by the definition of block, BN gB = (). Also, since x € B and « € ¢B, BN gB # (.

This is a contradiction. Therefore X is primitive. ]

Theorem 2.73. Let G be a group acting on a set X transitively. Then X is primitive

if and only if, for each x € X, the stabilizer G, is a mazimal proper subgroup of G.

Proof. Assume X is primitive and let € X. Proceed by contradiction. Suppose
that there exists a subgroup H such that G, & H G G. Define B = Op,. To see that
B is a block, let g € G and with Op, N gOp, # 0. So there exist h, A’ € H such that
hx = gh'z. This implies that x = h~'gh'z. So h™'gh’ € G, & H. Therefore g € H.
Thus gB = g0y, = Oy, = B. Hence B is a block. Now it remains to be shown that
B is nontrivial. Now B # () since BN gB # 0. If B = X, then let g € G with g & H.
Then since this is a transitive action, gr € X = B, so gz = hx for some h € H. So
h~'gz = x. Therefore h™'g € G, & H. But then g € H which is a contradiction. So
B # X. Also since G, & H, H # {1}, so B is not a one-point set for if B = {x} then
Oy, ={hx : h € H} = {x} < G,. So X is not primitive, which is a contradiction.
Thus G, is a maximal proper subgroup of G.

Assume that every (G, is a maximal proper subgroup. Proceed by contradiction.
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Suppose there exists a nontrivial block B in X. Define the subgroup H of GG as follows:

H={geG:yB=B}

Then let x € B. We claim that G, C H. Let g € GG,. By definition of block, either
gB = B or ¢gBN B = (). But we know that x € B and gx = z so then ¢B = B.
Hence g € H, so G, C H. But B is nontrivial, so there exists y € B with y # .
Since G acts on X is transitively, there exists g; € G such that g1z = y. So g1 € G,
but ¢y € H. So G, & H. By Theorem 2.69 part 2, H = G if only if B = X. Thus
G, & H ¢ G which is a contradiction. So there exists no nontrivial block B in X.

Hence, X is primitive. ]

Definition 2.74. Let GG be a group acting on a set X. Let H < . Then the action

on X is said to be H-transitive if Oy, = X for all z € X.

Theorem 2.75. Let G be a group acting on a set X. If the action on X s faithful

and primitive, H A G, and H # {1}, then X is H-transitive.

Proof. By Theorem 2.71 for all x € X, O, is a block. Since G is a primitive action,
either Oy, = X or Oy, = {z}. If Oy, = {x}, h-x = z for all h € H. Then
¢(h)(xz) = x which implies that h € Kern(¢) for all h € H. But this action is faithful,
s0 Opa # {x}. Thus X is H-transitive. O

Theorem 2.76. Let G be a group acting on a set X. Let X be faithful and primitive
and suppose G, is simple. Then either G is simple or for every H < G, such that

H # {1}, H acts regularly on X.

Proof. Assume H # {1} and H <G. By Theorem 2.75, X is H-transitive. So either H

acts regularly and |H,| =1 for all z € X, or H NG, # {1} for some z € X. Suppose
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HNG, #1. Clearly, HNG, < G,. Let g € G, and h € HNG,. Then ghg™! € G,.
But since H < G, ghg~! € H. Therefore ghg~! € HNG, and HNG, <G,. Since G,
is simple, H NG, = G, or H NG, = {1} which is not possible. Thus G, C H. By
Theorem 2.73, either H = G, or H = GG. Since H is transitive, H # G,. Therefore GG

is simple. O

Definition 2.77. Let GG act on X and Y. A function ¢ : X — Y is called a G-map
if ¢(gz) = go(x) for all g € G and = € X. If ¢ is one-to-one and onto, then ¢ is a

G-isomorphism and X and Y are isomorphic.

Theorem 2.78. Let G be a finite group acting on a finite set X transitively. Let
H < G and let the action of H on X be reqular. Let x € X and let G, act on

H*—H\{e} by conjugation. Then H* and X\{x} are G,-isomorphic.

Proof. Define ¢ : H* — X\{x} by ¢(h) = h-x for h € H*. If for some h,k € H*,
¢(h) = ¢(k), then hx = kz. This implies that h~'k € H,. Since H is regular,
H, = {1}. Thus h™'k = 1 and so h = k. Therefore ¢ is one-to-one. Since H is
regular, |Op,| = |X| for any a € X and |H,| = 1. By the Orbit-Stabilizer Theorem,
| X| = ‘%' = |H|. Then | X\{z}| = |H*|. So ¢ is also onto. To see that ¢ is a G-
map, let g € G, and h € H*. Then since G, acts on H* by conjugation, ¢(g - h) =
d(ghg™') = ghg™'x = g - hx since g € G,. Also, gp(h) = ghz. Therefore ¢ is a

G-isomorphism and H* = X\{x}. O

2.3 The Sylow Theorems

The Sylow Theorems deal with groups and subgroups of orders that are primes or

powers of primes. Applications of the Sylow Theorems include proofs that groups
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with certain properties and orders are simple. Some of this section will be used to

prove the simplicity of the Mathieu groups.

Definition 2.79. A group G is said to be cyclic if there exists an element g € G such
that G = {¢" : n € Z}. We denote these groups G = (g) and say G is generated

by g.

Theorem 2.80. Let G be a finite group, and let gy, gs, ..., g, be representatives of
the noncentral conjugacy classes. Then |G| = |Z(G)| + Z |G : Ca(gi)]-

i=1
Proof. Note that the conjugacy classes partition G. Let x € Z(G). Then Cl(z) =
{gzg7 : g € G} = {wgg™' : g € G} = {z}, since € Z(G). Therefore each element
in the center is contained in its own conjugacy class. So G = Z(G) U (UCI(g;))

where Cl(g;) are disjoint and Z(G) is disjoint from the conjugacy classes. Therefore

G| = 1Z(G)|+ ) |Cl(g:)| = |Z(G)| + D |G : Ca(g:)| by Theorem 2.55. O
=1

i=1
Lemma 2.81. Let G be a finite group with no nontrivial proper subgroups. Then G

15 cyclic.

