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WRIGHT STATE UNIVERSITY 

ABSTRACT 

Kostalia, Elisavet Elli, MSc, Department of Computer Science and Engineering, 

Wright State University, 2021. Mathematical Formula Recognition and Automatic 

Detection and Translation of Algorithmic Components into Stochastic Petri Nets in 

Scientific Documents. 

A great percentage of documents in scientific and engineering disciplines include 

mathematical formulas and/or algorithms. Exploring the mathematical formulas 

in the technical documents, we focused on the mathematical operations 

associations, their syntactical correctness, and the association of these components 

into attributed graphs and Stochastic Petri Nets (SPN). We also introduce a formal 

language to generate mathematical formulas and evaluate their syntactical 

correctness. The main contribution of this work focuses on the automatic 

segmentation of mathematical documents for the parsing and analysis of detected 

algorithmic components. To achieve this, we present a synergy of methods, such 

as string parsing according to mathematical rules, Formal Language Modeling, 

optical analysis of technical documents in forms of images, structural analysis of 

text in images, and graph and Stochastic Petri Net mapping. Finally, for the 
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recognition of the algorithms, we enriched our rule based model with machine 

learning techniques to acquire better results.  
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1. Introduction 
 

Algorithms and mathematical expressions are an integral part of computer science 

and the related literature. Documents in scientific and engineering disciplines 

present in a great percentage research findings and descriptions by introducing 

mathematical formulas or algorithms. Working towards the automatic 

understanding of the several components in documents, our purpose in this work 

is to contribute to the recognition and representation of how the mathematical 

formulas and the algorithmic components are structured and analyzed. 

Mathematical formulas are tightly connected to algorithms as not only algorithms 

usually contain the execution of several mathematical operations, but also, in many 

cases, algorithms are introduced in order to provide a step-by-step description of a 

certain mathematical formula. Here, our goal is to develop a methodology for the 

analysis of mathematical components found in technical documents and a system 

focusing on the detection and the extraction of algorithmic components in technical 

documents.  
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Exploring the mathematical formulas in the technical documents, we focused on 

the mathematical operations associations, their syntactical correctness, and the 

association of these components through their translation into attributed graphs 

and Stochastic Petri Nets (SPN) by processing the formulas in several layers. 

Initially, we conducted a first level comparative survey on the previous research 

works on parsing mathematical formulas in documents, which is presented in 

Chapter 2. The implementation of our system begins in Chapter 3 where we have 

developed a rule based methodology for parsing mathematical expressions, followed 

by mapping the symbol string representation of the mathematical formulas to an 

attributed graph and then to an SPN state machine in order to embed timing in 

the representation of the mathematical formulas. For a better understanding of the 

structure of a symbol string describing a mathematical formula, we designed a 

formal language which is introduced in Chapter 4. By making use of the formal 

grammar, we will be able to generate new mathematical formulas and evaluate 

their syntactical correctness. 

Finally, as presented in Chapter 5, we designed and developed a system to 

automatically detect algorithmic components in documents and analyze them. We 



 

3 

have implemented a rule-based methodology based on which, a document in a for 

of an image is segmented to image blocks. The image blocks after a pre-processing 

layer, are further analyzed to determine whether they contain algorithmic content. 

Next,  we designed a model to convert the detected pseudo-algorithms in a graph, 

representing the sequence of steps introduced in the algorithm. Then, the detected 

algorithm is automatically mapped to an SPN state machine. The proposed 

algorithm analysis system makes use of a hybrid methodology of rule-based and 

machine learning procedures.  Finally, in Chapter 6 we conclude this work and 

summarize the major findings and results. It also includes potential extensions of 

our methodology, where more complicated cases of mathematical formulas or 

algorithms will be taken under consideration.
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2. Evaluating Methods for the Parsing and Recognizing of 

Mathematical Formulas in Technical Documents 
 

2.1 Introduction 

Scientific papers and other technical documents are usually composed by natural 

language text and other modalities, like block diagrams, mathematical formulas, 

tables, graphics, pictures, etc. The last two decades the Automatic Technical 

Documents Processing and Understanding (TDPU) has received more attention 

due to its profound applicability [1]. TDPU represents the continuation of the 

progress made in the fields of OCR, Natural Language Understanding, Pattern 

Recognition, and Image Understanding. 

Surveys of research papers are usually divided into four different categories: brief 

surveys, descriptive surveys, first level comparative surveys and deep comparative 

evaluation. The first category includes a plain review of research methodologies 

informing the researchers on what papers are available in the field of study. The 

descriptive surveys refer to a deeper description of the approaches and their 

classification into various groups associated to certain characteristics, like bottom-

up, top-down processing, etc. The first level comparative surveys approach offers 

a brief description of each methodology and then evaluates each of them by using 

a maturity function that illustrates the level of implementation and applicability. 
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Finally, the deep comparative evaluation of methodologies is based on a very 

thorough analysis of the performance of each method by running all of them on the 

same data set and providing details of their outcomes. This category, compared to 

the previous three, is the more unbiased approach because it is based on test results 

to evaluate the competing methodologies and to determine the most accurate, but 

at the same time is the most expensive and time-consuming [2]. 

One sub-area of TDPU is the recognition of mathematical formulas (MF). The MF 

area mainly deals with mathematical formulas detection in documents and the 

understanding process of formulas by using parsing methods. There are numerous 

research efforts in the field of mathematical formulas processing. For this effort 

here, about 200 papers were initially collected which, after preprocessing, were 

reduced to very small set by keeping those relevant to parsing. Thus, the purpose 

here is to conduct a comparative study among the finally selected papers by using 

a criterion of maturity. This criterion is defined based on a set of features associated 

with the importance for developing software methodologies for MF understanding. 

For instance, some of these features were complexity of the methodology, 

robustness, originality etc. 

Segregating mathematical expressions have been grouped into two categories based 

on their position in the document: isolated and embedded. In this work here, we 
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focus on isolated mathematical formulas in typeset documents. The goal here is to 

present an overview on this specific type of formulas, describing the parsing 

methods used during the structural analysis and interpretation of isolated MF. 

OCR, formulas detection and extraction are out of the scope of this effort. Here, 

we only evaluate the methods describing the syntactical parsing of the formulas. 

Thus, through each parsing method, the formula aims to be represented as an 

operator tree. In an operator tree structure, the internal nodes represent the 

operators, while the leaf nodes describe the operands. For the generation of the 

tree, the analysis layer may include several techniques that have been used so far, 

including rule-based and formal grammars. 

There are several efforts studying the field of processing mathematical expressions. 

Thus, it is important to firstly report surveys studies associated to mathematical 

formulas. In particular, Chan and Yeung [3] presented a survey on both symbol 

recognition and structural analysis of mathematical expressions. They present 

various approaches developed on the parsing of the formulas to that date. Their 

work is mainly focused on the description of the similarities and the differences 

between the existing techniques. The survey by Zanibbi and Blostein [4] focuses on 

recognition methods of mathematical formulas. The unique contribution of that 

work is also the introduction to the study of mathematical formula retrieval area. 
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In both these efforts [3], [4] the emphasis is more towards to recognizing and 

understanding mathematical formulas however, understanding mathematical 

formulas involve parsing.  

The rest of this thesis is organized as follows; in section II, the several approaches 

in parsing the mathematical formulas are presented. Section III presents an 

evaluation of state-of-the-art parsing methods highlighting the advantages and the 

limitations of each method through the evaluation process, using a maturity 

formula [5]. A number of features are selected for the evaluation of the maturity of 

each method, where each feature represents a different aspect of the evaluation. In 

section IV, the results of the evaluation are discussed, and future directions in 

mathematical formula analysis research are presented. Finally, section V states the 

conclusion of this work.  

2.2 Recognizing and Representing M athematical Formulas 

The process of understanding mathematical formulas in documents is divided into 

four sub processes: (a) identification and segmentation which focus on detecting 

and isolating formulas in documents, (b) symbol recognition in formulas, (c) lay-

out recognition for identifying the spatial relationships among symbols and, (d) 

content representation and analysis whose purpose to compute the outcome of the 
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mathematical formulas. Parsing is included in the latter task, where the various 

objects (i.e. operators, operands) forming the formula are presented by an operator 

tree, which holds all the structural information of the mathematical expression. A 

large number of parsing techniques with a range of variations were introduced in 

the literature through the years for the analysis of mathematical formulas. The 

parsing is realized using either string grammars or two-dimensional grammars, 

depending on the system built. 

The formal grammars used in the parsing process can follow either the top-down 

or the bottom-up approach. There are also cases where an integrated bottom-up 

and top-down approach is applied. The top-down approach is considered to be the 

fundamental structure processing technique. It processes the input structures 

starting with the global perspective of the input expression, and proceeds by 

analyzing horizontal and vertical relations among objects in the structure, which 

in our case are the sub-expressions in the mathematical formula. On the other 

hand, the bottom-up techniques process the elements in a mathematical structure 

by analyzing the nested structures based on specific objects (e.g. symbols, 

operators) within the structure. 

A. Top-down parsing 
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The approach by Anderson [6] is one of the earliest works in this field. Despite its 

poor experimental results, the impact of this work on other works in the area of 

mathematical expression recognition is deemed significant. The work applies a top-

down approach where, a syntax-directed algorithm, using rules of a formal 

grammar, is applied on the sub-expressions within the input formula. The 

experimental results exhibit the low efficiency of the method which may be 

attributed to the format of the formal grammar applied.  

Chan and Yeung [7] introduce three mathematical expression parsing methods, 

namely, (a) symbol string parsing through backtracking, (b) parsing using binding 

symbol preprocessing and, (c) parsing using hierarchical decomposition. A Definite 

Clause Grammar (DCG) is executed within each method, and is implemented in a 

way that allows the parsing the mathematical formulas. DCG is highly declarative, 

which leaves no space for errors during the recognition process. It is executed by a 

Prolog interpreter (also used in the present work). The experimental results proved 

that, hierarchical decomposition is the most efficient method among the three in 

terms of parsing speed. In terms of complexity, the method aims to split expressions 

into smaller ones, so that even using a parser of high complexity, the time for 

parsing the short-length expression would be low. The method has been also applied 
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for the understanding of handwritten mathematical expressions [8] with very high 

accuracy. 

Tree structures are typical for describing the structural information of 

mathematical expressions. More specifically, binary trees have been used widely as 

they are both, easy to interpret and process and, capable of handling recursion. 

However, binary trees fail to represent all information in mathematical formulas 

especially in cases of mathematical formulas containing complex elements such as 

matrices, summations, integrals etc. The work by Toumit, Garcia-Salicetti and 

Emptoz [9] propose a flexible tree structure where each node may have more than 

two children nodes. A recursive method is applied initially on a single-node tree, 

containing the whole formula. While nodes can be complex objects, it recursively 

breaks each node into simpler object leaves based on the operators, comparators 

and spatial connectors in each object. 

There can be a great deal of uncertainty in the interpretation of mathematical 

expressions mainly because of ambiguity inherent in mathematical notation and 

this might make interpretation dependent on human experience. In order to deal 

with this problem, Chen, Shimizu and Okada [10] introduce a rule-based approach 

for the automatic parsing of mathematical expressions. They first extract a layout 

tree along with a semantic tree representing the layout and semantics of 
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mathematical expressions respectively, prior to applying a set of mathematical, 

sense-based and experience-based rules. In an extension of this work [11],, the 

authors discuss the various ambiguity issues in mathematical expression 

understanding.  

In the work by Jin, Han and Wang [12], mathematical formulas are parsed by 

applying a hierarchical and recursive decomposition process that computes an 

operator tree as a result. Processing is split into three layers; each layer is dedicated 

to different mathematical elements represented by glyphs. During the first layer, 

the most basic elements are processed, like fractions, radicals, and delimiters, which 

outputs the compound expressions of the formula. A multi-line mathematical 

formula is then transformed into a one-dimensional array. The processing of this 

array is based on the backbone glyph extraction. Going towards the next layers, 

each compound expression is handled as an individual glyph, representing a 

subexpression. The process terminates when there is no more subexpression for the 

formula to be split. 

