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WRIGHT STATE UNIVERSITY

ABSTRACT
Kostalia, Elisavet Elli, MSc, Department of Computer Science and Engineering,
Wright State University, 2021. Mathematical Formula Recognition and Automatic

Detection and Translation of Algorithmic Components into Stochastic Petri Nets in
Scientific Documents.

A great percentage of documents in scientific and engineering disciplines include
mathematical formulas and/or algorithms. Exploring the mathematical formulas
in the technical documents, we focused on the mathematical operations
associations, their syntactical correctness, and the association of these components
into attributed graphs and Stochastic Petri Nets (SPN). We also introduce a formal
language to generate mathematical formulas and evaluate their syntactical
correctness. The main contribution of this work focuses on the automatic
segmentation of mathematical documents for the parsing and analysis of detected
algorithmic components. To achieve this, we present a synergy of methods, such
as string parsing according to mathematical rules, Formal Language Modeling,
optical analysis of technical documents in forms of images, structural analysis of

text in images, and graph and Stochastic Petri Net mapping. Finally, for the



recognition of the algorithms, we enriched our rule based model with machine

learning techniques to acquire better results.
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1. Introduction

Algorithms and mathematical expressions are an integral part of computer science
and the related literature. Documents in scientific and engineering disciplines
present in a great percentage research findings and descriptions by introducing
mathematical formulas or algorithms. Working towards the automatic
understanding of the several components in documents, our purpose in this work
is to contribute to the recognition and representation of how the mathematical
formulas and the algorithmic components are structured and analyzed.
Mathematical formulas are tightly connected to algorithms as not only algorithms
usually contain the execution of several mathematical operations, but also, in many
cases, algorithms are introduced in order to provide a step-by-step description of a
certain mathematical formula. Here, our goal is to develop a methodology for the
analysis of mathematical components found in technical documents and a system
focusing on the detection and the extraction of algorithmic components in technical

documents.



Exploring the mathematical formulas in the technical documents, we focused on
the mathematical operations associations, their syntactical correctness, and the
association of these components through their translation into attributed graphs
and Stochastic Petri Nets (SPN) by processing the formulas in several layers.
Initially, we conducted a first level comparative survey on the previous research
works on parsing mathematical formulas in documents, which is presented in
Chapter 2. The implementation of our system begins in Chapter 3 where we have
developed a rule based methodology for parsing mathematical expressions, followed
by mapping the symbol string representation of the mathematical formulas to an
attributed graph and then to an SPN state machine in order to embed timing in
the representation of the mathematical formulas. For a better understanding of the
structure of a symbol string describing a mathematical formula, we designed a
formal language which is introduced in Chapter 4. By making use of the formal
grammar, we will be able to generate new mathematical formulas and evaluate

their syntactical correctness.

Finally, as presented in Chapter 5, we designed and developed a system to

automatically detect algorithmic components in documents and analyze them. We



have implemented a rule-based methodology based on which, a document in a for

of an image is segmented to image blocks. The image blocks after a pre-processing

layer, are further analyzed to determine whether they contain algorithmic content.

Next, we designed a model to convert the detected pseudo-algorithms in a graph,

representing the sequence of steps introduced in the algorithm. Then, the detected

algorithm is automatically mapped to an SPN state machine. The proposed

algorithm analysis system makes use of a hybrid methodology of rule-based and

machine learning procedures. Finally, in Chapter 6 we conclude this work and

summarize the major findings and results. It also includes potential extensions of

our methodology, where more complicated cases of mathematical formulas or

algorithms will be taken under consideration.



2. Evaluating Methods for the Parsing and Recognizing of

Mathematical Formulas in Technical Documents

2.1 Introduction

Scientific papers and other technical documents are usually composed by natural
language text and other modalities, like block diagrams, mathematical formulas,
tables, graphics, pictures, etc. The last two decades the Automatic Technical
Documents Processing and Understanding (TDPU) has received more attention
due to its profound applicability [1]. TDPU represents the continuation of the
progress made in the fields of OCR, Natural Language Understanding, Pattern

Recognition, and Image Understanding.

Surveys of research papers are usually divided into four different categories: brief
surveys, descriptive surveys, first level comparative surveys and deep comparative
evaluation. The first category includes a plain review of research methodologies
informing the researchers on what papers are available in the field of study. The
descriptive surveys refer to a deeper description of the approaches and their
classification into various groups associated to certain characteristics, like bottom-
up, top-down processing, etc. The first level comparative surveys approach offers
a brief description of each methodology and then evaluates each of them by using

a maturity function that illustrates the level of implementation and applicability.



Finally, the deep comparative evaluation of methodologies is based on a very
thorough analysis of the performance of each method by running all of them on the
same data set and providing details of their outcomes. This category, compared to
the previous three, is the more unbiased approach because it is based on test results
to evaluate the competing methodologies and to determine the most accurate, but

at the same time is the most expensive and time-consuming [2].

One sub-area of TDPU is the recognition of mathematical formulas (MF). The MF
area mainly deals with mathematical formulas detection in documents and the
understanding process of formulas by using parsing methods. There are numerous
research efforts in the field of mathematical formulas processing. For this effort
here, about 200 papers were initially collected which, after preprocessing, were
reduced to very small set by keeping those relevant to parsing. Thus, the purpose
here is to conduct a comparative study among the finally selected papers by using
a criterion of maturity. This criterion is defined based on a set of features associated
with the importance for developing software methodologies for MF understanding.
For instance, some of these features were complexity of the methodology,

robustness, originality etc.