Proof. Since G is a group, if G = {1}, then G = (1) is cyclic. Suppose G # (1). Let
g € G. Since G is finite, |g| = k for some k € Z; in other words, there exists an integer
k such that g* = 1. If 1 < k < |G|, then G would have a nontrivial proper subgroup
generated by g. Thus |G| = k. Then G = (g) and thus G is cyclic. O

Theorem 2.82. Let G be a finite abelian group and p a prime dividing the order of

G. Then G has an element of order p.

Proof. Proceed by induction on |G|. If |G| = 1 there is nothing to prove. If |G| = 2 or

|G| = 3 then G is cyclic and has an element of order 2 or 3 respectively. Assume the
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statement is true for all abelian groups of order less than |G|. If |G| has no nontrivial
proper subgroups, then G is cyclic and therefore has an element of order p. Let H
be a nontrivial, proper subgroup of G. If p | |H|, then by the induction hypothesis,
H contains an element of order p and so G contains an element of order p. Assume
p 1 |H|. Since G is abelian, H < G so we may consider the abelian group G/H. Now
|G/H| = |G|/|H| < |G| and p | |G/H|. Therefore by the induction hypothesis, G/H
contains an element of order p. So there exists an element bH € G/H of order p.
Thus (bH)? = H. This implies that b € H. Let ¢ = blfl. Note that ¢* = blflP = 1.
Since |c| | p, either |¢| = p or |¢| = 1. If |¢| = 1, then ¢ is the identity element. So
H =cH =bH1H = (bH)H|. But |bH| = p so p must divide the order of H. This is a

contradiction. Therefore |c| = p and G has an element of order p. O

Cauchy’s Theorem. Let p be a prime and G a finite group. If p divides the order

of G, then G has an element of order p.

Proof. Proceed by induction on |G|. If |G| = p then by Lagrange’s Theorem, the only
possible subgroups of G would be G itself and the trivial subgroup. Therefore by
Lemma 2.81, GG is cyclic and has an element of order p. Assume that if H is a group
with |H| < |G|, and p | |H|, then H has an element of order p. If p divides the order of
any proper subgroup of GG, by the inductive hypothesis, the subgroup has an element
of order p and so G has an element of order p. Suppose no proper subgroup of G has

order divisible by p. Let g1, go, ..., g be representatives of the noncentral conjugacy

classes of G. Then by Theorem 2.80, |G| = |Z(G)| + Z |G : Cg(g;)]. Since each g; is

=1
noncentral, it follows that Cg(g;) < G. So p1|Ca(g;)|- Since p | |G|, p | |G : Ca(9:)]
for all i = 1,2,...7 and therefore p | Z |G : Cs(g:)|- Thus p | |Z(G)|. Hence, Z(G)

i=1
must not be a proper subgroup of G. Therefore Z(G) = G and G is abelian. By

30



Theorem 2.82, the result follows. O]

The Correspondence Theorem. Let K < G and define ¢ : G — G/K by ¢(g) =
gK. Then ¢ defines a one - to - one correspondence between the set of subgroups of
G containing K and the set of all subgroups of G/ K.

If K C S C G, and the subgroup of G/K is denoted by S* then
1. §* = S/K = ¢(9),
2. T C S if and only if T* C S*, and then |S : T| = |S* : T*|,
3. T QS if and only if T* <1 S* and then S/T = S*/T*.

Proof. We will prove parts one and two since the third part is not pertinent for our
results. To see that ¢ is one-to-one, let S and T be subgroups of GG that both contain
K and assume S/K = T/K. We wish to show that S =T. Let s € S. Then sK =tK
for some t € T. Then t1sK = K, so t7!'s € K and thus s = kt for some k € K.

Therefore s € K C T. Similarly, s™'t € K,sot = sk’ forsome ' € K C S.So S =T.

1. Let A be a subgroup of G/K. Define S = ¢~1(A). Note that the preimage of a
subgroup of the codomain is a subgroup of the domain. Also, S must contain

K by definition. Lastly, S/K = ¢(S) = ¢(¢~*(A)) = A, since ¢ itself is onto.

2. Let T'C S. Then suppose tK € T/K. Then since t € S, tK € S/K. So T/K C
S/K. Let t € T. then tK = sK for some s € S. So using the same argument
as in the proof the map is one-to-one, 7' C S. To see that |S : T| = |S* : T",
define the map ¢ : S/T — S*/T* by (sT) = ¢(s)T*. Let ¢(aT) = (bT).
Then ¢(a)T* = ¢(b)T* and so aKT* = bKT*. Thus aT = bT. So 9 is one-to-

one. To see that 1 is onto, let ¢T* € S*/T*. Then since ¢ is onto, there exists
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some d € S with ¢(d) = c. Hence, ¢T™* = ¢(d)T*. But then ¢(dT) = ¢(d)T*.
Thus ¢ is onto. So |S:T| = |S*: T"|.

Definition 2.83. A finite p-group is a group whose order is p™ for some n > 1.

Definition 2.84. A finite p-subgroup of a group G is any subgroup of G that is

also a p-group.

Definition 2.85. Let G be a group with |G| = m - p™ where n > 1 and p { m. A
Sylow p-subgroup is any p-subgroup of G whose order is p™. The set of Sylow

p-subgroups of G is denoted Syl,(G). We write P is a Sylow p-subgroup of G as
P € Syl (G).

Lemma 2.86. Let P be a finite p-group acting on a finite set A. Let Ay = {a € A :

g-a=ua forall g€ P} C A. Then |Ao| = |A|(mod p).

Proof. Note that A = Ay U Oy, U---UQ,, is a series of disjoint unions where the q;
are representatives of orbits with size greater than 1, since Ay is the disjoint union
of orbits of A about a. The Orbit-Stabilizer Relation implies that p | |O,,]| for all

i=1,2,...,ksince P is a p-group. Therefore p|(|A| —|Ao|). O

Lemma 2.87. Let G be a group such that |G| = p™m where p t m. Let H be a
p-subgroup of a finite group G. Then |Ng(H)| = |G : H|(mod p).

