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ABSTRACT 

 

 

Kerestes, Jared, N., Ph.D., Engineering Ph.D. Program, Department of Mechanical and 

Materials Engineering, Wright State University, 2024. Using Unsupervised Machine 

Learning to Reduce the Energy Requirements of Active Flow Control. 

 

 

It is generally accepted that there exist two types of laminar separation bubbles 

(LSBs): short and long. The process by which a short LSB transitions to a long LSB is 

known as bursting. In this research, large eddy simulations (LES) are used to study the 

evolution of an LSB that develops along the suction surface of the L3FHW-LS at low 

Reynolds numbers. The L3FHW-LS is a new high-lift, high-work low-pressure turbine 

(LPT) blade designed at the Air Force Research Laboratory. The LSB is shown to burst 

over a critical range of Reynolds numbers. Bursting is discussed at length and its effect on 

transition, vortex shedding, and profile loss development are analyzed in depth. The results 

of these analyses make one point very clear: the effects of bursting are non-trivial. That is, 

long LSBs are not just longer versions of short LSBs. They are phenomena unto 

themselves, distinct from short LSBs in terms of their vortex dynamics, profile loss 

footprint, time-averaged topology, etc. This work culminates in a demonstration of how, 

with the aid of unsupervised machine learning, these differences can be leveraged to reduce 

the energy requirements of steady vortex generator jets (VGJs). Relative to pulsed VGJs, 

steady VGJs require significantly more energy to be effective but are more realistic to 

implement in actual application. By tailoring VGJ actuation to LSB type (i.e., actuating
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differently in response to a long LSB than to a short LSB), it is shown that significant 

energy savings can be realized.  
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Chapter 1: Introduction 

1.1 Motivation 

Over the course of a century, GTE design has matured to such a state that further 

gains in efficiency are increasingly difficult to obtain through improved design alone [1]. 

This is especially true of the low-pressure turbine (LPT). The efficiency of modern LPTs 

is over 90% [1]. Consequently, recent research has been directed toward reducing the 

weight of LPTs (among other parameters), rather than improving their efficiency through 

design [2].  

Unlike high-pressure turbines, which typically consist of a single stage, LPTs 

frequently consist of 3-5 stages [3]. Consequently, LPTs contribute significantly to the 

weight of an engine. By one estimate, the LPT alone can account for up to one-third of the 

weight of an engine [4]. Aside from the obvious benefits (e.g., increased cargo capacity), 

decreasing the weight of an LPT also has the potential to substantially lower the life cycle 

cost of an engine [5].  As discussed by Schmitz et al. [2], it is possible to reduce the weight 

of an LPT by increasing the aerodynamic load per airfoil and/or increasing the work output 

per stage.   

High-lift high-work airfoils aim to increase both the work output per stage and 

loading per airfoil. However, increasing airfoil loading, while maintaining high efficiency, 

presents significant design challenges. It is well known that the performance of LPTs can 

(and usually does) decrease with Reynolds number. This phenomenon is known as 
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“Reynolds lapse” and, according to Clark et al. [6], is “associated with separation of the 

boundary layer from turbine surfaces as atmospheric density decreases with altitude.” 

While LPTs operate with an overall favorable pressure gradient, the suction surface (SS) 

curvature of the LPT blades creates localized regions of adverse pressure gradient which 

can lead to boundary layer separation at low Reynolds number (i.e., cruise) conditions. 

This problem is more acute for high-lift high-work airfoils since increasing loading tends 

to increase the strength of the adverse pressure gradient on the SS of the airfoils.  

During cruise, the operating Reynolds number of the LPT is exceedingly low—by 

some estimates, as low as 25,000 (based on inlet conditions and axial chord length) [7]. At 

such low Reynolds numbers, the boundary layers on the airfoils of the LPT can be largely 

laminar, making them highly susceptible to separation [8]. When a laminar boundary layer 

separates, it may or may not reattach. In either case, loss increases as a result. Given the 

benefits of high-lift high-work airfoils, there will always exist an impetus to push loading 

to even higher levels. There will also always exist a loading limit beyond which separation 

will occur [9]. However, as discussed in Bons et al. [10], by integrating flow control into 

high-lift high-work airfoils, it may be possible to increase this limit.  

 

1.2 LPTs and Flow Control 

In this research, the term flow control is used to refer to “any mechanism or process 

through which the boundary layer of a fluid flow is caused to behave differently than it 

normally would were the flow developing naturally along a smooth straight surface” [11]. 

This is a narrow definition; however, for the purposes of this research, it is most suitable.  
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Flow control methods can be broadly classified according to whether or not they 

require energy input.  Active flow control (AFC) requires energy input whereas passive 

flow control does not require energy input [12]. While relatively simple, passive methods 

are not adaptable and, as a result, typically incur penalties—usually in the form of parasitic 

drag—when not needed. Active methods are adaptable, which obviates any such penalties 

but require energy input and introduce additional complexity and weight. There exists a 

diversity of both passive and active methods for controlling boundary layer separation on 

the SS of LPT airfoils. Of all such methods, this research considers only vortex generator 

jets (VGJs).  

 VGJs are an active method in which jets, blown through small holes in a solid 

surface, are used to promote boundary layer reattachment through enhanced mixing [13]. 

VGJs are pitched at an angle to the surface (pitch angle) and skewed relative to the main 

flow direction (skew angle) as depicted Fig. 1-1. 

 

Fig. 1-1: Schematic of a VGJ depicting skew angle 𝛽 and pitch angle 𝛼 

VGJs are typically configured with a low pitch angle and an aggressive skew angle [3,7]. 

While only one VGJ is depicted in, they are typically configured in an array, much like 

ordinary vortex generators [13].  
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At this point, it is important to note that VGJs can be operated in either a pulsed or 

steady manner. While pulsed VGJs may be considered in the future, only steady VGJs are 

considered at present. Thus, the ensuing discussion on the flow physics of VGJs is only for 

steady operation. For a discussion of the flow physics associated with pulsed VGJs, see 

Bons et al. [14] or Postl et al. [15]. 

As described by Bons et al. [3] [10], each VGJ creates a horseshoe vortex pair with 

one very strong leg accompanied by a weak leg of opposite sign. With adequate skew, the 

two legs eventually collapse. The result is a single-sign vortex that energizes the separating 

boundary layer by bringing high-momentum fluid down near the wall. In this manner, the 

momentum necessary to energize the boundary layer is effectively “borrowed” from the 

freestream. By comparison, an ordinary vortex generator (or a VJG with no skew) produces 

two relatively weak counter-rotating horseshoe vortices. While the flow topologies 

produced by each device are different, both vortex generators and VGJs work to suppress 

separation by promoting mixing. However, relative to vortex generators, VGJs offer one 

very important benefit: they are adaptable. The adaptability of VGJs comes in the form of 

an adjustable blowing ratio, 𝐵: 

 𝐵 = (𝜌𝑈)jet/(𝜌𝑈)local (1-1) 

Alternatively, the mass flow rate of a VGJ may be directly specified using the mass ratio: 

 𝑀 = 𝑚̇jet/𝑚̇1 (1-2) 

Relative to similar methods, namely slot blowing, VGJs require significantly less 

mass because VGJ holes can be spaced 10 diameters or more apart [3]. Unlike slot blowing, 

which generates nominally two-dimensional flow, VGJs generate highly three-dimensional 

flow. According to Bons et al. [3], this three-dimensional flow “creates a rapid merger of 
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the high-momentum fluid entrained by the individual vortices until the entire span is 

affected (despite the large jet spacing).” The reduced mass flow requirements of VGJs 

makes them an attractive option for controlling boundary layer separation in LPT 

applications. Moreover, the technology for implementing VGJs likely already exists [16]. 

Since VGJ holes have approximately the same dimensions and mass flow rates as film 

cooling holes, bleed air could be made available to the LPT in much the same manner that 

cooling air is made available to the HPT [16].  

 The study of Bons et al. [7] was one of the first recorded instances of VGJs being 

applied to the SS of an LPT airfoil. In their study of the Pratt & Whitney Pack-B airfoil, 

they showed, for both low (1%) and moderate (4%) levels of freestream turbulence, the 

VGJs drastically reduced the extent of the SS boundary layer separation. Above a minimum 

blowing ratio of 0.6, the wake momentum deficit was reduced by as much as 65%. The 

minimum effective blowing ratio was identified from a parametric study. Since the 

pioneering work of Bons et al. [7], many others have applied VGJs to LPT airfoils, such as 

Sondergaard et al. [16] and McQuilling and Jacob [17]. 

Similar to Bons et al. [7], Sondergaard et al. [16] applied VGJs to the suction 

surface of the Pack-B. They reported that, for low freestream turbulence levels (1%), the 

VGJs were effective at reducing total pressure loss. The loss reductions were more modest 

for moderate freestream turbulence levels (4%). Of the injection locations considered, the 

VGJs were found to be most effective when placed just upstream of separation. For both 

low and moderate freestream turbulence levels, an optimum blowing ratio of 1.5 was 

identified by means of a parametric study. Sondergaard et al. [18] later showed that, with 
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VGJs, it was possible to increase the design pitch spacing of the Pack-B by 50% without 

any appreciable increase in the per-pitch wake total pressure loss.  

 McQuilling and Jacob [17] experimentally investigated the effect of injection 

location on VGJ effectiveness for the Pack-B airfoil. They considered two different 

injection locations and a range of blowing ratios. Placing the VGJs at 69% SS length proved 

highly effective for all blowing ratios whereas placing the VGJs at 10.5% SS length proved 

largely ineffective. At 69% SS length, the VGJs were located within the separated region 

relatively close to the separation location. This supports the conclusions of Sondergaard et 

al. [16]. 

 

1.3 Machine Learning: A New Frontier in Flow Control 

The field of fluid mechanics is quickly becoming data rich [19]. Consequently, 

scientific inquiry is shifting from first principles to data-driven approaches, such as 

machine learning. Brunton et al. [20] defines machine learning as “a rapidly developing 

field of computer science whereby a complex system may be learned from observational 

data, rather than first principles.” In the context of flow control, machine learning offers 

the benefit of being “model-free”. Traditional approaches to flow control typically involve 

developing feedback control laws from system models (i.e., low-order dynamical models). 

However, by applying actuation, the behavior of the flow often changes which, in turn, 

leads to a change in the fidelity of the system model [20]. Model-free approaches, as the 

name implies, do not require any such underlying models and, therefore, do not suffer from 

the same limitations.  
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 Of the various forms of machine learning, artificial neural networks (henceforth, 

simply neural networks) have undoubtedly received the most attention. The study of Lee 

et al. [21] is one of the first recorded instances of a neural network being used for flow 

control. The goal of their study was to minimize the skin friction of a turbulent boundary 

layer using wall actuations (in the form of wall-normal blowing and/or suction) determined 

from a series of wall shear measurements. They elected to use a neural network to map 

wall shear to wall actuation (i.e., as a controller) since an exact relationship between the 

two could not be derived from first principles. Using this approach, they achieved drag 

reductions of about 20%. Their key insight was that a neural network could be used to 

“obtain complicated, nonlinear correlations without a priori knowledge of the system that 

is to be controlled.” Since the pioneering work of Lee et al. [21], many others have used 

neural networks for flow control. One such germane example is the work of Brehm et al. 

[22] who demonstrated that a neural network could be used to make real-time predictions 

of the L1M flow field.  

This research considers a different form of machine learning: clustering. Clustering 

is fundamentally different from neural networks in that it is an unsupervised machine 

learning technique rather than a supervised machine learning technique. The difference 

between supervised and unsupervised learning techniques lies in how they are trained. In 

training, supervised techniques require labeled input-output data, whereas unsupervised 

techniques do not [23]. Clustering has not been used as extensively for flow control as 

neural networks. Nonetheless, existing works suggest that it can be just as effective. For 

example, Kaiser et al. [24] demonstrated that a cluster-based control strategy was effective 

at reducing the mean recirculation region behind a smooth ramp. Their research stemmed 
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from Kaiser et at. [25] which showed that clustering constituted a potential alternative to 

proper orthogonal decomposition (POD) models and could therefore form the basis for a 

closed-loop controller. In a more recent study, Nair et al. [26] demonstrated that a cluster-

based controller was effective at minimizing in-flight power consumption in post-stall 

flows.  

 

1.4 Laminar Separation Bubbles 

It is a well-known fact that there exist two types of laminar separation bubbles 

(LSB): long LSBs and short LSBs. The structures of a time-averaged short LSB and a time-

averaged long LSB are depicted in Fig. 1-2. 

 

Fig. 1-2: (a) Schematic of short LSB showing (in order) separation point, transition start, 

and reattachment point (b) Schematic of long LSB showing (in order) separation point, 

transition start, ‘reattachment-like’ behavior, and reattachment point 

What follows is a simplified description of the flow topologies associated with each bubble 

type. The descriptions follow closely those of Hatman and Wang [27]. For short LSBs, the 

onset of transition (𝑥t) is observed to take place downstream of separation (𝑥S), near the 

location of the maximum displacement of the shear layer. The high rate of turbulence 

production and the ejection-shedding process entrain sufficient momentum to force the 

separated shear layer to reattach (𝑥R). The final coalescence into turbulence (𝑥T) takes 
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place in the reattaching boundary layer. Some distance downstream of reattachment, a fully 

developed turbulent boundary layer profile is recovered.  

For a long bubble, the onset of transition is also observed to coincide with the 

location of the maximum displacement of the shear layer. The increased mixing in the 

region of the maximum displacement of the shear layer (𝑥𝑀𝐷) leads to the first 

‘reattachment-like’ behavior (𝑥𝑅1).  However, relative to short LSBs the mixing is weaker, 

and the shear layer fails to remain attached. The final coalescence into turbulence occurs 

further downstream, somewhere between 𝑥𝑀𝐷 and 𝑥𝑇, and forces the shear layer to 

reattach. Again, a fully developed turbulent boundary layer profile is recovered sufficiently 

far downstream.  

The process by which a short bubble transitions to a long bubble has been described 

in the literature as “bursting.” What follows is a review of classical bursting models. Such 

models attempt to predict the onset of bursting using time-averaged quantities. Since 

bursting is typically associated with a rapid increase in the length and height (thickness) of 

a separation bubble, Owen and Klanfer [28] originally classified LSBs on the basis of their 

length 𝑙. For short bubbles, they claimed 𝑙/𝛿S
∗ = 𝑂(102) while for long bubbles they 

claimed 𝑙/𝛿S
∗ = 𝑂(104). Here 𝛿S

∗ is the boundary layer displacement thickness at 

separation. As later research has shown, the distinction between the two types of bubbles 

is not so clear; while bursting is always accompanied by an increase in 𝑙, this increase may 

not always be as marked as Owen and Klanfer suggest [29].    

This lead Tani [30] to classify the two types of bubbles based on their effect on the 

time-averaged pressure distribution. According to Tani, a short separation bubble has a 

slight effect on the pressure distribution. The pressure distribution departs from its 
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theoretical (i.e., inviscid) form only in the vicinity of the bubble. While short LSBs may 

also slightly reduce the magnitude of the suction peak ahead of separation, their effects are 

largely local. A long LSB, on the other hand, significantly modifies the pressure 

distribution. So much so, that the suction peak ‘collapses’ to a lower value and the constant 

pressure plateau after separation is larger and at a higher pressure.  

