

Mathematical Formula Recognition and
Automatic Detection and Translation of
Algorithmic Components into Stochastic

Petri Nets in Scientific Documents

A thesis submitted in partial fulfillment of the

requirements for the degree of

Master of Science

By

ELISAVET ELLI KOSTALIA

B.Sc., Technical University of Crete, 2019

2021

Wright State University

WRIGHT STATE UNIVERSITY

GRADUATE SCHOOL

 December 9th, 2021

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY

SUPERVISION BY Elisavet Elli Kostalia ENTITLED Mathematical Formula Recognition

and Automatic Detection and Translation of Algorithmic Components into Stochastic Petri

Nets in Scientific Documents BE ACCEPTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF Master of Science

Committee on

Final Examination

Nikolaos G. Bourbakis, Ph.D.

Soon M. Chung, Ph.D.

Euripides G.M Petrakis, Ph.D.

School of Electrical and Computer

Engineering, Technical University of Crete

Nikolaos G. Bourbakis, Ph.D.

Thesis Director

Michael L. Raymer, Ph.D.

Chair, Department of Computer Science and

Engineering

Barry Milligan, Ph.D.

Vice Provost for Academic Affairs

Dean of the Graduate School

iii

WRIGHT STATE UNIVERSITY

ABSTRACT

Kostalia, Elisavet Elli, MSc, Department of Computer Science and Engineering,

Wright State University, 2021. Mathematical Formula Recognition and Automatic

Detection and Translation of Algorithmic Components into Stochastic Petri Nets in

Scientific Documents.

A great percentage of documents in scientific and engineering disciplines include

mathematical formulas and/or algorithms. Exploring the mathematical formulas

in the technical documents, we focused on the mathematical operations

associations, their syntactical correctness, and the association of these components

into attributed graphs and Stochastic Petri Nets (SPN). We also introduce a formal

language to generate mathematical formulas and evaluate their syntactical

correctness. The main contribution of this work focuses on the automatic

segmentation of mathematical documents for the parsing and analysis of detected

algorithmic components. To achieve this, we present a synergy of methods, such

as string parsing according to mathematical rules, Formal Language Modeling,

optical analysis of technical documents in forms of images, structural analysis of

text in images, and graph and Stochastic Petri Net mapping. Finally, for the

iv

recognition of the algorithms, we enriched our rule based model with machine

learning techniques to acquire better results.

v

Contents

List of figures .. vii

List of tables ... ix

List of images ... x

Acknowledgments ... xi

1. Introduction ... 1

2. Evaluating Methods for the Parsing and Recognizing of Mathematical Formulas

in Technical Documents ... 4

2.1 Introduction .. 4
2.2 Recognizing and Representing Mathematical Formulas 7
2.3 Evaluation .. 14
2.4 Discussion on Evaluation Results ... 18
2.5 Conclusion ... 21

3. Conversion of Mathematical Formulas into Graphs and Stochastic Petri Nets ... 22

3.1 Introduction .. 22
3.2 Mathematical expressions in technical documents 23
3.3 Conversion from electronic type of the technical document (pdf) to the SPN
representation .. 24
3.4 Optical Character Recognition OCR ... 25
3.5 How we process the mathematical expressions 27
3.6 The mathematical expressions ... 29
3.7 Math Expressions to Graphs ... 30
3.8 Mathematical Formulas into Stochastic Petri Nets 34

3.8.1 Stochastic Petri Nets prerequisites ... 34
3.8.2 Methodology We Follow to Convert Graphs to SPN .. 36

4. Generation of Mathematical Formulas using a Formal Grammar 41

4.1 Introduction .. 41
4.2 Mathematical Operations ... 43
4.3 The Formal Grammar ... 46
4.4 Production rules ... 51
4.5 Example ... 70
4.6 Syntactical and Logical Restrictions .. 72
4.7 Generated Formulas .. 78

vi

5. Detecting and Recognizing of Pseudo-Algorithms in Scientific Documents and

SPN representation ... 79

5.1 Introduction .. 79
5.2 Optical Detection of Pseudo-codes in Documents 81

5.2.1 Extraction of different text blocks in documents .. 81
5.2.2 Pyramidal image representation .. 82
5.2.3 Decomposition and classification of the pseudo code sections 90
5.2.4 Attributes used in the decision making .. 90
5.2.5 Learning ... 96

5.3 Translation of algorithms to graphs and SPN 102
5.3.1 Generation of graph .. 102
5.3.2 Stochastic Petri Net Representation ... 107

6. Conclusion and Future Work ... 112

REFERENCES .. 114

vii

List of figures

Figure 1 - Maturity scores according to end-user and developer perspectives. 20

Figure 2 - Average maturity scores with and without weights ... 20

Figure 3 - Steps from initial form of technical document to SPN representation of mathematical

expression. ... 25

Figure 4 - Proceeding steps of the expression y=e*c/6+(a-b) .. 29

Figure 5 - The attributed graph of the expression e*c/6+(a-b) .. 31

Figure 6 - The graph generated representing the expression a/b. Node ‘a’ constitutes the first

operator-numerator of the division and node ‘b’ constitutes the second operator of the

division-denominator. Both edges end up to the node ‘div1’ which is a keyword

representing the first (and only, in this specific example) division operation. 32

Figure 7 - The graph generated representing the expression y=int{0}{3}k^2d{x}. 33

Figure 8 - The graph generated representing the expression y-1>=alpha*beta. 33

Figure 9 - A simple Petri Net graph .. 36

Figure 10 - Graph representation of the expression (3x-5)/2 ... 37

Figure 11 - SPN representation of the expression (3x-5)/2 ... 38

Figure 12 - Data Flow Diagram describing the procedure of converting a symbol string

mathematical expression to Stochastic Petri Net representation. 41

Figure 13 - The tree representation of the execution of the production rules that output the

symbol string j > \frac{ 3 ^{ z } }{ | c | }. .. 72

Figure 14 - In the images above we see the extracted block after the intensity inversion where

the white areas represent the text detected in the block while the black areas represent

empty areas. In the left one we distinct the first level of loop nesting while in the one on

the right we have proceeded gradually to all three levels of loop nesting. 93

Figure 15 - Receiver Operating Characteristic(ROC) curve is a plot of the true positive rate

against the false positive rate. It shows the tradeoff between sensitivity and specificity.

AUC of 1 shows the ability to identify all true positives while avoiding false positives.

file:///C:/Users/ellis/Desktop/Thesis/Kostalia_thesis%20(Repaired).docx%23_Toc87569798
file:///C:/Users/ellis/Desktop/Thesis/Kostalia_thesis%20(Repaired).docx%23_Toc87569798

viii

Applying a learning process in our system is highly promising as the system will be able

to recognize algorithmic components in the image which are not easily distinguished to

be pseudo-algorithms. ... 102

Figure 16 - Detected algorithm is translated to a graph representation in the form of a flow chart

graph. Each number corresponds to a numbered pseudo-code block as presented above.

Branches with line-commands where a condition is checked to be true or false in order

the execution to move on accordingly, are represented with the diamond shapes. In this

representation, evaluation of True is depicted with the ‘yes’, while False statements in

conditions are described with ‘no’. The rest of the branches are illustrated with

rectangles.. 106

Figure 17 - Linear execution of command in SPN .. 108

Figure 18 - Branch 2 represents a for loop and branch 2check contains the check of the value

of the variable to be within limits in order for the execution of the loop to continue.

While this check returns True, the Evaluate2check transition will get fired and the

execution will proceed with branch 3. Otherwise, Evaluate2_ will fire and the execution

will move forward with the commands in branch 10. .. 109

Figure 19 - Segregation of commands or set of commands that belong in a loop 110

Figure 20 - SPN representation of a complete algorithmic component in a document 111

ix

List of tables

Table 1 - Evaluation characteristics .. 15

Table 2 - Weights assigned to features, for the end-user and developer perspectives 17

Table 3 - End-user and developer scores for all methods. ... 18

Table 4 - Different types of expressions, the operands required and their syntax....................... 32

Table 5 - The distinct mathematical operations. There is alternative notation to describe the

product operation-in our implementation we only make use of the one with the asterisk

sign. ... 46

Table 6 - The syntactical restrictions in a generated formula. .. 74

Table 7 - The logical restrictions in a generated formula. ... 76

Table 8 - This table provides results of the execution of our grammar which generates

syntactically valid mathematical expressions. The third column of the table shows

whether the generated formula has a logical meaning or not – if not, it means that one

or more constraints are violated. ... 79

Table 9 - The several image parts extracted from an image through dilation. Each individual

image part is a new image in the dataset .. 100

x

List of images

Image 1 - Example of input image as .jpg format (2550x3300) .. 84

Image 2 - Different levels of text structure extraction after pyramidal transformation of input

image ... 85

Image 3 - Page Dilation Example: Input Image ... 86

Image 4 - Page Dilation Example: Dilated image with a 4x4 kernel .. 87

Image 5 - Page Dilation Example: Dilated image with an 8x11 kernel .. 87

Image 6 - Page Dilation Example: Input image after frame removal ... 88

Image 7 - Page Dilation Example: Dilated image with a 4x4 kernel after frame removal.......... 88

Image 8 - Page Dilation Example: Dilated image with a 4x4 kernel after frame removal 89

Image 9 - Text structure shape indicates algorithm ... 92

Image 10 - Text structure shape indicates plain text in paragraph form .. 92

Image 11 – Example of input image ... 99

Image 12 - Output metrics of accuracy, precision, recall, F1 score and area under the curve. 101

Image 13 - Input block with algorithmic components detected input to the process of graph

representation .. 103

Image 14 - Detected text lines and their borders in input image block 104

Image 15 - Algorithm lines processed, assigned to branches, and some are grouped as a single

branch ... 104

file:///C:/Users/ellis/Desktop/Thesis/Kostalia_thesis%20(Repaired).docx%23_Toc87569823
file:///C:/Users/ellis/Desktop/Thesis/Kostalia_thesis%20(Repaired).docx%23_Toc87569823
file:///C:/Users/ellis/Desktop/Thesis/Kostalia_thesis%20(Repaired).docx%23_Toc87569832

xi

Acknowledgments

I would like to express my gratitude to my supervisor, Dr. Nikolaos Bourbakis, for his patience,

guidance, and support. Thank you for giving me the opportunity to work with you, your wealth

of knowledge, mentorship and caring have been immeasurably valuable for me. I appreciate and

treasure everything you have taught me. I would also like to thank Dr. Soon Chung, as my

committee member; your encouraging words and thoughtful, detailed feedback have been very

important to me.

I owe a deep sense of gratitude to Dr. Euripides Petrakis for his constant support in both my

undergraduate and graduate studies. Your keen interest to help your students grow has been

immensely admirable, and your dedication, advice, and expertise have been invaluable to me.

This journey would have been just a dream without your trust and guidance, I will remain forever

grateful.

I feel extremely thankful for having in my life my parents, Nikoletta and Konstantinos, thank

you for your endless support, you have always stood behind me, and this was no exception.

Thank you for all the unconditional love. I would also like to thank my siblings, Michalis and

Manolis, for their overwhelming support and inspiration. Last but not least, I would like to

thank my friends, those thousands of miles away, and the ones closer, for their constant

support and for believing in me. Thank you for always standing by me through the ups and

downs of this journey, for your overpowering generosity, and your best suggestions.

1

1. Introduction

Algorithms and mathematical expressions are an integral part of computer science

and the related literature. Documents in scientific and engineering disciplines

present in a great percentage research findings and descriptions by introducing

mathematical formulas or algorithms. Working towards the automatic

understanding of the several components in documents, our purpose in this work

is to contribute to the recognition and representation of how the mathematical

formulas and the algorithmic components are structured and analyzed.

Mathematical formulas are tightly connected to algorithms as not only algorithms

usually contain the execution of several mathematical operations, but also, in many

cases, algorithms are introduced in order to provide a step-by-step description of a

certain mathematical formula. Here, our goal is to develop a methodology for the

analysis of mathematical components found in technical documents and a system

focusing on the detection and the extraction of algorithmic components in technical

documents.

2

Exploring the mathematical formulas in the technical documents, we focused on

the mathematical operations associations, their syntactical correctness, and the

association of these components through their translation into attributed graphs

and Stochastic Petri Nets (SPN) by processing the formulas in several layers.

Initially, we conducted a first level comparative survey on the previous research

works on parsing mathematical formulas in documents, which is presented in

Chapter 2. The implementation of our system begins in Chapter 3 where we have

developed a rule based methodology for parsing mathematical expressions, followed

by mapping the symbol string representation of the mathematical formulas to an

attributed graph and then to an SPN state machine in order to embed timing in

the representation of the mathematical formulas. For a better understanding of the

structure of a symbol string describing a mathematical formula, we designed a

formal language which is introduced in Chapter 4. By making use of the formal

grammar, we will be able to generate new mathematical formulas and evaluate

their syntactical correctness.

Finally, as presented in Chapter 5, we designed and developed a system to

automatically detect algorithmic components in documents and analyze them. We

3

have implemented a rule-based methodology based on which, a document in a for

of an image is segmented to image blocks. The image blocks after a pre-processing

layer, are further analyzed to determine whether they contain algorithmic content.

Next, we designed a model to convert the detected pseudo-algorithms in a graph,

representing the sequence of steps introduced in the algorithm. Then, the detected

algorithm is automatically mapped to an SPN state machine. The proposed

algorithm analysis system makes use of a hybrid methodology of rule-based and

machine learning procedures. Finally, in Chapter 6 we conclude this work and

summarize the major findings and results. It also includes potential extensions of

our methodology, where more complicated cases of mathematical formulas or

algorithms will be taken under consideration.