Toyota, Uchida and Suzuki [13] handle the parsing of a mathematical formula as 

an OCR verification step that applies a context-free grammar capable of dealing 

with mathematical syntax. This is a top-down approach where the grammar is 
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applied on the tree representation of the formula and grammar rules are defined 

according to Anderson [6]. 

B. Bottom-up parsing  

Lavirotte and Pottier [14] introduce a graph grammar approach. The input formula 

is represented by a graph structure which is generated based on the spatial 

locations of the symbols in it. Graph nodes represent symbols in the formula and 

graph edges represent their relative positions. The graph is then transformed to a 

syntax tree using a graph grammar. The graph grammar is a context-sensitive 

graph grammar where, the terminal symbols represent mathematical symbols and, 

nonterminal symbols represent mathematical expressions. The challenge in graph 

building relates with the number of links: a very big or small number of links might 

lead to ambiguities: might lead to more than one formula or, might not be able to 

represent all information needed for building a formula, respectively. Along the 

same lines and following the optical recognition of symbols in the formulas, 

Chaudhuri and Garain [15], [16] extract the logical relationships among the formula 

components. The process is based on the idea of building the layout of a formula 

using the spatial relationships of its components and their bounding box 

coordinates as parameters. For the final part of the syntactic parsing and 

mathematical formula understanding, a number of pre-defined rules are applied. 
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In the work by Guo, Huang, Liu and Jiang [17], a mathematical expression is 

decomposed into sub-expressions. The method introduces the idea of continuous 

reformation of the global expression structure by decomposing the formula into 

basic sub-expressions, and by appending the analysis results to the higher levels of 

the bottom-up process. The script relation trees are generated by applying a 

context free grammar and an N-best algorithm for the finishing analysis tasks. 

C. Integrated top-down and bottom-up parsing 

Integrated parsing approaches combine both top-down and bottom-up parsing 

techniques. Fateman et al. in [18], [19] handle typeset mathematical expressions 

using both OCR and structural analysis. Structural analysis applies a bottom-up 

parser. Prior to structural analysis, a top-down method is applied for identifying 

and parsing sub-structures in a formula. The experimental results for the bottom-

up method are not promising due to the complexity of the inputs. This result, 

however, does not rule-out the use of the bottom-up approach on other inputs.  

In DRACULAE system, Zanibbi and Blostein [20] process a mathematical formula 

left-to-right. The so called Baseline Structure Tree (BST) is generated first and is 

transformed to a Lexed BST [21]. This is then translated to a LATEX expression 

which is forwarded to the expression analysis stage which produces the operator 
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tree. Each expression is analyzed in terms of syntax and semantics. During syntax 

analysis, a context-free grammar is applied on the linearized symbol string and a 

parse tree is produced. During semantic analysis, a set of tree transformation rules 

are applied for detecting implicit operations and the operator tree is re-ordered. 

The complexity of DRACULAE is linear on the average.  

Takiguchy, Okada and Miyake [22], apply both a layout and a semantic tree for 

the understanding of a mathematical formula and its translation to LATEX. 

Following the layout analysis of a formula, Guo et al. [17] use sense-based and 

experience-based rules. 

2.3 Evaluation 

In the following, we present a comparative evaluation of the methods referred to 

above. All methods are evaluated using the features of Table 1. These features are 

deemed representative of their operation, purposed and expected result [23]. 

FEATURES DESCRIPTION  

Reliability (F1) 
The methodology produces expected results under 

normal operating conditions 

Robustness 

(F2) 

Results are produced under extreme conditions – 

formulas with a great complexity 

Complexity 

(F3) 

The difficulty in implementing a methodology due to a 

large number of components or associations. Also refers 

to Computational and Memory requirements. 
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Efficiency (F4) 
The methodology can achieve the desired results in an 

efficient way 

Originality 

(F5) 
A novel methodology is presented 

Accuracy (F6) The precision of the results 

Speed (F7) Processing time of the methodology presented 

Experiments 

(F8) 
Size of experimental data 

Further 

Improvements 

(F9) 

Enhancements required in the design 

Cost  (F10) The Implementation cost of the methodology 

Portability 

(F11) 
The ability of the system to work in different platforms 

Parsing Method 

(F12) 

The parsing method used for the syntactical analysis of 

the formula TD for top-down approaches, BU for 

bottom-up and IN for integrated approaches 

Table 1 - Evaluation characteristics 

The selected features are defined based on inherent characteristics (i.e., 

implementation complexity, accuracy, extensibility, originality, robustness) or, the 

performance (i.e. efficiency and quality of the results) of the parsing methods which 

they are related with. In order to achieve a more quantitative assessment, all 

competing methods are rated based on two perspectives, one associated with the 

end-user and the other associated with the developer. The weights 𝑤j for the 

developer and user perspective are shown in Table 2. They are defined by our 

evaluators, and they are used for computing a “maturity score” 𝑀i for each 

methodology.  
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The maturity function of Eq. (1) defines the maturity score for a method taking 

into consideration the weights of each perspective.  

𝑀𝑖 =
∑ 𝑤𝑗𝑓𝑖𝑗

𝑁
𝑗=1

∑ 𝑤𝑗
𝑁
𝑗=1

     (1) 

In Eq. (1), N represents the number of quantitative features used for the evaluation 

(i.e. 11 in our case). Each methodology is assigned a score from 1 to 5 for each 

feature. A score 1 denotes poor performance of the approach on feature, while a 

score 5 denotes very good performance, respectively. The features showcasing the 

further improvements (F9) and the cost (F10), reflect a negative impact as they 

describe the required enhancements for the specific methodology and the 

implementation cost of the system by incorporating the respective feature. For 

both these negative impact features, a higher score denotes the less requirements 

for the maximum performance. The scores assigned to each methodology, based on 

the proposed features are shown in Table 3. 

Each methodology receives a score 𝑓ij for each feature (means each methodology 

receives 11 scores). Following this, for the computation of the maturity of a 

methodology for a perspective (i.e. end-user or developer) the weight of each feature 

from the developer’s perspective is multiplied with each distinct feature score. The 
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summation of all these products is normalized by the summation of the weights for 

this specific perspective. 

 

 

 

 

Table 2 - Weights assigned to features, for the 

end-user and developer perspectives 

The result of the division will form the maturity value for the given methodology 

for the developer’s perspective. For example, for the method by Fateman and 

Tokuyasu [18] for the end-user’s perspective is: 

𝑀[15] =
3×1+2×1+3×0.1+3×1+3×0.1+2×1+3×1+1×0.4+1×0.5+5×0.6+3×0.3

1+1+0.1+1+0.1+1+1+0.4+0.5+0.6+0.3
=3.6 

 

 

 

FEATURES 

WEIGHTS 

END-USER 

(WU) 

DEVELOPER 

(WD) 

F1 1  1 

F2 1  1 

F3  0.1 1 

F4 1 0.8 

F5 0.1 0.9 

F6 1 1 

F7 1 1 

F8 0.4 1 

F9 0.5 0.8 

F10 0.6 0.9 

F11 0.3 0.9 
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 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 

[18] 3 2 3 3 3 2 3 1 1 5 3 IN 

[7] 3 2 3 4 5 3 4 1 1 3 1 TD 

[14] 3 2 4 4 5 2 4 1 2 2 3 BU 

[9] 4 2 3 4 4 3 4 1 2 4 3 TD 

[10] 3 2 2 3 5 3 2 3 2 3 2 TD 

[15] 5 4 3 3 4 5 3 3 4 2 4 BU 

[8] 5 4 5 5 3 5 4 4 4 1 4 TD 

[12] 5 4 4 4 2 5 3 4 3 1 4 TD 

[20] 4 4 4 3 2 5 3 3 4 2 4 IN 

[22] 4 2 4 2 3 4 2 2 2 4 5 IN 

[13] 4 3 2 4 4 3 1 3 3 2 2 TD 

[17] 4 3 3 3 2 3 2 5 3 2 3 BU 

Table 3 - End-user and developer scores for all 

methods. 

2.4 Discussion on Evaluation Results 

The overall maturity scores are calculated based on the Eq. (1), for both user and 

developer perspectives. The formula indicates how mature each individual 

methodology is, the time it was developed and not in comparison to each other. 

Figure 1 illustrates the maturity scores for each methodology, based on both 

perspectives. Figure 2 illustrates the average maturity score for each methodology. 

Figure 2 shows the scores without taking weights into consideration. No method 

reached the maximum maturity score. However, most methods achieve relatively 

high scores. The method by Chan and Yeung [8], which applies top-down parsing, 

outperforms all other methods achieving average score 4.10/5.00, followed by the 

method by Chen, Shimizu and Okada [11] which also applies top-down parsing and 
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achieves average score 3.70/5.00. Third in order, in the integrated method by 

Zanibbi and Bolstein [20] which reached 3.54/5.00 average score.  

All parsing methods proved successful on mathematical formula understanding 

although the methods differ from each other in terms architecture used, nature of 

the system or application within they are applied and other factors. Therefore, the 

decision of which method is the preferred one resorts to the end-user or developer 

who needs to take all these factors into account. 

The top-down parsing approaches with the best scores are [8] and [12]. The first 

one relies on backtracking which does not guarantee very good efficiency in the 

general case [23]. The second one makes relies on recursion for the decomposition 

of input formulas which might result is lower computation cost. Furthermore, the 

integrated methodology Zanibbi, Blostein and Cordy [20] has also achieved low 

computational cost due to its linear time complexity in the average case. This 

improves the maturity score. 

The integrated approaches are expected to be very prominent. This hypothesis is 

based on the understanding that top-down approaches resemble the way the human 

brain understands the components of a formula in the first place. Also, the bottom-

up approach for the evaluation of the subexpressions of the formula leads to the 
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evaluation of the complete mathematical formula. The evaluation results are not 

according to this hypothesis. Notice that, lower maturity are obtained for 

methodologies which have been implemented to their full extend (i.e. as full-fledged 

systems supporting all stages of recognition and understanding) which can be both, 

very complex and computationally expensive. 

 

Figure 1 - Maturity scores according to end-user 

and developer perspectives. 

 

Figure 2 - Average maturity scores with and 

without weights 
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21 

2.5 Conclusion 

We present a comparative study on mathematical expression and formula 

understanding methods. The discussion and following evaluation is based on a 

number of criteria relating with the operation of each method and whose purpose 

is to reveal the strengths and weaknesses of each method. A maturity metric is also 

introduced which becomes the overall criterion for ranking the competing parsing 

methods by efficiency taking also into consideration criteria pertinent to end-users 

or system developers. 

All comparisons are made between the works themselves (to their full potential) 

and not among the different systems within which the methods are applied. By 

conducting this survey, we concluded that no approach could achieve the maximum 

maturity in the field of understanding mathematical formulas. This can become 

possible by developing methods simulating the hierarchy of operations of human 

mind or, by using structures that would be able to hold, not only the structural, 

but also the functional information of a formula. We have examined the process of 

formula parsing and how close this is to the way the human-brain processes the 

formulas. It is a step closer to machine deep understanding of technical documents 

that may be used to train machines handle mathematics [24], [25]. 
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3. Conversion of Mathematical Formulas into Graphs and 

Stochastic Petri Nets 
 

3.1 Introduction 

Even though mathematical expressions consist of well-defined rules applied on the 

syntax and the operations forming the hierarchy of the operations, the analysis of 

the components and their associations tends to be a challenging part of any 

machine trying to analyze and understand this expression. Since understanding of 

mathematical expressions has a certain connection with people's sense and 

experience, we build a system which takes under consideration the mathematical 

rules in addition to the rules based on the human sense and experience to 

understand expressions perfectly and to avoid problems of uncertainty. 