 Over the years, many criteria have been proposed to predict bursting. The criterion 

due to Gaster [31] is perhaps the most famous. Based on dimensional analysis, Gaster 

argued that the structure of an LSB depends on two parameters. The first is a 

nondimensional pressure gradient parameter:  

 
𝑃Gaster = (

𝜃S
2

𝜈
)

(Δ𝑈)inviscid

𝑙
 

(1-3)  

The second is the momentum thickness Reynolds number at separation 𝑅𝑒𝜃,𝑠. In Eq. 

(1-3)(2-8) 𝜃𝑠 is the momentum thickness at separation, 𝜈 is the kinematic viscosity, and 

Δ𝑈 is the velocity change across 𝐿 for the ideal (i.e., inviscid) case. From an analysis of 

experimental data, Gaster identified a curve (which he referred to as the ‘bursting line’) in 

the 𝑃Gaster − 𝑅𝑒𝜃,𝑠 plane that he claimed separated short LSBs from long LSBs. Gaster’s 

original diagram is reproduced in Fig. 1-3.  
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Fig. 1-3: Bursting diagram of Gaster [31] 

Points lying to the right of the bursting line correspond to short LSBs. Similarly, points 

lying to the left of the bursting line correspond to long LSBs.  

 While celebrated, Gaster’s bursting criterion is not universal. There are a number 

of instances in which it incorrectly classifies LSBs (see, for example, Mitra et al. [32]). 

Based on Gaster’s work, Diwan et al. [33] proposed a similar criterion. Instead of using 

momentum thickness at separation as their length scale, they chose to use the height of the 

LSB (ℎ ) since “the local conditions at the streamwise location of maximum height of the 

bubble can be expected to influence the approach of the separated shear layer towards 

reattachment.” Moreover, they chose to use the actual change in velocity across 𝐿 rather 

than the ideal change. The pressure gradient parameter of Diwan et al. [33] can be written 

as 

 
𝑃Diwan = (

ℎ2

𝜈
)

(Δ𝑈)actual

𝑙
 

(1-4)  

From an analysis of many experimental data sets, they arrived at a much simpler 

bursting criterion that, unlike the criterion of Gaster, can be expressed in closed form: 
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𝑃Diwan = −28. According to their model, 𝑃Diwan > −28 correspond to a short bubble 

while 𝑃Diwan < −28 corresponds to a long bubble. By changing the length scale, Diwan 

et al. [33] were able to reduce the two-parameter bursting criterion of Gaster to a single-

parameter bursting criterion. The recent study of Mitra et al. [32] suggests that, despite 

being relatively simple, the one parameter bursting criterion of Diwan et al. [33] is rather 

accurate. Note that other bursting criteria have been proposed, but only the above two will 

be considered.  

 

1.5 Transition and Laminar Separation Bubbles 

Volino [34] said it best: “separation on LPT airfoils is complicated by boundary 

layer transition.” According to Mayle [35], there are three modes of transition. The first 

mode is natural transition. In brief, natural transition begins with the formation of weak 

instability waves (commonly referred to as Tollmien-Schlichting waves) in the laminar 

boundary layer. As these waves propagate downstream, they are either amplified, if the 

flow is unstable to them, or attenuated. Once the amplitude of the instability waves reaches 

a critical threshold, the flow enters a phase of nonlinear breakdown and randomization. 

During this phase, the formation of turbulent spots is observed to occur. Eventually, the 

turbulent spots coalesce into a fully developed turbulent boundary layer completing the 

transition process. See Kachanov [36] for a more detailed description of the natural 

transition process. The second mode is bypass transition. Bypass transition occurs when 

external disturbances (e.g., freestream turbulence) cause the flow to ‘bypass’ the first few 

phases of natural transition. The final mode is separated-flow transition. Here, transition 

occurs in a separated laminar boundary layer (i.e., a free shear layer). In the absence of 



13 

 

significant levels of environmental disturbances (i.e., freestream turbulence), transition of 

a separated shear layer is initiated through the Kelvin-Helmholtz instability mechanism 

[37]. 

Of the three modes of transition, separated-flow transition is, perhaps, the most 

important in LPT applications [35]. This is because separated-flow transition dictates 

where and if a separated laminar boundary layer reattaches. If the free shear layer formed 

by boundary layer separation transitions sufficiently close to the separation point, it 

typically reattaches and forms a closed LSB (in the time-average sense); if, however, the 

separated shear layer does not transition sufficiently close to the separation point, it 

typically does not reattach [35]. This is depicted schematically in Fig. 1-4. 

 

 

Fig. 1-4: (a) Transition occurs close to the separation point, resulting in a laminar 

separation bubble (b) Transition does not occur close to the separation point, resulting in 

open (i.e., un-reattaching) separation. 

By one estimate, losses may increase by as much as 500% if the separated shear layer does 

not reattach [38]. Obviously, it is preferable for the shear layer to reattach.  
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In the event that the separated shear layer reattaches, the length of the resulting LSB 

depends on the location of transition. As might be expected, loss increases with increasing 

LSB length. This being the case, why not induce transition prematurely to shorten or, 

potentially, eliminate the LSB altogether? Unfortunately, it is not so simple. While moving 

the transition point upstream tends to decrease the length of the LSB, it also tends to 

increase the extent of the turbulent reattachment region [39]. Since turbulent flows are 

typically associated with higher frictional losses, the net result of these competing effects 

is not immediately obvious. According to Volino [34], “existing results suggest that 

separation bubbles should be kept small, but without producing an unnecessarily long 

turbulent region.” Mayle [35] echoes this sentiment: “short bubbles are an effective way to 

force the flow turbulent and may be considered as a means to enhance performance.” This 

idea has led to the concept of controlled-diffusion blading, as discussed by Hourmouziadis 

[40]. In controlled-diffusion blading, airfoils are designed such that a short LSB is present. 

Short LSBs are not thick enough to produce high losses. Moreover, relative to tripping the 

boundary layer upstream, short LSBs usually result in a smaller turbulent region.  

 

1.6 The L3FHW-LS 

As discussed by Clark et al. [6], a new series of high-lift high-work LPT airfoils 

was recently designed at the U.S. Air Force Research Laboratory. The goal of the series 

was to achieve exceptionally high loading and lift while also decreasing the severity of 

Reynolds lapse. The complete series of airfoils, designated the LXFHW series, includes 

rotating stages, annular cascades, and both transonic and incompressible-equivalent linear 

cascades. LXFHW is an acronym: L indicates an LPT airfoil, X is a wildcard representing 
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the mean-line loading level of the airfoil (possible values are 1-3, with 1 representing the 

lowest loading level and 3 representing the highest loading level), F indicates the airfoil is 

front-loaded, and HW indicates the airfoil is part of a high-work stage. This research 

concerns only one airfoil from the incompressible family: L3FHW-LS. Here, the suffix -

LS is used to indicate a low-speed airfoil.   

The LXFHW-LS family is a subset of the LPT geometries created at the Air Force 

Research Laboratory (AFRL) since 2005 to investigate the limits of the expanded design 

space enabled through careful consideration of the local state of the boundary layer [38,41] 

over the blades as they are defined. The aerodynamic characteristics of the LXFHW-LS 

family are summarized in Table 1-1. In Table 1-1, 𝐶𝑜 is circulation-based formulation of 

the lift coefficient [42], here called the Coull number, 𝑍𝑤 is the familiar Zweifel loading 

coefficient [43], 𝑁 is the number of blades in one stage, and 𝑆/𝐶𝑥 is the pitch (𝑆) 

normalized by the axial chord (𝐶𝑥).  

 

Table 1-1: Aerodynamic characteristics of LXFHW-LS family 

Airfoil 𝑵 𝑺/𝑪𝒙 Turning (°) Loading Type 𝒁𝒘 𝑪𝒐 

L1FHW-LS 72 1.016 122.1 Front 1.32 0.84 

L2FHW-LS 60 1.216 123.0 Front 1.60 0.90 

L3FHW-LS 54 1.376 122.5 Front 1.78 0.92 

 

The family was designed consistent with the velocity triangles of the LPT13 high-work 

stage, first embodied in the ND-HiLT01 turbine [2,44]. The LPT13 represents an increase 

in turning of approximately 30° over the Pack-B. This is consistent with an increase in the 

work coefficient of approximately 40% for the airfoils of the LXFHW-LS family over 
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those designed to Pack B air angles. For a further discussion on the design of the family as 

a whole, see Clark et al. [6].  

 

1.7 Dissertation Objectives 

In a recent study, Kerestes et al. [45] investigated the low-Re performance of the 

L3 and found that an LSB developed over the aft part of the suction surface for Re∞ <

160,000. While the LSB grew longer with decreasing Reynolds number, they reported no 

indication of unreattaching boundary layer separation down to Re∞ = 25,000. The 

objectives of this research are to 

1. show that the LSB bursts over a critical range of Reynolds numbers 

2. develop a machine-learned bursting criterion and assess its ability to predict 

bursting 

3. determine how bursting affects the time-averaged topology, vortex dynamics, 

and loss footprint of the separation bubble 

4. demonstrate how, with the aid of a machine-learned bursting criterion, the 

differences between long and short LSBs might be leveraged to reduce the 

energy requirements of steady VGJs 
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Chapter 2: Approach 

2.1 LES  

2.1.1 General Procedure 

All LES simulations were accomplished using the GPU-accelerated flow solver, 

Leo, from Aerodynamic Solutions (ADS). Leo is a compressible, finite-volume flow 

solver. It employs the Ni-Scheme distribution [46,47] that is second-order accurate in both 

space and time. The procedure of Ni et al. [48] was followed for all simulations. In brief, 

the procedure consists of 4 steps: 1) obtain a converged RANS solution, 2) initialize the 

LES solution from the converged RANS solution, 3) flush the transient and, 4) enable time-

averaging. For a more detailed description of the LES procedure, see Ref. [48]. 

Reynolds number was altered by varying the inlet total pressure, 𝑝0,1, while keeping 

the ratio 𝑝0,1/𝑝2 constant. The pressure ratio was chosen such that the exit Mach number 

was 𝑀2 ≈ 0.2. This ensured the Mach number throughout the entire domain was greater 

than 0.1. Even though Leo preconditions the governing equations, it is still best to ensure 

the Mach number is not too low. As a general rule of thumb, “too low” it typically taken 

to mean < 0.1.  

The time-step size (𝛥t) was based on the so-called convection time-step size: 

 
𝛥𝑡𝑐 =

𝑇

𝑁ss
 

(2-1)  
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In Eq. (2-1), 𝑇 is the through-flow period  

 
𝑇 =

𝐶𝑥

𝑢𝑥,1
 

(2-2)  

and 𝑁ss is the number of grid points defining the suction surface. 𝛥𝑡𝑐 is an approximate 

measure of the amount of time it takes a particle of fluid to travel from one grid point to 

the next. For all simulations, 𝛥t was set such that 𝛥t < 𝛥𝑡𝑐.  

 Time averaging occurred for approximately 40𝑇 and was enabled only after the 

transient was flushed (step 3 above). To flush the transient, each LES simulation was 

integrated for 10𝑇. All numerical results reported later were the result of time averaging 

over 40𝑇. 

 

2.1.2 Computational Mesh 

 The computational mesh was generated using the preprocessor, WAND, also from 

ADS. WAND generates structured, multi-block, meshes using a Poisson solver. The block 

topology was O-type in the near-wall region and H-type in the far-field. The computational 

mesh is depicted in Fig. 2-1.  
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Fig. 2-1: Computational mesh (every fourth node shown) with cutaway showing the 

structure of the underlying block topology. The domain inlet is shaded red, and the 

domain outlet is shaded blue 

The computational domain extended 0.5𝐶𝑥 upstream, 1𝐶𝑥 downstream, and 1/3𝐶𝑥 in the 

spanwise direction. The same mesh was used for all Reynolds numbers; it was sized based 

on the highest Reynolds number considered (Re∞ = 100,000) and consisted of 

approximately fourteen million hexahedral elements. In near-wall regions, the mesh was 

refined such that 𝑦+ < 1, 𝑥+ ≪ 150, and 𝑧+ ≪ 40. This is consistent with the minimum 

LES grid resolution requirements recommended by Georgiadis et al. [49]. For most 

Reynolds numbers, the mesh resolution exceeded DNS levels as depicted in Fig. 2-2.  
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Fig. 2-2: (a) streamwise grid resolution (b) spanwise grid resolution. Dashed black line 

marks DNS threshold (from [49]). 

To check for mesh independence, one additional simulation was conducted at Re∞ =

100,000 using a mesh approximately 50% denser than the baseline 14 million element 

mesh. Time-averaged integrated total pressure loss changed by <1%.  

 

2.1.3 Boundary Conditions 

Total pressure, total temperature, and flow angle were specified at the inlet 

boundary (highlighted red in Fig. 2-1). The flow entering the domain was perfectly uniform 

(i.e., the inlet freestream turbulence intensity was exactly 0%). At the exit boundary 

(highlighted blue in Fig. 2-1), only static pressure was specified. Flow periodicity was 

imposed in the pitchwise direction. The no-slip condition was imposed on the blade 

surface; the blade surface was also considered adiabatic. Spanwise boundaries were treated 

as inviscid walls. For simulations involving VGJs, the VGJs were modeled using a 

transpiration boundary condition. 
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2.2 Machine-Learned Bursting Criterion 

2.2.1 A Brief Review of Clustering 

While the information in this section could have been presented earlier, with the 

other introductory material, it makes more sense for it to be presented alongside the 

discussion of the machine learning model.  

Abstractly, clustering is the process of grouping similar objects together [50]. From 

this definition, it follows that a cluster is a set of similar objects. The basic data in a 

clustering problem are a set of objects, each described by a set of features. For example, 

the data might be a set of flowers, each described by petal length, petal width, and sepal 

length. After clustering, if some object in a cluster has a certain feature, other objects in 

the cluster are expected to have the same feature [50]. Therefore, by examining objects in 

different clusters, it is possible to determine how they differ. More specifically, it is 

possible to determine what features make them different. Clustering is used extensively in 

the modern world, particularly in e-commerce. Most people, at some point or another, have 

received an ad for ‘similar products’ or ‘products you might like’ after purchasing 

something online. Ever wondered how this is possible? In e-commerce, it is common to 

cluster users into groups based on their purchasing or web-surfing history and then send 

targeted ads to each group [23].  

As mentioned earlier, clustering is a type of unsupervised machine learning in 

which only input data are provided. Unlike supervised machine learning, the input data are 

unlabeled. The goal of clustering is to discover some “interesting structure” in the input 

data; hence, clustering is sometimes referred to as ‘knowledge discovery.’ Unsupervised 

machine learning is arguably more typical of how humans learn. Geoff Hinton once said: 
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“When we’re learning to see, nobody’s telling us what the right answers are — we 

just look. Every so often, your mother says, “that’s a dog”, but that’s very little 

information. You’d be lucky if you got a few bits of information — even one bit 

per second — that way. The brain’s visual system has 1014 neural connections. 

And you only live for 109 seconds. So, it’s no use learning one bit per second. You 

need more like 105 bits per second. And there’s only one place you can get that 

much information: from the input itself” [51].   

 

Unsupervised learning is also more widely applicable than supervised learning, as it does 

not require a human to manually label the data.  

