
ML-ASSISTED SIDE CHANNEL SECURITY
APPROACHES FOR HARDWARE TROJAN DETECTION

AND PUF MODELING ATTACKS

A thesis submitted in partial fulfillment of

the requirements for the degree of

Master of Science in Computer Engineering

By

 NIRAJ PRASAD BHATTA

M.Tech., Jain University, India, 2017

 B.E., Anna University, India, 2014

2024

Wright State University

WRIGHT STATE UNIVERSITY

College of Graduate Programs and Honors Studies

April 19, 2024

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER

MY SUPERVISION BY Niraj Prasad Bhatta ENTITLED ML-Assisted Side Channel
Security Approaches for Hardware Trojan Detection and PUF Modeling attacks
BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF Master of Science in Computer Engineering.

Fathi Amsaad, Ph. D.

Thesis Director

Thomas Wischgoll, Ph.D.

Chair, Department of Computer

Science and Engineering

Committee on Final Examination

Fathi Amsaad, Ph.D.

Wen Zhang, Ph.D.

Kenneth Hopkinson, Ph.D.

Paula Bubulya, Ph.D.

Interim Dean, College of Graduate

Programs & Honors Studies

Abstract

Bhatta, Niraj Prasad. M.S.C.E., Department of Computer Science and Engineering,
Wright State University, 2024. ML-Assisted Side Channel Security Approaches for
Hardware Trojan Detection and PUF Modeling attacks.

Hardware components are becoming prone to threats with increasing

technological advances. Malicious modifications to such components are increasing

and are known as hardware Trojans. Traditional approaches rely on functional

assessments and are not sufficient to detect such malicious actions of Trojans. Machine

learning (ML) assisted techniques play a vital role in the overall detection and

improvement of Trojan. Our novel approach using various ML models brings an

improvement in hardware Trojan identification with power signal side channel

analysis. This study brings a paradigm shift in the improvement of Trojan detection in

integrated circuits (ICs).

In addition to this, our further analysis towards hardware authentication

extends towards PUFs (Physical Unclonable Functions). Arbiter PUFs were chosen

for this purpose. These are also Vulnerable towards ML attacks. Advanced ML

assisted techniques predict the responses and perform attacks which leads to the

integrity of PUFs. Our study helps improve ML-assisted hardware authentication for

ML attacks. In addition, our study also focused on the defense part with the addition

of noise and applying the same attack ML-assisted model.

Detection of Trojan in hardware components is achieved by implementing machine.

iii

learning techniques.for this Purpose several Machine learning models were chosen.

Among them, Random forest classifier(RFC) and Deep neural network shows the

highest accuracy. This analysis plays a vital role in the security aspect of all hardware

components and sets a benchmark for the overall security aspects of hardware.

Feature extraction process plays major role for the improvement of accuracy and

reliability of hardware Trojan classification.

Overall, this study brings significant improvement in the field of overall hardware

security. Our study shows that RFC performs best in hardware classification with an

average of 98. 33% precision of all chips, and deep learning techniques give 93. 16%

precision of all chips. Moreover, on the hardware authentication side, RFC performs

the best of all other models with the accuracy of 89% in the attack part and 81% in

the defense part in 6000 data samples.

iv

Contents

1 Introduction 1

1.1 The Importance of Hardware Security 1

1.2 Hardware Trojans and Power Side-Channel Analysis 2

1.3 Arbiter PUFs and Machine Learning Vulnerabilities 4

1.4 Problem Statement . 7

1.5 Research Objectives . 9

1.6 Scope and Limitations . 10

1.7 Methodology Overview . 11

1.8 Significance of the Study . 12

1.9 Contribution . 13

1.10 Thesis Structure . 14

2 Background 16

2.1 Power Side-Channel Analysis: Techniques and Applications 16

2.2 Machine Learning in Hardware Trojan Detection 19

iv

2.3 Physically Unclonable Functions: From Foundations to Frontiers . . . 27

2.4 Vulnerabilities and Defenses: A Machine Learning Perspective 30

2.5 Theoretical Frameworks Informing Detection and Authentication . . . 33

2.6 Related Work . 37

2.7 Critique of Current Literature . 41

2.8 Research Gaps and Emerging Opportunities 43

3 Proposed Methodology 46

3.1 Detecting Hardware Trojans . 46

3.1.1 Experimental Setup . 46

3.1.2 Data Collection . 48

3.1.3 Data Analysis . 51

3.1.4 Proposed Model . 54

3.2 Securing Hardware Authentication 56

3.2.1 Dataset Preparation . 56

3.2.2 Data Collection . 57

3.2.3 Data Analysis Methods . 60

3.2.4 Proposed work . 62

4 RESULTS AND DISCUSSION 64

v

5 CONCLUSION AND FUTURE WORK 73

6 Appendix 75

6.1 Source code . 75

6.2 Codes for the Design of ML models 75

6.2.1 Feature Engineering . 75

6.2.2 Imbalanced Data Handling . 76

6.2.3 Random Forest Classifier . 96

6.2.4 Deep Neural Network Classifier 97

6.2.5 Addition of noise PUF Vulnerability Analysis 99

6.2.6 Random Forest Classifier For PUF Vulnerability Analysis . . 101

REFERENCES 103

vi

List of Figures

1.1 HT Detection Scenario in IC Design Process 3

1.2 PUF concept: (a) Challenge-Response Pairs (CRPs), (b) Features

where a PUF provides varying responses to distinct challenges, and

(c) Attributes generating unique responses among different PUFs due

to process inconsistencies . 5

2.1 Random Forest Classifier model . 21

2.2 Arbiter PUF Structure . 27

2.3 Hardware Trojan classification . 40

3.1 Proposed work for Hardware Trojan classification 48

3.2 Power side-channel time-series signal for AES-2000 benchmark . . . 49

3.3 Various features used . 52

3.4 Correlation Matrix of features . 53

3.5 Confusion matrix for Random Forest Classifier 61

3.6 Confusion matrix for Deep Neural Network 62

vii

4.1 Comparison with previous work . 69

4.2 Attack on arbiter PUF . 71

4.3 Comparison of attack and Defence on arbiter PUF 71

viii

List of Tables

4.1 AES-T400 Performance Metrics for Machine Learning Models at 25°C 65

4.2 AES-T500 Performance Metrics for Machine Learning Models at 25°C 65

4.3 AES-T600 Performance Metrics for Machine Learning Models at 25°C 66

4.4 AES-T700 Performance Metrics for Machine Learning Models at 25°C 66

4.5 AES-T800 Performance Metrics for Machine Learning Models at 25°C 66

4.6 AES-T1000 Performance Metrics for Machine Learning Models at 25°C 66

4.7 AES-T1100 Performance Metrics for Machine Learning Models at 25°C 67

4.8 AES-T1300 Performance Metrics for Machine Learning Models at 25°C 67

4.9 AES-T1400 Performance Metrics for Machine Learning Models at 25°C 67

4.10 AES-T1600 Performance Metrics for Machine Learning Models at 25°C 67

4.11 AES-T1800 Performance Metrics for Machine Learning Models at 25°C 68

4.12 AES-T2000 Performance Metrics for Machine Learning Models at 25C 68

4.13 Comparison with Previous Work . 68

ix

Acknowledgment

Firstly, I would like to thank the Department of Computer Science and Engineering

at Wright State University for providing me with such a beautiful academic environment

and for fostering a culture of innovation and collaboration. The opportunity to work

alongside talented peers and dedicated faculty members has been invaluable to my

growth as a researcher.

I express my deepest gratitude to our supervisor Dr. Fathi Amsaad for his

invaluable guidance, unwavering support, and insightful feedback throughout the

entire process of this thesis. His expertise and encouragement have been instrumental

in shaping this work.

I am deeply grateful to my parents and all members of the family for their

constant love, encouragement, and understanding during this journey. Their belief

in me has been a source of strength and motivation.

I am also deeply grateful to all my colleagues from our SMART Lab.,Wright

state university, and all who know me and have supported me in either way. Your

encouragement and belief in me have been invaluable.

Lastly, I extend my heartfelt thanks to all individuals who contributed their

time and insights to this study.

This thesis would not have been possible without the support and encouragement

of all those mentioned above. Thank you.

x

1 Introduction

1.1 The Importance of Hardware Security

Today, with digital technologies becoming an important part of nearly every

aspect of our life, the need to protect hardware systems has become more crucial

than ever. It sets up the critical framework essential for establishing and securing

global faith in technological innovations. This section aims to shed light on the

importance of hardware security, focusing on its important role in ensuring the

security of individual devices and the comprehensive systems that support the security

framework of individuals and the national security infrastructures[1].

Hardware security is the cornerstone assuring the stability and durability of our

digital environments. Bridging from the microchips at the heart of our smartphones

to the extensive networks that bolster indispensable infrastructure,the reliability of

hardware parts is the first line of protection against a myriad of cyber threats and

antagonistic entities. Hardware security is very essential for making overall digital

systems more secure and reliable.There is a need of security in many things, starting

from personal items to general security including national security concerns.

Additionally, as the technology is improving day by day, there is need for security

for all the hardware components, since privacy is the major concern for all.People

trust more on the digital systems considering it’s basic architecture that provides

security in concern with the illegal access. In the similar way, all the sectors from

individual,organisations as well as government relies on secure hardware components.they

1

are fully dependent on the digital platforms to protect their sovereignty to protect

against different kinds of ongoing cyber attacks which are risky for national security.

In general, the robustness of hardware devices serves as the backbone for security

within the digital era, maintaining the framework for our interconnected world. By

understanding and addressing the importance of hardware security, we can improve

our shared potential to withstand upcoming threats, paving the direction against

future threats and setting the groundwork for a safer, more secure technological world

for decades to come.

1.2 Hardware Trojans and Power Side-Channel Analysis

Hardware Trojans, commonly known as hardware implants or backdoors, are

harmful modifications that affect the framework or manufacturing procedure of integrated

circuits (ICs) that are the key components of modern electronic systems. Such

Trojans constitute a significant risk to the performance of systems by degrading

the functionality, security, and dependability of electronic systems.The reliability

of hardware parts can be defined mathematically with the exponential reliability

function:

R(t) = e−λt (1.1)

where R(t) is the reliability at time t, λ is the failure rate of the component, and t is

the time[2, 3].

This technique serves to predict the lifetime and failure instances of hardware

parts, ensuring that they stay safe and functional throughout time. Hardware Trojans

exist hidden within the actual framework of the device itself, making them extremely

difficult to identify and mitigate. The idea of hardware Trojans covers a wide range

of harmful behaviors, including unauthorized data leakage, modification of system

2

Product Design

Vendor A

Vendor B

Proprietary Design

To Manufacturier

IP A

IP B

IC Designer

HT detection

Figure 1.1: HT Detection Scenario in IC Design Process

performance, as well as total system takeover. These unfavorable modifications may

be introduced at various phases of the IC life cycle, across the design stage to the

fabrication, assembly, as well as verification stages. Attackers might take advantage of

weak stages in the supply chain to hide these kinds of Trojans, either by introducing

malicious components throughout the design phase or by changing the process of

production in a manner that remains undiscovered[4]. Fig [1.1] below shows IC design

process, where a designer integrates IP blocks A and B from vendors A and B into

product. hardware Trojan detection, shown with the red circle, enables her to quickly

recognize any introduced Trojans, for example one possibly buried in IP B.

Conventional approaches for hardware detection Trojans often rely on functional

evaluation, a process that involves introducing the device to a number of inputs

and analyzing its outputs in order to identify any deviations from the predicted

behavior.However, this method has its limitations as it may not detect insignificant

Trojans that do not impact the normal functioning of the device or only operate in

certain conditions.

The analysis of power side-channel signals has transformed into a highly effective

method for the identification of hardware Trojans, indicating improved accuracy
3

and efficacy. This method is especially helpful for complicated circuits crucial for

important areas, which includes critical infrastructure, aerospace, military, and consumer

electronics.With the increased sophistication of hardware Trojans and the increasing

complexity of current electronic systems, novel detection approaches such as power

side-channel analysis are crucial for ensuring the integrity and security of hardware

components and defending against emerging threats[5].

Information entropy for data security is deeply connected with Hardware Trojans

and Power Side-Channel Analysis as it measures the unpredictability of cryptographic

keys, important in detecting anomalous patterns and vulnerabilities created by Trojans

through deviations in power consumption signals.Information entropy is a measure of

unpredictability or randomness, calculated for systems to understand their complexity

and security level[5, 6, 7]. The formula for information entropy is given by:

H(X) = −
n∑

i=1

P (xi) logb P (xi) (1.2)

where:

• H(X) is the entropy of a random variable X with possible values x1, x2, . . . , xn,

• P (xi) is the probability of xi,

• b is the base of the logarithm used, commonly 2 for binary systems[8].

1.3 Arbiter PUFs and Machine Learning Vulnerabilities

Arbiter Physical Unclonable Functions (PUFs) are a hardware authentication

mechanism widely applied to provide electronic systems with unique and unreplicable

identities. By utilizing the inherent inconsistencies found in manufacturing processes,

4

Challenge Response
(R)

PUFs

PUFs PUFs

PUFs PUFs

PUFsPUFs

(C)

(C)

(C)

(C)

(R)

(R)

(R)

(C)

(C)

(C)

(R)

(R)

(R)

a)

b) c)

Figure 1.2: PUF concept: (a) Challenge-Response Pairs (CRPs), (b) Features where a
PUF provides varying responses to distinct challenges, and (c) Attributes generating
unique responses among different PUFs due to process inconsistencies

they generate unique responses to particular questions, functioning as a hardware-based

identification system. These different responses are crucial in establishing a device’s

authenticity or in building up secure channels for communication between devices as

shown in Fig [1.2].The mathematical expression that relates challenge and response

for a PUF is as follows:

R = f(C) (1.3)

where, R is the response, C is the challenge, and f is the PUF’s precise function that

connects both R and C [9].

Although, arbiter PUFs are widely used and are more secure are still vulnerable.

Certain kinds of attacks tend to minor changes in the arbiter PUF responses that

leads to predict new responses by new challenges. Such kinds of attacks use advanced

algorithms with massive dataset for its operation that can replicate the behavior of

arbiter PUFs.

5

The vulnerable nature of Arbiter PUFs to ML-based attacks requires an in-depth

analysis of their security features and the remedies that address this vulnerability.

This overview includes learning Arbiter PUFs’ necessary mechanisms, a thorough

study into the nature of ML attacks, and the selection of acceptable defensive techniques.

One potential method to mitigate this security risk is by increasing the randomness

and unpredictability of PUF responses by using techniques such hardware obfuscation,

the addition of noise, or changes of challenge-response pairs. These techniques are

designed to improve the complexity of PUF responses, thus reducing ML algorithms

potential to accurately predict and reduce the probability of effectiveness. Another

method is to include extra levels of protection, for example cryptographic protocols,

to improve on the authentication given by Arbiter PUFs. By integrating multiple

security mechanisms, designers may develop stronger and more capable systems that

are less prone to exploitation by smart attacks.

The equation for predicting responses to new challenges applying a ML model

can be written as:

R̂ = f̂(Cnew) (1.4)

This expression shows the expected responses R̂ to a new challenge Cnew using ML

framework f̂ that correlates the behavior of the PUF. The entropy, H(R), of the

responses can be written as:

H(R) = −
n∑

i=1

P (ri) log2 P (ri) (1.5)

where H(R) defines the unpredictability of the response set. Here, P (ri) is the

probability for every unique response ri, and the result is over all potential responses

n. Increasing this entropy causes it to be more difficult for ML models to predict new

responses in a correct way.

6

Furthermore, current efforts are currently focused upon creating unique PUF

designs and methods of authentication which provide improved security features and

robustness to machine learning-based attacks. This consists of exploring various PUF

architectures, the study of unique physical principles for manufacturing one-of-a-kind

IDs, and the use of cryptographic advancements for improving hardware authentication

mechanisms. Adding noise to the response or the challenge can be mathematically

described as:

R′ = f(C +NC) +NR (1.6)

where NC indicates noise introduced to the challenge C, NR denotes noise added

directly to the response, and R′ is the updated response. This approach seeks to

improve the system’s level of entropy and, thus, its defense against attacks.

Arbiter PUFs are essential for the safety of electronic systems, their exposure to

machine learning attacks underlines the necessity of ongoing evaluation and innovation

within hardware security. Addressing these susceptibilities and implementing effective

strategies would allow designers and researchers to improve hardware authentication

techniques and limit the chance of new possible risks.

1.4 Problem Statement

The challenges posed by hardware Trojans and the vulnerability of Arbiter

Physical Unclonable Functions (PUFs) to machine learning-based attacks underline

the need for improvement in the realm of hardware security. This subsection aims to

articulate the specific problems that the thesis seeks to address within this framework.

• Complexity of Detecting Hardware Trojans : Conventional methodologies

for finding hardware Trojans generally focus on functional evaluation, where

predetermined patterns are executed and the device’s behavior are observed.

7

However, hardware Trojans may be engineered to avoid detection during functional

testing. it is possible by staying dormant or activating only under specified

situations.This complexity in detection is a major problem as it enables Trojans

to avoid traditional security processes and harm system security. Consequently,

there is an urgent need to create more robust and effective detection techniques

capable of recognizing hardware Trojans, even when they are supposed to be

hidden.

• Vulnerabilities of Arbiter PUFs to Machine Learning Attacks : Arbiter

PUFs are extensively applied for hardware authentication, using the unavoidable

variations in manufacturing to provide different IDs. Yet, recent research have

demonstrated that Arbiter PUFs are prone to attacks employing machine learning.

these are capable of precisely anticipating PUF responses and therefore breaching

their security. This weakness impairs the dependability and trustworthiness of

Arbiter PUFs as authentication methods underlining the demand for enhanced

security measures to defend against such vulnerabilities.

By addressing these challenges, this thesis seeks to contribute to the improvement

of hardware security by providing improved detection techniques for hardware Trojans

and strengthening the robustness of Arbiter PUFs towards machine learning attacks.

This requires doing in-depth research to understand the underlying shortcomings and

restricts of current security methods. also, it helps in creating and implementing

innovative techniques to mitigate these vulnerabilities and increase the security of

electronic systems. Through these efforts, the thesis intends to increase the trustworthiness

and integrity of hardware components and boost overall system security and evolving

threats.

8

1.5 Research Objectives

The main goal of this thesis is to elevate the field of cybersecurity through two

essential contributions: first, by improving the detection of hardware Trojans, a

critical aspect of safeguarding digital ecosystems from covertly embedded malware

within hardware components; and second, by advancing the defense mechanisms of

PUFs, specifically Arbiter PUFs, which are fundamental to cryptographic security

through their provision of unique,identifiers critical for authentication processes. This

research aims to:

• Conduct an analysis of existing hardware Trojan detection methodologies, pinpointing

their limitations and exploiting innovative technologies to devise more accurate,

efficient, and scalable detection strategies.

• Investigate the susceptibility of Arbiter PUFs to Machine learning attacks,

evaluating their current defense mechanisms, and proposing novel solutions that

enhance their robustness and reliability as a cryptographic tool.

