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ABSTRACT 

 

Shivakumar, Ashutosh, Ph.D., Department of Computer Science and Engineering, Wright 
State University, 2022. Computer Enabled Interventions to Communication and 
Behavioral Problems in Collaborative Work Environments. 

 

Task success in co-located and distributed collaborative work settings is characterized by 

clear and efficient communication between participating members. Communication issues 

like 1) Unwanted interruptions and 2) Delayed feedback in collaborative work based 

distributed scenarios have the potential to impede task coordination and significantly 

decrease the probability of accomplishing task objective. Research shows that 1) 

Interrupting tasks at random moments can cause users to take up to 30% longer to resume 

tasks, commit up to twice the errors, and experience up to twice the negative effect than 

when interrupted at boundaries 2) Skill retention in collaborative learning tasks improves 

with immediate feedback dissemination.  

To address the negative impact of these communication issues, this dissertation 

presents two multi-user, multi-tasking collaborative work scenarios and illustrates 

respective real-time fully functional computer supported cooperative work (CSCW) based 

prototypes. ACE-IMS leverages lexical affirmation cues which are indicative of task 

boundaries to intelligently identify “the right time to interrupt” and ReadMI  assesses 

Motivational Interviewing (MI) based clinician-client dialogue in collaborative learning 
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environment to identify speaker intents like open-ended questions, close-ended questions, 

reflective statements and scale enquiring statements and provide quantitative feedback to 

assist the facilitator in comprehensive practitioner skill assessment. To implement these 

functionalities both systems leverage task-oriented dialogues as datasets and utilize natural 

language processing with latest developments in ubiquitous technologies like mobile-cloud 

computing, computational linguistics, and deep learning. This research goes a step further 

in demonstrating the usability of CSCW based system designs by reporting qualitative and 

quantitative user feedback data by deploying ReadMI in an actual collaborative learning 

environment. The participants agree that ReadMI based metrics provide a tangible way to 

measure practitioner progress and offsets facilitator workload, showing a strong potential 

to enhance collaborative work experience. 
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 INTRODUCTION 

Computer Supported Cooperative Work (CSCW) is a design-based multi- 

disciplinary field of research that endeavors to understand the characteristics of cooperative 

work and utilize these insights to design computing systems that support groupwork among 

participants. Typically, participants engaged in cooperative work belong to diverse 

professional backgrounds, are situated in different work settings, and have different 

propensities and perspectives. However, they share a common focus in the mutual 

dependency towards the task outcome. Incorporating system design features (hardware and 

software) into computing systems to account for  mutual dependency is one of the core 

aspects of CSCW [1].  

Formalized in 1984, CSCW is an interdisciplinary field of study whose problem 

space demands a confluence of expertise from behavioral and social psychology, 

sociology, computer science and engineering. A perfect storm of technological 

advancements and business practices have contributed to the popularity of CSCW based 

focus in system design. Invention of the internet and advancements in system on chip (SoC) 

design synergized the implementation of telecommunication and computing into mobile 

technologies. The ever-expanding nature of modern business enterprises both local and 

global that require integration of various human expertise have mandated global businesses 

to build and incorporate efficient collaborative tools that transcend geographical barriers. 

Furthermore, the emergence of global pandemics like COVID-19 and the consequent 
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social-distancing measures have created a need to maintain face-to-face communication 

for social interactions both for business and casual settings, creating a market 

teleconferencing tools. 

1.1    Nature of Cooperative Work Environments 

According to Schmidt and Bannon [1], participants engaged in cooperative work 

are mutually dependent on its outcome and are encouraged to cooperate for its success. 

Cooperative work environments can be distributed physically in time and space and 

cooperative tasks require participants to combine expertise, perspectives, and skillsets. 

Hence cooperative work environments are a distributed set of semi-autonomous decision-

making agents with respective unique localized goals, contingencies and capabilities. 

Consequently, distributed nature of work should be well articulated or described so that the 

combination of efforts is directed towards the fulfillment of the mutual dependency 

characterizing a cooperative task. The set of activities that manage and coordinate the 

distributed nature of cooperative work is referred to as “Articulation of Work” and 

participants employ appropriate means of communication to articulate their localized 

activities. For example, a muti-national business organization may employ technologies 

like email, file-sharing, or video-conferencing technologies to coordinate and articulate the 

activities of teams distributed over large geographical distances.   
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1.2    Real-time Communication in Cooperative Work Environments 

In high risk and time-sensitive cooperative work settings characterized by 

distractions and barriers for communication, clear and unambiguous voice-based 

communication with focused messaging play a crucial role in information transfer. These 

work environments range from entertainment focused team-based sporting activities like 

soccer, American football including motorsports, to time sensitive and life supporting work 

environments like healthcare and search and rescue operations.  In motorsports, the driver 

in the racing car is in constant two-way radio communication with a controller situated in 

the garage called race-engineer. During the race, the driver and the race-engineer 

continuously exchange information concerning vehicular parameters like engine 

temperature, fuel level and extra-vehicular parameters like race-track conditions like 

foreign debris, distance to the nearest competitor and pit-stop strategy to change degraded 

tires at the appropriate lap [2]. In healthcare settings, a team of surgeons and assisting 

medical personnel use clear and focused messaging to confirm surgical checklists and 

instrument names in perioperative environment. In search and rescue operations and 

special operations tactical communication, personnel engage in simultaneous data and 

voice transfer to communicate with a central coordinator and/or amongst themselves for 

enhanced situation awareness in a rapidly changing environments that may interfere with 

mission success[3]. 
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1.3    Communication Breakdown in Cooperative Work Environments 

Breakdown of communication while performing such highly critical tasks impede 

mechanisms of coordination thereby minimizing the chances of accomplishing task 

objectives [1]. The reasons for the breakdown may vary from environmental anomalies, 

malfunctioning communication devices or miscommunications pertaining to 

uncoordinated communication, namely, delayed or incorrect feedback from 

communication partners and disruptive interruptions [4][5].  Negative consequences of 

task breakdown in these cooperative work environments characterized by mutual 

dependency and requiring real-time communication are seldom localized and have the 

potential to spread to connected subtasks jeopardizing favored task outcomes. A delayed 

reply from the race-engineer to a driver-reported “engine issue” could contribute to 

vehicular mal-function eluding a race-win or contribute to a fatal driver injury. 

Interruptions in perioperative environments can have deleterious consequences on patient 

care and malfunctioning radio-transmitter/receivers could deprive search and rescue teams 

of crucial information pertaining to obstacles in time sensitive task environment. 

Although aforementioned examples underrepresent commonly observed 

communication tasks, they do highlight unfavorable effects of miscommunication and the 

importance of unambiguous coordinating mechanisms. Interrupting tasks at random 

moments can cause users to take up to 30% longer to resume tasks, commit up to twice the 

errors, and experience up to twice the negative effect than when interrupted at boundaries 
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[6][7][8]. In classroom discourse it is shown that time-bound and appropriate feedback 

from teachers improve pupils’ ability to construct knowledge and improve classroom 

interaction rather than unidirectional questioning [9].   

Participating interlocutors in these communication tasks use language functionally 

to co-construct meaning and situational awareness in the form of dialogues which are 

multi-dimensional in nature composed of literal and intended meaning [10]. Discourse 

markers in these conversations can be exploited to identify evidence of dialogic 

coordination and intent. In terms of usability, individuals can be distributed or collocated, 

geographically, presenting a need to improve the corresponding social experience of face-

to-face communication.  

The aim of this dissertation is to present two computer supported cooperative 

environments where fully functional computing systems are designed to facilitate 

cooperative work by addressing the communication problems of disruptive interruptions 

and delayed incomplete feedback. “Affirmation Cue based Interruption Management 

System” (ACE-IMS) monitors task-oriented dialogue in two multi-user multi-tasking 

cooperative work environments and disseminates intelligent real-time interruptions 

intended to ensure minimum cognitive overload to the dialogue participants. “Real-time 

Assessment of Dialogue in Motivational Interviewing” or ReadMI is a computing system 

that facilitates Motivational Interviewing (MI) based collaborative learning environment 

involving a dialogic interaction between MI instructor and trainee practitioners. By 
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mitigating the delay and incompleteness of MI based feedback, which is typically 

computed and compiled manually by hand, ReadMI ensures a productive and interactive 

learning experience.  

Research efforts in this direction have predominantly focused on developing 

individual functionalities with limited efforts invested towards functional prototyping. The 

solutions presented in this dissertation leverage the latest advancements in ubiquitous 

technologies such as mobile-cloud computing and artificial intelligence that confluence 

into functional protypes. This research work goes a step further in answering “whether the 

functional prototypes support cooperative work?” and “How do the users perceive the 

function of the developed prototypes?” 

1.4    Dissertation Organization 

This research document is organized in accordance with the fundamental design 

methodology adopted to conceptualize typical CSCW based solutions. In Chapter 1, the 

reader is introduced to CSCW systems and the importance of communication as a 

coordination requirement. Subsequent subsections describe the nature of cooperative work 

interactions characterizing the respective cooperative work environments for ACE-IMS 

and ReadMI. Chapter 2 is designed to inform the reader with relevant background on 

interruptions and interruption management systems, Motivational Interviewing based 

training as a cooperative learning environment, and parallel solution space addressing these 

issues. In Chapters 3 and 4, the reader is presented with a comprehensive description of the 



 

7 
 

design, development, and evaluation results of ACE-IMS and ReadMI respectively.  

Chapter 5 summarizes and discusses the implications of adopting CSCW based design 

framework to communication. Chapter 6 presents conclusions and Chapter 7 discusses the 

current limitations and future work. 

1.5    Background  

1.5.1    Disruptiveness of Interruptions in Multi-user Collaborative Environments 

Interruption science explores the disruptiveness of interruptions on human 

performance.  This research area is motivated by the reality that as users increasingly 

multitask with proactive systems, their tasks are being interrupted more often.  An 

interruption within these interactions can be defined as an unanticipated request for task 

switching from a person, an object, or an event while multitasking [11].  The disruptiveness 

of interruptions has been widely studied, such as, the implications of interruptions on 

productivity [12][13][14] and affective state [6][15]. For instance, previous studies have 

illustrated that interrupting users engaged in tasks has a considerable negative impact on 

task completion time [16][14][13][17][18][19]. Other studies illustrate the implications of 

ill-timed interruptions particularly in medical settings from an inter – clinician 

communications perspective[20] and from work design and systems or processes’ 

perspective  in hospitals [21] or the cost of interruptions [14][15] [22][23] which some 

have suggested are  attributed to differences in workload at the point of interruption [7].  
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A typical example of a multi-user multi-tasking environment where the 

disruptiveness of interruptions can have a deleterious effect is emergency management 

involving communication operators and first responders. Here the operator at the command 

center communicates with the emergency personnel on the ground and aligns his/her 

knowledge of the location of the hazard. The command center operator has two different 

tasks to perform simultaneously: 1.) Primary task: Location alignment with first responder 

concerning the emergency; 2.) Secondary task: Monitor the system for other emergencies 

or system maintenance alerts. Other multi-user, multitasking distributed interactions 

involve communication between air traffic controllers and pilots, unmanned aerial systems 

(UAV operators) and military ground troops, and technical support agents and customers.  

Frequently interrupting the users in these scenarios with orthogonal tasks [5] or interruption 

task can lead to cognitive overload with potentially devastating consequences where the 

participant may be distracted and overwhelmed to complete their primary task effectively 

and efficiently [24].  

1.5.2    Delayed Feedback in Collaborative Learning Environments 

Motivational Interviewing (MI) is a collaborative, goal-oriented, dialogue-based 

communication style, involving an MI practitioner and client, designed to strengthen the 

client’s personal motivation and commitment to a specific goal or behavior change. An MI 

practitioner can be a caregiver like a doctor, nurse practitioner, a sports coach, teacher, or 

any individual who seeks to guide their client (a patient, child, athlete) towards behavior 
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change conversationally in non-confrontational ways through shared decision making. 

Since its invention in 1983 by Stephen Rollnick and William R. Miller as brief intervention 

strategy for treating alcohol addiction, the application of MI has diversified into the fields 

of education, health, social sciences, criminal justice, and more recently, sports  [25] [26].  

The collaborative and cooperative nature of MI style of communication stems from 

the fact that practitioners engage clients as active partners in conversations. Instead of 

directing or imposing knowledge on a passive client, the practitioner evokes the client’s 

innate positive intentions towards behavior change. The practitioner is guided by the 

fundamental understanding that it is the client who has to invest in the recovery plan and 

honors client autonomy without resorting to coercion [27] [26]. Miller and Rollnick 

describe this collaborative, evocative and autonomy honoring aspect of MI as the 

Relational component/skillset or “Spirit” of MI [28]. The spirit of MI accounts for its 

qualitative aspects, essentially, “How?” an MI session must be conducted. By creating an 

environment of trust and empathy the practitioner then proceeds to guide the client towards 

their goal through skilled use of interaction techniques, hence the "goal-orientation" of MI. 

This is referred to as the "Technical" component/skillset or “what?” must be said" 

part of the MI communication style [29] characterized by the usage of interaction 

techniques like asking evocative open-ended questions (example: “What does change look 

like for you?”), minimizing close-ended questions (example: “Did you take your 

medication?”), performing simple reflections (example: “It sounds like you want to make 

time exercise....”) and enquiring for “readiness for change” with utterances like “On a scale 
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of 1 to 10 with 1 being least likely to change. Where do you stand?”. The frequency of 

usage of a specific interaction technique or combination of techniques provides tangible 

MI performance metrics for post session analysis. Therefore, the relational component of 

MI accounts for the qualitative aspect of MI, the technical component provides a 

quantitative dimension [29].  

The success of a typical motivational interviewing session is measured by the 

practitioner’s ability to elicit “change talk” from the client. The definition of change talk 

as per Miller and Rollnick is "any self-expressed language that is an argument for change" 

[27], which, in this case is the client’s self-expressed desire for change articulated through 

MI dialogue. To elicit change – talk, the practitioner must listen well, encourage longer 

client speaking time and use a combination of relational and technical components to build 

a “working alliance with the client". Unfortunately, practitioners, for example, physicians 

in healthcare settings are accustomed to recommending or prescribing lifestyle change 

strategies without taking into consideration the patient’s motivation to change. This direct 

approach contributes to poor patient outcomes, thus, requiring a change in communication 

style that is non-intuitive to the practitioner. During MI training sessions, practitioners 

learn to change their natural inclination to lead the discussion and, instead, allow the 

conversation to be client centered. This means the practitioner must talk less, listen more, 

and ask open-ended questions – critical skills in the MI approach. 
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1.5.3    MI and Collaborative Learning Setting 

 

Figure 1.1: Motivational Interviewing Collaborative Learning Environment 

For skillful delivery of MI sessions, practitioners are trained by an MI based 

communication style expert, called a facilitator. A typical MI training session consists of 

an MI trainee practitioner, MI facilitator or trainer and a client – a fellow MI trainee who 

plays the role of a client. An audio/video recording device is used for recording purposes. 