A rule base approach is set up in this work which consists of mathematical, sense-

based and experience-based rules to help us understand the expressions correctly 

and naturally. The mathematical rules are helpful to automatically and 

unambiguously parse the structure and the semantics of an expression after having 

recognized characters and obtained information for the spatial relationship of the 

operators in a tree structured format. While the sense-based rules provide the 

handling of the expression’s ambiguousness in layout, the experience-based rules 
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are responsible for dealing with uncertainty in expression semantics. The final 

purpose of this part is to design a system which takes as an input a mathematical 

expression and generates the Stochastic Petri Net representation of this expression.  

Conventionally, we use as a source a mathematical formula in LATEX format which 

comes from a free OCR tool which converts an image of a mathematical formula 

to LATEX code. Thus, the only assumption used here is a preprocessing of inserting 

an image to an external OCR tool and receiving an MathML or  TEX (LATEX) 

formatted output as the input to our system. This is quite realistic as almost all 

the methods proposed in the literature give recognition output in one of these 

formats. 

 

3.2 M athematical expressions in technical documents 

Technical documents include, among other modalities, mathematical expressions, 

which may be found at a great percentage of documents, especially in the area of 

Computer Science. This work is exclusively focused on Mathematical expressions 

found in technical documents. In the very beginning it is essential to define what 

a mathematical expression in a technical document is: it is a finite combination of 

symbols that is well-formed according to rules that depend on the 
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context. Mathematical symbols can designate numbers (constants), variables, 

operations, functions, brackets, punctuation, and grouping to help determine the 

order of the operations and other aspects of logical syntax. 

An expression is a syntactic construct which must be well-formed. The operators 

in the expression must have the correct number of attributes in the correct places. 

Any string of symbols which violates the rules of syntax is not considered well-

formed and is not identified as a valid mathematical expression. For example, the 

expression 1+2×3 is well-formed, but the expression 9×4)x+/y is not. 

 

3.3 Conversion from electronic type of the technical 

document (pdf) to the SPN representation  

Our proposed methodology consists of five sequential layers of processing; a 

document in a pdf format shall form the input, which after the detection of the 

mathematical parts will be split in individual images which will then undergo 

Optical Character Recognition and result to a symbol string in a LATEX format. 

The recognized symbol string will then go through parsing and following, will get 

translated to an attribute graph, and to an SPN representation. In this part of the 

work, we present the processing layers starting after the OCR of an image and 

moving towards the generation of the Stochastic Petri Net. Although the OCR 
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process has not been implemented at this time, a brief description of the optical 

recognition process would be valuable to be introduced.  

 

Figure 3 - Steps from initial form of technical document to SPN 

representation of mathematical expression. 

3.4 Optical Character Recognition OCR  

Mathematical expression recognition involves three major tasks: segmentation - 

detecting symbols, classification, and parsing - determining expression structure. 

These tasks may be solved in a sequential feed-forward manner, or in a globally 

integrated fashion. 

▪ Segmentation  

It is a task of grouping related primitives. These primitives could be pixels from an 

image, or strokes from a handwritten equation. The main challenge of symbol 

segmentation in typeset mathematical expression images is fractured symbols 

whose components were split by printing and scanning noise [26].  
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▪ Classification 

Common algorithms for symbol classification include nearest neighbor, support 

vector machines, random forests, hidden Markov models, convolutional neural 

networks, and bidirectional long short-term memory networks.   

▪ Parsing 

Converting input primitives (e.g., images, handwritten strokes, or symbols) to a 

description of formula structure. A common set of features used to represent the 

spatial relations between components are geometric features.   

The use of the relative position of the symbols gives additional information about 

the association between symbols and elements of the expression, having as an 

example the superscripts and subscripts or operators such as summation and 

integrals. 

Reading Mathematical Expressions is executed in a left-to-right order, following 

the precedence of operations. The precedence of operations is a collection of rules 

that reflect conventions about which procedures to perform first in order to 

evaluate a given mathematical expression and its purpose is to eliminate ambiguity 

while interpreting an expression. It is also a way that allows notation to be as brief 

as possible. The simplest way of parsing a two-dimensional expression is to 
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translate it into its equivalent one-dimensional representation and then parse it 

using an existing parser. An expression consists of one or more mathematically 

linked symbol groups. A symbol group is defined to be a special mathematical 

symbol which may deviate from the typographical center of a mathematical 

expression and the symbols that appear with it [27], [28]. For example, ∑ 𝑥𝑖
𝑛
𝑖=1  is a 

symbol group. When all symbol groups in an expression have been grouped, the 

expression can be transformed from a 2-D form to 1-D, according to the previously 

mentioned OCR steps. In this work we did not focus on the Optical Character 

Recognition of the mathematical formulas, we rather take the output of the OCR 

tool in the form of a symbol string as a given. We will handle this issue in the 

future. 

 

3.5 How we process the mathematical expressions 

Given a string expression at the input, and before it is split into its left and right 

parts, an equation detection procedure is applied in order to detect whether this is 

an equality or inequality type of expression and then it is split to the two parts of 

it: left and right part. The two parts are treated as distinct mathematical 

expressions and are processed individually and in a next processing layer we will 

handle the connection of the two parts. For each part, the parentheses inside the 
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mathematical expression are detected and processed -as they are in the highest 

priority in the hierarchy- as individual expressions as they may include nested 

parentheses. In general, we find different types of expressions and calculate the 

simple or complex expressions inside them. We follow the precedence of the 

operations inside every sub-expression which is a simple expression, then move to 

the outer layer of hierarchy. Our model goes through different levels of hierarchy, 

depending on the context of the expression. At each level, the elements of the 

current operation hierarchy level are processed, and the outcome of this process 

will replace this sub-expression, modifying the input expression. Each mathematical 

operation is given an id number for identification purposes, for example, the first 

summation operation is marked as add1 and the first detected parenthesis is 

marked as parnethesis1. An example of this procedure is shown in the following 

image. 
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Figure 4 - Proceeding steps of the expression 

y=e*c/6+(a-b) 

3.6 The mathematical expressions 

1.1 We define as simple expressions the expressions that include numbers 

and alphabet letters along with the basic operators +, -, *, / and process 

them in the order multiplications and divisions, then additions and 

subtractions. 

1.2 Types of Mathematical Expressions Modules which our system processes: 

▪ Parenthesis 

▪ Equality - Inequality 

▪ Simple expression 

▪ Fraction 

▪ Summation 

▪ Finite Integral  
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▪ Factorial 

▪ Root 

▪ Exponential 

▪ Limit 

▪ Indefinite Integral 

▪ Absolute Value 

▪ Logarithmic 

 

3.7 M ath Expressions to Graphs 

Each mathematical expression is represented by a graph. Each sub-expression  

becomes a sub-graph of the full graph. That means that for every level of the 

hierarchy and for each operation, two nodes and two edges are created. The first 

node that is created is the result of the operation that will be registered as a new 

node along with the edge that will connect the node that represents the last 

operation’s result. The second node is the next operand to be executed which will 

be associated, through a new edge, with the result of the current operation. 



 

31 

 

Figure 5 - The attributed graph of the expression 

e*c/6+(a-b) 

For each operator, there is a number of operators that are required in order for the 

operation to be executed. For example, for simple operators such as addition and 

subtraction two operators are required, though for a fraction, we are expected to 

have two mathematical expressions, one as the numerator and one as the 

denominator. The attributes on the edges connecting two nodes in the graph 

represent the type of the operator that is inside the node that participates in the 

operation.   
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Figure 6 - The graph generated representing the expression a/b. Node ‘a’ 

constitutes the first operator-numerator of the division and node ‘b’ constitutes the 

second operator of the division-denominator. Both edges end up to the node ‘div1’ 

which is a keyword representing the first (and only, in this specific example) 

division operation. 

 

 

Table 4 - Different types of expressions, the 

operands required and their syntax. 

Operation
Number of 

operands
Names of operands Syntax

Addition 2 factor1, factor2 factor1 + factor2

Subtraction 2 factor1, factor2 factor1 - factor2

Multiplication 2 factor1, factor2 factor1 * factor2

Division 2 factor1, factor2 factor1 / factor2

Fraction 2 numerator, denominator frac{numerator}{denominator}

Factorial 1 factor1 factor1! or  (factor1)!

Exponential 2 base, exponent
base^exponent or  (base)^{exponent} or 

(base)^exponent or base^{exponent}

Integral 4
lower limit, upper limit, 

function, differential
int{lower limit}{upper limit}functiond{differential}

Summation 3 factor1, factor2, function sum{factor1}{factor2}{function}

Root 2 factor1, function sqrt[factor1]{function}

Absolute 

Value
1 factor1 |factor1|

Logarithmic 2 factor1, factor2 log {factor1}{factor2}

Limit 3 factor1, factor2, function lim{factor1}{factor2}{function}



 

33 

 

Figure 7 - The graph generated representing the 

expression y=int{0}{3}k^2d{x}. 

 

 

Figure 8  - The graph generated representing the 

expression y-1>=alpha*beta. 
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3.8 M athematical Formulas into Stochastic Petri N ets 

Stochastic Petri Nets are used to describe and analyze systems that are concurrent, 

distributed parallel and non-deterministic. They provide functional information 

and are also used as a machine language for development, simulation, and 

applications. Petri net is an information flow model which we are using in order to 

interpret the mathematical expressions along with their functionality. A Petri net 

is a directed bipartite graph in which the nodes represent transitions (i.e. events 

that may occur) represented by bar, and places (i.e. conditions), represented by 

circles. Compared to graphs which provide with structural information alone, SPNs 

provide also with  functional information (i.e. timing and synchronization) of the 

operations inside a mathematical expression 

 

3.8.1 Stochastic Petri N ets prerequisites 

In this section we provide the basic Stochastic Petri Net (SPN) prerequisites. SPN 

is a specialized category of Petri Nets thus, SPNs and Petri Nets have the same 

visualization components and go by the same visualization rules. We will 

demonstrate how a basic component of Petri Nets is represented visually. A Petri 
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net consists of places, transitions, and arcs [29], [30], where arcs can connect a place 

to a transition or vice versa, but an arc can never connect two places or two 

transitions. Places in a Petri net may contain a discrete number of tokens. Arcs are 

characterized by their capacity, which is the number of tokens they are able to 

transfer. Any distribution of tokens over the places will represent a configuration of 

the net called a marking. In our mapping we use the default capacity of 1. A 

transition of a Petri net is enabled when there are sufficient tokens in all its input 

places, which means that the number of tokens in each of its input places is at least 

equal to the arc weight going from the place to the transition. A transition may fire 

if it is enabled. When the transition fires, it consumes the required input tokens, and 

creates tokens in its output places. This results in a new marking of the net, a state 

description of all places. In a graphic representation of a Petri net in Figure 9, places 

are depicted with circles (where each circle contains or not one or more dots called 

tokens), transitions with long narrow rectangles, and arcs as one-way arrows that 

show connections of places to transitions or transitions to places. Labels above arcs 

indicate their capacity, which means the maximum number of tokens that an arc 

can carry simultaneously [31]. An inhibitor arc is represented by an arc terminated 

with a small empty circle [32]. More information about Petri Nets and Stochastic 

Petri Nets can be found in the corresponding literature [29], [30], [32]. 
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Figure 9 - A simple Petri Net graph 

Here, we present some basic points for the representation of mathematical 

expressions, operands, and operator’s results into SPN graphs. So, simple 

mathematical operations or functions are represented by timed transitions (thick 

rectangles), since they are the transitionary layer between the variables/operands 

and the result of the mathematical operation/function. Places (big circles) represent 

variables or constants that describe any operand as a part of a mathematical 

operation. Places may also represent the result of an arithmetic operation/function 

execution which will eventually become an input to a forthcoming operation.  