Proof. Note that |H| = p' forsome i =1,2,...n.S0 |G : H| = mp"~". Also, |[N¢(H)| |
|G| and |H| | |[N¢(H)| by Lagrange’s Theorem. So, |Ng(H)| is mp’ for some i < j.
But then |Ng(H)| = mp’ = mp"*(mod p). Hence |Ng(H)| = |G : H|(mod p). O
The Sylow Theorems. Let p be a prime, G a finite group and suppose p | |G|.
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1. Let |G| = p™m,n > 1,ptm. Then for each i, 1 <i < n, there is a subgroup of
G of order p'. Every subgroup of the order p' is a normal subgroup of a subgroup

of order p™t, 1 <i <n—1. (In other words, G contains a Sylow p-subgroup.)

2. If P € Syl,(G) and Q is any other p-subgroup of G then Q C kPk™" for some
ked.

3. Let |G| = p"m,n > 1,p {1 m and let n, be the number of Sylow p-subgroups in
G. Then:

(a) n, =1 (mod p), and

(b) ny | |Gl
Proof.

1. Proceed by induction on ¢. If « = 1, G has a subgroup of order p by Cauchy’s
Theorem. Suppose G has a subgroup of order p’ for some i, 1 <i < n—1. Then
|G : H| = p"~'m. Therefore p | |G : H| which implies that p | |Ng(H) : H| (by
Lemma 2.87). But H < Ng(H) so consider Ng(H)/H. By Cauchy’s Theorem,
N¢(H)/H has an element of order p. Hence Ng(H)/H has a subgroup of order
p. By the Correspondence Theorem, there exists a subgroup H; of No(H)/H
such that H < H; < Ng(H) and |Hy : H| = p. So H < Hy and £ has order p.

Therefore, |H;| = p'™'. Thus the result is proven.

2. Let P € Syl (G). Let Q act on the set A= G/P. Then |A| = |G|/|P| = L2 =

p

m and p ¥ m. Also consider the set Ag = {a € A:g-a =a for all g € Q}.

Note that |Ag| = |A|(mod p) by Lemma 2.86. In particular |Ag| # 0. A typical
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element in A is gP. So gP € A

if and only if ¢- (gP) = gP for all ¢ € Q
if and only if (qg)P = gP for all ¢ € Q
if and only if ¢"'qgP = P for all ¢ € Q
if and only if g~'qg € P for all ¢ € Q

if and only if ¢7'Qg C P.

But [¢7'Qg| = |Q| = |P| so g7'Qg = P. Therefore P and Q are conjugates in
G.

. Let n, be the number of Sylow p-subgroups of G. Let P € Syl,(G). By (2)
the set of Sylow p-subgroups of G are the conjugates of P in (. Since each
Sylow p-subgroup is a conjugate of P in G, if () is a Sylow p-subgroup, then
Q = kPk™! for some k € G. Now Ng(P) = {g € G : gPg~' = P}, and
|G : Ng(P)| is the number of elements of G divided by the number of elements
in Ng(P). So |G : Ng(P)| gives the number of elements in G with gPg~! not
equal to P. So, |G : Ng(P)| gives the number of subgroups conjugate to P.
Thus |G : Ng(P)| = n,. So then n, | |G|. Let P act on a set A of all Sylow
p-subgroups of G such that P x A — A is defined by ¢ - a = gag~'. Recall the
set Ag={a€ A:g-a=aforal ge P} So|A| =n, and n, = |Ag|(mod
p). Let R € Syl,(G) and suppose R € A;. Then g- R = R for all g € P. This
is true if and only if gRg™" = R for all g € P. So g € Ng(R) for all g € P. So
P < Ng(R). So R and P are Sylow p subgroups of Ng(R). Therefore by part
(2), P and R are conjugate in Ng(R). But, Ng(R) = {g € G : gRg™* = R},
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so R can only be conjugate with itself in its normalizer. Therefore P = R. So

Ay = {P}. Hence n, = 1(mod p).

]

Theorem 2.88. Let G act on a set X. Let X be k-transitive for k > 3 with | X| = n.

If G has a reqular normal subgroup H then k < 4, and

1. If k =3 then H = Z3 and n = 3 or H is an abelian Sylow 2-group and n = 2™.

2. If k =4 then H =V and n = 4.

Proof. 1t X is k-transitive with & > 3, then for some fixed z € X G, acts (k — 1)-

transitively on X'\{z}. To see this is true, consider (zi,...,25_1) and (y1,...,Yx—1)

where z;,y; € X\{z} and these (k — 1)-tuples are distinct. Consider distinct k-tuples

ooy Tp—1,2) and (yi,...,Yk_1,x). Since G acts k-transitively on X, there exists

g € G such that gx; =y; foralli=1,... .,k —1 and gr = x so g € G,. Thus G, acts

k — 1-transitively on X\{x}. Also, by Theorem 2.78, G, acts (k — 1)-transitively on

H* = H\{e}, where this action is by conjugation.

1. Assume that k = 3. Therefore H* is primitive by Theorem 2.72 with respect

to G,. Note that |H| < 3. Let h € H*. To see that B = {h,h™'} is a block,
let g € G,. Assume gB N B # (). Suppose h € gB. Thus either h = g - h or
h=g-h™t

If h=g-h, then h = ghg~! and hence h™! = (ghg ")t =gh gt =g -hL.
Ifh=g-h™' then h=gh 'g'and so h™' = (gh~ g7 )P =ghg ' =g-h.
Thus if h € gB then h™! € gB. Similarly, if h~! € ¢B then h € gB. This implies
that B C ¢gB. Since |H*| is at most 2, |B| = |¢B|. Thus B = gB. Hence B is a
block.