In terms of workflow, the practitioner engages in MI based conversation with the client via 

role plays while the facilitator observes and provides feedback based on the practitioner’s 

performance. The facilitator must modify his/her instruction in a way that accurately fits 
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the learning demands of the practitioner. Figure 1.1 represents a typical motivational 

learning environment. This learning environment differs acutely from an instruction-led 

classroom where the emphasis is on the instructor and one way, one-size-fits-for-all 

instruction [30]. In an MI training environment, skill development is gained through hands-

on experience via roleplays with fellow trainees and the MI trainer facilitates the learning 

experience with instruction and feedback on an “as needed” basis. Therefore, a typical MI 

training sessions can be framed as a collaborative learning environment [31]. 

1.6    Challenges in Timely Quantitative Feedback Dissemination 

Presently, the facilitator disseminated MI based feedback is often limited to 

qualitative elements of the session, which is “How?” the practitioner spoke in the session 

– the relational component. Immediate feedback on technical elements remains a major 

challenge for the facilitator due to its quantitative nature translating into computational 

complexity and attention requirements for calculation.  The session recordings are 

manually transcribed after role-play sessions [32][33], utterance-by-utterance by 

Motivational Interviewing Treatment Integrity (MITI)[47] -trained raters who also assign 

labels like “OPEN-ENDED QUESTION”, “CLOSE-ENDED QUESTION”, 

“REFLECTION”, “SCALE” and “NONE” to each utterance and then compile frequencies 

(for example: Number of OPEN-ENDED QUESTIONS) and ratios (for example: Ratio 

between REFLECTIONS to CLOSE-ENDED questions). To put it into perspective, by 

observation, a typical MI session spans approximately 10 minutes with an average of 90 
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utterances. A classroom lecture session teaching MI lasts for at least 60 minutes. Manually 

transcribing utterances and generating quantitative metrics based feedback for 6 MI 

sessions in a classroom is a time-consuming endeavor, thereby delaying the delivery of 

instructional feedback to the practitioner [34]. Research studies have shown that skill 

retention and development improves when feedback is immediate [35] and change talk 

improves in clients with a synergized implementation of both relational and technical 

elements [29]. Hence feedback characterized by delay and devoid of technical elements 

eludes the practitioner and the facilitator a means for tangible assessment of MI delivery 

and maintain an awareness of task quality, contributing to the depletion and breakdown of 

the learning task within MI education. 

Two possible solutions to improve feedback delivery are 1) Increase labor, i.e., hire 

more transcribers and raters. 2) Leverage rapid developments in technology, particularly 

ubiquitous technologies like the internet, mobile technology, artificial intelligence to 

automate the feedback process. The former solution is financially cost-intensive - the 

hourly cost of a human transcriptionist is 15 USD to 30 USD [36] and an automatic speech 

recognition algorithm-based service costs 2.16 USD [37]. The latter solution shows 

potential due to the convenience in terms of computational processing power, capacity to 

operate at scale, rate of adoption, and financial cost due to manufacturing in scale. This 

technology assisted delivery of MI is more formally abbreviated in the literature as TAMI. 

Since MI training environment is a collaborative learning environment, technology assisted 
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delivery of MI [38] in this research work, is referred to as “Computer Supported 

Collaborative Learning (CSCL) in MI” [39]. 

1.7    Proposed Solution 

 The first of the two systems presented are “Affirmation Cue-based Interruption 

Management System” or (ACE-IMS). ACE-IMS is a real-time interruption management 

system that monitors task-oriented dialogue in multi-user multi-tasking cooperative work 

environment and disseminates intelligent real-time interruptions optimized to ensure 

minimum cognitive overload to the dialogue participants. Across domains it is shown that 

affirmation cues like “got it”, “yeah”, “gotcha” signal task transition to another topic or 

dialogue-turn in task-oriented dialogues [40] [5]. ACE-IMS is designed to identify such 

points of interruptions in task-oriented dialogues to create opportunities for least disruptive 

interruptions. Performance evaluation of ACE-IMS is accomplished by comparing it with 

the baseline real-time prosody-only system of C-CIMS. 

Secondly, to address the problem of delayed feedback, “Real-time Assessment of 

Dialogue in Motivational Interviewing” or ReadMI is presented. ReadMI is designed to 

address the prevailing limitations in MI training workflow that lacks a mechanism to 

deliver timely and accurate feedback based on quantitative MI technical components, 

within reasonable operating complexity and time, and sustainable acquisition and operation 

cost. By combining the calculated quantitative metrics with manually determined 

qualitative metrics, the MI expert instructor provides a comprehensive and time-bound 
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feedback, thereby enriching the MI collaborative learning experience. The absence of such 

tools results in MI being under-utilized to train workforce especially in work environments 

where behavior modification is necessary to facilitate lifestyle changes, for example, 

behavior modification of patients suffering from chronic conditions [41].  

To assess task-oriented dialogues that emanate from communication based 

cooperative work environments, both ACE-IMS and ReadMI advance the state of art 

developments in “Behavioral Signal Processing” based technologies like Automatic 

Speech Recognition. By leveraging the highly accurate (WER = 5.6%)  real-time ASR to 

transcribe participant’s spoken utterances of an MI role-play session, the systems 

automatically translate biological signals like voice to text string data in real-time. We 

emphasize “real-time” to indicate the fact that it takes less than 300 ms for speech to text 

conversion, which appears as “instantaneous” operation to human perception.  

The nature of the work environments in both ACE-IMS and ReadMI can be 

geographically remote and/or co-located. But they share a common characteristic, in that 

they are “synchronous”, where interactions between participants is in real-time. Within the 

CSCW literature, the CSCW matrix [42] formally represents the classification of such 

computing supporting groupwork into 4 quadrants in accordance with interaction time  

frame (synchronous versus asynchronous) and geography (co-located versus distributed). 

Figure 1.2 shows the positioning of the two examples of the computing systems   ACE-

IMS and ReadMI in as per CSCW matrix. Further commonalities between the two 
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examples extend to the number of participants – multi-user and medium of  

 

Figure 1.2: CSCW Matrix – ReadMI Usage Context in MI Collaborative 

Learning Environment [42] 

1.8     Contributions 

The intended contributions of this research work are: 
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1. Explicit exploration of communication problems of interruptions and delayed 

feedback dissemination within the framework of computer system design for 

collaborative work environments.  

2. Presentation of the design and implementation details of fully functional prototypes 

of ACE-IMS and ReadMI as solutions to coordination issues in collaborative work 

due to verbal miscommunication. 

3. Demonstration of the effectiveness of discourse markers as key features that 

characterize the nature of utterances in task – oriented dialogues. 

4. Presentation of qualitative and quantitative results of user feedback for ReadMI in 

real-life cooperative work environment.  



 

18 
 

 LITERATURE REVIEW 

2.1    Interruption Management and Task Structure 

To alleviate the consequences of disruptions, manipulating the timing of 

interruptions [12][13][14][7] using system-mediated interruptions [43] within multi-task 

environments [44] has been proposed and studied for different timing strategies. 

Interruption times explored include immediate delivery [14][45][46], random timing 

[12][14] [17][7][46][47], and delivery at task boundaries [14][6][7][48] as examples.  The 

benefit of appropriately timed interruptions, particularly the task-boundary based 

approach, is evident in works such as [49].    

One area of research that aims to alleviate the negative effects of these interruptions 

via system-mediated interruptions is the Interruption Management Systems (IMS) 

literature.  The focus of this area is to leverage the available modalities of an interaction 

(i.e., visual, meta-data and speech) within domains of varying participants, tasks, and 

objectives to disseminate information at the least disruptive times.  Methods have been 

proposed to determine the appropriate interruption timings via task structure inference, and 

a subset of this literature recommends point of interruptibility at boundaries within task 

execution.  A task boundary is a time instance between two moments of task execution.  

Within single-user, multitasking interactions, task boundary modeling has been used to 

indicate appropriate points of interruptibility via system-state [14][6][7][48] and 

physiological data [50].   
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2.2    Collaborative Communication Interruption Management System 

Until recently the exploration of task boundary modeling to infer interruption 

decisions has been limited to single-user, multitasking interactions. The Collaborative 

Communication Interruption Management or C-CIMS proposed by [5] extends the 

Interruption Management and Task Structure literature and aims to use task boundary 

modeling for interruption inference within distributed multi-user, multitasking interactions, 

as illustrated in Figure 2.1. It has laid out the foundation to extend the use of task boundary 

modeling for interruption inference within distributed (users can reside in different 

geographical locations at the same time), multi-user, multitasking domain.  

C-CIMS [5] leverages speech information within the distributed multi-user, 

multitasking interactions and aims to infer a task boundary as candidate points of 

interruption. C-CIMS explored this problem using offline (non-real-time) and online (real-

time) machine learning techniques which train and test their proposed model on the entire 

available data collection. The offline implementation of C-CIMS explored lexical features 

(“what is said?”) and appears to offer increased performance in detecting task boundaries 

to infer interruption timings when compared to a prosodic-only implementation that 

leverages only prosodic information (“How it is said?”), such as: energy and pitch 

information. The real-time implementation of C-CIMS established a baseline performance 

for real-time IMS system in this domain. The limitation of real-time C-CIMS to prosody-
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only model was reported due to prohibitive latency issues in processing lexical information 

in real-time [5].  

Therefore, there is a need to explore a lexical-based interruption management 

system that can support real-time interactions. Additionally, within the offline models, the 

author in [5] inferred that affirmation cues are salient lexical predictors of a task boundary, 

which merits comprehensive investigation.   

 

 

Figure 2.1 : Distributed Multi-user, Multi-tasking Interaction [5] 
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2.3    Collaborative Learning Environments and Motivational Interviewing 

In this section, to understand the characteristics of “feedback” in Motivational Interviewing 

training as a collaborative learning environment and subsequently derive system design 

features from this collaborative introduction 1.) A brief introduction to the nature of 

collaborative learning environment is provided 2.) Behavioral coding systems used to 

generate quantitative metrics-based MI feedback is summarized 3.) Current efforts towards 

automation of Behavioral Coding systems are provided. 

2.3.1    Collaborative Learning Environments    

According to [51], the field of CSCW addresses how computer systems can support 

collaborative activities and facilitate their coordination. Computer systems aim to reduce 

task complexity and improve efficiency by offering better communication facilities with 

improved monitoring and awareness. Irrespective of formal or informal learning setting, 

educational institutions act as work environments where technology, social or cultural 

interactions moderate work [52]. Here the interaction between CSCW and the work of 

education holds promise for improving workflows in learning, a central activity in 

education. Learning can take the form of a collaborative activity where the collaborating 

individuals are groups of students and facilitators where participants elicit information 

from one another, monitor one another’s activities and form collective knowledge by 

sharing experiences [53]. Due to this interaction-based knowledge creation among learners, 

collaborative learning is a learner centered approach where knowledge is considered a 
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social concept that is created, facilitated through peer interaction, cooperation, and 

evaluation [54]. Here the role of the instructor or teacher or tutor is as a mediator facilitating 

these interactions and fosters collaboration and exchange among members through 

techniques or strategies that include discussions, role play, peer review and jigsaw [55]. 

Research in CSCW systems that support group work in education settings has given 

rise to CSCL (Computer Supported Collaborative Learning). Both CSCW and CSCL 

support collaborative nature of work supported by computing systems, except CSCL 

research is grounded more specifically towards technological support of learning, 

pedagogy that takes place via social interactions [39]. 

2.3.2    Observational Coding and Motivational Interviewing Metrics 

With Motivational Interviewing training environment conforming to the 

characteristics of a CSCL environment, it is imperative to understand the features of MI 

that can be leveraged to automate the feedback generation process. One such feature set is 

a byproduct of the “Observational coding system”. The primary purpose of an 

observational coding system is to evaluate MI integrity/fidelity in training sessions. 

Pioneered by Carl Rogers [56] , observational coding task, involves an MI rater listening 

to audio tapes of MI sessions and manually - assigning categorical labels for clinician and 

client utterances. For example: “OPEN” for open ended questions like “How are you 

doing?” or “CLOSE” for close ended questions or “Yes/No” reply eliciting questions like 

“Are you addicted to cocaine?”. Some examples of MI integrity evaluation observational 
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coding tools are Motivational Interviewing Skills Code (MISC) [57], Yale Adherence and 

Competence Scale(YACS) [58], or Motivational Interviewing Treatment Integrity 

(MITI)[47]. An utterance in the context of this research work is defined as a complete 

thought expressed by a clinician or client. For example, “How are you?” is one utterance. 

As ReadMI was developed within medical settings, for the time-constrained 

medical students and aimed at minimizing information overload [59] of the facilitators, we 

have adopted a streamlined version of the observational coding system along with prosodic 

metrics that capture the essence of motivational interviewing training, which is, measuring 

the capability of practitioners to encourage “change talk” in clients. The proposed modified 

observational coding system includes 5 categories: 1) Simple Reflective statements, 2) 

Open questions, 3) Close questions, 4) Scale Sentences (i.e., the use of change ruler), and 

5) NONE (i.e., statement).  

Table 2.1: Examples of MI related Sentences 

ReadMI Behavioral Codes Utterance Examples 

OPEN QUESTION “How has drinking affected your work 

performance?” 

CLOSE QUESTION “Is drinking affecting your work 

performance?” 

REFLECTIVE QUESTION “It sounds like drinking is affecting you at 

work.” 
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SCALE SENTENCE 
“From a scale of 1 to 10, with 1 being least 

likely and 10, most likely, how ready are 

you to give up drinking?” 

 

Additionally, primitive prosodic MI metrics like: 1) Doctor Speaking time, and 2) Patient 

speaking time are included. The numerical counts of the mentioned observational codes, 

and prosodic elements of practitioner-client speaking time constitute MI metrics based real-

time feedback, in addition to the full list of utterances for each category. 

2.3.3    ReadMI Observational Coding System 

Table 2.1 highlights the observational codes used in ReadMI. According to [27], 

linguistic devices like reflections, open questions and utterances that assess readiness of 

change like scale-ruler sentences (“on a scale of one to ten, . . . ”), help practitioners 

communicate empathy and assume a nonjudgmental stance in practitioner-client dialogues. 

• Simple reflections are statements where the practitioner repeats both the positive 

and/or negative implications of the client’s addiction with an empathic tone. Simple 

reflections rephrase what the patient said and they add little to what was said, while 

complex reflections are used to inject some meaning or emphasis on what the 

patient has said. In this work, we will focus on simple reflections and complex 

reflection will be considered in future work. Although simple reflections essentially 

repeat information provided by the client and do not add new information, they 
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encourage the client to self-analyze and resolve internal conflicts or ambivalence 

to behavioral change. Simple reflections are most likely but not always indicated 

by phrases like “sounds like” and “looks like”. For example, sentences like “It 

sounds like your late-night drinking is affecting your sleep”. 