Segregating mathematical expressions have been grouped into two categories based

on their position in the document: isolated and embedded. In this work here, we



focus on isolated mathematical formulas in typeset documents. The goal here is to
present an overview on this specific type of formulas, describing the parsing
methods used during the structural analysis and interpretation of isolated MF.
OCR, formulas detection and extraction are out of the scope of this effort. Here,
we only evaluate the methods describing the syntactical parsing of the formulas.
Thus, through each parsing method, the formula aims to be represented as an
operator tree. In an operator tree structure, the internal nodes represent the
operators, while the leaf nodes describe the operands. For the generation of the
tree, the analysis layer may include several techniques that have been used so far,

including rule-based and formal grammars.

There are several efforts studying the field of processing mathematical expressions.
Thus, it is important to firstly report surveys studies associated to mathematical
formulas. In particular, Chan and Yeung [3| presented a survey on both symbol
recognition and structural analysis of mathematical expressions. They present
various approaches developed on the parsing of the formulas to that date. Their
work is mainly focused on the description of the similarities and the differences
between the existing techniques. The survey by Zanibbi and Blostein [4] focuses on
recognition methods of mathematical formulas. The unique contribution of that

work is also the introduction to the study of mathematical formula retrieval area.



In both these efforts [3], [4] the emphasis is more towards to recognizing and
understanding mathematical formulas however, understanding mathematical

formulas involve parsing.

The rest of this thesis is organized as follows; in section II, the several approaches
in parsing the mathematical formulas are presented. Section III presents an
evaluation of state-of-the-art parsing methods highlighting the advantages and the
limitations of each method through the evaluation process, using a maturity
formula [5]. A number of features are selected for the evaluation of the maturity of
each method, where each feature represents a different aspect of the evaluation. In
section IV, the results of the evaluation are discussed, and future directions in
mathematical formula analysis research are presented. Finally, section V states the

conclusion of this work.

2.2 Recognizing and Representing Mathematical Formulas

The process of understanding mathematical formulas in documents is divided into
four sub processes: (a) identification and segmentation which focus on detecting
and isolating formulas in documents, (b) symbol recognition in formulas, (c) lay-
out recognition for identifying the spatial relationships among symbols and, (d)

content representation and analysis whose purpose to compute the outcome of the



mathematical formulas. Parsing is included in the latter task, where the various
objects (i.e. operators, operands) forming the formula are presented by an operator
tree, which holds all the structural information of the mathematical expression. A
large number of parsing techniques with a range of variations were introduced in
the literature through the years for the analysis of mathematical formulas. The
parsing is realized using either string grammars or two-dimensional grammars,

depending on the system built.

The formal grammars used in the parsing process can follow either the top-down
or the bottom-up approach. There are also cases where an integrated bottom-up
and top-down approach is applied. The top-down approach is considered to be the
fundamental structure processing technique. It processes the input structures
starting with the global perspective of the input expression, and proceeds by
analyzing horizontal and vertical relations among objects in the structure, which
in our case are the sub-expressions in the mathematical formula. On the other
hand, the bottom-up techniques process the elements in a mathematical structure
by analyzing the nested structures based on specific objects (e.g. symbols,

operators) within the structure.

A. Top-down parsing



The approach by Anderson [6] is one of the earliest works in this field. Despite its
poor experimental results, the impact of this work on other works in the area of
mathematical expression recognition is deemed significant. The work applies a top-
down approach where, a syntax-directed algorithm, using rules of a formal
grammar, is applied on the sub-expressions within the input formula. The
experimental results exhibit the low efficiency of the method which may be

attributed to the format of the formal grammar applied.

Chan and Yeung [7] introduce three mathematical expression parsing methods,
namely, (a) symbol string parsing through backtracking, (b) parsing using binding
symbol preprocessing and, (c¢) parsing using hierarchical decomposition. A Definite
Clause Grammar (DCG) is executed within each method, and is implemented in a
way that allows the parsing the mathematical formulas. DCG is highly declarative,
which leaves no space for errors during the recognition process. It is executed by a
Prolog interpreter (also used in the present work). The experimental results proved
that, hierarchical decomposition is the most efficient method among the three in
terms of parsing speed. In terms of complexity, the method aims to split expressions
into smaller ones, so that even using a parser of high complexity, the time for

parsing the short-length expression would be low. The method has been also applied



for the understanding of handwritten mathematical expressions [8] with very high

accuracy.

Tree structures are typical for describing the structural information of
mathematical expressions. More specifically, binary trees have been used widely as
they are both, easy to interpret and process and, capable of handling recursion.
However, binary trees fail to represent all information in mathematical formulas
especially in cases of mathematical formulas containing complex elements such as
matrices, summations, integrals etc. The work by Toumit, Garcia-Salicetti and
Emptoz [9] propose a flexible tree structure where each node may have more than
two children nodes. A recursive method is applied initially on a single-node tree,
containing the whole formula. While nodes can be complex objects, it recursively
breaks each node into simpler object leaves based on the operators, comparators

and spatial connectors in each object.

There can be a great deal of uncertainty in the interpretation of mathematical
expressions mainly because of ambiguity inherent in mathematical notation and
this might make interpretation dependent on human experience. In order to deal
with this problem, Chen, Shimizu and Okada [10] introduce a rule-based approach
for the automatic parsing of mathematical expressions. They first extract a layout

tree along with a semantic tree representing the layout and semantics of

10



mathematical expressions respectively, prior to applying a set of mathematical,
sense-based and experience-based rules. In an extension of this work [11],, the
authors discuss the various ambiguity issues in mathematical expression

understanding.