35



Since this is a primitive action, either H* = B = {h,h™'} or B = {h}. If
|H*| = 2 then H = Z3 and n = 3. If |H*| = 1 then |h| = |h~'| = 2 but then H

is a Sylow 2-subgroup which has order 2 and n = |H| = 2™.

2. Assume k = 4. So k — 1 = 3 and |H*| > 3. Recall that V is regular. Since
H is regular, and |[H| > 4, some copy of V is contained in H. Denote this
{e, h1, ha, hs}. Since G, acts 3-transitively on H*, we can see that G, 5, (which
is the stabilizer of hy in the action of G, on H*) acts 2-transitively on H*\{h;}.
This action is also primitive by Theorem 2.72. Consider B = {hq, hs}. Since
the action is 2-transitive, for the 2-tuple, (hg, hs), there exists g € G, 5, such
that ghy = hs. So then ¢B = B. If there were another ¢’ € G with ¢’ # g7,
then ¢gBN B = . So B is a block. Since H*\{h,} is primitive, B = H*\{h4}.
Therefore |H| =4 and H = V.

Also, since n = 4, and by definition £ < n, k < 4. m

Theorem 2.89. Let G be a group acting on X such that the action is faithful and

k-transitive where k > 2. Assume that G, is simple for some v € X.
1. If k > 4, then G is simple.
2. If k =3 and | X| is not a power of 2, either G = S , or G is simple.

Proof. 1. By Theorem 2.76, GG is either simple or GG contains a regular normal
subgroup H. If H exists then Theorem 2.88 states that £ < 4 and if &k = 4,
H =V and |X| = 4. So H < S,. But then this is a subgroup of Sy which is
4-transitive (Lemma 2.62). So H = S,. The stabilizer H, for x € X is S3. But

S3 is not simple. So G must be simple.
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2. Note that by Theorem 2.88 (1), either G = S3 or GG has a regular normal
subgroup H = Zj and |X| = 3 or H is a Sylow 2-subgroup and |X| = n is a
power of 2. Assume G' % S3. So H = Z;. Therefore | X| = 3. The stabilizer of a

point in S5 is Sy = Zy, which is simple. So Ss is the exception.

3 The Golay Code and Steiner Systems

Some more background is needed in order to present one representation of the Mathieu
Groups. This section will explore the binary Golay code and how it relates to the
Steiner Systems. A Steiner System is simply a set of subsets which are chosen using
certain criteria. The binary Golay code is equivalent to one particular Steiner System

which is used to define the largest of the Mathieu Groups.

3.1 Definitions

Definition 3.1. Let X be a finite set of elements. A binary linear code, C based
on X, is a subspace of the power set, P(X). This subspace is over the field F» where
addition is defined by A+ B = (AU B)\(AN B) for all A, B € P(X). Multiplication
is defined by A- B = |AN B|(mod 2) for all A, B € P(X).|3]

Definition 3.2. Let C be a binary linear code based on X. The length of C is | X|.

Definition 3.3. A binary linear code C is even if the cardinality of every nonempty

subset in C is even.

Definition 3.4. A binary linear code C is doubly even if the cardinality of every

nonempty subset in C is divisible by four.
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Definition 3.5. The minimal weight of a binary linear code C is the cardinality of

the smallest nonempty subset in C.

Definition 3.6. Let C be the binary linear code over X. The dual of C is CT = {A €
P(X):|AnB|=0 (mod 2) VB € C}.

Definition 3.7. A binary linear code C is self-dual if C = C'.

Definition 3.8. Let 1 < k£ < m < n be integers. A Steiner system, of type
S(k,m,n) is an ordered pair (X,B) where X is a set with n elements and B is a
family of subsets of X; each subset B € B has m elements, and every set of k distinct
elements from X lies in a unique block, B € B.

)

In other words, this system is a set of @) subsets of X, each of size m with the

m
k

property that every set of distinct k elements is contained in one and only one of

these subsets. Furthermore, let Y C X with |Y| =t <k and let X' = X\Y and
S'={A\Y: A8 Y C A}

Then &’ is a set of (m — t)-element subsets of the (n — t)-element set X’. If B is a
(k — t)-element subset of an element of S’ then Y U B is contained in a unique A € S.

Then B C A\Y € §&'. So & is an S(k —t,m —t,n —t) Steiner system on X'. Thus

Example 3.9. This is an elementary example of a Steiner System. Let X be the set

of 9 points in the vector space 2, of dimension 2, over the field of 3 elements. For

the sake of this example, consider F' = {0, 1,2}. So

X =1{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)}.
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Subset Name Subset
B(O,O)(O,l) {<O’ 0)7 (07 1)7 (07 2)}
B(0,0)(1,0 {(0,0),(1,0),(2,0)}
B(O,O)(l,l) {<070>7(171)7 (272)}
Booay | {(0,0),(1,2),(2,1)}
B(O,l)(l,o) {<O’ 1)7 (17 1)7 (27 1)}
Boyay | {0,1),(1,0),(2,2)}
B(071)(272) {<07 1)? (27 0)7 (L 2)}
B(l,o)(0,1) {<170>7<171)7<172)}
B(1,0)(1,1) {<170>7(271)7 (072)}
B(l,l)(1,2) {<1’ 1)7(270)7 (072)}
B(172)(170) {<1’2)7 (272)7 (072)}
B(270)(071) {<27 O)? (27 1)7 (2’ 2)}

Table 3: Unique Subsets from Example 3.9

Let B={z+ay:«a € F} for 2,y € X where each subset B € B is disjoint from
all other subsets in B. So then for each pair of elements a and b of X, the subset
Bay = {a+ ab} = {a,a + b,a + 2b}. In this case, there are 9 possible choices for the
2 points determining each subset B,,. For example, for the two elements (1,2) and
(1,0), Baay,a,0 = {(1,2)+0(1,0), (1,2) +1(1,0), (1,2) +2(1,0)} = {(1,2), (1 + 1,2+
0), (1+2,240)} = {(1,2),(2,2),(0,2)}. There are 81 possible subsets of this type. The
unique subsets are seen in Table 3. As can be expected, several other combinations
of elements give the same subsets. The list of equivalent subsets is shown in Table
4. The sets which have one element are not included in B. These are listed in Table
5. So there are only 12 unique subsets out of 81 possible subsets. Computationally,
you can arrive at this number by considering the restriction of having 3 unique points
in each subset B,, and having a combination of two points from the vector space
()

determining this set, hence we divide by (3) Therefore there are 6] = 12 subsets of
2