4

2. Evaluating Methods for the Parsing and Recognizing of

Mathematical Formulas in Technical Documents

2.1 Introduction

Scientific papers and other technical documents are usually composed by natural

language text and other modalities, like block diagrams, mathematical formulas,

tables, graphics, pictures, etc. The last two decades the Automatic Technical

Documents Processing and Understanding (TDPU) has received more attention

due to its profound applicability [1]. TDPU represents the continuation of the

progress made in the fields of OCR, Natural Language Understanding, Pattern

Recognition, and Image Understanding.

Surveys of research papers are usually divided into four different categories: brief

surveys, descriptive surveys, first level comparative surveys and deep comparative

evaluation. The first category includes a plain review of research methodologies

informing the researchers on what papers are available in the field of study. The

descriptive surveys refer to a deeper description of the approaches and their

classification into various groups associated to certain characteristics, like bottom-

up, top-down processing, etc. The first level comparative surveys approach offers

a brief description of each methodology and then evaluates each of them by using

a maturity function that illustrates the level of implementation and applicability.

5

Finally, the deep comparative evaluation of methodologies is based on a very

thorough analysis of the performance of each method by running all of them on the

same data set and providing details of their outcomes. This category, compared to

the previous three, is the more unbiased approach because it is based on test results

to evaluate the competing methodologies and to determine the most accurate, but

at the same time is the most expensive and time-consuming [2].

One sub-area of TDPU is the recognition of mathematical formulas (MF). The MF

area mainly deals with mathematical formulas detection in documents and the

understanding process of formulas by using parsing methods. There are numerous

research efforts in the field of mathematical formulas processing. For this effort

here, about 200 papers were initially collected which, after preprocessing, were

reduced to very small set by keeping those relevant to parsing. Thus, the purpose

here is to conduct a comparative study among the finally selected papers by using

a criterion of maturity. This criterion is defined based on a set of features associated

with the importance for developing software methodologies for MF understanding.

For instance, some of these features were complexity of the methodology,

robustness, originality etc.

Segregating mathematical expressions have been grouped into two categories based

on their position in the document: isolated and embedded. In this work here, we

6

focus on isolated mathematical formulas in typeset documents. The goal here is to

present an overview on this specific type of formulas, describing the parsing

methods used during the structural analysis and interpretation of isolated MF.

OCR, formulas detection and extraction are out of the scope of this effort. Here,

we only evaluate the methods describing the syntactical parsing of the formulas.

Thus, through each parsing method, the formula aims to be represented as an

operator tree. In an operator tree structure, the internal nodes represent the

operators, while the leaf nodes describe the operands. For the generation of the

tree, the analysis layer may include several techniques that have been used so far,

including rule-based and formal grammars.

There are several efforts studying the field of processing mathematical expressions.

Thus, it is important to firstly report surveys studies associated to mathematical

formulas. In particular, Chan and Yeung [3] presented a survey on both symbol

recognition and structural analysis of mathematical expressions. They present

various approaches developed on the parsing of the formulas to that date. Their

work is mainly focused on the description of the similarities and the differences

between the existing techniques. The survey by Zanibbi and Blostein [4] focuses on

recognition methods of mathematical formulas. The unique contribution of that

work is also the introduction to the study of mathematical formula retrieval area.

7

In both these efforts [3], [4] the emphasis is more towards to recognizing and

understanding mathematical formulas however, understanding mathematical

formulas involve parsing.

The rest of this thesis is organized as follows; in section II, the several approaches

in parsing the mathematical formulas are presented. Section III presents an

evaluation of state-of-the-art parsing methods highlighting the advantages and the

limitations of each method through the evaluation process, using a maturity

formula [5]. A number of features are selected for the evaluation of the maturity of

each method, where each feature represents a different aspect of the evaluation. In

section IV, the results of the evaluation are discussed, and future directions in

mathematical formula analysis research are presented. Finally, section V states the

conclusion of this work.

2.2 Recognizing and Representing M athematical Formulas

The process of understanding mathematical formulas in documents is divided into

four sub processes: (a) identification and segmentation which focus on detecting

and isolating formulas in documents, (b) symbol recognition in formulas, (c) lay-

out recognition for identifying the spatial relationships among symbols and, (d)

content representation and analysis whose purpose to compute the outcome of the

8

mathematical formulas. Parsing is included in the latter task, where the various

objects (i.e. operators, operands) forming the formula are presented by an operator

tree, which holds all the structural information of the mathematical expression. A

large number of parsing techniques with a range of variations were introduced in

the literature through the years for the analysis of mathematical formulas. The

parsing is realized using either string grammars or two-dimensional grammars,

depending on the system built.

The formal grammars used in the parsing process can follow either the top-down

or the bottom-up approach. There are also cases where an integrated bottom-up

and top-down approach is applied. The top-down approach is considered to be the

fundamental structure processing technique. It processes the input structures

starting with the global perspective of the input expression, and proceeds by

analyzing horizontal and vertical relations among objects in the structure, which

in our case are the sub-expressions in the mathematical formula. On the other

hand, the bottom-up techniques process the elements in a mathematical structure

by analyzing the nested structures based on specific objects (e.g. symbols,

operators) within the structure.

A. Top-down parsing

9

The approach by Anderson [6] is one of the earliest works in this field. Despite its

poor experimental results, the impact of this work on other works in the area of

mathematical expression recognition is deemed significant. The work applies a top-

down approach where, a syntax-directed algorithm, using rules of a formal

grammar, is applied on the sub-expressions within the input formula. The

experimental results exhibit the low efficiency of the method which may be

attributed to the format of the formal grammar applied.

Chan and Yeung [7] introduce three mathematical expression parsing methods,

namely, (a) symbol string parsing through backtracking, (b) parsing using binding

symbol preprocessing and, (c) parsing using hierarchical decomposition. A Definite

Clause Grammar (DCG) is executed within each method, and is implemented in a

way that allows the parsing the mathematical formulas. DCG is highly declarative,

which leaves no space for errors during the recognition process. It is executed by a

Prolog interpreter (also used in the present work). The experimental results proved

that, hierarchical decomposition is the most efficient method among the three in

terms of parsing speed. In terms of complexity, the method aims to split expressions

into smaller ones, so that even using a parser of high complexity, the time for

parsing the short-length expression would be low. The method has been also applied

10

for the understanding of handwritten mathematical expressions [8] with very high

accuracy.

Tree structures are typical for describing the structural information of

mathematical expressions. More specifically, binary trees have been used widely as

they are both, easy to interpret and process and, capable of handling recursion.

However, binary trees fail to represent all information in mathematical formulas

especially in cases of mathematical formulas containing complex elements such as

matrices, summations, integrals etc. The work by Toumit, Garcia-Salicetti and

Emptoz [9] propose a flexible tree structure where each node may have more than

two children nodes. A recursive method is applied initially on a single-node tree,

containing the whole formula. While nodes can be complex objects, it recursively

breaks each node into simpler object leaves based on the operators, comparators

and spatial connectors in each object.

There can be a great deal of uncertainty in the interpretation of mathematical

expressions mainly because of ambiguity inherent in mathematical notation and

this might make interpretation dependent on human experience. In order to deal

with this problem, Chen, Shimizu and Okada [10] introduce a rule-based approach

for the automatic parsing of mathematical expressions. They first extract a layout

tree along with a semantic tree representing the layout and semantics of

11

mathematical expressions respectively, prior to applying a set of mathematical,

sense-based and experience-based rules. In an extension of this work [11],, the

authors discuss the various ambiguity issues in mathematical expression

understanding.

In the work by Jin, Han and Wang [12], mathematical formulas are parsed by

applying a hierarchical and recursive decomposition process that computes an

operator tree as a result. Processing is split into three layers; each layer is dedicated

to different mathematical elements represented by glyphs. During the first layer,

the most basic elements are processed, like fractions, radicals, and delimiters, which

outputs the compound expressions of the formula. A multi-line mathematical

formula is then transformed into a one-dimensional array. The processing of this

array is based on the backbone glyph extraction. Going towards the next layers,

each compound expression is handled as an individual glyph, representing a

subexpression. The process terminates when there is no more subexpression for the

formula to be split.

Toyota, Uchida and Suzuki [13] handle the parsing of a mathematical formula as

an OCR verification step that applies a context-free grammar capable of dealing

with mathematical syntax. This is a top-down approach where the grammar is

12

applied on the tree representation of the formula and grammar rules are defined

according to Anderson [6].

B. Bottom-up parsing

Lavirotte and Pottier [14] introduce a graph grammar approach. The input formula

is represented by a graph structure which is generated based on the spatial

locations of the symbols in it. Graph nodes represent symbols in the formula and

graph edges represent their relative positions. The graph is then transformed to a

syntax tree using a graph grammar. The graph grammar is a context-sensitive

graph grammar where, the terminal symbols represent mathematical symbols and,

nonterminal symbols represent mathematical expressions. The challenge in graph

building relates with the number of links: a very big or small number of links might

lead to ambiguities: might lead to more than one formula or, might not be able to

represent all information needed for building a formula, respectively. Along the

same lines and following the optical recognition of symbols in the formulas,

Chaudhuri and Garain [15], [16] extract the logical relationships among the formula

components. The process is based on the idea of building the layout of a formula

using the spatial relationships of its components and their bounding box

coordinates as parameters. For the final part of the syntactic parsing and

mathematical formula understanding, a number of pre-defined rules are applied.

13

In the work by Guo, Huang, Liu and Jiang [17], a mathematical expression is

decomposed into sub-expressions. The method introduces the idea of continuous

reformation of the global expression structure by decomposing the formula into

basic sub-expressions, and by appending the analysis results to the higher levels of

the bottom-up process. The script relation trees are generated by applying a

context free grammar and an N-best algorithm for the finishing analysis tasks.

C. Integrated top-down and bottom-up parsing

Integrated parsing approaches combine both top-down and bottom-up parsing

techniques. Fateman et al. in [18], [19] handle typeset mathematical expressions

using both OCR and structural analysis. Structural analysis applies a bottom-up

parser. Prior to structural analysis, a top-down method is applied for identifying

and parsing sub-structures in a formula. The experimental results for the bottom-

up method are not promising due to the complexity of the inputs. This result,

however, does not rule-out the use of the bottom-up approach on other inputs.

In DRACULAE system, Zanibbi and Blostein [20] process a mathematical formula

left-to-right. The so called Baseline Structure Tree (BST) is generated first and is

transformed to a Lexed BST [21]. This is then translated to a LATEX expression

which is forwarded to the expression analysis stage which produces the operator

14

tree. Each expression is analyzed in terms of syntax and semantics. During syntax

analysis, a context-free grammar is applied on the linearized symbol string and a

parse tree is produced. During semantic analysis, a set of tree transformation rules

are applied for detecting implicit operations and the operator tree is re-ordered.

The complexity of DRACULAE is linear on the average.

Takiguchy, Okada and Miyake [22], apply both a layout and a semantic tree for

the understanding of a mathematical formula and its translation to LATEX.

Following the layout analysis of a formula, Guo et al. [17] use sense-based and

experience-based rules.

2.3 Evaluation

In the following, we present a comparative evaluation of the methods referred to

above. All methods are evaluated using the features of Table 1. These features are

deemed representative of their operation, purposed and expected result [23].

FEATURES DESCRIPTION

Reliability (F1)
The methodology produces expected results under

normal operating conditions

Robustness

(F2)

Results are produced under extreme conditions –

formulas with a great complexity

Complexity

(F3)

The difficulty in implementing a methodology due to a

large number of components or associations. Also refers

to Computational and Memory requirements.

15

Efficiency (F4)
The methodology can achieve the desired results in an

efficient way

Originality

(F5)
A novel methodology is presented

Accuracy (F6) The precision of the results

Speed (F7) Processing time of the methodology presented

Experiments

(F8)
Size of experimental data

Further

Improvements

(F9)

Enhancements required in the design

Cost (F10) The Implementation cost of the methodology

Portability

(F11)
The ability of the system to work in different platforms

Parsing Method

(F12)

The parsing method used for the syntactical analysis of

the formula TD for top-down approaches, BU for

bottom-up and IN for integrated approaches

Table 1 - Evaluation characteristics

The selected features are defined based on inherent characteristics (i.e.,

implementation complexity, accuracy, extensibility, originality, robustness) or, the

performance (i.e. efficiency and quality of the results) of the parsing methods which

they are related with. In order to achieve a more quantitative assessment, all

competing methods are rated based on two perspectives, one associated with the

end-user and the other associated with the developer. The weights 𝑤j for the

developer and user perspective are shown in Table 2. They are defined by our

evaluators, and they are used for computing a “maturity score” 𝑀i for each

methodology.

16

The maturity function of Eq. (1) defines the maturity score for a method taking

into consideration the weights of each perspective.

𝑀𝑖 =
∑ 𝑤𝑗𝑓𝑖𝑗

𝑁
𝑗=1

∑ 𝑤𝑗
𝑁
𝑗=1

 (1)

In Eq. (1), N represents the number of quantitative features used for the evaluation

(i.e. 11 in our case). Each methodology is assigned a score from 1 to 5 for each

feature. A score 1 denotes poor performance of the approach on feature, while a

score 5 denotes very good performance, respectively. The features showcasing the

further improvements (F9) and the cost (F10), reflect a negative impact as they

describe the required enhancements for the specific methodology and the

implementation cost of the system by incorporating the respective feature. For

both these negative impact features, a higher score denotes the less requirements

for the maximum performance. The scores assigned to each methodology, based on

the proposed features are shown in Table 3.

Each methodology receives a score 𝑓ij for each feature (means each methodology

receives 11 scores). Following this, for the computation of the maturity of a

methodology for a perspective (i.e. end-user or developer) the weight of each feature

from the developer’s perspective is multiplied with each distinct feature score. The

17

summation of all these products is normalized by the summation of the weights for

this specific perspective.