Through these efforts, this thesis seeks not only to push the boundaries of what

is currently achievable in cybersecurity but also to lay the groundwork for future

research that could further digital security protocols and infrastructures. To meet

these objectives, the research will delve into a comprehensive examination of current

Trojan detection methodologies to identify and address their shortcomings. By

leveraging cutting-edge technology and innovative approaches, we aspire to develop

more effective and efficient methods for identifying Trojans, thus minimizing their

threat.

This research will explore the weaknesses of PUFs to advanced attacks, with

the goal of identifying new advancements that will ensure their ongoing reliability in
9

cryptographic security.The objective of this research is to improve cybersecurity and

set new benchmarks for digital protection by methodically examining key areas for

enhancing cryptographic protocols and overall digital security.

1.6 Scope and Limitations

The project aims to advance cybersecurity by focusing on two key areas: Improving

Trojan detection and strengthening the defense mechanisms in the PUFs. Trojans are

discreetly integrated into authentic programs, present a significant risk to the integrity

of digital frameworks. our research will meticulously dissect Machine learning strategies

for identifying Trojans. In addition, our main emphasis is on strengthening Physically

Unclonable Functions (PUFs), which are the fundamental building blocks of cryptographic

security. PUFs are widely acknowledged for their distinct and inviolable IDs that are

essential for authentication purposes. In order to achieve these goals, our study

will examine existing methods for detecting Trojans, identify any shortcomings, and

propose innovative solutions by developing more efficient and effective approaches to

mitigate their risk.

We will also explore the susceptibility of PUFs to very sophisticated attacks.

PUFs, while their crucial function in safeguarding digital communications and information,

have inherent weaknesses. The objective of this study is to investigate these weaknesses

and improve approaches and technologies to strengthen PUFs’ capacity to withstand

attacks, therefore assuring their dependability in cryptographic defense.

Through a thorough examination of these crucial areas, the project aims to

surpass current cybersecurity standards, therefore making a substantial influence on

the domains of cybersecurity, digital safety, and cryptographic approaches. Overcoming

these hurdles, we want to build new norms of digital security and safety, leading to a

more secure and trustworthy digital world.

10

1.7 Methodology Overview

This research discusses comparative analytical approach undertaken in the evaluation

of the performance of various machine learning algorithms. Selection of these algorithms

have been very chosen very meticulously, taking care that they ensure a very robust

framework with myriad components of the algorithmic capability and applicability.

First, the Selection of an algorithm was more on the relevance of the domain

and acceptance in similar widespread studies. Further considerations were made in

view of the scalability, interpretability, and computational efficiency of the algorithm,

since these characteristics play essential roles in real-world deployment scenarios.

Moreover, the analysis would be impartial towards all the algorithms, ensuring equal

consideration for the performance of each algorithm in its attitude.This involves

rigorous data preparation approaches to address problems like as missing values,

data standardization, and feature selection to increase the quality of input data.

Additionally, the dataset was partitioned into training, validation, and testing sets

using proper procedures to verify the generalizability of findings[10].

Model evaluation metrics were selected to measure each such algorithm was

effective, in line with the goals of the study. Furthermore, model assessment measures

were carefully designed to evaluate the success of each algorithm in addressing the

goals of the research. These measures contain a broad variety of performance indicators

including as accuracy, precision, recall and F1-score offering a complete insight of

algorithmic performance across many dimensions[11].

Overall, the comparative analytical approaches implemented in this work intends

to give significant insights into the strengths and shortcomings of different machine

learning algorithms, in order to contribute toward making the selection and implementation

of algorithms in real-world applications easier.

11

1.8 Significance of the Study

The results and findings of this work have immense significance for the hardware

security, providing essential insights that might considerably effect the development

of hardware design and the creation of security solutions. Through an in-depth

examination of how machine learning algorithms function in detecting and addressing

security concerns, this study not just broadens our knowledge of current security

approaches but also sets the framework for building stronger and dynamic hardware

security mechanisms.

The insights obtained from this research lies in its capacity to determine the

design and deployment of active security approaches within hardware systems. By

using machine learning to discover vulnerabilities and possible attacks, hardware

designers may build preemptive security solutions into the architecture, hence enhancing

the resistance of the system against developing attacks. Moreover, the insights

acquired through this work may lead to advancements in security procedures for

hardware devices, notably in fields such as identifying anomalies, intrusion avoidance,

and attack mitigation.By leveraging the capabilities of machine learning algorithms to

identify minor patterns and abnormalities in system behavior, security protocols may

be strengthened to enable real-time monitoring and adaptive response mechanisms,

thereby mitigating the risks posed by sophisticated cyber attacks.

Moreover, the potential of this study to inspire cross-disciplinary collaboration

among hardware engineers, cybersecurity specialists, and machine learning experts

cannot be overstated. This creative synergy promises to generate innovative solutions

that blend the latest in hardware engineering with cutting-edge machine learning

approaches, culminating in the production of highly secure and durable hardware

systems.

12

Overall, the consequences of this study each far beyond academic exploration,delivering

substantial benefits for the larger field of hardware security. By leveraging the insights

gained from this research, stakeholders are well-positioned to pioneer the next wave

of hardware systems,that are not only safe by design but also adaptable and robust

in the response of increasing cyber threats.

1.9 Contribution

The gaps in existing works on ML models for hardware security shows the need

for a improved comparative study of advanced ML techniques for classification. Such

a review is essential to our research for the complexities of detecting hardware Trojans

and protecting PUFs, specifically considering the increasing nature of attacks and the

limitations of current approaches. This study is meant to evaluate the effectiveness,

efficiency, and application of various ML approaches in addressing the complicated

issues of hardware security, thereby contributing considerably towards understanding

and addressing prior work’s limitations[12].

• Application of ML for Hardware Trojan Detection: Our Study explores

the current improvements in machine learning methods that significantly improve

the detection of hardware Trojans, providing a complete evaluation of their

effectiveness and efficiency in detecting invisible, malicious changes within hardware

components.

• Protecting PUFs with ML: Our study explores the role of ML in strengthening

the security of PUFs, emphasizing innovative methods that reduce vulnerabilities

to ML-based attacks as well as ensure the trustworthiness of these critical

security features.

• Multidisciplinary Strategies to Hardware Security: Our study shows the

importance of collaborative efforts throughout cybersecurity, hardware engineering,
13

and machine learning fields to address complicated challenges in hardware security

for creating robust defense mechanisms.

1.10 Thesis Structure

This Portion provides the general introduction by presenting a concise and clear

outline of the thesis. this will make readers to be clear with flow of the contents, thus

providing a summary of the study carried out. This study includes multiple chapters,

each dedicated to various aspects of hardware security, from theoretical foundations

to practical implementations and novel research findings[13, 5].

• Chapter 2: Background gets the evolution of hardware security, outlining

significant findings and improvements in technology. It thoroughly explores

power side-channel analysis, its methodology, applications, and the significance

of ML in detecting hardware Trojans. Furthermore, this chapter explores the

idea of PUFs and their importance, while exploring the weaknesses and defenses

from a ML perspective. It ends by analyzing current literature, highlighting

research gaps, and emerging opportunities.

• Chapter 3: Methodology for Detecting Hardware Trojans outlines

the hands-on framework designed for the current study. It describes the data

collection processes, analysis methods, and proposed framework for detecting

hardware Trojans, highlighting the distinct approaches and techniques used to

improve hardware detection techniques. In addition to this, this chapter focuses

on Securing Hardware Authentication addresses methods to improve hardware

authentication mechanisms. It describes the creation of datasets, methodology,

and data analysis strategies aimed at strengthening the security of hardware

devices from unauthorized access and modification.

14

• Chapter 4: Results and Discussion summarize the findings of the study,

providing an in-depth review of the data obtained and the performance of

the proposed models. Addresses the implications of these findings within the

larger framework of hardware security and the potential consequences for future

research and practice.

• Chapter 5: Conclusion generates the key ideas obtained from the research,

emphasizing the significant contributions of the thesis to the field of hardware

security. It focuses on the broad scope and limitations of the study, offering

options for future research to better enhance the knowledge and development

of secure hardware systems.

• Chapter 6: Appendix Provides the code used for the Study

15

2 Background

2.1 Power Side-Channel Analysis: Techniques and Applications

Power side-channel analysis has grown into a leading framework within the realm

of hardware security, notably in the identification of hardware Trojans. This method

revolves around monitoring and evaluating the power consumption patterns of a

device to find unusual behaviors or abnormalities that might indicate the presence of

a Trojan. Below, We delve into the significant modules of power side-channel analysis

with suitable case exemplars, and discuss the strengths and limits of these approaches

based on current research results[14, 15].

• Basic Techniques of Power Side-Channel Analysis

Power side-channel analysis exploits the fact that electronic operations consume

power and that different operations consume power in subtly different ways.

By measuring and analyzing these variations, it’s possible to infer the types of

operations occurring within a device. The foundational techniques include:

- Simple Power Analysis (SPA): SPA comprises the direct study of power consumption

trends while the device is in operation, seeking to discover cryptographic procedures

or other behaviors suggestive of a possible Trojan.

- Differential Power Analysis (DPA): DPA is a more advanced, incorporating

statistical analysis of power across multiple processes to separate particular

activities to locate particular activities or find abnormalities that may not be

16

obvious from individual observations[16].

• Case Studies

Previous studies shows the use of power side-channel analysis in hardware

Trojans detection:

- Detection in Cryptographic Devices: Recent studies in power side-channel

analysis was in identifying Trojans in cryptographic devices. By analyzing

power utilization during encryption techniques, researchers could find deviations

that showed manipulation, considering that the Trojans were designed to stay

inactive until activated by certain triggers.

- Supply Chain Security: A research effort that focused on supply chain integrity,

power side-channel analysis had been used to authenticate that chips created

worldwide . This application is essential for military and critical infrastructure

industries, where the reliability of hardware components is a key issue[17].

- IoT Devices: As the use of IoT devices is increasing, power side-channel

evaluation becomes essential to assure the security and authenticity of the

devices. Experiments were carried out to make sure resource-constrained devices

are not compromised by low-power Trojans.

• Strengths and Limitations

Strengths:

- Non-Intrusiveness: The evaluation of Power side-channel can be achieved

without harming the device, making it appropriate for post-manufacturing

inspections and in-field inspections.

- Reliability Against Stealthy Trojans: This approach is very effective at detecting

Trojans built to remain inactive until a certain trigger occurs, as even inactive

Trojans can demonstrate low power usage anomalies.

17

Limitations:

- Complexity and Resource Intensity: Accurate power analysis requires sophisticated

equipment and can be resource-intensive, particularly for differential power

analysis that requires statistical analysis of large datasets.

- False Positives/Negatives: The precision of power side-channel analysis can

be affected by environmental noise and variations in normal device behavior,

leading to potential false positives or negatives.

- Evolution of Avoidance methods: with the advancement in the detection

techniques, attackers keeps updating certain strategies that fail the detection

techniques, including those that have similarities to normal power consumption

patterns.

• Recent Research Insights

Previous studies have shown improvement in the sensitivity and accuracy of

power side-channel evaluation. this includes design of algorithms that is capable

for detecting Trojans even in minor abnormalities. ML techniques has proven

to be effective for improving the analysis of power data, with the purpose of

decreasing both false positives and false negatives. Nevertheless, the battle

remains,as attackers keeps updating new techniques to bypass these new detection

methods. overall, although power side-channel study is an essential tool in

determining the presence of hardware Trojans, its success depends on ongoing

improvement and research efforts to overcome more complex threats. The

balance between detection capabilities and the flexible nature of attackers defines

the ever-evolving environment of hardware security.

18

2.2 Machine Learning in Hardware Trojan Detection

The combination of machine learning (ML) models with side-channel analysis for

hardware Trojan identification marks a huge leap in cybersecurity. This synergy uses

the pattern recognition skills of ML to assess the subtle, often hidden signals within

the data received from side-channel investigations such as power usage, electromagnetic

emissions, or timing information. Here, we survey several ML models that have been

applied for Trojan detection, describe their integration with side-channel analysis,

and evaluate their performance and efficiency based on current literature[18].

• Machine learning Models used for Trojan Detection:

The following are the list of models used for Trojan Detection.

- Support Vector Machines (SVM): SVMs have been used in Trojan detection

for classifications. They are effective in high-dimensional areas, making them

useful for evaluating complicated side-channel data.

- K-Nearest Neighbors (KNN): KNN is employed for its simplicity and effectiveness

in classifying applications. It operates by identifying the most comparable data

points in the training set to the recently introduced data and provides decisions

based on majority voting.KNN classifies a data point based on how its neighbors

are classified. It requires no explicit model training phase and makes predictions

using a majority vote of its k nearest neighbors[19].

The Euclidean distance between two points x and x′ in an n-dimensional space

is given by[20]:

d(x, x′) =

√√√√ n∑
i=1

(xi − x′
i)
2 (2.1)

The class of a sample is predicted to be the most common class among its k

nearest neighbors [5, 21, 22, 23].
19

-Logistic Regression: This is a basic classification approach that predicts the

likelihood of a binary result based on one or more predictor variables. It’s

highly valued for its simplicity, interpretability, and efficiency in training. While

it may not handle complicated structures as well as ensemble or deep learning

approaches, it’s a decent basic model for binary classification issues. It estimates

probabilities using a logistic function.

The logistic or sigmoid function is defined as:

σ(z) =
1

1 + e−z
(2.2)

where z is the input to the function.

The model predicts the probability that a given input x belongs to class 1 as

follows:

P (y = 1|x) = σ(w · x+ b) (2.3)

Where P (y = 1|x) is the probability that the given input x belongs to class 1,

w is the weight vector, b is the bias, and z = w · x+ b [24, 25].

-Random Forest Classifier : The Random Forest Classifier is a robust, ensemble-based

technique that pulls together a number of decision trees to generate a more

accurate and stable forecast as shown in fig[2.1]. It functions by building an

array of trees from randomly chosen subsets of the training data, then combines

these predictions to generate a single, more accurate output. Its built-in process

for cross-validation via the random selection of data points and features is very

successful in preventing overfitting, typically resulting to higher performance in

different predicting tasks.The ensemble prediction in a Random Forest model

can be expressed as:

ŷ = mode {T1(x), T2(x), . . . , TN(x)} (2.4)
20

Figure 2.1: Random Forest Classifier model

Where ŷ is the predicted outcome, Ti is the ith decision tree’s prediction for

input x, and N is the number of trees in the forest[26, 27].

- Gradient Boosting Classifier: Gradient Boosting is a sophisticated ensemble

approach that creates one tree at a time, with each new tree repairing the

faults caused by the preceding ones[28]. The model optimizes for both bias and

variance by integrating weak predictive models into a strong learner, resulting

in better predicted accuracy. It’s usually utilized in cases when performance

is crucial and computing resources are adequate for its normally more rigorous

training procedure.Gradient Boosting builds models sequentially, each new model

correcting errors made by previous ones. Given a loss function L, the model at

iteration t, Ft(x), is updated by adding a new weak learner ht(x) that minimizes

21

the loss:

Ft(x) = Ft−1(x) + ρtht(x) (2.5)

where ρt is the learning rate, and ht(x) is chosen to minimize the loss function

L [29].

- Ada Boost: Ada Boost is an iterative boosting strategy that modifies the

weights of the classifiers at each iteration to reduce mistakes. It successively

applies weak classification algorithms to repeatedly updated copies of the data,

raising the weight of the observations that were misclassified and lowering it

for those that were successfully predicted. This technique leads to a composite

model that typically performs better than any single classifier by concentrating

on the most problematic features of the training data.AdaBoost combines multiple

weak classifiers to form a strong classifier by iteratively adjusting the weights of

incorrectly classified instances[30, 31]. The weight of each data point is updated

on each iteration to increase the weight of incorrectly classified instances. Given

weights wi for each data point i, the update rule is:

wi,t+1 = wi,t × exp (αt × I(yi ̸= ht(xi))) (2.6)

where wi,t+1 is the updated weight for iteration t + 1, αt is the weight of the

weak classifier ht at iteration t, and I(yi ̸= ht(xi)) is an indicator function that

is 1 if yi is not equal to the prediction ht(xi) and 0 otherwise[32]. The weight

of each weak classifier ht is determined based on its accuracy:

αt =
1

2
ln

(
1− errt
errt

)
(2.7)

where errt is the error rate of ht [32].

Deep Neural Networks : Deep Neural Networks (DNNs) are powerful machine

22

learning models suitable for multiclass classification problems across high-dimensional

data. Their architecture contains an input layer for raw data, hidden layers

with ReLU activation to learn patterns, and an output layer using softmax for

probability-based class predictions. A DNN consists of an input layer, multiple

hidden layers, and an output layer[33]. Each layer comprises nodes or neurons,

with the hidden layers using activation functions to introduce non-linearity,

enabling the model to learn complex patterns[33]:

- Input Layer: Receives raw data. The dimensionality of the input layer

corresponds to the number of features in the dataset. - Hidden Layers: Transform

the input data into something the output layer can use. Typically utilize ReLU

(Rectified Linear Unit) activation for intermediate layers due to its efficiency

and simplicity[34, 35].

- Output Layer: Produces the prediction. For multiclass classification, it uses

the softmax activation function, which converts logits to probabilities for each

class.

The expression for the output at layer l in a neural network can be represented

as:

Z [l] = W [l]A[l−1] + b[l] (2.8)

where Z [l] is the output of layer l, W [l] and b[l] are the weight matrix and bias

vector for layer l, and A[l−1] is the activation from the previous layer[36, 37, 38].

The activation A[l] for each layer is computed using an activation function f ,

such that:

A[l] = f(Z [l]) (2.9)

23

For the ReLU activation function is defined as:

f(z) = max(0, z) (2.10)

The final output A[L] for the last layer L uses the softmax function, where each

element is computed as:

eZ
[L]
i∑

k e
Z

[L]
k

(2.11)

This converts the logits into probabilities for each class.

The loss function for multiclass classification is typically the categorical crossentropy,

given by:

−
M∑
c=1

yo,c log(po,c) (2.12)

where M is the number of classes, y is a binary indicator of whether class label c

is the correct classification for observation o, and p is the predicted probability

that observation o is of class c [39].

• Integration with Side-Channel Analysis

The integration of ML models with side-channel analysis comprises many fundamental

methodologies:

- Feature Extraction: This is an important step where significant features are

recovered from the side-channel data (e.g., power traces, timing information).

Features might include statistical metrics, frequency components, or particular

patterns that are suggestive of malicious behavior.

- Model Training: The extracted characteristics are utilized to train the ML

model. This step comprises choosing a suitable algorithm, adjusting hyperparameters,
24

and utilizing training data that contains both benign and Trojan-inserted instances.

- Detection and Classification: Once trained, the model is used to categorize

new samples as either benign or Trojan-infected. The efficacy of detection is

highly dependent on the quality of feature extraction and the model’s capacity

to generalize from the training data[2, 9, 40].