X of the form B,, = {a + ab}. We call this system a S(2,3,9) Steiner System. [14]
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Subset

Equivalent Subsets

B0,0)0,2= B0,1)0,2) = Bo2

) ( (0,1 (02) =
Bi0,0)2.0) =B.0)1,0) = Boy1,0 = Baoyzo) =
Bo,0)2.2)~ By, = Bayee = Be2an =
Boyen=Bayaz = Bagey = Benay =
Bo,1ye20=Bayan = Bayeo = Beyao =
Bonyen=Banaz = Beoee = Bezaz =
Bo,a,n=Bagzay = Bazee = Beoay
B1,0)0.2) - B, = Banoe = Bagoy) =
Buoye2=Benay = Beyer = Boyay =
Bunen=Beoas2 = Bo2),n2 = Bozey =
B.2)2,00=B22)2,0 = B2, = Bo2)a,) =
B,0)0,2=B@1)o0,1) = Beoz) = Be2)o1) =

) = Bo,2)0

Bio,1)00,1)
= B2,0)(2,0)
B2.2)2,2)
2,1)(2,1)
2,1)(2,0)

)

(
(
(
(2,2)(2,1

B
B
B

(1,2)(0,2)
(0.2)(2,2)
B,0)2,1)
B0,2)(2,0)
B2.2)(0,2)

UUD:J

= Bz

Table 4: Equivalent Subsets from Example 3.9

Subset Name

Subset

(0,0)(0,0)
(0,1)(0,0)
(0,2)(0,0)
(1,0)(0,0)
(1,1)(0,0)
(1,2)(0,0)
(2,0)(0,0)
(2,1)(0,0)
(2,2)(0,0)

D:JU:JU:JU:JU:JU:JO:JU:JD:J

{(0,0)}

1}
2)}
0)}
1)}
2)}
0)}
D}
2)}

Table 5: One Element Sets from Example 3.9
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Definition 3.10. The intersection triangle of an S(k,m,n) Steiner System is

defined by the relation
(=) for0 <t <t
Nt,t: (k—t)
lfork<t<m

and for 0 < j <t < m, the recursive relation N;; = N1 — Nji14.

Definition 3.11. A binary Golay Code is a binary linear code C over a set X
with | X| = 24. In addition, the dimension of C, which is the number of distinct sets

spanning C, must be at least 12 and the minimum weight at least 8.

3.2 Establishing a Relationship

Theorem 3.12. Let X be a set with | X| = 24. Then if C C P(X) =V is a binary

Golay code,
1. C has dimension 12,
2. C has minimum weight 8,
3. The sets of cardinality 8 in C form an S(5,8,24) Steiner System,
4. The words of cardinality 8 span C.

Proof. 1. Let w € X. Let T, = {A € V : |A] <4, and |A| = 4 implies w € A}.
The number of sets of order less than 4 is easily computed using combinations.

The number of sets of order 4 is computed by finding the number of ways 23
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sets can be ordered into three spaces since w is held fixed. Thus

T, = 24 . 24 L 24 n 24 n 23
“T N0 1 2 3 3
=1+4+24+ 276 42024 + 1771

= 4096

=212

The sum of the sizes of any two elements in T, must be less than 8, since any
two elements of size 4 have one element, w, in common. Therefore the sum of
two distinct elements of T}, is not contained in C. Thus, the cosets of A + C for
A € T, are distinct. So the set of cosets V/C contains at least these 2! cosets.
But V| = [P(24)] = 22* and [C| > 2'2. Therefore |V/C| < 2, = 2'2. Hence

|V/C| = 2'. So C has dimension 12 and A + C as described above is the set of

cosets of C in V.

. Let B € V such that |B| = 4 with w ¢ B. Then B ¢ T,,, But B € A+ C for
some A € T,,. Now A+ B € C and hence has a minimum weight of 8 or greater.

Since |A| < 4 and |B| = 4, the minimum weight of A + B must be 8.

. Recall that A+ B has weight 8. Since w € A, A+ B contains {w}UB. Note that
|{w} U B| = 5. So each subset of X containing w which has order 5 is contained
in at least one 8-element set in C. Since w is arbitrary, each 5-element subset
of X is contained in at least one 8-element set of C. It remains to show that a
5-element set is contained in only one unique 8-element set of C. Suppose A, B
are distinct sets of weight 8 in C each containing the same 5-element subset of

X. But when |[ANB| > 5,0 < |A+ B| <6. This is a contradiction since the
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minimum weight of C is 8. In conclusion, the weight 8 words of C form the set

S(5,8,24).

4. Let C’' be the subspace of C generated by sets of order 8 in C. Let A € V with
|A| > 5. Then there exists a set B € C such that |B| =8 and |[AN B| > 5. Note
that A+ B € V/C' C V/C. Note that |A + B| < |A|. So using that argument
for all the sets of this type, |A + B| < 4. Choose any set B’ € V/C' with
B' ¢ S, with |B| < 4. Then by part 2 of this proof, there exists A" € S, with
A"+ B" e Cand |[A+ B'|=8. 50 A"+ B € (' and therefore V/C' C S,. So
|\V/C'| < |S,] = |V/C|. But since C" C C, |V/C| < |[V/C'|. As |V/C| < |V/C|,
and |V/C'| < |V/C|, |C] =|C'| and C =’ [3].

O

Definition 3.13. Suppose C be the binary code of length n. Then the weight enu-

merator of this binary code is

We(X,Y)=(X+Y)"

where XY are elements of C.