Table 2 - Weights assigned to features, for the

end-user and developer perspectives

The result of the division will form the maturity value for the given methodology

for the developer’s perspective. For example, for the method by Fateman and

Tokuyasu [18] for the end-user’s perspective is:

𝑀[15] =
3×1+2×1+3×0.1+3×1+3×0.1+2×1+3×1+1×0.4+1×0.5+5×0.6+3×0.3

1+1+0.1+1+0.1+1+1+0.4+0.5+0.6+0.3
=3.6

FEATURES

WEIGHTS

END-USER

(WU)

DEVELOPER

(WD)

F1 1 1

F2 1 1

F3 0.1 1

F4 1 0.8

F5 0.1 0.9

F6 1 1

F7 1 1

F8 0.4 1

F9 0.5 0.8

F10 0.6 0.9

F11 0.3 0.9

18

 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

[18] 3 2 3 3 3 2 3 1 1 5 3 IN

[7] 3 2 3 4 5 3 4 1 1 3 1 TD

[14] 3 2 4 4 5 2 4 1 2 2 3 BU

[9] 4 2 3 4 4 3 4 1 2 4 3 TD

[10] 3 2 2 3 5 3 2 3 2 3 2 TD

[15] 5 4 3 3 4 5 3 3 4 2 4 BU

[8] 5 4 5 5 3 5 4 4 4 1 4 TD

[12] 5 4 4 4 2 5 3 4 3 1 4 TD

[20] 4 4 4 3 2 5 3 3 4 2 4 IN

[22] 4 2 4 2 3 4 2 2 2 4 5 IN

[13] 4 3 2 4 4 3 1 3 3 2 2 TD

[17] 4 3 3 3 2 3 2 5 3 2 3 BU

Table 3 - End-user and developer scores for all

methods.

2.4 Discussion on Evaluation Results

The overall maturity scores are calculated based on the Eq. (1), for both user and

developer perspectives. The formula indicates how mature each individual

methodology is, the time it was developed and not in comparison to each other.

Figure 1 illustrates the maturity scores for each methodology, based on both

perspectives. Figure 2 illustrates the average maturity score for each methodology.

Figure 2 shows the scores without taking weights into consideration. No method

reached the maximum maturity score. However, most methods achieve relatively

high scores. The method by Chan and Yeung [8], which applies top-down parsing,

outperforms all other methods achieving average score 4.10/5.00, followed by the

method by Chen, Shimizu and Okada [11] which also applies top-down parsing and

19

achieves average score 3.70/5.00. Third in order, in the integrated method by

Zanibbi and Bolstein [20] which reached 3.54/5.00 average score.

All parsing methods proved successful on mathematical formula understanding

although the methods differ from each other in terms architecture used, nature of

the system or application within they are applied and other factors. Therefore, the

decision of which method is the preferred one resorts to the end-user or developer

who needs to take all these factors into account.

The top-down parsing approaches with the best scores are [8] and [12]. The first

one relies on backtracking which does not guarantee very good efficiency in the

general case [23]. The second one makes relies on recursion for the decomposition

of input formulas which might result is lower computation cost. Furthermore, the

integrated methodology Zanibbi, Blostein and Cordy [20] has also achieved low

computational cost due to its linear time complexity in the average case. This

improves the maturity score.

The integrated approaches are expected to be very prominent. This hypothesis is

based on the understanding that top-down approaches resemble the way the human

brain understands the components of a formula in the first place. Also, the bottom-

up approach for the evaluation of the subexpressions of the formula leads to the

20

evaluation of the complete mathematical formula. The evaluation results are not

according to this hypothesis. Notice that, lower maturity are obtained for

methodologies which have been implemented to their full extend (i.e. as full-fledged

systems supporting all stages of recognition and understanding) which can be both,

very complex and computationally expensive.

Figure 1 - Maturity scores according to end-user

and developer perspectives.

Figure 2 - Average maturity scores with and

without weights

0.0

1.0

2.0

3.0

4.0

5.0

End-user Developer

0.0

1.0

2.0

3.0

4.0

5.0

Average maturity Without Weights

[7] [8] [9] [10] [12] [13][14] [15] [17] [18][20] [21]

[7] [8] [9] [10] [12] [13][14] [15] [17] [18][20] [21]

21

2.5 Conclusion

We present a comparative study on mathematical expression and formula

understanding methods. The discussion and following evaluation is based on a

number of criteria relating with the operation of each method and whose purpose

is to reveal the strengths and weaknesses of each method. A maturity metric is also

introduced which becomes the overall criterion for ranking the competing parsing

methods by efficiency taking also into consideration criteria pertinent to end-users

or system developers.

All comparisons are made between the works themselves (to their full potential)

and not among the different systems within which the methods are applied. By

conducting this survey, we concluded that no approach could achieve the maximum

maturity in the field of understanding mathematical formulas. This can become

possible by developing methods simulating the hierarchy of operations of human

mind or, by using structures that would be able to hold, not only the structural,

but also the functional information of a formula. We have examined the process of

formula parsing and how close this is to the way the human-brain processes the

formulas. It is a step closer to machine deep understanding of technical documents

that may be used to train machines handle mathematics [24], [25].

22

3. Conversion of Mathematical Formulas into Graphs and

Stochastic Petri Nets

3.1 Introduction

Even though mathematical expressions consist of well-defined rules applied on the

syntax and the operations forming the hierarchy of the operations, the analysis of

the components and their associations tends to be a challenging part of any

machine trying to analyze and understand this expression. Since understanding of

mathematical expressions has a certain connection with people's sense and

experience, we build a system which takes under consideration the mathematical

rules in addition to the rules based on the human sense and experience to

understand expressions perfectly and to avoid problems of uncertainty.

A rule base approach is set up in this work which consists of mathematical, sense-

based and experience-based rules to help us understand the expressions correctly

and naturally. The mathematical rules are helpful to automatically and

unambiguously parse the structure and the semantics of an expression after having

recognized characters and obtained information for the spatial relationship of the

operators in a tree structured format. While the sense-based rules provide the

handling of the expression’s ambiguousness in layout, the experience-based rules

23

are responsible for dealing with uncertainty in expression semantics. The final

purpose of this part is to design a system which takes as an input a mathematical

expression and generates the Stochastic Petri Net representation of this expression.

Conventionally, we use as a source a mathematical formula in LATEX format which

comes from a free OCR tool which converts an image of a mathematical formula

to LATEX code. Thus, the only assumption used here is a preprocessing of inserting

an image to an external OCR tool and receiving an MathML or TEX (LATEX)

formatted output as the input to our system. This is quite realistic as almost all

the methods proposed in the literature give recognition output in one of these

formats.

3.2 M athematical expressions in technical documents

Technical documents include, among other modalities, mathematical expressions,

which may be found at a great percentage of documents, especially in the area of

Computer Science. This work is exclusively focused on Mathematical expressions

found in technical documents. In the very beginning it is essential to define what

a mathematical expression in a technical document is: it is a finite combination of

symbols that is well-formed according to rules that depend on the

24

context. Mathematical symbols can designate numbers (constants), variables,

operations, functions, brackets, punctuation, and grouping to help determine the

order of the operations and other aspects of logical syntax.

An expression is a syntactic construct which must be well-formed. The operators

in the expression must have the correct number of attributes in the correct places.

Any string of symbols which violates the rules of syntax is not considered well-

formed and is not identified as a valid mathematical expression. For example, the

expression 1+2×3 is well-formed, but the expression 9×4)x+/y is not.

3.3 Conversion from electronic type of the technical

document (pdf) to the SPN representation

Our proposed methodology consists of five sequential layers of processing; a

document in a pdf format shall form the input, which after the detection of the

mathematical parts will be split in individual images which will then undergo

Optical Character Recognition and result to a symbol string in a LATEX format.

The recognized symbol string will then go through parsing and following, will get

translated to an attribute graph, and to an SPN representation. In this part of the

work, we present the processing layers starting after the OCR of an image and

moving towards the generation of the Stochastic Petri Net. Although the OCR

25

process has not been implemented at this time, a brief description of the optical

recognition process would be valuable to be introduced.

Figure 3 - Steps from initial form of technical document to SPN

representation of mathematical expression.

3.4 Optical Character Recognition OCR

Mathematical expression recognition involves three major tasks: segmentation -

detecting symbols, classification, and parsing - determining expression structure.

These tasks may be solved in a sequential feed-forward manner, or in a globally

integrated fashion.

▪ Segmentation

It is a task of grouping related primitives. These primitives could be pixels from an

image, or strokes from a handwritten equation. The main challenge of symbol

segmentation in typeset mathematical expression images is fractured symbols

whose components were split by printing and scanning noise [26].

Stochastic

Petri Net

Attribute

Graph
Symbol String

Mathematical

Expression

Image

PDF

Document

26

▪ Classification

Common algorithms for symbol classification include nearest neighbor, support

vector machines, random forests, hidden Markov models, convolutional neural

networks, and bidirectional long short-term memory networks.

▪ Parsing

Converting input primitives (e.g., images, handwritten strokes, or symbols) to a

description of formula structure. A common set of features used to represent the

spatial relations between components are geometric features.

The use of the relative position of the symbols gives additional information about

the association between symbols and elements of the expression, having as an

example the superscripts and subscripts or operators such as summation and

integrals.

Reading Mathematical Expressions is executed in a left-to-right order, following

the precedence of operations. The precedence of operations is a collection of rules

that reflect conventions about which procedures to perform first in order to

evaluate a given mathematical expression and its purpose is to eliminate ambiguity

while interpreting an expression. It is also a way that allows notation to be as brief

as possible. The simplest way of parsing a two-dimensional expression is to

27

translate it into its equivalent one-dimensional representation and then parse it

using an existing parser. An expression consists of one or more mathematically

linked symbol groups. A symbol group is defined to be a special mathematical

symbol which may deviate from the typographical center of a mathematical

expression and the symbols that appear with it [27], [28]. For example, ∑ 𝑥𝑖
𝑛
𝑖=1 is a

symbol group. When all symbol groups in an expression have been grouped, the

expression can be transformed from a 2-D form to 1-D, according to the previously

mentioned OCR steps. In this work we did not focus on the Optical Character

Recognition of the mathematical formulas, we rather take the output of the OCR

tool in the form of a symbol string as a given. We will handle this issue in the

future.

3.5 How we process the mathematical expressions

Given a string expression at the input, and before it is split into its left and right

parts, an equation detection procedure is applied in order to detect whether this is

an equality or inequality type of expression and then it is split to the two parts of

it: left and right part. The two parts are treated as distinct mathematical

expressions and are processed individually and in a next processing layer we will

handle the connection of the two parts. For each part, the parentheses inside the

28

mathematical expression are detected and processed -as they are in the highest

priority in the hierarchy- as individual expressions as they may include nested

parentheses. In general, we find different types of expressions and calculate the

simple or complex expressions inside them. We follow the precedence of the

operations inside every sub-expression which is a simple expression, then move to

the outer layer of hierarchy. Our model goes through different levels of hierarchy,

depending on the context of the expression. At each level, the elements of the

current operation hierarchy level are processed, and the outcome of this process

will replace this sub-expression, modifying the input expression. Each mathematical

operation is given an id number for identification purposes, for example, the first

summation operation is marked as add1 and the first detected parenthesis is

marked as parnethesis1. An example of this procedure is shown in the following

image.

29

Figure 4 - Proceeding steps of the expression

y=e*c/6+(a-b)

3.6 The mathematical expressions

1.1 We define as simple expressions the expressions that include numbers

and alphabet letters along with the basic operators +, -, *, / and process

them in the order multiplications and divisions, then additions and

subtractions.

1.2 Types of Mathematical Expressions Modules which our system processes:

▪ Parenthesis

▪ Equality - Inequality

▪ Simple expression

▪ Fraction

▪ Summation

▪ Finite Integral

30

▪ Factorial

▪ Root

▪ Exponential

▪ Limit

▪ Indefinite Integral

▪ Absolute Value

▪ Logarithmic

3.7 M ath Expressions to Graphs

Each mathematical expression is represented by a graph. Each sub-expression

becomes a sub-graph of the full graph. That means that for every level of the

hierarchy and for each operation, two nodes and two edges are created. The first

node that is created is the result of the operation that will be registered as a new

node along with the edge that will connect the node that represents the last

operation’s result. The second node is the next operand to be executed which will

be associated, through a new edge, with the result of the current operation.

31

Figure 5 - The attributed graph of the expression

e*c/6+(a-b)

For each operator, there is a number of operators that are required in order for the

operation to be executed. For example, for simple operators such as addition and

subtraction two operators are required, though for a fraction, we are expected to

have two mathematical expressions, one as the numerator and one as the

denominator. The attributes on the edges connecting two nodes in the graph

represent the type of the operator that is inside the node that participates in the

operation.

32

Figure 6 - The graph generated representing the expression a/b. Node ‘a’

constitutes the first operator-numerator of the division and node ‘b’ constitutes the

second operator of the division-denominator. Both edges end up to the node ‘div1’

which is a keyword representing the first (and only, in this specific example)

division operation.

Table 4 - Different types of expressions, the

operands required and their syntax.

Operation
Number of

operands
Names of operands Syntax

Addition 2 factor1, factor2 factor1 + factor2

Subtraction 2 factor1, factor2 factor1 - factor2

Multiplication 2 factor1, factor2 factor1 * factor2

Division 2 factor1, factor2 factor1 / factor2

Fraction 2 numerator, denominator frac{numerator}{denominator}

Factorial 1 factor1 factor1! or (factor1)!