• Effectiveness and Efficiency : The Random Forest Classifier and Deep Neural

Networks showed better precision and durability. This model’s performance is

attributed to its ensemble learning technique, where numerous decision trees

contribute to a final choice, lowering the danger of overfitting. This model

has the ability to accommodate varied data sets and is adept at catching

complicated, non-linear patterns. This makes it extremely dependable for identifying

hardware Trojans, which typically display subtle and sophisticated signatures.

Precision and recall are critical metrics for evaluating the performance of classification

models. They are defined as follows:

- Precision is the ratio of true positive predictions to the total number of positive

predictions (both true positives and false positives)[41]:

Precision =
TP

TP + FP
(2.13)

-Recall is the ratio of true positive predictions to the total number of actual

positives (both true positives and false negatives):

Recall =
TP

TP + FN
(2.14)

Where:

– TP (True Positives) is the number of correct positive predictions.

25

– FP (False Positives) is the number of incorrect positive predictions.

– FN (False Negatives) is the number of incorrect negative predictions [42].

-In terms of efficiency,Support Vector Machines and K-Nearest Neighbors have

shown commendable performance. However, as the level of complexity of the

dataset rises, both may experience scaling issues. Support Vector Machines,

necessitating certain kernel choices, might become resource-intensive. Neural

Networks, especially Deep Neural Networks, despite their excellent accuracy

metrics, may suffer inefficiencies owing to their large processing demands and

the requirement for huge training datasets, particularly in situations with resource

limits[43, 42, 41].

• Comparative Analysis

Recent work suggests a trend towards the use of Random Forest Classifier and

deep Neural Network models for Trojan detection, ascribed to their greater

capacity to identify meaningful patterns from complicated datasets. However,

these models need enormous computing resources and big amounts of labeled

data for training, which may not always be viable.

Integrating machine learning with side-channel analysis to detect hardware Trojans

is is a prominent and a rapidly growing area of research. While Random Forest

Classifier and deep learning models show great effectiveness. It is important to choose

other models that achieves a balance between accuracy and computational efficiency.

This is particularly important when there are limitations on resources. Choosing

the right model requires careful analysis of the specific requirements of the work,

taking into account factors like as the speed of detection, the amount of training data

available, and computing limitations. Ongoing advancements in machine learning

and side-channel methods continuously strengthen our defensive strategies.

26

Figure 2.2: Arbiter PUF Structure

2.3 Physically Unclonable Functions: From Foundations to

Frontiers

Physically Unclonable Functions (PUFs) use the inherent imperfections created

in hardware during manufacture to provide unique IDs or cryptographic keys. These

intrinsic variances are unpredictable and hence make PUFs an excellent tool for

hardware authentication and security. Among the different forms of PUFs, Arbiter

PUFs are remarkable for their simplicity and effectiveness[44].

• Principles of PUFs and Arbiter PUFs

PUFs operate by the application of a challenge to a physical system and Assessing

the response , where the reaction is strongly reliant on the physical properties

of the system. The uniqueness of each PUF instance Complicates to copy or

guess responses without physical access.

27

Arbiter PUFs especially employ a competitive situation between two identical

signal channels that have been transformed differentially by manufacturing

variations. At the end of each of the pathways, an arbiter (a basic flip-flop

or latch) decides which signal arrived first as shown in Fig [2.2]. The input

challenge configures the pathways in a manner that impacts the signals’ travel

times, and the arbiter’s decision delivers the binary response. This method

enables Arbiter PUFs to produce responses depending on the inherent physical

characteristics of the device[45]. The operation of an Arbiter Physically Unclonable

Function (PUF), which uses race conditions to generate responses, might be

abstractly represented as follows:

Given two signal paths, path1 and path2, the difference in travel times due to

manufacturing variations is denoted as ∆tpath1 and ∆tpath2, respectively. The

Arbiter PUF produces a binary response R based on these differences, which

can be mathematically represented as:

R = A(∆tpath1,∆tpath2) (2.15)

Here, R is the binary response determined by the arbiter A based on the

difference in travel times (∆t) of signals along the two paths.

• Use of PUFs in Hardware Authentication

PUFs are widely used for hardware authentication as they provide each device

with a distinct”fingerprint” that can be validated against a predetermined value.

This application is critical in situations like supply chain integrity, counterfeit

detection, and secure key creation, when the authenticity of a device has to be

certified without relying on readily replicated digital certificates or stored keys.

• Machine Learning Attacks on PUFs

28

Even while PUFs, such as Arbiter PUFs, provide security benefits, they are

nevertheless susceptible to certain sorts of attacks. Machine learning (ML)

attacks have emerged as a serious concern. In such attacks, an attacker utilizes

ML techniques to develop a model of the PUF by evaluating recorded challenge-response

pairs (CRPs). If these ML assaults are effective, they may predict the PUF’s

responses to new challenges, thus replicating the PUF without having physical

access[46].

Composite or hybrid Physically Unclonable Functions (PUFs) aim to complicate

direct modeling by combining multiple PUF responses. If PUF1 and PUF2 are

two different PUFs, a composite response could be represented as:

Rcomposite = Combine (PUF1(C1), PUF2(C2)) (2.16)

Where Combine is a function that merges the responses from PUF1 and PUF2

to a set of challenges C1 and C2, respectively.

• Literature Review on Machine Learning Attacks

Numerous research in the literature have carefully evaluated different ML attacks

on PUFs, exposing the susceptibility of even complicated PUF designs to modern

ML models. These studies highlight the necessity for PUF designs that are

robust against modeling attacks, Initiating a relentless pursuit of research to

produce PUFs that can survive such challenges.

• Emerging Trends and Advancements in PUF Security

Recent innovations in increasing PUF security emphasize the development of

architectures and protocols which inherently offer greater defiance to ML attacks.

Some of them include:

- Composite and Hybrid PUFs: By merging several PUF structures or kinds,
29

these designs attempt to expand the complexity of the challenge-response behavior,

making it difficult for ML algorithms to predict effectively.

- Error Correction and Helper Data Algorithms: These approaches increase the

dependability of PUF responses while simultaneously obfuscating the actual

nature of the PUF’s physical properties, making it more difficult for attackers

to create accurate models.

- PUF-based Cryptographic Protocols: Significant strides in this realm include

incorporating PUFs into cryptographic protocols in a manner that uses their

unique properties for increased security, such as key agreement procedures that

necessitate the unpredictability of PUF answers.

Arbiter PUFs including other PUF present potential remedies for hardware

authentication and security, benefiting from the the unique physical properties

of devices. However, the potential of machine learning attacks has driven

extensive research into more robust PUF designs and security techniques. As

this realm unfolds, the emphasis remains on designing PUFs that balance the

needs of security, dependability, and usability in an increasingly complex risk

scenario.

2.4 Vulnerabilities and Defenses: AMachine Learning Perspective

Hardware authentication systems, crucial to fortifying the integrity and validity

of devices across a multitude of applications, meet significant challenges from ML

attacks. These attacks operate with ML algorithms to delve into the actions of

authentication methods, particularly Physically Unclonable Functions (PUFs), allowing

attackers to imitate or override security mechanisms.. Research in this field has

fully outlined vulnerabilities and created a variety of defense mechanisms to prevent

such attacks[46]. This blends conclusions from recent research findings, highlighting

30

adaptive and resilient approaches that have been suggested to increase the security

of hardware authentication systems.

• Documented Vulnerabilities to Machine Learning Attacks

Machine learning attacks focus on addressing the predictability and repetition

of responses in hardware authentication systems. For example, through the

inspection of a sufficient amount of CRPs from a PUF-based system, attackers

might train models to clone the PUF’s behavior, Aptly bypassing the authentication

process. These vulnerabilities originate from:

- Linear and Simple Relationships: Simpler to grasp relationships within the

hardware’s response creation cycle. - Insufficient Entropy: Predictable or insufficiently

unpredictable responses that enable ML algorithms to rapidly learn the system’s

behavior.

- Static Behavior: Unchanging reaction patterns throughout time, which do not

adjust to potential risks.

• Adaptive and Resilient Defense Mechanisms

Addressing these shortcomings, research has been oriented towards designing

defensive mechanisms that are both adaptable and durable to ML attacks.

These techniques include:

1. Nonlinear PUF Designs: By introducing more elaborate , nonlinear components

into PUF designs, researchers intend to make it substantially difficult for ML

algorithms to accurately mirror the PUF’s behavior. These designs generally

include hybrid or composite PUF structures that integrate different PUF technologies

to generate more random CRPs.

2. Continuous Reconfiguration : Some methodologies encompass dynamically

reconfiguring the PUF or authentication mechanism in response to Detected
31

or presumed attacks. This might include modifying Methods for generating

challenge-response patterns or Periodically revising the system’s internal framework

to invalidate whatever model an attacker may have created.

3. Noise Introduction: Intentionally injecting noise into the response generation

process may effectively enhance the challenge for ML models attempting to

learn the system’s behavior. This noise must be carefully regulated to prevent

diminishing the system’s dependability for authorized users.

4. Use of Helper Data Algorithms: Helper data algorithms may increase security

by obfuscating the link between challenges and responses. When paired with

error-correction approaches, they not only increase resistance to ML attacks but

also solve concerns of response dependability owing to environmental fluctuations

or device aging.

5. Advanced Cryptographic Techniques: Integrating hardware authentication

methods with modern cryptographic approaches, such as zero-knowledge proofs,

may give extra levels of protection. These solutions enable a device to establish

its authenticity without providing the real data or patterns that may be utilized

in an ML attack.

• Synthesis of Research Findings

Previous research outcomes suggest that a multimodal strategy, comprising

numerous adaptive and resilient methods, delivers the best possible defense

against ML attacks on hardware authentication systems. There isn’t a singular

method that is infallible, and the efficiency of each protection mechanism might

vary according to the distinctive hardware and application situation. Ongoing

innovation in both attack and defense strategies is essential, highlighting the

continuing competition in hardware security.

32

Incorporating these adaptive and resilient defenses signifies crucial stages forward

for hardware authentication systems in increasing threat environment provided by

machine learning attacks. As the complexity of both hardware systems and ML

approaches grows, the requirement for proactive, adaptive security solutions becomes

more crucial.

2.5 Theoretical Frameworks Informing Detection and Authentication

ML is often used in hardware security to primarily identify hardware Trojans and

ensure the security of PUFs. This application is substantiated by several theoretical

models and frameworks. These fundamental principles not only determine the development

of ML algorithms but also provide the methodologies for using these technologies in

hardware security circumstances. In this study, we explore the crucial theoretical

principles and their implementation in the fields of Trojan detection and PUF protection.Machine

learning encompasses a wide range of theoretical models.

1. Supervised Learning: This method relies on datasets that have been labeled to

train the algorithm on how to make predictions or classifications. Supervised learning

may be used in the field of hardware security to detect hardware Trojans. This is

done by training models on circuits that are known to be infected with Trojans and

circuits that are Trojan-free. By doing so, the algorithm can learn the distinguishing

characteristics in between.

2. Unsupervised Learning: Unsupervised learning algorithms detect patterns or

anomalies without the need for labeled data. This technique is particularly crucial

for detecting distinct or previously encountered hardware Trojans because accurate

fingerprints may not be pre-established.

3. Reinforcement Learning: Despite being less often used in the field of hardware

33

security, reinforcement learning involves the use of algorithms that learn optimal

behaviors via a process of trial and error in order to maximize a reward. The idea

of this may be studied for dynamic security systems that respond to evolving risks,

such as adaptive PUF settings.

4. Semi-supervised and active learning models use both labeled and unlabeled

data, which is uniquely valuable when complete labeled datasets are scarce or expensive

to create. They may increase the efficiency and accuracy of Trojan detection algorithms

by actively searching the most informative unlabeled instances for labeling.

Frameworks for ML Applications in Hardware Security

Feature Selection and Extraction: Prerequisite for data preprocessing in either

case Trojan detection and PUF security, feature selection, and extraction processes

assist in determining the foremost essential hardware signals (e.g., power consumption,

timing information) to enhance learning efficiency and detection accuracy.

Anomaly Detection Frameworks: These frameworks serve as crucial tools for

analyzing abnormalities in hardware behavior that might imply the presence of a

Trojan or an attack on PUF integrity. Anomaly detection is particularly critical for

unsupervised and semi-supervised learning approaches.

Adversarial Machine Learning: This theory highlights the concept of adversaries

actively manipulating data to evade detection or change the learning process. It is

especially crucial for developing robust ML models capable of recognizing complicated

hardware Trojans and ensuring the security of PUFs against modeling attacks. Relevance

to Detecting Trojans and Securing PUFs

Detecting Hardware Trojans: The use of supervised learning models, reinforced

by feature selection and extraction approaches, enables the formulation of algorithms

34

that can effectively distinguish between clean and compromised hardware. Anomaly

detection frameworks significantly enhance the ability to recognize new Trojans.

Securing PUFs: The integrity and unpredictability of PUF responses are critical

for hardware security. ML models, particularly those focusing on anomaly detection

and adversarial machine learning, may be deployed to examine PUF activities, identify

possible weaknesses, and create defenses against cloning or modeling attacks.

Adversarial Resilience: The conceptual foundations of adversarial machine learning

are essential for anticipating and mitigating attempts against ML-based security

solutions. They encourage the development of more robust algorithms that can

withstand attempts to imitate or upset the normal functioning of hardware components.

In conclusion, the theoretical models and frameworks of machine learning provide

an extensive basis for overcoming the issues of hardware security. By applying these

principles, researchers and experts may construct complex tools and techniques for

recognizing hardware Trojans and increasing the security of PUFs, ensuring the

integrity and trustworthiness of hardware devices in the midst of increasing threats.

Frameworks for ML Applications in Hardware Security

Feature Selection and Extraction: Prerequisite for data preprocessing in either

case Trojan detection and PUF security, feature selection, and extraction processes

assist in determining the foremost essential hardware signals (e.g., power consumption,

timing information) to enhance learning efficiency and detection accuracy.

Anomaly Detection Frameworks: These frameworks serve as crucial tools for

analyzing abnormalities in hardware behavior that might imply the presence of a

Trojan or an attack on PUF integrity. Anomaly detection is particularly critical for

unsupervised and semi-supervised learning approaches.

35

Adversarial Machine Learning: This theory highlights the concept of adversaries

actively manipulating data to evade detection or change the learning process. It is

especially crucial for developing robust ML models capable of recognizing complicated

hardware Trojans and ensuring the security of PUFs against modeling attacks.

Relevance to Detecting Trojans and Securing PUFs Detecting Hardware Trojans:

The use of supervised learning models, reinforced by feature selection and extraction

approaches, enables the formulation of algorithms that can effectively distinguish

between clean and compromised hardware. Anomaly detection frameworks significantly

enhance the ability to recognize new Trojans.

Securing PUFs: The integrity and unpredictability of PUF responses are critical

for hardware security. ML models, particularly those focusing on anomaly detection

and adversarial machine learning, may be deployed to examine PUF activities, identify

possible weaknesses, and create defenses against cloning or modeling attacks.

Adversarial Resilience: The conceptual foundations of adversarial machine learning

are essential for anticipating and mitigating attempts against ML-based security

solutions. They encourage the development of more robust algorithms that can

withstand attempts to imitate or upset the normal functioning of hardware components.

In conclusion, the theoretical models and frameworks of machine learning provide

an extensive basis for overcoming the issues of hardware security. By applying these

principles, researchers and experts may construct complex tools and techniques for

recognizing hardware Trojans and increasing the security of PUFs, ensuring the

integrity and trustworthiness of hardware devices in the midst of emerging threats.

36

2.6 Related Work

This chapter reviews the literature surrounding hardware security, particularly

focusing on advancements in hardware Trojan detection and PUF security through

machine learning (ML) techniques. It integrates the study within the ongoing existing

research, highlighting how this work extends and diverges from previous efforts.

- Historical Context and Evolution of Hardware Security The evolution of hardware

security unfolds as a compelling story, advancing with technological developments

advancements. Its annals are distinguished by a continual conflict with the development

of security measures on one side and the creation of threats, notably the more

complicated hardware Trojans, on the other.

• The Dawn of Hardware Security Concerns

In the early days of computing, security-related concerns about hardware were

very confined. The emphasis was focused on usefulness and performance, with

security concerns being at most secondary to the security notion. However, as

computer systems grew increasingly vital to both military and commercial uses,

the significance of safeguarding hardware against manipulation and espionage

started to acquire awareness.

• The Rise of Hardware Trojans

The phrase ”hardware Trojan” originated in the mid-2000s, marking a new age

of risks when harmful functionalities may be incorporated into the hardware

itself, typically during the manufacturing process. These Trojans were intended

to stay dormant until activated, making them exceptionally difficult to detect

without compromising the normal operation of the device[47].

• Evolution of Threats and Detection Techniques
37

- Late 2000s: Recognition of the risk posed by hardware Trojans sparked the

first research initiatives focusing on detection techniques. Most of these early

approaches were generally unsophisticated, depending on visual inspection or

functional testing, which proved unsuccessful against sophisticated Trojans.

- 2010s: The complexity of hardware Trojans proliferated, with attackers leveraging

the deep supply chain and globalization of semiconductor production. This

decade witnessed the development of more complex detection methods, such as

side-channel analysis, which evaluates power usage, electromagnetic emissions,

or timing information to find abnormalities suggestive of a Trojan.

- Mid-2010s to Early 2020s: Researchers began analyzing a multitude of innovative

approaches for identifying risks involved including use of machine learning algorithms

to evaluate hardware designs for unexpected patterns. Techniques like logic

testing, which entails subjecting the hardware to a series of test vectors and

evaluating the outputs for differences, also gained popular.

• Recent Developments: The emphasis has turned towards the design of extensive

frameworks that integrate various detection approaches, exploiting the capabilities

of each to increase detection rates. There has been a rising focus on the

design-for-security paradigm, where hardware is engineered from the bottom

up to be robust against Trojans.

• Significant Milestones

- 2008: The first systematic taxonomy of hardware Trojans gave a framework

for understanding and analyzing these risks.

- 2012: Introduction of new side-channel analytic approaches for distinguishing

Trojans, representing a substantial improvement over existing approaches.

- 2015: The advent of the first machine learning-based approaches for hardware

Trojan detection, highlighting the significance of AI in fortifying cybersecurity.
38

- 2018: Implementation of hardware security implementations in retail merchandise,

demonstrating a shift towards mainstream acceptance of the risks associated

with hardware Trojans[48].

- Existing works on Differential Power Analysis, establishing the relevance of

power side-channel signals in detecting covert hardware manipulations and the

integration of power side-channel analysis with ML to enhance Trojan detection

efficacy, marking a significant methodological shift pays vital role in the Power

Side-Channel Analysis Techniques and Applications [49, 50].

- The application of ML in detecting hardware Trojans has transformed the

landscape of hardware security. From the early use of Support Vector Machines

in identifying Trojans , towards the recent efforts to explore the potential of deep

learning techniques, highlighting the evolving sophistication of ML approaches

in this domain bring a paradigm shift towards Machine Learning in Hardware

Trojan Detection [51, 52].