Theorem 3.14. Let S be an S(5,8,24) Steiner system on X and let C C P(X) be

the code spanned by the A € S. Then
1. C is self-dual,
2. C is a binary Golay code,
3. the words of weight 8 in C are the elements of S,

4. the weight enumerator of C is 1+ 759Y® + 2576Y12 + 759Y16 4 Y24,
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Proof. 1. In order for C to be self-dual, for any A, B € S, |AN B| = 0(mod 2), or
|AN B is even. So consider the number of elements possible in this intersection.
Fix A € S. Let T be a subset of A. Note that the number of elements of S
containing 7" depend on |T'| = ¢. So if 0 < ¢ < 5 then the system behaves as in

(52

Definition 3.8 and so the number of elements of S containing 7" is N; = IR
5—t

So if 5 <t < 8, then by Definition 3.8 every set of 5 distinct elements lies in

only one A. Therefore N; = 1. Hence, N5 = Ng¢ = N; = Ng = 1, and,

Define the function M, by M,, = Nj for k = j and for 7 # k, M;; =
M; -1 — M1k To see how many sets we have which when intersected with a
set of size k give you a set of size j, use Definition 3.10. The intersection triangle
will give us M) where M is the (k + 1)th row and the (j + 1)th column. See
Table 6.

Claim: For each A € S and C C D C A with |C| = j and |D| = k, M,
is the number of B € § with BN D = C. So it is the number of sets in the
Steiner system which when intersected with a set of size k give an intersection

of size j. If j = k, this is clear since it follows from the definition of subsets
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206 253
330 176 7
210 120 26 21

80 40 16 5
= 78 52 28 12 4 1
= 46 32 20 8 4 0 1
= 30 16 16 4 4 0 0 1
= 30 0 16 0 4 0 0 1

Table 6: Intersection Triangle for M;

in the Steiner System. Suppose j < k and proceed by induction on k& — j.
Enumerate C' = {a;,as,...,a;} and D = {ay,as,...,a;}. It suffices to prove
that BN D = C if and only if BN (D\{ax}) = C and BN D # C U {ax}
where B N (D\{ax}) = C represents M;;_1 and BN D # C U {a} represents
M 41 . For the base case, consider when k — j = 1. Suppose that BN D = C.
Then BN (D\{ax}) € BND = C. So BN (D\{ax}) € C. Let z € C. So
x € BN D. Thus x € B. Note that C' = D\{ax}. Therefore z € D\{as}. Hence
r € BN D\{ax}. So C C BN D\{ax}. Therefore C' = BN D\{ax}.

Suppose C' = BND\{ay} and BND # CU{ax}. Then since BND\{ax} € BND,
C C BND. Suppose that BND Z C. So there exists y € BN D such that y & C.
By hypothesis y = a;. But then BN D = C U {ax}. This is a contradiction.
Thus C = BnND.

Suppose this is true for £k —j < n —1. Suppose k —j = n. Then let C = BN D.
Then BND\{ax} € BND = C. Suppose that C' # BND\{ay}. Then there exists
x € C such that ¢ BN D\{ax}. So x = aj. But C = {a;} for 1 <i < j <k.
Thus, C' = BND\{ax}. Suppose BND = CU{ax}. Then CU{ay} = BND = C.
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But then {a;} C C. This is not true. Therefore BN D # C' U {a}.

Suppose BND\{a;} = C and BND # CU{ax}. Then C = BND\{ax} C BND.
Suppose that C' # B N D. Then there exists x € B N D such that x ¢ C.
But since ¢ = B N D\{ax}, © = ag. But then C U {ay} = B N D which
contradicts the hypothesis. Thus C' = BU D. Therefore the number of B € S is
M; -1 — Mji1, = M, Considering only the sets in S, we must look at those
which intersect sets of size eight. Since M;g = 0 for all odd j, the intersection
of each pair of sets in S must have even cardinality. Therefore C is spanned by
mutually orthogonal elements of P(X) and thus C is self-orthogonal. Since the

orders of the spanning set are divisible by 4, then C is also doubly even.

Let w € X and suppose S, is defined as in Theorem 3.12. Using the same
method as in the proof of Theorem 3.12, the cosets V/C C S,. So |V/C| <
|S,,| = 2'2.So C > 2'2. But C is self-orthogonal, so |C| < |V|'/? = 2!2. Therefore
|C| = 22, Hence C = CT, its dual.

. Recall that C contains all sets of even order and the code in which each entry
is 1 is contained in C. So using Definition 3.13, the Weight Enumerator of C is
We(1,Y) = (1+Y)?%. But the coefficients A; for i not divisible by 4 are all zero.
So We(Y,1) = 14+ A Y 4+ AgY 8+ A Y12+ A1g Y10+ Agg Y20 + Ay Y2 where the

coefficients are A = ((224)) In order for this to be the desired weight enumerator,
we must show that A, = 0. Recall the definition of S, from Theorem 3.12. In
Theorem 3.12, it was shown that |S,| = 2!2 = |V\C| and so all the elements of
S, are congruent to one distinct element modulo C. Suppose A € C had weight
4. Then A = B + C for some C € C. Hence |C| = |B| = 2. But then B,C are

distinct elements of S, which are congruent modulo C. This is a contradiction of
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our earlier statement. Therefore A4 = 0. The weight enumerator now displays

that the minimum weight of C is 8. Thus C is a Binary Golay Code.

3. By Theorem 3.12 the supports, or the nonzero elements, of the words of weight

8 form the Steiner System S.

24
4. Note that Ag = % = 759. Using similar calculations, we find that A, = 2576,
5
A = 759, and Agy = 1. Therefore the weight enumerator is We(Y) = 1 +
759Y® + 2576Y 12 + 750Y16 + Y2 |3]

]

It is interesting to note the connection between the binary Golay code and the
Steiner System S(5,8,24). A binary Golay code uses the most basic of computer
languages. Therefore the Mathieu group My, can essentially be represented in a
binary code. This would make computations and calculations on a computer much
more palatable. The construction of M, using the binary Golay code requires the
use of the Miracle Octad Generator, which is a computer program created by R.T.
Curtis [4]. This construction can be found in R. Chapman’s “Construction of the
Golay code: a survey” |3|.