• “Open questions” encourage clients to provide a variety of answers. These 

questions allow practitioners to understand client’s perspective on present behavior, 

encourage self-exploration or seek additional details to aid diagnosis and/or 

behavioral change. 

• Close questions are “Yes/No” answers seeking questions. According to MI experts, 

they are the least preferred utterances as clients may not convey additional 

information by just answering yes/no, which is contrary to the client-centric 

approach of MI that encourages client to speak. Hence clinical experts discourage 

MI trainees from such usage. 

• Scale sentences are used to measure client’s readiness for change. These sentences 

present a numerical scale for the client to analyze and state their readiness. When 

the client chooses a score – typically between 1 and 10 - it provides a numerical 

context for the clinician to gauge client’s interest to change or sustain the status 

quo. 

• Finally, a default NONE class label has been added to label any remaining 

utterances that do not belong to any of the above stated labels, which mainly are 

the educational or directive statements. 
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2.3.4    ReadMI Prosodic Metrics 

The premise of MI is to encourage the patient to speak more and allow them to do 

the “work” of behavioral change. Practitioners tend to falsely assume that they allow the 

patient to speak more, it [60]is they who have the higher percentage of speaking time. 

Hence, a practitioner and client speaking time measurement in percentage is included as a 

metric. This is an important component of the feedback as MI is primarily a client centered 

approach and speaking time is a direct indicator. 

2.3.5    Behavioral Signal Processing 

According to [57], usage of computational methods for signal analysis and 

decision-making falls within the purview of “Behavioral Signal Processing (BSP). A BSP 

task involves detection of overt (voice, facial expressions, body posture) and covert (heart 

rate, electrodermal response, brain activity) signals, manifestations of human behavior. 

Speech signals are multimodal, complex and context specific, composed of Lexical and 

prosodic features. Lexical features indicate “What is said?”, referring actual words used, 

while prosodic features refer to “How it is said?”, referring pitch and inflection. Speech 

signal processing and information extraction provides a window into human behavioral 

expression. In motivational interviewing, reflective sentences and open-ended questions 

(both implicit and explicit) indicate empathetic tone of the practitioner contributing to 

increased client change-talk [26]. This research work focuses on BSP tasks corresponding 

to speech to text conversion of practitioner-client speech. As a BSP agent, ReadMI utilizes 
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Automatic Speech Recognition algorithms that convert human speech signals to text, 

paving the way for additional analysis of lexical content in the transcriptions. Its workflow 

involves capturing and transcribing practitioner-client dialogue and then coding the 

practitioner utterance as shown in Table 2.1. Hence, ReadMI aims to automate the process 

of behavioral coding and dissemination of feedback, thereby assisting training by dialogue 

flow tracking. 

2.3.6    Automatic Behavioral Coding 

The common technological enablers of BSP are Signal processing and machine 

learning. Previous literature [34], [61] has shown that, a combination of natural language 

processing machine learning models can be used to leverage the syntactic features 

(sentence structure, word or phrase detection and counting, topic modeling) and semantic 

features, dialogue acts [62], [63]in clinician-client utterances to facilitate automated 

observational coding with commendable accuracy and inter-rater agreement. These studies 

show that Natural Language Processing (NLP)-based models can emulate human rater 

expertise and automate the behavioral coding of MI dialogues. However, the major 

drawback in these studies is the usage of manually generated transcriptions of clinician-

client dialogues as datasets for NLP models, thus they stop short of providing real-time 

transcriptions during MI training sessions. As one may recall, the major bottleneck in MI 

training pertains to the prohibitive costs of manual transcriptions of practitioner-client 

dialogues, thereby constraining the process in terms of latency, scale, time, and cost. To 
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alleviate this bottleneck, the sub-processes of both speech to text transcription and 

behavioral coding should be automated and completed in real-time. 

Efforts have been underway in this direction. Researchers in [64], demonstrate the 

possibility of automating the process of behavioral coding. They have developed an ASR 

with automatic speaker diarization [65] capability which automatically transcribes 

psychotherapy session recordings and these transcriptions are used to identify ratings of 

“higher” or “lower” empathy for each session. They then proceed to compare the empathy 

detection accuracy between ASR-generated transcriptions (82.0%), ASR-generated 

transcriptions with human labelled speaker labels (80.5%) and human transcriptions 

(85.0%). The accuracy values appear to be closer, even though the utterances are evaluated 

for only one behavioral code “empathy”. Detecting observational codes at a higher 

resolution, such as for MI training, however, will involve utterance-based detection, which 

requires ASR to perform at a higher accuracy to capture the lexical features. On that aspect 

the researchers in [64] are severely limited by in-house developed ASR accuracy (WER = 

43.9 %), where WER refers to Word Error Rate [66]. The researchers in [64] demonstrate 

speech to text capabilities of the ASR on previously recorded psychotherapy sessions, but 

not live MI training sessions. Nevertheless, the closeness between ASR generated 

transcriptions and human transcriptions in [64] presents an encouraging sign for the 

viability of automating speech to text transcription in Motivational Interviewing sessions. 

In summary, by combining 1.) The knowledge of unique discourse markers in the form of 
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lexical features that characterize intents in utterances like “Task-boundary/Non-Task-

boundary” or behavioral codes like “OPEN/CLOSE”, “REFLECTIONS”, “SCALE”, 

“NONE” and 2.) Background literature of interruption management systems, behavioral 

coding and signal processing informing the characteristics of the cooperative 

communication tasks and computer systems-based solutions to support these tasks in the 

form of ACE-IMS and ReadMI as presented in the following chapters.   

Figure 2.2: ReadMI Workflow 
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 AFFIRMATION CUE BASED INTERRUPTION 

MANAGEMENT SYSTEM 

 

The primary focus of this section is to explore the usage of affirmation cues to 

identify task boundaries in real-time for intelligent interruption dissemination in multi-user 

multi-tasking interactions. Task–oriented dialogues that simulate multi–user, multi–

tasking dialogues, where participants communicate with one another verbally to 

accomplish a task at hand, are used as dialogue datasets. To accomplish this strategy, the 

following steps are used: 

1. Assess and understand datasets: description of task boundary annotated task–

oriented dialogue datasets are provided. 

2. Analyze and gain insights of affirmation cues preceding task boundaries. 

3. Provide a system design and prototype of an Affirmation Cues based Interruption 

Management System (ACE-IMS) to demonstrate real-time identification of task 

boundary. 

4. Develop a progressive rule–set design of affirmation cues which forms the heart of 

the ACE-IMS.  

Below subsections describe each of these steps in detail. 
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3.1    Dataset  

The proposed ACE-IMS is trained and tested using two human–human task 

datasets from the research work in [5]: UMT and Tangram. The two datasets represent the 

domain of interest: distributed multi-user, multitasking task-oriented dialogues. 

In these tasks, two distributed human participants communicate using push-to-talk 

to accomplish a common task and the machine disseminates information related to an 

orthogonal task or interruption task.  A brief description of the datasets is as follows: 

1. Uncertainty Map Task (UMT): UMT is a distributed multi-user collaborative 

communication task where the two participants align their knowledge to identify 

a target house while looking at the house from a different perspective:  birds 

eye/aerial or forward facing / street view.  In the task, two participants are 

presented with one of these 4 target house views:  a.) aerial target vs. street view 

identification, b.) street view target–aerial identification, c.) street view target–

street view identification, and d.) aerial/street view target and identification. There 

is a total of 67 dual-channel audio files (one audio channel per speaker) for the 

UMT task that are used in our project. Each audio file consists of task 

conversations corresponding to 10 target identification tasks as illustrated in 

Figure 3.1. 

2. Tangram: Tangram task is a distributed multi-user collaborative communication 

task where participants use a push-to-talk to communicate on a task where they 

arrange the abstract shapes called Tangrams in corresponding order that is aligned 
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with each other as illustrated in Figure 3.2. 40 dual-channel audio files from 

Tangram are used in our project, each consisting of task operator–teammate 

conversations (one channel per speaker).  

Figure 3.1 and Figure 3.2 are interface diagrams of the tasks respectively and more 

information about the data collection is available [5].   

3.1.1    Metadata 

The accompanying log file for the audio files in both datasets consists of task begin 

and end time. Task begin time is defined as the time at which both users were presented 

with a new set of targets (UMT task) or abstract shapes (Tangram task), and task end time 

is defined as the time instance when both participants mutually acknowledge the 

completion of a task with a mouse click on “Done” button [67]. 

The timing of delivering information related to an orthogonal task or interruption task 

while participants are performing the primary task (UMT or Tangram) is the focus of this 

research work.  Adding another task, i.e., orthogonal task as specified in [5] would make 

them multi-user, multitasking interactions. 

Since the overall objective of this research work is to present a real-time IMS system 

that leverages affirmation cues as lexical features to infer a task boundary, training and 

testing datasets are created and explored to identify the influence of affirmation cues on 

task boundaries. 
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Figure 3.1 : (A)Tangram Task Teammate 1 Interface (B) Tangram Task Teammate 

2 Interface [5] 

Figure 3.2 : (A) Aerial Target View from UMT Task (B) Street View Identification 

from UMT Task [5] 
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3.1.2    Training and Test datasets 

1. Training Dataset: A random portion of the UMT dataset 30 audio files (3066 

utterances) out of 67, was designated as the training dataset and used to identify the 

affirmation cues and generate the rules of the classifier.  

2. Testing Datasets: The remaining 37 UMT audio files (2904 utterances) were added 

to the original 30 to create a 67 audio files (5970 utterances) test dataset. 

Additionally, 40 audio files (4554 utterances) of the Tangram dataset were used as 

an additional test dataset to evaluate the generalizability of the identified 

affirmation cues as lexical features.  

Table 3.1: Training and Test Datasets 

 

 

 

 

 

 

 

 

Dataset Audio Files Utterances 

Training Dataset  30 randomly 
selected audio 
files from the 
UMT dataset 
(approximately 6 
hours)  

3066  

UMT Test 
Dataset 

67 
(approximately 
13 hours) 

5970 

Tangram Test 
Dataset 

40 
(approximately 8 
hours) 

4554 
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Since multiple audio recordings may come from the same participant, the audio 

files within each dataset were randomly selected to incorporate more speaking styles for  

variety in affirmation cues for both training and testing.  Each channel of the dual–

channel audio files from the training and test data was passed through automatic speech 

recognition for speech to text conversion. The resulting text transcripts of the two separate  

channels were then interleaved together with the aid of timestamps to create the 

dialogue text transcripts. For clarification, the timestamps were sorted in chronological 

order and the corresponding utterances were added to create dialogue text transcripts. Each 

audio file had a corresponding dialogue transcript file. The utterance that preceded the task 

boundary timestamp, as provided in the corresponding task log files, was labelled as the 

task boundary utterance. For a single dataset, like training dataset, all dialogue transcript 

files corresponding to the audio files in the dataset are interleaved to form a 3066-utterance 

dataset. Similar operations were performed on UMT test and Tangram test datasets. The 

task start and end time in the dataset provide structure to a task-oriented dialogue. This 

gives us an excellent opportunity to delve into lexical affirmation cues preceding task end 

time. 

3.2    Affirmation Cues Preceding Task Boundaries 

As indicated by [40][67] humans tend to use affirmation cues such as like, got it or, 

yeah to signal transition to another topic or task and to signal turn-taking.  Since the 

objective of the proposed interruption management system is to predict a task boundary or 
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a task transition as a candidate interruption point, we expect that detection of an affirmation 

cue can predict such moments.   

To explore the use of affirmation cues and their relationship to task boundary 

utterances, we examine the existence of lexical features reflecting affirmation cues in the 

training dataset. The definition of a task boundary as presented in [67] is a timestamp 

associated with both players clicking a button to indicate they are done with one task and 

ready to transition another task. We then define a task boundary utterance as the utterance 

immediately preceding this task boundary timestamp.   

 The nine most frequent affirmation cue phrases present in task boundary 

utterances within the training dataset were manually identified and recorded. The list is 

shown in Table 3.2. 

Then, the occurrence of the identified affirmation cues in the labelled task boundary 

utterances for the training dataset and the two test datasets are reported in Table 3.3. Here 

we use a term called Coverage to measure the extent of affirmation cue occurrence within 

the task boundary utterances, as defined by Equation (1). 

Coverage = k/N                                                      (1) 

where k is the total number of task boundary utterances with the identified affirmation cues in the 

corresponding dataset, and N is the total number of task boundary utterances for the corresponding 

dataset. For the training dataset here, N = 329. Figure 3.3 shows the Coverage of the identified 

affirmation cues (as listed in Table 3.2) among task boundaries in the training dataset and the UMT 

and Tangram test datasets, respectively. Figure 3.3.A indicates that affirmation cues present in 
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69.9% of the total task boundary utterances in the training dataset (with total number of task 

boundary boundary utterances N = 329), the remaining 30.1% can be mapped to other unexplored 

 Table 3.2 : Affirmation Cues Count for N=329 Task Boundary Utterances Within  

Training Dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

Affirmation 
Cues 

Frequency in 
Task Boundaries 

got it 180 

got you 13 

yep 14 

gotcha 2 

awesome 3 

sounds good 4 

done 9 

great 3 
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Table 3.3: Total Number of Task Boundaries Corresponding to Training and Test 

datasets 

 

 

                           

 

 

 

 

 

 

features.  Figure 3.3.B shows that when the same identified affirmation cues are applied to 

the UMT test dataset task boundaries (N = 808), the coverage decreases by 7% to 62.9%. 

Figure 3.3.C indicates that, for Tangram test dataset, the same identified affirmation cues 

account for 88.1% of the total task boundaries (N = 1158), which is higher compared to 

both the UMT-based training dataset (a random selection from UMT as defined in Section 

3.1.2) and the UMT test dataset. These results provide us with the following insights: 

• The 9 affirmation cues present in Table 3.2 are strong feature candidates for 

identifying task boundary utterances 

• The higher Coverage in the Tangram test dataset (88.1%) when using the 

affirmative cues obtained from the UMT-based training dataset implies that:  

Dataset Total Number of 
Task Boundary 
Utterances With 
The Identified 
Affirmation 
Cues (k) 

Total Number of 
Task Boundary 
Utterances(N) 

UMT Training 230 329 

UMT Test 508 808 

Tangram Test 1020 1158 
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a) the identified lexical features from UMT-based training dataset generalize 

well and perform robustly across both datasets (UMT and Tangram). 

b) the affirmation cues present at a higher rate in the task-boundary utterances 

of Tangram tasks, may imply that the dialogues of Tangram tasks could be 

more structured. Future investigation is warranted to identify the causes of 

such variations among task-oriented dialogues.  

• The remaining task boundaries, those without affirmation cue phrases presented 

(e.g., 30.1% of task boundaries in the training dataset, 37.1% in the UMT test 

dataset and 11.9% in the Tangram test dataset), could be the focus of future work.  