Exponential 2 base, exponent
base^exponent or (base)^{exponent} or

(base)^exponent or base^{exponent}

Integral 4
lower limit, upper limit,

function, differential
int{lower limit}{upper limit}functiond{differential}

Summation 3 factor1, factor2, function sum{factor1}{factor2}{function}

Root 2 factor1, function sqrt[factor1]{function}

Absolute

Value
1 factor1 |factor1|

Logarithmic 2 factor1, factor2 log {factor1}{factor2}

Limit 3 factor1, factor2, function lim{factor1}{factor2}{function}

33

Figure 7 - The graph generated representing the

expression y=int{0}{3}k^2d{x}.

Figure 8 - The graph generated representing the

expression y-1>=alpha*beta.

34

3.8 M athematical Formulas into Stochastic Petri N ets

Stochastic Petri Nets are used to describe and analyze systems that are concurrent,

distributed parallel and non-deterministic. They provide functional information

and are also used as a machine language for development, simulation, and

applications. Petri net is an information flow model which we are using in order to

interpret the mathematical expressions along with their functionality. A Petri net

is a directed bipartite graph in which the nodes represent transitions (i.e. events

that may occur) represented by bar, and places (i.e. conditions), represented by

circles. Compared to graphs which provide with structural information alone, SPNs

provide also with functional information (i.e. timing and synchronization) of the

operations inside a mathematical expression

3.8.1 Stochastic Petri N ets prerequisites

In this section we provide the basic Stochastic Petri Net (SPN) prerequisites. SPN

is a specialized category of Petri Nets thus, SPNs and Petri Nets have the same

visualization components and go by the same visualization rules. We will

demonstrate how a basic component of Petri Nets is represented visually. A Petri

35

net consists of places, transitions, and arcs [29], [30], where arcs can connect a place

to a transition or vice versa, but an arc can never connect two places or two

transitions. Places in a Petri net may contain a discrete number of tokens. Arcs are

characterized by their capacity, which is the number of tokens they are able to

transfer. Any distribution of tokens over the places will represent a configuration of

the net called a marking. In our mapping we use the default capacity of 1. A

transition of a Petri net is enabled when there are sufficient tokens in all its input

places, which means that the number of tokens in each of its input places is at least

equal to the arc weight going from the place to the transition. A transition may fire

if it is enabled. When the transition fires, it consumes the required input tokens, and

creates tokens in its output places. This results in a new marking of the net, a state

description of all places. In a graphic representation of a Petri net in Figure 9, places

are depicted with circles (where each circle contains or not one or more dots called

tokens), transitions with long narrow rectangles, and arcs as one-way arrows that

show connections of places to transitions or transitions to places. Labels above arcs

indicate their capacity, which means the maximum number of tokens that an arc

can carry simultaneously [31]. An inhibitor arc is represented by an arc terminated

with a small empty circle [32]. More information about Petri Nets and Stochastic

Petri Nets can be found in the corresponding literature [29], [30], [32].

36

Figure 9 - A simple Petri Net graph

Here, we present some basic points for the representation of mathematical

expressions, operands, and operator’s results into SPN graphs. So, simple

mathematical operations or functions are represented by timed transitions (thick

rectangles), since they are the transitionary layer between the variables/operands

and the result of the mathematical operation/function. Places (big circles) represent

variables or constants that describe any operand as a part of a mathematical

operation. Places may also represent the result of an arithmetic operation/function

execution which will eventually become an input to a forthcoming operation.

3.8.2 M ethodology We Follow to Convert Graphs to SPN

Having as the final purpose of this part of the work the conversion of a

mathematical formula to a Stochastic Petri Net, the graph was designed to be

generated in such way so the variables and the numbers of the expression can be

viewed as the places of the Petri Net and the operations between these operands

as the transitions. Using the generated graph of the mathematical expression as

37

the input, for each node that represents an operation, a transition is created which

describes the operation being executed, given the attributes of the two incoming

edges. Each operand of an arithmetic operation or function in the expression

(variable or constant or result of an operation’s execution) is represented by a

place. The attributes of edges leading to the same node describe the several

operands required for an operation to execute so any edge of the generated graph

will point to a transition. This transition represents the arithmetic

operation/function which will be executed using the attributes of the incoming

edges. Finally, a new place will be created which will represent the result of the

operation’s execution and an arrow will be connecting the transition with the new

place. This process will continue until all nodes of the graph have a corresponding

place in the SPN graph. For the creation and representation of the Petri net the

SNAKES library of Python was used [33].

Figure 10 - Graph representation of the

expression (3x-5)/2

38

Figure 11 - SPN representation of the expression

(3x-5)/2

39

The symbol string is being parsed based on the alphabet letters and the operators,

identifying numbers that are made up with more than a numerical symbol and

variables and operator key-words consisting of more than one letters. The method

also detects implicit multiplications between elements of the mathematical

expression. Implicit multiplications are expressed by two symbols one next to the

other without an operator between them, where a multiplication operation is

implied. Given the fact that the expression is formed by two parts and an equality

or comparative operator, the expression is being split into two parts. These two

parts are processed individually using the exact same procedure. While parentheses

have highest priority in any mathematical expression, parentheses are being

detected together with expressions within parentheses form sub-expressions which

are being isolated and processed separately based on the precedence of operations.

While executing the operation of each sub-expression, we keep in memory the index

of the previous node so that we create one graph of all the sub-expressions. The

graph we are creating will be a graph in a form of a binary tree - each parent node

will have maximum two child nodes. Following this step, based on the precedence

of the operations mentioned above, each sub-expression is being transformed to

nodes and edges, creating an attributed directed digraph that describes the

relationships among the different components of the initial expression.

40

In the next level of processing the mathematical expression, we detect different

types of operations such as fractions, exponentials, roots, summation, integral,

factorial, absolute values, that also include sub-expressions and process them just

like the expressions in parentheses. Every new input of the generated graph consists

of three elements: the starting node, the ending node and the attribute of the edge

that represents the factor in the syntax of the operation. After finishing the process

of both parts of the input expression, the value of each one is assigned in a new

node with an edge that points towards the keyword representing the relation

between these two parts. When all the operands and operators are included in the

graph, we use the NetworkX library of Python so we can visualize it. Final step is

to create the SPN representation based on the methodology described above. The

following diagram shows the sequential steps that are followed to achieve the SPN

representation of the mathematical expression through the graph.

41

4. Generation of Mathematical Formulas using a Formal

Grammar
4.1 Introduction

Mathematical formulas consist of combinations of different mathematical

expressions, the associations of which, are accurately defined using the well-known

Figure 12 - Data Flow Diagram describing the procedure of

converting a symbol string mathematical expression to

Stochastic Petri Net representation.

42

mathematical notation. A mathematical expression requires that both, the

operators, and the operands within the expression are defined. The complete

process of the generation of MF constitutes of three layers of processing,

representing the steps that are strongly connected and essential for the

interpretation of a formula:

1. Generation of a MF using the syntax of the formal grammar designed

2. Syntactical Optimization - Elimination of undefined terms inside the

formula

3. Semantical analysis and interpretation of the formula

In this phase of our work, we have implemented steps 1 and 2. During the first

layer of processing, the formal grammar of our language is executed, and

mathematical formulas are generated. In the second step, these generated formulas

go through filters to evaluate their syntactical content, in a way that undefined

terms will be eliminated, or excess notation will be removed without changing the

syntax of the formula.

While mathematical expressions are typically illustrated as two-dimensional

structures of math symbols in either handwritten form or images, meaning that

each mathematical symbol obtains a relative positions to another in the 2-

43

dimensional space in an image, a high-quality typesetting system was developed

for the description of mathematical notation in scientific documentation: LATEX is

widely used in typesetting of complex mathematical formulas and is established as

a standard for the communication and publication of scientific documents [34]. In

these terms, in our work, we follow the LATEX format to describe each

mathematical element or mathematical formula. To acquire the syntactical

correctness of the mathematical language, a formal language (FL) is designed. By

making use of this FL and its formal grammar subsequently, we make sure that

the MF are formed based on specific grammar rules which define their syntactical

correctness and validity [35].

4.2 M athematical Operations

A representative number of mathematical expressions found in published scholar

and technical documents was collected and studied, and the most frequently used

mathematical operations (functions) were congregated in a list, illustrated in Table

5. They form the corpus of the different operations that will be used to construct

a new formula, and each operation corresponds to a distinct letter of the alphabet

of the introduced language. Each distinct mathematical operation is handled

44

uniquely, based on the syntax of the code according to the LATEX format and the

number of operands that are required to define it completely. For a more

convenient processing of the symbol strings describing the formula, we eliminate

special symbols used to describe the spatial relations of elements in the expression

(like “\”, “ ^ ”, and “_”) from the symbol string of LATEX format.

Serial

number

Operation Operation

Name

Number of

Operands

Pre-processed LAT

EX format

LATEX

format

1 a+b Addition 2 a + b a + b

2 a-b Subtraction 2 a - b a - b

3 a ∗ b

a ∙ b

a × b

Product 2 a * b a * b

a \cdot b

a \times b

4 a/b Division 2 a / b a / b

5
a

b
 Fraction 2 frac{a}{b} frac{a}{b}

6 a! Factorial 1 a! a!

7 ab Exponential 2 a^{b} a^{b}

8 ∫ a dx Indefinite

Integral

1 int{a}d{x} \int{a}d{x

}

45

9
∫ c dx

b

a

Definite

Integral

4 int{a}{b}{c}d{x} \int_{a}^{

b}{c}d{x}

10
∑ x

c

a=b

Summation 4 sum{a=b}{c}{x} \sum_{a=

b}^{c}{x}

11
∏ x

c

a=b

Product 4 prod{a=b}{c}{x} \prod_{a=

b}^{c}{x}

12 √a Square Root 1 sqrt{a} \sqrt{a}

13 √b
a

 Root 2 sqrt[a]{b} \sqrt[a]{b}

14 |a| Absolute

Value

1 |a| |a|

15 log a Logarithmic 1 log{a} log{a}

16 loga b Logarithmic

with base

2 log{a}{b} log_{a}{b}

17 ln a Natural

Logarithmic

1 ln{a} ln{a}

18 lim
a→b

c Limit 3 lim{a rightarrow

b}{c}

\lim_{a\ri

ghtarrow

b}{c}

19 a mod b Modulus 2 a mod b a \bmod b

46

20 sin(a) Sine 1 sin{a} sin{a}

21 cos(a) Cosine 1 cos{a} cos{a}

22 tan(a) Tangent 1 tan{a} tan{a}

23 a′ Derivative 1 {a}' {a}'

Table 5 - The distinct mathematical operations. There is alternative

notation to describe the product operation-in our implementation we only

make use of the one with the asterisk sign.

4.3 The Formal Grammar

In this section we define the designed formal grammar we propose for this work; the

set of the production rules include all the operations which were presented in the

previous chapter.

In the very beginning, we need to make clear what a mathematical expression in a

technical document is. It is a finite combination of symbols that is well-formed

according to rules that depend on the context. Mathematical symbols can designate

numbers (constants), variables, operations, functions, brackets, punctuation, and

grouping to help determine order of operations, and other aspects of logical syntax.

A mathematical expression is a syntactic construct which should be well-formed,

and the operators must have the correct number of inputs in the correct places.

Therefore, strings of symbols that violate the rules of syntax are not well-formed

47

and are not considered as valid mathematical expressions. For example, the

expression 1 + 2 × 3 is well-formed, but the expression 9×4)x+/y is not.

Every mathematical formula is composed by a “kernel”. This kernel represents all

the numbers, variables, operators, and delimiters. Our definition of the formal

language models the generation of mathematical formulas using the different

mathematical elements constructing it.

Numbers

Numbers may be positive or negative, where when the sign is missing, the positivity

of the number is assumed. Examples of numbers found in mathematical formulas

are: 1, 2, 3.5, 10.999, -0.81, 0, π, e. The two latter examples are universal constants

and are used in places of numbers. We also need to mention the infinity sign which

may be found in many mathematical expressions. This does not belong to the

numbers set, but it describes a quantity and is widely used.

Variables

Variables are Latin alphabet (and sometimes Greek alphabet-we only consider

Latin alphabet letters at this point of time) letters which stand for numerical values

48

in a mathematical expression. Occasionally, variables have names that are formed

by more than one letters, constituting a word representing a variable. Some

examples of variables are: x, y, z, A, B, ratio, median.

Operators

All the rest of the symbols that signify relationships and operations among numbers

or variables are called operators. When describing a mathematical expression in

the LATEX format, a number of keywords are also used to indicate different

mathematical functions (e.g. ‘frac’ for fraction, ‘int’ for integral). Other operators

in a mathematical formula may be +, -, /, *, =, >, <, !.

Delimiters

Delimiters are the punctuation marks used in mathematics and are used to signify

where a mathematical expression ends and another one begins. The most widely

used one is parenthesis, but brackets ({ , }) and square brackets ([,]) are also

used infrequently.

When reading a mathematical formula, the elements forming it may be compared

to the words assembling a natural language sentence as the mathematical operators

49

may take the place of the verbs and operands are the substitutes of the nouns.

Formulas and equations follow the standard grammatical rules that apply to words;

therefore, mathematical symbols can correspond to different parts of speech. For

instance, 1+2=3 is a perfectly good complete sentence.

The symbol “=” acts like a verb. Below are a couple more examples of complete

sentences. Further examples may be the expressions 3xy < −2 and 5z ∈ R. On the

other hand, an expression like 2x−10y is not a complete sentence as there is no

verb. Such expressions should be treated as nouns.

The proposed formal language also provides a method for the synthesis of different

mathematical functions. We define the Grammar of the FL as G=(N, T, S, P),

where:

• N is the non-empty, finite set of the non-terminal symbols. Non-

terminal symbols are illustrated with capital letters and can only be

found on the left side

• T is the finite set of the terminal symbols. The symbols that are not

in the non-terminal set, are called terminal symbols or alphabet

50

symbols and they are the symbols that make up the strings in the

language. No rule can be applied to these symbols.