- From Foundations to Frontiers Discussions on PUFs underscore their critical

role in hardware authentication and the vulnerabilities exposed by machine

learning-based attacks. a comprehensive analysis of PUF architectures and

their susceptibilities, framing the ongoing challenge of securing PUFs against

sophisticated threats provides significant contribution towards the work. The

dual impact of ML in both compromising and defending hardware security is

scrutinized. Previous work presents a pivotal examination of ML’s potential to

bypass traditional security measures, while subsequent studies propose innovative

defense mechanisms to counteract these vulnerabilities [53, 54].

- Theoretical Frameworks Informing Detection and Authentication Exploring

the theoretical underpinnings of ML applications in hardware security, Previous

works on adversarial training, which offers valuable insights into developing ML

39

Figure 2.3: Hardware Trojan classification

models resilient to attack strategies. Such theoretical frameworks provide the

basis for designing robust security solutions [55]. -Critique of Current Literature

A critical review of the literature reveals gaps in research, particularly in the

areas of dynamic security solutions and real-world applicability. The synthesis

of findings marks the need for further investigation into adaptive ML models

that can respond to emerging threats with agility.

The development of hardware security highlights the dynamic interaction between

technological improvements and the changing nature of threats. With our

growing dependency on electronic devices in every area of our lives, the significance

of securing hardware against Trojans and other destructive agents is important.

This growth from primitive security mechanisms to the sophisticated detection

and prevention approaches illustrates the research and development community

unwavering determination to protecting the security of our digital world.

40

2.7 Critique of Current Literature

While the use of machine learning (ML) in hardware security, notably in identifying

hardware Trojans and fortifying physically unclonable functions (PUFs), has seen

tremendous progress, there are significant drawbacks, contradictions, and places where

existing research may fall short. Addressing these gaps is essential for developing

research and functional applications in this particular field[15].

-Limitations of Current ML Approaches

1. Data Availability and Quality:A key restriction is the unavailability of publicly

accessible, high-quality datasets for training and testing ML models, particularly

datasets that precisely demonstrate real-world scenarios of hardware Trojans and

PUF setups. This insufficiency impedes the progress and validation of strong ML

models.

2. Generalization Capability: A multitude of ML models are challenged by

overfitting, causing them to perform well on training data but badly on unknown

data. This challenge is especially crucial in hardware security, as attackers continually

adapt their techniques and models must adapt effectively to emerging threats.

3. Resource limits: Developing ML algorithms for real-time detection in hardware

may be tricky owing to the computational and power limits of many devices, particularly

embedded systems or IoT devices.

4. Adversarial attacks: The literature often neglects the susceptibility of ML

models to adversarial attacks, where slight effective adjustments to the input may

lead to incorrect model predictions. This vulnerability is an important issue for

security applications.

41

-Discrepancies in research findings

1. Inconsistent assessment criteria: There is a lack of standardization in assessments

and benchmarks amongst researchers, which makes it impossible to evaluate the

effectiveness of various ML approaches for hardware Trojans or securing PUFs.

2. Objectives and Scope: The concept of what qualifies a ”hardware Trojan” or

a ”secure PUF” could vary greatly among studies, resulting in conflicts in the goals

and findings of various research efforts.

-Future improvements Areas :

1. Adversarial ML: Adversarial attacks are considered to be a major kind of

concern. there is need for the improvement in the hardware security with defensive

techniques.

2. Scalability and Efficiency: Additional efforts are very important to develop

ML models that are not only effective in vulnerabilities but are also scalable and

efficient enough to be used in resource-constrained conditions.

3.Real-World Applicability: Most of the previous research shows mathematical

expressions without applying them on real world scenarios. 4.Interdisciplinary Approaches:

It plays vital role as interdisciplinary approaches deals with the combination of

cybersecurity, hardware design approaches and ML approaches to solve the Complex

problems of hardware security. 5.Dynamic and Adaptive Systems: Upcoming research

must focus on dynamic and adaptive ML models that can respond to new threats as

static models deal with the problem of becoming obsolete rapidly.

In conclusion, application of ML for hardware security plays a vital role in

addressing previous works limitations and filling gap in the previous studies relating

with hardware security. To design more secure and robust hardware systems, there is

42

need of collaboration with various disciplines, improvement in getting the datasets,

measures and focusing more on real world applications.

2.8 Research Gaps and Emerging Opportunities

The modern research framework for machine learning (ML) applications for

hardware security, notably in the context of identifying hardware Trojans and improving

the security of PUFs, displays numerous glaring gaps. These gaps not only illustrate

the limits of current techniques but also promise fertile ground for additional inquiry

and innovation. Addressing these deficiencies gives the area the area the opportunity

to progress greatly, pushing the limits of what is currently attainable in hardware

security.

- Gaps in Current Research

1. Adaptive and Dynamic Security Solutions: There is a gap in the design of ML

models that can adapt effectively to new threats. Many current solutions are fixed

in their design, restricting them from independently improving or expanding their

knowledge base.

2. Comprehensive Benchmarks and Defined Datasets: The absence of defined

datasets and benchmarks for assessing hardware security solutions is a serious gap.

This makes it difficult to assess the success of various techniques and restricts the

creation of generally applicable solutions.

3. Adversarial Attack Resistance: The susceptibility of ML models to adversarial

attacks, particularly in a hardware security setting, is underexplored. There is a need

for research focusing on improving ML models that may withstand or rapidly recover

from attacks of this kind.

43

4. Integration of ML into Low-Power and Resource-Constrained Devices: Many

MLmodels need large computing resources, which creates a hurdle for their integration

into resource-constrained devices typical in hardware security applications.

5. Real-World Implementation Challenges: There is a gap between theoretical

ML models and their actual implementation in real-world hardware systems. Issues

such as environmental unpredictability, device wear and tear, and operational limits

are commonly disregarded in research.

- Opportunities for further investigation and innovation

1. Developing Self-Learning Systems: Creating ML models that can learn and

adapt in real-time to new threats has big potential. Such systems might autonomously

update their knowledge base, making them particularly effective against developing

hardware Trojans and other security threats.

2. Creation of Open-Access, High-Quality Datasets: There is a potential to

produce and distribute comprehensive datasets that represent the complexity of real-world

hardware security concerns. This would substantially assist in the training and testing

of more robust ML models.

3. Advancements in Adversarial Machine Learning: Exploring new strategies

for making ML models resistant to adversarial manipulation provides a road to more

secure applications. This involves developing innovative training approaches, defense

measures, and model designs.

4. Lightweight MLModels for Hardware Security: Implementing efficient, lightweight

ML models that can function on low-power and resource-constrained devices might

revolutionize the sector, making sophisticated security features available to a larger

variety of devices.

44

5. Bridging Theory and Reality: Focusing research efforts on the actual application

of ML models in hardware security, especially in the field testing and real-world

case simulations, will help bridge the gap between theory and reality. This involves

overcoming deployment issues, environmental adaptation, and long-term dependability.

By addressing these gaps, we have the potential to pave new paths in hardware

security. Each of these domains presents distinct problems, but also offers the possibility

of large benefits in terms of better security, dependability, and applicability of ML

models in defending against hardware risks. Collaboration across disciplines, including

machine learning, hardware engineering, and cybersecurity, will be key in moving

these developments forward.

45

3 Proposed Methodology

3.1 Detecting Hardware Trojans

3.1.1 Experimental Setup

This section outlines Experimental procedures and design approaches to identify

FPGAs utilizing advanced machine learning techniques. Considering the upward

trend of complexity and relevance of protecting integrated circuits from Malicious

modifications. Our study helps for the need for effective detection methodologies

introduced for identifying hardware Trojans that may be injected at any step of the

chip’s life cycle.

- Controlled Environment Setup: The experiment was conducted Under controlled

conditions to simulate real-world under which hardware Trojans might be triggered.

Specifically, FPGAs were chosen as the platform. widespread use and vulnerability

to Trojan attacks are the reason why we choose it. A set of unique hardware Trojans,

identified using Trust Hub benchmarks. These were injected into the FPGA boards to

analyze their properties and the effectiveness of the detection methods. This approach

helps for a precise assessment of Trojan behavior. Under controlled conditions, ensure

that the results are reliable and reproducible[56, 57].

- Quantitative approach: A quantitative approach was initiated to assess and

analyze the side-channel signals. Power and electromagnetic (EM) emissions are

considered to be very important. these range from emerging from the FPGA boards.This

46

method requires collecting a complete dataset of these signals. Various operational

conditions, including different Trojan states (disabled, enabled, and triggered) and

environmental characteristics (such as chip external temperature) are considered to

be essential for it. Machine learning algorithms were applied to the data set to make

a model capable of distinguishing between normal and abnormal signal patterns. this

is indicative of Trojan activity.

- Structure of Experiments :The experimental format was developed to capture a

broad spectrum of data points. this might be across many variables. These variables

include physical factors (power consumption and EM radiation), Trojan benchmarks

(12 different situations), Trojan-prone conditions (disabled, enabled, triggered), input

vector configurations, and chip external temperature of 25°C . Each experiment

involves collecting 10,000 time-series signals. these are under specified conditions,

synced with AES encryption cycles to imitate real-world operating scenarios. This

detailed data set collection was automated using an FPGA testbed. This contains a

test control program, oscilloscope, FPGA board, and temperature controller. The

automated setup ensured great precision and efficiency in data collection. This

was necessary for creating a successful machine learning model for hardware Trojan

detection.

- Rationale for the Approach: There are two motivations for selecting this

experimental setup. Firstly, it helps overcome the limitations of previous approaches.

such approaches typically rely on the existence of a ’golden chip’ for comparison. also

existing models provides less accuracy detect Trojans and sometimes remain inactive

throughout testing phases. Secondly, it makes use of machine learning to evaluate

data from the side channel. Presenting a viable route for finding irregularities of

Trojan activity is an important aspect to be considered. This methodology improves

detection capabilities. Moreover,it also adds to the development of dynamic models

47

Trojan Enabled

Trojan Triggered

Trojan Disabled

Un Trusted Chip Measure Side Channel Signal

ML Hardware Trojan
Detection ModelReal Time

Label Chip Trojan Enabled, Trojan
Triggered, Trojan Disabled

Figure 3.1: Proposed work for Hardware Trojan classification

that can adapt to new and developing Trojan threats over time.

The proposed work is more effective and reliable hardware Trojan detection tools.

Further analysis is done following Integrating a controlled environment configuration

with comprehensive quantitative analysis and machine learning algorithms. our goal

is to secure a deeper insight into features of hardware Trojan.this helps in developing

detection mechanisms. this gets Prepared to defend critical digital world against

these threats.

3.1.2 Data Collection

This section presents an in-depth review of the approaches applied for collecting

power side-channel signals from FPGA boards, essential for the identification of

hardware Trojans. The collection method is important for accruing a solid dataset

that allows the training and validation of our machine learning model

- Equipment and Measurement Techniques: The collection of side-channel signals

was accomplished utilizing a complete setup designed to capture power usage and

48

Figure 3.2: Power side-channel time-series signal for AES-2000 benchmark

electromagnetic emissions with great precision. The primary equipment includes:

- SAKURA-G FPGA boards: Selected for their reconfigurability and prevalence

in research, permitting a direct mapping of our findings to real-world applications.

- Oscilloscope: Employed for recording high-resolution power usage patterns

across time.

- Spectrum Analyzer: Used for measuring the electromagnetic emissions of the

FPGA boards. Temperature Controller: To simulate various operational conditions

and analyze their effects on the signals.

- Data collection frequency and duration: The approach to data collection was

meticulously outlined to ascertain extensive coverage of potential operational states.

Each FPGA board was tested under different conditions, with 10,000 time-series

signals collected for each scenario. This extended data acquisition technique ensured

a rich dataset, boosting the model’s capacity to generalize across varied conditions.

49

-Pre-processing steps Prior to analysis, the obtained raw data underwent multiple

pre-processing processes to enhance signal quality and relevance. These steps include:

- Noise Reduction: Filtering techniques were developed to decrease surrounding and

equipment-induced noise.

- Normalization: Ensure that signal amplitudes are within a comparable range

to enable analysis.

Feature extraction: Identifying and extracting key properties from time series

data to improve the performance of machine learning models.

- Selection and Variation of FPGA Boards : A diverse assortment of FPGA

boards was selected to ensure that the conclusions of the study are universally applicable.

The boards were chosen based on their employment in key applications, availability,

and variance in architectural features. This variability allowed for the assessment of

Trojans’ impact across diverse hardware setups.

- Expert Involvement: Experts in hardware security and FPGA design were

involved in the validation and annotation of the data set. The selection procedure

for these was centered on their published work and contributions to the area of

hardware security. Their knowledge was important in verifying the accuracy of

the data annotation and in providing insights into details of Trojan behaviors not

immediately apparent through automated analysis alone. through collection of data

and pre-processing efforts, together with expert validation, underlie the resilience of

our machine learning-based method to hardware Trojan identification. By encompassing

a wide range of operational contexts and applying a methodical approach, this effort

initiates a solid foundation for future advancements in assuring the security of integrated

circuits against hostile modifications.

50

3.1.3 Data Analysis

The method of detecting patterns in power consumption to identify the presence

of a Trojan comprises a detailed feature extraction step from the power consumption

data, instead of straightforwardly deploying specific machine learning methods. The

technique can be stated as follows, including features of machine learning methodology

suited to the context provided by the code:

Feature extraction: Since there is only one feature, there is a need for more

features that are related to obtaining a vast array of features from the power consumption

data. These traits encompass different domains:Time-Domain Features: Including

statistical measurements such as mean, median, standard deviation, skewness, and

kurtosis, among others. These features help to capture the basic and detailed patterns

within the power usage time series data.

Frequency-Domain Features: Using the Welch approach, features such as power

spectral density, weighted mean frequency, and frequency variances are extracted.

These features try to find distinctive signatures in the frequency components of the

power consumption data, which may be suggestive of aberrant behavior.

Wavelet-Domain Features: The application of the wavelet transform enables the

study of the power consumption signal at various scales, capturing both the frequency

and the coordinates. Features obtained from wavelet coefficients provide insights into

transient anomalies and non-linear patterns in the data.

Hypothetical Machine Learning Implementation: The next steps for anomaly

detection may logically include:

Data Preprocessing: Before training machine learning models, it is important to

preprocess the data. This may involve normalizing the characteristics. To ascertain

51

Figure 3.3: Various features used

that none of the factors disproportionately influences the model’s predictions.

Model Selection and Training: While the code does not define machine learning

models, based on the retrieved features, techniques such as random forest, support

vector machines (SVM), or neural networks could be applied for anomaly detection.

Training Process: The selected model would be trained on a subset of the dataset,

learning to distinguish between normal operating data and situations indicative of a

Trojan based on the collected features.

Model testing and validation:Testing Process: The trained model is then evaluated

on a distinct subset of the data (the test set) to evaluate its ability to accurately

categorize unseen cases.

Cross-Validation: Employing techniques like k-fold cross-validation could further

evaluate the model’s performance across multiple subsets of the data.[58, 59, 60]

Performance Evaluation Metrics:The performance of the anomaly detection model

can be evaluated using numerous metrics, including: Accuracy: the ratio of accurately

52

m
ea

n

st
an

da
rd

_d
ev

ia
tio

n

sk
ew

ne
ss

ku
rt

os
is

m
ea

n_
ab

s_
ch

an
ge

m
ea

n_
ch

an
ge

sp
ec

tr
al

_c
en

tr
oi

d

sp
ec

tr
al

_s
pr

ea
d

w
av

el
et

_e
nt

ro
py

w
av

el
et

_v
ar

ia
nc

e

mean

standard_deviation

skewness

kurtosis

mean_abs_change

mean_change

spectral_centroid

spectral_spread

wavelet_entropy

wavelet_variance

1.00 0.01 0.05 -0.01 0.04 0.01 -0.00 0.01 -1.00 0.01

0.01 1.00 0.00 0.11 0.28 -0.01 -0.07 -0.06 -0.05 1.00

0.05 0.00 1.00 -0.72 -0.05 0.01 -0.25 -0.15 -0.05 0.00

-0.01 0.11 -0.72 1.00 0.07 0.01 0.23 0.12 0.00 0.11

0.04 0.28 -0.05 0.07 1.00 -0.02 0.26 0.26 -0.06 0.28

0.01 -0.01 0.01 0.01 -0.02 1.00 -0.03 -0.03 -0.02 -0.02

-0.00 -0.07 -0.25 0.23 0.26 -0.03 1.00 0.96 0.01 -0.06

0.01 -0.06 -0.15 0.12 0.26 -0.03 0.96 1.00 0.00 -0.05

-1.00 -0.05 -0.05 0.00 -0.06 -0.02 0.01 0.00 1.00 -0.05

0.01 1.00 0.00 0.11 0.28 -0.02 -0.06 -0.05 -0.05 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 3.4: Correlation Matrix of features

predicted observations to the total observations, offering a basic measure of the

model’s performance.Precision, Recall (Sensitivity), and F1-Score: precision assesses

the model’s accuracy in forecasting anomalies; recall measures the model’s capacity to

detect all actual abnormalities; and the F1-Score provides a balance between precision

and recall.

Confusion Matrix: Offers deep insights into true positives, false positives, true

negatives, and false negatives, giving a sophisticated knowledge of model correctness.

This comprises model training and testing, followed by performance evaluation utilizing

multiple metrics to detect the existence of a Trojan successfully. [58]

53

3.1.4 Proposed Model

This model utilizes power consumption analysis to detect hardware Trojans,

incorporating a wide range of features derived from time, frequency, and wavelet

domains, as well as employing innovative dataset and preparation techniques. The

following is a summary of the model. The model associate power consumption data

obtained under various scenarios (Trojan deactivated, enabled, and triggered) from

FPGA boards. This illustrates a comprehensive and systematic method for achieving

and accelerating datasets that reflect different operational states of the hardware. The

initial steps involve importing relevant libraries and suppressing warnings to speed up

and expedite the data analysis process. Subsequently, data from numerous CSV files,

which depict and represent different experimental situations, are combined, resulting

in a comprehensive dataset for extracting features.

Then the process involves feature extraction, which are based on time, frequency,

and wavelet domain features. We have extracted many features from these features.The

feature collection sets a good starting point for applying multiple ML methods for

Trojan detection. Our best model includes their interpretability and potential to

manage with non-linear relationships. The performance of the model is evaluated

using accuracy, precision, recall, and the F1 score. Additionally, confusion matrices

show the model’s ability to identify various states accurately.

This model, with feature extraction and use of machine learning algorithms

is very important to detect hardware Trojans through power usage analysis. The

extended feature set, including time, frequency, and wavelet domains, ensures the

power consumption patterns,leading to high detection accuracy of hardware Trojans[61,

62]. The following are the best machine learning models that give highest accuracy :

- Random forest classifier: This proposed model plays an important role in

54

the prediction of classification of hardware Trojan’s. In this proposed model, after

pre-processing, scaling, and splitting the dataset and refining the input values were

implemented. Then the random forest classifier is applied to the training data. RFC

has different types of decision trees. each decision trees has a different vote. the class

that has the maximum number of votes for the given input gets the best prediction of

the model. The number of trees in the voting for a provided class can be considered

as the confidence for its prediction.