While fuzzy c-mean clustering (FCM) [52–54] is used in this research, the k-means 

algorithm [55,56] is discussed first, as it is the algorithm upon which FCM is based. Given 

a set of observations, the k-means algorithm groups the observations into 𝑘 clusters, hence 

the ‘k’ in k-means. Each set of observations belonging to a cluster is represented by its 

corresponding cluster centroid, which is computed as the mean over all observations in the 

cluster. In the k-means algorithm, each observation can be a member of at most one cluster. 

That is, membership is binary. The observation either belongs to a cluster or it does not. 

For the present work, this is not ideal, as bursting is not an instantaneous event and takes 

place over a finite range of Reynolds numbers [31].  

FCM is very similar to k-means, except that membership is non-binary. That is, 

membership is probabilistic instead of deterministic. FCM is based on fuzzy set theory 

which gives the concept of uncertainty in data attribution. In FCM, each observation has a 

probability of membership to each cluster. This is why c-means is sometimes referred to 
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as soft clustering. The difference between k-means and FCM clustering is illustrated in Fig. 

2-3. 

 

Fig. 2-3: Pictorial representation of the differences between k-means clustering and FCM 

clustering 

In this research, the FCM algorithm is used. In brief, the classic version of the 

algorithm seeks to minimize the following objective function:  

 

𝐽(𝑴, 𝓒) = ∑ ∑ 𝜇𝑛𝑘
𝑚 𝑑𝑛𝑘

2

𝐾

𝑘=1

𝑁

𝑛=1

 

(2-3)  

In Eq. (2-3) 𝑴 is the fuzzy partition matrix, 𝒞 is the set of all cluster centroids, 𝑁 is the 

number of observations, 𝐾 is the number of centroids, 𝜇𝑛𝑘 is the degree of membership of 

the 𝑛th observation to the 𝑘th cluster, 𝑚 is the degree of fuzzy overlap, and 𝑑𝑛𝑘 is the 

distance from the 𝑛th observation to the 𝑘th cluster. Since the goal of clustering is to 

minimize intra-cluster similarity and maximize inter-cluster similarity, each clustering 

algorithm must define a similarity metric (i.e., a means of measuring how similar two 

observations are). The FCM algorithm uses the distance between observations in feature 

space as a measure of similarity. In this work, distance is computed using the standard 

Euclidean norm, as called for by the classic version of the algorithm. However, other norms 
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(e.g., the 𝐿1 norm) can be used. For more information on the classic FCM algorithm see 

Bezdek [52] or Bezdek et al. [53].  

 

2.2.2 Design of a Cluster-Based Bursting Criterion 

Short and long are very abstract concepts that cannot directly be measured. This is 

where bursting criteria come in. They attempt to define short and long in terms of quantities 

that are measurable. For example, Owen and Klanfer [28] define a short LSB as an LSB 

for which 𝑙/𝛿S
∗ = 𝑂(102). As discussed earlier, there exist a number of bursting criteria. 

However, existing bursting criteria rely on quantities that are rather difficult to measure 

(e.g., 𝜃 or ℎ), making them ill-suited for flow applications. 

Using machine learning, it may be possible to develop a bursting criterion based on 

easy-to-measure quantities. According to Gross and Fasel [57], wall shear stress and wall 

pressure are quantities that might be realistic to measure in actual application. This work 

proposes to use FCM clustering, to distinguish between short and long LSBs. Unsupervised 

machine learning is preferred to supervised machine learning since the latter requires 

human-labeled data. In this instance, providing labeled data may inject unwanted bias into 

the model, given that there is no definitive way to distinguish short LSBs from long LSBs. 

The machine learning model is trained to distinguish short LSBs from long LSBs on 

the basis of pressure. Since one of the major differences between short and long LSBs is 

their impact on peak suction, it seems most appropriate to base the model on pressure 

measurements taken in this neighborhood. Given three pressure measurements taken in the 

neighborhood of peak suction, the trained model returns the likelihood (i.e., probability) 

that the LSB is long and/or short.  
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Classic FCM has two hyperparameters (i.e., arbitrary parameters that must be 

specified by the user). The first is the number of clusters. Clearly, the most appropriate 

number of clusters is 2. One cluster for short LSBs and another for long LSBs. The second 

hyperparameter is the so-called fuzzifier, 𝑚. As the name implies, this determines how 

‘fuzzy’ the interface is between the two clusters. 𝑚 was taken to be 1.2. Note that, in the 

limit as 𝑚 approaches 1, FCM approaches k-means. Traditionally, 𝑚 = 2. However, a 

more conservative value of 𝑚 = 1.2 was found to be more appropriate. For higher values 

of 𝑚, the resulting model was so fuzzy as not to be useful.  

The data set upon which the machine learning model was based consisted of 400 

observations, 50 from each of 8 different Reynolds numbers. The Reynolds numbers were 

equally spaced between Re∞ = 15,000 and Re∞ = 100,000. All observations were 

acquired randomly in time once the simulations had achieved a statistically steady state 

(i.e., after step 3 of the LES procedure). An observation consisted of three measurements: 

𝜎𝐼, 𝜎𝐼𝐼, and 𝜎𝐼𝐼𝐼. Here, 𝜎𝑖 is the instantaneous deviation of the loading distribution at 

location 𝑖 from the design loading distribution at the same location. 𝜎𝑖 is used instead of 

𝐶𝑝,𝑖 to make the final model both more general and more interpretable. By using 𝜎𝑖, the 

final model can be interpreted as a data-driven realization of the classification scheme of 

Tani [30]. Tani was the first to propose that LSBs be classified based on their effect on the 

pressure distribution. He suggested that a long LSB has a global effect on the loading 

distribution, whereas a short LSB has a local effect on the loading distribution. The present 

model quantifies this idea. Measurement locations are summarized in Table 2-1. 
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Table 2-1: Streamwise location of each 𝜎𝑖. 

Feature Location description 

𝜎𝐼 0.05𝐿ss upstream of peak suction (𝜉/𝐿𝑠𝑠 = 0.15) 

𝜎𝐼𝐼 Coincident with peak suction (𝜉/𝐿𝑠𝑠 = 0.20) 

𝜎𝐼𝐼𝐼 0.05𝐿𝑠𝑠 downstream of peak suction (𝜉/𝐿𝑠𝑠 = 0.25) 

 

In examining Table 2-1 it is apparent that the measurement locations are symmetric about 

the location of peak suction. 

 The data used for training are visualized in Fig. 2-4.  

 

Fig. 2-4: Various views of the training data set, all of which are plotted in feature space. 

 

The data points from the higher Reynolds numbers tend to be located near the origin. This 

stands to reason, as the origin corresponds to the design point. As expected, 𝜎𝐼, 𝜎𝐼𝐼, and 
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𝜎𝐼𝐼𝐼 are relatively small for Re∞ = 100,000 and significantly larger for Re∞ = 25,000. In 

examining Fig. 2-4, it is clear that the data are strongly correlated. This suggests that the 

dimensionality of the feature space can be reduced by applying a dimensionality reduction 

technique, such as principal component analysis (PCA). According to Jolliffe [58] “the 

central idea of principal component analysis is to reduce the dimensionality of a data set 

consisting of a large number of interrelated variables, while retaining as much as possible 

of the variation present in the data set.” PCA is an application of the singular value 

decomposition that provides a new set of coordinates, the so-called principal components, 

which are uncorrelated, and which are ordered by their significance [58,59].  

 To perform PCA, the present data were first centered and arranged into a matrix 𝑿. 

The rows of 𝑿 corresponded to individual observations and the columns corresponded to 

features. The covariance matrix 𝑪  

 
𝑪 =

1

𝑁 − 1
𝑿𝑇𝑿 

(2-4)  

was then constructed from 𝑿. The principal components 

 𝑻 = 𝑼𝚺 (2-5)  

were computed from the SVD factorization of 𝑪: 

 𝑪 = 𝑼𝚺𝑽𝑻 (2-6)  

Here, 𝑼 and 𝑽 are unitary matrices, the columns of which are known as right singular 

vectors and left singular vectors respectively. 𝜮 is a diagonal matrix, the nonzero elements 

of which are referred to as singular values. The data is plotted in both feature space and 

principal component space in Fig. 2-5. Note that, in Fig. 2-5a, the principal component 

axes are placed at the mean of the data set. This was done purely for visualization purposes. 
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When the data was actually transformed, the axes were placed at the origin. This is reflected 

in Fig. 2-5b, as PC1 is nonnegative.  

 

Fig. 2-5: (a) Data set plotted in feature space overlaid with principal component 

directions (b) Data set plotted in principal component space (only the first two 

components are depicted). 

 Interestingly, the data for Re∞ > 60,000 and Re∞ < 40,000 appear to form two 

distinct clusters. The data for 40,000 ≤ Re∞ ≤ 60,000 exists in between these clusters. 

While these structures are most clearly seen in principal component space, they are also 

apparent in feature space. Since the training data were sampled from 8 equally spaced 

Reynolds numbers, these structures cannot be an artifact of the choice of Reynolds 

numbers.  

Judging from Fig. 2-5b, it seems that PC1 is significantly more important than PC2. 

This is confirmed by examining the singular values. The singular value corresponding to 
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PC1 is over an order of magnitude larger than the singular value corresponding to PC2. 

Thus, PC1 explains significantly more of the variance of the data set (sometimes referred 

to as energy) than PC2. In point of fact, PC1 alone explains over 90% of the variance of 

the data set. For this reason, PC2 and PC3 are discarded. This reduces the dimensionality 

of the data from 3 to 1. In terms of 𝜎𝑖, PC1 is given by 

 PC1 = 0.347𝜎𝐼 + 0.565𝜎𝐼𝐼 + 0.749𝜎𝐼𝐼𝐼 (2-7)  

Surprisingly, 𝜎𝐼𝐼𝐼 is weighted the most; it was expected that 𝜎𝐼𝐼 would be weighted the most 

given that it corresponds to the location of peak suction.  

The machine learning model was implemented using the fuzzy logic toolbox of 

MATLAB. After the clustering process was complete, the probability of membership of 

each data point to both the long and short cluster was calculated. The result is depicted in 

Fig. 2-6. 

 

Fig. 2-6: Probability of membership of data to (a) short cluster and (b) long cluster. 

The machine learning model predicts that the LSB is short for Re∞ > 60,000 and long for 

Re∞ < 40,000. This behavior is consistent with the observations made earlier regarding 

the natural structures apparent in the training data. According to the machine learning 

model, bursting occurs over the range 40,000 ≤ Re∞ ≤ 60,000, since this is the range 
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over which 𝑃(short) decreases from 100% to 0% (alternatively, it could be said that this 

is the range over which 𝑃(long) increases from 0% to 100%). The accuracy of the model 

will be addressed later, after the actual range over which bursting occurs has been 

established.   
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2.3 Post-Processing Techniques  

2.3.1 Intermittency Analysis 

The intermittency (𝛾) was calculated using the algorithm of Volino et al. [60]. This 

algorithm was chosen since it has been demonstrated to work well in LPT applications 

[61,62]. By definition, the intermittency is the time average of the intermittency function 

𝛤(𝑡), which indicates whether a flow is instantaneously turbulent or non-turbulent at any 

given time (for this reason, the intermittency function is sometimes referred to as the 

indicator function). 𝛤(𝑡) takes the value 0 when the flow is nonturbulent and 1 when the 

flow is turbulent. The difficulty lies in determining whether a flow is instantaneously 

turbulent or nonturbulent.  

In brief, the algorithm of Volino et al. [60], uses two detector functions to 

discriminate between turbulent and non-turbulent flow: 

 
𝒟1(𝑡) = [

𝜕(𝑢𝑥
′ 𝑢𝑦

′ )

𝜕𝑡
]

2

 
(2-8) 

 
𝒟2(𝑡) = [

𝜕2(𝑢𝑥
′ 𝑢𝑦

′ )

𝜕𝑡2
]

2

 
(2-9) 

The flow is considered turbulent if 𝒟1(𝑡) > 𝐶1 or 𝒟2(𝑡) > 𝐶2, where 𝐶1 and 𝐶2 are 

arbitrary thresholds. The user specifies only 𝐶1; 𝐶2 is set based on 𝐶1. See Volino et al. [60] 

for more information. 

 In this work, 𝐶1 was set after having inspected many time traces of 𝛤(𝑡). One such 

time trace is shown in Fig. 2-7.  
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Fig. 2-7: (a) streamwise velocity (b) first detector function (b) final intermittency 

function; time traces taken near transition onset for Re∞ = 15,000. 

For the location shown, 𝛤(𝑡) does a good job separating turbulent from non-turbulent 

samples. Ultimately, visual inspection is the best way to determine how well 𝛤(𝑡) is 

separating turbulent from non-turbulent samples [63].  For this reason, choosing 𝐶1 is more 

of an art than a science.  

 

2.3.2 Vortex Core Tracking 

Vortex cores were identified using the algorithm of Jiang et al. [64] In brief, the 

algorithm works by visiting each point 𝑃 in a velocity field and checking to see if the so-

called “direction-spanning” property is satisfied in the neighborhood of 𝑃. If the direction 

spanning property is satisfied, 𝑃 is identified as a vortex core. See Jiang et al for more 

information.  
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While the algorithm generally worked well, it tended to identify multiple cores per 

vortex, as illustrated in Fig. 2-8a. 

 

Fig. 2-8: (a) cores belonging to a single group (b) centroid of group; single timestep from 

Re∞ = 15,000 shown. 

To correct this, an auxiliary step was added to the algorithm. After all cores had been 

identified, they were grouped together. To initiate this process, a group was created 

consisting of a random core. Then, the remaining cores were looped over. If a core was 

within 0.02𝐿ss of an existing group, it was assigned to that group. Otherwise, a new group 

was created. Once all cores were assigned to a group, the centroid of each group was taken 

to be the new location of the vortex core. A single group is depicted in Fig. 2-8a and its 

corresponding centroid is depicted in Fig. 2-8b. The centroid of the group is very close to 

the true vortex core.  

 

2.3.3 Loss Decomposition and Analysis 

This section describes an approximate method for calculating the time-averaged 

profile loss generated over an arbitrary region for a statistically steady flow. Broadly 

speaking, loss can be broken down into three components: 1) profiles loss, 2) endwall loss, 

and 3) leakage loss [65]. Only profile loss is of interest in this work. Profile loss is typically 
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regarded as the loss generated in the boundary layers of the LPT blades, well away from 

any endwalls [65]. Trailing edge loss is also usually included in profile loss; trailing edge 

loss is the colloquial name given to the loss generated by the “mixing out” of the wake 

behind the trailing edge.  

For an incompressible, steady flow the transport of total pressure is governed by  

 
 

𝜕

𝜕𝑥𝑖

(𝑢𝑖𝑝0) =
𝜕𝑢𝑗𝜏𝑖𝑗

𝜕𝑥𝑖
− 𝜏𝑖𝑗

𝜕𝑢𝑗

𝜕𝑥𝑖
 

(2-10) 

For a derivation of the above, see Issa [66]. Note that 𝜏𝑖𝑗 is the stress tensor: 

 
 𝜏𝑖𝑗 = 𝜇 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) 

(2-11) 

According to Eq. (2-10), two mechanisms can influence total pressure: stress work and 

dissipation. The first term on the right-hand side of Eq. (2-10) represents the stress work 

rate. The second term on the right-hand side of Eq. (2-10) represents the dissipation rate 

(i.e., the rate at which kinetic energy is converted into internal energy).  