• S stands for the start symbol of the Grammar. This is the special

symbol required for each application of rules to begin the derivation

of strings in the language. Subsequently, the only grammatically

correct strings for a given grammar are the strings that can be derived

by rule applications from the start symbol.

• P is the corpus of the production rules, presented in Section 4.4.

Finite languages are those containing only a finite number of words and they are

regular languages, as one can create a regular expression that is the union of every

word in the language. Every finite set represents a regular language. The purpose

of a regular grammar is to specify how to form grammatically correct strings in the

language the grammar represents. In our system, a regular language is applied for

the generation of syntactically correct mathematical formulas.

The execution of the production rules is a recursive procedure where each non-

terminal symbol is assigned a concatenation of a number of terminal symbols [36].

The execution of a number of the production rules in order to form and output a

51

sentence , is called production. By using the formal language, we focus on the

syntactical aspect of the language, meaning the internal structural patterns of it.

Through every production, a different selection of production rules is made, based

on randomness, which results in a totally different mathematical formula. At this

point of the generation process, it is obvious that the formal grammar generates

sentences that do not make semantic sense, but they are syntactically correct,

following the syntax of mathematics. As a result, the grammar that was developed

is able to generate any sentence, which may or may not have a semantical meaning.

Due to this vagueness of the generated objects, the semantically valid mathematical

formulas are assessed during the second step of the processing. During that layer

of processing, a number of regulations are stipulated, to distinguish the formulas

that have a meaning, from the ones that are not valid and would never appear in

a scientific document.

4.4 Production rules

The set of the production rules describe the way that the words will be arranged

in a sentence and each rule describes the way that the symbols may be replaced.

In our grammar, we aim to generate formulas which may be found in scientific

documents, so, the format of the generated formula will be of type

52

<expression><symbol of relation><expression>. In fact, this is the format to

which our start symbol leads.

1. S -> EXP SIGN EXP

2. EXP -> FACTOR | EXP BINOP FACTOR | NEGOP EXP

3. BINOP -> PLUS | MINUS | TIMES

4. NEGOP -> MINUS

5. SIGN -> EQS | GRS | LSS | GOES | LOES

6. FACTOR -> VAR | NUMBER | PARENTHESIS | FRACTION | SQROOT

| ABS | EXPONENTIAL | FACTORIAL | LIMIT | INTDEF | INTINDEF |

LOGARITHM | LOGNAT | SUMMATION | PRODUCTION | ROOT | SINE |

COSINE | TANGENT | MODULUS | DERIVATIVE

7. VAR -> LETTER | LETTER VAR | BCSL PI | BCSL EPSILON

8. LETTER -> 'a' | 'b'| 'c' |'d' | 'e' | 'f' | 'g' | 'h' | 'i' | 'j' | 'k' | 'l' | 'm' | 'n' |

'o' | 'p' | 'q' | 'r' | 's' | 't' | 'u' | 'v' | 'w' | 'x' | 'y' | 'z'

9. PARENTHESIS -> LP EXP RP

10. FRACTION -> BCSL FRAC LBR EXP RBR LBR EXP RBR

11. ABS -> VB EXP VB

12. ROOT -> BCSL SQRT LSQBR INTEGER RSQBR LBR EXP RBR

13. SQROOT -> BCSL SQRT LBR EXP RBR

14. EXPONENTIAL -> EXP CARET LBR EXP RBR

15. FACTORIAL -> SEPEL EXM

16. INTDEF -> BCSL INT US LBR EXP RBR CARET LBR EXP RBR LBR

EXP RBR DIFF LBR EXP RBR

17. INTINDEF -> BCSL INT LBR EXP RBR DIFF LBR EXP RBR

53

18. LIMIT -> BCSL LIM US LBR EXP BCSL RARROW EXP RBR LBR

EXP RBR

19. SUMMATION -> BCSL SUM US LBR VAR EQS EXP RBR CARET LBR

EXP RBR LBR EXP RBR

20. PRODUCTION -> BCSL PROD US LBR EXP EQS EXP RBR CARET

LBR EXP RBR LBR EXP RBR

21. LOGARITHM -> BCSL LOG US LBR EXP RBR LBR EXP RBR | LOG

LBR EXP RBR

22. LOGNAT -> BCSL LN LBR EXP RBR

23. SINE -> BCSL SIN LBR EXP RBR

24. COSINE -> BCSL COS LBR EXP RBR

25. TANGENT -> BCSL TAN LBR EXP RBR

26. MODULUS -> SEPEL BCSL MOD SEPEL

27. DERIVATIVE -> SEPEL DERS

28. NUMBER -> INTEGER | INTEGER DOT INTEGER | BCSL INFS

29. INTEGER -> NUMERIC | INTEGER NUMERIC

30. NUMERIC -> '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

31. PLUS -> '+'

32. MINUS -> '-'

33. TIMES -> '*'

34. MOD -> 'bmod'

35. LP -> '('

36. RP -> ')'

37. LBR -> '{'

38. RBR -> '}'

54

39. LSQBR -> '['

40. RSQBR -> ']'

41. EQS -> '='

42. GRS -> '>'

43. LSS -> '<'

44. GOES -> '>='

45. LOES -> '<='

46. VB -> '|'

47. EXM -> '!'

48. FRAC -> 'frac'

49. LOG -> 'log'

50. LN -> 'ln'

51. INT -> 'int'

52. CARET-> '^'

53. SQRT -> 'sqrt'

54. LIM -> 'lim'

55. SIN -> 'sin'

56. COS -> 'cos'

57. TAN -> 'tan'

58. SUM -> 'sum'

59. PROD -> 'prod'

60. DERS -> '''

61. DOT -> '.'

62. RARROW -> 'rightarrow'

55

63. US -> '_'

64. DIFF -> 'd'

65. INFS -> 'infty'

66. BCSL -> '\'

67. PI -> 'pi'

68 EPSILON -> 'epsilon'

69. SEPEL -> VAR | PARENTHESIS

Detailed description of production rules introduced above:

1) The very first rule to be defined is the production of the start symbol ‘S’,

which signifies the point at which the generation of the string will begin. At

this point, it is made sure that the format of the formula will be a

mathematical expression related to a second mathematical expression

through a symbol that defines their relationship. The symbol may describe

an equality or inequality between the two expressions, it is indicated as

SIGN in this grammar and is thoroughly described by rule 5.

2) The second rule describes the definition of mathematical expressions: a

mathematical expression consists of mathematical numbers or variables

or a combination of them, using operations such as addition, subtraction,

56

multiplication etc. For a better legibility of the terms in the formal grammar

definition, we define as a factor any mathematical element that can have a

value prior or post calculation. This definition is better described in rule

number 5.

This present rule has a second part on the right side, which also includes the left

part of the rule, which makes it a recursive rule, when existing mathematical

expressions are combined with factors through operations, as mentioned above.

The operators connecting these factors are binary operators that require two

operands for the evaluation. In order to include the negative numbers, rule 4 was

also introduced and is described below. For the formation of a negative number,

the number follows the minus symbol. This rule also takes under consideration

expressions that have a negative sign in the front, as the symbol EXP can indicate

a factor of an expression, which may be a variable, a number or any mathematical

operation.

3) The third rule includes the binary operators that can be found in any

mathematical expression. PLUS, MINUS, and TIMES, stand for the signs

of the addition, subtraction, and multiplication, respectively. The operation

of division is left outside of this category due to the different syntax in the

LATEX format, which assorts it in fractions.

57

4) NEGOP stands for the negation operator and is defined in rule 4 for the

formation of negative values. This the minus sign that is generated by rule

32 further to this rule.

5) This rule contains all the relation signs that can be occurred between any

two expressions, according to rule 1. More specifically, this rule introduces

that the sign connecting two expressions can be among the “equal”, “greater

than”, “less than”, “greater than or equal to” and “less than or equal to” signs,

represented by the symbols EQS, GRS, LSS, GOES and LOES, respectively.

6) FACTOR symbol describes all the different math elements which may occur

in a mathematical expression, including numbers and variable names. The

elements participating in the right part of this production rule represent the

mathematical operations that were listed in Table 5, excluding the first

four operations-which are the binary operations defined in rules number 2

and 3.

• VAR stands for a variable name, which can be a factor of an

expression or stand as a full expression by itself. The definition of

VAR symbol is found in rule 7.

58

• NUMBER represents any umber that is eligible for participating in

a mathematical expression or forming one. The definition of

NUMBER symbol is described in rule 28.

• Parentheses in a mathematical expression are handled as a distinct

entity of an expression which includes some expression in it, despite

the fact that they are not listed as an operation. The description of

symbol PARENTHESIS is defined further in rule 9.

• The rest of the symbols in this production are the mathematical

operations included in the Table 5, with the correspondence of one

symbol per operation.

7) Every variable in a mathematical expression can be named by a letter or

a word-which is a concatenation of letters. Based on this knowledge, rule 7

is defined: each variable, represented by the grammar symbol VAR, is a

letter or letters following one each other in a string. Thus, the first part of

the production is used to represent the one-letter variables, and the second

part to include variables which their names are words. Again, this

production uses recursion to generate and illustrate words formed by letters.

One of the elements of this present production is number pi, which is a

mathematical constant and is represented using Greek letter Pi, or epsilon.

59

8) The letters used in rule 7 for the formation of word variables, but also to

describe variables named after a letter, are provided in this production rule.

The symbol used to describe every each one of these letters is LETTER.

9) As mentioned in rule 6, parentheses are treated as distinct operations in

a mathematical expression, by convention. This is a way to clarify that

inside each pair of parenthesis signs, an expression is found, and so

parenthesis sign pair is expected to be empty. This production rule, when

executed, makes use of rules 35 and 36, where the terminal signs of left and

right parentheses are defined. Additionally, the second argument of this rule

derives from rule 2, where an expression is defined. Therefore, it is clear that

an instance of a parenthesis is formed by the left parenthesis sign, an

expression as the component of the parenthesis, and a right parenthesis sign,

in this order.

10) Because of the LATEX format we are using for the format of the formulas

generated, all the operations described in an expression must follow this

format. For a fraction representation, the symbol string representation in

LATEX is \frac{input1}{input2}, where input1 is the numerator and

input2 is the denominator of the fraction. Subsequently, this production rule

is formed by the concatenation of a backslash (rule 66), symbol of fraction,

60

FRAC (rule 48), left bracket (rule 37), the symbol string of the expression

representing the numerator of the fraction (rule 2), right bracket (rule 38),

left bracket (rule 37), the symbol string of the expression representing the

denominator of the fraction (rule 2), and a right bracket (rule 38). Any

expression (either number, variable, or mathematical operation) may consist

the numerator or the denominator of the fraction, this is why the symbol of

expression (EXP) is used.

11) We use ABS symbol to describe the absolute value of an expression.

Again, the symbol of expression is used to indicate that any expression can

be the interior of an absolute value operation. So, production 11 defines the

absolute value of an expression as the concatenation of two vertical bars

with a symbol string of any expression in between (rule 2). Vertical bar is a

terminal symbol defined in rule 46.

12) Again, based on the LATEX format, a root is described as

\sqrt[degree]{input} so this is the format we will use as well. Based on this,

in rule 12, a square root operation is defined as the concatenation of a

backslash (rule 66), symbol of square root, SQRT (rule 53), left square

bracket (rule 39), an integer symbol (rule 29) as the degree of the root, right

square bracket (rule 40), left bracket (rule 37), the symbol string of the

61

expression representing the inner expression of the root as an expression

(rule 2), and a right bracket (rule 38).

13) In many cases, roots are illustrated missing the degree number. These are

the cases where a square root is presented, and we handle them as a

different operation. The LATEX format of a square root is \sqrt{input}.

Based on this, in rule 13, a square root operation is defined as the

concatenation of a backslash (rule 66), symbol of square root, SQRT (rule

53), left bracket (rule 37), the symbol string of the expression representing

the inner expression of the square root, and a right bracket (rule 38).

14) Powers of values and expressions are described as exponential operations

in rule 14. The expression that forms the base of the exponential may be a

variable name or a number, or even any expression. In the case of an

expression as a base of the exponential, the expression is expected to be

within a parenthesis, as the math notation requires. To make sure that our

grammar complies with this rule, production 69 is used to define the

separate elements that may form the base of an exponential operation.

Whereupon, an exponential component is defined as the concatenation of

the base (rule 69), the caret sign (rule 53), left bracket (rule 37), the symbol

62

string of the expression representing the exponent expression (rule 2), and

a right bracket (rule 38).

15) Factorials are also required to be applied on an expression of a single

number or variable, or an expression which will be demarcated by

parentheses, so instead of using the EXP symbol, we will use the SEPEL

(rule 69) as well. The syntax of a symbol string describing an exponential

operation is a SEPEL symbol (variable or parenthesis) followed by an

exclamation mark symbol (rule 47).

16) For the definite integrals, we introduce production rule 15, where the

arguments required to fully define the integral are given, again, in a specific

order, after the LATEX format. Therefore, the symbol INTFIN, representing

a definite integral operation, consists of the concatenation of the backslash

(rule 66), the symbol of the integral (rule 51),an underscore (rule 63) to

signify the lower bound of the integral, a left bracket (rule 37), the symbol

string of the expression representing the lower bound (rule 2), a right

bracket (rule 38), the caret sign (rule 53) to indicate the upper bound of the

integral, a left bracket (rule 37), the symbol string of the expression

representing the upper bound (rule 2), a right bracket (rule 38), a left

bracket (rule 37), the symbol string of the expression inner the integral

63

operation (rule 2), a right bracket (rule 38) to indicate the end of the inner-

main expression, the letter ‘d’ (as a terminal symbol introduced in rule 64)

used along the differential factor of the integral, and finally, the

differentiator as an expression (rule 2), again within brackets (rules 37 and

38). The above syntax refers to the symbol string \int_{lower bound} ^

{upper bound}{inner expression} d {differentiator} in LATEX.