3.8.2  M ethodology We Follow to Convert Graphs to SPN  

Having as the final purpose of this part of the work the conversion of a 

mathematical formula to a Stochastic Petri Net, the graph was designed to be 

generated in such way so the variables and the numbers of the expression can be 

viewed as the places of the Petri Net and the operations between these operands 

as the transitions. Using the generated graph of the mathematical expression as 
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the input, for each node that represents an operation, a transition is created which 

describes the operation being executed, given the attributes of the two incoming 

edges. Each operand of an arithmetic operation or function in the expression 

(variable or constant or result of an operation’s execution) is represented by a 

place. The attributes of edges leading to the same node describe the several 

operands required for an operation to execute so any edge of the generated graph 

will point to a transition. This transition represents the arithmetic 

operation/function which will be executed using the attributes of the incoming 

edges. Finally, a new place will be created which will represent the result of the 

operation’s execution and an arrow will be connecting the transition with the new 

place. This process will continue until all nodes of the graph have a corresponding 

place in the SPN graph. For the creation and representation of the Petri net the 

SNAKES library of Python was used [33]. 

 

Figure 10 - Graph representation of the 

expression (3x-5)/2 
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Figure 11 - SPN representation of the expression 

(3x-5)/2 
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The symbol string is being parsed based on the alphabet letters and the operators, 

identifying numbers that are made up with more than a numerical symbol and 

variables and operator key-words consisting of more than one letters. The method 

also detects implicit multiplications between elements of the mathematical 

expression. Implicit multiplications are expressed by two symbols one next to the 

other without an operator between them, where a multiplication operation is 

implied. Given the fact that the expression is formed by two parts and an equality 

or comparative operator, the expression is being split into two parts. These two 

parts are processed individually using the exact same procedure. While parentheses 

have highest priority in any mathematical expression, parentheses are being 

detected together with expressions within parentheses form sub-expressions which 

are being isolated and processed separately based on the precedence of operations. 

While executing the operation of each sub-expression, we keep in memory the index 

of the previous node so that we create one graph of all the sub-expressions. The 

graph we are creating will be a graph in a form of a binary tree - each parent node 

will have maximum two child nodes. Following this step,  based on the precedence 

of the operations mentioned above, each sub-expression  is being transformed to 

nodes and edges, creating an attributed directed digraph that describes the 

relationships among the different components of the initial expression. 
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In the next level of processing the mathematical expression, we detect different 

types of operations such as fractions, exponentials, roots, summation, integral, 

factorial, absolute values, that also include sub-expressions and process them just 

like the expressions in parentheses. Every new input of the generated graph consists 

of three elements: the starting node, the ending node and the attribute of the edge 

that represents the factor in the syntax of the operation. After finishing the process 

of both parts of the input expression, the value of each one is assigned in a new 

node with an edge that points towards the keyword representing the relation 

between these two parts. When all the operands and operators are included in the 

graph, we use the NetworkX library of Python so we can visualize it. Final step is 

to create the SPN representation based on the methodology described above. The 

following diagram shows the sequential steps that are followed to achieve the SPN 

representation of the mathematical expression through the graph.  
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4. Generation of Mathematical Formulas using a Formal 

Grammar 
4.1 Introduction 

Mathematical formulas consist of combinations of different mathematical 

expressions, the associations of which, are accurately defined using the well-known 

Figure 12 - Data Flow Diagram describing the procedure of 

converting a symbol string mathematical expression to 

Stochastic Petri Net representation. 
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mathematical notation. A mathematical expression requires that both, the 

operators, and the operands within the expression are defined. The complete 

process of the generation of MF constitutes of three layers of processing, 

representing the steps that are strongly connected and essential for the 

interpretation of a formula: 

1. Generation of a MF using the syntax of the formal grammar designed 

2. Syntactical Optimization - Elimination of undefined terms inside the 

formula 

3. Semantical analysis and interpretation of the formula 

In this phase of our work, we have implemented steps 1 and 2. During the first 

layer of processing, the formal grammar of our language is executed, and 

mathematical formulas are generated. In the second step, these generated formulas 

go through filters to evaluate their syntactical content, in a way that undefined 

terms will be eliminated, or excess notation will be removed without changing the 

syntax of the formula.  

While mathematical expressions are typically illustrated as two-dimensional 

structures of math symbols in either handwritten form or images, meaning that 

each mathematical symbol obtains a relative positions to another in the 2-
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dimensional space in an image, a high-quality typesetting system was developed 

for the description of mathematical notation in scientific documentation: LATEX is 

widely used in typesetting of complex mathematical formulas and is established as 

a standard for the communication and publication of scientific documents [34]. In 

these terms, in our work, we follow the LATEX format to describe each 

mathematical element or mathematical formula. To acquire the syntactical 

correctness of the mathematical language, a formal language (FL) is designed. By 

making use of this FL and its formal grammar subsequently, we make sure that 

the MF are formed based on specific grammar rules which define their syntactical 

correctness and validity [35].  

 

4.2 M athematical Operations 

A representative number of mathematical expressions found in published scholar 

and technical documents was collected and studied, and the most frequently used 

mathematical operations (functions) were congregated in a list, illustrated in Table 

5. They form the corpus of the different operations that will be used to construct 

a new formula, and each operation corresponds to a distinct letter of the alphabet 

of the introduced language. Each distinct mathematical operation is handled 
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uniquely, based on the syntax of the code according to the LATEX format and the 

number of operands that are required to define it completely. For a more 

convenient processing of the symbol strings describing the formula, we eliminate 

special symbols used to describe the spatial relations of elements in the expression 

(like “\”, “ ^ ”, and “_”) from the symbol string of LATEX format. 

 

Serial 

number 

Operation Operation 

Name 

Number of 

Operands 

Pre-processed LAT

EX format 

LATEX 

format 

1 a+b Addition 2 a + b a + b 

2 a-b Subtraction 2 a - b a - b 

3 a ∗ b 

a ∙ b 

a × b 

Product 2 a * b a * b 

a \cdot b 

a \times  b 

4 a/b Division 2 a / b a / b 

5 
a

b
 Fraction 2 frac{a}{b} frac{a}{b} 

6 a! Factorial 1 a! a! 

7 ab Exponential 2 a^{b} a^{b} 

8 ∫ a dx Indefinite 

Integral 

1 int{a}d{x} \int{a}d{x

} 
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9 
∫ c dx

b

a

 
Definite 

Integral 

4 int{a}{b}{c}d{x} \int_{a}^{

b}{c}d{x} 

10 
∑ x

c

a=b

 
Summation 4 sum{a=b}{c}{x} \sum_{a=

b}^{c}{x} 

11 
∏ x

c

a=b

 
Product 4 prod{a=b}{c}{x} \prod_{a=

b}^{c}{x} 

12 √a Square Root 1 sqrt{a} \sqrt{a} 

13 √b
a

 Root 2 sqrt[a]{b} \sqrt[a]{b} 

14 |a| Absolute 

Value 

1 |a| |a| 

15 log a Logarithmic 1 log{a} log{a} 

16 loga b Logarithmic 

with base 

2 log{a}{b} log_{a}{b} 

17 ln a Natural 

Logarithmic 

1 ln{a} ln{a} 

18 lim
a→b

c Limit 3 lim{a rightarrow 

b}{c} 

\lim_{a\ri

ghtarrow 

b}{c} 

19 a mod b Modulus 2 a mod b a \bmod b 
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20 sin(a) Sine 1 sin{a} sin{a} 

21 cos(a) Cosine 1 cos{a} cos{a} 

22 tan(a) Tangent 1 tan{a} tan{a} 

23 a′ Derivative 1 {a}' {a}' 

Table 5 - The distinct mathematical operations. There is alternative 

notation to describe the product operation-in our implementation we only 

make use of the one with the asterisk sign. 

4.3 The Formal Grammar 

In this section we define the designed formal grammar we propose for this work; the 

set of the production rules include all the operations which were presented in the 

previous chapter. 

In the very beginning, we need to make clear what a mathematical expression in a 

technical document is. It is a finite combination of symbols that is well-formed 

according to rules that depend on the context. Mathematical symbols can designate 

numbers (constants), variables, operations, functions, brackets, punctuation, and 

grouping to help determine order of operations, and other aspects of logical syntax. 

A mathematical expression is a syntactic construct which should be well-formed, 

and the operators must have the correct number of inputs in the correct places. 

Therefore, strings of symbols that violate the rules of syntax are not well-formed 
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and are not considered as valid mathematical expressions. For example, the 

expression 1 + 2 × 3 is well-formed, but the expression 9×4)x+/y is not. 

Every mathematical formula is composed by a “kernel”. This kernel represents all 

the numbers, variables, operators, and delimiters. Our definition of the formal 

language models the generation of mathematical formulas using the different 

mathematical elements constructing it.  

 

Numbers 

Numbers may be positive or negative, where when the sign is missing, the positivity 

of the number is assumed. Examples of numbers found in mathematical formulas 

are: 1, 2, 3.5, 10.999, -0.81, 0, π, e. The two latter examples are universal constants 

and are used in places of numbers. We also need to  mention the infinity sign which 

may be found in many mathematical expressions. This does not belong to the 

numbers set, but it describes a quantity and is widely used. 

 

Variables 

Variables are Latin alphabet (and sometimes Greek alphabet-we only consider 

Latin alphabet letters at this point of time) letters which stand for numerical values 
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in a mathematical expression. Occasionally, variables have names that are formed 

by more than one letters, constituting a word representing a variable. Some 

examples of variables are: x, y, z, A, B, ratio, median. 

 

Operators 

All the rest of the symbols that signify relationships and operations among numbers 

or variables are called operators. When describing a mathematical expression in 

the LATEX format, a number of keywords are also used to indicate different 

mathematical functions (e.g. ‘frac’ for fraction, ‘int’ for integral). Other operators 

in a mathematical formula may be +, -, /, *, =, >, <, !. 

 

Delimiters 

Delimiters are the punctuation marks used in mathematics and are used to signify 

where a mathematical expression ends and another one begins. The most widely 

used one is parenthesis, but brackets ( { , } ) and square brackets ( [ , ] )  are also 

used infrequently. 

When reading a mathematical formula, the elements forming it may be compared 

to the words assembling a natural language sentence as the mathematical operators 
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may take the place of the verbs and operands are the substitutes of the nouns. 

Formulas and equations follow the standard grammatical rules that apply to words; 

therefore, mathematical symbols can correspond to different parts of speech. For 

instance, 1+2=3 is a perfectly good complete sentence. 

The symbol “=” acts like a verb. Below are a couple more examples of complete 

sentences. Further examples may be the expressions 3xy < −2 and 5z ∈ R. On the 

other hand, an expression like 2x−10y is not a complete sentence as there is no 

verb. Such expressions should be treated as nouns. 

 

The proposed formal language also provides a method for the synthesis of different 

mathematical functions. We define the Grammar of the FL as G=(N, T, S, P), 

where: 

• N is the non-empty, finite set of the non-terminal symbols. Non-

terminal symbols are illustrated with capital letters and can only be 

found on the left side  

• T is the finite set of the terminal symbols. The symbols that are not 

in the non-terminal set, are called terminal symbols or alphabet 
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symbols and they are the symbols that make up the strings in the 

language. No rule can be applied to these symbols. 

• S stands for the start symbol of the Grammar. This is the special 

symbol required for each application of rules to begin the derivation 

of strings in the language. Subsequently, the only grammatically 

correct strings for a given grammar are the strings that can be derived 

by rule applications from the start symbol. 

• P is the corpus of the production rules, presented in Section 4.4. 

 

Finite languages are those containing only a finite number of words and they are 

regular languages, as one can create a regular expression that is the union of every 

word in the language. Every finite set represents a regular language. The purpose 

of a regular grammar is to specify how to form grammatically correct strings in the 

language the grammar represents. In our system, a regular language is applied for 

the generation of syntactically correct mathematical formulas. 

The execution of the production rules is a recursive procedure where each  non-

terminal symbol is assigned a concatenation of a number of terminal symbols [36]. 

The execution of a number of the production rules in order to form and output a 
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sentence , is called production. By using the formal language, we focus on the 

syntactical aspect of the language, meaning the internal structural patterns of it. 

Through every production, a different selection of production rules is made, based 

on randomness, which results in a totally different mathematical formula. At this 

point of the generation process, it is obvious that the formal grammar generates 

sentences that do not make semantic sense, but they are syntactically correct, 

following the syntax of mathematics. As a result, the grammar that was developed 

is able to generate any sentence, which may or may not have a semantical meaning. 