In the work by Jin, Han and Wang [12], mathematical formulas are parsed by
applying a hierarchical and recursive decomposition process that computes an
operator tree as a result. Processing is split into three layers; each layer is dedicated
to different mathematical elements represented by glyphs. During the first layer,
the most basic elements are processed, like fractions, radicals, and delimiters, which
outputs the compound expressions of the formula. A multi-line mathematical
formula is then transformed into a one-dimensional array. The processing of this
array is based on the backbone glyph extraction. Going towards the next layers,
each compound expression is handled as an individual glyph, representing a
subexpression. The process terminates when there is no more subexpression for the

formula to be split.

Toyota, Uchida and Suzuki [13] handle the parsing of a mathematical formula as
an OCR verification step that applies a context-free grammar capable of dealing

with mathematical syntax. This is a top-down approach where the grammar is

11



applied on the tree representation of the formula and grammar rules are defined

according to Anderson [6].

B. Bottom-up parsing

Lavirotte and Pottier [14] introduce a graph grammar approach. The input formula
is represented by a graph structure which is generated based on the spatial
locations of the symbols in it. Graph nodes represent symbols in the formula and
graph edges represent their relative positions. The graph is then transformed to a
syntax tree using a graph grammar. The graph grammar is a context-sensitive
graph grammar where, the terminal symbols represent mathematical symbols and,
nonterminal symbols represent mathematical expressions. The challenge in graph
building relates with the number of links: a very big or small number of links might
lead to ambiguities: might lead to more than one formula or, might not be able to
represent all information needed for building a formula, respectively. Along the
same lines and following the optical recognition of symbols in the formulas,
Chaudhuri and Garain [15], [16] extract the logical relationships among the formula
components. The process is based on the idea of building the layout of a formula
using the spatial relationships of its components and their bounding box
coordinates as parameters. For the final part of the syntactic parsing and

mathematical formula understanding, a number of pre-defined rules are applied.

12



In the work by Guo, Huang, Liu and Jiang [17], a mathematical expression is
decomposed into sub-expressions. The method introduces the idea of continuous
reformation of the global expression structure by decomposing the formula into
basic sub-expressions, and by appending the analysis results to the higher levels of
the bottom-up process. The script relation trees are generated by applying a

context free grammar and an N-best algorithm for the finishing analysis tasks.

C. Integrated top-down and bottom-up parsing

Integrated parsing approaches combine both top-down and bottom-up parsing
techniques. Fateman et al. in [18], [19] handle typeset mathematical expressions
using both OCR and structural analysis. Structural analysis applies a bottom-up
parser. Prior to structural analysis, a top-down method is applied for identifying
and parsing sub-structures in a formula. The experimental results for the bottom-
up method are not promising due to the complexity of the inputs. This result,

however, does not rule-out the use of the bottom-up approach on other inputs.

In DRACULAE system, Zanibbi and Blostein [20] process a mathematical formula

left-to-right. The so called Baseline Structure Tree (BST) is generated first and is

transformed to a Lexed BST [21]. This is then translated to a IATEX expression

which is forwarded to the expression analysis stage which produces the operator

13



tree. Each expression is analyzed in terms of syntax and semantics. During syntax
analysis, a context-free grammar is applied on the linearized symbol string and a
parse tree is produced. During semantic analysis, a set of tree transformation rules
are applied for detecting implicit operations and the operator tree is re-ordered.

The complexity of DRACULAE is linear on the average.

Takiguchy, Okada and Miyake [22|, apply both a layout and a semantic tree for
the understanding of a mathematical formula and its translation to IATEX.

Following the layout analysis of a formula, Guo et al. [17] use sense-based and

experience-based rules.

2.3 Evaluation

In the following, we present a comparative evaluation of the methods referred to
above. All methods are evaluated using the features of Table 1. These features are

deemed representative of their operation, purposed and expected result [23].

FEATURES DESCRIPTION

Reliability (F1) The methodology produces expected results under

normal operating conditions

Robustness Results are produced under extreme conditions —
(F2) formulas with a great complexity
. The difficulty in implementing a methodology due to a
Complexity _
(F3) large number of components or associations. Also refers

to Computational and Memory requirements.

14



Efficiency (F4) Th.e.methodology can achieve the desired results in an
efficient way

Originality
(F5)
Accuracy (F6) | The precision of the results

A novel methodology is presented

Speed (F7) Processing time of the methodology presented

Experiments
xp(;;r; " Size of experimental data
Further
Improvements | Enhancements required in the design
(F9)
Cost (F10) The Implementation cost of the methodology
Portabilit
0<rFal 11 )1 Y The ability of the system to work in different platforms

Parsing Method The parsing method used for the syntactical analysis of

(F12) the formula TD for top-down approaches, BU for

bottom-up and IN for integrated approaches

Table 1 - Evaluation characteristics

The selected features are defined based on inherent characteristics (i.e.,
implementation complexity, accuracy, extensibility, originality, robustness) or, the
performance (i.e. efficiency and quality of the results) of the parsing methods which
they are related with. In order to achieve a more quantitative assessment, all
competing methods are rated based on two perspectives, one associated with the
end-user and the other associated with the developer. The weights w; for the
developer and user perspective are shown in Table 2. They are defined by our
evaluators, and they are used for computing a “maturity score” M; for each

methodology.
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The maturity function of Eq. (1) defines the maturity score for a method taking

into consideration the weights of each perspective.