17) Regarding indefinite integrals, the production follows the same pattern,

with the lower and upper bounds of the integral missing. Therefore, as the

syntax of an indefinite integral is \int{inner expression}d{differentiator} in

LATEX format, this production rule is formed by the concatenation of a

backslash (rule 66), the symbol of the integral (rule 51), a left bracket (rule

37), the symbol string of the inner expression of the integral (rule 2), a right

bracket (rule 38) to indicate the end of the inner-main expression, the

differential symbol, a left bracket (rule 37), the expression inner the integral

operation, a right bracket (rule 38).

18) Rule 18 defines the limits, which in LATEX have the syntax of

\lim_{expression1 \rightarrow expression2}{main expression}, that

describes the limit of the expression “main expression” when expression1

64

“approaches” expression2. Although we could assume that expression1 is a

variable, and expression2 is either a variable or a number(including infinity

symbol), as most limit operations tend to be defined, in the context of the

formality of the grammar, we assign these two expressions as any expression,

not limiting their content to a variables and number. Later, though, we are

going to eliminate elements with high complexity in these argument

positions.

19) Summation operation is formed as the concatenation of the backslash (rule

66), the symbol of the summation, SUM (rule 58),an underscore (rule 63)

to signify the starting point of the summation, a left bracket (rule 37), the

variable symbol based on which, the summation will operate (rule 7), the

equality sign symbol (rule 41), an expression which value will be assigned

initially to the variable (rule 2), a right bracket (rule 38), the caret sign to

indicate the ending point of the operation (rule 53), a left bracket (rule 37),

the symbol string of the expression representing the ending point of the

operation, a right bracket (rule 38), a left bracket (rule 37), the symbol

string of the expression inside the summation, and a right bracket (rule 38)

to indicate the end of the main expression. Again, at this point, and because

of the definition of the context-free grammar we are introducing, any

65

component of a mathematical operation is assigned as mathematical

expression, which makes a set of unlimited terms prospective for any

argument of an operation.

20) On the same base as the summation operation, production operation

requires exactly the same arguments as an input to be completely defined.

Consequently, as the LATEX format of a production operation is

\prod_{variable= expression1}^{expression2}{main expression}, the

execution of rule 20 that defines this present operation will output the

concatenation of the following symbols: the backslash (rule 66), the symbol

of the production, PROD (rule 59),an underscore (rule 63) to signify the

starting point of the production, a left bracket (rule 37), the variable symbol

based on which, the production will operate (rule 7), the equality sign

symbol (rule 41), an expression which value will be assigned initially to the

variable (rule 2), a right bracket (rule 38), the caret sign to indicate the

ending point of the operation (rule 53), a left bracket (rule 37), the symbol

string of the expression representing the ending point of the operation, a

right bracket (rule 38), a left bracket (rule 37), the symbol string of the

expression inside the production, and a right bracket (rule 38) to indicate

the end of the main expression.

66

21) This rule describes the format of the logarithm symbol in our language.

For the complete definition of a logarithm, two arguments are required, the

base of the logarithm and the mathematical expression within the logarithm.

For the formation of the LATEX format of the logarithmic operation, we use

the sequence of a backslash (rule 66), the symbol of the logarithm, LOG

(rule 49), an underscore (rule 63) to signify the base of the logarithm, a left

bracket (rule 37), the symbol string of the expression representing the base

(rule 2), a right bracket (rule 38), a left bracket (rule 37), the symbol string

of the expression inside the logarithm (rule 2), and a right bracket (rule 38).

Alternatively, the logarithm operation may occur without an argument

defining the base. In this case, the syntax is as follows: a backslash (rule

66), the symbol of the logarithm, LOG (rule 49), a left bracket (rule 37),

the symbol string of the expression inside the logarithm (rule 2), and a right

bracket (rule 38). The occurrences where the base is not provided refer to

cases in which no confusion is possible, because of the context given, or in

cases where the argument of the base does not matter.

22) For the natural logarithm , the LATEX format for its representation is

\ln{expression}, so we define it as the concatenation of a backslash (rule

66), the symbol of the natural logarithm, LN (rule 50), a left bracket (rule

67

37), the symbol string of the expression inside the natural logarithm (rule

2), and a right bracket (rule 38).

23) Rule 23 explains the production of the trigonometric operation of sine. In

LATEX format, sine is represented as a backslash followed by the ‘sin’, which

is followed by the operation, which sine is to be evaluated, in brackets.

Therefore, our symbol representation is the concatenation of the symbols of

a backslash (rule 66), the symbol of the sine operation, SIN (rule 55), a left

bracket (rule 37), the symbol string of the expression inside the sine

operation (rule 2), and a right bracket (rule 38).

24) Identically to sine operation, cosine has the same syntax, which makes rule

24 to generate a word consisting of a backslash (rule 66), the symbol of the

cosine operation, COS (rule 56), a left bracket (rule 37), the symbol string

of the expression inside the cosine operation (rule 2), and a right bracket

(rule 38).

25) Similarly to the previously introduced trigonometric operations, tangent is

described in rule 25, where its LATEX format is \tan{expression}. This

production rule, therefore, defines the word of the tangent as the sequence

of a backslash (rule 66), the symbol of the tangent operation, TAN (rule

68

57), a left bracket (rule 37), the symbol string of the expression inside the

tangent operation (rule 2), and a right bracket (rule 38).

26) Binary operator modulus in our grammar is introduced as a distinct

mathematical operator, rather than including it in the rule of binary

operators (rule 3). Two expressions (in this case, we assume that the two

arguments of the modulus operation may be variables or expressions within

parentheses, so that the expression’s component is delimited by the

parenthesis signs) are connected, with the modulus symbol (defined in rule

34) between them. This concatenation forms a symbol string describing the

modulus operation between two expressions.

27) First order derivatives of expressions are described by the expression

followed by an apostrophe, which is the exact same syntax used in LATEX.

In rule 27, the syntax of a first order derivative of an expression (symbol

EXP) is described as the sequence of a separate element symbol (SEPEL),

describing a variable or an expression in a parenthesis, followed by an

apostrophe.

28) To fully define a number as a quantity in our formal language, we define

rule 28 which defines mathematical quantities in a more abstract way, as it

69

includes numeric values but also the infinity sign. Therefore, the NUMBER

symbol incorporates integer and real numbers (composed of integer numbers

split by a dot, to define the integer from the decimal part of the number),

and the infinity symbol.

• INTEGER : this symbol is described in rule 29 and defines any

integer type of a value participating in the formula.

• INTEGER DOT INTEGER : this sequence of symbols describes a

real number, where the integer part constitutes of an integer symbol

(defined in rule 29), followed by a decimal separator (the DOT

symbol defined in rule 61 standing for the decimal point), and, again,

an integer symbol that will now stand for the fractional part of the

number.

• BCSL INFS : for the representation of the infinity symbol, the LATE

X format requires a backslash followed by ‘infty’ which is a keyword

for the infinity symbol. The terminal symbol ‘infty’ is given by rule

65 for the symbol INFS (standing for infinity symbol).

29) This rule is a recursive production of an integer number, where an integer

may be any one-digit number represented by a numeric symbol (0-9), as

70

designated in rule 30, or a concatenation of numeric symbols with an integer,

for the representation of integers of two or more digits.

The terminal symbols introduced in rules 30-67 are the letters forming the words

of the language we introduce. Consequently, every word that may occur in a

sentence of this formal language must be a concatenation of the terminal symbols

described above.

4.5 Example

After every execution of the formal grammar using the production rules, the output

is a new mathematical formula in a LATEX format. For a better understanding of

the previously introduced grammar rules, we present an example of a randomly

generated mathematical formula symbol string along with its optical representation

and the tree illustrating the production rules executed for the generation of the

formula. The term randomly in this case indicates that any random combination

of the introduced production rules will result to a well-formed mathematical

expression. The randomly generated mathematical formula, making use of the

formal grammar introduced above, is:

71

j > \frac{ 3 ^{ z } }{ | c | }

and when this symbol string is compiled through LATEX, the output is the optical

representation of the formula, which is:

j >
3z

|c|

This output is a result of a sequential execution of production rules of our grammar,

which is initiated by the execution of the production of the start symbol S, and for

every non-terminal symbol of the grammar, the execution moves forward until a

terminal symbol is reached and is mounted on the sentence as a word. The image

below shows the execution tree whose leaves are the words of the generated

sentence in our language. The final form of the sentence is a concatenation of all

the leaves of the tree (which are the terminal symbols), from left to right.

At this point of our work, it is vital to mention that the manual execution of the

production rules can output to any possible mathematical formula, though, when

executed in an application, the loop of the execution can go under a big number of

recursions, which is a problem that can cause issues considering the memory usage.

72

Figure 13 - The tree representation of the execution of the production

rules that output the symbol string j > \frac{ 3 ^{ z } }{ | c | }. The

execution terminates when all the symbols in the symbol string are

lowercase, indicating that they are all terminal symbols. Similarly, to

the presented example, more complex MF can be formed.

4.6 Syntactical and Logical Restrictions

Each generated mathematical formula is based on the execution of the production

rules making our grammar. The grammar is a tool that ensures that the outcome

of the rule execution will be a syntactically valid sentence, which in our case is

going to be a mathematical formula, taking no notice of the semantical correctness

of it. Consequently, it is not necessary that the newly formed formula will combine

73

mathematical elements that their associations will make sense. The generated

formula is forwarded to a second layer of processing. During this second step, every

formula which was generated using the formal grammar undergoes a set of checks.

There are several rules to define the validity of the generated formulas in terms of

semantics and syntactical optimization. The checks that the formula goes under

are in a form of constrains that describe any mathematical formula found in a

scientific document in the field of engineering. By this, it is clarified that formulas

describing theoretical mathematics are out of our area of interest.

The checks are critical because they aim to preserve the integrity of the formula

regarding the syntax of it, and they are presented as restrictions on the formulas:

• Syntactical restrictions

The restrictions that try to eliminate the redundant notation which was caused by

the grammar rules and does not supply any additional functionality to the elements

of the formula. Table 6 illustrates the different cases where excess notation was

detected in the formula, and representative examples are provided.

• Logical restrictions

These restrictions deal with undefined forms of mathematical expressions and

indeterminate forms and values in the formulas that when found in specific

74

positions in the formula, the formula does not make sense. Logical restrictions are

presented in Table 7, along with examples that embody each distinct case.

Syntactical Restrictions

Restr. No Description example 1 example 2

S1 Redundant parentheses

|(x-1)|

S2 Double parentheses ((x-y))

S3 Double absolute value signs ||x-y||

Table 6 - The syntactical restrictions in a

generated formula.

Logical Restrictions

Restr. No Description Example 1 Example 2

L1 Low border greater than high border ∫
x3-2

x!
dx

1

4

L2

Variable in differential not in

function of integral

∫
x3-2

x!
dy

1

4

𝑦 > (
𝑥

3!
)

75

L3

Variable in start value not in

argument of summation

∑
αk

2

10

n=1

L4

Starting point in summation greater

than upper limit

∑ αk

2

n=10

L5

Variable of limit "approaching" a

value not in the function of the limit

lim
x→0

y-1

y + 1

L6 False inequality 3 < 1 4 = 9

L7

Square root principal: value inside

the root must be non-negative

√-2

L8

Logarithm principal: value inside the

logarithm must be positive

log(-7) log(0)

L9

Logarithm principal: value inside the

natural logarithm must be positive

ln(-2) ln(0)

L10 Indeterminate forms ∞ + (-∞) 0*(∞)

L11 Undefined forms
0

0

x

0

76

L12 Indeterminate forms
∞

0

∞

∞

L13 Indeterminate forms 1∞ ∞0

Table 7 - The logical restrictions in a generated

formula.

In the case that a syntactical restriction is detected in the generated formula, term

which violates the restriction may be modified, and the generated formula may

process to the next step of the procedure. When a logical restriction is occurred,

the formula is considered invalid, and is rejected – will not be taken under

consideration for further processing.

Let us consider an example of a generated mathematical formula such as

y = ∫
1

|k−2|
dy

k

0

. (2.1)

We can see that this formula is syntactically correct. The variable of the differential

of the integral (element y), though, does not occur in the inner function of the

integral, which does not make sense for an integral declaration. This is also what

rule L2 indicates, making the formula invalid. As a result, this generated formula

is going to be rejected.

77

For a second example, we have the formula 2.2 below, which also includes an

integral. In this example, there are many restrictions violated.

a = ∫
1

|(k−2)|
dx

3

99

 (2.2)

According to S1, the denominator of the function inside the integral has redundant

parenthesis, which, if missing, the context of the formula would not be affected.

Logical restrictions are eligible to transform the formula to a more simplified one,

rejecting redundant elements inside the formula. After processing the formula 2.2,

applying the rule S1, the unneeded set of parentheses will be removed, so the

formula will turn into 2.3.

a = ∫
1

|k−2|
dx

3

99

 (2.3)

There are no further syntactical restraints to be violated in this example, so we

will now check the logical restrictions. Regarding the logical restrictions, there are

L1 and L2 to be infringed. When logical rules are violated, the generated formula

may not be transformed to a valid one, and it simply gets rejected. Therefore, for

the execution of the syntactical and logical rules, we will initially check for the

logical restraints in a formula. In the case that there is no violation of them, the

execution may proceed to the check of the syntactical restraints, otherwise, the

formula will be rejected directly.