Due to this vagueness of the generated objects, the semantically valid mathematical 

formulas are assessed during the second step of the processing. During that layer 

of processing, a number of regulations are  stipulated, to distinguish the formulas 

that have a meaning, from the ones that are not valid and would never appear in 

a scientific document. 

 

4.4 Production rules 

The set of the production rules describe the way that the words will be arranged 

in a sentence and each rule describes the way that the symbols may be replaced. 

In our grammar, we aim to generate formulas which may be found in scientific 

documents, so, the format of the generated formula will be of type 



 

52 

<expression><symbol of relation><expression>. In fact, this is the format to 

which our start symbol leads. 

 

1. S ->  EXP SIGN EXP 

2. EXP -> FACTOR | EXP BINOP FACTOR | NEGOP EXP 

3. BINOP -> PLUS | MINUS | TIMES 

4. NEGOP -> MINUS 

5. SIGN -> EQS | GRS | LSS | GOES | LOES 

6. FACTOR -> VAR | NUMBER | PARENTHESIS | FRACTION | SQROOT 

| ABS | EXPONENTIAL | FACTORIAL | LIMIT | INTDEF | INTINDEF | 

LOGARITHM | LOGNAT | SUMMATION | PRODUCTION | ROOT | SINE | 

COSINE | TANGENT | MODULUS | DERIVATIVE 

7. VAR -> LETTER | LETTER VAR | BCSL PI | BCSL EPSILON 

8. LETTER -> 'a' | 'b'| 'c' |'d' | 'e' | 'f' | 'g' | 'h' | 'i' | 'j' | 'k' | 'l' | 'm' | 'n' | 

'o' | 'p' | 'q' | 'r' | 's' | 't' | 'u' | 'v' | 'w' | 'x' | 'y' | 'z' 

9. PARENTHESIS -> LP EXP RP 

10. FRACTION -> BCSL FRAC LBR EXP RBR LBR EXP RBR 

11. ABS -> VB EXP VB 

12. ROOT -> BCSL SQRT LSQBR INTEGER RSQBR LBR EXP RBR 

13. SQROOT -> BCSL SQRT LBR EXP RBR 

14. EXPONENTIAL -> EXP CARET LBR EXP RBR 

15. FACTORIAL -> SEPEL EXM 

16. INTDEF -> BCSL INT US LBR EXP RBR CARET LBR EXP RBR LBR 

EXP RBR DIFF LBR EXP RBR 

17. INTINDEF -> BCSL INT LBR EXP RBR DIFF LBR EXP RBR 
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18. LIMIT -> BCSL LIM US LBR EXP BCSL RARROW EXP RBR LBR 

EXP RBR 

19. SUMMATION -> BCSL SUM US LBR VAR EQS EXP RBR CARET LBR 

EXP RBR LBR EXP RBR 

20. PRODUCTION -> BCSL PROD US LBR EXP EQS EXP RBR CARET 

LBR EXP RBR LBR EXP RBR 

21. LOGARITHM -> BCSL LOG US LBR EXP RBR LBR EXP RBR | LOG 

LBR EXP RBR 

22. LOGNAT -> BCSL LN LBR EXP RBR 

23. SINE -> BCSL SIN LBR EXP RBR 

24. COSINE -> BCSL COS LBR EXP RBR 

25. TANGENT -> BCSL TAN LBR EXP RBR 

26. MODULUS -> SEPEL BCSL MOD SEPEL 

27. DERIVATIVE -> SEPEL DERS 

28. NUMBER -> INTEGER | INTEGER DOT INTEGER | BCSL INFS 

29. INTEGER -> NUMERIC | INTEGER NUMERIC 

30. NUMERIC -> '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' 

31. PLUS -> '+' 

32. MINUS -> '-' 

33. TIMES -> '*' 

34. MOD -> 'bmod' 

35. LP -> '(' 

36. RP -> ')' 

37. LBR -> '{' 

38. RBR -> '}' 
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39. LSQBR -> '[' 

40. RSQBR -> ']' 

41. EQS -> '=' 

42. GRS -> '>' 

43. LSS -> '<' 

44. GOES -> '>=' 

45. LOES -> '<=' 

46. VB -> '|' 

47. EXM -> '!' 

48. FRAC -> 'frac' 

49. LOG -> 'log' 

50. LN -> 'ln' 

51. INT -> 'int' 

52. CARET-> '^' 

53. SQRT -> 'sqrt' 

54. LIM -> 'lim' 

55. SIN -> 'sin' 

56. COS -> 'cos' 

57. TAN -> 'tan' 

58. SUM -> 'sum' 

59. PROD -> 'prod' 

60. DERS -> ''' 

61. DOT -> '.' 

62. RARROW -> 'rightarrow' 
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63. US -> '_' 

64. DIFF -> 'd' 

65. INFS -> 'infty' 

66. BCSL -> '\' 

67. PI -> 'pi' 

68 EPSILON -> 'epsilon' 

69. SEPEL -> VAR | PARENTHESIS 

 

 

Detailed description of production rules introduced above: 

1) The very first rule to be defined is the production of the start symbol ‘S’, 

which signifies the point at which the generation of the string will begin. At 

this point, it is made sure that the format of the formula will be a 

mathematical expression related to a second mathematical expression 

through a symbol that defines their relationship. The symbol may describe 

an equality or inequality between the two expressions, it is indicated as 

SIGN in this grammar and is thoroughly described by rule 5. 

2) The second rule describes the definition of mathematical expressions: a 

mathematical expression consists of mathematical numbers or variables 

or a combination of them, using operations such as addition, subtraction, 
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multiplication etc. For a better legibility of the terms in the formal grammar 

definition, we define as a factor any mathematical element that can have a 

value prior or post calculation. This definition is better described in rule 

number 5. 

This present rule has a second part on the right side, which also includes the left 

part of the rule, which makes it a recursive rule, when existing mathematical 

expressions are combined with factors through operations, as mentioned above. 

The operators connecting these factors are binary operators that require two 

operands for the evaluation. In order to include the negative numbers, rule 4 was 

also introduced and is described below. For the formation of a negative number, 

the number follows the minus symbol. This rule also takes under consideration 

expressions that have a negative sign in the front, as the symbol EXP can indicate 

a factor of an expression, which may be a variable, a number or any mathematical 

operation.    

3) The third rule includes the binary operators that can be found in any 

mathematical expression. PLUS, MINUS, and TIMES, stand for the signs 

of the addition, subtraction, and multiplication, respectively. The operation 

of division is left outside of this category due to the different syntax in the 

LATEX format, which assorts it in fractions. 
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4) NEGOP stands for the negation operator and is defined in rule 4 for the 

formation of negative values. This the minus sign that is generated by rule 

32 further to this rule. 

5) This rule contains all the relation signs that can be occurred between any 

two expressions, according to rule 1. More specifically, this rule introduces 

that the sign connecting two expressions can be among the “equal”, “greater 

than”, “less than”, “greater than or equal to” and “less than or equal to” signs, 

represented by the symbols EQS, GRS, LSS, GOES and LOES, respectively. 

6) FACTOR symbol describes all the different math elements which may occur 

in a mathematical expression, including numbers and variable names. The 

elements participating in the right part of this production rule represent the 

mathematical operations that were listed in Table 5, excluding the first 

four operations-which are the binary operations defined in rules number 2 

and 3. 

• VAR stands for a variable name, which can be a factor of an 

expression or stand as a full expression by itself. The definition of 

VAR symbol is found in rule 7. 
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• NUMBER represents any umber that is eligible for participating in 

a mathematical expression or forming one. The definition of 

NUMBER symbol is described in rule 28. 

• Parentheses in a mathematical expression are handled as a distinct 

entity of an expression which includes some expression in it, despite 

the fact that they are not listed as an operation. The description of 

symbol PARENTHESIS is defined further in rule 9. 

• The rest of the symbols in this production are the mathematical 

operations included in the Table 5, with the correspondence of one 

symbol per operation. 

7) Every variable in a mathematical expression can be named by a letter or 

a word-which is a concatenation of letters. Based on this knowledge, rule 7 

is defined: each variable, represented by the grammar symbol VAR, is a 

letter or  letters following one each other in a string. Thus, the first part of 

the production is used to represent the one-letter variables, and the second 

part to include variables which their names are words. Again, this 

production uses recursion to generate and illustrate words formed by letters. 

One of the elements of this present production is number pi, which is a 

mathematical constant and is represented using Greek letter Pi, or epsilon. 
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8) The letters used in rule 7 for the formation of word variables, but also to 

describe variables named after a letter, are provided in this production rule. 

The symbol used to describe every each one of these letters is LETTER. 

9) As mentioned in rule 6, parentheses are treated as distinct operations in 

a mathematical expression, by convention. This is a way to clarify that 

inside each pair of parenthesis signs, an expression is found, and so 

parenthesis sign pair is expected to be empty. This production rule, when 

executed, makes use of rules 35 and 36, where the terminal signs of left and 

right parentheses are defined. Additionally, the second argument of this rule 

derives from rule 2, where an expression is defined. Therefore, it is clear that 

an instance of a parenthesis is formed by the left parenthesis sign, an 

expression as the component of the parenthesis, and a right parenthesis sign, 

in this order. 

10) Because of the LATEX format we are using for the format of the formulas 

generated, all the operations described in an expression must follow this 

format. For a fraction representation, the symbol string representation in 

LATEX is \frac{input1}{input2}, where input1 is the numerator and 

input2 is the denominator of the fraction. Subsequently, this production rule 

is formed by the concatenation of a backslash (rule 66), symbol of fraction, 
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FRAC (rule 48), left bracket (rule 37), the symbol string of the expression 

representing the numerator of the fraction (rule 2), right bracket (rule 38), 

left bracket (rule 37), the symbol string of the expression representing the 

denominator of the fraction (rule 2), and a right bracket (rule 38). Any 

expression (either number, variable, or mathematical operation) may consist 

the numerator or the denominator of the fraction, this is why the symbol of 

expression (EXP) is used. 

11) We use ABS symbol to describe the absolute value of an expression. 

Again, the symbol of expression is used to indicate that any expression can 

be the interior of an absolute value operation. So, production 11 defines the 

absolute value of an expression as the concatenation of two vertical bars 

with a symbol string of any expression in between (rule 2). Vertical bar is a 

terminal symbol defined in rule 46. 

12) Again, based on the LATEX format, a root is described as 

\sqrt[degree]{input} so this is the format we will use as well. Based on this, 

in rule 12, a square root operation is defined as the concatenation of a 

backslash (rule 66), symbol of square root, SQRT (rule 53), left square 

bracket (rule 39), an integer symbol (rule 29) as the degree of the root, right 

square bracket (rule 40), left bracket (rule 37),  the symbol string of the 
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expression representing the inner expression of the root as an expression 

(rule 2), and a right bracket (rule 38). 

13) In many cases, roots are illustrated missing the degree number. These are 

the cases where a square root is presented, and we handle them as a 

different operation. The LATEX format of a square root is \sqrt{input}. 

Based on this, in rule 13, a square root operation is defined as the 

concatenation of a backslash (rule 66), symbol of square root, SQRT (rule 

53), left bracket (rule 37), the symbol string of the expression representing 

the inner expression of the square root, and a right bracket (rule 38). 

14) Powers of values and expressions are described as exponential operations 

in rule 14. The expression that forms the base of the exponential may be a 

variable name or a number, or even any expression. In the case of an 

expression as a base of the exponential, the expression is expected to be 

within a parenthesis, as the math notation requires. To make sure that our 

grammar complies with this rule, production 69 is used  to define the 

separate elements that may form the base of an exponential operation. 

Whereupon, an exponential component is defined as the concatenation of 

the base (rule 69), the caret sign (rule 53), left bracket (rule 37), the symbol 
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string of the expression representing the exponent expression (rule 2), and 

a right bracket (rule 38). 