N
_ Xj=1Wjfij

M =
i N
Yj=q1Wj

(1)

In Eq. (1), N represents the number of quantitative features used for the evaluation
(i.e. 11 in our case). Each methodology is assigned a score from 1 to 5 for each
feature. A score 1 denotes poor performance of the approach on feature, while a
score H denotes very good performance, respectively. The features showcasing the
further improvements (F9) and the cost (F10), reflect a negative impact as they
describe the required enhancements for the specific methodology and the
implementation cost of the system by incorporating the respective feature. For
both these negative impact features, a higher score denotes the less requirements
for the maximum performance. The scores assigned to each methodology, based on

the proposed features are shown in Table 3.

Each methodology receives a score fij for each feature (means each methodology
receives 11 scores). Following this, for the computation of the maturity of a
methodology for a perspective (i.e. end-user or developer) the weight of each feature

from the developer’s perspective is multiplied with each distinct feature score. The
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summation of all these products is normalized by the summation of the weights for

this specific perspective.

WEIGHTS
FEATURES | END-USER | DEVELOPER

(W) (Wn)
F1 1 1
F2 1 1
F3 0.1 1
F4 1 0.8
F5 0.1 0.9
F6 1 1
F7 1 1
F8 0.4 1
F9 0.5 0.8
F10 0.6 0.9
F11 0.3 0.9

Table 2 - Weights assigned to features, for the
end-user and developer perspectives

The result of the division will form the maturity value for the given methodology
for the developer’s perspective. For example, for the method by Fateman and

Tokuyasu [18] for the end-user’s perspective is:

3X1+2X1+3%0.1+3X1+3X0.1+2X1+3X1+1X0.44+1X0.5+5X0.6+3x0.3
1+1+0.1+1+0.1+1+1+0.4+0.5+0.6+0.3 o

3.6

M5 =
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F1|F2 | F3 |F4|F5|F6|F7|Fs|F9|Fi0| F11 | F12
8| 3| 23| 3|3 |2|3|1|1] 5 3 IN
71| 3|23 |4a|5|3|a|1]|1] 3 1 TD
4] | 3 | 2 | a | a| 5|2 |a|1]|2]| 2 3 BU
o | 4|23 |a|a|3]|a]1]|2]| 4] 3 TD
o] | 3| 22|35 |3|2|3|2] 3 2 TD
5] | 5 | 4 | 3| 3| 4|5 |3 ]|3|4] 2 4 BU
8 | 5| 4|5 |5 |3 |5 |4a]4a|a]| 4 TD
2] | 5 | 4| a|a|2|5]|3]4|3]|1 4 TD
20| 4 |4 |a|3]2|5]|3]|3]|4] 2 4 IN
2] | 4 | 2| 4| 2|3 |4 2]2|2]|4]:5 IN
3] | 4 | 32|44 |3|1]|3]|3]| 2 2 TD
71| 4 | 33| 3|2 |3|2|5]|3]| 2 3 BU

Table 3 - End-user and developer scores for all
methods.

2.4 Discussion on Evaluation Results

The overall maturity scores are calculated based on the Eq. (1), for both user and
developer perspectives. The formula indicates how mature each individual
methodology is, the time it was developed and not in comparison to each other.
Figure 1 illustrates the maturity scores for each methodology, based on both
perspectives. Figure 2 illustrates the average maturity score for each methodology.
Figure 2 shows the scores without taking weights into consideration. No method
reached the maximum maturity score. However, most methods achieve relatively
high scores. The method by Chan and Yeung [8], which applies top-down parsing,
outperforms all other methods achieving average score 4.10/5.00, followed by the

method by Chen, Shimizu and Okada [11] which also applies top-down parsing and
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achieves average score 3.70/5.00. Third in order, in the integrated method by

Zanibbi and Bolstein [20] which reached 3.54/5.00 average score.

All parsing methods proved successful on mathematical formula understanding
although the methods differ from each other in terms architecture used, nature of
the system or application within they are applied and other factors. Therefore, the
decision of which method is the preferred one resorts to the end-user or developer

who needs to take all these factors into account.

The top-down parsing approaches with the best scores are [8] and [12]. The first
one relies on backtracking which does not guarantee very good efficiency in the
general case [23]. The second one makes relies on recursion for the decomposition
of input formulas which might result is lower computation cost. Furthermore, the
integrated methodology Zanibbi, Blostein and Cordy [20] has also achieved low
computational cost due to its linear time complexity in the average case. This

improves the maturity score.

The integrated approaches are expected to be very prominent. This hypothesis is
based on the understanding that top-down approaches resemble the way the human
brain understands the components of a formula in the first place. Also, the bottom-

up approach for the evaluation of the subexpressions of the formula leads to the

19



evaluation of the complete mathematical formula. The evaluation results are not
according to this hypothesis. Notice that, lower maturity are obtained for
methodologies which have been implemented to their full extend (i.e. as full-fledged
systems supporting all stages of recognition and understanding) which can be both,

very complex and computationally expensive.
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4.0
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o

1

o

0

o

[71 [8] [9] [10] [12] [13][14] [15] [17] [18][20] [21]

mEnd-user = Developer

Figure 1 - Maturity scores according to end-user
and developer perspectives.
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= Average maturity = Without Weights

Figure 2 - Average maturity scores with and
without weights
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2.5 Conclusion

We present a comparative study on mathematical expression and formula
understanding methods. The discussion and following evaluation is based on a
number of criteria relating with the operation of each method and whose purpose
is to reveal the strengths and weaknesses of each method. A maturity metric is also
introduced which becomes the overall criterion for ranking the competing parsing
methods by efficiency taking also into consideration criteria pertinent to end-users

or system developers.