To improve the Performance of the model, the above selected features were

undergone through experiment that shows the presence of Trojan and can improve the

detection capability.The improvement in selecting important features over time was

directed by the feature significance scores of the model. updating hyperparameters

plays an important role in this model.This includes the number of decison trees

nestimators, the maximum depth of treesmax depth, and the minimum samples required

to split an internal node min samples split. Finally , the better accuracy is obtained

by optimising the above parameters to get fit with the unique features of the hardware

Trojan dataset.

- Deep Neural network : Another best model that provides an improvement

in performance is the deep neural network (DNN). The framework of the model is

designed using Keras with TensorFlow.The basic structure consists of various densely

linked layers with rectified linear unit (ReLU) activation functions. This is followed

by the layer known as softmax output layer for classification. The compilation of the

model is done by Adam optimizer along with categorical cross entropy loss function.

This gives the improvement in the best accuracy of the performance. likewise the

other models, first of all the input features are standardized by using StandardScaler.

then it follows the training process. after the completion of training on the selected

dataset for 100 epochs is kept for further future use. Finally, the overall performance

55

of the classification is shown by using accuracy, the confusion matrix.

3.2 Securing Hardware Authentication

3.2.1 Dataset Preparation

The dataset is based on 64-stage Arbiter PUF.It consists of 12000 challenge

response pairs (CRPs). where each CRP consists of a 64-bit challenge (columns 1-64)

and a binary response (column 65), where the response indicates the PUF’s response

to the provided challenge.

For further analysis, the data set is divided into training and testing. the size

of dataset were categorised into 2000,6000 and 10,000 samples. The samples were

chosen randomly so that our findings are applicable anywhere. the remaining samples

were considered for testing and prediction.the dataset consists of 1200 CRPs from a

64-stage Arbiter PUFs and are loaded into Pandas Data frame.[63].This initial step

is very important for preprocessing and further analysis are based on loaded and

formatted data.

For machine learning process, standardization is an essential step that deals with

preprocessing. Describes the necessary features that vary in terms of size, range, and

units. binary values (1 or 0) are challenge bits in our dataset. While they are uniform

in scale, standardizing these features indicates that one and all have equal chances to

affect the model’s learning process.to obtain mean of 0 and standard deviation of 1,

the StandardScaler from scikit-learn can be applied. This technique helps to mitigate

imbalances towards features with higher variance and makes sure that the model’s

performance is not affected by the size of features in the dataset[40].

This involves creating new features from the existing features and are considered

to be the creative part of machine learning model that improves performance of the

56

model.this study consists of novel approach of using XOR operations in between

pairs of the original 64-bit challenge features. The XOR technique was chosen for its

ability to take non-linear interactions between challenge bits. moreover, it helps in

providing new features that represent whether the paired bits vary. This strategy is

particularly informative for our dataset, as it simulates some features of how Arbiter

PUFs analyze challenges, potentially knowing patterns that are not immediately seen

with the original features alone.

The introduction of XOR-based features were expected to improve the dataset

by giving additional information that could be useful for the ML model in capturing

the complex, nonlinear interactions in the challenge-response behavior of PUFs. This

feature engineering process not only serves to improve the prediction performance of

the model but also offers a deeper insight into the nature of the data and the general

operation of Arbiter PUFs.

With the help of standardization and feature engineering, a change was made

to the dataset aimed at optimizing the machine learning model’s capacity to learn and

predict reliably. The preparation methods are crucial for addressing the high-dimensional,

binary feature of the PUF dataset and establishing a reliable groundwork for the

initiation of RFC and potentially other machine learning models. The rigorous

preparation and preprocessing of the data reflect the methodological rigor of the

project and the strategic approach to overcome the obstacles posed by predicting the

behavior of Arbiter PUFs.

3.2.2 Data Collection

Generating CRPs from Arbiter PUFs and the subsequent usage of these datasets

in machine learning models for both attacking and defensive scenarios constitute

an important area of research in hardware security. This section deals with the

57

mechanisms involved in generating CRPs from Arbiter PUFs and how these datasets

assist in the creation of resilient machine learning models aimed at understanding,

attacking, and defending PUF-based systems.

- Generating CRPs from Arbiter PUFs Arbiter PUFs function on the basis of race

situations in electrical circuits. They consist of a sequence of switchable pathways

that lead to an arbitrator choosing the ultimate output based on which path signal

arrives first.

1. Challenge generation: Challenges to an Arbiter PUF are generated by defining

the states (0 or 1) of the switches in the PUF’s path. In a 64-stage Arbiter PUF,

a challenge is a 64-bit binary bit where each bit reflects the status of one stage or

switch in the PUF.

2. Response generation: Following the introduction of a challenge, the PUF

processes is the internal arrangement of switches and delays, resulting in a race

condition that leads to a binary response. This response is highly sensitive to the

particular physical features of the PUF, making it difficult to predict responses

without physical access to the device.

3. Pairing and Storage: The challenge and its response are paired together as

a CRP. Collecting a number of these CRPs produces a dataset that captures the

behavior of the individual Arbiter PUF under varied challenge conditions.

- Use of CRP Datasets in Machine Learning Models : with the application of

ML algorithms CRP datasets can predict the basic patterns of Arbiter PUFs for both

attack and defense techniques in hardware security situations.

In attack part, the goal is to build a predictive model that can accurately predict

the responses of unknown challenges. By training the samples of the above CRPs,ML

58

algorithms learn the unique challenge-response behavior of PUF.

In this context, success is achieved by creating a model that can operates as a

duplicate copy of the PUF and resulting with the security framework of the PUF by

allowing unauthorized access to protected areas by security measures

In defense deals with changes the predictability and robustness of PUF responses.

Machine learning models are used to detect the patterns in the PUF’s responses that

could be exploited by attackers. This research assists in building more complicated

PUF frameworks or in developing anomaly detection systems that can determine when

a PUF’s response pattern differs from the expected behavior, indicating a potential

attack.

The training approach deals with dividing the collected CRP data set into

training and testing samples. The training set is made to provide necessary instruction

to the machine learning model about the PUF’s challenge-response behavior, while

the testing set is built to test the model’s accuracy and unseen data.

1. Model Training: The training phase modifies the model parameters to minimize

the differences between the expected and actual responses in the training set. This

step might include techniques like cross-validation to defend against overfitting and

make sure the model remains capable for various applications.

2. Model Evaluation: After training, the model’s performance gets evaluated

using the testing set. indicators, such as accuracy, precision, recall, and F1 score,

evaluate the model’s efficacy in predicting responses. High accuracy in this phase

suggests a successful attack model or a robust defense mechanism, depending on the

scenario.

By applying the above dataset and machine learning approaches, it can help to

59

improve the security and dependability of Arbiter PUFs. The interplay between the

building of complex PUF designs and machine learning-based attacks or countermeasures

defines the dynamic nature of the study in hardware security[10].

3.2.3 Data Analysis Methods

This section addresses the methodology for assessing the dataset, the logic behind

the chosen approaches, and how these methods contribute to gaining insight into the

dataset’s underlying patterns and behaviors.

-Preprocessing and Feature Engineering: The analysis begins by loading the

dataset using Pandas, an initiative that prepares the way for subsequent data manipulation

and analysis. To identify the importance of feature scaling in machine learning,

the ‘StandardScaler‘ was applied to normalize the feature collection, removing the

response variable. This normalization maintains a balanced representation of all

features in the investigation, minimizing the possible influence of differing scales

among the features.

A novel part of our research is the insertion of interaction features using logical

XOR operations between pairs of original challenge bits. This feature engineering

stage is inspired by the concept that interactions between specific bits may reveal

complicated patterns that a linear model could overlook. By altering the dataset to

include these interaction terms, the study tries to capture the non-linear correlations

that might be essential in forecasting the PUF responses accurately[64].

-Training and evaluation of machine learning models: implementation of a machine

learning model like a Random Forest Classifier, a choice inspired by its adaptability

and robustness in processing complicated, high-dimensional data. The model was

trained on scaled features, including the newly constructed XOR interaction characteristics,

60

Figure 3.5: Confusion matrix for Random Forest Classifier

and tested for its accuracy in predicting responses to unseen challenges. The methodology

includes separating the dataset into training and testing sets with changing ratios,

reflecting a rigorous approach to understanding the model’s performance across diverse

training settings. ‘GridSearchCV‘ for hyperparameter tuning embodies a thorough

search for the ideal model configuration, employing cross-validation to boost the

model’s generalizability.

-Visualization and Descriptive Statistics: Visualization plays a significant role in

our approach, with distribution plots of the response variable providing insights on

the dataset’s balance. Such representations help contextualize the model performance

measures by emphasizing potential biases or unevenness in the data set. Moreover,

the application of descriptive statistics delivers a quantitative overview of the data’s

features. This stage is critical for finding any outliers or anomalies that can influence

the model’s learning process and for ensuring that the dataset is well understood

before stepping into predictive modeling.

The data analysis approaches discussed here, from preprocessing to feature engineering

and the application of machine learning models, are aimed at carefully analyzing the

61

Figure 3.6: Confusion matrix for Deep Neural Network

dataset’s patterns. The integration of visualization and statistical analysis significantly

improves the comprehension of the dataset, ensuring a holistic approach to exposing

the intricacies of Arbiter PUF behavior. Through these methodologies, the study not

only intends to reliably forecast PUF reactions but also to contribute to a broader

understanding of hardware security in the context of PUF technologies.

3.2.4 Proposed work

In the proposed work, this study focus on attack and defense mechanisms using

machine learning models.we used various ML learning models for the prediction. RFC

gives the best accuracy of all in the attack part.The attack component deals with

creating interaction features through the logical XOR operation in between pairs

of original features. This step is designed to complex and non-linear relationships

that might enhance the model’s predictive accuracy, especially in scenarios where

interactions between features significantly impact the response variable.

The defense part starts with the conversion of all column names to strings. this

is done to avoid compatibility issues. this helps in ensuring the model’s resilience
62

against potential future warnings and errors.

Moreover, Gaussian noise is added to the response variable. this helps in simulating

real-world where data may come with inherent noise.Preparing the model to handle

such uncertainties are very important. This algorithm contains uniform noise into

response data for robustness. It also performs a binary distribution evaluation across

the first 64 columns to get an idea about imbalances.It also performs by calculating

the mean of the relative differences in distribution and providing the overall balance

of the dataset. It analyzes the counts of binary responses (1s and 0s) in a particular

column to assess data balance.with the help of total counts, the absolute difference

between the counts and calculating the difference in terms of percentage, it helps to

understand the overall potential bias.

63

4 RESULTS AND DISCUSSION

The pursuit of robust cybersecurity protocols is connected to innovation and

exploitation. Within this thesis, our analysis has explored the benefits of improved

detection mechanisms for hardware Trojans and the reinforcement of hardware authentication

mechanisms against machine learning-based attacks. Assessing research queries, the

goal was to prove that advanced detection methods can mitigate hardware Trojan

risks. Additionally, to ascertain that strengthening the defense of Arbiter PUFs

would make them less vulnerable to predictive machine learning attacks, The following

sections provide a detailed analysis of empirical data, focusing on power side-channel

signals for the purpose of hardware Trojan identification, as well as data on the

interaction between machine learning and Arbiter PUFs.

The study of the hardware trojan from the comprehensive dataset of power

side-channel signal analysis provides a good classification and advances in identifying

Trojans. The graphical illustration below shows the raw data and its processed form,

respectively, indicating fluctuations in power consumption that could indicate Trojan

activity. Additionally, using machine learning methods and analyzing the comparative

performance of each model Descriptive statistics offer a brief summary, with the mean

power consumption for Trojan-infected devices being much greater than their clean

counterparts, with a highlighted standard deviation that highlights the deceptive

qualities of these Trojans. Additionally, the range of power fluctuation in infected

circuits extends above the expected norms, which further corroborates our detection

assumption.

64

Interpreting the data as part of hardware Trojan detection reveals significant

findings. The results clearly demonstrate that our proposed machine learning models

excel at identifying subtle variances in power signatures indicative of a Trojan’s

presence. The performance metrics described below show a graphical representation

that reveals a high accuracy rate in Trojan classification, surpassing the benchmarks

set by traditional methods. Notably, random forest classification and deep neural

networks demonstrated remarkable precision, thus confirming the potential of these

models to significantly enhance hardware security measures. These findings not only

support our hypotheses but also lay the groundwork for more nuanced and advanced

detection techniques that may preempt the ever-evolving threats posed by hardware

Trojans.

Machine Learning Model Precision Recall F1 Score Accuracy
KNN 58% 57% 57% 57%
Logistic Regression 43% 44% 43% 44%
Random Forest Classifier 97% 97% 97% 97%
Gradient Boosting Classifier 46% 47% 46% 47%
Ada Boost 42% 42% 42% 42%
SVM 53% 53% 53% 53%
Deep Neural Network 90% 90% 90% 90%

Table 4.1: AES-T400 Performance Metrics for Machine Learning Models at 25°C

Machine Learning Model Precision Recall F1 Score Accuracy
KNN 81% 81% 81% 81%
Logistic Regression 76% 75% 75% 75%
Random Forest Classifier 99% 99% 99% 99%
Gradient Boosting Classifier 76% 76% 76% 75%
Ada Boost 72% 71% 71% 71%
SVM 76% 75% 75% 75%
Deep Neural Network 95% 95% 95% 95%

Table 4.2: AES-T500 Performance Metrics for Machine Learning Models at 25°C

Our analysis begins with a thorough examination of the challenge-response pairs

(CRPs) data. Each CRP represents a unique interaction with the 64-stage arbiter

PUF, a critical component in hardware security. We visualized the distribution
65

Machine Learning Model Precision Recall F1 Score Accuracy
KNN 60% 59% 59% 59%
Logistic Regression 54% 54% 53% 54%
Random Forest Classifier 98% 98% 98% 98%
Gradient Boosting Classifier 55% 55% 55% 55%
Ada Boost 52% 51% 51% 51%
SVM 62% 62% 62% 62%
Deep Neural Network 95% 95% 95% 95%

Table 4.3: AES-T600 Performance Metrics for Machine Learning Models at 25°C

Machine Learning Model Precision Recall F1 Score Accuracy
KNN 82% 82% 82% 82%
Logistic Regression 73% 73% 73% 73%
Random Forest Classifier 99% 99% 99% 99%
Gradient Boosting Classifier 75% 75% 75% 75%
Ada Boost 67% 67% 65% 67%
SVM 73% 73% 73% 73%
Deep Neural Network 82% 82% 82% 82%

Table 4.4: AES-T700 Performance Metrics for Machine Learning Models at 25°C

Machine Learning Model Precision Recall F1 Score Accuracy
KNN 100% 100% 100% 100%
Logistic Regression 100% 100% 100% 100%
Random Forest Classifier 100% 100% 100% 100%
Gradient Boosting Classifier 100% 100% 100% 100%
Ada Boost 100% 100% 100% 100%
SVM 100% 100% 100% 100%
Deep Neural Network 100% 100% 100% 100%

Table 4.5: AES-T800 Performance Metrics for Machine Learning Models at 25°C

Machine Learning Model Precision Recall F1 Score Accuracy
KNN 66% 66% 66% 66%
Logistic Regression 59% 60% 59% 60%
Random Forest Classifier 98% 98% 98% 98%
Gradient Boosting Classifier 59% 60% 59% 60%
Ada Boost 56% 57% 56% 57%
SVM 63% 64% 63% 64%
Deep Neural Network 95% 95% 95% 95%

Table 4.6: AES-T1000 Performance Metrics for Machine Learning Models at 25°C

66

Machine Learning Model Precision Recall F1 Score Accuracy
KNN 59% 58% 58% 58%
Logistic Regression 52% 53% 53% 53%
Random Forest Classifier 98% 98% 98% 98%
Gradient Boosting Classifier 52% 53% 52% 53%
Ada Boost 50% 51% 50% 51%
SVM 57% 57% 57% 57%
Deep Neural Network 93% 93% 93% 93%

Table 4.7: AES-T1100 Performance Metrics for Machine Learning Models at 25°C

Machine Learning Model Precision Recall F1 Score Accuracy
KNN 83% 84% 83% 83%
Logistic Regression 90% 90% 90% 90%
Random Forest Classifier 99% 99% 99% 99%
Gradient Boosting Classifier 89% 89% 89% 89%
Ada Boost 84% 80% 79% 80%
SVM 90% 90% 90% 90%
Deep Neural Network 99% 99% 99% 99%

Table 4.8: AES-T1300 Performance Metrics for Machine Learning Models at 25°C

Machine Learning Model Precision Recall F1 Score Accuracy
KNN 59% 58% 58% 58%
Logistic Regression 45% 46% 45% 46%
Random Forest Classifier 98% 98% 98% 98%
Gradient Boosting Classifier 50% 50% 50% 50%
Ada Boost 43% 43% 43% 43%
SVM 57% 57% 57% 57%
Deep Neural Network 93% 93% 93% 93%

Table 4.9: AES-T1400 Performance Metrics for Machine Learning Models at 25°C

Machine Learning Model Precision Recall F1 Score Accuracy
KNN 59% 57% 58% 57%
Logistic Regression 41% 42% 41% 42%
Random Forest Classifier 98% 98% 98% 98%
Gradient Boosting Classifier 44% 44% 43% 44%
Ada Boost 40% 40% 40% 40%
SVM 51% 51% 51% 51%
Deep Neural Network 90% 90% 90% 90%

Table 4.10: AES-T1600 Performance Metrics for Machine Learning Models at 25°C

67

Machine Learning Model Precision Recall F1 Score Accuracy
KNN 58% 57% 57% 57%
Logistic Regression 48% 48% 48% 48%
Random Forest Classifier 98% 98% 98% 98%
Gradient Boosting Classifier 50% 50% 50% 50%
Ada Boost 46% 46% 46% 46%
SVM 57% 57% 57% 57%
Deep Neural Network 93% 93% 93% 93%

Table 4.11: AES-T1800 Performance Metrics for Machine Learning Models at 25°C

Machine Learning Model Precision Recall F1 Score Accuracy
KNN 59% 58% 58% 58%
Logistic Regression 48% 48% 48% 48%
Random Forest Classifier 97% 97% 97% 97%
Gradient Boosting Classifier 52% 52% 52% 52%
Ada Boost 48% 47% 47% 47%
SVM 60% 60% 60% 60%
Deep Neural Network 93% 93% 93% 93%

Table 4.12: AES-T2000 Performance Metrics for Machine Learning Models at 25C

Table 4.13: Comparison with Previous Work

Model Previous Work Deep Neural Network RFC
AES-T400 89.77% 90% 97%
AES-T500 98% 95% 99%
AES-T600 93.98% 95% 98%
AES-T700 100% 82% 99%
AES-T800 100% 100% 100%
AES-T1000 71.35% 95% 98%
AES-T1100 77.61% 93% 99%
AES-T1300 100% 99% 99%
AES-T1400 85.39% 93% 98%
AES-T1600 75.90% 90% 98%
AES-T1800 93.45% 93% 98%
AES-T2000 92.98% 93% 97%
Average 89.86% 93.16% 98.33%

and variety of the CRPs using heatmaps and dimensionality reduction techniques,

providing an intuitive understanding of the dataset’s complexity. We employed

various machine learning models to assess their effectiveness in both attacking and

securing the Arbiter PUFs. The models included Logistic Regression, K-Nearest
68

Figure 4.1: Comparison with previous work

Neighbors, Naive Bayes, Gradient Boosting, and notably, the Random Forest Classifier.