3.2.1    Interference from Backchannel Utterances 

             Further examination also indicate that the same affirmation cues present in task 

boundary utterances may also be used as backchannels in a task-oriented dialogue. In the 

context of 

  



 

40 
 

 

 

 

 

Figure 3.3 : Coverage of Identified Affirmation Cues in Task boundaries – A) 

Training Dataset, B) UMT test dataset, C) Tangram test dataset 

this work, backchannels are defined as verbal cues that represent continuity in a task-

oriented dialogue [40]. For example, the affirmation cue yep could indicate continuity in a 

conversation by the interlocutor while also functioning as an affirmation cue indicating a 

task boundary. 

This could potentially result in false identification of a task boundary (i.e., false 

positive) when using affirmation cues; and eventually, lead to disruptive interruptions. 

Thus, while adding more affirmation cues into the feature set may improve the Coverage 

of the ACE-IMS, i.e., reduce the missed interrupting opportunities, it has the risk of 

increasing undesirable disruptive interruptions. Clearly, reducing false and missed 

interruptions are two conflicting objectives. Moreover, different distributed collaborative 

applications may prioritize them differently, for example, some professions may be tolerant 

to interruptions from frequent alarms even if they are false rather than miss an alarm 

altogether and leading to potentially disastrous situations. Therefore, there is a need for a 
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balanced and flexible design approach that supports application-specific operation 

requirements through convenient system adaptations.  

In short, the coverage data shown in Figure 3.3 inform us that affirmation cues 

account for most of the task-boundary phrases. Thus, a system implementation that utilizes 

these features to disseminate real-time interruptions is described in detail in Section 3.3 

and 3.4.    

3.3    Real-time Affirmation Cues based Interruption Management System 

(ACE-IMS)  

 
The proposed ACE-IMS solution addresses the issue of processing lexical 

information in real-time for the purpose of making intelligent interruption decisions. The 

developed prototype serves to validate its operation within real-time interactions. The 

prototype specifically emphasizes key phrases associated with task boundaries that reflect 

affirmation cues.  For this reason, a rule-based classification approach is proposed which, 

in future work, can be expounded upon to consider other machine learning and deep 

learning modeling approaches to create a hybrid architecture. The system design is shown 

in Figure 3.4. 
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Figure 3.4 : System Design of Proposed Interruption Management System 

The system consists of a multi-channel audio input, i.e., one audio input per user, 

that records voice data and relays its digital manifestation to an acoustic preprocessor. The 

acoustic preprocessor reduces the noise and fine-tunes the gain of the audio using Audacity 

API (Application Programming Interface) [68]. The preprocessed audio is then sent to 

cloud-based Automatic Speech Recognition (ASR) engine, e.g., the Google Cloud Speech 

service in our implementation, which uses a server-client implementation for speech to text 

transcription [37].  The real-time ASR is one of the key components that enables real–time 

operation of the proposed ACE-IMS in addition to the lexical analysis system. The 

adoption of the widely available cloud-based ASR services, such as Google Cloud speech, 

helps mitigate the potentially prohibitive computation burden of running an ASR on the 

local machine and, ultimately, the delay associated with high-accuracy speech recognition 

(WER=4.9%, where WER stands for “Word Error Rate”)[69]. Experimental studies 
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conducted to observe the real-time ASR latency show that the delay is under 350 ms. The 

resulting text utterances are then fed into a progressive rule-based classifier that controls 

and disseminates the interruptions in real-time. 

To visualize and evaluate the feasibility of real-time task boundary detection 

capability, an Android-based prototype of the ACE-IMS is implemented and illustrated in 

Figures 3.5 and 3.6. The implementation consists of two Android tablets. Figure 3.5 and 

3.6 illustrate the interfaces of the ACE-IMS for supporting the distributed operations of a 

UMT task. The dialogue visualizer on the left side of the interface displays the real-time 

speech-to-text output from ASR for the two-person dialogue within a distributed multiuser 

multitasking interaction. This visualizer can be toggled on and off. These capabilities allow 

researchers to view the dialogue and interruption decisions made by the IMS in real-time. 

The dialogue highlighted in red indicate the task boundaries identified by the ACE-IMS 

running in the background. On the right side of the interface in Figure 3.5 and Figure 3.6 

is a customizable primary task interface (for example, Aerial view in Figure 3.5 or street 

view in Figure 3.6 for supporting the UMT tasks).  This portion of the interface can be 

customized to any visual interface that is conducive to simulating a task within the domain 

of interest (Tangram/UMT).  The prototype also provides features like data collection for 

both voice and text, which can be further used to expand the existing dataset, train the 

classifier and improve the accuracy of task boundary identification and other interruption 

inference models.     
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Figure 3.5 : ACE-IMS Prototype Supporting UMT Task (Aerial View) 

3.4    Progressive Ruleset Design 

Since a primary contribution of this work is to focus on affirmation cues as an 

indicator of a task boundary for intelligent interruption dissemination, the affirmation cues 

need to be identified in speaker utterances.  Hence, a rule-based classifier is the first pass 

at implementing the proposed real-time ACE-IMS.  A rule–based classifier provides the 

following advantages in the context of task boundary classification:  

1. Deterministic decision-making based on domain specific features that indicate 

task completion, 
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Figure 3.6 : ACE-IMS Prototype Supporting UMT Task (Street View) 

2. Flexible operating points that optimize conflicting variables like missed 

interrupting opportunities and disruptive interruptions based on application 

requirements, 

3. Flexible feature adaptation to accommodate multiple modalities of data and 

revise them based on the availability of new features. 

These advantages make the rule-based classifier a viable candidate for classifying 

task boundaries in IMS. Mapping affirmation cues to utterances may seem to be a straight-

forward task where one must parse utterances for affirmation cues to determine task-
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boundaries. However, due to the interference from backchannels as discussed earlier in 

Section 3.2.1, it is not so trivial when optimality, scalability, adaptability and real-time 

needs of interruption dissemination are brought into focus. Consider the problem of 

designing the optimal collection of affirmation cue features. In the context of this research, 

based on the initial assessment of Coverage within the training dataset, 9 affirmation cues 

are shortlisted, as shown in Table 3.2. There is a chance that these affirmation cues may 

also appear as backchannels in non-task boundary utterances.  Reducing false and missed 

interruptions are two conflicting objectives, eliciting the question: what should be the 

objective function that is used to optimize the rule–set with conflicting goals of minimizing 

false interruptions and minimizing missed interruptions?  

Furthermore, if the application domain of the IMS dictates that interruptions must 

be disseminated frequently, but is tolerant to the number of false interruptions or vice versa, 

How can the user modify the behavior of the classifier to facilitate application-specific 

interruption dissemination? And most importantly How can these rules be selected and 

arranged to enable real–time operation? In the following subsections, these concerns are 

addressed by presenting a detailed description of progressive rule-set design and its 

effectiveness in addressing the challenges. 

3.4.1    Objective Function and Optimization 

 To take a more balanced consideration for performance assessment, the F1 score, a 

combined measure of both false interruptions and missed interruptions, is used. To 
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determine the right sequence of affirmation cues-based rules that support progressive 

operation, the steepest ascent method for multivariate optimization [70] with the 

multivariate objective function as F1 score is adopted. For each iteration of the algorithm, 

the F1 score and the delta F1 score are calculated. The formula for F1 score is as shown in 

Equation (2): 

F1 score = (2 * Precision * Recall) / (Precision + Recall)                             (2) 

Where 

Precision = True Positives / (True Positives + False Positives) 

and     

Recall =  True Positives /(True Positives + False Negatives) 

Here True Positives are utterances that are correctly identified as task boundaries, 

False Positives or false interruptions are non-task-boundary utterances which are wrongly 

identified as task boundaries, and 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠 or missed interruptions are task-boundary 

utterances which are wrongly identified as non- task-boundary utterances. Within each iteration, 

the ∆F1 score is given in Equation (3). 

∆F1 score=  F1 score(current set of lexical affirmation cues + new lexical affirmation cue) -   

                                      F1 score(current set of lexical affirmation cue)                          (3)      

Then, the current set of lexical affirmation cues is updated by adding the lexical feature 

that produces the maximal ∆F1 score improvement at each iteration.  
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3.4.2    Iteration–Wise Description of Affirmation Cue based Ruleset 

The iteration-wise development of lexical affirmation cue-based classifier is shown 

in Table 3.4 with the optimal ruleset highlighted in bold. Additionally, a graphical 

representation of affirmation cue development of Table 3.4 is rendered in Figure 3.7 where 

the X-axis consists of Iteration Number or Operating Point and the Y axis represents the 

performance measures in F1 score, Precision or Recall. Iteration Number corresponds to 

the iteration of steepest search algorithm. Operating point is the F1 score that characterizes 

the performance of the progressive ruleset-based classifier. In addition to F1 score, 

Precision and Recall are also presented to understand the contribution of each affirmation 

cue to false interruptions and missed interruptions in greater detail. The characteristics for 

the lexical affirmation cue classifier are displayed in dashed lines.  

A detailed description of the operations performed in the first 2 out of 9 iterations 

of the steepest ascent search algorithm is described with the aid of an illustration in Figure 

3.8. 

Although Iteration 0 is mentioned in the description as the initial iteration with an 

empty ruleset, it is done for theoretical purposes to serve the conceptual explanation of the 

steepest ascent search algorithm while for all purposes of implementation the operations 

begin from Iteration 1. 

Iteration 1: The F1 scores of the individual affirmation cues are calculated by 

checking for the presence of each affirmation cue in each utterance of the 3066 UMT 

training dataset. At this iteration, the affirmation cue producing the highest value of   
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∆F1 score= 65.4% is got it. Therefore, got it is chosen as our base affirmation cue in the 

progressive rule-set and represented as a point on the F1 score line at Iteration 1 or 

operating point 1 in Figure 3.7.  

Iteration 2: the affirmation cue “got it” from the first iteration is individually 

combined with the remaining affirmation cues, two at a time, to calculate the combined F1 

score. At this iteration, the affirmation cue producing the highest value of   ∆𝐹𝐹1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠=1.6 

is {got it, yep}, represented as the F1 score = 67.0% on Iteration 2 or operating point 2 in 

Figure 3.7. 

This process of iteration-wise addition of affirmation cues to the existing set of 

affirmation cues contributes to our definition of a “Progressive rule-set” design. This 

progressive development of affirmation cues continues for 9 iterations (for 9 affirmation 

cues), as shown by a monotonically increasing F1 score line graph in Figure 3.7. However, 

on close observation we find that the trend decreases slightly after the F1 score of 70.2% 

corresponding to iteration number 7. Hence 70.2% is the maximum F1 score. The 

corresponding sequences are the optimum sequences and represented in bold in Table 3.4. 

Table 3.4: Iteration-wise Progression of Affirmation Cues 

Iteration 

Number or 

Operating 

Point 

Rule-set for lexical-only 

classifier 
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3.4.3    Utterance Duration As an Extra Feature 

To further mitigate the interference from back-channels, the duration of an utterance is 

introduced as an extra rule to help reduce false positives. The distribution of duration of 

the task boundary utterance is shown in Figure 3.9.A. Here 97.5% of task 

0 NULL 

1 got it 

2 got it, yep 

3 got it, yep, sounds good 

4 got it, yep, sounds good, done 

5 got it, yep, sounds good, done, 

got you 

6 got it, yep, sounds good, done, 

got you, awesome 

7 got it, yep, sounds good, done, 

got you, awesome, gotcha 

8 got it, yep, sounds good, done, 

got you, awesome, gotcha, sweet 

9 got it, yep, sounds good, done, 

got you, awesome, gotcha, 

sweet, great 
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Figure 3.7 : Iteration-wise Graphical Representation of Metrics of Affirmation Cues 

in Steepest Ascent Search Algorithm 

boundary utterances have a duration less than 10 seconds, which leads to a 2.5% extra 

missed interruptions detection if a threshold of 10s is used for task boundary utterances. 

However, the distribution of the duration for non–task boundary utterances that are false 

positives is examined, as shown in Figure 3.9.B, which clarifies that 17.7% of false 

positives are above the 10 second limit and will be filtered out of the identified task 

boundary if a threshold of 10 seconds is applied for task boundary utterances. Thus, it is 

expected that a portion of these false positive can be removed at a low cost of missed 

interruption opportunities. Therefore, we also look at the effect of adding one extra rule 

“DURATION is less than or equal to 10 seconds” into the ruleset. 
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Figure 3.9 : A) UMT Task Boundary Frequency Distribution     B) UMT False 

Positive Frequency Distribution 

Iteration 2 

Confirmatory 

Cues 

F1 

Scores 

∆𝑭𝑭𝑭𝑭 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 

{got it + awesome} 65.9 0.5 

{got it + yep} 67.0 1.6 

{got it + done} 66.3 0.9 

   {got it + got 

you} 

66.0 0.6 

{got it + sounds 

good} 

66.5 1.1 

{got it   + gotcha} 65.8 0.4 

{got it   +    sweet} 65.4 0 

{got it + great}        65.3          -0.1 

{got it +awesome} 65.9 0.5 

Iteration 1 

Confirmatory 

Cues 

F1 

Scores 

∆𝑭𝑭𝑭𝑭 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 

  got it 65.4 65.4 

got you 6.8 6.8 

yep 7.9 7.9 

gotcha 1.2     1.2 

  awesome 1.8 1.8 

  sounds good 3.0 3.0 

done 4.7 4.7 

sweet      1.8 1.8 

great 1.8 1.8 

 
Figure 3.8: First 2 of the 9 Iterations of Steepest Ascent Search Algorithm 
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3.4.4    Implications of Progressive Rule–Set Design 

It is evident that systematic selection of lexical affirmation cues is necessary to 

construct an accurate, scalable, and adaptable rule–based classifier for interruption 

dissemination. The steepest ascent search algorithm with F1 score as objective function 

facilitates this systematic selection of optimal progressive rule set. In this subsection, let 

us examine how the progressive rule-set based classifier addresses the challenges of 

optimality, complexity, adaptability, and real-time operation. 

1. Solution to optimal ruleset: By utilizing F1 score as the objective function, the 

steepest ascent search algorithm produces a steepest ascending curve that peaks at the 

maximum F1 score for the ruleset at each iteration before it starts descending as shown 

Figure 3.7. As a result, the ruleset of affirmation cues sequenced until the maximum F1 

score can be considered as a series of incremental optimal rulesets.  

2. Solution to complexity [71]: The search process of the steepest search algorithm 

for n = 9 affirmation cues performs n affirmation cue F1 score calculations in the first 

iteration, (n–1) calculations in the second iteration, (n–2) in the third and so on. Hence, it 

can conclude that the search process has a quadratic complexity of O(n2), which has less 

complexity when compared to the exponential complexity of O(2n) when using a brute–

force approach, to find all rule-set combination of all size. This difference in time 

complexity allows us the rule-set to operate relatively faster with more affirmation cues. 
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Figure 3.10 : Operating Point-based Adaptability of Progressive Ruleset 

3. Solution to adaptability: In Figure 3.10 the X-axis as labelled as an operating 

point. This is done to emphasize operating point dependent behavior of the classifier. By 

choosing operating point “A” a lower disruptive interruption is favored over missed 

interruption opportunities and vice-versa by choosing operating point B. Hence, a classifier 

can be tuned to prioritize the needs of interruption dissemination for the application.  