The majority of profile loss is generated in boundary layer regions [67]. In such 

regions, the velocity gradient is typically very large. While stress work scales with the 

velocity gradient, viscous dissipation scales with the square of the velocity gradient. 

Consequently, changes in total pressure due to stress work are assumed to be negligible. 

Therefore, 

 
𝐺 = 𝜏𝑖𝑗

𝜕𝑢𝑗

𝜕𝑥𝑖
 

(2-12) 

Here 𝐺 is the generation rate of profile loss at a point. Strictly speaking, Eq. (2-12) holds 

only for a steady, incompressible flow. However, it is assumed that Eq. (2-12) also 

approximately holds for a statistically steady flow. Under this assumption, the time-
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averaged rate of generation (𝐺̅) can be approximated by Reynolds-averaging Eq. (2-12). 

Reynolds averaging is the process of decomposing an instantaneous quantity (𝜙) into the 

sum of a time-averaged component (𝜙̅) and a fluctuating component (𝜙′). The time average 

of a quantity (denoted by an overbar) is defined as  

 
𝜙̅ =

1

𝑇
∫ 𝜙𝑑𝑡

𝑡1+𝑇

𝑡1

 
(2-13) 

where 𝑇 is the averaging period.  

Reynolds-averaging Eq. (2-12) yields  

 
𝐺̅ = 𝜏𝑖̅𝑗

𝜕𝑢̅𝑗

𝜕𝑥𝑖
+ 𝜇

𝜕𝑢𝑖′

𝜕𝑥𝑗

𝜕𝑢𝑖′

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
+ 𝜇

𝜕𝑢𝑖′

𝜕𝑥𝑗

𝜕𝑢𝑗′

𝜕𝑥𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

(2-14) 

The first term in Eq. (2-14) is simply the time-averaged viscous dissipation rate. The 

second term is proportional to the turbulent dissipation rate (𝜖). The third term does not 

have an obvious physical interpretation. During the course of analysis, it was found to be 

very small, so it is neglected. Eq. (2-14) can now be written as 

 
𝐺̅ = 𝜏𝑖̅𝑗

𝜕𝑢̅𝑗

𝜕𝑥𝑖
+ 𝜌𝜖 

(2-15) 

By definition, 𝜖 is  

 
𝜖 = 𝜈

𝜕𝑢𝑖′

𝜕𝑥𝑗

𝜕𝑢𝑖′

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

(2-16) 

While it may not be immediately obvious, 𝜏𝑖̅𝑗
𝜕𝑢𝑗

𝜕𝑥𝑖
 is positive definite. To see this, realize 

that 𝜏𝑖̅𝑗
𝜕𝑢𝑗

𝜕𝑥𝑖
 can be expressed as 

 
𝜏𝑖̅𝑗

𝜕𝑢̅𝑗

𝜕𝑥𝑖
=

1

2
𝜇 (

𝜕𝑢̅𝑖

𝜕𝑥𝑗
+

𝜕𝑢̅𝑗

𝜕𝑥𝑖
)

2

 
(2-17) 
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Since 𝜖 is also positive definite, the entire right-hand side of Eq. (2-15) is positive definite. 

This reflects an important physical fact: viscous dissipation and turbulent dissipation 

always act to increase profile loss (alternatively, it could be said that viscous dissipation 

and turbulent dissipation always act to decrease total pressure).  

 Often, it is more informative to work with the components of 𝐺̅ rather than 𝐺̅ itself. 

The components of 𝐺̅ are  

 
𝐺̅𝛷 = 𝜏𝑖̅𝑗

𝜕𝑢̅𝑗

𝜕𝑥𝑖
 

(2-18) 

and  

 𝐺̅𝜖 = 𝜌𝜖 (2-19) 

𝐺̅𝛷 is the loss at a point due only to viscous dissipation. Similarly, G̅𝜖 is the loss at a point 

due only to turbulent dissipation. Clearly, 𝐺̅ = 𝐺̅𝛷 + 𝐺̅𝜖. The total profile loss over an 

arbitrary region, 𝑅, can be found by integrating Eq. (2-15) over 𝑅.  



37 

 

Chapter 3: Results 

3.1 Low-Re Performance of the L3 

3.1.1 Loss and Loading 

One metric often used to quantify the performance of an LPT blade is the total 

pressure loss coefficient: 

 𝑌 =
𝑝0,1 − 𝑝0,2

𝑝0,1 − 𝑝2
 (3-1) 

In this section, the terms total pressure loss coefficient and loss coefficient will be used 

interchangeably as will the terms total pressure loss and loss. The loss coefficient is plotted 

as a function of Reynolds number in Fig. 3-1. Reynolds number is defined based on axial 

chord (𝐶𝑥) and exit velocity: 

 
Re∞ =

𝜌𝑈2𝐶𝑥

𝜇
 

(3-2) 

Note that 𝑝0,2 was calculated at the exit of the computational domain (a distance of 1 axial 

chord downstream of the trailing edge; see Fig. 2-1). 
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Fig. 3-1: Variation of the total pressure loss coefficient with Reynolds number for the 

L3FHW-LS. 

The loss coefficient increases gradually with decreasing Reynolds number, scaling 

approximately with Re∞
−1/2

. From this scaling, it can be inferred that viscous dissipation is 

the dominant source of total pressure loss [68]. At such low Reynolds numbers, one might 

expect unreattaching boundary layer separation to be the dominant source of loss. As 

discussed previously, unreattaching boundary layer separation causes loss to increase 

dramatically—in some cases by as much as 500% [38]. Consequently, unreattaching 

boundary layer separation is typically apparent as a “knee” (i.e., a point-like discontinuity 

in the lapse curve across which the loss coefficient increases abruptly) in the lapse curve. 

There is no indication of such a “knee” in Fig. 3-1, which suggests that unreattaching 

boundary layer separation does not occur (at least, not over the range of Reynolds number 

considered). Experiment [45] has confirmed this to be the case.  

Time-averaged loading distributions are plotted in Fig. 3-2 for select Reynolds 

numbers. Like the loss coefficient, the pressure coefficient is referenced to exit conditions: 
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 𝐶𝑝 =
𝑝0,1 − 𝑝

𝑝0,1 − 𝑝2
 (3-3) 

 

Fig. 3-2: (a) time-averaged loading distributions for the minimum and maximum 

Reynolds numbers considered in this study (b) variation in peak loading with Reynolds 

number.  

In Fig. 3-2a, 𝜉∗ is the nondimensional length along the suction surface: 

 𝜉∗ = 𝜉/𝐿ss (3-4) 

At design conditions, 𝐶𝑝 increases up unto to the suction peak (𝐶𝑝,peak) then monotonically 

decreases to the trailing edge. As might be expected, the behavior of the loading profiles 

differs at off-design conditions. The same general trends are apparent: 𝐶𝑝 tends to increase 

up unto the suction peak then decrease to the trailing edge. However, at off-design 

conditions, the loading is noticeably lower, and a plateau develops in the pressure 

coefficient downstream of the suction peak. The decrease in loading and plateau in the 

pressure coefficient are both strong indications of a separation bubble (in a time-averaged 

sense).  

Judging from the length of the constant pressure plateaus, the separation bubble is 

~0.1𝐿ss in length at Re∞ = 100,00 and to ~0.6𝐿ss in length at Re∞ = 15,000. Evidently, 
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the separation bubble grows in length as Reynolds number decreases. As the separation 

bubble grows in length, its impact on loading becomes more pronounced. At Re∞ =

100,000, the peak pressure coefficient (𝐶𝑝,peak) is only 4% below its design value. By 

Re∞ = 15,000, 𝐶𝑝,peak has decreased an additional 14%. Peak loading is plotted as a 

function of Reynolds number in Fig. 3-2b. In general, 𝐶𝑝,peak decreases with decreasing 

Reynolds number.  Interestingly, 𝐶𝑝,peak decreases somewhat abruptly as Reynolds number 

decreases from ~65,000 to ~35,000. There is definitely a discernable “depression” in the 

𝐶𝑝,peak curve over this Range of Reynolds numbers (i.e., the 𝐶𝑝,peak changes concavity 

over the region).  

 

3.1.2 Boundary Layer Development 

Contours of time-averaged streamwise velocity (𝑢𝜉) are plotted in Fig. 3-3 for 

select Reynolds numbers. They confirm what was already evident from the pressure 

distributions, namely that a separation bubble is present in a time-averaged sense and grows 

in length with decreasing Reynolds number.  
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Fig. 3-3: Contours of nondimensional streamwise velocity plotted in 𝜉𝜂 space for select 

Reynolds number. Dashed black line marks mean dividing streamline.  

In Fig. 3-3, 𝜂∗ is the nondimensional wall-normal distance 

 𝜂∗ = 𝜂/𝐿ss (3-5) 

and 𝑢𝜉
∗  is the nondimensional streamwise velocity 

 𝑢𝜉
∗ = 𝑢𝜉/𝑈2 (3-6) 

Note that 𝜉 and 𝜂 form an orthogonal curvilinear coordinate system, as depicted in Fig. 

3-4. This coordinate system will frequently be used to help visualize the near wall 

flowfield.  
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Fig. 3-4: 𝜉𝜂 coordinate system plotted in 𝑥𝑦 space. 

In Fig. 3-3, the separation bubble can be identified as the region enclosed by the 

mean dividing streamline (dashed black line) and the suction surface. The mean dividing 

streamline constitutes the edge of the separation bubble. That is, it divides the separation 

bubble from the rest of the flow (hence the name dividing streamline). It is typically 

regarded as the collection of points across each velocity profile at which the integrated 

streamwise mass flux is zero. At any streamwise position (𝜉𝑖), the height of the mean 

dividing streamline (ℎ𝑑) is given by 

 
∫ 𝜌𝑢𝜉(𝜉𝑖, 𝜂)𝑑𝜂 = 0

ℎ𝑑

0

 
(3-7) 

The mean dividing streamline is used to define the height (ℎ) of the separation bubble: 

 ℎ = max (ℎ𝑑) (3-8) 

The length of the separation bubble (𝑙) is simply the distance between the separation point 

(𝜉S) and the reattachment point (𝜉R). 𝑙 and ℎ are depicted schematically in Fig. 3-5. 
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Fig. 3-5: Schematic illustrating how 𝑙 and ℎ are defined for a separation bubble. 

An example skin friction coefficient (𝐶𝑓) distribution is plotted in Fig. 3-6. In Fig. 

3-6a, 𝐶𝑓 is plotted as a function of 𝜉. In Fig. 3-6b, 𝐶𝑓 is plotted as a function of the local 

momentum thickness Reynolds number (Re𝜃). This was done to facilitate comparison with 

the well-known correlation of Schlichting [69]:  

 𝐶𝑓 = 0.0256Re𝜃
−0.25 (3-9) 

Note that Eq. (3-9) is valid only for turbulent flows.  

 

Fig. 3-6: Skin friction coefficient (a) plotted as a function of streamwise distance (b) 

plotted as a function of Re𝜃 alongside the correlation of Schlichting [69] for Re∞ =
100,000. 

Owing to the strongly favorable pressure gradient upstream of the suction peak, 𝐶𝑓 rapidly 

increases up to a global maximum. As the boundary layer encounters the adverse pressure 
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gradient on the aft side of the suction surface, 𝐶𝑓 decreases and eventually becomes 

negative when the boundary layer separates. As the separated shear layer reattaches, 𝐶𝑓 

rapidly increases again before gradually decreasing as the turbulent boundary layer relaxes 

toward equilibrium. In the turbulent region, downstream of reattachment, the agreement 

between 𝐶𝑓 and the correlation of Schlichting [69] is good, considering the correlation was 

developed for zero-pressure gradient flow. Since the flow is under an adverse pressure 

gradient (which acts to reduce 𝐶𝑓), the correlation tends to overpredict 𝐶𝑓. Almost perfect 

agreement can be obtained if the correlation of Schlichting [69] if shifted by −0.002.  

 What about the behavior of 𝐶𝑓 within the separation bubble? The general behavior 

of 𝐶𝑓 is the same across all Reynolds numbers outside the separation bubble (i.e., 𝜉 < 𝜉S ∪

𝜉 > 𝜉R). However, the same is not true within the separation bubble (i.e., 𝜉S ≤ 𝜉 ≤ 𝜉R). To 

illustrate this point, 𝐶𝑓 is plotted in Fig. 3-7 for 𝜉S ≤ 𝜉 ≤ 𝜉R; only select Reynolds numbers 

are shown.    

 

Fig. 3-7: Distribution of the skin friction coefficient within the separation bubble for 

select Reynolds numbers. 



45 

 

In Fig. 3-7, 𝜆 is a measure of the distance along the separation bubble:  

 
𝜆 =

𝜉 − 𝜉S

𝑙
 

(3-10) 

𝜆 = 0 corresponds to the separation point and 𝜆 = 1 corresponds to the reattachment point. 

Within the separation bubble, 𝐶𝑓 exhibits two different trends. For Re∞ ≥ 65k, 𝐶𝑓 

monotonically decreases to a global minimum (𝐶𝑓,min) then returns to 0 as the flow 

reattaches. For Re∞ < 65k, the behavior of 𝐶𝑓 is much the same, except for one notable 

difference: before decreasing to 𝐶𝑓,min, 𝐶𝑓 first increases up to a local maximum (𝐶𝑓,max).  

𝐶𝑓,max increases as Reynolds number decreases, eventually becoming positive for 

sufficiently low Reynolds numbers. This is interesting. The near-wall flow (i.e., 𝜂 ≪ ℎ) is 

typically reversed everywhere within the separation bubble; in fact, flow reversal is one of 

the defining characteristics of boundary layer separation. Yet, for certain Reynolds 

numbers (e.g. Re∞ = 15k), 𝐶𝑓,max is positive. What causes the flow to exhibit attached-

like behavior (i.e., have a positive value of 𝐶𝑓) and why for only certain Reynolds numbers?  

Interestingly, 𝐶𝑓,max occurs at 𝜆 ≈ 2/3 (i.e., 2/3 the way along the separation 

bubble) for all Reynolds numbers. While 𝜆R1 is approximately constant, 𝜉R1 varies 

considerably with Reynolds number. Here, the subscript R1 is used to denote the location 

of 𝐶𝑓,max. To illustrate this point, 𝜉R1
∗  is tabulated as a function of Reynolds number in 

Table 3-1.  
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Table 3-1: Streamwise location of 𝐶𝑓,max tabulated as a function of Reynolds number. 

𝐑𝐞∞/𝟏𝟎𝟎𝟎 𝝃𝐑𝟏
∗  

15 0.70 

20 0.62 

25 0.55 

35 0.52 

45 0.50 

55 0.49 

 

𝜉S and 𝜉𝑅 were calculated from the 𝐶𝑓 distributions and are plotted as a function of 

Reynolds number in Fig. 3-8 and tabulated in Table 3-2. 

 

Fig. 3-8: Separation and reattachment point plotted as a function of Reynolds number. 
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Table 3-2: Separation and reattachment point tabulated as a function of Reynolds 

number. 

𝐑𝐞∞/𝟏𝟎𝟎𝟎 𝝃𝐒
∗ 𝝃𝐑

∗  

15 0.32 0.89 

20 0.30 0.77 

25 0.27 0.67 

35 0.27 0.59 

45 0.28 0.57 

55 0.28 0.55 

65 0.29 0.48 

75 0.29 0.46 

90 0.29 0.43 

100 0.29 0.42 

 

To a good first approximation, 𝜉S is constant, varying by only a few percent of 𝐿ss. 