The performance of these models was illustrated through detailed tables and bar

charts, comparing the accuracy scores across different training set sizes.

The effectiveness of these strategies was graphically depicted, allowing us to

identify which models performed best in compromising the PUFs and which were

most effective in defending against attacks. It was observed that the accuracy of

machine learning models fluctuated with the size of the training set, revealing the

nuanced relationship between training data volume and model performance.

Comprehensive tables provided a clear comparison of performance metrics. For

instance, the Random Forest Classifier illustrated a notable increase in effectiveness

in the defense scenario with smaller training sets, an insight that could influence how

we approach the training phase of security models.

The analysis revealed that certain machine learning models could predict PUF

responses with higher accuracy, thereby posing a threat to the PUF’s security. For

example, the Random Forest Classifier achieved high success rates, suggesting that

69

PUF designs must be resilient against sophisticated ensemble methods.

Conversely, the defense strategies employed by the same models, especially with

smaller training sets, indicated a promising direction for safeguarding PUFs. These

strategies managed to reduce the effectiveness of simulated attacks, enhancing the

PUF’s robustness. Our findings contribute to the ongoing discourse on PUF vulnerabilities

and defenses. They underline the necessity for adaptive and dynamic PUF designs

capable of withstanding machine learning-based attacks. We also considered the

current literature on PUF security, ensuring our research aligns with and contributes

to the established body of knowledge. The project unearthed several pivotal insights,

such as the inverse relationship between training set size and defense accuracy in

certain contexts. These discoveries were substantiated by appropriate statistical

analyses, strengthening the credibility of our conclusions. PUFs present a novel

approach to hardware authentication, their susceptibility to machine learning attacks

necessitates continuous refinement of their design and the defense mechanisms protecting

them. Our study sets the stage for future research into more resilient PUF architectures

and sophisticated defense algorithms.

The synthesis of results from the two pivotal projects reveals a complex narrative

of hardware security in the modern landscape. On one hand, the project on hardware

Trojans unveiled a crucial trend: the Random Forest Classifier and Deep Neural

Network models emerged as powerful tools, surpassing traditional methods in detecting

minute fluctuations in power signatures. On the other hand, the Arbiter PUFs project

highlighted the susceptibility of seemingly robust security measures to sophisticated

machine learning attacks, with the same Random Forest model proving to be a

double-edged sword—adept at both attacking and defending.

The commonality across both projects lies in the profound impact of machine

learning. It serves as a versatile weapon, capable of both undermining and reinforcing

70

Figure 4.2: Attack on arbiter PUF

Figure 4.3: Comparison of attack and Defence on arbiter PUF

71

hardware security. The results suggest an intricate balance in the broader field of

hardware security, where the tools developed for protection can also be harnessed for

breach, thereby driving a constant need for innovation.

Integrating these results with the theoretical framework discussed earlier, it

becomes evident that while the technology holds immense potential for security

advancements, it also requires cautious and deliberate application to prevent and

counteract threats. The practical implications resonate with the literature that

advocates for dynamic and adaptive security measures to stay ahead in this perpetual

game of innovation versus exploitation.

exploration into hardware Trojans demonstrated that advanced machine learning

techniques could detect subtle signs of compromise with high accuracy, validating

our hypothesis and contributing to a more secure digital environment. Meanwhile,

examination of Arbiter PUFs shed light on the vulnerability of these devices to

machine learning-based attacks, urging a re-evaluation of their role in cryptographic

security.

These findings not only affirm the hypotheses posited at the thesis’s outset but

also paint a multifaceted picture of machine learning’s role in hardware security—a

tool for both fortification and infiltration. As we transition to the subsequent chapter,

we will contextualize these findings within the existing body of knowledge. The

implications for the field are substantial, as they call for a continuous cycle of reinforcement

and evaluation of cybersecurity measures in the face of advanced technological threats

and capabilities.

72

5 CONCLUSION AND FUTURE WORK

This study has addressed the emergent challenges within the realm of hardware

security by several orders of magnitude.It also has focused on Improvement in the

detection of hardware Trojans and the vulnerabilities of Arbiter PUFs to machine

learning attacks. RFC and Deep neural networks show better results for the identification

of hardware Trojan. Meanwhile, these models additionally present an unusual risk to

the security of Arbiter PUFs, since they have the capacity to decrypt and replicate

PUF responses.

The results show the importance of maintaining accuracy while implementing ML

techniques in the realm of hardware security. Although these techniques provide a

significant enhancement in the identification and mitigation of security, it is important

to understand the possibility of their exploitative practices. The inherent duality of

these technologies that serves as both a protective barrier and an effective tool in the

realm of cybersecurity has been clearly demonstrated. Based on our findings from this

study, it is suggested that future research efforts should focus on various important

domains to advance the domain of hardware security.

-Advanced PUF frameworks: Researchers in the future should focus on the design

of complex PUF frameworks which are resistant to machine learning-based modeling.

The study of innovative PUF designs might involve the use of random processes that

are more unpredictable resulting to be more secure.

-Dynamic and Adaptive Security Protocols: The creation of dynamic security

73

measures are able to react constantly to the changing nature of attacks. Machine

learning models that continuously evolve and modify their parameters in real-time

might prove to be more effective in identifying complex and adaptive hardware Trojans.

-Techniques Against ML Attacks: Efforts should be given towards development

of improved defenses that can protect from machine learning attacks. This could

involve the application of adversarial machine learning to generate PUF responses

that are more unpredictable and more challenging to replicate.

-Legal and Ethical Guidelines: With the development of ML applications in the

field of cybersecurity, there is also a need for robust legal and ethical guidelines to

control the use and misuse of these advanced tools.

-Cross-Disciplinary Collaborations: Addressing the gap amongst hardware design,

cybersecurity, and artificial intelligence through cross-disciplinary collaborations might

encourage the development of new security solutions that take advantage of each

domain.

To address these important domains, the field could evolve towards the manufacturing

of hardware parts and structures which are not just secure by design but also resistant

against the continuously evolving wide range of cyber-attacks. Through such focused

and innovative studies, we might aim to establish a digital community that is safe,

reliable, and trustworthy.

74

6 Appendix

6.1 Source code

This section deals with the necessary codes used in the study of hardware Trojan

detection and authentication using ML assisted models.the dataset used for the

hardware trojan detection is taken from the source: https://ieee-dataport.org/open-

access/hardware-trojan-power-em-side-channel-dataset [65, 56].

6.2 Codes for the Design of ML models

Selection of feature plays vital role in the overall processing of the dataset.the

more the features,the better results we can get.The following code deals with the

feature selection for the overall process.

6.2.1 Feature Engineering

import pywt

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from scipy.stats import skew, kurtosis

from scipy.signal import welch

from scipy.signal import welch, find_peaks,

75

peak_prominences, peak_widths

from scipy.stats import entropy

import scipy

from scipy import stats

import warnings

Suppress all warnings

warnings.filterwarnings("ignore")

6.2.2 Imbalanced Data Handling

def calculate_features(array, sampling_rate=1):

Time-Domain Features

time_features = {

’sum_values’: np.sum(array),

’abs_energy’: np.sum(np.abs(array)),

’mean_abs_change’: np.mean(np.abs(np.diff(array))),

’mean_change’: np.mean(np.diff(array)),

’mean_second_derivative_central’:

np.mean(np.diff(np.diff(array))),

’median’: np.median(array),

’mean’: np.mean(array),

’standard_deviation’: np.std(array),

’variation_coefficient’: np.std(array) / np.mean(array),

’skewness’: skew(array),

’kurtosis’: kurtosis(array),
76

’absolute_sum_of_changes’:

np.sum(np.abs(np.diff(array))),

’longest_strike_below_mean’:

max(np.where(array < np.mean(array))[0],

default=0),

’longest_strike_above_mean’:

max(np.where(array > np.mean(array))[0],

default=0),

’count_above_mean’: np.sum(array > np.mean(array)),

’count_below_mean’: np.sum(array < np.mean(array)),

’last_location_of_maximum’:

len(array) - np.argmax(array[::-1]) - 1,

’first_location_of_maximum’: np.argmax(array),

’last_location_of_minimum’:

len(array) - np.argmin(array[::-1]) - 1,

’first_location_of_minimum’: np.argmin(array),

’percentage_of_reoccurring_datapoints_to_all_datapoints’:

np.sum(array[1:] == array[:-1]) / len(array),

’percentage_of_reoccurring_values_to_all_values’:

np.sum(array[1:] == array[:-1]) / len(array),

’sum_of_reoccurring_values’:

np.sum(array[:-1][array[:-1] == array[1:]]),

’sum_of_reoccurring_data_points’:

np.sum(array[1:] == array[:-1]),

’ratio_value_number_to_time_series_length’:

np.sum(array != 0) / len(array),

’maximum’: np.max(array),

77

’minimum’: np.min(array),

’Range’: np.max(array) - np.min(array),

’Interquartile Range (IQR)’:

np.percentile(array, 75) - np.percentile(array, 25),

’Mean Absolute Deviation (MAD)’:

np.mean(np.abs(array - np.mean(array))),

’Coefficient of Variation’:

np.std(array) / np.mean(array),

’Root Mean Square’:

np.sqrt(np.mean(np.square(array))),

’Signal Magnitude Area’:

np.sum(np.abs(array) / len(array)),

’Sum of Squares’: np.sum(np.square(array)),

’Entropy’: entropy(array),

’Energy’: np.sum(np.square(array)) / len(array),

’Root Mean Square of Successive Differences’:

np.sqrt(np.mean(np.square(np.diff(array)))),

’Maximum Absolute Value’: np.max(np.abs(array)),

’Minimum Absolute Value’: np.min(np.abs(array)),

’Mean of Absolute Values’: np.mean(np.abs(array)),

’Variance of Absolute Values’: np.var(np.abs(array)),

’Standard Deviation of Absolute Values’:

np.std(np.abs(array)),

78

’Number of Crossings (above mean)’:

np.sum((array[:-1] < np.mean(array))

& (array[1:] >= np.mean(array))),

’Number of Crossings (below mean)’: np.sum((array[:-1] >

np.mean(array)) & (array[1:] <= np.mean(array))),

’Mean of Positive Values’: np.mean(array[array > 0]),

’Mean of Negative Values’: np.mean(array[array < 0]),

’Number of Positive Values’: np.sum(array > 0),

’Number of Negative Values’: np.sum(array < 0),

’Percentage of Positive Values’: np.mean(array > 0),

’Percentage of Negative Values’: np.mean(array < 0),

’Sum of Positive Values’: np.sum(array[array > 0]),

’Sum of Negative Values’: np.sum(array[array < 0]),

’Ratio of Positive to Negative Sums’:

np.sum(array[array > 0]) / np.sum(array[array < 0]),

’Crest Factor’: np.max(np.abs(array)) /

np.sqrt(np.mean(np.square(array))),

’Shape Factor’: np.sqrt(np.mean(np.square(array))) /

np.mean(np.abs(array)),

’Impulse Factor’:

np.max(np.abs(array)) /

np.mean(np.abs(array)),

’Autocorrelation’:

np.correlate(array,

array, mode=’full’)[len(array)-1],

’Zero Crossing Rate’: np.mean(np.diff(array > 0)),

’Mean Square’: np.mean(np.square(array)),

79

’Geometric Mean’: scipy.stats.gmean(array),

’Harmonic Mean’: 1 / np.mean(1 /

(np.abs(array) + 1e-9)),

’Trimmed Mean’: scipy.stats.trim_mean(array,

proportiontocut=0.1),

’Sum of Exponential Values’: np.sum(np.exp(array)),

’Exponential Mean’: np.mean(np.exp(array)),

’Mean of Logarithmic Values’:

np.mean(np.log(array))+ 1e-10,

’Sum of Logarithmic Values’:

np.sum(np.log(array))+ 1e-10,

’Covariance’: np.cov(array),

’Correlation Coefficient’: np.corrcoef(array),

’Maximum Slope’: np.max(np.diff(array)),

’Minimum Slope’: np.min(np.diff(array)),

’Mean Slope’: np.mean(np.diff(array)),

’Variance of Slope’: np.var(np.diff(array)),

’Standard Deviation of Slope’:

np.std(np.diff(array)),

’Sum of Absolute Differences’:

np.sum(np.abs(np.diff(array))),

’Entropy of Differences’:

entropy(np.diff(array)),

’Sum of Squares of Differences’:

np.sum(np.square(np.diff(array))),

’Zero-crossing Density’:

np.sum(np.diff(array > 0)) /len(array),

80

’Mean of Positive Differences’:

np.mean(np.diff(array)[np.diff(array) > 0]),

’Mean of Negative Differences’:

np.mean(np.diff(array)[np.diff(array) < 0]),

’Ratio of Mean Positive to Negative Differences’:

np.mean(np.diff(array)[np.diff(array) > 0]) /

np.mean(np.diff(array)[np.diff(array) < 0]),

’Sum of Positive Differences’: np.sum(np.diff(array)

[np.diff(array) > 0]),

’Sum of Negative Differences’: np.sum(np.diff(array)

[np.diff(array) < 0]),

’Standard Deviation of Positive Differences’:

np.std(np.diff(array)[np.diff(array) > 0]),

’Standard Deviation of Negative Differences’:

np.std(np.diff(array)[np.diff(array) < 0]),

’Variance of Positive Differences’: np.var(np.diff(array

[np.diff(array) > 0]),

’Variance of Negative Differences’: np.var(np.diff(array)

[np.diff(array) < 0]),

’Peak-to-Mean Distance’: np.max(array) - np.mean(array),

’Mean-to-Valley Distance’: np.mean(array) - np.min(array),

’Normalized Total Variation’:

np.sum(np.abs(np.diff(array))) / np.sum(array),

’Median Absolute Deviation (MAD)’:

np.median(np.abs(array - np.median(array))),

’Waveform Length’: np.sum(np.abs(np.diff(array))),

’Signal-to-Noise Ratio (dB)’:

81

10 * np.log10(np.mean(array ** 2) / np.var(array)),

’Cumulative Sum’: np.cumsum(array)[-1],

’Area under the Curve’: np.trapz(array),

’Root Sum Square’: np.sqrt(np.sum(array ** 2)),

’Ratio of Unique Values’: len(np.unique(array)) / len(array),

’Mean of the Gradient’: np.mean(np.gradient(array)),

’Variance of the Gradient’: np.var(np.gradient(array)),

’Standard Deviation of the Gradient’: np.std(np.gradient(array)),

’Entropy of Gradient’: entropy(np.gradient(array)),

’First Derivative Root Mean Square’:

np.sqrt(np.mean(np.square(np.gradient(array)))),

’Second Derivative Root Mean Square’:

np.sqrt(np.mean(np.square(np.gradient(np.gradient(array))))),

’Cumulative Energy’: np.cumsum(np.square(array))[-1],

’Energy of the First Derivative’:

np.sum(np.square(np.gradient(array))),

’Energy of the Second Derivative’:

np.sum(np.square(np.gradient(np.gradient(array)))),

’Zero-crossing Rate of First Derivative’:

np.mean(np.diff(np.gradient(array) > 0)),

’Zero-crossing Rate of Second Derivative’:

np.mean(np.diff(np.gradient(np.gradient(array)) > 0)),

’Mean Absolute Deviation of First Derivative’:

np.mean(np.abs(np.gradient(array))),

’Mean Absolute Deviation of Second Derivative’:

np.mean(np.abs(np.gradient(np.gradient(array)))),

’Range of First Derivative’: np.max(np.gradient(array)) -

82

np.min(np.gradient(array)),

’Range of Second Derivative’:

np.max(np.gradient(np.gradient(array))) -

np.min(np.gradient(np.gradient(array))),

’Signal Magnitude Vector’: np.sqrt(np.sum(array ** 2)),

’Jerk (Third Derivative) Mean’:

np.mean(np.gradient(np.gradient(np.gradient(array)))),

’Jerk (Third Derivative) Standard Deviation’:

np.std(np.gradient(np.gradient(np.gradient(array)))),

’Jerk (Third Derivative) Energy’:

np.sum(np.square(np.gradient(np.gradient(np.gradient(array))))),

freq, psd = welch(array, fs=sampling_rate,

nperseg=min(len(array), 256))

weighted_mean = np.sum(freq * psd) / np.sum(psd)

weighted_variance = np.sum(psd *

(freq - weighted_mean) ** 2) / np.sum(psd)

frequency_features = {

’Weighted Mean’: weighted_mean,

’Weighted Variance’: weighted_variance,

’Sum of Squares’: np.sum(np.square(array)),

’Entropy’: entropy(array),

’Energy’: np.sum(np.square(array)) / len(array),

’Root Mean Square of Successive Differences’:

np.sqrt(np.mean(np.square(np.diff(array)))),

’Maximum Absolute Value’: np.max(np.abs(array)),

’Minimum Absolute Value’: np.min(np.abs(array)),

83

’Mean of Absolute Values’: np.mean(np.abs(array)),

’Variance of Absolute Values’: np.var(np.abs(array)),

’Standard Deviation of Absolute Values’:

np.std(np.abs(array)),

’Number of Crossings (above mean)’: np.sum((array[:-1] <

np.mean(array)) & (array[1:] >= np.mean(array))),

’Number of Crossings (below mean)’: np.sum((array[:-1] >

np.mean(array)) & (array[1:] <= np.mean(array))),

’Mean of Positive Values’: np.mean(array[array > 0]),

’Mean of Negative Values’: np.mean(array[array < 0]),

’Number of Positive Values’: np.sum(array > 0),

’Number of Negative Values’: np.sum(array < 0),

’Percentage of Positive Values’: np.mean(array > 0),

’Percentage of Negative Values’: np.mean(array < 0),

’Sum of Positive Values’: np.sum(array[array > 0]),

’Sum of Negative Values’: np.sum(array[array < 0]),

’Ratio of Positive to Negative Sums’: np.sum(array[array > 0]) /

np.sum(array[array < 0]),

’Crest Factor’: np.max(np.abs(array)) /

np.sqrt(np.mean(np.square(array))),

’Shape Factor’: np.sqrt(np.mean(np.square(array))) /

np.mean(np.abs(array)),

’Impulse Factor’: np.max(np.abs(array)) /

np.mean(np.abs(array)),

’Autocorrelation’: np.correlate(array, array, mode=’full’)