Thus, we have demonstrated that the steepest search algorithm can be utilized to 

generate a progressive rule set that facilitates real-time operation. It is optimal, scalable 

and adaptable to application specific requirements (Missed interruptions vs False 

interruptions). This ruleset should enable the classifier to distinguish between task–

boundaries and non–task boundaries according to the selected operating point. Section 4 is 

utilized to present the performance evaluation of the designed ruleset against task–oriented 

dialogues and consequently its experimentation design and results. 
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3.5    Results 

In this section, the experimental results of the proposed ACE-IMS are presented. 

Firstly, a brief description summarizing the experiments is made, then the generalizability 

of the progressive ruleset-based classifier is evaluated by comparing the results between 

the training and testing datasets. This followed by a performance comparison with the real-

time C-CIMS, current baseline ACE-IMS. 

As described in Section 3.1, two test datasets are used for the performance 

evaluation: UMT test dataset and Tangram test dataset. The UMT test dataset allows us to 

test if the classifier performance generalizes to other utterances from the same task, while 

the Tangram dataset allows us to assess classifier performance on task-oriented dialogue 

of a different task. To compute the classifier metrics of Precision, Recall and F1 score, the 

ACE-IMS assigned labels of Task boundary versus Non – task boundary is compared with 

the manual annotations of task boundary information, Task boundary versus Non – task 

boundary based on corresponding log files of the two datasets, UMT and Tangram, 

described in Section 3.1. 

Table 4.1 summarizes the classification results for the ACE-IMS for the UMT 

training dataset, UMT test dataset and Tangram test dataset. The results for both lexical-

only classifier and lexical–Duration classifier are presented, with the latter exploring 

additional potential to suppress false interruptions due to back–channels as discussed in 

Section 3.4.3.  
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Table 3.5 : Classification Results of Training Versus Test Datasets 

Tasks Features Precision 

(%) 

Recall 

(%) 

F1 
Score 

(%) 

Data Split 

(Non-task 
boundary,  

task boundary) 

UMT 
(Training) 

Lexical 76.8 64.6 70.2 (2737, 329) 

Lexical + 
Duration 

80.5 64.3 71.5 (2737,329) 

UMT(Test) Lexical 76.8 62.4 68.8 (5162,808) 

Lexical + 
Duration 

80.2 60.2 68.9 (5162,808) 

Tangram (Test) Lexical 94.6 87.9 91.1 (3396,1158) 

Lexical + 
Duration 

95.5 87.2 91.1 (3396,1158) 

 
 

3.6    Inter Dataset Performance Evaluation 

Firstly, let us evaluate the performance of the ACE-IMS by considering the lexical-

only classifier across UMT test and Tangram test datasets. Results in Table 4.1 show that 

ACE-IMS perform robustly across both UMT test dataset and Tangram dataset. It achieves 

68.8% F1 score for UMT test dataset, which is close to its performance of 70.2% for the 

UMT training dataset.  It proves that ACE-IMS generalizes well for the same type of task. 

Furthermore, ACE-IMS achieves 91.1% F1 score for the Tangram test dataset, which 

validates the earlier Coverage of affirmation cues in the task-boundary utterances of 
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Tangram tasks. It shows that ACE-IMS generalizes well for a different type of task. 

Moreover, it demonstrates that ACE-IMS can take full advantage of the higher rate of 

affirmation cue usages in the Tangram tasks. 

3.7    Inter Classifier Performance Evaluation 

Next, the inter classifier performance is evaluated between lexical-only and lexical–

Duration classifiers. Both classifiers achieve comparable optimal F1 scores on all three 

datasets, refer Table 4.1., with only marginal loss of Recall (which means it misses 

interruptions but to a lesser degree) which validate approach, motivated by the observations 

in Figure 3.9 in Section 3.4.3. Furthermore, on closer examination it can be discerned that 

this lexical-Duration classifier improves the precision score across all three datasets. 

 

Figure 3.11 : Performance and Operation Adaptability of ACE-IMS (UMT Test 

Dataset) 
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Figure 3.12 : Performance and Operation Adaptability of ACE-IMS (Tangram Test 

Dataset) 

Although not to a greater extent, the Duration feature helps reduce the number of false 

interruptions. But, more importantly, by adding Duration feature, it achieves much more 

gracefully descending trend of the Precision lines as shown in Figures 3.10, 4.1 and 4.2. 

This is of importance when reducing false positives (which lead to disruptive interruptions) 

is of high priority.  

3.8    Real–time ACE-IMS vs Real-time C-CIMS [5] 

Since one of the primary foci of this research work is to study the role of lexical 

affirmation cues in identifying task boundaries and compare its performance against 

existing literature, our focus, in this sub-section is limited to compare the performance of 

the real-time lexical – only classifier against the real-time C-CIMS implementation. Table 

4.2 summarizes the performance results. 
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Table 3.6 : Real-time IMS Results Comparison with Real-time C-CIMS (Peters 

2017b) 

Tasks Features Precision 

(%) 

Recall 

(%) 

F1 

Score 

(%) 

Data Split 

(Non-task 

boundary,  

task boundary) 

Tangram Real-time ACE-IMS 

(proposed solution) 

94.6 87.9 91.1 (3396,1158) 

Real-time prosodic (C-

CIMS) 

79.1 70.8 74.7 (1205,811) 

UMT Real-time ACE-IMS 

(proposed solution) 

76.8 62.4 68.8 (5162,808) 

Real-time prosodic (C-

CIMS) 

44.7 75.6 56.2 (3517,961) 

 
 
 
The performance results in Table 4.2 clearly demonstrate that the proposed Lexical based 

ACE-IMS classifier outperforms the real-time C-CIMS implementation. The ACE-IMS 

shows improvements in F1 score against the C-CIMS for both Tangram test dataset and  

UMT test dataset, 16.4% and 12.6%, respectively. For the Tangram dataset, the proposed 

ACE-IMS shows an improvement of 15.5% for Precision - which means it disseminates 

less disruptive interruptions, while, at the same time, achieves 17.1% improvement for  
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Recall, i.e., missing less opportunities to interrupt. For the UMT test dataset, the proposed 

ACE-IMS shows an improvement in precision by 32.1% when compared to C-CIMS. 

Although C-CIMS shows a better Recall by 13.2% for UMT test dataset, it is largely due 

to its imbalanced treatment between Precision and Recall, which results in a loss of 12.6% 

in F1 score when compared to ACE-IMS.  

The numerical results suggest that the proposed IMS generalizes well across the UMT 

and Tangram datasets and outperforms the existing real-time implementation of C-CIMS 

in identifying task-boundaries.  

Table 3.7 : Tabular Coverage Results of Figure 3.3 

 

 

Dataset Total Number of 
Task Boundary 
Utterances with 
The Identified 
Affirmation 
Cues(k) 

Total Number of 
Task Boundary 
Utterances(N) 

Coverage (k/N) 

(%) 

UMT Training 230 329 69.9 

UMT Test 508 808 62.9 

Tangram Test 1020 1158 88.1 
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 DISSEMINATION OF INTANTANEOUS FEEDBACK 

THROUGH REALTIME ASSESSMENT OF DIALOGUE IN 

MOTIVATIONAL INTERVIEWING 

 

Figure 4.1: ReadMI System Architecture 

4.1    System Architecture 

By leveraging the high performance distributed computational capabilities of cloud 

computing infrastructure in synergy with ergonomically supportive mobile devices, a 

mobile cloud computing architecture is leveraged to implement ReadMI as shown in 

Figure. 4.1. Irrespective of whether ReadMI is used in a co-located (in-person) and 
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synchronous (same-time) setup where the practitioner, facilitator and client are in the same 

room and interacting at the same time or are in different geographical location, this system 

architecture holds true supporting both cooperative workflows. The flexibility in workflow 

is accommodated by the different interfaces. Mobile application is developed and used on 

tablets to support in-person training and a web-application is used for virtual training 

sessions to maximize usage so that the trainer and trainee have the flexibility of using their 

own familiar computing devices to avoid any significant need for technical support, while 

trying to create the same social interactions characterizing a physical in-person training 

scenario. This flexible architecture proved to be of great convenience during a global 

pandemic like COVID-19 which necessitated physical distancing measures. 

In-built microphones in mobile devices act as voice inputs to both practitioner and 

the client. Microphones are single channel voice inputs. Voice signals in the form of voice 

packets are then sent to cloud computing resources implemented as servers via high-speed 

internet where the cloud hosted ASR algorithm converts speech signals to text data, sent 

back to the mobile devices, in real time (delay < 300ms). As it is the motivation of this 

research work to create a cost-effective workflow built on ubiquitous technologies, efforts 

have been directed towards choosing existing technologies and melding them into a 

seamless technology. Consequently, deep learning based automatic speech recognition 

algorithms, made available as cloud services from Google [37], IBM[72] , Microsoft [73], 

Amazon [74] are leveraged. 
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Utterances obtained from such services are sent simultaneously in real-time to the 

mobile devices as captions to enhance user experience and the ReadMI Behavioral coding 

classifier for feedback generation. Due to significant improvements in processing power, 

the classifier can be implemented locally in mobile devices or on other cloud computing 

services like Amazon EC2 instances to facilitate remote collaboration. Incoming ReadMI 

clinician utterances are coded as “Open-ended Question”, “Close-ended Question”, 

“Reflective statement”, “Scale statement” and “None”. These classified utterances are then 

displayed on the mobile device as ReadMI metrics in the form of number of instances of 

use and the corresponding utterances spoken by the clinician in the categories of OPEN 

QUESTION, CLOSE QUESTION, REFLECTIONS, SCALE. This organization and 

presentation of practitioner utterances is labelled as “MI feedback” in Figure 4.1. An in-

depth look into the classifier design is covered in Section 4.3. In addition to the above 

stated ReadMI metrics, the practitioner speaking time and client speaking times are 

recorded, allowing MI trainees and the MI experts to evaluate each individual session.  

To facilitate remote collaboration in MI training, video conferencing Application 

Programming Interfaces (APIs) [75] can be leveraged, thereby removing distance 

limitations on ReadMI. This would allow MI trainee clinicians, MI experts and clients to 

collaborate remotely utilizing audio-visual video signals to practice motivational 

interviewing skills without the need for in-person sessions. In the current, challenging 

times of global pandemic, the remote video conferencing adaptation of ReadMI has proved 

to be an invaluable tool for MI training. 
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Figure 4.2: Android based ReadMI Prototype 

4.2    Prototype 

The primary focus of this research work is to present a robust, fully operational 

solution to support an MI training session in real-time and facilitate both in-person and 

remote learning sessions. To bring this to fruition the system architecture described in 

section 4.1 is leveraged to develop mobile-cloud based solutions for both in-person and 
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remote training solutions. To contextualize and demonstrate a computer supported 

 

Figure 4.3: ReadMI In-person Training Session 

collaborative learning workflow, the ReadMI prototype is developed, operated and 

validated in a healthcare setting where the MI practitioner can be a clinician like a doctor, 

nurse-practitioner or a therapist. The facilitator is an experienced MI expert instructor, and 

the client is most likely a patient. However, as stated in section 1.5 ReadMI’s applications 

grow beyond traditional health-care setting. 
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4.2.1    In-person Training 

An Android platform [76] based ReadMI application shown in Figure 4.4 facilitates 

in-person MI training sessions. This choice was made as Android is the largest mobile 

operating system in use by market share [76], which means it is supported by regular 

system and security software updates. This allows for greater adoption of ReadMI services. 

The user-interface as shown in Figure 4.4 is displayed on a tablet computer with a touch 

interface. It consists of a “Speech to Text” window and an “Interview Analysis” window. 

The “Speech to Text” window shows real-time clinician-client utterances as speech 

bubbles depicting a real-time sequential flow of conversation. The "speech bubble" design 

was inspired by graphic user interface (GUI) elements in text messaging applications to 

enable similar intuitive user experience. The clinician speech bubble GUI element is 

displayed to the left and the client to the right. Speech bubbles containing reflective 

utterances are highlighted in “Green” color for easier recognition. The "Speech to Text" 

window allows user to scroll through speech bubbles via touch interface. This scrolling 

motion-based navigation allows the MI expert facilitator and clinician to reference a 

previously spoken utterances for analysis. For example, if the clinician had spoken a closed 

question, the expert facilitator can refer to the close question and suggest an open-ended 

way of framing that question and suggest how the clinician could direct the subsequent 

conversation in an MI consistent way. Real-time transcriptions are obtained by utilizing 

the Google Cloud Speech ASR via the Google Cloud Speech API [37]. has the best 

accuracy of all competing ASR services with Word Error Rate(WER) = 5.6%, [66]. In the 
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interview analysis section of the application the number of "Open-ended" questions, 

"Close-ended" questions and the actual corresponding questions asked in the Clinician-

client sessions are shown. A “Stop” sign glows to warn the clinician of successive delivery 

of unfavorable close-ended questions. 

 

Figure 4.4: ReadMI Remote Training Session 

Additionally, the “Open” Graphical User Interface (GUI) button allows the 

clinician MI trainee or the expert to load and review previous role-plays and the 

corresponding metrics for analysis after a session and the “Save” GUI button can be used 

for saving a roleplay session and its metrics to create new data points for data analysis and 
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facilitate further refinement of the ReadMI application in general, and the behavioral 

coding classifier. A typical MI training session with ReadMI is shown in Figure 4.3. 

4.2.2    Virtual Remote Training 

The urgent need for a remote collaboration implementation of ReadMI to support 

virtual remote MI training arose due to the COVID-19 global pandemic and the consequent 

social distancing restrictions that limit face-to-face interactions. Non-face-to-face 

environments limit social learning due to the inability of the participants to see one another 

[77]. Hence, there is a need to improve the ability of learners to see and express themselves 

socially and emotionally as “real people” through available communication means i.e. 

improve social presence [78]. [79] has reported positive outcome in student satisfaction 

and increased social presence on using WVC (Web-based Video Conferencing) for 

learning. Hence, motivated by the need to leverage the social learning benefits of face-to-

face learning over large geographical distances the remote collaboration version of ReadMI 

was implemented as a web application using JITSI [15] video conferencing API, see Figure 

4.4. Google Cloud Speech to Text API was used for live speech to text capabilities, an 

Amazon AWS EC2 [80] instance was used to host a JITSI server which allowed users to 

log in via designated Uniform Resource Locator (URL) [81]. In the JITSI based 

implementation of ReadMI, MI metrics along with the corresponding utterances spoken by 

the trainee are shown on the left in addition to the clinician trainee and client/patient 

speaking time as shown in percentage (%) of the session time. The trainee and the client 
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are connected and shown in the video conferencing window together with the MI expert 

supervising the session. ReadMI will join as a virtual participant to observe, process and 

provide feedback. Other participants may also join to observe the ongoing session. Their 

corresponding video streams are usually disabled due to bandwidth constraints and the 

convenience of participants of ongoing sessions. 