Continuing on, we are now able to define the groups which are other representa-

tions of the Mathieu groups.

Definition 3.15. Let (X, B) be a Steiner System. An automorphism of a Steiner

System (X, B) is an isomorphism ¢ : X — X such that B € B implies that ¢(B) € B.

Theorem 3.16. Let (X, B) be a Steiner System of type S(k,m,n). Then Aut(S(k,m,n))

is the Automorphism group of the Steiner System.
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Proof. Let Aut(X, B) denote the set of automorphisms of this Steiner System. Since
the identity function 1 : X — X such that 1(a) = a for all @ € X is in Aut(X, B),
Aut(X, B) is nonempty. By definition, the automorphisms of (X, B) are permutations
of X and so Aut(X, B) is a subset of Sx. Let ¢; and ¢ be functions in Aut(X, B).
Since the composition of two automorphisms is still a permutation of X, ¢; o ¢ is
still an automorphism. Let B € B. Then ¢ 0¢o(B) = ¢1(B1) where By = ¢o(B) € B.
So then ¢y 0¢9(B) = ¢1(By) € B. So Aut(X, B) is closed under composition. All that
needs to be shown is that for any B € B, ¢~(B) € B. Note that since ¢~ € Sx, and
1 = ¢~ t¢ but also if m+1 is the order of ¢, $™¢ = ¢~ ¢ which implies that ¢p—! = ™

for some integer m. Therefore ¢! exhibits the aforementioned property. O]

4 The Mathieu Groups

4.1 Group Representations

There are many representations of the Mathieu groups. This paper will present

two of these descriptions. First, there is the permutation representation. Consider
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the following permutations:

A=(1,2,3,4,5,6,7,8,9,10,11),

B = (5,6,4,10)(11,8,3,7),

C = (1,12)(2,11)(3,6)(4, 8)(5,9)(7, 10),

D =(1,2,3,4,5,6,7,8,9,10,11, 12,13, 14, 15,16, 17, 18, 19, 20, 21, 22, 23),

E = (3,17,10,7,9)(5,4,13,14,19)(11, 12, 23,8, 18)(21, 16, 15, 20, 22),

F = (1,24)(2,23)(3,12)(4, 16)(5, 18)(6, 10)(7, 20)(8, 14)(9, 21)(11, 17)(13, 22)(19, 15),
G =(1,2,3,4,5,6,7,8,9,10,11)(12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22),

H = (1,4,5,9,3)(2,8,10,7,6)(12, 15, 16, 20, 14)(13, 19, 21, 18, 17),

I =(11,22)(1,21)(2,10,8,6)(12, 14, 16,20)(4, 17, 3, 13)(5, 19, 9, 18).

Definition 4.1. The Mathieu groups are My, = (A, B), Mys = (A, B,C), My =
<G, H, [> M23 = <D,E>, and M24 = <D,E, F>

3

Another representation often used to describe the Mathieu groups is using Steiner

systems.

Theorem 4.2. There exist Steiner systems S(5,6,12) and S(5,8,24) such that these
systems are unique and Aut(S(5,8,24)) = My and Aut(S(5,6,12)) = Mys. The one

point stabilizers of Moy and Mys are Mys and My, respectively.

Theorem 4.3. There exist Steiner systems S(4,5,11), §(4,7,23), and S(3,6,22)
such that these systems are unique and Aut(S(4,5,11)) = My, Aut(S(4,7,23)) =
Mys, and Aut(S(3,6,22)) = Aut(Mss). The one point stabilizers of My, Mz and
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My are Mg, Mag, and PSL(3,4) respectively.

Note that the construction of the Steiner systems can begin using the Golay code
as referenced before [3]. Also, there is a Steiner system construction for each Mathieu

group in J. Rotman’s An Introduction to the Theory of Groups [13].
Lemma 4.4. Note that M11 S SH, Mlg S 5127 M23 S 523, and M24 S 524.

Proof. By Theorem 3.16 and since all the Mathieu groups are subsets of the symmetric

groups of the same degree, My; < Sy1, My < Sia, Mag < Soz, and My, < Soy. []

4.2 Orders

Mathieu discovered the groups My and My, with degrees of 12 and 24 and orders
of 8-9-10-11-12 and 3 - 16 - 20 - 21 - 22 - 23 - 24 respectively. Note that M,
and Mo, are 5-transitive on any finite set. Thus, in M, for example, it is assumed
that this permutation group acts on the set of 12 points and the orbit of any one
of the 12 points is the entire set. From this, he found that the one point stabilizer
of My, is the group M;i;, the one point stabilizer of My, is M. Now My is 4-
transitive and the one point stabilizer of M3 is M. Note that by the Orbit-Stabilizer
Relation, |M;| = % =8-9-10- 11. Similarly, |Mys| =3-16-20-21-22-23 and

|May| = 3-16-20-21-22. Note that we say n is the degree of M, for n = 11,12, 22, 23,
or 24.
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5 Simplicity

5.1 Simplicity of the Mathieu Groups with Prime Degree

The proof of the simplicity of four of the Mathieu groups was provided by Robin Chap-
man in a note appearing in The American Mathematical Monthly in 1995 (544-545)
using only Sylow’s Theorems and information about permutation groups . According
to Chapman, until then, the only proofs of the simplicity of the Mathieu groups which
were found in textbooks required many more theorems and tools [2]. We will begin
by concentrating on M;; and Mog.

Let G be a subgroup of .S, where p is a prime number.
Lemma 5.1. Let G < S,. If G is transitive then p divides |G].

Proof. Suppose G acts on the set X = {1,2,...,p} transitively. Then let a € X. Since

G acts transitively, it has only one orbit. So p = |0,| = Hgl". Therefore p | |G|. O

Lemma 5.2. Let G be a transitive subgroup of S,. Then G has a cyclic Sylow p-

subgroup.