All comparisons are made between the works themselves (to their full potential)
and not among the different systems within which the methods are applied. By
conducting this survey, we concluded that no approach could achieve the maximum
maturity in the field of understanding mathematical formulas. This can become
possible by developing methods simulating the hierarchy of operations of human
mind or, by using structures that would be able to hold, not only the structural,
but also the functional information of a formula. We have examined the process of
formula parsing and how close this is to the way the human-brain processes the
formulas. It is a step closer to machine deep understanding of technical documents

that may be used to train machines handle mathematics [24], [25].
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3. Conversion of Mathematical Formulas into Graphs and
Stochastic Petri Nets

3.1 Introduction

Even though mathematical expressions consist of well-defined rules applied on the
syntax and the operations forming the hierarchy of the operations, the analysis of
the components and their associations tends to be a challenging part of any
machine trying to analyze and understand this expression. Since understanding of
mathematical expressions has a certain connection with people's sense and
experience, we build a system which takes under consideration the mathematical
rules in addition to the rules based on the human sense and experience to

understand expressions perfectly and to avoid problems of uncertainty.

A rule base approach is set up in this work which consists of mathematical, sense-
based and experience-based rules to help us understand the expressions correctly
and naturally. The mathematical rules are helpful to automatically and
unambiguously parse the structure and the semantics of an expression after having
recognized characters and obtained information for the spatial relationship of the
operators in a tree structured format. While the sense-based rules provide the

handling of the expression’s ambiguousness in layout, the experience-based rules
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are responsible for dealing with uncertainty in expression semantics. The final
purpose of this part is to design a system which takes as an input a mathematical

expression and generates the Stochastic Petri Net representation of this expression.

Conventionally, we use as a source a mathematical formula in IATEX format which
comes from a free OCR tool which converts an image of a mathematical formula
to IATEX code. Thus, the only assumption used here is a preprocessing of inserting
an image to an external OCR tool and receiving an MathML or TEX (IATEX)
formatted output as the input to our system. This is quite realistic as almost all

the methods proposed in the literature give recognition output in one of these

formats.

3.2 Mathematical expressions in technical documents

Technical documents include, among other modalities, mathematical expressions,
which may be found at a great percentage of documents, especially in the area of
Computer Science. This work is exclusively focused on Mathematical expressions
found in technical documents. In the very beginning it is essential to define what
a mathematical expression in a technical document is: it is a finite combination of

symbols that is well-formed according to rules that depend on the
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context. Mathematical symbols can designate numbers (constants), variables,
operations, functions, brackets, punctuation, and grouping to help determine the

order of the operations and other aspects of logical syntax.

An expression is a syntactic construct which must be well-formed. The operators
in the expression must have the correct number of attributes in the correct places.
Any string of symbols which violates the rules of syntax is not considered well-
formed and is not identified as a valid mathematical expression. For example, the

expression 14+2x3 is well-formed, but the expression 9x4)x+/y is not.

3.3 Conversion from electronic type of the technical

document (pdf) to the SPN representation

Our proposed methodology consists of five sequential layers of processing; a
document in a pdf format shall form the input, which after the detection of the
mathematical parts will be split in individual images which will then undergo

Optical Character Recognition and result to a symbol string in a IATEX format.

The recognized symbol string will then go through parsing and following, will get
translated to an attribute graph, and to an SPN representation. In this part of the
work, we present the processing layers starting after the OCR of an image and

moving towards the generation of the Stochastic Petri Net. Although the OCR
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process has not been implemented at this time, a brief description of the optical

recognition process would be valuable to be introduced.

Mathematical
Expression
Image

Attribute Stochastic

PDF
Document

Symbol String

Graph Petri Net

Figure 3 - Steps from initial form of technical document to SPN
representation of mathematical expression.

3.4 Optical Character Recognition OCR

Mathematical expression recognition involves three major tasks: segmentation -
detecting symbols, classification, and parsing - determining expression structure.
These tasks may be solved in a sequential feed-forward manner, or in a globally

integrated fashion.

»  Segmentation

It is a task of grouping related primitives. These primitives could be pixels from an
image, or strokes from a handwritten equation. The main challenge of symbol
segmentation in typeset mathematical expression images is fractured symbols

whose components were split by printing and scanning noise [26].
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= (Classification

Common algorithms for symbol classification include nearest neighbor, support
vector machines, random forests, hidden Markov models, convolutional neural

networks, and bidirectional long short-term memory networks.

= Parsing

Converting input primitives (e.g., images, handwritten strokes, or symbols) to a
description of formula structure. A common set of features used to represent the

spatial relations between components are geometric features.

The use of the relative position of the symbols gives additional information about
the association between symbols and elements of the expression, having as an
example the superscripts and subscripts or operators such as summation and

integrals.

Reading Mathematical Expressions is executed in a left-to-right order, following
the precedence of operations. The precedence of operations is a collection of rules
that reflect conventions about which procedures to perform first in order to
evaluate a given mathematical expression and its purpose is to eliminate ambiguity
while interpreting an expression. It is also a way that allows notation to be as brief

as possible. The simplest way of parsing a two-dimensional expression is to
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translate it into its equivalent one-dimensional representation and then parse it
using an existing parser. An expression consists of one or more mathematically
linked symbol groups. A symbol group is defined to be a special mathematical
symbol which may deviate from the typographical center of a mathematical
expression and the symbols that appear with it [27], [28]. For example, }i-; x; is a
symbol group. When all symbol groups in an expression have been grouped, the
expression can be transformed from a 2-D form to 1-D, according to the previously
mentioned OCR steps. In this work we did not focus on the Optical Character
Recognition of the mathematical formulas, we rather take the output of the OCR
tool in the form of a symbol string as a given. We will handle this issue in the

future.