That being said, the behavior of 𝜉S is noticeable different for very low Reynolds numbers. 

For Re∞ ≥ 30,000, 𝜉S shifts upstream as Reynolds number is decreased. For Re∞ <

30,000, 𝜉S shifts downstream as Reynolds number is decreased. The behavior of 𝜉S for 

Re∞ < 30,000 is a bit counterintuitive. Why does the separation point shift downstream 

rather than upstream? As evident in Fig. 3-2, the separation bubble modifies the pressure 

distribution around the airfoil. For Re∞ ≤ 30,000, the separation bubble modifies the 

pressure distribution in such a way as to allow the laminar boundary layer to remain 

attached slightly longer. 𝜉S shifts downstream as a result.  

Unlike 𝜉S, 𝜉R continually shifts downstream as Reynolds number is decreased. For 

reasons that are not yet clear, 𝜉R abruptly shifts downstream as Reynolds number decreases 

from 65,000 to 55,000. Interestingly, this is the same range of Reynolds numbers over 

which 𝐶𝑝,peak was observed to decrease abruptly.  

The conditions at 𝜉S are summarized in Table 3-3 in terms of the shape factor (𝐻), 

Reθ, and the Pohlhausen parameter (Po). The Polhausen parameter is defined as 
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 Po = 𝑅𝑒𝜃
2𝐾 (3-11) 

where 𝐾 is the acceleration parameter: 

 
𝐾 = (

𝜈

𝑈𝑒
)

2 𝑑𝑈𝑒

𝑑𝜉
 

(3-12) 

Table 3-3: Flow conditions are separation. 

𝐑𝐞∞/𝟏𝟎𝟎𝟎 𝑯𝐒 𝐑𝐞𝜽,𝐒 𝐏𝐨𝐒 

15 3.9 71 -0.068 

20 3.9 78 -0.069 

25 3.7 85 -0.077 

35 3.6 100 -0.079 

45 3.5 114 -0.080 

55 3.5 131 -0.080 

65 3.5 156 -0.086 

75 3.5 169 -0.087 

90 3.5 180 -0.087 

100 3.5 192 -0.087 

 

At separation, 𝐻 ≈ 3.5 and Po ≈ −0.08. Reθ increases approximately linearly with Re∞.  

For a laminar boundary layer, 𝐻 = 3.5 at separation [71]. Except for very low Reynolds 

numbers, PoS agrees well with the empirical value of −0.082 suggested by Thwaites [72]. 

This lends credence to the theory that the separation bubble slightly delays separation for 

Re∞ < 30,000. 

The displacement thickness 𝛿∗, momentum thickness 𝜃, and shape factor 𝐻 are 

presented in Fig. 3-9 as a function of 𝜉∗.  
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Fig. 3-9: Distribution of the (a) displacement thickness (b) momentum thickness and (c) 

shape factor along the suction surface of the L3 for select Reynolds numbers. 

For all Reynolds numbers, 𝐻 increases up to a local maximum, then decreases to a value 

of between 2.4 − 2.5. This is the expected value for a laminar, accelerated boundary layer 

[34]; for reference, 𝐻 = 2.6 for a laminar boundary layer under zero pressure gradient. The 

initial increase in the shape factor is the result of a small LSB that develops near the leading 

edge. The shape factor remains approximately constant through the end of the favorable 

pressure gradient region but increases rapidly when the boundary layer separates. Upon 

separation, the displacement thickness increases sharply, but the momentum thickness 

remains approximately constant, leading to the observed increase in 𝐻. The maximum 

value of 𝐻 in this region is associated with the onset of transition [70]. As the boundary 

layer reattaches, the displacement thickness decreases, and the momentum thickness 
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increases. 𝐻 decreases as a result. For Re∞ > 25k, 𝐻 ≈ 1.6 at the trailing edge. This is 

consistent with the shape of a turbulent boundary layer and is identical to the shape factor 

reported by Volino [34] in his study of an LPT airfoil. For Re∞ ≤ 25,000, 𝐻 is larger at 

the trailing edge, with a value of ~1.9. For reference, 𝐻 = 1.4 for a turbulent boundary 

under zero pressure gradient.  

 While the shape factor at the trailing edge is only slightly higher for Re∞ ≤ 25k, 

the turbulent boundary layer is significantly less mature. Trailing edge boundary layer 

profiles are plotted for select Reynolds numbers in Fig. 3-10.  

 

Fig. 3-10: Trailing edge boundary layer profiles plotted (a) as a function of 𝜂 (b) as a 

function of 𝑦+. 

In Fig. 3-10a, the trailing edge boundary layer profile is plotted for 0 ≤ 𝜂 ≤ 𝛿, where 𝛿 is 

the boundary layer thickness. As expected, the trailing edge boundary layer grows thinner 

with increasing Reynolds number. This trend is also apparent in Fig. 3-9a and Fig. 3-9b. 

The boundary layer profile also grows “fuller” as Reynolds number increases. A full 
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velocity profile is a hallmark of a turbulent boundary layer. As the profile grows fuller, the 

velocity gradient across the inner region (i.e., the viscous sublayer) steepens.   

In Fig. 3-10b the trailing edge boundary layer profile is plotted alongside the “law 

of the wall” [73]. Consistent with the recommendations of Bradshaw and Huang [73], 𝜅 is 

taken to be 0.41 and 𝐶 is taken to be 5.2. As can be seen, the turbulent boundary layer is 

significantly more mature for  Re∞ = 65k  and Re∞ = 100k. For low Reynolds numbers, 

the reattachment point is very close to the trailing edge, leaving the emergent turbulent 

boundary layer little room to mature. For example, reattachment occurs only 0.1𝐿ss 

(equivalently, ~0.2𝑙) upstream of the trailing edge at Re∞ = 15k. According to Alam and 

Sandham, it may take as many as 7 bubble lengths to recover a typical turbulent profile 

[74]. 

 

3.1.3 Transition 

At this point, it is clear that a separation bubble is present in a time average sense. 

While there have been indications that the flow is laminar at separation (e.g., Table 3-3), 

this fact has not been conclusively established. To determine whether the separation bubble 

is laminar, transitional, or turbulent, it is necessary to determine where the flow transitions 

(i.e., before or after separation).  

The transition point was identified using the intermittency algorithm of Volino et 

al. [60], as discussed previously. Example intermittency contours are plotted in Fig. 3-11 

for Re∞ = 15,000.  
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Fig. 3-11: Intermittency contours plotted in (a) 𝑥𝑦 space and (b) 𝜉𝜂 space for Re∞ =
15,000. Dashed black lines marks mean dividing streamline.  

The intermittency is 0 at separation. While only one Reynolds number is depicted in Fig. 

3-11, separation always precedes transition. For all Reynolds numbers, the boundary layer 

begins laminar and eventually transitions to turbulence at some point in the adverse 

pressure gradient region downstream of the separation point. Thus, the separation bubble 

is indeed laminar.  

The transition point, (𝜉t, 𝜂t), was defined as the first point at which the following 

two conditions were met: 1) 𝛾(𝜉, 𝜂) > 0.01 and 2) 𝜂 > ℎ(𝜉). The second condition ensures 

the transition point lies in the shear layer, outside of the separation bubble (i.e., outside the 

region enclosed by the mean dividing streamline and the suction surface). Similarly, the 

transition end point (𝜉T, 𝜂T) was defined as the first point at which 𝛾(𝜉, 𝜂) > 0.99 and 𝜂 >

ℎ(𝜉). Between 𝜉t and 𝜉T (i.e., in the transition region), 𝛾 increases exponentially from 0 to 

1, as depicted in Fig. 3-12. Note that the max intermittency at each streamwise location, 

𝛾max, is plotted rather than the intermittency at every point (as in Fig. 3-11). 
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Fig. 3-12: Peak intermittency for Re∞ = 15,000 plotted (a) as a function of streamwise 

distance (b) alongside the universal intermittency distribution of Dhawan & Narasimha 

[75].  

𝛾max is 0 up unto 𝜉∗ ≈ 0.6, at which point it increases rapidly before saturating around 

𝜉∗ = 0.7. The point at which 𝛾max first begins to increase roughly corresponds to 𝜉t
∗ (the 

exact location of 𝜉t
∗ is determine by the two conditions discussed previously). Similarly, 

the point at which 𝛾max saturates roughly corresponds to 𝜉T
∗ . Note that the actual locations 

of  𝜉t
∗ and 𝜉T

∗  (i.e., not approximate) are plotted in Fig. 3-12a. 

 In Fig. 3-12b, 𝛾max is plotted alongside the universal intermittency distribution of 

Dhawan & Narasimha [75]: 

 
𝛾 = 1 − exp [−0.412 (

𝜉 − 𝜉t

𝜉75 − 𝜉25  
)

2

] 
(3-13) 

In Eq. (3-13), 𝜉75 is the location at which 𝛾 = 0.75; similarly, 𝜉25 is the location at which 

𝛾 = 0.25. While the universal intermittency distribution was originally developed for zero-

pressure-gradient flows, numerous studies (e.g., Volino and Hultgren [76] and Sharma et 
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al. [77]) have shown it to be valid for a broad range of conditions. The variation of 𝛾 in the 

transition region is well-described by the universal intermittency distribution.   

 The transition point, separation point, and reattachment point are plotted as a 

function of Reynolds number in Fig. 3-13a. 

 

Fig. 3-13: (a) separation, transition, and reattachment points plotted as a function of Re∞ 

(b) transition plotted as a function of Re𝜃 alongside the correlation of Praiser and Clark 

[38]. 

Fig. 3-13a makes clear that separation always precedes transition. In general, 𝜉t shifts 

downstream as Reynolds number decreases, much like 𝜉R. However, 𝜉t does not exhibit 

the same abrupt change over 55,000 ≤ Re∞ ≥ 65,000. The variation of 𝜉t with Reynolds 

number is well described by the correlation of Praiser and Clark [38], as depicted in Fig. 

3-13b.  

The locations of transition onset (𝜉t) and transition completion (𝜉T) are summarized 

in Table 3-4.  
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Table 3-4: Summary of the locations of both transition onset and transition completion. 

Note that the uncertainty in both 𝜉t and 𝜉T is 0.01𝐿ss.  

𝐑𝐞∞/𝟏𝟎𝟎𝟎 𝝃𝐭
∗ (±𝟎. 𝟎𝟏) 𝝃𝐓

∗  (±𝟎. 𝟎𝟏) 

15 0.60 0.74 

20 0.55 0.66 

25 0.47 0.55 

35 0.43 0.52 

45 0.41 0.50 

55 0.39 0.48 

65 0.38 0.45 

75 0.37 0.45 

90 0.36 0.43 

100 0.35 0.42 

 

For all Reynolds numbers, the uncertainty in the transition point is 0.01𝐿ss. As discussed 

earlier, the algorithm of Volino et al. [60] requires the user to choose an appropriate value 

for 𝐶1. Choosing this threshold is more of an art than a science; ultimately, visual inspection 

is the best way to determine how well the intermittency function is separating turbulent 

from non-turbulent samples [63]. Given the uncertainty inherent in choosing 𝐶1, an attempt 

was made to quantify how this uncertainty affects 𝜉𝑡. For each Reynolds number, 𝜉t was 

calculated for 10 different values of 𝐶1 and the max of the standard deviation of 𝜉𝑡 was 

taken as the uncertainty. Note: error bars are not drawn in Fig. 3-13 as the uncertainty is so 

small as not to be discernible at the scale shown. 

 

3.1.4 Evolution of the LSB  

The length and height of the LSB are plotted as a function of Reynolds number in 

Fig. 3-14a and Fig. 3-14b respectively.  
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Fig. 3-14: (a) length of the LSB plotted as a function of Reynolds number (b) height of 

the LSB plotted as a function of Reynolds number. 

Interestingly, both 𝑙 and ℎ increase abruptly as Reynolds number decreases from 

65,000 to 55,000; 𝑙 increases by nearly 60% and ℎ increases by nearly 100%. This is the 

same range of Reynolds numbers over which 𝜉R suddenly shifts downstream and the 

𝐶𝑝,peak curve changed concavity. All of this is very strong evidence to suggest that the LSB 

transitions from short to long (i.e., bursts) over this range of Reynolds numbers. Note: 

55,000 ≤ Re∞ ≤ 65,000 is also the range of Reynolds numbers over which the time-

averaged behavior of 𝐶𝑓 changed within the separation bubble (see Fig. 3-7); however, at 

this point it is not clear how this relates to bursting.  

  The topic of transition is now briefly revisited. For long LSBs (Re∞ > 65,000), 

transition completion precedes reattachment whereas for short LSBs (Re∞ < 55,000) 

transition completion is approximately coincident with reattachment. To make this point 

clear, the distance between transition completion and reattachment (𝜉R
∗ − 𝜉T

∗) is plotted as 

a function of Reynolds number in Fig. 3-15. 
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Fig. 3-15: Distance between transition completion and reattachment plotted as a function 

of Reynolds number. 

For Re∞ > 65,000, the final coalescence into turbulence occurs in the vicinity of 

reattachment. However, for Re∞ < 65,000, the final coalesce into turbulence occurs as 

much as ~0.2𝐿ss upstream of reattachment. Apparently, significantly more mixing is 

necessary to bring about reattachment for long LSBs.  

It is interesting to note that the reattachment point abruptly shifts downstream when 

the LSB bursts, but the transition point does not (see Fig. 3-13). This lends credence to the 

theory that bursting is independent of the transition process and occurs as a result of a 

sudden failure of the shear layer to reattach [27,29]. Hatman and Wang [27] go so far as to 

claim that short and long LSBs are “identical” up unto transition.  

In light of the above discussion, it is now possible to assess the performance of the 

machine learning model (see Fig. 2-6). The model predicts that bursting occurs over the 

range 40,000 < Re∞ < 60,000. This agrees well with the actual range over which 

bursting occurs, although the lower bound is a bit conservative.  
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As mentioned earlier, there exist a number of bursting criteria, the most famous of 

which being due to Gaster [31]. Data from the present study is plotted on top of the bursting 

diagram of Gaster in Fig. 3-16.  

 

Fig. 3-16: Data from present study plotted on top of the bursting diagram of Gaster [31]. 

While 𝑃Gaster increases rapidly as Reynolds number decreases from 65,000 to 55,000 (i.e., 

at bursting), the bursting line does not intersect the data over this range. In fact, the bursting 

line does not intersect the data at all. However, if the bursting line were extrapolated, it 

would intersect the data around Re∞ = 25,000—significantly below the actual bursting 

Reynolds number. The bursting criteria of both Diwan et al. [33] and Hatman and Wang 

[27] were also tested; however, both predicted the LSB is short over the entire Range of 

Reynolds numbers.  

In this study, bursting was caused by a change in Reynolds number rather than a 

change in incidence. Most bursting criteria (include the criteria of Diwan et al. [33] and 

Hatman and Wang [27]) were developed for applications in which bursting is caused by a 

change in incidence. The failure of existing criteria to correctly predict bursting in the 
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present study suggests that the effects of bursting are more pronounced in applications 

where bursting is caused by a change in incidence. This is best illustrated by the bursting 

criterion of Diwan et al. [33]. According to their model, bursting occurs when 𝑃Diwan <

−28. In this study, the lowest value of 𝑃Diwan (occurring at Re∞ = 15,000) was 

approximately −9. Since 𝑃Diwan is based on ℎ, this suggests that the change in ℎ is 

significantly more pronounced if bursting is caused by a change in incidence.   