4.3    Behavioral Coding Classifier Design 

One of the primary goals of ReadMI is to automate the behavioral coding process 

of practitioner utterances in MI sessions to generate technical component-based metrics of 

MI, improving the comprehensiveness of feedback. As the focus of ReadMI application is 

to measure practitioner performance, the behavioral coding mechanism is restricted to 

practitioner utterances only. Client utterances too provide a way to measure practitioner 

performance, example, change-talk, but this is out of the purview of this dissertation. To 

assign behavioral codes to practitioner utterances, a behavioral coding classifier that uses 

a rule-based classifier to assign behavioral codes is implemented. The factors contributing 

to our decision are 1) MI dialogue is inherently task-oriented, where the practitioner is 

trained by the facilitator to use certain specific lexical features in spoken utterances. Hence 

the motivation was to capture these lexical feature patterns in the simplest way possible 

and map them directly to the speech utterances as a possible first step to establish a 

baseline. 2) The MITI behavioral coding and the expert modified MI metrics adapted for 

the version of MI shown in Table 2.[82]1 have characterized what lexical patterns.  
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Table 4.1:Excerpt of Lexical Feature Dictionary 

 

constitute an OPEN-ENDED QUESTION, CLOSE-ENDED QUESTION, SIMPLE 

REFLECTION, SCALE SENTENCE. 3) The number of labelled ASR-based utterances 

(N=2181) proved a limitation in using more data-intensive Deep Learning algorithms [82]. 

Hence, as a possible first step, by leveraging the lexical patterns articulated in the MI 

literature and experts and accounting for the limitation we implement a Rule-based 

classifier. This as a possible first step in an iterative system development cycle, where 

progressively intelligent and data intensive algorithms will be used for implementing 

increasingly intelligent decision making, as we gather more data. 

4.3.1    Challenge 

Spoken utterances are characterized by irregularity in structure when compared to 

formal written discourse which are structured with respect to rules of grammar. The Google 

Cloud Speech ASR that produces real-time speech to text utterance, although rated at 

OPEN 

QUESTION 

CLOSE 

QUESTION 

SIMPLE 

REFLECTIONS 

SCALE 

how did you sounds like on a scale of 1 to 10 

what shall you feels like  

why does it seems  

when do looks like  
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(WER = 5.6%) [83] produces spelling errors and missed utterances which percolate into 

spoken utterances. Additionally, environment based technical difficulties like internet 

connectivity issues or errors in voice signal acquisition from input devices like 

microphones (low battery, improper positioning) contribute to the errors. 

Therefore, the primary challenge in designing ReadMI behavioral coding classifier 

condenses to mapping unstructured ASR generated spoken utterances, with rules of 

structured English grammar to identify OPEN-ENDED, CLOSE-ENDED, REFLECTIVE, 

SCALE and NONE utterances. 

4.3.2    Solution 

As a first step, dictionaries containing explicit lexical features characterizing 

different class of utterances were created and added as context parameters [84] to Google 

Cloud Speech ASR. The context parameters ensure that the ASR assigns a higher weight 

to words with similar pronunciation and transcribes them with greater accuracy. The 

context parameters were used to address the problem of missing or misspelling the words 

by Google ASR. The lexical features as context parameters were obtained as inputs from 

multiple sources, 1) The MI experts facilitating our study; and 2) Motivational Interviewing 

literature [85] and formal English Grammar [86]. Examples for lexical features 

characterizing each class of MI utterances except for the "NONE" class are shown in Table 

4.1. An utterance is defaulted to “NONE” class if it does not belong to any of the other 

classes. The utterance characterizing the scale class, utilized to assess readiness for change, 
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was characterized by the phrase “on a scale of 1 to 10” was observed in almost 100% of 

the scale indicating utterances. 

Next, certain observations in the ASR generated practitioner utterances show a 

pattern characterizing the utterances as shown in Table 4.2. 

Table 4.2: Patterns in Practitioner Utterances 

Observations Example 

If an utterance begins with a closed 

question keyword then it is most likely a 

closed question 

"Is there anyway I can help you?" 

If an utterance contains a closed  

question keyword and the immediately  

following word is a pronoun (ex. He, she 

, you etc.) or a possessive pronoun 

(ex. Himself, herself, itself) then it’s a 

closed question 

"I am doing great today by the way did 

you sleep well yesterday?" 

 

 

If an utterance begins with an open 

question keyword and is followed by a 

pronoun or possessive pronoun then it is a 

statement 

"How often you run is more 

important than how many miles you run" 

If an utterance contains an open keyword 

and the succeeding word is a pronoun and 

or possessive pronoun then it is most likely 

a statement                  

“I am interested in knowing what your 

thoughts on alcohol addiction are” 
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If an utterance begins with an open  

question keyword then it is most likely an 

open question 

"How are you doing today?" 

 

 

The patterns from Tables 4.1 and 4.2 inform us with clues that can be incorporated 

into our rules. Typical parts of speech like "Nouns", "Pronouns", "Possessive Pronouns" in 

the "Observations" column in Table 4.2 provide insights on the effectiveness of parts of 

speech (POS) in identifying syntax-based patterns. To leverage POS-based patterns from 

spoken utterances, in line with English grammar an Apache OpenNLP POS tagger in Java 

Programming Language [87] is used. Furthermore, to identify the obtained POS tags from 

the Apache OpenNLP POS tagger the Penn Treebank [88] was used. A typical NLP based 

POS tagging method is shown in Table 4.3 with a legend describing individual tag 

description according to the Penn Treebank in Table 4.4. 

Table 4.3: Computer Generated NLP based Part of Speech (POS) Tagging 

Sentence It looks like you are well 

POS Tags [PRP] [VB] [IN] [PRP] [RB] [JJ] 

 

Table 4.4: Tag description according to Penn Treebank 

Tag Description 
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PRP Personal Pronoun 

VB Verb (base form) 

IN Preposition 

RB Adverb 

JJ Adjective 

 

4.3.3    Categorization of Utterances into Simple, Complex, and Compound 

Utterances 

The ASR generated spoken utterances are broadly categorized into 1) Simple 2) 

Complex 3) Compound utterances, not to be confused with typical sentence types in 

English grammar. Utterance within the context of this research shares similar definitions 

to a “turn”, a continuous piece of speech beginning and ending with a pause. This 

categorization scheme is defined based on unique characteristics observed in training 

dataset.  

1. Simple utterances: They are characterized by the absence of punctuation, example, 

period (.) and conjunction words like "and", "because”. Additional examples of 

conjunction words can be found here [86]. Simple utterances are mostly used to 

convey a complete thought. A scale-based utterance may lexically appear to have 

two complete thoughts (for example: Thought 1: "On a scale of 1 to 10 with 1 being 

not ready for change and 10 showing maximum readiness for change." which would 
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belong to class "NONE" and " Thought 2: Where do you stand?" which is an OPEN 

question) but in the present adaptation of MI for ReadMI scale sentences are 

assumed to convey one thought or function and that is to assess readiness for 

change. Some examples of simple utterance-based classification results are shown 

Table 4.5: Simple Utterances 

Utterances Label 

“how long have you been smoking..” OPEN 

“do you feel to start making these changes” CLOSE 

“it sounds like they are not big fans of cigarette smoking” REFLECTIVE 

“so scale of 1 to 10, how likely are you to give up drinking” SCALE 

“okay that makes sense.” NONE 

 

in Table 4.5. The lexical features emblematic of each simple utterance is 

highlighted for convenience. The decision-making process for simple sentences is 

quite straightforward. The rule-based classifier identifies the characterizing lexical 

feature in an utterance and assigns a label accordingly. 

2. Complex utterances: Within the context of this research, complex utterances are 

characterized by absence of conjunction words or punctuation like a period. It 

mainly consists of utterances that contain lexical features that signal utterances to 

belong to one class but grammatically point to a different class. 
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Figure 4.5: Complex Utterance Decision Flow with Part of Speech Tagging 

For example, consider an utterance like "He did this to me", due to the presence of 

the lexical feature "did", a blind pattern matching algorithm may assign a CLOSE 

ENDED question tag to this utterance. However, by leveraging the POS of 

utterance we understand that "did" is not a question word but a verb supporting a 

pronoun "He", thereby disambiguating the utterance to a statement. Hence a "None" 
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behavior code is assigned. For clarity a sample classification decision flow diagram 

is shown in Figure 4.5. 

3. Compound utterances: As shown in Table 4.6 compound utterances are 

characterized by combinations sub-utterances like simple utterances or simple 

utterances with complex utterances, for example, combination of Reflective 

utterance with an open question, closed question followed by open question or vice 

versa, statement followed by a question etc. These combinations of sub utterances 

are joined together by the presence of Conjunction words like “and”, “or”, “yet”, 

“ok” etc. and the presence of the punctuation: period ( . ) or comma ( , ) separating 

two utterances. Each part of the compound sentence is analyzed recursively to 

produce individual intermediate results which are class labels assigned to the 

constituent sub utterances before the final label is assigned according to the 

hierarchical utterance class order shown in Table 4.7. Based on the granularity of 

the feedback the facilitator wants to provide the trainee practitioner, a full sequence 

of codes may be presented, alternatively, a single combined code can be assigned 

to the entire utterance.  

In training sessions, MI trainees are encouraged to use certain utterance types more 

to maximize empathy in the MI process. These utterances are prioritized over the others. 

In Table 4.7, Reflection is ranked at the top due to its primary role in encouraging the client 

to self-analyze and resolve internal conflicts or ambivalence to behavioral change. Next, 
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Scale utterances are encouraged to assess the patient readiness to change by quantification 

through 1 to 10. Finally, close question utterances elicit a “yes/no” answer from the client, 

thereby diminishing additional information gathering potential for the practitioner. 

Furthermore, they are commonly spoken and are intuitive when compared to Open-ended 

questions. Hence in a training environment to increase practitioner awareness towards 

Close-ended questions over open question utterance, classifier priority was set to penalize 

MI trainees on close questions. Figure 4.6 presents a detailed depiction of compound 

sentence decision making process for the utterance “It looks like you are drinking when 

nervous. How do you feel about that?”. In summary, the behavioral coding classifier 

leverages the lexical patterns determined within MI literature and MI experts to classify 

real-time ASR generated spoken utterances into OPEN, CLOSE, REFLECTIVE, SCALE 

and NONE classes. The challenges peculiar to real-time ASR generated spoken utterances 

are minimized by using lexical patterns as context phrases and leveraging POS metadata 

to disambiguate complex sentences that differ grammatically from the lexical features 

constituting them. 

Within the broader context of this research work the behavioral codes generated 

from the classifier help facilitators in automatic coding of Motivational Interviewing 

sessions, a crucial aspect of the "instantaneous feedback" feature of ReadMI. Further, 

incorporating MI’s technical elements-based feedback consisting of behavior codes 

improves the comprehensiveness of the MI feedback. The adaptive system design, 

prototype and behavioral coding classifier ensure behavioral code assignment in a flexible 
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collaborative learning environment. 

Table 4.6: Compound Utterances 

Utterances Label 

“It looks like your are drinking when 

nervous. How do you feel about that?” 

REFLECTIVE followed by OPEN 

question 

“Okay, so it sounds like you use smoking 

as an outlet for yourself for pleasure or to 

relaxation, right?” 

REFLECTIVE followed by CLOSE 

question 

“Hi, I am Dr. Hudson, how are you doing 

today?” 

STATEMENT followed by OPEN 

question 

 

Table 4.7: Utterance Class Hierarchy for Compound Sentence Decision-Making 

Priority Utterance Class 

1 Reflective 

2 Scale 

3 Close 

4 Open 

5 Statement 
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Figure 4.6: Compound Sentence Decision-Making Process 

4.4    Experimental Study 

An experimental study was designed and conducted to answer the question: 

“Does quantitative metrics-based feedback from ReadMI, when combined with 

facilitator’s subjective feedback significantly improve practitioner MI skills?”  

Students are introduced to Motivational Interviewing in the first year of medical school 

and their training is reviewed during second year and the “clerkship bootcamp” just prior 

the beginning of their clerkship year. As part of their third-year curriculum students must 

take part in six-week rotations for each specialty. Each rotation consists of 15 students.  

During the family medicine rotation, third year students at Wright State Boonshoft School 
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of Medicine, Dayton, Ohio must undergo a 90-minute MI training session with an MI 

facilitator. Two students are scheduled for each session, where each student enacts the role 

of a doctor and a patient twice, resulting in four roleplays. The students are also provided 

with a preparatory material before each session consisting of an MI review sheet and a 

video.  At the beginning of the academic year, 8 family medicine cohorts each consisting 

of 15 students are randomly assigned to a control group (about 48%) and an intervention 

group (about 52%). The demographics among the experimental study participants are 

shown in table 4.10. 

After each roleplay, students in the intervention group were given ReadMI based 

feedback to test for improvements in MI performance from first to second MI session. 

ReadMI based feedback was given to the students of the control group after all four 

sessions to ensure that these metrics would not influence their roleplays. The MI facilitator 

played the role of a timekeeper and provided MI based qualitative feedback to both groups.  

Each roleplay consists of a simulated case, representing one of several prepared scenarios 

to each student, for example, 1) 35- year- old smoker who has been smoking for 20 years 

who uses smoking to relieve stress 2) 40-year-old with good job and decent marriage. 

Doesn’t drink during the week but drinks heavily on the weekends, to the extent that most 

weekends are just a blur. During their role plays, each student’s interview was captured 

and analyzed by ReadMI, initially planned, and developed for face-to-face use. The 

COVID- 19 [12] pandemic was the catalyst for adapting ReadMI for use on a virtual 

platform through JITSI [15] ensuring continuity with MI training sessions. MI metrics 
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produced by the ReadMI application were presented to the medical students as feedback, 

which consisted of number of open- and  

Table 4.8: Demographics Among Experimental Study participants (N = 125)* 

 N (%) 

Age – mean (std) 26.7 (3.0) 

Group Status  

     Intervention 63 (51.6) 

     Control 59 (48.4) 

Race  

     Asian 24 (19.7) 

     Black 18 (14.8) 

     Hispanic 5 (4.1) 

     White 70 (57.4) 

     Other 5 (4.1) 

Gender  

     Male 55 (45.1) 

     Female 67 (54.9) 

Native Language  

     English 110 (90.9) 
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     Non-English 11 (9.1) 

*3 participants did not provide data on demographics 

 

number of reflective statements, and use of the change ruler. To validate the performance 

of ReadMI, two MI training facilitators read the transcripts created by the ReadMI 

application and rated physician responses as reflective, open-ended, closed-ended, scale 

(i.e., change-ruler), or none as shown in Table 2.1. Interrater reliability statistics were used 

to determine the accuracy of the ReadMI application’s analysis of clinician responses. In 

terms of protocol, this research study involved measuring the effectiveness of comparison 

of instructional techniques. Hence the Wright State University Institutional Review Board 

deemed the study to be exempt from human subjects. 