3.5 How we process the mathematical expressions

Given a string expression at the input, and before it is split into its left and right
parts, an equation detection procedure is applied in order to detect whether this is
an equality or inequality type of expression and then it is split to the two parts of
it: left and right part. The two parts are treated as distinct mathematical
expressions and are processed individually and in a next processing layer we will

handle the connection of the two parts. For each part, the parentheses inside the
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mathematical expression are detected and processed -as they are in the highest
priority in the hierarchy- as individual expressions as they may include nested
parentheses. In general, we find different types of expressions and calculate the
simple or complex expressions inside them. We follow the precedence of the
operations inside every sub-expression which is a simple expression, then move to
the outer layer of hierarchy. Our model goes through different levels of hierarchy,
depending on the context of the expression. At each level, the elements of the
current operation hierarchy level are processed, and the outcome of this process
will replace this sub-expression, modifying the input expression. Each mathematical
operation is given an id number for identification purposes, for example, the first
summation operation is marked as addl and the first detected parenthesis is
marked as parnethesisl. An example of this procedure is shown in the following

image.
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Input: ['y', '=", 'e', "', 'c", '/, '8, '+, (Y, Al - 'R )
Partl: ['y']

Part2: ['e', ™', 'c', /', 6", '+, (", 'a', -, "B, )|
Part2-Stepl: ['e', ™', 'c', '/', '6', '+', 'parenthesisl']
Part2-Step2: ['mull’, '/', '6', '+', 'parenthesis1’|
Part2-Step3: ['divl', '+', 'parenthesis1'|

Part2-Step4: ['addl']

Figure 4 - Proceeding steps of the expression
y=e*c/6+(a-b)

3.6 The mathematical expressions

1.1 We define as simple expressions the expressions that include numbers
and alphabet letters along with the basic operators +, -, *, / and process
them in the order multiplications and divisions, then additions and

subtractions.

1.2 Types of Mathematical Expressions Modules which our system processes:

. Parenthesis

. Equality - Inequality
. Simple expression

] Fraction

. Summation

= Finite Integral
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= Factorial

. Root

" Exponential

] Limit

= Indefinite Integral

= Absolute Value

. Logarithmic

3.7 Math Expressions to Graphs

Each mathematical expression is represented by a graph. Each sub-expression
becomes a sub-graph of the full graph. That means that for every level of the
hierarchy and for each operation, two nodes and two edges are created. The first
node that is created is the result of the operation that will be registered as a new
node along with the edge that will connect the node that represents the last
operation’s result. The second node is the next operand to be executed which will

be associated, through a new edge, with the result of the current operation.
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Figure 5 - The attributed graph of the expression
e*c/6+(a-b)

For each operator, there is a number of operators that are required in order for the
operation to be executed. For example, for simple operators such as addition and

subtraction two operators are required, though for a fraction, we are expected to

have two mathematical expressions, one as the numerator and one as the

denominator. The attributes on the edges connecting two nodes in the graph

represent the type of the operator that is inside the node that participates in the
operation.
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{factop 23
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pfactor’ 1)

g /

Figure 6 - The graph generated representing the expression a/b. Node ‘a’
constitutes the first operator-numerator of the division and node ‘b’ constitutes the
second operator of the division-denominator. Both edges end up to the node ‘divl’

which is a keyword representing the first (and only, in this specific example)
division operation.

. Number of
Operation Names of operands Syntax
operands
Addition 2 factorl, factor2 factorl + factor2
Subtraction 2 factorl, factor2 factorl - factor2
Multiplication 2 factorl, factor2 factorl * factor2
Division 2 factorl, factor2 factorl / factor2
Fraction 2 numerator, denominator frac{ numerator} {denominator}
Factorial 1 factorl factorl! or (factorl)!
Exponential 9 base, exponent base”exponent or (base)”{exponent} or
(base) “exponent or base”{exponent}
lower limit, upper limit, ) . . . . .
Integral 4 ower 1.1111 1.1pper 1'1111 ' int{lower limit}{upper limit}functiond{differential}
function, differential
Summation 3 factorl, factor2, function sum{factorl }{factor2}{function}
Root 2 factorl, function sqrt[factorl]{function}
Absolute .
1 factorl |factorl|
Value
Logarithmic 2 factorl, factor2 log {factorl}{factor2}
Limit 3 factorl, factor2, function lim{factorl }{factor2}{function}

Table 4 - Different types of expressions, the
operands required and their syntaz.
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Figure 7 - The graph generated representing the
expression y=int{0}{3}k~2d{x}.
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Figure 8 - The graph generated representing the
expression y-1>=alpha*beta.
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3.8 Mathematical Formulas into Stochastic Petri Nets

Stochastic Petri Nets are used to describe and analyze systems that are concurrent,
distributed parallel and non-deterministic. They provide functional information
and are also used as a machine language for development, simulation, and
applications. Petri net is an information flow model which we are using in order to
interpret the mathematical expressions along with their functionality. A Petri net
is a directed bipartite graph in which the nodes represent transitions (i.e. events
that may occur) represented by bar, and places (i.e. conditions), represented by
circles. Compared to graphs which provide with structural information alone, SPNs
provide also with functional information (i.e. timing and synchronization) of the

operations inside a mathematical expression

3.8.1 Stochastic Petri Nets prerequisites

In this section we provide the basic Stochastic Petri Net (SPN) prerequisites. SPN
is a specialized category of Petri Nets thus, SPNs and Petri Nets have the same
visualization components and go by the same visualization rules. We will