15) Factorials are also required to be applied on an expression of a single 

number or variable, or an expression which will be demarcated by 

parentheses, so instead of using the EXP symbol, we will use the SEPEL 

(rule 69) as well. The syntax of a symbol string describing an exponential 

operation is a SEPEL symbol (variable or parenthesis) followed by an 

exclamation mark symbol (rule 47). 

16) For the definite integrals, we introduce production rule 15, where the 

arguments required to fully define the integral are given, again, in a specific 

order, after the LATEX format. Therefore, the symbol INTFIN, representing 

a definite integral operation, consists of the concatenation of the backslash 

(rule 66), the symbol of the integral (rule 51),an underscore (rule 63) to 

signify the lower bound of the integral, a left bracket (rule 37), the symbol 

string of the expression representing the lower bound (rule 2), a right 

bracket (rule 38), the caret sign (rule 53) to indicate the upper bound of the 

integral, a left bracket (rule 37), the symbol string of the expression 

representing the upper bound (rule 2), a right bracket (rule 38), a left 

bracket (rule 37), the symbol string of the expression inner the integral 
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operation (rule 2), a right bracket (rule 38) to indicate the end of the inner-

main expression, the letter ‘d’ (as a terminal symbol introduced in rule 64) 

used along the differential factor of the integral, and finally, the 

differentiator as an expression (rule 2), again within brackets (rules 37 and 

38). The above syntax refers to the symbol string \int_{lower bound} ^ 

{upper bound}{inner expression} d {differentiator} in LATEX.  

17) Regarding indefinite integrals, the production follows the same pattern, 

with the lower and upper bounds of the integral missing. Therefore, as the 

syntax of an indefinite integral is \int{inner expression}d{differentiator} in 

LATEX format, this production rule is formed by the concatenation of a 

backslash (rule 66), the symbol of the integral (rule 51), a left bracket (rule 

37), the symbol string of the inner expression of the integral (rule 2), a right 

bracket (rule 38) to indicate the end of the inner-main expression, the 

differential symbol, a left bracket (rule 37), the expression inner the integral 

operation, a right bracket (rule 38). 

18) Rule 18 defines the limits, which in LATEX have the syntax of 

\lim_{expression1 \rightarrow expression2}{main expression}, that 

describes the limit of the expression “main expression” when expression1 
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“approaches” expression2. Although we could assume that expression1 is a 

variable, and expression2 is either a variable or a number(including infinity 

symbol), as most limit operations tend to be defined, in the context of the 

formality of the grammar, we assign these two expressions as any expression, 

not limiting their content to a variables and number. Later, though, we are 

going to eliminate elements with high complexity in these argument 

positions. 

19) Summation operation is formed as the concatenation of the backslash (rule 

66), the symbol of the summation, SUM (rule 58),an underscore (rule 63) 

to signify the starting point of the summation, a left bracket (rule 37), the 

variable symbol based on which, the summation will operate (rule 7), the 

equality sign symbol (rule 41), an expression which value will be assigned 

initially to the variable (rule 2), a right bracket (rule 38), the caret sign to 

indicate the ending point of the operation (rule 53), a left bracket (rule 37), 

the symbol string of the expression representing the ending point of the 

operation, a right bracket (rule 38), a left bracket (rule 37), the symbol 

string of the expression inside the summation, and a right bracket (rule 38) 

to indicate the end of the main expression. Again, at this point, and because 

of the definition of the context-free grammar we are introducing, any 
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component of a mathematical operation is assigned as mathematical 

expression, which makes a set of unlimited terms prospective for any 

argument of an operation. 

20) On the same base as the summation operation, production operation 

requires exactly the same arguments as an input to be completely defined. 

Consequently, as the LATEX format of a production operation is 

\prod_{variable= expression1}^{expression2}{main expression}, the 

execution of rule 20 that defines this present operation will output the 

concatenation of the following symbols: the backslash (rule 66), the symbol 

of the production, PROD (rule 59),an underscore (rule 63) to signify the 

starting point of the production, a left bracket (rule 37), the variable symbol 

based on which, the production will operate (rule 7), the equality sign 

symbol (rule 41), an expression which value will be assigned initially to the 

variable (rule 2), a right bracket (rule 38), the caret sign to indicate the 

ending point of the operation (rule 53), a left bracket (rule 37), the symbol 

string of the expression representing the ending point of the operation, a 

right bracket (rule 38), a left bracket (rule 37), the symbol string of the 

expression inside the production, and a right bracket (rule 38) to indicate 

the end of the main expression. 
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21) This rule describes the format of the logarithm symbol in our language. 

For the complete definition of a logarithm, two arguments are required, the 

base of the logarithm and the mathematical expression within the logarithm. 

For the formation of the LATEX format of the logarithmic operation, we use 

the sequence of a backslash (rule 66), the symbol of the logarithm, LOG 

(rule 49), an underscore (rule 63) to signify the base of the logarithm, a left 

bracket (rule 37), the symbol string of the expression representing the base 

(rule 2), a right bracket (rule 38), a left bracket (rule 37), the symbol string 

of the expression inside the logarithm (rule 2), and a right bracket (rule 38). 

Alternatively, the logarithm operation may occur without an argument 

defining the base. In this case, the syntax is as follows: a backslash (rule 

66), the symbol of the logarithm, LOG (rule 49), a left bracket (rule 37), 

the symbol string of the expression inside the logarithm (rule 2), and a right 

bracket (rule 38). The occurrences where the base is not provided refer to 

cases in which no confusion is possible, because of the context given, or in 

cases where the argument of the base does not matter. 

22) For the natural logarithm , the LATEX format for its representation is 

\ln{expression}, so we define it as the concatenation of a backslash (rule 

66), the symbol of the natural logarithm, LN (rule 50), a left bracket (rule 



 

67 

37), the symbol string of the expression inside the natural logarithm (rule 

2), and a right bracket (rule 38). 

23) Rule 23 explains the production of the trigonometric operation of sine. In 

LATEX format, sine is represented as a backslash followed by the ‘sin’, which 

is followed by the operation, which sine is to be evaluated, in brackets. 

Therefore, our symbol representation is the concatenation of the symbols of 

a backslash (rule 66), the symbol of the sine operation, SIN (rule 55), a left 

bracket (rule 37), the symbol string of the expression inside the sine 

operation (rule 2), and a right bracket (rule 38). 

24) Identically to sine operation, cosine has the same syntax, which makes rule 

24 to generate a word consisting of a backslash (rule 66), the symbol of the 

cosine operation, COS (rule 56), a left bracket (rule 37), the symbol string 

of the expression inside the cosine operation (rule 2), and a right bracket 

(rule 38). 

25) Similarly to the previously introduced trigonometric operations, tangent is 

described in rule 25, where its LATEX format is \tan{expression}. This 

production rule, therefore, defines the word of the tangent as the sequence 

of a backslash (rule 66), the symbol of the tangent operation, TAN (rule 
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57), a left bracket (rule 37), the symbol string of the expression inside the 

tangent operation (rule 2), and a right bracket (rule 38). 

26) Binary operator modulus in our grammar is introduced as a distinct 

mathematical operator, rather than including it in the rule of binary 

operators (rule 3). Two expressions (in this case, we assume that the two 

arguments of the modulus operation may be variables or expressions within 

parentheses, so that the expression’s component is delimited by the 

parenthesis signs) are connected, with the modulus symbol (defined in rule 

34) between them. This concatenation forms a symbol string describing the 

modulus operation between two expressions. 

27) First order derivatives of expressions are described by the expression 

followed by an apostrophe, which is the exact same syntax used in LATEX. 

In rule 27, the syntax of a first order derivative of an expression (symbol 

EXP) is described as the sequence of a separate element symbol (SEPEL), 

describing a variable or an expression in a parenthesis, followed by an 

apostrophe. 

28) To fully define a number as a quantity in our formal language, we define 

rule 28 which defines mathematical quantities in a more abstract way, as it 
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includes numeric values but also the infinity sign. Therefore, the NUMBER 

symbol incorporates integer and real numbers (composed of integer numbers 

split by a dot, to define the integer from the decimal part of the number), 

and the infinity symbol. 

• INTEGER : this symbol is described in rule 29 and defines any 

integer type of a value participating in the formula.   

• INTEGER DOT INTEGER : this sequence of symbols describes a 

real number, where the integer part constitutes of an integer symbol 

(defined in rule 29), followed by a decimal separator (the DOT 

symbol defined in rule 61 standing for the decimal point), and, again, 

an integer symbol that will now stand for the fractional part of the 

number. 

• BCSL INFS : for the representation of the infinity symbol, the LATE

X format requires a backslash followed by ‘infty’ which is a keyword 

for the infinity symbol. The terminal symbol ‘infty’ is given by rule 

65 for the symbol INFS (standing for infinity symbol). 

29) This rule is a recursive production of an integer number, where an integer 

may be any one-digit number represented by a numeric symbol (0-9), as 
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designated in rule 30, or a concatenation of numeric symbols with an integer, 

for the representation of integers of two or more digits. 

 

The terminal symbols introduced in rules 30-67 are the letters  forming the words 

of the language we introduce. Consequently, every word that may occur in a 

sentence of this formal language must be a concatenation of the terminal symbols 

described above. 

 

4.5 Example 

After every execution of the formal grammar using the production rules, the output 

is a new mathematical formula in a LATEX format. For a better understanding of 

the previously introduced grammar rules, we present an example of a randomly 

generated mathematical formula symbol string along with its optical representation 

and the tree illustrating the production rules executed for the generation of the 

formula. The term randomly in this case indicates that any random combination 

of the introduced production rules will result to a well-formed mathematical 

expression. The randomly generated mathematical formula, making use of the 

formal grammar introduced above, is: 
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j > \frac{ 3 ^{ z } }{ | c | } 

and when this symbol string is compiled through LATEX, the output is the optical 

representation of the formula, which is: 

j >
3z

|c|
  

This output is a result of a sequential execution of production rules of our grammar, 

which is initiated by the execution of the production of the start symbol S, and for 

every non-terminal symbol of the grammar, the execution moves forward until a 

terminal symbol is reached and is mounted on the sentence as a word. The image 

below shows the execution tree whose leaves are the words of the generated 

sentence in our language. The final form of the sentence is a concatenation of all 

the leaves of the tree (which are the terminal symbols), from left to right. 

At this point of our work, it is vital to mention that the manual execution of the 

production rules can output to any possible mathematical formula, though, when 

executed in an application, the loop of the execution can go under a big number of 

recursions, which is a problem that can cause issues considering the memory usage. 
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Figure 13 - The tree representation of the execution of the production 

rules that output the symbol string j > \frac{ 3 ^{ z } }{ | c | }. The 

execution terminates when all the symbols in the symbol string are 

lowercase, indicating that they are all terminal symbols. Similarly, to 

the presented example, more complex MF can be formed. 

4.6 Syntactical and Logical Restrictions 

Each generated mathematical formula is based on the execution of the production 

rules making our grammar. The grammar is a tool that ensures that the outcome 

of the rule execution will be a syntactically valid sentence, which in our case is 

going to be a mathematical formula, taking no notice of the semantical correctness 

of it. Consequently, it is not necessary that the newly formed formula will combine 
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mathematical elements that their associations will make sense. The generated 

formula is forwarded to a second layer of processing. During this second step, every 

formula which was generated using the formal grammar undergoes a set of checks. 

There are several rules to define the validity of the generated formulas in terms of 

semantics and syntactical optimization. The checks that the formula goes under 

are in a form of constrains that describe any mathematical formula found in a 

scientific document in the field of engineering. By this, it is clarified that formulas 

describing theoretical mathematics are out of our area of interest. 

The checks are critical because they aim to preserve the integrity of the formula 

regarding the syntax of it, and they are presented as restrictions on the formulas: 

• Syntactical restrictions 

The restrictions that try to eliminate the redundant notation which was caused by 

the grammar rules and does not supply any additional functionality to the elements 

of the formula. Table 6 illustrates the different cases where excess notation was 

detected in the formula, and representative examples are provided. 