Table 4.9: Summary of Data from ReadMI Experimental Study 

ReadMI Behavioral Codes Utterance Examples 

Total number of training sessions 88 

Total number of roleplays 352 

Total number of medical students 125 

Total number of “Doctor” role utterances 2181 
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Table 4.10: Class Distribution of MI Utterance Labels from ReadMI Experimental 

Study 

Utterance Class Class Distribution 

REFLECTIVE 440 

OPEN 711 

CLOSE 289 

SCALE 75 

NONE 666 

 

4.5    Data 

88 MI training sessions yielding 352 roleplays from 125 medical students produced 

a total of 2181 practitioner/clinician role utterances. As the primary application of ReadMI 

is to measure practitioner skill acquisition analysis is restricted to practitioner utterances in 

the resulting dialogue dataset. Each of these utterances were also rated by MI expert raters 

independently based on our coding scheme shown in Table 2.1. The data is summarized in 

Table 4.8 and the class distribution of MI utterance labels is described in Table 4.9. The 

ASR generated data collected in the experimental design was a significant first step in 

automating the process of observational coding. It demonstrates that present day ASR 
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algorithms have sufficient accuracy (WER = 5.6%) [83] to generate human- readable 

conversational utterances which sometimes can go upto 50 to 60 words in length. It further 

alludes to the fact that real-time speech to text transcription is possible alleviating the 

drawback of unscalable and expensive manual transcriptions. 

ASR generated data collected in the Clerkship bootcamp as reported in the 

experimental study section is a significant first step in automating the process of 

observational. It demonstrates that present day ASR algorithms have sufficient accuracy 

(WER = 5.6%) to generate human- readable conversational utterances which sometimes 

can go upto 50 to 60 words in length and real-time speech-to-text transcription is possible 

alleviating the drawback of unscalable and expensive manual transcriptions. 

4.6    Results 

All N=2181 clinician-utterances labelled by two MI expert facilitators 

independently, were used to test the accuracy of the Behavioral Coding classifier. Classifier 

accuracy was determined through typical metrics Precision, Recall and F1 score, see Table 

4.11. Furthermore, to compare the classifier accuracy with senior MI expert facilitators 

Inter-rater agreement metric, Cohen’s kappa [89] was used to establish a benchmark. 

Cohen’s kappa measurements are presented for both overall classifier performance and 

individual utterance class level performance and further extended to measure the agreement 

between two expert raters: a senior MI expert (>30 years of MI training experience) and 

junior MI expert (about 5 years of MI training experience). 



 

86 
 

Table 4.11: ReadMI Performance Metrics 

 Precision (%) Recall (%) F1 Score (%) 

Open-ended 
question 

0.918 0.709 0.800 

Close-ended 
question 

0.730 0.626 0.674 

Reflective 
statement 

0.514 0.730 0.603 

Scale statement 0.911 0.680 0.779 

None (Physician 
speaking) 

0.761 0.805 0.782 

 

Table 4.12: Decision Matrix for ReadMI (read from Top) v. Senior MI Expert (read 

from Left) 

 Open Close Reflection Scale None Total 

Open 504 29 105 4 69 711 

Close 8 181 77 1 22 289 

Reflection 27 16 321 0 76 440 

Scale 3 3 17 51 1 75 

None 7 19 104 0 536 666 

Total 549 248 624 56 704 2181 
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4.6.1    ReadMI Performance Metrics 

From Table 4.11 we infer that, the Behavioral coding classifier identifies Open-

ended questions with highest accuracy (F1 Score = 80.0%) and precision = 91.8% and 

Recall of 70.9% implying a relatively balanced false positives and missed utterances, 

followed by scale statement with F1 Score = 77.9% and precision 91.1% and Recall at 

68.0%. It identifies the reflective statements, characterized by a high degree of prosodic 

information with least accuracy at F1 score = 60.3%, with highest false positives at 51.4% 

at Recall = 73.0% second highest after “NONE” class at Recall 80.5%. 

4.6.2    Interrater Agreement Between ReadMI v. Senior MI Expert 

The overall Cohen’s kappa across all classes scores a healthy 0.638 with Substantial 

agreement which tells us that ReadMI is comparable with human raters in classifying the 

ASR based utterance into one of the 5 MI metrics. From Table 4.13 it can be inferred that 

better performance is observed for open-ended (kappa = 0.721), closed-ended (kappa = 

0.629), Scale (kappa = 0.772) and None (kappa = 0.683) utterances, which is expected and 

can be attributed to more structured syntax for these utterances, while kappa = .480 

moderate agreement is reported for reflective statement. 

4.6.3    Interrater Agreement Comparison between ReadMI v. Senior Expert and 

Senior Expert v. Junior Expert 

The agreement between two expert raters was analyzed to assess the rule-based 

classifier’s reliability with rater’s agreement scores as the benchmark. As summarized in  
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Table 4.13: ReadMI-Senior MI-Expert Cohen's Kappa calculati 

 

 

 

 

 

 

 

 

Table 4.14, similar to ReadMI, the expert rater demonstrate better agreement in open-ended 

(kappa = 0.833), closed-ended (kappa = 0.798), Scale (kappa = 0.906) and None (kappa = 

0.854) with comparatively lower agreement on reflective statements (kappa= 0.625). By 

comparing the interrater agreement between ReadMI v. Senior Expert and Senior v. Junior 

Expert, it is observed that ReadMI closely tracks the performance of human expert, 

achieving either the same level of agreement (substantial agreement in the class of Close-

ended question) or one notch lower (in all other classes). 

In both the control and intervention groups, the average percentage of time the 

doctor spoke (48.2% at session 1 versus 41.8% at session 2) decreases and increases in the 

 ReadMI-Senior MI-Expert 

 % of 
Agreement 

Cohen’s 
Kappa 

Statistic 

Interpret the 
Cohen’s 
Kappa 

Open-ended 
question 

0.885 0.721 Substantial 
agreement 

Close-ended 
Question 

0.920 0.629 Substantial 
agreement 

Reflective 
Statement 

0.807 0.480 Moderate 
agreement 

Scale statement 0.987 0.772 Substantial 
agreement 

None 
(Physician 
speaking) 

0.863 0.683 Substantial 
agreement 
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Table 4.14: Comparison of Cohen's kappa scores 

 

percent of questions that were open questions (62.0% at session 1 and 69.0% at session 2). 

At the first session, there were some differences in the ReadMI metrics between the control 

and intervention groups, with the control group speaking longer (50.4 versus 46.1; p = .04), 

having more closed questions (5.2 versus 3.4; p = .0002), and having a lower percentage 

of questions being open (55.0% versus 68.0%; p = .0003) compared to the intervention 

group. The significant results of the experimental study with ReadMI is observed as 

follows: After training, the intervention group had significantly fewer close-ended 

questions (2.8 versus 5.0; p<.0001), and a significantly higher percentage of questions that 

were open-ended (80.0% versus 64.0%; p = .0005). There were no significant differences 

 Cohen’s 
kappa (Senior 

v. Junior 
expert) 

Interpret the 
Cohen’s 

kappa (Senior 
v. Junior 
expert) 

Cohen’s 
Kappa 

(ReadMI v. 
Junior expert) 

Cohen’s 
kappa 

Interpretation 
(ReadMI v. 

senior expert) 
Open-ended 

question 
0.833 Almost perfect 

agreement 
0.721 Substantial 

agreement 
Close-ended 

Question 
0.798 Substantial 

agreement 
0.629 Substantial 

agreement 
Reflective 
statement 

0.625 Substantial 
agreement 

0.480 Moderate 
agreement 

Scale 
statement 

0.906 Almost perfect 
agreement 

0.772 Substantial 
agreement 

None 
(Physician 
speaking) 

0.854 Almost perfect 
agreement 

0.683 Substantial 
agreement 
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observed between groups on the number of reflective statements or the use of change 

scales. 

4.7    Analysis 

4.7.1    Open-ended Question, Close-ended Question, Scale Utterance, None 

Open-ended questions were mostly characterized by the presence of patterned explicit 

lexical features like “How. . . ”, “Why. . . .”, “What. . . ”. The corresponding high precision 

score of 91.8% indicating least false positives attests to the presence of chosen features. 

Further, ReadMI’s substantial agreement with the expert for open-ended questions throws 

light on its ability to use Parts of Speech to identify the complex utterances which are more 

nuanced than simple sentences but easily perceived by human raters. Similar trend extends 

to scale based statements usually characterized by the phrase "On a scale of 1 to 10..". The 

substantial agreement with the MI expert and the high precision score attests to the 

observation. Closed questions are characterized by utterances like “would you say. . . ?”, 

“Did you. . . .?”, “have you. . . .?”. Although ReadMI shows substantial agreement with 

the MI expert, it is comparatively lesser to open questions and scale statements. From the 

decision matrix in Table 4.12 it can be inferred that ReadMI identifies 77 close questions 

as reflections. Utterances like "Okay, you tried anything in the past?" which are absent of 

closed question keywords are characterized as "Reflective" but are rated as "Closed" by 

the experts. Although this first iteration of system design focusses on exploiting explicit 

lexical patterns, it is well established that human speech is characterized by additional 



 

91 
 

features like prosody, which highlights "How?" an utterance is articulated with regards to 

inflection, intonation, and pitch. Statements that are grammati- tically structured as simple 

sentences in addition of prosodic elements exhibit different functionality. Further 

utterances like “do you have you had a chance to exercise?”, which are termed as self-

realization utterances where candidates correct themselves mid-utterance from forming 

closed questions to MI compatible open question. These utterances are composed of 

multiple sub-utterances constituting signature lexical features. Here since "....have.." 

occurs after a pronoun "you" and the utterance begins with a close question keyword "do" 

ReadMI identifies the utterance as close question as close questions have higher preference 

than open, from Table 4.7, however, the experts identify the question as "Open" when 

intonation and facial expression are considered. Therefore, abstract spoken utterances 

whose functions must be characterized by prosodic and visual cues pose a challenge to the 

Behavioral coding classifier of ReadMI. Further, utterances like "(ASR missed "on a scale 

of 1 to")....10. Where would you say you are right now in ready already. Would you be to 

make a change with your drinking?" - here the ASR misses out the initial part of the 

utterance thereby contributing to an erroneous classification. Since ReadMI shows 

substantial agreement with Open-ended questions, closed-ended question, Scale based 

sentence and the default utterances in NONE one may conclude that these utterances are 

feature rich in explicit lexical features. A sophisticated classification algorithm would 

likely improve accuracy, for example, by identifying the prosody. 
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Table 4.15: ReadMI Metrics among Medical Student Participants (N = 125) 

 

 Total 
(n = 125) 

Intervention  
(n = 65) 

Control 
(n = 60) 

 Session 
1 

Session 
2 

Session 
1 

Session 
2 

Session 
1 

Sessio
n 2 

 Mean  
(sd) 

Mean  
(sd) 
 

Mean 
 (sd) 
 

Mean  
(sd) 
 

Mean  
(sd) 
 

Mean  
(sd) 
 

Doctor Speak Time 48.2 

(11.3) 

41.8 

(11.0) 

46.1  

(11.2) 

40.1 

(10.0) 

50.4 

(11.1) 

43.5 

(11.8) 

Open Questions 6.8 

(3.2) 

8.3  

(3.6) 

7.0  

(3.1) 

8.5 

(4.1) 

6.6 

(3.3) 

8.1 

(3.0) 

Closed Questions 4.3  

(2.8) 

3.9  

(2.9) 

3.4  

(2.4) 

2.8 

(2.3) 

5.2 

(2.9) 

5.0 

(3.1) 

Total Questions 10.9 

(4.4) 

12.2 

(4.3) 

10.2 

(4.1) 

11.3 

(4.4) 

11.6 

(4.6) 

13.1 

(4.0) 

Reflections 6.1  

(3.5) 

6.5  

(3.5) 

4.6  

(3.5) 

5.0 

(3.4) 

7.8 

(2.6) 

8.1 

(2.7) 

Scale 0.7  

(0.8) 

0.7  

(0.7) 

0.8 

(0.9) 

0.8 

(0.6) 

0.7 

(0.7) 

0.6 

(0.7) 

Ratio of Open to 

Close Questions 

2.6 

(2.7) 

3.7 

(3.6) 

3.2 

(3.1) 

4.8 

(4.1) 

1.9 

(2.0) 

2.5 

(2.5) 

Ratio of Reflection 

Questions 

0.6 

(0.4) 

0.6 

(0.4) 

0.5 

(0.4) 

0.5 

(0.4) 

0.8 

(0.5) 

0.7 

(0.3) 

Percent of Open 

Questions 

62.0 

(20.0) 

69.0 

(20.0) 

68.0 

(20.0) 

80.0 

(20.0) 

55.0 

(19.0) 

63.0 

(17.0) 
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4.7.2    Reflective Utterances 

They are contextual in function, characterized by a combination of prosodic and 

lexical features. As ReadMI is designed to identify prominent lexical patterns in utterances 

it is unable to capture this context as evidenced by moderate agreement between 

ReadMIand the expert rater, (kappa = 0.480) refer Table 4.13 and the increased false 

positives due to Precision score of 51.4%, Table 4.11. The comparatively lesser kappa 

scores between the senior and the junior expert (0.625) shows slightly higher disagreements 

unsurprisingly alluding to the complexity of reflective sentences. Complex reflection 

which are a variation of reflections are characterized by a higher degree of contextual and 

prosodic information. Hence such utterances are identified by ReadMI as NONE while 

identified as Reflective statements by human raters. The nature of prosodic information 

noticed in complex reflections can be attributed to acoustic prominence [90]. Acoustic 

prominence is achieved by varying the duration, pitch, pitch movement, and amplitude [90] 

of selective words like “Those are all very good and yummy, but not so great for us, right?”. 

This utterance appears syntactically close-ended question as it elicits a “yes/no” answer 

from the client. However, it was labelled as “Reflective” statements by the Human expert 

who rate utterances after every session by viewing the session audio-visual recordings. 

This multi-signal information stream characterizing reflective statements, relates to their 

contextual nature. Although lexical features like “. . . sounds like. . . .”, “. . . .seems like. . 

. ..”, “And you. . . .” identify reflective statements, it is unambiguously clear that prosodic 

and visual components are critical for identification. 
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In summary, although the rule-based classifier whose rules are designed based on 

explicit lexical features identified from MI literature and formal English grammar, it is to 

be interpreted as a first step to demonstrate classifier design in a ReadMI-like prototype. 