demonstrate how a basic component of Petri Nets is represented visually. A Petri
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net consists of places, transitions, and arcs [29], [30], where arcs can connect a place
to a transition or vice versa, but an arc can never connect two places or two
transitions. Places in a Petri net may contain a discrete number of tokens. Arcs are
characterized by their capacity, which is the number of tokens they are able to
transfer. Any distribution of tokens over the places will represent a configuration of
the net called a marking. In our mapping we use the default capacity of 1. A
transition of a Petri net is enabled when there are sufficient tokens in all its input
places, which means that the number of tokens in each of its input places is at least
equal to the arc weight going from the place to the transition. A transition may fire
if it is enabled. When the transition fires, it consumes the required input tokens, and
creates tokens in its output places. This results in a new marking of the net, a state
description of all places. In a graphic representation of a Petri net in Figure 9, places
are depicted with circles (where each circle contains or not one or more dots called
tokens), transitions with long narrow rectangles, and arcs as one-way arrows that
show connections of places to transitions or transitions to places. Labels above arcs
indicate their capacity, which means the maximum number of tokens that an arc
can carry simultaneously [31]. An inhibitor arc is represented by an arc terminated
with a small empty circle [32]. More information about Petri Nets and Stochastic

Petri Nets can be found in the corresponding literature [29], [30], [32].

35



Figure 9 - A simple Petri Net graph

Here, we present some basic points for the representation of mathematical
expressions, operands, and operator’s results into SPN graphs. So, simple
mathematical operations or functions are represented by timed transitions (thick
rectangles), since they are the transitionary layer between the variables/operands
and the result of the mathematical operation /function. Places (big circles) represent
variables or constants that describe any operand as a part of a mathematical
operation. Places may also represent the result of an arithmetic operation/function

execution which will eventually become an input to a forthcoming operation.

3.8.2 Methodology We Follow to Convert Graphs to SPN

Having as the final purpose of this part of the work the conversion of a
mathematical formula to a Stochastic Petri Net, the graph was designed to be
generated in such way so the variables and the numbers of the expression can be
viewed as the places of the Petri Net and the operations between these operands

as the transitions. Using the generated graph of the mathematical expression as
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the input, for each node that represents an operation, a transition is created which
describes the operation being executed, given the attributes of the two incoming
edges. Each operand of an arithmetic operation or function in the expression
(variable or constant or result of an operation’s execution) is represented by a
place. The attributes of edges leading to the same node describe the several
operands required for an operation to execute so any edge of the generated graph
will point to a transition. This transition represents the arithmetic
operation /function which will be executed using the attributes of the incoming
edges. Finally, a new place will be created which will represent the result of the
operation’s execution and an arrow will be connecting the transition with the new
place. This process will continue until all nodes of the graph have a corresponding
place in the SPN graph. For the creation and representation of the Petri net the

SNAKES library of Python was used [33].

Figure 10 - Graph representation of the
expression (3x-5)/2
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Figure 11 - SPN representation of the expression
(3x-5)/2
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The symbol string is being parsed based on the alphabet letters and the operators,

identifying numbers that are made up with more than a numerical symbol and

variables and operator key-words consisting of more than one letters. The method

also detects implicit multiplications between elements of the mathematical

expression. Implicit multiplications are expressed by two symbols one next to the

other without an operator between them, where a multiplication operation is

implied. Given the fact that the expression is formed by two parts and an equality

or comparative operator, the expression is being split into two parts. These two

parts are processed individually using the exact same procedure. While parentheses

have highest priority in any mathematical expression, parentheses are being

detected together with expressions within parentheses form sub-expressions which

are being isolated and processed separately based on the precedence of operations.

While executing the operation of each sub-expression, we keep in memory the index

of the previous node so that we create one graph of all the sub-expressions. The

graph we are creating will be a graph in a form of a binary tree - each parent node

will have maximum two child nodes. Following this step, based on the precedence

of the operations mentioned above, each sub-expression is being transformed to

nodes and edges, creating an attributed directed digraph that describes the

relationships among the different components of the initial expression.
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In the next level of processing the mathematical expression, we detect different
types of operations such as fractions, exponentials, roots, summation, integral,
factorial, absolute values, that also include sub-expressions and process them just
like the expressions in parentheses. Every new input of the generated graph consists
of three elements: the starting node, the ending node and the attribute of the edge
that represents the factor in the syntax of the operation. After finishing the process
of both parts of the input expression, the value of each one is assigned in a new
node with an edge that points towards the keyword representing the relation
between these two parts. When all the operands and operators are included in the
graph, we use the NetworkX library of Python so we can visualize it. Final step is
to create the SPN representation based on the methodology described above. The
following diagram shows the sequential steps that are followed to achieve the SPN

representation of the mathematical expression through the graph.
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Figure 12 - Data Flow Diagram describing the procedure of

converting a symbol string mathematical expression to

Stochastic Petri Net representation.

4. Generation of Mathematical Formulas using a Formal

Grammar

4.1 Introduction

Mathematical formulas consist of combinations of different mathematical

expressions, the associations of which, are accurately defined using the well-known
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mathematical notation. A mathematical expression requires that both, the
operators, and the operands within the expression are defined. The complete
process of the generation of MF constitutes of three layers of processing,
representing the steps that are strongly connected and essential for the

interpretation of a formula:

1. Generation of a MF using the syntax of the formal grammar designed

2. Syntactical Optimization - Elimination of undefined terms inside the

formula

3. Semantical analysis and interpretation of the formula

In this phase of our work, we have implemented steps 1 and 2. During the first
layer of processing, the formal grammar of our language is executed, and
mathematical formulas are generated. In the second step, these generated formulas
go through filters to evaluate their syntactical content, in a way that undefined
terms will be eliminated, or excess notation will be removed without changing the

syntax of the formula.