• Logical restrictions 

These restrictions deal with undefined forms of mathematical expressions and 

indeterminate forms and values in the formulas that when found in specific 
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positions in the formula, the formula does not make sense. Logical restrictions are 

presented in Table 7, along with examples that embody each distinct case. 

 

Syntactical Restrictions 

Restr. No Description example 1 example 2 

S1 Redundant parentheses 
 

|(x-1)| 

S2 Double parentheses ((x-y))  

S3 Double absolute value signs ||x-y|| 
 

Table 6 - The syntactical restrictions in a 

generated formula. 

Logical Restrictions 

Restr. No Description Example 1 Example 2 

L1 Low border greater than high border ∫
x3-2

x!
dx

1

4

 
 

L2 

Variable in differential not in 

function of integral 

∫
x3-2

x!
dy

1

4

 
 

𝑦 > (
𝑥

3!
) 
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L3 

Variable in start value not in 

argument of summation 

∑
αk

2

10

n=1

 
 

L4 

Starting point in summation greater 

than upper limit 

∑ αk

2

n=10

  

L5 

Variable of limit "approaching" a 

value not in the function of the limit 

lim
x→0

y-1

y + 1
  

L6 False inequality 3 < 1 4 = 9 

L7 

Square root principal: value inside 

the root must be non-negative 

√-2  

L8 

Logarithm principal: value inside the 

logarithm must be positive 

log(-7) log(0) 

L9 

Logarithm principal: value inside the 

natural logarithm must be positive 

ln(-2) ln(0) 

L10 Indeterminate forms ∞ + (-∞) 0*(∞) 

L11 Undefined forms 
0

0
 

x

0
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L12 Indeterminate forms 
∞

0
 

∞

∞
 

L13 Indeterminate forms 1∞ ∞0 

Table 7 - The logical restrictions in a generated 

formula. 

 

In the case that a syntactical restriction is detected in the generated formula, term 

which violates the restriction may be modified, and the generated formula may 

process to the next step of the procedure. When a logical restriction is occurred, 

the formula is considered invalid, and is rejected – will not be taken under 

consideration for further processing.  

Let us consider an example of a generated mathematical formula such as 

y = ∫
1

|k−2|
dy

k

0

. (2.1) 

We can see that this formula is syntactically correct. The variable of the differential 

of the integral (element y), though, does not occur in the inner function of the 

integral, which does not make sense for an integral declaration. This is also what 

rule L2 indicates, making the formula invalid. As a result, this generated formula 

is going to be rejected.  



 

77 

For a second example, we have the formula 2.2 below, which also includes an 

integral. In this example, there are many restrictions violated. 

a = ∫
1

|(k−2)|
dx

3

99

 (2.2) 

According to S1, the denominator of the function inside the integral has redundant 

parenthesis, which, if missing, the context of the formula would not be affected. 

Logical restrictions are eligible to transform the formula to a more simplified one, 

rejecting redundant elements inside the formula. After processing the formula 2.2, 

applying the rule S1, the unneeded set of parentheses will be removed, so the 

formula will turn into 2.3. 

a = ∫
1

|k−2|
dx

3

99

  (2.3) 

There are no further syntactical restraints to be violated in this example, so we 

will now check the logical restrictions. Regarding the logical restrictions, there are 

L1 and L2 to be infringed. When logical rules are violated, the generated formula 

may not be transformed to a valid one, and it simply gets rejected. Therefore, for 

the execution of the syntactical and logical rules, we will initially check for the 

logical restraints in a formula. In the case that there is no violation of them, the 

execution may proceed to the check of the syntactical restraints, otherwise, the 

formula will be rejected directly.  
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4.7 Generated Formulas 

In this section, we present examples of formulas that were generated by the 

execution of the production rules. Each generated sentence of the formal language 

is formed by symbols that form the encoding of a mathematical expression in LAT

EX, and the optical representation of the formulas is also provided. The examples 

are collected in Table 8. 

 

Generated formula visualized in LATEX Valid 

 

Yes 

 

Yes 

 

No 

 

Yes 

 

No 

 

No 
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5. Detecting and Recognizing of Pseudo-Algorithms in 

Scientific Documents and SPN representation 
 

5.1 Introduction 

Technical documents are formed by several modalities including plain text, 

diagrams, tables, algorithms, images etc. Algorithms have a significant place in 

technical documents not limited in publications in the field of computer science 

and software engineering, but moving further to computer vision, bioinformatics 

etc. In this work we present the extraction and recognition of algorithms and their 

 

No 

 

No 

Table 8 – In this table we present examples of randomly generated 

mathematical formulas and evaluate their logical validity according to the rules 

presented above. Any generated formula will be rejected as invalid if one or 

more occurrence of constraints from Table 7 is applied to the formula. 
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components in scientific technical documents. The intend here is the processing of 

any image illustrating a page of a technical document to detect any algorithmic 

component inside the image and analyze it for understanding purposes. In other 

words we aim to detect algorithmic components in an image of a technical 

document based on their structural features in the text and represent them in a 

Stochastic Petri-net form for evaluating its functional behavior. The process is 

divided into two different processing parts. The first one is the detection and the 

extraction of the algorithmic components in a document and the second one is the 

translation of it into a graph and its SPN representation. Specifically, the first  part 

consists of two steps; the first one is the detection of the sections of the document 

that describe the algorithm. In the second step  we perform image processing so we 

can extract information about the component of it and proceed to the recognition 

of the algorithm. Finally, in the second part, the generation of the graph for the 

algorithm and its SPN mapping is described in an effort to express the algorithm 

first level functional associations. 
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5.2 Optical Detection of Pseudo-codes in Documents  

5.2.1 Extraction of different text blocks in documents 

It is always an interesting idea to follow a recognition process that attempts to 

simulate the way the human brain interprets the algorithmic components in the 

documents. Thus, here we attempt to follow such an approach that attempts to 

emulate the detection and recognition of pseudo algorithms in technical documents 

at a high level of representation. The first step towards this simulation is the 

extraction of the distinct components in the document, so that we can then 

recognize whether each component describes an algorithm in it, or not. This process 

is part of the pre-processing of the input document, as the images representing the 

entire technical document will undergo different layers of modifications. These 

images are further segmented into blocks to be examined for algorithmic 

components. Thus, a pyramidal reduction scheme methodology can be used for the 

recognition and extraction of the various components of the document. According 

to this methodology, the image is subject to repeated smoothing and subsampling 

until we reach a point to which the individual structural parts of the image are 

distinguished [37]. For this purpose, a variety of different smoothing kernels may 

be used, mainly changing depending on the size of the font used in the text found 

in the document. Thus, here for the simulation of the pyramidal reduction, and in 
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order to maintain all the information of the initial image, we simulate the result of 

a higher level of the pyramid using dilation. Dilation is one of the morphological 

transformations used on binary images where a kernel is used and based on its size, 

the area of the objects in the binary image increases. This way, the larger the 

dimensions of the kernel, the more the area that will be merged and included in a 

distinct block. After multiple tests on sample documents and based on the IEEE 

Standards which require normal text to be single-spaced in 10-point font, the kernel 

which would output the most accurate recognition results was a 7x6 sized kernel. 

This size of the kernel is large enough to ensure that the extracted blocks will not 

be one-word text blocks, but will contain sets of words, and at the same time it 

must be small enough not to perceive the whole document as a single block. Ideally, 

this size of kernel will return the input image split in blocks, where each block will 

represent the title, or a paragraph, a sequence of paragraphs, an image, or an 

algorithm etc. 

5.2.2  Pyramidal image representation 

A pyramid is a multi-scale image representation which is used for the detection of 

objects in images using different scales [38]. During this representation, the input 

image at its original size is located at the bottom of the pyramid, and in each next 
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layer, the image of the previous layer is resized and smoothed using Gaussian 

blurring. Each image is progressively subsampled until it has reached a size 

(minimum size), where no further resizing is needed. 

In the following images we can see the different layers produced through the 

pyramidal process. While moving towards the higher layers, it is notable that, 

although the details of the image are not available, there is additional information 

about the structure of the elements in the image, such as the number of text blocks 

existing in the input image in forms of headlines, paragraphs or pseudo-algorithm 

blocks [39]. 
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Image 1 - Example of input image as .jpg format 

(2550x3300) 
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Image 2 - Different levels of text structure extraction after 

pyramidal transformation of input image 
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In order to achieve these results while still being capable of extracting information 

of the image component by using the morphological transformation of dilation. It 

is performed on greyscale images, and it preserves the shape of elements in the 

image, using a structuring element and a kernel for the transformation operation. 

Through dilation, the area of an element found in the input image is enlarged by 

gradually increasing the boundaries of the regions of the foreground pixels. 

 

 

Image 3 - Page Dilation Example: Input Image 
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Image 4 - Page Dilation Example: Dilated image 

with a 4x4 kernel 

 

Image 5 - Page Dilation Example: Dilated image 

with an 8x11 kernel 
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Image 6 - Page Dilation Example: Input image 

after frame removal 

 

Image 7 - Page Dilation Example: Dilated image 

with a 4x4 kernel after frame removal 
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Image 8 -  Page Dilation Example: Dilated image 

with a 4x4 kernel after frame removal 

 

Note that, based on the IEEE Standards that are followed in the published 

scientific documents we process and adjust the kernel of the dilation process 

accordingly, so that we detect text paragraphs as text blocks rather than word 

blocks (in this case, kernel size would have to be smaller). 
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5.2.3  Decomposition and classification of the pseudo code 

sections 

Following the pre-processing of an input image representing a document page, we 

have now obtained a set of rectangular blocks, in form of images, with each block 

representing a distinct element of the document. The main goal is to examine each 

of these blocks, using image processing techniques, and make decisions on whether 

they include algorithmic components. After a series of examples, we have identified 

four attributes which may indicate the given image describes algorithmic 

component. These four attributes are the text structural definition represented by 

the indents in the text, the number of specific keywords found in the text, the 

occurrence of pairs of certain keywords which may indicate loops, and percentage 

of the image area occupied by text.  

5.2.4  Attributes used in the decision making 

For each extracted block, four different features are evaluated for the identification 

of the block component as algorithmic: 1) the number of the indents in every line 

of the text appearing in the block, 2) the number of the keywords detected in the 

text of the block, 3) the aligned pairs of specific keywords that indicates beginning 
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and end of loops or selection branches, and 4) the amount of the area in the block 

which is not occupied by text.  

1. Indents in text 

Algorithms are usually distinguished by human eye easily because of the structure 

of the text forming it, which is something that differentiates algorithms from plain 

text in paragraphs of technical documents. It is ordinary for a text paragraph that 

almost all of the text lines in it to begin at the leftmost point of the line, with the 

exception of the first line which formally includes an indent. In contrast to plain 

text components, algorithmic components, in a great number of cases, use indents 

at the very beginning of the lines to signify, along with the keywords, the levels of 

the execution and make the set of the algorithm commands more readable and 

maintainable. For the system to detect the number of the indents in the text of 

the block, the extracted text block is again dilated over a new kernel, which is now 

able to detect the structure of the text according to the higher size of the font in 

the text of the image. Following this and starting from the leftmost and topmost 

point of the image, when an indent is detected, it is considered the first level of 

nesting of the command component.
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Image 9 - Text structure shape 

indicates algorithm 

 

 

Image 10 - Text structure shape 

indicates plain text in paragraph 

form 

Accordingly, for each subsequent indent occurred, which will start towards to the 

right side of the previously detected indent (this is the case where the x coordinate 

of the detected pixel on the image will be higher than the x coordinate of the last 

level of nesting), the level of the nesting will be increasing by one. Finally, the 

number of the maximum level of nesting in the text will be kept as the feature 

describing the indents of the text in the image block.   

Usually, blocks with maximum number of indents equal to one will not be 

considered to be algorithms, while blocks with a maximum number of indents being 

higher of one will have a higher probability to represent an algorithm. 
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Figure 14 - In the images above we see the extracted block after the intensity inversion 

where the white areas represent the text detected in the block while the black areas 

represent empty areas. In the left one we distinct the first level of loop nesting while in 

the one on the right we have proceeded gradually to all three levels of loop nesting. 