[len(array)-1],

’Zero Crossing Rate’: np.mean(np.diff(array > 0)),

84

’Mean Square’: np.mean(np.square(array)),

’Geometric Mean’: scipy.stats.gmean(array),

’Harmonic Mean’: scipy.stats.hmean(array[array > 0]),

’Trimmed Mean’: scipy.stats.trim_mean(array,

proportiontocut=0.1),

’Weighted Average’: np.average(array), # Note: ’weights’

parameter is missing, you might want to provide it

’Sum of Exponential Values’: np.sum(np.exp(array)),

’Exponential Mean’: np.mean(np.exp(array)),

’Mean of Logarithmic Values’: np.mean(np.log(array)),

’Sum of Logarithmic Values’: np.sum(np.log(array)),

’Covariance’: np.cov(array),

’Correlation Coefficient’: np.corrcoef(array),

}

features = {}

features[’total_power’] = np.trapz(psd, freq)

features[’peak_frequency’] = freq[np.argmax(psd)]

features[’peak_power’] = np.max(psd)

features[’power_entropy’] =

-np.sum(psd * np.log2(psd + 1e-12))

features[’mean_frequency’] =

np.sum(freq * psd) / np.sum(psd)

features[’median_frequency’] =

np.median(freq[np.where(psd > np.median(psd))])

features[’spectral_centroid’] = np.sum(freq * psd) / np.sum(psd)

features[’spectral_spread’] = np.sqrt(np.sum(((freq -

features[’spectral_centroid’]) ** 2) * psd) / np.sum(psd))

85

features[’spectral_skewness’] = np.sum(((freq -

features[’spectral_centroid’]) ** 3) * psd) /

(features[’spectral_spread’] ** 3 * np.sum(psd))

features[’spectral_kurtosis’] = (np.sum(((freq -

features[’spectral_centroid’]) ** 4) * psd) /

(features[’spectral_spread’] ** 4 * np.sum(psd))) - 3

features[’band_power_delta’] =

np.trapz(psd[(freq >= 0.5) & (freq < 4)],

freq[(freq >= 0.5) & (freq < 4)])

features[’band_power_theta’] = np.trapz(psd[(freq >= 4)

& (freq < 8)], freq[(freq >= 4) & (freq < 8)])

features[’band_power_alpha’] = np.trapz(psd[(freq >= 8)

& (freq < 12)], freq[(freq >= 8) & (freq < 12)])

features[’band_power_beta’] = np.trapz(psd[(freq >= 12)

& (freq < 30)], freq[(freq >= 12) & (freq < 30)])

features[’band_power_gamma’] = np.trapz(psd[(freq >= 30)],

freq[(freq >= 30)])

features[’power_ratio_delta’] = features[’band_power_delta’] /

features[’total_power’]

features[’power_ratio_theta’] = features[’band_power_theta’] /

features[’total_power’]

features[’power_ratio_alpha’] = features[’band_power_alpha’] /

features[’total_power’]

features[’power_ratio_beta’] = features[’band_power_beta’] /

features[’total_power’]

features[’power_ratio_gamma’] = features[’band_power_gamma’] /

features[’total_power’]

86

Calculate weighted variance

features[’frequency_variance’] =

np.sum(psd * (freq - weighted_mean) ** 2) / np.sum(psd)

features[’frequency_standard_deviation’] =

np.sqrt(features[’frequency_variance’])

features[’frequency_range’] = np.max(freq) - np.min(freq)

features[’spectral_flatness’] =

np.exp(np.mean(np.log(psd + 1e-12))) / np.mean(psd)

features[’spectral_slope’] =

np.polyfit(freq, np.log(psd + 1e-12), 1)[0]

features[’spectral_decrease’] =

np.sum((psd[1:] - psd[:-1]) / freq[1:])

features[’spectral_roll_off_85’] = freq[np.where(np.cumsum(psd)

>= 0.85 * np.sum(psd))[0][0]]

features[’spectral_roll_off_90’] =

freq[np.where(np.cumsum(psd) >= 0.90 * np.sum(psd))[0][0]]

features[’spectral_roll_off_95’] =

freq[np.where(np.cumsum(psd) >= 0.95 * np.sum(psd))[0][0]]

features[’spectral_crest’] = np.max(psd) /

np.mean(psd)

features[’zero_crossing_rate’] =

np.mean(np.abs(np.diff(np.sign(psd))))

features[’energy’] = np.sum(psd ** 2)

features[’power_spectrum_inertia’] =

np.sum((freq ** 2) * psd) / np.sum(psd)

features[’max_autocorrelation’] =

87

np.max(np.correlate(psd, psd, ’full’))

features[’autocorrelation_peak’] =

np.argmax(np.correlate(psd, psd, ’full’))

features[’spectral_entropy’] =

-np.sum(psd / np.sum(psd) * np.log2(psd / np.sum(psd) + 1e-12))

features[’spectral_energy_distribution’] =

np.sum(psd ** 2) / (np.sum(psd) ** 2)

features[’spectral_flux’] = np.sqrt(np.sum(np.diff(psd) ** 2))

features[’spectral_rolloff’] =

freq[np.where(np.cumsum(psd) >= 0.5 * np.sum(psd))[0][0]]

features[’spectral_variation’] = np.var(psd) /

(np.mean(psd) ** 2)

features[’normalized_spectral_entropy’] =

features[’spectral_entropy’] / np.log2(len(psd))

features[’frequency_mean_absolute_deviation’] =

np.mean(np.abs(freq - features[’mean_frequency’]))

features[’spectral_edge_frequency_95’] =

freq[np.where(np.cumsum(psd) >= 0.95 * np.sum(psd))[0][0]]

features[’spectral_edge_frequency_90’] =

freq[np.where(np.cumsum(psd) >= 0.90 * np.sum(psd))[0][0]]

features[’spectral_edge_frequency_80’] =

freq[np.where(np.cumsum(psd) >= 0.80 * np.sum(psd))[0][0]]

Calculate skewness and kurtosis of the power spectrum

features[’power_spectrum_skewness’] =

stats.skew(psd)

features[’power_spectrum_kurtosis’] =

stats.kurtosis(psd)

88

Calculate peak to average power ratio

features[’peak_to_average_power_ratio’] =

np.max(psd) / np.mean(psd)

features[’peak_to_average_power_ratio’] =

np.max(psd) / np.mean(psd)

features[’spectral_contrast’] = np.max(psd) / np.min(psd)

features[’frequency_mode’] =

freq[np.argmax(np.bincount(np.digitize(freq,

np.arange(np.min(freq), np.max(freq), 0.1))))]

features[’frequency_dispersion’] =

np.sqrt(weighted_variance)

features[’spectral_skewness_normalized’] =

features[’spectral_skewness’] /

(features[’frequency_standard_deviation’] ** 3)

features[’spectral_kurtosis_normalized’] =

features[’spectral_kurtosis’] /

(features[’frequency_standard_deviation’] ** 4)

features[’spectral_smoothness’] =

np.sum(np.diff(np.diff(psd)) ** 2)

features[’spectral_slope_2’] =

np.polyfit(freq, psd, 1)[0]

features[’spectral_deviations’] =

np.sqrt(np.mean((psd - np.mean(psd)) ** 2))

features[’spectral_rolloff_25’] =

freq[np.where(np.cumsum(psd) >= 0.25 * np.sum(psd))[0][0]]

features[’spectral_rolloff_75’] =

freq[np.where(np.cumsum(psd) >= 0.75 * np.sum(psd))[0][0]]

89

features[’power_spectrum_asymmetry’] = np.sum((freq <

features[’mean_frequency’]) * psd) / np.sum((freq >=

features[’mean_frequency’]) * psd)

features[’cumulative_spectral_power_80’] =

np.sum(psd[np.cumsum(psd) <= 0.80 * np.sum(psd)])

features[’cumulative_spectral_power_20’] =

np.sum(psd[np.cumsum(psd) <= 0.20 * np.sum(psd)])

features[’spectral_bandwidth_2’] = np.sqrt(np.sum((freq -

features[’mean_frequency’]) ** 2 * psd)) / np.sum(psd)

features[’spectral_bandwidth_3’] = np.power(np.sum((freq -

features[’mean_frequency’]) ** 3 * psd), 1/3) / np.sum(psd)

features[’spectral_bandwidth_4’] = np.power(np.sum((freq -

features[’mean_frequency’]) ** 4 * psd), 1/4) / np.sum(psd)

features[’spectral_complexity’] =

np.sum(psd > np.mean(psd))

features[’spectral_phase’] = np.mean(np.angle(np.fft.fft(psd)))

features[’spectral_impulse’] = np.max(psd) /

np.sqrt(np.mean(psd ** 2))

features[’spectral_entropy_weighted’] =

-np.sum(psd * np.log2(psd + 1e-12) / np.sum(psd))

features[’spectral_entropy_log’] =

-np.sum(np.log2(psd + 1e-12) * psd) / np.sum(psd)

features[’frequency_quartile_1’] =

np.quantile(freq, 0.25, interpolation=’midpoint’)

features[’frequency_quartile_3’] =

np.quantile(freq, 0.75, interpolation=’midpoint’)

features[’interquartile_range’] =

90

features[’frequency_quartile_3’] - features[’frequency_quartile_1’]

features[’power_spectrum_density_peak’] =

np.max(psd / (np.sum(psd) * (freq[1] - freq[0])))

features[’power_spectrum_density_mean’] =

np.mean(psd / (np.sum(psd) * (freq[1] - freq[0])))

features[’power_spectrum_density_std’] =

np.std(psd / (np.sum(psd) * (freq[1] - freq[0])))

features[’spectral_harmonicity’] =

np.sum(psd * np.cos(2 * np.pi * freq * np.argmax(psd))) / np.sum(psd)

features[’spectral_inharmonicity’] =

np.abs(np.sum(psd * (np.sin(2 * np.pi * freq

* np.argmax(psd))))) / np.sum(psd)

Calculate the 10% trimmed mean

features[’frequency_trimmed_mean_10’] =

stats.trim_mean(freq, 0.1)

features[’frequency_trimmed_mean_20’] = stats.trim_mean(freq, 0.2)

Calculate the mean and maximum of the peak prominences

features[’frequency_mean_absolute_difference’] =

np.mean(np.abs(freq - np.mean(freq)))

features[’spectral_centroid_variance’] = np.var(psd * freq) /

(np.var(psd) * np.var(freq))

features[’spectral_rise_time’] = freq[np.argmax(psd)] -

freq[np.argmin(psd)]

features[’spectral_fall_time’] = freq[np.argmin(psd)] -

freq[np.argmax(psd)]

features[’spectral_peak_to_mean_distance’] =

features[’peak_frequency’] - features[’mean_frequency’]

91

features[’spectral_mean_to_median_distance’] =

features[’mean_frequency’] - features[’median_frequency’]

features[’spectral_peak_count_above_mean’] = np.sum(psd >

np.mean(psd))

features[’spectral_peak_count_below_mean’] = np.sum(psd

< np.mean(psd))

features[’spectral_moments_mean’] =

np.mean([np.sum(freq ** i * psd) for i in range(1, 5)])

features[’spectral_moments_variance’] =

np.var([np.sum(freq ** i * psd) for i in range(1, 5)])

spectral_moments = [np.sum(freq ** i * psd) for i in range(1, 5)]

features[’spectral_moments_skewness’] = stats.skew(spectral_moments)

Calculate spectral moments kurtosis

features[’spectral_moments_kurtosis’] =

stats.kurtosis(spectral_moments)

features[’spectral_slope_log’] =

np.polyfit(np.log(freq + 1e-12), np.log(psd + 1e-12), 1)[0]

features[’spectral_slope_inverse’] =

np.polyfit(1 / (freq + 1e-12), psd, 1)[0]

Wavelet-Domain Features

wavelet = ’db1’

level = 5

coeffs = pywt.wavedec(array, wavelet, level=level)

wavelet_coeffs = np.concatenate([c.flatten() for c in coeffs])

Calculate the total energy for normalization

total_energy = np.sum([np.sum(np.abs(coeff) ** 2) for coeff in coeffs])

Calculate wavelet total energy and entropy

92

features[’wavelet_total_energy’] =

np.sum([np.sum(np.abs(sub_array) ** 2) for sub_array in coeffs])

features[’wavelet_entropy’] =

-np.sum([np.sum((np.abs(sub_array) ** 2)

* np.log2(np.abs(sub_array) ** 2 + 1e-12))

for sub_array in coeffs])

Calculate weighted variance

features[’wavelet_variance’] = sum([len(sub_array) /

len(wavelet_coeffs) * np.var(sub_array) for sub_array in coeffs])

features[’wavelet_standard_deviation’] =

np.sqrt(features[’wavelet_variance’])

Calculate various statistics on flattened coefficients

flattened_coeffs = np.concatenate

([coeff.flatten() for coeff in coeffs])

features[’wavelet_maximum_coefficient’] = np.max(flattened_coeffs)

features[’wavelet_minimum_coefficient’] = np.min(flattened_coeffs)

features[’wavelet_mean_coefficient’] = np.mean(flattened_coeffs)

features[’wavelet_median_coefficient’] = np.median(flattened_coeffs)

features[’wavelet_coefficient_variance’] =

np.mean([np.var(coeff) for coeff in coeffs])

features[’wavelet_coefficient_standard_deviation’] =

np.mean([np.sqrt(np.var(coeff)) for coeff in coeffs])

features[’wavelet_energy_distribution’] =

np.mean([np.sum(np.abs(coeff) ** 2) /

total_energy for coeff in coeffs])

Calculate skewness and kurtosis

features[’wavelet_skewness’] = stats.skew(flattened_coeffs)

93

features[’wavelet_kurtosis’] = stats.kurtosis(flattened_coeffs)

Calculate peak to average power

features[’wavelet_peak_to_average_power’] =

np.max(np.abs(flattened_coeffs) ** 2) /

np.mean(np.abs(flattened_coeffs) ** 2)

Calculate zero crossing rate

features[’wavelet_zero_crossing_rate’] =

np.mean(np.abs(np.diff(np.sign(flattened_coeffs))))

Calculate peak count

features[’wavelet_peak_count’] =

np.sum(np.diff(np.sign(np.diff(flattened_coeffs))) < 0)

Calculate inverse entropy

features[’wavelet_inverse_entropy’] =

np.sum(np.abs(flattened_coeffs) *

np.log2(np.abs(flattened_coeffs) + 1e-12))

Calculate coefficient range

features[’wavelet_coefficient_range’] =

np.max(flattened_coeffs) - np.min(flattened_coeffs)

Calculate spectral centroid and spread

spectral_centroids = [np.sum(np.arange(len(coeff)) *

np.abs(coeff) ** 2) / np.sum(np.abs(coeff) ** 2) if

np.sum(np.abs(coeff) ** 2) > 0

else 0 for coeff in coeffs]

spectral_spreads = [np.sqrt(np.sum(((np.arange(len(coeff))

- centroid) ** 2) * np.abs(coeff) ** 2) /

np.sum(np.abs(coeff) ** 2)) if np.sum(np.abs(coeff) ** 2)

> 0 else 0 for centroid, coeff in zip(spectral_centroids, coeffs)]

94

non_zero_centroids =

[centroid for centroid in spectral_centroids if centroid > 0]

non_zero_spreads =

[spread for spread in spectral_spreads if spread > 0]

mean_spectral_centroid = np.mean(non_zero_centroids) if

non_zero_centroids else 0

mean_spectral_spread = np.mean(non_zero_spreads) if non_zero_spreads

else 0

Calculate weighted average of spectral centroids and spreads

features[’wavelet_spectral_centroid’] =

mean_spectral_centroid

features[’wavelet_spectral_spread’] = mean_spectral_spread

Energy-related features

features[’wavelet_energy_per_scale’] =

np.mean([np.sum(np.abs(coeff) ** 2) for coeff in coeffs])

features[’wavelet_energy_ratio_per_scale’] =

np.mean([np.sum(np.abs(coeff) ** 2) /

total_energy for coeff in coeffs])

features[’wavelet_cumulative_energy’] =

np.mean(np.cumsum([np.sum(np.abs(coeff) ** 2)

for coeff in coeffs]))

Other coefficient-related features

features[’wavelet_coefficient_mean_absolute_deviation’] =

np.mean([np.mean(np.abs(coeff - np.mean(coeff)))

for coeff in coeffs])

features[’wavelet_coefficient_energy_ratio’] =

np.mean([np.sum(np.abs(coeff) ** 2) /

95

total_energy for coeff in coeffs])

all_features = {**time_features,

**frequency_features, **features}

return pd.DataFrame([all_features])

6.2.3 Random Forest Classifier

from sklearn.metrics import accuracy_score ,

confusion_matrix ,classification_report,

ConfusionMatrixDisplay

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier,

GradientBoostingClassifier ,AdaBoostClassifier

from sklearn.svm import SVC ,LinearSVC

from sklearn.metrics import accuracy_score,

classification_report

from sklearn.preprocessing import StandardScaler

from sklearn.neighbors import KNeighborsClassifier

from sklearn.linear_model import LogisticRegression

import joblib

shuffled_df = duplicated_dataset.sample(frac = 1).

reset_index(drop=True)

x = shuffled_df.drop(["target"] ,axis = 1)

y = shuffled_df["target"]

x_train ,x_test ,y_train ,y_test =

train_test_split(x,y,test_size=0.05 ,random_state=42)
96

scale the data

scaler = StandardScaler() # or MinMaxScaler()

Fit the scaler on the training data

and transform both training and testing data

x_train = scaler.fit_transform(x_train)

x_test = scaler.transform(x_test)

joblib.dump(scaler, "scaler.joblib")

rf_model = RandomForestClassifier(random_state=42)

rf_model.fit(x_train, y_train)

Evaluate Random Forest

rf_predictions = rf_model.predict(x_test)

rf_accuracy = accuracy_score(y_test, rf_predictions)

rf_classification_report =

classification_report(y_test, rf_predictions)

print("Random Forest Accuracy:", rf_accuracy)

print("Random Forest Classification Report:\n",

rf_classification_report)

Save Random Forest model

joblib.dump(rf_model, "random_forest_model.joblib")

ConfusionMatrixDisplay(confusion_matrix(y_test,

rf_predictions)).plot()

6.2.4 Deep Neural Network Classifier

import tensorflow as tf
97

from keras.models import Sequential

from keras.layers import Dense

model = Sequential()

model.add(Dense(units = 128 ,

activation = "relu" ,input_shape=(237,)))

model.add(Dense(units = 128 ,activation = "relu"))

model.add(Dense(units = 128 ,activation = "relu"))

model.add(Dense(units = 64 ,activation = "relu"))

model.add(Dense(units = 32 ,activation = "relu"))

model.add(Dense(3 ,activation = "softmax"))

model.compile(optimizer=’adam’,

loss="categorical_crossentropy",

metrics = ["accuracy"])

model.summary()

from sklearn.preprocessing import StandardScaler

from sklearn.tree import DeepneuralnetworkClassifier

scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(x_train)