All bursting criteria attempt to answer one question: when does bursting occur? The 

best answer to this question is probably “you will know it when you see it,” which is why 

the approach of Tani [30] is so popular. There are many things in fluid dynamics that fall 

under the category of “you will know it when you see it,” turbulence being perhaps the best 

example thereof. This work represents an attempt to quantify the “you-will-know-it-when-

you-see-it” approach of Tani using modern (i.e., data-driven) methods.  

Relative to existing bursting criteria, the present model shows its utility in two 

ways. First, it requires only a few pressure measurements. Pressure is easy to measure, 

especially relative to quantities such as 𝜃 or ℎ. Second, the present model is probabilistic 

rather than deterministic. As Gaster [31] himself acknowledged, bursting is not an 

instantaneous phenomenon; it occurs over a finite range of Reynolds numbers (or angles 

of attack). During bursting, an LSB is neither short, nor long; it exists in a sort of “gray” 

area between the two states. All currently existing models are deterministic. They 

recognize only two states: short and long. The present model recognizes a continuum of 

states. Instead of being either short or long, it allows an LSB to be 60% short and 40% long 

or 90% short and 10% long. In this manner, the present model is more consistent with 

reality, as bursting is a continuous phenomenon. While the present model performed well 



60 

 

in this work, it likely needs significantly more training data—from a diversity of 

applications—to perform well in general. With that said, it certainly shows promise.  

 

3.1.5 Section Summary 

In this section, the low-Re performance of the L3 was analyzed. Reynolds lapse 

was found to be relatively benign; remarkably, there was no indication of unreattaching 

boundary layer separation over the entire range of Reynolds numbers considered. While 

the suction surface boundary layer did not fully separate, an LSB developed over the aft 

part of the suction surface and grew longer with decreasing Reynolds number. It was 

conclusively shown that bursting occurred over the range 55,000 ≤ Re∞ ≤ 65,000. The 

cluster-based bursting criterion developed earlier was found to predict the onset of bursting 

reasonably well, especially compared to existing bursting criteria.  

Upon bursting, ℎ and 𝑙 increased rapidly. The length of the separation bubble 

increased not because the separation point changed but because the reattachment point 

changed. Upon bursting, the reattachment point abruptly shifted downstream. The 

separation point remained approximately constant through bursting. Bursting was found to 

have no effect on the location of transition onset, which supports the theory that bursting 

is independent of the transition process and occurs as a result of a sudden failure of the 

shear layer to reattach [27,29]. For long LSBs, transition completion occurred upstream (in 

some cases, as much as ~0.2𝐿ss) of the location of time-averaged reattachment. For short 

LSBs, transition completion was approximately coincident with the location of time-

averaged reattachment. 
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3.2 Vortex Dynamics 

In this section, the dynamics of the vortex shedding process are examined. In a low-

disturbance environment, the Kelvin-Helmholtz instability (KHI) is the dominant transition 

mechanism in a separated shear layer [78]. KHI leads to a roll-up of the vorticity contained 

in the shear layer into discrete, spanwise vortex structures aptly called “roll-up” vortices 

[37,78]. These vortices advect downstream where they are eventually shed in a periodic 

fashion. The goal of this section is to determine what effect—if any—bursting has on the 

vortex shedding process.  

The analysis domain 𝐷 

 𝐷 = {(𝜉∗, 𝜂∗)| 𝜉LE
∗ ≤ 𝜉∗ ≤ 𝜉TE

∗ , 0 ≤ 𝜂∗ ≤ 𝜂max
∗ } (3-14) 

is depicted in Fig. 3-17.  

 

Fig. 3-17: Analysis domain plotted in 𝑥𝑦 space; every 7th cell is shown in the 𝜉-direction 

and every 4th cell is shown in the 𝜂-direction. 

𝐷 includes only the suction surface and its immediate surroundings. The wall-normal 

extent of 𝐷 (i.e., 𝜂max
∗ ) is much greater than the average boundary layer thickness but much 

less than the pitch. 𝐷 was discretized into 75 cells in the 𝜉-direction and 125 cells in the 𝜂-

direction.  
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Vortex cores were tracked across both space (i.e., within 𝐷) and time using the 

algorithm of Jiang et al. [64] (with some modifications; see §2.3.2). Two-dimensional 

histograms of time-averaged core vorticity (𝜔̅𝑐) are plotted in Fig. 3-18a and Fig. 3-19a for   

Re∞ = 15,000 and Re∞ = 25,000, respectively. The same number of bins were used for 

both Reynolds numbers.  𝜔𝑐 is a piecewise function; at any point, 𝜔𝑐 = 𝜔𝑧 if a vortex core 

exists at that point and 0 otherwise. Two-dimensional histograms of vortex core residence 

time (𝑡𝑟) are plotted in Fig. 3-18b and Fig. 3-19b for   Re∞ = 15,000 and Re∞ = 25,000, 

respectively. Again, the same number of bins were used for both Reynolds numbers. As 

the name suggests, 𝑡𝑟 measures the fraction of time a vortex core resides within a given 

region (e.g., a histogram bin).  

 

 

Fig. 3-18: (a) two-dimensional histogram of time-averaged core vorticity; dashed black 

line marks mean dividing streamline (b) two-dimensional histogram of vortex core 

residence time; dashed white line marks mean dividing streamline. Re∞ = 15,000 

shown. 
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Fig. 3-19: (a) two-dimensional histogram of time-averaged core vorticity; dashed black 

line marks mean dividing streamline (b) two-dimensional histogram of vortex core 

residence time; dashed white line marks mean dividing streamline. Re∞ = 25,000 

shown. 

For Re∞ = 15,000, the roll-up vortex forms around 𝜉∗ = 0.5. It then advects 

downstream before being shed around 𝜉∗ = 0.75; this location approximately corresponds 

to the location of ℎ𝑑,max. Before shedding (0.5 < 𝜉∗ < 7.5), the roll-up vortex follows a 

clearly defined path that is closely aligned with the mean dividing streamline. After 

shedding (𝜉∗ > 0.75), the roll-up vortex no longer follows a clearly defined path; however, 

on average, it still follows the mean dividing streamline—at least, up unto the location of 

time-averaged reattachment. The same trends described above for Re∞ = 15,000 are also 

apparent for Re∞ = 25,000. 

Interestingly, a second vortex appears to develop around 𝜉∗ = 0.6 for Re∞ =

15,000. Its rotation is opposite that of the roll-up vortex, as 𝜔̅𝑐 is positive rather than 

negative. For reasons that will become clear later, this vortex will be referred to as the 

induced vortex. The induced vortex develops very near the suction surface (𝜂∗ < 0.01). It 
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is relatively weak when it develops but quickly grows in strength as it migrates away from 

the suction surface. From Fig. 3-19 alone, it is not clear if the induced vortex merges with 

the roll-up vortex or is ejected into the freestream. Again, the same trends described above 

for Re∞ = 15,000 are also apparent for Re∞ = 25,000. At this point, two questions come 

to mind: what causes the induced vortex and is it present for all Reynolds numbers? These 

questions will be answered in turn.  

The induced vortex is produced by a process that will be referred to as vortex 

pairing. In the literature, the term vortex pairing is used to refer to two different 

phenomena. Some authors (e.g., [79]) use the term vortex pairing to refer to the process 

whereby two neighboring vortices merge to form a single, larger vortex. Others (e.g., [80]), 

use the term to refer to the process whereby two neighboring vortices interact to produce a 

third vortex of opposite sign. In this research, the term vortex pairing is used to refer to the 

latter phenomenon. This is why the name induced vortex was used earlier. The vortex 

pairing process is depicted in Fig. 3-20 for Re∞ = 15,000.   
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Fig. 3-20: Time series depicting vortex pairing process for Re∞ = 15,000. Each snapshot 

depicts contours of instantaneous spanwise vorticity overlaid with instantaneous 

streamlines. Dashed black line marks mean dividing streamline. Positive vortex cores are 

marked with red circles; similarly, negative vortex cores are marked with blue circles. 

Vortex core locations were determined using the algorithm of Jiang et al. [64]. 

The actual pairing process is depicted in the first snapshot of Fig. 3-20. Vortex I 

and vortex I’ are roll-up vortices at varying stages of development. Vortex II is the induced 

vortex (i.e., the vortex produced by vortex pairing). Vortex II develops in the braid region 

(i.e., high-shear region) between vortices I and I’. In the first snapshot, vortex II is very 

near the suction surface. At this stage, it is relatively weak. As time passes, vortex II 

migrates away from the wall, gaining strength as it does so. Eventually, it is ejected into 

the shear layer. In examining Fig. 3-18 and Fig. 3-19 earlier, it was unclear if the induced 

vortex merged with the roll-up vortex or was ejected into the shear later. Fig. 3-20 makes 

clear that the latter occurs. Previous ejection events can be seen in the first snapshot in Fig. 

3-20. 
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The vortex pairing process alters the time-averaged topology of the LSB, as 

illustrated by Fig. 3-21  

 

Fig. 3-21: Time-averaged contours of spanwise vorticity overlaid with time-averaged 

streamlines for Re∞ = 15,000. Induced vortex enlarged for easy viewing. Positive vortex 

cores are marked with red circles; similarly, negative vortex cores are marked with blue 

circles. Vortex core locations were determined using the algorithm of Jiang et al. [64]. 

In a time-averaged sense, there are two vortices present. The negative vortex is the familiar 

reverse-flow vortex. The positive vortex is not so familiar. Indeed, it marks a departure 

from the typical time-averaged topology of an LSB [29]. Apparently, this additional vortex 

arises as a result of the vortex pairing process. Its rotation is opposite that of the reverse-

flow vortex. Consequently, it will be referred to as the counter-rotating vortex. It is located 

very near the suction surface, at a streamwise location of approximately 𝜉∗ = 0.7.  

At this point, an earlier topic is revisited: the time-averaged behavior of 𝐶𝑓 in the 

separation bubble. It was noted earlier that bursting affects the behavior of 𝐶𝑓 in the 

separation bubble, but it was not immediately clear why. Recall, for short LSBs, 𝐶𝑓 

monotonically decreases to 𝐶𝑓,min then returns to 0 as the flow reattaches. For long LSBs, 

the behavior of 𝐶𝑓 is much the same, except for one notable difference: before decreasing 

to 𝐶𝑓,min, 𝐶𝑓 first increases up to 𝐶𝑓,max. What causes this behavior? The answer lies in Fig. 
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3-21. Looking back at  Fig. 3-7 and Table 3-1, 𝐶𝑓,max occurs at 𝜉∗ = 0.7 for Re∞ =

15,000. This location should sound familiar. It is the location of the counter-rotating 

vortex. The counter-rotating vortex creates a pocket of flow near the suction surface that is 

nearly stagnant—at least, relative to the strongly reversed surrounding flow. This pocket 

of flow shows up as an increase in 𝐶𝑓. Since the counter-rotating vortex arises as a result 

of vortex pairing, this suggests a correlation between vortex pairing and long LSBs.  

 To determine if such a correlation exists, the number of pairing events is plotted as 

a function of Reynolds number in Fig. 3-22. The number of pairing events was estimated 

by looping over all time steps and counting the number of positive cores that were 

identified in the region 𝜉S < 𝜉 < 𝜉R. This is a somewhat crude way of estimating the 

number of pairing events; a far better—and more modern—approach would be to train a 

machine learning model to recognize pairing events. Machine learning methods excel at 

pattern-recognition tasks. Since vortex pairing produces a distinctive pattern (see Fig. 

3-20), it would likely be trivial to train a machine learning model to identify pairing events. 

However, this is beyond the scope of the current work.  

 

Fig. 3-22: Number of vortex pairing events at each Reynolds number. 
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Vortex pairing occurs almost exclusively for  Re∞ < 65,000; clearly, there is a 

strong correlation between long LSBs and vortex pairing; At bursting, the number of 

pairing events increases by over 400%. In reality, this figure is likely much higher. Most 

of the “pairing events” detected at higher Reynolds numbers are not truly pairing events. 

Rather, they are simply positive vortex cores that result from the breakdown of the roll-up 

vortex. At low Reynolds numbers, the roll-up vortex remains coherent past the time-

averaged point of reattachment; the same is not true at high Reynolds numbers. As 

mentioned previously, the present method of detecting pairing events is somewhat crude. 

However, for its intended purpose, it is more than adequate.  

 In examining Fig. 3-22, it appears the counter-rotating vortex pushes the reverse-

flow vortex up and away from the suction surface. This might indicate that the onset of 

vortex pairing is what causes ℎ to increase abruptly at bursting. After all, there is a 

correlation between the onset of vortex pairing and bursting. However, correlation does 

not necessarily imply causation. It is equally possible that another mechanism causes ℎ to 

increase at bursting. In this scenario, vortex pairing occurs because ℎ increases and not the 

other way around. Unfortunately, there is insufficient evidence to conclude whether vortex 

pairing occurs because ℎ increases or ℎ increases because vortex pairing occurs.  

 

3.2.1 Section Summary 

In this section it was found that, for short LSBs, vortex shedding proceeded in the 

usual manner. For long LSBs, vortex pairing was observed to occur. Vortex pairing is the 

process whereby two neighboring spanwise vortices interact to produce a third vortex of 

opposite sign. Vortex pairing caused small, counter-rotating vortices to be periodically 
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ejected into the shear layer. This process altered the time-averaged topology of the LSB to 

include a second, counter-rotating vortex located beneath the reverse-flow vortex. Since 

the counter-rotating vortex produced by vortex pairing displaced the reversed-flow vortex, 

it is possible that the onset of vortex pairing is what drives the rapid increase in ℎ observed 

at bursting. However, further study is needed to ascertain this.  

 

3.2.2 Loss Analysis 

In this section, the profile loss of the L3 is analyzed using the method outlined 

earlier (see §2.3.3). Throughout this section, the terms profile loss and loss will be used 

interchangeably. While profiles loss traditionally includes both the loss generated in the 

boundary layer of the LPT blade as well as trailing edge loss, the latter is not considered in 

this analysis. As discussed by Denton [65], trailing edge loss is a function of the momentum 

thickness at the trailing edge (𝜃TE) and the geometry of the blade. Since 𝜃TE is known (see 

Fig. 3-9), the trailing edge loss can be approximated using any of the relations available in 

the literature (e.g., the relation of Denton [65]). The goal of this section is to determine 

how bursting affects loss.  

The analysis domain 𝐷 is the same as that used in the previous analysis (see Eq. 

(3-14) and Fig. 3-17). Since the suction surface boundary layer is the primary source of 

profile loss [67], 𝐷 need only include the suction surface and its immediate surroundings. 

For the present analysis, 𝐷 was discretized into 320 cells in the 𝜉-direction and 50 cells in 

the 𝜂-direction—significantly more than in the previous analysis.  