 

2. Keywords 

Another feature that contributes to the identification of a text as an algorithm, is 

the number of keywords that may be found in it. Each different programming 

operation is identified by a keyword, which is universal, especially for the case of  
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pseudo-algorithms, where not a specific programming language is used, thus there 

are no limitations on the syntax. For example, loops are usually described through 

the keywords ‘while’ and ‘for’, which describe the ‘while loop’ and ‘for loop’, 

respectively. In the same context, there are keywords like ‘if’, ‘then’, ‘function’, 

‘end’, ‘input’, ‘output’, etc. that may also describe algorithmic operations, but are 

also very likely to appear in plain text components. Finally, the keyword ‘return’ 

is largely found in function declarations or other algorithm components and can be 

used in the detection of an algorithm. For the extraction of the keywords in each 

block, we applied OCR methods where all the words of each text line were 

recognized. 

 

3. Aligned pairs of keywords 

Following the detection of specific keywords that are very often found in algorithms 

and describe specific algorithmic operations, we move one step forward and we aim 

to recognize pairs of keywords which are strongly connected to each other, and 

which are expected to be found one below the other in the algorithm. These sets 

of keywords usually indicate the start and end of a loop or a branch, or even the 

opening and closing of a method e.g. {‘for’,’endfor’}, {‘if’,’else’}, {‘else’,’endif’} etc. 

For the detection of this kind of sets, following the detection of the keywords which 

are to be examined, the position on the image of these keywords is also kept and 
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compared to the rest of the keywords, towards the y coordinate of them. We have 

also set a small threshold for the deviation of these words in the x axis, for error 

purposes. 

  

4. Amount of text occupied in image block 

It is very ordinary for a text paragraph the text component to dominate towards 

the empty space in a text image. In order to have a measure for the amount that 

the lines of the text occupy in the mage, we will take under consideration the 

percentage of the x coordinates for which an imaginative line x=x0 is more than 

80% full of “black” (text). Following this process, in cases of text paragraphs, this 

percentage is going to be higher than 90%, while in algorithms, it will hardly exceed 

50%. The following examples will give a better idea of the concept. 

Two images in original and dilated form. On the upper one, the percentage of 

columns of pixels that are more than 80% full of text is 93, while on the lower 

example we see this percentage being 40%, giving a greater chance to describe an 

algorithm. Finally, after taking under consideration the evaluation of these four 

attributes, our system gives out the decision of whether the block contains an 

algorithm or not. This is a rule based approach as we have set specific values as 

thresholds for the classification process. 
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5.2.5  Learning 

As a next step on the recognition of algorithms in published technical documents, 

we used a machine learning technique, in addition to our previously introduced 

rule-based approach, in order to improve the accuracy of the detection of the 

algorithms-pseudocodes from an input document image. For the prediction process, 

a logistic regression model was used, which is one of the simplest and commonly 

used Machine Learning algorithms [39]. This is a useful classification method 

mainly for solving a binary classification problem such ours, where we get to decide 

whether an input image is a description of an algorithm or not. Logistic regression 

is a statistical method for predicting binary classes. The outcome or target variable 

is dichotomous in nature. 

After the dilation of the input image and the extraction of the several text blocks 

in the image, a logistic regression model is built, which based on specific features, 

will predict whether a text block contains an algorithmic component or not. The 

features used for the model to be trained and tested are the four attributes used in 

the rule-based classification process: the number of the indents in the text block, 

the number of keywords found, the count of the aligned pairs of keywords and the 

percentage of the text in the block image area. In this approach we included an 

extra feature representing the number of the pairs of the keywords regardless of 
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their placement in the text, in order to check for unstructured text of algorithmic 

nature.  

Logistic Regression is a special case of linear regression where the target variable 

is categorical in nature. It uses a log of odds as the dependent variable. Logistic 

Regression predicts the probability of occurrence of a binary event utilizing a logit 

function. 

 

 

The equation of the linear regression, where Yi represents the dependent variable 

and Xi represents the independent variable, f stands for the function, and β stands 

for the unknown parameters. 

 

After the application of the Sigmoid function on linear regression (p=1/1+e-y), this 

is the logistic regression function which describes our model. 

Properties of Logistic Regression: 

• The dependent variable in logistic regression follows Bernoulli Distribution. 

• Estimation is done through maximum likelihood. 
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• No R Square, Model fitness is calculated through Concordance, KS-

Statistics. 

 

The Dataset 

A number of 213 images were collected and processed to form our dataset. Each of 

the image input was an image representing a pdf page from a technical document, 

mainly in a two-column format. Each of the input images was preprocessed and 

gone through the pyramidal process in order to produce the several blocks which 

would be evaluated for the detection of algorithmic component. After the 

preprocessing, these collected pdf images in a .jpg format would give almost 3000 

block elements for our dataset.  

As an example of how the input images will be split into several blocks, the table 

below describes the several image blocks extracted from the following image: 
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1 

 

2 

 

3 

 

4 

 

Image 11 – Example of input image 
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5 

 

6 

 

7 
 

8  

 

 

 

 

 

 

 

Table 9 - The several image parts extracted from an image through dilation. Each 

individual image part is a new image in the dataset

Evaluation of learning process 

For the evaluation process of the model performance and our features effectiveness, 

our dataset is divided into a training set and a test set. A number of experiments 

took place, with different ratios of data splitting, 70%-30%, and 80%-20% and 90%-

10% following the Stratified cross validation technique. 

The metrics of our model on the specific features returns an accuracy of 0.99, while 

the precision was the absolute 1 and the metric of recall equal to 0.88. Overall 

metric is the F1 score, which was calculated at 0.94, implying a satisfying model 
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for our predictions. The metric of the area under the ROC curve is 0.997 which 

also verifies the model promising results. 

 

Image 12 - Output metrics of accuracy, precision, recall, F1 score and area 

under the curve. 
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Figure 15 - Receiver Operating Characteristic(ROC) curve is a plot of the true positive 

rate against the false positive rate. It shows the tradeoff between sensitivity and 

specificity. AUC of 1 shows the ability to identify all true positives while avoiding false 

positives. Applying a learning process in our system is highly promising as the 

system will be able to recognize algorithmic components in the image which are 

not easily distinguished to be pseudo-algorithms.  

 

5.3 Translation of algorithms to graphs and SPN   

5.3.1 Generation of graph 

After the recognition of any image block as an algorithm, we move towards the 

analysis of the algorithmic component. For the part of the understanding of the 

algorithm, we aim to extract the pseudo-algorithm text and, based on the structure 

of it, generate a structural graph which represents the flow of the pseudocode steps 
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execution. This is an automated procedure that will make use of previously used 

techniques which will now have different contribution to the system process. 

For the process of the translation of an image with algorithmic content into a 

structural graph, the image will first get analyzed in a structural level, where the 

distinct lines of text will be detected and the upper and lower bound of each line 

will be kept and visualized with blue and green color, respectively. 

The name of the keyword initiating each line, along with the number of the nesting 

level will be the two factors which make the decision for the potential splitting of 

the algorithm in an additional branch. This results to some lines forming a branch 

by themselves, while other lines getting merged and encapsulated in a single 

branch. 

 

Image 13 - Input block with algorithmic 

components detected input to the process of 

graph representation 
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Image 14 - Detected text lines and their borders 

in input image block 

 

Image 15 - Algorithm lines processed, assigned to 

branches, and some are grouped as a single 

branch 
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For every line, the first word detected in it is assigned to be the command-word, 

the keyword which represents the type of the command that is running in this 

specific line.  

During the process of the analysis of the text component in a block of an algorithm, 

the placements of the command-word are evaluated for 

• the decision of each line-command to be assigned to a new branch or an 

existing one, and 

• the next line-command that will be executed if we described the steps of the 

algorithms with a flow chart diagram. 

The process of assigning line-commands to branches and enumerating them, 

followed by the process of detecting the order of the line-commands during the 

execution process is presented in the next flow chart diagram. 
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Figure 16 - Detected algorithm is translated to a graph representation in the form of a 

flow chart graph. Each number corresponds to a numbered pseudo-code block as 

presented above.  Branches with line-commands where a condition is checked to be 

true or false in order the execution to move on accordingly, are represented with the 

diamond shapes. In this representation, evaluation of True is depicted with the ‘yes’, 

while False statements in conditions are described with ‘no’. The rest of the branches 

are illustrated with rectangles. 
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5.3.2  Stochastic Petri N et Representation 

The main purpose for this work is the translation of an image illustrating an 

algorithm into a Stochastic Petri Net representation, which is the final step of the 

system’s process. This step takes place after the graph representation as it enhances 

the structural representation offered by a graph with the functional information 

(timing and synchronization) of the translated component. 

Every line-command, in order to be executed needs to have the token which will 

cause the transition to fire. In cases of branches with conditions, the evaluation of 

the condition will give or not the token to the place representing the branch in 

order for it to be executed and move to the transition.  

In our representation, the circles represent the places, and the rectangular 

shapes represent the transitions. 

 

Linear execution of commands 

For the commands of the algorithm that follow a linear execution, the sample SPN 

is presented below. In this example illustrated in the image below, the branches 7 
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and 8 will execute linearly, one after the other, and the transition will fire when 

the evaluation of the commands in branch 7 is complete.  

 

Figure 17 - Linear execution of command in SPN 

 

Non-linear command execution 

In cases of for loops, repetitions, branches such as if statements, steps, and 

switching cases, the execution of one line-command does not necessarily ensure the 

execution of the next in line branch. This is where the direction of the execution 

depends on the validity of the condition in the command-keyword of the branch. 

In the following example, we present the execution of a for loop, where the 

command lines nested in the loop will get executed only while the condition checked 
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in branch is true. For this purpose, for the conditions detected after the command-

keywords, a new place is created in order to check exclusively the veracity of the 

condition.  

 

Figure 18 - Branch 2 represents a for loop and branch 2check contains the check of the 

value of the variable to be within limits in order for the execution of the loop to 

continue. While this check returns True, the Evaluate2check transition will get fired 

and the execution will proceed with branch 3. Otherwise, Evaluate2_ will fire and the 

execution will move forward with the commands in branch 10. 
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According to the two previously described examples, the generated SPN of the 

image translated to the flow chart diagram above is presented below. The execution 

begins at the place with the name Start and finishes at the place which does not 

point to any transaction - in our case this is place 10. 

 

Figure 19 - Segregation of commands or set of 

commands that belong in a loop 
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Figure 20 - SPN representation of a complete 

algorithmic component in a document 
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6. Conclusion and Future Work 
 

In this thesis, we introduced a methodology to parse and recognizing  mathematical 

formulas in LATEX format. A rule-based methodology to parse and understand a 

mathematical formula is introduced and our purpose is to translate it to an SPN 

representation by first converting it to an attribute graph representation. As an 

additional functionality to our parsing methodology, we utilized a formal language 

to be able to create new randomly generated mathematical formulas as an input 

for parsing and also to provide syntactical evaluation to the detected formulas. As  

numerous research efforts in the field of mathematical formulas processing have 

taken place through times,  our effort was focused on the parsing of mathematical 

formulas with the aim of converting them into an SPN state machine, which 

provides, not only structural information, but also functional information such as 

timing and synchronization. 

As the main contribution of this work, we implemented a system to automatically 

parse technical documents in order to detect algorithmic component. The presented 
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hybrid approach offers good satisfying results from the prediction model and which 

makes it a unique successful methodology as a methodology to handle algorithms 

from a computer vision perspective. In addition, the SPN representation of the 

detected algorithms enhances the understanding of the machine towards the 

analysis of technical documents containing pseudo-algorithms and at the same time 

offers a different approach towards its functional implementation. 

For future work, further extensions of the document pseudo algorithm can be made 

by converting math formulas included in pseudo algorithms into SPNs and 

comparing the outcomes. For example, semantical analysis and interpretation of 

mathematical formulas can be studied and incorporated into the initial algorithm. 

Finally, additional applications of the algorithmic component analysis methodology 

can be explored. 
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