X_test_scaled = scaler.transform(x_test)

from keras.utils import to_categorical

y_train_encoded = to_categorical(y_train)

y_test_encoded = to_categorical(y_test)

model.fit(x_train ,y_train_encoded ,

batch_size = 28 ,epochs = 100)

joblib.dump(model, "deep_model.joblib")

y_predict_encoded = model.predict(x_test)

y_pred = np.argmax(y_predict_encoded,axis = 1)

98

y_pred

from sklearn.metrics import confusion_matrix,

accuracy_score,classification_report

cm = confusion_matrix(y_test, y_pred)

print("Confusion Matrix:\n", cm)

accuracy = accuracy_score(y_test, y_pred)

print("\nAccuracy:", accuracy)

print("\nClassification Report",

classification_report(y_test, y_pred))

6.2.5 Addition of noise PUF Vulnerability Analysis

import pandas as pd

file_path = r’C:\Users\Niraj\OneDrive - Wright State

University\Desktop\defence\CRP.xls’

crp_dataset = pd.read_excel(file_path)

Display the first few rows of the dataset to

understand its structure

crp_dataset.head()

import numpy as np

Rename columns for clarity:

Challenge bits (1-64) and Response

column_names = [f’bit_{i+1}’ for i in range(64)]

+ [’response’]

crp_dataset.columns = column_names

Add Gaussian noise to the responses

noise_stddev = 0.009468699256063398
99

Standard deviation of the Gaussian noise

crp_dataset[’noisy_response’] = crp_dataset[’response’ +

np.random.normal(0, noise_stddev, len(crp_dataset))

Display the first few rows of t

he updated datase to verify changes

crp_dataset.head()

Specify the file path where you want

to save the updated dataset

save_file_path = r’C:\Users\Niraj\OneDrive - Wright State

University\Desktop\defence\CRP_Updated_

with_Noise_and_Renamed_Columns.xlsx’

Save the dataset to an Excel file

crp_dataset.to_excel(save_file_path, index=False)

If you see a FutureWarning regarding

the xlwt package, you might need to install openpyxl

and save as an .xlsx file

import pandas as pd

Ensure the file path matches the file’s actual format;

assuming it’s ’.xlsx’ based on previous context

file_path = r’C:\Users\Niraj\OneDrive - Wright State

University\Desktop\defence\CRP_Updated_with

_Noise_and_Renamed_Columns.xlsx’

crp_dataset = pd.read_excel(file_path)

df = pd.read_excel(file_path)

Display the first few rows of the dataset to

understand its structure

crp_dataset.head()

100

6.2.6 Random Forest Classifier For PUF Vulnerability Analysis

import pandas as pd

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split,

GridSearchCV

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score

Convert all column names to strings to

avoid the FutureWarning

df.columns = df.columns.astype(str)

Creating interaction features (logical XOR

between pairs of the original features)

for i in range(0, 64, 2):

df[f’xor_{i}_{i+1}’] = df.iloc[:, i] ^ df.iloc[:, i + 1]

Selecting features and response variable

X = df.drop(columns=[df.columns[-1]])

Exclude the last column which is the response variable

y = df.iloc[:, -1] # The response variable

Scale the features

scaler = StandardScaler()

X_scaled = scaler.fit_transform(X)

Splitting the dataset into training and testing sets

X_train, X_test, y_train, y_test =

train_test_split(X_scaled, y, test_size=0.16, random_state=0)

Define the parameter grid for RandomForestClassifier

101

param_grid = {

’n_estimators’: [100, 200, 300],

’max_depth’: [None, 10, 20, 30],

’min_samples_split’: [2, 5, 10],

’min_samples_leaf’: [1, 2, 4],

’bootstrap’: [True, False]

}

Create the GridSearchCV object for

RandomForestClassifier with 10-fold cross-validation

grid_search = GridSearchCV(estimator=

RandomForestClassifier(random_state=0),

param_grid=param_grid,

cv=10, # Set to 10-fold cross-validation

n_jobs=-1,

verbose=2)

Fit GridSearchCV

grid_search.fit(X_train, y_train)

Get the best parameters and the best model

best_params = grid_search.best_params_

best_rf_model = grid_search.best_estimator_

print("Best Parameters for RandomForestClassifier:",

best_params)

Predict with the best model

y_pred_best_rf = best_rf_model.predict(X_test)

Calculate accuracy using the test data

accuracy_best_rf = accuracy_score(y_test, y_pred_best_rf)

print("Random Forest test accuracy with best parameters:", accuracy_best_rf)

102

REFERENCES

[1] A. Cirne, P. R. Sousa, J. S. Resende, and L. Antunes, “Hardware security for

internet of things identity assurance,” IEEE Communications Surveys Tutorials,

pp. 1–1, 2024.

[2] M. Núñez, N. T. Nguyen, D. Camacho, and B. Trawinski, “Computational

collective intelligence,” 2015.

[3] S. Rastayesh, “Risk assessment–with application for bridges and wind turbines,”

2020.

[4] K. I. Gubbi, I. Kaur, A. Hashem, S. M. PD, H. Homayoun, A. Sasan, and

S. Salehi, “Securing ai hardware: Challenges in detecting and mitigating

hardware trojans in ml accelerators,” in 2023 IEEE 66th International Midwest

Symposium on Circuits and Systems (MWSCAS). IEEE, 2023, pp. 821–825.

[5] R. A. Meyers et al., Encyclopedia of complexity and systems science. Springer

New York, 2009, vol. 9.

[6] M. Haghbin, A. Sharafati, and D. Motta, “Prediction of channel sinuosity in

perennial rivers using bayesian mutual information theory and support vector

regression coupled with meta-heuristic algorithms,” Earth Science Informatics,

vol. 14, pp. 2279–2292, 2021.

[7] G. Chen, “Notice of retraction: The impact of information dimensionality on

service system of e-commerce,” in 2009 International Conference on Management

and Service Science. IEEE, 2009, pp. 1–4.
103

[8] ——, “Notice of retraction: The impact of information dimensionality on service

system of e-commerce,” in 2009 International Conference on Management and

Service Science, 2009, pp. 1–4.

[9] S. Torabi, A. Boukhtouta, C. Assi, and M. Debbabi, “Detecting internet abuse

by analyzing passive dns traffic: A survey of implemented systems,” IEEE

Communications Surveys & Tutorials, vol. 20, no. 4, pp. 3389–3415, 2018.

[10] B. Holicza and A. Kiss, “Predicting and comparing students’ online and offline

academic performance using machine learning algorithms,” Behavioral Sciences,

vol. 13, no. 4, p. 289, 2023.

[11] R. Byali, “Using machine learning classifiers and a virtual voice assistant for

common tasks, an employee performance evaluation model is used,” Journal

homepage: www. ijrpr. com ISSN, vol. 2582, p. 7421.

[12] A. Mahmoodzadeh, H. R. Nejati, and M. Mohammadi, “Optimized machine

learning modelling for predicting the construction cost and duration of tunnelling

projects,” Automation in Construction, vol. 139, p. 104305, 2022.

[13] E. Gashaw, Sesame Price Prediction Using Artificial Neural Network. GRIN

Verlag, 2020.

[14] K. I. Gubbi, B. Saber Latibari, A. Srikanth, T. Sheaves, S. A. Beheshti-Shirazi,

S. M. PD, S. Rafatirad, A. Sasan, H. Homayoun, and S. Salehi, “Hardware trojan

detection using machine learning: A tutorial,” ACM Transactions on Embedded

Computing Systems, vol. 22, no. 3, pp. 1–26, 2023.

[15] F. Farahmandi, M. S. Rahman, S. R. Rajendran, and M. Tehranipoor, CAD for

hardware security. Springer, 2023.

104

[16] S. Akter, K. Khalil, and M. Bayoumi, “A survey on hardware security: Current

trends and challenges,” IEEE Access, 2023.

[17] Y. Obeng, C. Nolan, and D. Brown, “Hardware security through chain

assurance,” in 2016 Design, Automation & Test in Europe Conference &

Exhibition (DATE). IEEE, 2016, pp. 1535–1537.

[18] S. Sasmal, “Securing data infrastructures with ai-powered solutions.”

[19] T. Phan and R. Green, “Using wing flap sounds to distinguish individual birds,”

in 2023 IEEE International Conference on Electro Information Technology (eIT),

2023, pp. 083–094.

[20] E. Hossain, Machine Learning Crash Course for Engineers. Springer Nature,

2023.

[21] I. Sanchez-Gendriz, K. S. Azevedo, L. C. de Souza, M. G. Dalmolin, and M. A.

Fernandes, “Gene sequence to 2d vector transformation for virus classification,”

medRxiv, pp. 2024–03, 2024.

[22] N. Thai-Nghe, Z. Gantner, and L. Schmidt-Thieme, “Cost-sensitive learning

methods for imbalanced data,” in The 2010 International joint conference on

neural networks (IJCNN). IEEE, 2010, pp. 1–8.

[23] A. Alsaedi, N. Moustafa, Z. Tari, A. Mahmood, and A. Anwar, “Ton iot

telemetry dataset: A new generation dataset of iot and iiot for data-driven

intrusion detection systems,” Ieee Access, vol. 8, pp. 165 130–165 150, 2020.

[24] H. Qi, W. Liu, and L. Liu, “An efficient deep learning hashing neural network

for mobile visual search,” in 2017 IEEE Global Conference on Signal and

Information Processing (GlobalSIP). IEEE, 2017, pp. 701–704.

[25] A. Černỳ, “Toxic content recognition in conversational systems,” 2023.
105

[26] Y. Manzali and M. Elfar, “Random forest pruning techniques: a recent review,”

in Operations research forum, vol. 4, no. 2. Springer, 2023, p. 43.

[27] J. Bailey, L. Khan, and T. RW, Advances in knowledge discovery and data

mining. Springer, 2016.

[28] M. Abu-Zanona, “Efficient iot security: Weighted voting for bashlite and mirai

attack detection.”

[29] Z. A. Ali, Z. H. Abduljabbar, H. A. Taher, A. B. Sallow, and S. M. Almufti,

“Exploring the power of extreme gradient boosting algorithm in machine

learning: A review,” Academic Journal of Nawroz University, vol. 12, no. 2,

pp. 320–334, 2023.

[30] T. Miller, K. Lewita, A. Krzemińska, P. Kozlovska, M. Jawor,

D. Cembrowska-Lech, and A. Kisiel, “Boosting modern society: advancements

and applications of the adaboost algorithm in diverse domains,” Scientific

Collection InterConf, no. 152, pp. 549–555, 2023.

[31] B. Stanoev, G. Mitrov, A. Kulakov, G. Mirceva, P. Lameski, and E. Zdravevski,

“Automating feature extraction from entity-relation models: Experimental

evaluation of machine learning methods for relational learning,” Big Data and

Cognitive Computing, vol. 8, no. 4, p. 39, 2024.

[32] H. MaBouDi, A. B. Barron, S. Li, M. Honkanen, O. J. Loukola, F. Peng, W. Li,

J. A. Marshall, A. Cope, E. Vasilaki et al., “Non-numerical strategies used by

bees to solve numerical cognition tasks,” Proceedings of the Royal Society B, vol.

288, no. 1945, p. 20202711, 2021.

[33] D. Griner, The Development and Optimization of a Deep-Learning Strategy

for COVID-19 Classification in Chest X-Ray Radiography. The University of

Wisconsin-Madison, 2023.
106

[34] J. Naskath, G. Sivakamasundari, and A. A. S. Begum, “A study on different

deep learning algorithms used in deep neural nets: Mlp som and dbn,” Wireless

personal communications, vol. 128, no. 4, pp. 2913–2936, 2023.

[35] H. Cheng, D. Lian, S. Gao, and Y. Geng, “Utilizing information bottleneck to

evaluate the capability of deep neural networks for image classification,” Entropy,

vol. 21, no. 5, p. 456, 2019.

[36] F. de-la Calle-Silos, A. Gallardo-Antoĺın, and C. Peláez-Moreno, “Deep maxout

networks applied to noise-robust speech recognition,” in Advances in Speech and

Language Technologies for Iberian Languages: Second International Conference,

IberSPEECH 2014, Las Palmas de Gran Canaria, Spain, November 19-21, 2014.

Proceedings. Springer, 2014, pp. 109–118.

[37] P. Rauber, “Visual analytics applied to image analysis,” Proceedings of the Visual

Analytics Science and Technology, vol. 23, no. 01, p. 2017, 2016.

[38] S. Lohmüller, “Cognitive self-organizing network management for automated

configuration of self-optimization son functions,” Ph.D. dissertation, Universität

Augsburg, 2019.

[39] N. T. Nguyen, R. Chbeir, E. Exposito, P. Aniorté, and B. Trawiński,

Computational Collective Intelligence: 11th International Conference, ICCCI

2019, Hendaye, France, September 4–6, 2019, Proceedings, Part II. Springer

Nature, 2019, vol. 11684.

[40] J. Emery, “Construction and statistical analysis of an industry wide ground

control database of mechanical roof extensometer data from underground coal

mine gateroads,” Ph.D. dissertation, UNSW Sydney, 2024.

107

[41] R. Nouri, “The need to go deeper: the employment of a convolutional neural

network to analyze turbulent flows frequency content,” Ph.D. dissertation,

Tennessee Technological University, 2023.

[42] P. Liu, B. Qian, Q. Sun, and L. Zhao, “Prompt-wnqa: A prompt-based complex

question answering for wireless network over knowledge graph,” Computer

Networks, vol. 236, p. 110014, 2023.

[43] A. Alzahrani and M. Z. Asghar, “Intelligent risk prediction system in iot-based

supply chain management in logistics sector,” Electronics, vol. 12, no. 13, p.

2760, 2023.

[44] J.-S. Park, J.-J. Lee, Y.-J. Choi, T.-W. Moon, S. Kim, S. Cho, H. Kang,

D. H. Kim, J. Park, and S.-W. Choi, “Physical unclonable functions employing

circularly polarized light emission from nematic liquid crystal ordering directed

by helical nanofilaments,” ACS Applied Materials & Interfaces, 2024.

[45] S. Hemavathy and V. K. Bhaaskaran, “Arbiter puf-a review of design,

composition, and security aspects,” IEEE Access, 2023.

[46] M. Ferens, E. Dushku, and S. Kosta, “Ml for attack and defense of pufs:

Current status and future directions,” in International Symposium on Distributed

Computing and Artificial Intelligence. Springer, 2023, pp. 389–398.

[47] J. Vosatka, “Introduction to hardware trojans,” The Hardware Trojan War:

Attacks, Myths, and Defenses, pp. 15–51, 2018.

[48] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor, “Trustworthy

hardware: Identifying and classifying hardware trojans,” Computer, vol. 43,

no. 10, pp. 39–46, 2010.

108

[49] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances

in Cryptology—CRYPTO’99: 19th Annual International Cryptology Conference

Santa Barbara, California, USA, August 15–19, 1999 Proceedings 19. Springer,

1999, pp. 388–397.

[50] Y. Zhao, S. Pan, H. Ma, Y. Gao, X. Song, J. He, and Y. Jin, “Side channel

security oriented evaluation and protection on hardware implementations of

kyber,” IEEE Transactions on Circuits and Systems I: Regular Papers, 2023.

[51] N. Q. M. Noor, N. N. A. Sjarif, N. H. F. M. Azmi, S. M. Daud, and K. Kamardin,

“Hardware trojan identification using machine learning-based classification,”

Journal of Telecommunication, Electronic and Computer Engineering (JTEC),

vol. 9, no. 3-4, pp. 23–27, 2017.

[52] H. Wang, G. Zhao, S. Lu, L. Li, W. Zhang, and J. Liu, “Investigation

on hydrocarbon generation and expulsion potential by deep learning and

comprehensive evaluation method: A case study of hangjinqi area, ordos basin,”

Marine and Petroleum Geology, vol. 144, p. 105841, 2022.

[53] W. Xu, L. Pang, Y. Tang, and M. Chen, “Security evaluation of feed-forward

interpose puf against modelling attacks,” in 2024 IEEE 4th International

Conference on Power, Electronics and Computer Applications (ICPECA).

IEEE, 2024, pp. 871–877.

[54] X. Wang, J. Li, X. Kuang, Y.-a. Tan, and J. Li, “The security of machine

learning in an adversarial setting: A survey,” Journal of Parallel and Distributed

Computing, vol. 130, pp. 12–23, 2019.

[55] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and D. Mukhopadhyay,

“Adversarial attacks and defences: A survey,” arXiv preprint arXiv:1810.00069,

2018.
109

[56] S. Faezi, R. Yasaei, A. Barua, and M. A. Al Faruque, “Brain-inspired golden chip

free hardware trojan detection,” IEEE Transactions on Information Forensics

and Security, vol. 16, pp. 2697–2708, 2021.

[57] F. Farahmandi, Y. Huang, and P. Mishra, System-on-chip security. Springer,

2020.

[58] C. B. C. d. Cunha, T. A. Lima, D. L. d. M. Ferraz, I. T. C. Silva, M. K. D.

Santiago, G. R. Sena, V. S. Monteiro, and L. B. Andrade, “Predicting the need for

blood transfusions in cardiac surgery: A comparison between machine learning

algorithms and established risk scores in the brazilian population,” Brazilian

Journal of Cardiovascular Surgery, vol. 39, p. e20230212, 2024.

[59] J. Barrera-Garćıa, F. Cisternas-Caneo, B. Crawford, M. Gómez Sánchez, and

R. Soto, “Feature selection problem and metaheuristics: A systematic literature

review about its formulation, evaluation and applications,” Biomimetics, vol. 9,

no. 1, p. 9, 2023.

[60] A. Bailly, “Time series classification algorithms with applications in remote

sensing,” Ph.D. dissertation, Université Rennes 2, 2018.

[61] A. C. Ferreira, L. R. Silva, F. Renna, H. B. Brandl, J. P. Renoult, D. R. Farine,

R. Covas, and C. Doutrelant, “Deep learning-based methods for individual

recognition in small birds,” Methods in Ecology and Evolution, vol. 11, no. 9,

pp. 1072–1085, 2020.

[62] M. M. Abbassy, “Using machine learning technique for analytical customer

loyalty,” International Journal of Computer Science & Network Security, vol. 23,

no. 8, pp. 190–198, 2023.

110

[63] K. Arai, Advances in Information and Communication: Proceedings of the

2022 Future of Information and Communication Conference (FICC), Volume

2. Springer Nature, 2022, vol. 439.

[64] E. L. Viganò, D. Ballabio, and A. Roncaglioni, “Artificial intelligence and

machine learning methods to evaluate cardiotoxicity following the adverse

outcome pathway frameworks,” Toxics, vol. 12, no. 1, p. 87, 2024.

[65] S. Chen, T. Wang, Z. Huang, and X. Hou, “Detection method of hardware

trojan based on attention mechanism and residual-dense-block under the markov

transition field,” Journal of Electronic Testing, vol. 39, no. 5, pp. 621–629, 2023.

111

	number(1) Page1111111
	Number(2)PageCHANGED
	NUMBER(3)CHANGED
	remain
	4thesisall