Preliminary data analysis highlights the need for incorporating prosody and identifying 

more sophisticated patterns which characterize the unstructured and contextual nature of 

human speech. 
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 DISCUSSION 

CSCW is first and foremost a design-based field whose primary goal is to 

understand the social and behavioral nature of social interactions and incorporate these 

characteristics into design of computing systems so that intelligent and seamless human-

machine teaming can be achieved. A key component of these interactions is verbal 

communication and disruptions in verbal communication through interruptions and 

delayed feedback will impede collaborative activities in cooperative work settings.  The 

crux of this research work lies in its demonstration of how social and behavioral 

characteristics that define collaborative interactions in the form of task-oriented dialogues 

amongst human collaborators can be translated into design of computing systems that 

focusses explicitly on solving said communication problems and enhance collaborative 

experiences. More importantly, it demonstrates that combinations of mature and ubiquitous 

technologies that exist today can be combined to create fully functional intelligent 

prototypes that can be tested in actual collaborative interactions. The infusion of social and 

behavioral characteristics of interactions means the GUI design, system design, utterance 

analysis and user experience are influenced by these design considerations. This section 

briefly summarizes the implications of ReadMI and ACE-IMS design from the 

perspectives of 1) User Interface 2) Social Presence 3) Task-oriented dialog features 4) 

User feedback 5) User Feedback and Behavior Modification. 
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5.1    User Interface 

The primary requirement of CSCW based applications is to capture the interactional 

component of collaborative work and contribute to its enhancement in terms of scale and 

computational power. Both ACE-IMS and ReadMI demonstrate this requirement by 

capturing the dialogic form of interaction between participating individuals through GUI 

based design elements which show synchronous and chronological representation of 

dialogue flow enabled by real-time ASR and picturized by “speech balloons” based GUI 

elements. In case of intelligent interruptions dissemination, ACE-IMS, embedded in the 

synchronous chat application (which are inherently collaborative by nature) where the 

dialogue is predominantly task-oriented, can dispense interruptions at the points of 

interruptibility. The sequentially arranged dialogic flow of conversations assist 

participating interlocutors when they context-switch back to the existing task by providing 

visual evidence of previous utterances. Revaluation of points of interruptibility 

chronologically allows users to reconfigure ACE-IMS to suitably interrupt when 

conversations of high priority are carried out despite the presence of affirmation cues. For 

example, disseminating advertisements triggered by word contexts that enhance dialogic 

experience. In ReadMI’s case, visual dialogic flow of conversation, coupled with the color 

changes in speech bubbles highlighting reflective and scale sentences and bifurcation of 

open and close ended questions, provides pedagogical evidence to the facilitator. As a post 

MI session training aid, practitioners can point to the exact point in conversation history 

and suggest possible changes to the phrasing of the subsequent utterances to improve MI 
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delivery, for example if a trainee practitioner during a key moment of interaction with the 

model patient phrases a question as closed in the session, the instructor can refer to that 

time-instance and suggest an open-ended way to phrase the question. 

5.2    Social Presence 

The gap between our knowledge of everyday social interactions and translation of this 

knowledge over to system design to enhance cooperation and collaboration is well articulated 

in [91]. For successful design of collaborative systems incorporating social presence is a priority 

[78]. ACE-IMS and ReadMI demonstrate system design elements that aims to minimize 

socio-technical gap. In addition to the dialogic flow-based representation of conversations, 

a system design which is primarily mobile based, ergonomically convenient and 

representative of majority of communication exchanges is brought to fruition through the 

mobile tablet-based implementation on the Android platform. As it is shown that face-to-

face communication increase social presence, JITSI based distributed remote 

implementation of ReadMI is augmented with a video conferencing implementation which 

allows for both facilitators and practitioners to observe facial expressions along with voice 

to deliver and assess empathetic MI delivery. data obtained from such applications, 

fundamentally designed to incorporate social interactions, have to potential to generate data 

that can be used to fine tune ReadMI and ACE-IMS. 
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5.3    Language Features Used for Algorithm Development 

Language is a functional instrument of social interactions. Both ACE-IMS and 

ReadMI incorporate language features that highlight functional aspects in the form of 

discourse markers that parameterize task-oriented dialogues. These discourse markers were 

used to identify points of interruptibility by ACE-IMS.  As affirmation cues signal task 

transitions, the identified lexical affirmation cues accounting for 69.9%, 62.9% and 88.1% 

of the set of manually annotated task boundaries for UMT training, UMT test and Tangram 

test dataset, suggest that identified affirmation cues account for majority of the task 

boundary utterances and can contribute to intelligent interruption dissemination, provided 

that the task structure of task–oriented dialogues are similar to UMT and Tangram datasets. 

In case of ReadMI, discourse markers were used in combination with part of speech tagging 

to classify utterances based on behavioral codes used in MI for ReadMI. The usage of 

traditional question identifying discourse markers, particularly open question identifying 

ones like “what…”, “who…”, reflective sentence identifying utterances like “it seems 

like…” and scale-based sentences like “…on a scale of 1 to 10….” signal the identification 

of different utterances in MI based task-oriented dialogue. 

5.4    User Feedback and Behavior Modification 

To understand the user-based feedback of the computing systems used to facilitate 

social interactions ReadMI was chosen as an example. Research shows that immediate 

feedback is necessary for skill establishment and development [58]. By deploying ReadMI 
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in an actual collaborative learning environment - medical education settings as explained 

in Section 4.4, we present the findings on the effects of its instantaneous feedback, its 

perception by both the facilitators and the practitioners in the workflow, which are critical 

in understanding the human computer interface aspect of cooperative workflow. 

The subjective qualitative feedback from the practitioners and facilitators in tables 

5.1 and 5.2 informs that ReadMI provides a quantified perspective to the seemingly 

analogous practice of motivational interviewing. The quantitative feedback from the 

experimental study reported in Section 4.4 shows significantly fewer close-ended questions 

(2.8 versus 5.0; p<.0001) and significantly higher percentage of questions that were open-

ended (80.0% versus 64.0%; p = .0005). These qualitative and significance results 

demonstrate the potential of ReadMI in altering the way Practitioner’s approach MI. 

Behavior modification is defined as “the process of changing human behavior over the long 

term through motivational techniques, positive(rewards) and negative(consequences) 

reinforcement”[92]. By providing numerical feedback in MI sessions and if used 

consistently over sufficient period ReadMI shows a strong potential to positively influence 

practitioner behavior in the direction of MI consistent techniques.  

Table 5.1: Medical Student Reviews from Experimental Study 

Student Reviews 

"The ReadMI experience opened my eyes to many aspects of MI I had not 
realized. For one, it made me realize how frequently I use 

close-ended questions although I personally felt that I hardly ever do. 
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It also showed me the importance of making the patient do the work, and 
that I am simply there to guide the conversation in the right direction. 

The patient time speaking vs doctor time speaking metric illustrated this 
clearly. I also learned many new tricks to illicit behavior discrepancies 

in my patients, and gained a better understanding of how big that gap should 
be for optimal results. I left the experience knowing what I did well 

(affirming statements), and what I needed to work on (re-phrasing my 
questions, guiding the patient to do the work)." 

"The ReadMI experience continued to reinforce my positive thoughts 
regarding motivational interviewing and I will continue to utilize 

this technique on a regular basis. The qualitative data was comparable 
to my subjective experience and highlighted areas of improvement. The 
qualitative data specifically revealed a need to utilize more reflective 

statements in my patient interviews. The ReadMI experience 
exposed me to the benefits of SBIRT and I will begin to integrate this 

protocol into my patient interviews. This session will serve as motivation 
to continue utilizing motivational interviewing techniques when working with 

patients in need of behavior change." 
"The ReadMI experience changed my thoughts on motivational interviewing by 

implementing the feedback I received from the facilitator and the tool into 
my second try. Trying it on a real patient would help be certain the changes 

implemented the second time made the conversation more fruitful, as well as see 
if it actually changed the patient’s motivation. Receiving the qualitative data 

compared to my subjective experience disconfirmed my feelings. I thought I 
would do most of the talking or did not provide enough reflections, however, the 

tool indicated otherwise. The new insight I have regarding motivation interviewing is 
to be attentive to what the patient says, as well as always ask what he/she likes 

about the certain substance – this is something I had never considered doing in the 
past and it was valuable to the conversation." 
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5.4.1    Reviews from Medical Students and Facilitators. 

Table 5.1 shows a sample non-exhaustive list of reviews by students who were 

responding to "How did the ReadMI experience change your thoughts on Motivational 

Interviewing? How did seeing quantitative data compared to your subjective 

experience confirm your feelings? Disconfirm your feelings? What new insights do 

you have regarding Motivational Interviewing given the experience?", and the 

facilitators in Table 5.2 were responding to "How did ReadMI affect your workflow?”. 

From the students’ feedback one of main themes that emerges from Table 5.1 is that 

ReadMI’s feedback brings MI interview into perspective, in terms of numbers and the 

instantaneous dissemination of knowledge appears to elicit the realization or "the 

lightbulb" moment as mentioned by one facilitator from Table 5.2. Lastly, from the 

perspective of the facilitators ReadMI seems to offset their workload by providing 

feedback on the technical components of MI, thereby allowing them to focus on the 

qualitative aspects if the Practitioner interview process. 

Table 5.2: Facilitator reviews from Experimental Study 

Facilitator Reviews 

"Readmi aides in my facilitation of MI teaching by providing quantitative 
data back up on the subjective feedback I’m presenting students.It helps make 
the feedback more real and give the students tangible skills to focus on. You 

can truly see the students “lightbulb” go off when they see the metrics back 
after their first interview. It’s fulfilling as the facilitator to see students 

learn to be exploratory with patients in a medically directed way. " 
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"As a training facilitator, the use of ReadMI allows me to focus on qualitative 
aspectsof a student’s use of the motivational interviewing approach because I am 
not also trying to track quantitative grammatical metrics. This process reduces 
the cognitive burden on facilitator. The benefits to the student are that they receive 

both ReadMI metrics as well as substantive feedback from me regarding the spirit 
of motivational interviewing." 
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 CONCLUSION 

Communication issues in multi-user multi-tasking interactions manifesting through 

ill-timed interruptions and delayed feedback disrupt the ongoing task and degrade human 

productivity and affective state and has the potential to pose a serious threat to mutual 

dependency in cooperative work environments. To address these challenges, this 

dissertation work proposed ACE-IMS, a real-time interruption management system that 

utilizes typical affirmation cues present in human-human communication to construct a 

highly effective and efficient solution for disseminating interruptions at task-boundary. and 

ReadMI, a real-time dialogue assessment tool that enhances knowledge retention in MI 

practitioners through introspective real-time quantitative feedback in MI based training. 

This work, motivated by the observation that task-oriented dialogues are characterized by 

the presence of discourse markers like affirmation cues, reflective and scale phrases and 

can be used in combination with expert ruleset to build intelligent cooperative work 

supporting systems like Interruption Management Systems and Dialogue assessment tools. 

The proposed solutions have the potential to improve the effort in growing field of 

computer-supported distributed collaborations that strive to augment human cognitive 

capability with computational and sensory power of machines, while suppressing the risk 

of cognitive overload. Thus, the resulting cooperative teaming between humans and 

machines paves way for a new wave of human-machine teaming applications in stressful 

distributed multi-tasking environments, such as: emergency and disaster management, law 

enforcement, telemedicine, and other field operations. 
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 FUTURE WORK   

 

Figure 7.1: Move Structure Comparison between Task-oriented versus 

Conversational Datasets 

Currently, the ACE-IMS and ReadMI prototypes are designed as frameworks, to 

demonstrate how existing technologies can be melded together to produce a system-based 

solution address the problem of unwanted interruptions and delayed feedback in multi-user 

cooperative work. This framework is presented as the first step for incorporating the latest 

advancements in technologies to build progressively intelligent interruption management 

systems and dialogue assessment tools. In this subsection, current limitations of ACE-IMS 

and ReadMI are discussed  and potential improvements are suggested. 

7.1    Dataset and Acquisition 
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The nature of the datasets used in ReadMI, and ACE-IMS are currently restricted 

to task-oriented dialogues constrained by fixed discourse markers. These constraints can 

be relaxed by incorporating dialogue datasets that resemble everyday conversations. Figure 

7.1 shows the difference between conversational versus task-oriented dialogue in terms of 

frequency of moves or discourse structure. It is clear that intents or moves in task-oriented 

dialogue is structured while the conversational dialogue demonstrates a higher variance.   

7.2    Data Analysis   

The rule-based classifier in both ACE-IMS and ReadMI are implemented as proof-

of-concepts and are considered as baselines towards future improvements. They can be 

made progressively intelligent with more data. Data intensive algorithms like Deep 

learning. and other machine learning algorithms can be implemented in place of Rule-based 

classifier. Deep learning algorithms are characterized by their capability to unearth 

complex patterns in datasets, predict data based on sequential patterns, incorporate multi-

dimensional datasets like audio and video. ACE-IMS identifies affirmation cues indicative 

of task boundaries. From Figure 3.3 it was evident that most of the task boundaries are 

covered by the lexical affirmation cues as listed in Table 3.3. Hence, it would be of interest 

to analyze the remaining task–boundary utterance, i.e., those without the identified 

affirmation cues. One direction is to add prosodic features as described in [5] with the 

identified lexical affirmation cue features into a combined solution. The challenge could 

be “How to combine prosodic and lexical features to enable real-time operation?”. 
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Additionally, in this work, the task–oriented dialogues were analyzed on an utterance basis, 

which could be expanded to include the entire task conversation to explore the turn–taking 

characteristics and discourse structure. This will lead to a comprehensive understanding of 

the grounding mechanism. [93], and in turn help identify task-boundaries without the 

explicit presence of affirmation cues in the utterance. In case of ReadMI, client datasets 

can be analyzed to identify features for change-talk. As higher open questions, reflections 

and lower closed question directly predict change-talk, it could be an interesting analysis 

to assess the manifestation of facilitator-practitioner strength of cooperative work based on 

client change talk. Further, ReadMI detects comparatively lesser number of behavioral 

codes than in [34], [61], [94]. The decision to do so was made to minimize information 

overload to the users [59] as ReadMI was built as an actual usable prototype. However, 

based on user feedback the number of displayed metrics could be improved with 

appropriate graphical user interface elements to improve intuitiveness in gleaning 

information. Further experimental studies in the form of Randomized Control Trials must 

be conducted  to understand the user interface implications of using ReadMI. 

7.3    System Design and Application  

From a system design and application perspective, Interruption management 

systems like ACE-IMS can be made available as a functional component of AI assistants 

and messaging applications, where these applications can recommend or suggest 

information by interrupting at the right time and help make conversations more informative 
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and constructive. ReadMI can be implemented as "Software as A Service"(SaaS) [95]. By 

leveraging the computational power of cloud computing ReadMI as a service can be 

licensed by educational institutions, workplaces, or private individuals on a "subscription" 

based service. The SaaS model built on cloud computing infrastructure has the potential to 

increase service penetration for broader workforce training. 
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