It is necessary to introduce two new quantities: the two-dimensional viscous loss 

distribution function 𝜁𝛷̅(𝜉, 𝜂) and the two-dimensional mixing loss distribution function 
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𝜁𝜖̅(𝜉, 𝜂). The former describes how losses due to viscous dissipation are distributed over 𝐷 

and the latter describes how losses due to trubulent dissipation are distributed over 𝐷. Both 

functions are defined only at cell centers. Given a cell with center (𝜉𝑖𝑗, 𝜂𝑖𝑗) and volume Δ𝑉  

 
𝜁𝛷̅(𝜉𝑖𝑗, 𝜂𝑖𝑗) = ∫ 𝐺̅𝛷d𝑉

 

Δ𝑉

 
(3-15) 

and 

 
𝜁𝜖̅(𝜉𝑖𝑗, 𝜂𝑖𝑗) = ∫ 𝐺̅𝜖d𝑉

 

Δ𝑉

 
(3-16) 

All integrals were evaluated using a 1-point Gaussian quadrature. For example, 

 
∫ 𝐺̅𝛷d𝑉

 

Δ𝑉

 ≈ 𝐺̅𝛷(𝜉𝑖𝑗 , 𝜂𝑖𝑗)Δ𝑉 
(3-17) 

𝐺̅𝛷(𝜉𝑖𝑗, 𝜂𝑖𝑗) and 𝐺̅𝜖(𝜉𝑖𝑗 , 𝜂𝑖𝑗) were found by taking the cell-wise averages of 𝐺̅𝛷 and 𝐺̅𝜖, 

respectively. The process of computing 𝜁𝛷̅(𝜉, 𝜂) and 𝜁𝜖̅(𝜉, 𝜂) for a single cell is depicted 

schematically in Fig. 3-23.  

 

Fig. 3-23: Depiction of the process for computing 𝜁𝛷̅(𝜉, 𝜂) and 𝜁𝜖̅(𝜉, 𝜂) for a single cell 

The two-dimensional distribution functions form a sort of ‘basis’ for describing loss. As 

will be seen, many quantities can be expressed in terms of these functions.   
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Contours of 𝜁𝛷̅(𝜉, 𝜂) and 𝜁𝜖̅(𝜉, 𝜂) are plotted in Fig. 3-24 and Fig. 3-25 for Re∞ =

15,000 and Re∞ = 25,000, respectively. In both figures, the loss distribution functions 

are nondimensionalized by the total loss (𝑍̅) over 𝐷: 

 
𝑍̅ = ∫ ∫ [𝜁𝛷̅(𝜉, 𝜂) + 𝜁𝜖̅(𝜉, 𝜂)]𝑑𝜉𝑑𝜂

𝜉TE

𝜉LE

𝜂max

0

 
(3-18) 

 

 

Fig. 3-24: (a) contours of two-dimensional viscous loss distribution function (b) contours 

of two-dimensional mixing loss distribution function. Dashed black line marks mean 

dividing streamline. 
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Fig. 3-25: (a) contours of two-dimensional viscous loss distribution function (b) contours 

of two-dimensional mixing loss distribution function. Dashed black line marks mean 

dividing streamline. 

 

Prior to transition completion, the dominant source of loss is viscous dissipation in 

the shear layer. After transition completion, mixing also contributes to loss; however, it is 

not clear what the dominant loss generation mechanism is in this region. Mixing losses are 

highest near ℎ𝑑,max. Recall, ℎ𝑑,max is the maximum displacement of the mean dividing 

streamline. The elevated mixing loss near ℎ𝑑,max is a result of the ejection-shedding 

process.  For long LSBs, vortex pairing also likely contributes to loss in this region.  

To better understand the development of profile loss along the suction surface, 𝜂 is 

integrated out of the two-dimensional loss distributions to yield one-dimensional loss 

distributions. The one-dimensional viscous loss distribution  

 
𝜁𝛷̅(𝜉) = ∫ 𝜁𝛷̅(𝜉, 𝜂)

𝜂max

0

d𝜂 
(3-19) 
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describes how losses due to viscous dissipation are distributed over the suction surface. 

Similarly, the one-dimensional mixing loss distribution function  

 
𝜁𝜖̅(𝜉) = ∫ 𝜁𝜖̅(𝜉, 𝜂)

𝜂max

0

d𝜂 
(3-20) 

describes how losses due to turbulent dissipation are distributed over the suction surface. 

While the two-dimensional distributions are more fundamental, the one-dimensional 

distributions are easier to interpret.    

 𝜁𝛷̅(𝜉) and 𝜁𝜖̅(𝜉) are plotted in Fig. 3-26 for  Re∞ = 25,000. Again, the loss 

distributions are nondimensionalized by 𝑍̅.  

 

 

Fig. 3-26: One-dimensional loss distribution functions plotted for Re∞ = 25,000. 

In Fig. 3-26, 𝜁(̅𝜉) is the one-dimensional total loss distribution; it is simply the sum of 

𝜁𝛷̅(𝜉) and 𝜁𝜖̅(𝜉). Interestingly, 𝜁(̅𝜉) exhibits two peaks: one before separation and one 

between transition and reattachment. The first peak in 𝜁(̅𝜉) occurs in the favorable pressure 

gradient region upstream of peak suction. In this region, viscous dissipation is the only 
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source of loss. Thus, the first peak in 𝜁(̅𝜉) is driven by viscous dissipation. By contrast, the 

second peak in 𝜁(̅𝜉) is driven by turbulent dissipation. As the flow transitions, 𝜁𝜖̅(𝜉) 

increases rapidly. While the intense mixing in the region of transition has the desirable 

effect of bringing about reattachment, it also contributes significantly to loss. Of the two 

peaks in 𝜁(̅𝜉), the first is larger. This is true for all Reynolds numbers and suggests that the 

largest single source of loss is viscous dissipation in the accelerated, laminar boundary 

layer upstream of peak suction.  

 For the majority of the turbulent region (i.e., 𝜉 > 𝜉T), neither viscous dissipation 

nor turbulent dissipation is dominant; both contribute roughly equally to 𝜁(̅𝜉). This is a bit 

counterintuitive. Naïvely, one might expect turbulent dissipation to be dominant in the 

turbulent region—it is in the name after all. However, this is not the case. In fact, the 

opposite is true. Only for very low Reynolds numbers (e.g., Re∞ = 25,000) does mixing 

account for the majority of loss in the turbulent region. For most Reynolds numbers, 

viscous dissipation is the dominant loss generation mechanism in the turbulent region. This 

raises two interesting questions. What percentage of the loss in the turbulent region is due 

to viscous dissipation and at what Reynolds number does viscous dissipation become the 

dominant loss generation mechanism?  

 Between any two streamwise points (𝜉1 and 𝜉2), the fraction of loss due to viscous 

dissipation is  

 

𝑓𝛷(𝜉1 → 𝜉2) =
∫ 𝜁𝛷̅(𝜉)

𝜉2

𝜉1
𝑑𝜉

∫ 𝜁(̅𝜉)
𝜉2

𝜉1
𝑑𝜉

 

(3-21) 

Similarly, the fraction of loss due to turbulent dissipation is 
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𝑓𝜖(𝜉1 → 𝜉2) =
∫ 𝜁𝜖̅(𝜉)

𝜉2

𝜉1
𝑑𝜉

∫ 𝜁(̅𝜉)
𝜉2

𝜉1
𝑑𝜉

 

(3-22) 

Note that 𝑓𝛷(𝜉1 → 𝜉2) and 𝑓𝜖(𝜉1 → 𝜉2) are not independent as 𝑓𝛷(𝜉1 → 𝜉2) + 𝑓𝜖(𝜉1 →

𝜉2) = 1. For the turbulent region, 𝜉1 = 𝜉T and 𝜉2 = 𝜉TE. The viscous loss fraction and 

turbulent loss fraction are plotted as a function of Reynolds number in Fig. 3-27.  

 

Fig. 3-27: Fraction of loss generated in turbulent region due to viscous dissipation (blue 

line) and turbulent dissipation (red line). 

 For  Re∞ < 30,000, the mixing loss fraction is significantly greater than viscous 

loss fraction. At such low Reynolds numbers, the majority of loss comes in the form of 

mixing in the wake region of the turbulent boundary layer. There is comparatively little 

loss generated in the inner layer of the turbulent boundary layer because 1) the turbulent 

region is short owing to the proximity of reattachment to the trailing edge and 2) the 

velocity gradient across the inner layer is small (see Fig. 3-10). As Reynolds number 

increases, this trend quickly reverses. For higher Reynolds numbers, the majority of loss 

comes in the form of viscous dissipation in the inner layer of the turbulent boundary layer. 

By Re∞ ≈ 65,000, approximately two-thirds of the total profile loss generated over the 
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turbulent region is viscous in nature. Interestingly, the viscous loss fraction remains 

approximately constant at 66% for Re∞ > 65,000.  

 It is only natural to wonder how much of the total loss is generated in the turbulent 

region. The fraction of the total loss generated between any two streamwise points (𝜉1 and 

𝜉2) is   

 

𝑓(𝜉1 → 𝜉2) =
∫ 𝜁(̅𝜉)

𝜉2

𝜉1
𝑑𝜉

∫ 𝜁(̅𝜉)
𝜉TE

𝜉LE
𝑑𝜉

 

(3-23) 

𝑓(𝜉LE → 𝜉t) and 𝑓(𝜉T → 𝜉TE) are plotted in Fig. 3-28 as a function of Reynolds number. 

𝑓(𝜉LE → 𝜉t) is the fraction of the total loss generated in the laminar region and 𝑓(𝜉T →

𝜉TE) is the fraction of the total loss generated in the turbulent region. 𝑓(𝜉t → 𝜉T) (i.e., the 

fraction of the total loss generated over the transitional region) is not depicted as it remains 

approximately constant at 10% across the entire range of Reynolds numbers.  

 

Fig. 3-28: Fraction of total loss generated over the laminar region (blue line) and over the 

turbulent region (red line). 
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For Re∞ < 30,000, the vast majority of loss is generated in the laminar region. Of 

course, this is because the boundary layer is laminar for the majority of the length of the 

suction surface at these low Reynolds numbers. As Reynolds number increases, the 

transition point shifts upstream (see Fig. 3-13). Consequently, 𝑓(𝜉T → 𝜉TE) increases with 

increasing Reynolds number. At Re∞ = 15,000, only ~25% of the total loss is generated 

in the turbulent region. By Re∞ = 100,000, this figure has risen to nearly 50%. For Re∞ >

30,000, 𝑓(𝜉T → 𝜉TE) increases approximately linearly with Reynolds number. Assuming 

this trend holds for Re∞ > 100,000, the majority of loss will be generated in the turbulent 

region by Re∞ ≈ 120,000.  

To conclude this section, an earlier analysis is revised. Recall, when analyzing the 

lapse curve, it was discovered that 𝑌 scaled approximately with Re∞
−1/2 

. From this scaling, 

it was inferred that viscous dissipation was the dominant loss generation mechanism [68]. 

By integrating Eqns. (3-19) and (3-20) over the suction surface, it is possible to calculate 

the relative importance of each loss mechanism (i.e., the fraction of the total loss due to 

each viscous dissipation and mixing). The relative importance of each loss mechanism is 

summarized in Fig. 3-29 for Re∞ = 15,000 and Re∞ = 100,000.  
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Fig. 3-29: Relative importance of each loss mechanisms for both Re∞ = 15,000 and 

Re∞ = 100,000. 

For both Reynolds numbers, viscous dissipation alone accounts for over 75% of the total 

loss. Clearly, viscous dissipation is the dominant loss generation mechanism across the 

range of Reynolds numbers considered. Somewhat surprisingly, turbulent dissipation 

accounts for approximately 20% of the total loss at both Re∞ = 15,000 and Re∞ =

100,000. As discussed earlier, turbulent dissipation only contributes to loss in the turbulent 

region (see Fig. 3-26). At Re∞ = 100,000, the boundary layer is turbulent for nearly 60% 

of the suction surface. At Re∞ = 15,000, the boundary layer is turbulent for only ~25% of 

the suction surface. Despite the turbulent region being significantly smaller, turbulent 

dissipation still accounts for roughly the same percentage of the overall loss. This hints at 

how bursting affects loss.  

 

3.2.3 The Effect of Bursting on Loss Development 

  Despite the extensive analysis conducted above, it is not clear what effect—if any—

bursting has on loss development. Before going any further, it is important to make one 

point clear: the LSB—in and of itself—is not a loss generation mechanism. Only two loss 
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generation mechanisms are recognized in this study: viscous dissipation and turbulent 

dissipation. The only way the LSB can affect loss is by influencing either of the 

aforementioned mechanisms.  

 Based on Fig. 3-29, it would appear that bursting has the greatest influence on 

mixing loss. This conclusion is supported by Fig. 3-27. The mixing loss fraction is 

approximately constant up until bursting, at which point it increases sharply. The opposite 

is true of the viscous loss fraction. This is somewhat misleading, as it seems to imply that 

bursting actually decreases viscous loss, which is not the case. What makes Fig. 3-27 a 

little misleading is the fact that the length of the turbulent region changes with Reynolds 

number (see Fig. 3-13). The viscous loss fraction and mixing loss fraction are plotted again 

in Fig. 3-30, except this time they are normalized by the length of the turbulent region: 

 𝐿𝑇 = 𝜉TE − 𝜉T (3-24) 

Eq. (3-23) can be made nondimensional by dividing by 𝐿ss: 

 𝐿𝑇
∗ = 𝜉TE

∗ − 𝜉T
∗ = 1 − 𝜉T

∗  (3-25) 
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Fig. 3-30: Normalized viscous loss fraction and mixing loss fraction plotted as a function 

of Reynolds number. 

Unlike the viscous loss fraction, the normalized viscous loss fraction is 

approximately constant over the entire range of Reynolds numbers considered. This means 

viscous loss scales almost perfectly with the length of the turbulent region. Prior to 

bursting, mixing loss also scales with the length of the turbulent region. However, after 

bursting, mixing loss no longer scales with the length of the turbulent region. This strongly 

suggests that bursting acts to increase mixing loss, which is consistent with prior 

observations.  

 So, how does bursting increase mixing loss? The most significant way is simply by 

increasing the thickness of the LSB (i.e., ℎ). Mixing loss is a strong function of ℎ. This is 

best illustrated in  Fig. 3-31. Increasing ℎ also increases the trailing edge loss by thickening 

the trailing edge boundary layer. Vortex pairing also likely contributes to increased mixing 

loss; however, this is difficult to demonstrate.   
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Fig. 3-31: Two-dimensional mixing loss distribution functions for (a) Re∞ = 15,000 and 

(b) Re∞ = 100,000.  

When the LSB is thin (i.e., ℎ is small), mixing is confined to an equally thin region near 

the suction surface. When the LSB is thick, mixing occurs over a much larger region. 

Clearly, ℎ is an important parameter in determining how an LSB influences mixing loss.  

 While not necessarily germane to the current discussion, it is interesting to note that 

mixing loss is generated within the separation bubble for Re∞ = 15,000 but not for Re∞ =

100,000. This reflects the fact that transition completion occurs upstream of reattachment 

for long LSBs but not for short LSBs. For short LSBs, transition completion is 

approximately coincident with the location of reattachment (see Fig. 3-15). 

 

3.2.4 Section Summary 

In this section, it was shown that the major source of loss is viscous dissipation. It 

accounts for over three quarters of the total profile loss across the entire range of Reynolds 

numbers considered. This is consistent with the fact that the lapse curve scaled with Re∞
−1/2

. 

The majority of viscous loss is generated in the laminar, accelerated boundary layer 
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upstream of peak suction. Viscous loss is largely unaffected by bursting. The major way in 

which bursting affects loss is by increasing the thickness of the LSB which, in turn, 

increases the mixing loss in the region downstream of reattachment and increases the 

trailing edge loss by thickening the trailing edge boundary layer.  