Proof. Since G is transitive, p | |G]. Also, |G| | p! which implies |G| = pk where p { k.
Thus by Sylow’s first theorem, GG contains a Sylow p-subgroup, P, whose order is p. By
Lagrange’s Theorem, the only possible subgroups of any of these Sylow p-subgroups
have orders of 1 or p. Thus P has no nontrivial proper subgroups. By Theorem 2.81

P is cyclic. O

Lemma 5.3. Assume G is transitive and P = ((12...p)) is a cyclic Sylow p-subgroup
of G. Let |G| = m, ng be the number of Sylow p-subgroups of G and Ng(P) be the

normalizer of P in G with |Ng(P) : P| = rg. Then the order of the group G is prgng.
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Proof. Clearly, m = |G| = |P||Ng(P) : P||G : Ng(P)| = prene. O

Lemma 5.4. The index of the normalizer of P € Syl,(G) in G, rg, is the least

positive residue of = (mod p).

Proof. Recall that by Sylow’s third theorem, ng = 1(mod p). In addition to this,
P < Ng(P) < Ng,(P). Now Ng,(P) is the group of all maps

Y : Z, — Z, such that x — ax + b (mod p)

where p { a. Therefore, |[Ng(P)| = p(p — 1) and it follows that rg divides p — 1. But
since 2t = rgng, and ng = 1(mod p), this implies that rg = %(mod p). Since

ra | (p—1), rg is the least positive residue of “*(mod p).

Lemma 5.5. Let G < S, be transitive and let ng > 1. Then rq > 1.

Proof. Assume ng > 1, and proceeding by contradiction, let rg = 1. So there are
ng(p — 1) = m — ng elements of order p in G. Excluding the elements of order
p, which are p-tuples and have no fixed points on {1,2,...p}, there are at most ng
elements with fixed points. Every stabilizer G; of i € {1,2,...p} in G has ng elements
having at least one fixed point. Now G is transitive, so |O;| = p for all i € {1,2,...p}.
Thus by the Orbit Stabilizer Relation, |G;| = % = rgng = ng. But since there are
at most ng elements in these stabilizers, they must be equal. But the identity is
the only element that holds every other element fixed. Thus each stabilizer is trivial.

Therefore ng = 1, which is a contradiction.|2] O

Theorem 5.6. Let G be a transitive subgroup of S, where p is a prime number.
Suppose that |G| = pnr where n > 1,n = 1(mod p), r < p and r is prime. Then G is

stmple.
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Proof. By Lemma 5.3, r = rg and n = ng. Suppose H is a nontrivial normal subgroup
of G. Let H act on the set X = {1,2,...,p}. Thus Oy, ={a € X : x = ha,h € H}.
Now G permutes the orbits of H on X since these orbits are blocks and blocks partition
X by Theorem 2.71. By the same Theorem, since G is transitive and H is nontrivial,
the orbits of H are all the same size and |Oy,| > 1. This implies that |Og,| = p.
Thus H is also transitive. By Lemma 5.2 there exists a P’ € Syl (G) with P' < H.
By the second Sylow Theorem, Sylow p-subgroups are conjugate with each other, so
H contains all the Sylow p-subgroups of G. So |H| = pnyt = pnt and, by Lagrange’s
Theorem, pnt | pnr; this implies that ¢ | 7. But r is a prime number and by Lemma
5.5, t > 1, so t = r. Therefore |H| = |G|, making H = G. Consequently, G has no

nontrivial proper normal subgroups and, therefore, G is simple. O
Theorem 5.7. The Mathieu groups My and Mg are simple.

Proof. Now, My; < Si; and myy,, = |My1| =8-9-10-11 = 7920. Also, by Lemma 5.4,

Tl =720 = 5 (mod 11). This implies that 7y, = 5 and therefore nyy,, = 144 > 1.

Thus np,, = 1 (mod 11), 7y, < 11, and 7y, is prime. By Theorem 5.6 M, is
simple. Also, Mssz < Sy and myp, = |[Ma| = 3-16-20 - 21 - 22 - 23 = 10200960.
Thus by Lemma 5.4, “223 = 443520 = 11 (mod 23). Therefore, ry,, = 11 and
Nags = 40320 > 1. In addition, ny,, = 1 (mod 23), 7y, < 23, and 7y, is prime. By

Theorem 5.6 My3 is simple. O

In order to prove that M, is simple using the methods employed in J. Rotman’s
group theory text, we must prove Burnside’s Theorem, which is a Theorem in ad-
vanced group theory [13]. This makes the proof found in Robin Chapman’s paper

attractive.
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5.2 Simplicity of the Mathieu Groups with Degrees 12, 22,

and 24

Following is the proof of the simplicity of Mg, Mas, and Moy.
Theorem 5.8. The Mathieu groups Myo, Moy and Moy are simple.

Proof. Now, M, is a faithful, 5-transitive group whose stabilizer at any point is the
simple group, Mi;. Therefore, by Theorem 2.89, M;, is simple. The group M, is a
faithful 3-transitive group whose stabilizer at any point is the simple group PSL (3, 4).
This is the fourth type of finite simple group [9]. The degree of My, is 22, which is
not a power of two. Therefore, by Theorem 2.89, My, is simple [13]. Also, My, is
d-transitive whose stabilizer at any point is the simple group Ms3. Thus by Theorem

2.89, My, is simple. O]

Therefore the Mathieu groups are all finite simple groups. As is apparent, the
tools necessary to prove that the Mathieu groups M;; and Ms3 are simple include only
Sylow’s Theorems. In order to prove the simplicity of the other three Mathieu groups,
we must prove many things about transitivity, primitivity, and multiple transitivity
in group actions. This proof uses a long list of theorems and lemmas. It would be
a remarkable feat to construct a proof of similar to R. Chapman’s in elegance and

clarity for the Mathieu groups Mo, Myy, and Moy.
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