78

4.7 Generated Formulas

In this section, we present examples of formulas that were generated by the

execution of the production rules. Each generated sentence of the formal language

is formed by symbols that form the encoding of a mathematical expression in LAT

EX, and the optical representation of the formulas is also provided. The examples

are collected in Table 8.

Generated formula visualized in LATEX Valid

Yes

Yes

No

Yes

No

No

79

5. Detecting and Recognizing of Pseudo-Algorithms in

Scientific Documents and SPN representation

5.1 Introduction

Technical documents are formed by several modalities including plain text,

diagrams, tables, algorithms, images etc. Algorithms have a significant place in

technical documents not limited in publications in the field of computer science

and software engineering, but moving further to computer vision, bioinformatics

etc. In this work we present the extraction and recognition of algorithms and their

No

No

Table 8 – In this table we present examples of randomly generated

mathematical formulas and evaluate their logical validity according to the rules

presented above. Any generated formula will be rejected as invalid if one or

more occurrence of constraints from Table 7 is applied to the formula.

80

components in scientific technical documents. The intend here is the processing of

any image illustrating a page of a technical document to detect any algorithmic

component inside the image and analyze it for understanding purposes. In other

words we aim to detect algorithmic components in an image of a technical

document based on their structural features in the text and represent them in a

Stochastic Petri-net form for evaluating its functional behavior. The process is

divided into two different processing parts. The first one is the detection and the

extraction of the algorithmic components in a document and the second one is the

translation of it into a graph and its SPN representation. Specifically, the first part

consists of two steps; the first one is the detection of the sections of the document

that describe the algorithm. In the second step we perform image processing so we

can extract information about the component of it and proceed to the recognition

of the algorithm. Finally, in the second part, the generation of the graph for the

algorithm and its SPN mapping is described in an effort to express the algorithm

first level functional associations.

81

5.2 Optical Detection of Pseudo-codes in Documents

5.2.1 Extraction of different text blocks in documents

It is always an interesting idea to follow a recognition process that attempts to

simulate the way the human brain interprets the algorithmic components in the

documents. Thus, here we attempt to follow such an approach that attempts to

emulate the detection and recognition of pseudo algorithms in technical documents

at a high level of representation. The first step towards this simulation is the

extraction of the distinct components in the document, so that we can then

recognize whether each component describes an algorithm in it, or not. This process

is part of the pre-processing of the input document, as the images representing the

entire technical document will undergo different layers of modifications. These

images are further segmented into blocks to be examined for algorithmic

components. Thus, a pyramidal reduction scheme methodology can be used for the

recognition and extraction of the various components of the document. According

to this methodology, the image is subject to repeated smoothing and subsampling

until we reach a point to which the individual structural parts of the image are

distinguished [37]. For this purpose, a variety of different smoothing kernels may

be used, mainly changing depending on the size of the font used in the text found

in the document. Thus, here for the simulation of the pyramidal reduction, and in

82

order to maintain all the information of the initial image, we simulate the result of

a higher level of the pyramid using dilation. Dilation is one of the morphological

transformations used on binary images where a kernel is used and based on its size,

the area of the objects in the binary image increases. This way, the larger the

dimensions of the kernel, the more the area that will be merged and included in a

distinct block. After multiple tests on sample documents and based on the IEEE

Standards which require normal text to be single-spaced in 10-point font, the kernel

which would output the most accurate recognition results was a 7x6 sized kernel.

This size of the kernel is large enough to ensure that the extracted blocks will not

be one-word text blocks, but will contain sets of words, and at the same time it

must be small enough not to perceive the whole document as a single block. Ideally,

this size of kernel will return the input image split in blocks, where each block will

represent the title, or a paragraph, a sequence of paragraphs, an image, or an

algorithm etc.

5.2.2 Pyramidal image representation

A pyramid is a multi-scale image representation which is used for the detection of

objects in images using different scales [38]. During this representation, the input

image at its original size is located at the bottom of the pyramid, and in each next

83

layer, the image of the previous layer is resized and smoothed using Gaussian

blurring. Each image is progressively subsampled until it has reached a size

(minimum size), where no further resizing is needed.

In the following images we can see the different layers produced through the

pyramidal process. While moving towards the higher layers, it is notable that,

although the details of the image are not available, there is additional information

about the structure of the elements in the image, such as the number of text blocks

existing in the input image in forms of headlines, paragraphs or pseudo-algorithm

blocks [39].

84

Image 1 - Example of input image as .jpg format

(2550x3300)

85

Image 2 - Different levels of text structure extraction after

pyramidal transformation of input image

86

In order to achieve these results while still being capable of extracting information

of the image component by using the morphological transformation of dilation. It

is performed on greyscale images, and it preserves the shape of elements in the

image, using a structuring element and a kernel for the transformation operation.

Through dilation, the area of an element found in the input image is enlarged by

gradually increasing the boundaries of the regions of the foreground pixels.

Image 3 - Page Dilation Example: Input Image

87

Image 4 - Page Dilation Example: Dilated image

with a 4x4 kernel

Image 5 - Page Dilation Example: Dilated image

with an 8x11 kernel

88

Image 6 - Page Dilation Example: Input image

after frame removal

Image 7 - Page Dilation Example: Dilated image

with a 4x4 kernel after frame removal

89

Image 8 - Page Dilation Example: Dilated image

with a 4x4 kernel after frame removal

Note that, based on the IEEE Standards that are followed in the published

scientific documents we process and adjust the kernel of the dilation process

accordingly, so that we detect text paragraphs as text blocks rather than word

blocks (in this case, kernel size would have to be smaller).

90

5.2.3 Decomposition and classification of the pseudo code

sections

Following the pre-processing of an input image representing a document page, we

have now obtained a set of rectangular blocks, in form of images, with each block

representing a distinct element of the document. The main goal is to examine each

of these blocks, using image processing techniques, and make decisions on whether

they include algorithmic components. After a series of examples, we have identified

four attributes which may indicate the given image describes algorithmic

component. These four attributes are the text structural definition represented by

the indents in the text, the number of specific keywords found in the text, the

occurrence of pairs of certain keywords which may indicate loops, and percentage

of the image area occupied by text.

5.2.4 Attributes used in the decision making

For each extracted block, four different features are evaluated for the identification

of the block component as algorithmic: 1) the number of the indents in every line

of the text appearing in the block, 2) the number of the keywords detected in the

text of the block, 3) the aligned pairs of specific keywords that indicates beginning

91

and end of loops or selection branches, and 4) the amount of the area in the block

which is not occupied by text.

1. Indents in text

Algorithms are usually distinguished by human eye easily because of the structure

of the text forming it, which is something that differentiates algorithms from plain

text in paragraphs of technical documents. It is ordinary for a text paragraph that

almost all of the text lines in it to begin at the leftmost point of the line, with the

exception of the first line which formally includes an indent. In contrast to plain

text components, algorithmic components, in a great number of cases, use indents

at the very beginning of the lines to signify, along with the keywords, the levels of

the execution and make the set of the algorithm commands more readable and

maintainable. For the system to detect the number of the indents in the text of

the block, the extracted text block is again dilated over a new kernel, which is now

able to detect the structure of the text according to the higher size of the font in

the text of the image. Following this and starting from the leftmost and topmost

point of the image, when an indent is detected, it is considered the first level of

nesting of the command component.

92

Image 9 - Text structure shape

indicates algorithm

Image 10 - Text structure shape

indicates plain text in paragraph

form

Accordingly, for each subsequent indent occurred, which will start towards to the

right side of the previously detected indent (this is the case where the x coordinate

of the detected pixel on the image will be higher than the x coordinate of the last

level of nesting), the level of the nesting will be increasing by one. Finally, the

number of the maximum level of nesting in the text will be kept as the feature

describing the indents of the text in the image block.

Usually, blocks with maximum number of indents equal to one will not be

considered to be algorithms, while blocks with a maximum number of indents being

higher of one will have a higher probability to represent an algorithm.

93

Figure 14 - In the images above we see the extracted block after the intensity inversion

where the white areas represent the text detected in the block while the black areas

represent empty areas. In the left one we distinct the first level of loop nesting while in

the one on the right we have proceeded gradually to all three levels of loop nesting.

2. Keywords

Another feature that contributes to the identification of a text as an algorithm, is

the number of keywords that may be found in it. Each different programming

operation is identified by a keyword, which is universal, especially for the case of

94

pseudo-algorithms, where not a specific programming language is used, thus there

are no limitations on the syntax. For example, loops are usually described through

the keywords ‘while’ and ‘for’, which describe the ‘while loop’ and ‘for loop’,

respectively. In the same context, there are keywords like ‘if’, ‘then’, ‘function’,

‘end’, ‘input’, ‘output’, etc. that may also describe algorithmic operations, but are

also very likely to appear in plain text components. Finally, the keyword ‘return’

is largely found in function declarations or other algorithm components and can be

used in the detection of an algorithm. For the extraction of the keywords in each

block, we applied OCR methods where all the words of each text line were

recognized.

3. Aligned pairs of keywords

Following the detection of specific keywords that are very often found in algorithms

and describe specific algorithmic operations, we move one step forward and we aim

to recognize pairs of keywords which are strongly connected to each other, and

which are expected to be found one below the other in the algorithm. These sets

of keywords usually indicate the start and end of a loop or a branch, or even the

opening and closing of a method e.g. {‘for’,’endfor’}, {‘if’,’else’}, {‘else’,’endif’} etc.

For the detection of this kind of sets, following the detection of the keywords which

are to be examined, the position on the image of these keywords is also kept and

95

compared to the rest of the keywords, towards the y coordinate of them. We have

also set a small threshold for the deviation of these words in the x axis, for error

purposes.

4. Amount of text occupied in image block

It is very ordinary for a text paragraph the text component to dominate towards

the empty space in a text image. In order to have a measure for the amount that

the lines of the text occupy in the mage, we will take under consideration the

percentage of the x coordinates for which an imaginative line x=x0 is more than

80% full of “black” (text). Following this process, in cases of text paragraphs, this

percentage is going to be higher than 90%, while in algorithms, it will hardly exceed

50%. The following examples will give a better idea of the concept.

Two images in original and dilated form. On the upper one, the percentage of

columns of pixels that are more than 80% full of text is 93, while on the lower

example we see this percentage being 40%, giving a greater chance to describe an

algorithm. Finally, after taking under consideration the evaluation of these four

attributes, our system gives out the decision of whether the block contains an

algorithm or not. This is a rule based approach as we have set specific values as

thresholds for the classification process.

96

5.2.5 Learning

As a next step on the recognition of algorithms in published technical documents,

we used a machine learning technique, in addition to our previously introduced

rule-based approach, in order to improve the accuracy of the detection of the

algorithms-pseudocodes from an input document image. For the prediction process,

a logistic regression model was used, which is one of the simplest and commonly

used Machine Learning algorithms [39]. This is a useful classification method

mainly for solving a binary classification problem such ours, where we get to decide

whether an input image is a description of an algorithm or not. Logistic regression

is a statistical method for predicting binary classes. The outcome or target variable

is dichotomous in nature.

After the dilation of the input image and the extraction of the several text blocks

in the image, a logistic regression model is built, which based on specific features,

will predict whether a text block contains an algorithmic component or not. The

features used for the model to be trained and tested are the four attributes used in

the rule-based classification process: the number of the indents in the text block,

the number of keywords found, the count of the aligned pairs of keywords and the

percentage of the text in the block image area. In this approach we included an

extra feature representing the number of the pairs of the keywords regardless of

97

their placement in the text, in order to check for unstructured text of algorithmic

nature.

Logistic Regression is a special case of linear regression where the target variable

is categorical in nature. It uses a log of odds as the dependent variable. Logistic

Regression predicts the probability of occurrence of a binary event utilizing a logit

function.

The equation of the linear regression, where Yi represents the dependent variable

and Xi represents the independent variable, f stands for the function, and β stands

for the unknown parameters.

After the application of the Sigmoid function on linear regression (p=1/1+e-y), this

is the logistic regression function which describes our model.

Properties of Logistic Regression:

• The dependent variable in logistic regression follows Bernoulli Distribution.

• Estimation is done through maximum likelihood.

98

• No R Square, Model fitness is calculated through Concordance, KS-

Statistics.

The Dataset

A number of 213 images were collected and processed to form our dataset. Each of

the image input was an image representing a pdf page from a technical document,

mainly in a two-column format. Each of the input images was preprocessed and

gone through the pyramidal process in order to produce the several blocks which

would be evaluated for the detection of algorithmic component. After the

preprocessing, these collected pdf images in a .jpg format would give almost 3000

block elements for our dataset.

As an example of how the input images will be split into several blocks, the table

below describes the several image blocks extracted from the following image:

99

1

2

3

4

Image 11 – Example of input image

100

5

6

7

8

Table 9 - The several image parts extracted from an image through dilation. Each

individual image part is a new image in the dataset

Evaluation of learning process

For the evaluation process of the model performance and our features effectiveness,

our dataset is divided into a training set and a test set. A number of experiments

took place, with different ratios of data splitting, 70%-30%, and 80%-20% and 90%-

10% following the Stratified cross validation technique.

The metrics of our model on the specific features returns an accuracy of 0.99, while

the precision was the absolute 1 and the metric of recall equal to 0.88. Overall

metric is the F1 score, which was calculated at 0.94, implying a satisfying model

101

for our predictions. The metric of the area under the ROC curve is 0.997 which

also verifies the model promising results.

Image 12 - Output metrics of accuracy, precision, recall, F1 score and area

under the curve.

102

Figure 15 - Receiver Operating Characteristic(ROC) curve is a plot of the true positive

rate against the false positive rate. It shows the tradeoff between sensitivity and

specificity. AUC of 1 shows the ability to identify all true positives while avoiding false

positives. Applying a learning process in our system is highly promising as the

system will be able to recognize algorithmic components in the image which are

not easily distinguished to be pseudo-algorithms.