 

3.3 Demonstration of Machine-Learning-Based Control 

3.3.1 Approach 

Up until now, this research has focused on bursting and its effects on both the 

flowfield and the performance of the L3. At this point it is clear that the effects of bursting 

are non-trivial. That is, long LSBs are not just longer versions of short LSBs. They are 

phenomena unto themselves, distinct from short LSBs in terms of their vortex dynamics, 

profile loss footprint, time-averaged topology, etc. To punctuate this study, it is 

demonstrated how these differences can be leveraged to reduce the energy requirements of 

steady VGS.  

Relative to pulsed VGJs, steady VGJs require significantly more energy to be 

effective but are more realistic to implement in actual application [3]. The idea of this 

approach is simple: activate the VGJs less. Obviously, less activation means less energy 

consumption. The question becomes, how can the VGJs be activated less while maintaining 

roughly the same effectiveness?  

Usually, the objective of activation is to reduce the length of the LSB as much as 

possible. While simple, this strategy ignores the differences between short and long LSBs. 

Relative to short LSBs, long LSBs are associated with higher losses, as demonstrated 

earlier. While decreasing the size (especially the height) of an LSB, in and of itself, does 
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tend to decrease loss, it also tends to increase the length of the turbulent reattachment region 

[39]. Since turbulent boundary layers are associated with increased frictional losses, the 

net result of these competing effects is not always immediately obvious. According to both 

Mayle [35] and Volino [34], short LSBs are an effective means to induce transition without 

producing an unnecessarily long turbulent reattachment region. In this sense, short LSBs 

are optimal. In light of the above discussion, this work proposes that, to maximize 

efficiency, the objective of activation should depend on whether the LSB is short or long.  

Two different control strategies are investigated. In strategy A, VGJ activation is 

independent of LSB type. The objective of activation is to reduce the length of the separated 

region as much as possible. In strategy B, VGJ activation is dependent upon LSB type. If 

the LSB is short, there is no activation. If the LSB is long, the objective of activation is to 

force the LSB short without suppressing it altogether. It is hypothesized that, relative to 

strategy A, strategy B will be similarly effective but require considerably less energy. 

Both strategies A and B were realized using a simple proportional feedback controller 

with constant gain. For strategy A, 𝑀 was continuously adjusted until either 1) the length 

of the LSB increased or 2) the total pressure loss increased. For strategy B, M was 

continuously increased until the LSB was assessed to be short. A schematic of the control 

loop is depicted in Fig. 3-32. 
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Fig. 3-32: Control loop used for strategy B. 

The VGJs were configured exactly as in Sondergaard et al. [16] and, as mentioned earlier, 

modeled using a simple transpiration boundary condition.  

 

3.3.2 Assessment of Control Strategies 

In this section, the performance of strategies A and B are compared for the control 

of the LSB occurring at Re∞ = 15,000. Note that the LSB is long at this Reynolds number. 

The goal of this section is to determine what benefit—if any—is afforded by strategy B. 

Earlier, it was hypothesized that, relative to strategy A, strategy B will be similarly 

effective but require less energy.    

To begin, 𝑌, ℎ, and 𝐿 are plotted as a function of 𝑀 in Fig. 3-33. The vertical lines 

marked 𝑀𝐴 and 𝑀𝐵 are the cut-off mass ratios for strategies A and B, respectively. 𝑀𝐴 is 

the mass ratio corresponding to the minimum length of the LSB. Note that at 𝑀 = 𝑀𝐴, the 

LSB was not suppressed entirely. For 𝑀 > 𝑀𝐴, blowing resulted in increased loss; 

consequently, blowing was cut off at 𝑀𝐴. 𝑀𝐵 is the minimum mass ratio required to force 

the LSB short.  
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Fig. 3-33: (a) change in total pressure loss coefficient with mass ratio (b) change in the 

height of the LSB with mass ratio (c) change in the length of LSB with mass ratio.  

For 𝑀 < 1 × 10−4, the VGJs had little to no effect on 𝑌. 𝑀 = 1 × 10−4 will be 

referred to as the cut-in mass ratio, as it is the minimum mass ratio for which the VGJs had 

an appreciable effect on performance. Beyond, the cut-in mass ratio, 𝑌 decreases 

approximately linearly with 𝑀 until 𝑀 ≈ 1 × 10−3, at which point it plateaus. The region 

over which 𝑌 is approximately constant will be referred to as the plateau region since there 

is little change in the benefit of control over this region. Sondergaard et al. [16] reported 

similar trends in their study of the effect of VGJs on the performance of the Pack-B. 

Specifically, they found there was a large range of blowing ratios (1 ≤ 𝐵 ≤ 3)absract over 

which there was little change in the benefit of control (i.e., 𝑌 was constant). The plateau 

region is significantly shorter in the present study than in the study of Sondergaard et al. 

[16], ostensibly because the VGJs became detrimental faster. Throughout this analysis, 𝑌 

is the primary metric used to gauge the benefit of the VGJs.  

 One of the key takeaways from Fig. 3-33 is that it was possible to force the LSB 

short without suppressing it entirely. The question is, was there any benefit in doing this?  

At the machine learning control point (i.e., 𝑀𝐵), 𝑌 was reduced by approximately 6.5%, ℎ 

was reduced by nearly 40%, and 𝐿 was reduced by approximately 20%. At 𝑀𝐴, 𝑌 was 



86 

 

reduced by a little over 8%, ℎ was reduced by approximately 50%, and 𝐿 was reduced by 

over 30%. At first, it might seem that the more traditional control strategy is better, as it 

resulted in larger decreases in 𝑌, ℎ, and 𝐿. However, 𝑀𝐴 is twice as large as 𝑀𝐵. In 

increasing 𝑀 from 𝑀𝐴 to 𝑀𝐵, 𝑌 decreases by roughly two percentage points. While this is 

a somewhat sizeable decrease in 𝑌, it doesn’t justify the twofold increase in energy 

expenditure.  

 Clearly, there is a substantial benefit to strategy B. In light of Fig. 3-33, this should 

come as no surprise. There is little benefit to increasing the mass ratio beyond 𝑀 ≈

1 × 10−3 . This corresponds to the point at which 𝑌 first begins to plateau. Sondergaard et 

al. [18] dubbed this point the minimum effective blowing ratio (equivalently, the minimum 

effective mass ratio). In the ensuing discussion, it is assumed that the minimum effective 

mass ratio (𝑀opt) is to the optimum operating point.   

To a good first approximation, 𝑀𝐵 ≈ 𝑀opt, as there is only a small difference in 

performance between the two operating points. The machine-learning-based controller was 

previously shown to be a bit conservative; consequently, it likely cut off blowing 

prematurely. Recall, the model identified bursting as occurring over the range 40,000 ≤

Re∞ ≤ 65,000. While the upper bound of this range is correct, the lower bound is a little 

conservative. In reality, bursting occurs over the range  55,000 ≤ Re∞ ≤ 65,000. If the 

hyperparameters of the machine learning model (specifically, the so-called fuzzifier) were 

better tuned, it is possible 𝑀𝐵 would be closer to 𝑀opt. That being said, there is no reason 

that 𝑀𝐵 should equal 𝑀opt as they correspond to different control objectives. 𝑀𝐵 is the 

minimum mass ratio required to force the LSB short; 𝑀opt is the mass ratio required to 
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minimize total pressure loss. The fact that 𝑀𝐵 is close to 𝑀opt suggests that control strategy 

B is a good proxy for minimizing total pressure loss. 

 One of the chief difficulties in effectively applying VGJs lies in determining 𝑀opt. 

In most studies, 𝑀opt (or 𝐵opt) is determined using 𝑌. However, it is not practical to base 

a controller on 𝑌. The results of this study suggest that, for the control of an LSB, 𝑀opt can 

be roughly approximated as 𝑀𝐵. This is beneficial because 𝑀𝐵 can be determined using 

the machine learning model outlined in this study which requires only a few pressure 

measurements. It is certainly more feasible to base a controller on pressure than on 𝑌. 

Remember, the overarching goal of this work is to increase the feasibility of VGJs.  

 Another key takeaway from Fig. 3-33 is that 𝑌 trends more closely with ℎ than 𝑙. 

Much like 𝑌, ℎ decreases rapidly between the cut-in mass ratio and 𝑀opt. Beyond 𝑀opt, ℎ 

still decreases, but at a much shallower rate. 𝑙 decreases almost linearly with 𝑀. The fact 

that 𝑌 trends with ℎ and not 𝑙 suggest that, between the two length scales, ℎ is more 

indicative of how the LSB affects performance. This echoes the conclusions drawn earlier 

regarding how bursting affects loss. More than likely, the main way in which the VGJs 

decreased loss was by decreasing the thickness of the LSB, thereby decreasing the mixing 

loss generated in the region downstream of reattachment. This conclusion is supported by 

Fig. 3-31. It is difficult to apply the same type of loss analysis used before, as the flow is 

now fully three-dimensional. To perform an in-depth loss analysis on the three-dimensional 

flowfield is outside the scope of the current work and is likely a study unto itself, requiring 

new methods of analysis and visualization.  
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Chapter 4: Conclusions 

This section is organized as follows. First, the guiding research objectives are 

revisited and conclusions pertaining to each objective are presented. Then, 

recommendations for future work are given.  

 

4.1 Research Objective 1 

Research Objective 1: show that the LSB bursts over a critical range of Reynolds numbers. 

 

It was conclusively shown that bursting occurred over the range 55,000 ≤ Re∞ ≤

65,000. Bursting was accompanied by a dramatic increase in both the length and height of 

the LSB. The length of the LSB increased not because the separation point changed but 

because the reattachment point changed. Upon bursting, the reattachment point abruptly 

shifted downstream. The separation point remained approximately constant through 

bursting. While bursting significantly affected the reattachment point, it had no effect on 

the transition onset or transition completion point. This supports the theory that bursting is 

independent of the transition process and occurs as a result of a sudden failure of the shear 

layer to reattach [27,29]. For long LSBs, transition completion occurred upstream (in some 

cases, as much as ~0.2𝐿ss) of the location of time-averaged reattachment. For short LSBs, 
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transition completion was approximately coincident with the location of time-averaged 

reattachment.  

 

4.2 Research Objective 2 

Research Objective 2: develop a machine-learned bursting criterion and assess its ability 

to predict bursting. 

 

A novel cluster-based bursting criterion was developed. Given three pressure 

measurements taken in the neighborhood of peak suction, the trained model returned the 

likelihood (i.e., probability) that the LSB was long and/or short. Relative to existing 

bursting criteria, the present model shows its utility in two ways. First, it requires only a 

few pressure measurements. Pressure is easy to measure, especially relative to quantities 

such as 𝜃 or ℎ. Second, the present model is probabilistic rather than deterministic. As 

Gaster [31] himself acknowledged, bursting is not an instantaneous phenomenon; it occurs 

over a finite range of Reynolds numbers (or angles of attack). During bursting, an LSB is 

neither short, nor long; it exists in a sort of “gray” area between the two states. All currently 

existing models are deterministic. They recognize only two states: short and long. The 

present model recognizes a continuum of states. Instead of being either short or long, it 

allows an LSB to be 60% short and 40% long or 90% short and 10% long. In this manner, 

the present model is more consistent with reality, as bursting is a continuous phenomenon. 

While the present model performed well in this work, it likely needs significantly more 

training data—from a diversity of applications—to perform well in general. With that said, 

it certainly shows promise.  



90 

 

 

4.3 Research Objective 3 

Research Objective 3: determine how bursting affects the time-averaged topology, vortex 

dynamics, and loss footprint of the separation bubble 

 

It was found that, for short LSBs, vortex shedding proceeded in the usual manner. 

For long LSBs, vortex pairing was observed to occur. A strong correlation between long 

LSBs and vortex pairing was established. Vortex pairing is the process whereby two 

neighboring spanwise vortices interact to produce a third vortex of opposite sign. Vortex 

pairing caused small, counter-rotating vortices to be periodically ejected into the shear 

layer. This process altered the time-averaged topology of the LSB to include a second, 

counter-rotating vortex located beneath the reverse-flow vortex. Since the counter-rotating 

vortex produced by vortex pairing displaced the reversed-flow vortex, it is possible that the 

onset of vortex pairing is what drives the rapid increase in ℎ observed at bursting. However, 

further study is needed to ascertain this.  

In regard to loss, it was shown that the major source of loss was viscous dissipation. 

Viscous dissipation accounted for over three quarters of the total profile loss across the 

entire range of Reynolds numbers considered. This was consistent with the fact that the 

lapse curve scaled with Re∞
−1/2

 [68]. Viscous loss was largely unaffected by bursting. The 

major way in which bursting affected loss was by increasing the thickness of the LSB 

which, in turn, increased the mixing loss in the region downstream of reattachment and 

increased the trailing edge loss by thickening the trailing edge boundary layer.  
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4.4 Research Objective 4 

Research Objective 4: demonstrate how, with the aid of a machine-learned bursting 

criterion, the differences between long and short LSBs might be leveraged to reduce the 

energy requirements of steady VGJs 

 

It was proposed that, to maximize efficiency, VGJ actuation should depend upon 

whether the LSB is short or long. To explore this idea, two control strategies were tested. 

In the first control strategy (henceforth, strategy A), actuation was independent of LSB 

type. In the second control strategy (henceforth, strategy B), actuation was dependent upon 

LSB type. The VGJs were actuated only to the extent that the LSB was forced short, but 

not suppressed entirely. Both control strategies were tested on the L3 at a Reynolds number 

of 15,000. At this Reynolds number the LSB was long. A simple proportional feedback 

controller with constant gain was used to realize both control strategies. 

 First and foremost, it was demonstrated that it was, in fact, possible to force the 

LSB short without suppressing it entirely. At the onset of this study, it was not immediately 

clear whether this would be a feasible control objective given that it relied on such subtle 

differences in flow physics. However, it proved possible.  

 Strategy B performed similar to strategy A but required half the energy input. Using 

strategy A, the total pressure loss coefficient was reduced by a little over 8%. Using 

strategy B, the total pressure loss coefficient was reduced by ~6.5%. While strategy A 

resulted in a greater reduction in the total pressure loss coefficient, it required significantly 

more energy. The optimum mass ratio (𝑀opt) was located somewhere between the mass 

ratio of strategy A (𝑀𝐴) and strategy B (𝑀𝐵). If the hyperparameters of the machine 
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learning model were adjusted, it is possible that 𝑀𝐵 would more closely align with 𝑀opt, 

as the machine learning model was somewhat conservative in its identification of busting. 

That being said, there is no reason that 𝑀𝐵 should equal 𝑀opt as they correspond to 

different control objectives. 𝑀𝐵 is the minimum mass ratio required to force the LSB short; 

𝑀opt is the mass ratio required to minimize total pressure loss. The fact that 𝑀𝐵 is close to 

𝑀opt suggests that control strategy B is a good proxy for minimizing total pressure loss. 

This is beneficial because total pressure loss is not easily measured. 

 

4.5 Recommendations for Future Work    

A companion experimental study would be useful, particularly for confirming some 

of the phenomena reported in this research. Specifically, it would make for an excellent 

experimental study track the vortex develop up to and through bursting to confirm that 

vortex pairing is, in fact, a characteristic of long LSBs. It would also be beneficial to 

experimentally investigate the use of a machine-learned bursting criterion for flow control, 

similar to as was done at the conclusion of this research. 
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