5.3 Translation of algorithms to graphs and SPN

5.3.1 Generation of graph

After the recognition of any image block as an algorithm, we move towards the

analysis of the algorithmic component. For the part of the understanding of the

algorithm, we aim to extract the pseudo-algorithm text and, based on the structure

of it, generate a structural graph which represents the flow of the pseudocode steps

103

execution. This is an automated procedure that will make use of previously used

techniques which will now have different contribution to the system process.

For the process of the translation of an image with algorithmic content into a

structural graph, the image will first get analyzed in a structural level, where the

distinct lines of text will be detected and the upper and lower bound of each line

will be kept and visualized with blue and green color, respectively.

The name of the keyword initiating each line, along with the number of the nesting

level will be the two factors which make the decision for the potential splitting of

the algorithm in an additional branch. This results to some lines forming a branch

by themselves, while other lines getting merged and encapsulated in a single

branch.

Image 13 - Input block with algorithmic

components detected input to the process of

graph representation

104

Image 14 - Detected text lines and their borders

in input image block

Image 15 - Algorithm lines processed, assigned to

branches, and some are grouped as a single

branch

105

For every line, the first word detected in it is assigned to be the command-word,

the keyword which represents the type of the command that is running in this

specific line.

During the process of the analysis of the text component in a block of an algorithm,

the placements of the command-word are evaluated for

• the decision of each line-command to be assigned to a new branch or an

existing one, and

• the next line-command that will be executed if we described the steps of the

algorithms with a flow chart diagram.

The process of assigning line-commands to branches and enumerating them,

followed by the process of detecting the order of the line-commands during the

execution process is presented in the next flow chart diagram.

106

Figure 16 - Detected algorithm is translated to a graph representation in the form of a

flow chart graph. Each number corresponds to a numbered pseudo-code block as

presented above. Branches with line-commands where a condition is checked to be

true or false in order the execution to move on accordingly, are represented with the

diamond shapes. In this representation, evaluation of True is depicted with the ‘yes’,

while False statements in conditions are described with ‘no’. The rest of the branches

are illustrated with rectangles.

107

5.3.2 Stochastic Petri N et Representation

The main purpose for this work is the translation of an image illustrating an

algorithm into a Stochastic Petri Net representation, which is the final step of the

system’s process. This step takes place after the graph representation as it enhances

the structural representation offered by a graph with the functional information

(timing and synchronization) of the translated component.

Every line-command, in order to be executed needs to have the token which will

cause the transition to fire. In cases of branches with conditions, the evaluation of

the condition will give or not the token to the place representing the branch in

order for it to be executed and move to the transition.

In our representation, the circles represent the places, and the rectangular

shapes represent the transitions.

Linear execution of commands

For the commands of the algorithm that follow a linear execution, the sample SPN

is presented below. In this example illustrated in the image below, the branches 7

108

and 8 will execute linearly, one after the other, and the transition will fire when

the evaluation of the commands in branch 7 is complete.

Figure 17 - Linear execution of command in SPN

Non-linear command execution

In cases of for loops, repetitions, branches such as if statements, steps, and

switching cases, the execution of one line-command does not necessarily ensure the

execution of the next in line branch. This is where the direction of the execution

depends on the validity of the condition in the command-keyword of the branch.

In the following example, we present the execution of a for loop, where the

command lines nested in the loop will get executed only while the condition checked

109

in branch is true. For this purpose, for the conditions detected after the command-

keywords, a new place is created in order to check exclusively the veracity of the

condition.

Figure 18 - Branch 2 represents a for loop and branch 2check contains the check of the

value of the variable to be within limits in order for the execution of the loop to

continue. While this check returns True, the Evaluate2check transition will get fired

and the execution will proceed with branch 3. Otherwise, Evaluate2_ will fire and the

execution will move forward with the commands in branch 10.

110

According to the two previously described examples, the generated SPN of the

image translated to the flow chart diagram above is presented below. The execution

begins at the place with the name Start and finishes at the place which does not

point to any transaction - in our case this is place 10.

Figure 19 - Segregation of commands or set of

commands that belong in a loop

111

Figure 20 - SPN representation of a complete

algorithmic component in a document

112

6. Conclusion and Future Work

In this thesis, we introduced a methodology to parse and recognizing mathematical

formulas in LATEX format. A rule-based methodology to parse and understand a

mathematical formula is introduced and our purpose is to translate it to an SPN

representation by first converting it to an attribute graph representation. As an

additional functionality to our parsing methodology, we utilized a formal language

to be able to create new randomly generated mathematical formulas as an input

for parsing and also to provide syntactical evaluation to the detected formulas. As

numerous research efforts in the field of mathematical formulas processing have

taken place through times, our effort was focused on the parsing of mathematical

formulas with the aim of converting them into an SPN state machine, which

provides, not only structural information, but also functional information such as

timing and synchronization.

As the main contribution of this work, we implemented a system to automatically

parse technical documents in order to detect algorithmic component. The presented

113

hybrid approach offers good satisfying results from the prediction model and which

makes it a unique successful methodology as a methodology to handle algorithms

from a computer vision perspective. In addition, the SPN representation of the

detected algorithms enhances the understanding of the machine towards the

analysis of technical documents containing pseudo-algorithms and at the same time

offers a different approach towards its functional implementation.

For future work, further extensions of the document pseudo algorithm can be made

by converting math formulas included in pseudo algorithms into SPNs and

comparing the outcomes. For example, semantical analysis and interpretation of

mathematical formulas can be studied and incorporated into the initial algorithm.

Finally, additional applications of the algorithmic component analysis methodology

can be explored.

114

REFERENCES

[1] N. Bourbakis, "Converting Diagrams, Formulas, Tables, Graphics and Pictures into SPN
and NL-text Sentences for Automatic Deep Understanding of Technical
Documents," in 2017 IEEE 29th International Conference on Tools with Artificial Intelligence
(ICTAI), Boston, MA, 2017.

[2] A. Angeleas, N. Bourbakis and G. Tsihrintzis, "Categorization of research surveys and
reviews on human activities," in 2016 7th International Conference on Information,
Intelligence, Systems & Applications (IISA), Chalkidiki, 2016.

[3] K.-f. Chan and D.-Y. Yeung, "Mathematical Expression Recognition: A Survey,"
International Journal on Document Analysis and Recognition, vol. 3, 2001.

[4] R. Zanibbi and D. Blostein, "Recognition and retrieval of mathematical expressions,"
International Journal on Document Analysis and Recognition (IJDAR), vol. 15, p. 331–357,
2012.

[5] S. Manganas and N. Bourbakis, "A Comparative Survey on Simultaneous EEG-fMRI
Methodologies," in 2017 IEEE 17th International Conference on Bioinformatics and
Bioengineering (BIBE), Washington, DC, 2017.

[6] R. Anderson, "Syntax-directed recognition of hand-printed two-dimensional
mathematics," Interactive Systems for Experimental Applied Mathematics, pp. 436-459, 1968.

[7] K. Chan and D. Yeung, "Towards efficient structural analysis of mathematical
expressions," in Advances in Pattern Recognition. SSPR /SPR 1998. Lecture Notes in
Computer Science, 1998.

[8] K.-F. Chan and D.-Y. Yeung, "PenCalc: a novel application of on-line mathematical
expression recognition technology," in Proceedings of Sixth International Conference on
Document Analysis and Recognition, Seattle, WA, USA, 2001.

[9] J. Toumit, S. Garcia-Salicetti and H. Emptoz, "A hierarchical and recursive model of
mathematical expressions for automatic reading of mathematical documents," in
Proceedings of the Fifth International Conference on Document Analysis and Recognition. ICDAR
'99 (Cat. No.PR00318), Bangalore, India, 1999.

[10] Y. Chen, T. Shimizu and M. Okada, "Fundamental study on structural understanding of
mathematical expressions," 1999 IEEE International Conference on Systems, Man,
and Cybernetics (Cat. No.99CH37028), Tokyo, Japan, 1999.

[11] Y. Chen, T. Shimizu, K. Yamauchi and M. Okada, "Ambiguous problem investigation in
off-line mathematical expression understanding," in 2000 IEEE International Conference
on Systems, Man and Cybernetics.

[12] J.-M. Jin, Z. Han and Q.-R. Wang, "Typeset mathematical expression analysis," in
Proceedings of International Conference on Machine Learning and Cybernetics, Beijing, China,
2002.

115

[13] S. Toyota, S. Uchida and M. Suzuki, "Structural Analysis of Mathematical Formulae with
Verification Based on Formula Description Grammar," Document Analysis Systems VII.
DAS 2006. Lecture Notes in Computer Science, vol. 3872, 2006.

[14] S. Lavirotte and L. Pottier, "Mathematical formula recognition using graph grammar," in
Proc SPIE. 3305., 1998.

[15] B. Chaudhuri and U. Garain, "An Approach for Recognition and Interpretation of
Mathematical Expressions in Printed Document," Pattern Analysis & Applications, no.
3, p. 120–131, 2000.

[16] U. Garain and B. Chaudhuri, "A syntactic approach for processing mathematical
expressions in printed documents," in Proceedings 15th International Conference on Pattern
Recognition. ICPR-2000, Barcelona, Spain, 2000.

[17] Y. Guo, L. Huang, C. Liu and X. Jiang, "An Automatic Mathematical Expression
Understanding System," in Ninth International Conference on Document Analysis and
Recognition (ICDAR 2007), Parana, 2007.

[18] R. Fateman and T. Tokuyasu, "Progress in recognizing typeset mathematics," San Jose,
CA, 1996.

[19] R. Fateman, T. Tokuyasu, B. Berman and N. Mitchell, "Optical character recognition and
parsing of typeset mathematics," Journal of Visual Communication and Image
Representation, vol. 7, no. 1, pp. 2-15, 1996.

[20] R. Zanibbi, D. Blostein and J. R. Cordy, "Recognizing mathematical expressions using
tree transformation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
24, no. 11, pp. 1455-1467, 2002.

[21] "Lexical analysis - Wikipedia, the free encyclopedia," 19 Sept 2021. [Online]. Available:
https://en.wikipedia.org/wiki/Lexical_analysis. [Accessed 19 Sept 2021].

[22] Y. Takiguchi, M. Okada and Y. Miyake, "A fundamental study of output translation from
layout recognition and semantic understanding system for mathematical formulae," in
Eighth International Conference on Document Analysis and Recognition (ICDAR'05), Seoul,
South Korea, 2005.

[23] D. Knuth, "Estimating the Efficiency of Backtrack Programs," Mathematics of Computation,
vol. 29, no. 129, pp. 121-136, Jan. 1975.

[24] N. Bourbakis and S. J. Mertoguno, "A Holistic Approach for Automatic Deep
Understanding and Protection of Technical Documents," Int. Journal on AI Tools, vol.
29, 2020.

[25] E. E. Kostalia, E. G. M. Petrakis and N. Bourbakis, "Evaluating Methods for the Parsing
and Understanding of Mathematical Formulas in Technical Documents," in 2020
IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), 2020.

[26] M. Mahdavi, M. Condon, K. Davila and R. Zanibbi, "LPGA: Line-of-Sight Parsing with
Graph-Based Attention for Math Formula Recognition," 2019.

116

[27] Advances in Pattern Recognition: Joint IAPR International Workshops, SSPR'98 and
SPR'98, Sydney, Australia, August 11-13, 1998, Proceedings.

[28] H.-J. Lee and M.-C. Lee, "Understanding mathematical expressions using procedure-
oriented transformation," Pattern Recognition, vol. 27, no. 3, pp. 447-457, March 1994.

[29] "Petri net - Wikipedia, the free encyclopedia," 20 April 2021. [Online]. Available:
https://en.wikipedia.org/wiki/Petri_net. [Accessed 20 April 2021].

[30] "Petri Nets," Online, 20 April 2021. [Online]. Available:
http://www.techfak.unibielefeld.de/~mchen/BioPNML/Intro/pnfaq.html.
[Accessed 20 April 2021].

[31] A. Psarologou and N. Bourbakis, "Glossa - A Formal Language as a Mapping
Mechanism NL Sentences into SPN State Machine for Actions/Events Association,"
International Journal on Artificial Intelligence Tools, vol. 26, 2017.

[32] J. Wang, "Petri nets for dynamic event-driven system modeling," in Handb. Dyn. Syst.
Model., 2007, pp. 1-17.

[33] F. Pommereau, "SNAKES: A flexible high-level Petri nets library," in International
Conference on Applications and Theory of Petri Nets and Concurrency, 2015.

[34] [Online]. Available: https://www.latex-project.org.

[35] N. Chomsky, "Three Models for the Description of Language," IRE Transactions on
Information Theory, vol. 2, no. 3, pp. 113-124, 1956.

[36] A. Psarologou and N. Bourbakis, "Glossa: A Formal Language as a Mapping Mechanism
NL Sentences into SPN State Machine for Actions/Events Association," International
Journal of Artificial Intelligence Tools, vol. 26, no. 2, 2017.

[37] N. Bourbakis and A. Klinger, "Hierarchical Picture Coding Scheme," Pattern Recognition,
vol. 22, no. 3, pp. 317-329, 1989.

[38] R. Keefer and N. Bourbakis, "Interaction with a Mobile Reader for the Visually
Impaired," in 2009 21st IEEE International Conference on Tools with Artificial Intelligence,
Newark, NJ, 2009.

[39] J. Peng, K. Lee and G. Ingersoll, "An Introduction to Logistic Regression Analysis and
Reporting," Journal of Educational Research - J EDUC RES., pp. 3-14, 2002.

[40] R. Zanibbi and D. Blostein, "Recognition and retrieval of mathematical expressions," in
IJDAR 15, 2012.