While mathematical expressions are typically illustrated as two-dimensional
structures of math symbols in either handwritten form or images, meaning that

each mathematical symbol obtains a relative positions to another in the 2-

42



dimensional space in an image, a high-quality typesetting system was developed
for the description of mathematical notation in scientific documentation: INTEX is

widely used in typesetting of complex mathematical formulas and is established as

a standard for the communication and publication of scientific documents [34]. In
these terms, in our work, we follow the IATEX format to describe each

mathematical element or mathematical formula. To acquire the syntactical
correctness of the mathematical language, a formal language (FL) is designed. By
making use of this FL and its formal grammar subsequently, we make sure that
the MF are formed based on specific grammar rules which define their syntactical

correctness and validity [35].

4.2 Mathematical Operations

A representative number of mathematical expressions found in published scholar
and technical documents was collected and studied, and the most frequently used
mathematical operations (functions) were congregated in a list, illustrated in Table
5. They form the corpus of the different operations that will be used to construct
a new formula, and each operation corresponds to a distinct letter of the alphabet

of the introduced language. Each distinct mathematical operation is handled
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uniquely, based on the syntax of the code according to the IATEX format and the

number of operands that are required to define it completely. For a more
convenient processing of the symbol strings describing the formula, we eliminate

special symbols used to describe the spatial relations of elements in the expression

(like “\”, “ ~ " and “_”) from the symbol string of IATEX format.

Serial Operation Operation Number of  Pre-processed IAT IATEX
number Name Operands gX format format
1 a+b Addition 2 a+b a+b
2 a-b Subtraction 2 a-b a-b
3 axb Product 2 a*b a*b
a-b a \cdot b
axb
a \times b
4 a/b Division 2 a/b a/b
5 % Fraction 2 frac{a}{b} frac{a}{b}
6 al Factorial 1 al al
7 a” Exponential 2 a~{b} a~{b}
8 f a dx Indefinite 1 int{a}d{x} \int{a}d{x
Integral }
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loga

log, b

Ina

limc
a—b

a mod b

Definite

Integral

Summation

Product

Square Root

Root

Absolute

Value

Logarithmic

Logarithmic

with base

Natural

Logarithmic

Limit

Modulus

int{a}{b}{c}d{x}

sum{a=b}{c}{x}

prod{a=b}{c}{x}

sqrt{a}

sqrt[al{b}

log{a}

log{a}{b}

In{a}

lim{a rightarrow

bi{c}

a mod b

\int_{a}"{
b}{c}d{x}
\sum_ {a—
b}~ {cHx}
\prod_{a=
b}~ {cHx}
\sqrt{a}
\sqrt[a]{b}

la|

log{a}

log_{a}{b}

In{a}

\lim_ {a\ri

ghtarrow

bH{c}

a \bmod b



20 sin(a) Sine 1 sin{a} sin{a}

21 cos(a) Cosine 1 cos{a} cos{a}
22 tan(a) Tangent 1 tan{a} tan{a}
23 a’ Derivative 1 {a}' {a}'

Table 5 - The distinct mathematical operations. There is alternative
notation to describe the product operation-in our implementation we only
make use of the one with the asterisk sign.

4.3 The Formal Grammar

In this section we define the designed formal grammar we propose for this work; the
set of the production rules include all the operations which were presented in the

previous chapter.

In the very beginning, we need to make clear what a mathematical expression in a
technical document is. It is a finite combination of symbols that is well-formed
according to rules that depend on the context. Mathematical symbols can designate
numbers (constants), variables, operations, functions, brackets, punctuation, and
grouping to help determine order of operations, and other aspects of logical syntax.
A mathematical expression is a syntactic construct which should be well-formed,
and the operators must have the correct number of inputs in the correct places.

Therefore, strings of symbols that violate the rules of syntax are not well-formed

46



and are not considered as valid mathematical expressions. For example, the

expression 1 + 2 x 3 is well-formed, but the expression 9x4)x+ /y is not.

Every mathematical formula is composed by a “kernel”. This kernel represents all
the numbers, variables, operators, and delimiters. Our definition of the formal
language models the generation of mathematical formulas using the different

mathematical elements constructing it.

Numbers

Numbers may be positive or negative, where when the sign is missing, the positivity
of the number is assumed. Examples of numbers found in mathematical formulas
are: 1, 2, 3.5, 10.999, -0.81, 0, &, e. The two latter examples are universal constants
and are used in places of numbers. We also need to mention the infinity sign which
may be found in many mathematical expressions. This does not belong to the

numbers set, but it describes a quantity and is widely used.

Variables

Variables are Latin alphabet (and sometimes Greek alphabet-we only consider

Latin alphabet letters at this point of time) letters which stand for numerical values
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in a mathematical expression. Occasionally, variables have names that are formed
by more than one letters, constituting a word representing a variable. Some

examples of variables are: x, y, z, A, B, ratio, median.

Operators

All the rest of the symbols that signify relationships and operations among numbers

or variables are called operators. When describing a mathematical expression in
the IATEX format, a number of keywords are also used to indicate different

mathematical functions (e.g. ‘frac’ for fraction, ‘int’ for integral). Other operators

in a mathematical formula may be +, -, /, *, =, > < L

Delimiters

Delimiters are the punctuation marks used in mathematics and are used to signify
where a mathematical expression ends and another one begins. The most widely
used one is parenthesis, but brackets ( { , } ) and square brackets ([, ]) are also

used infrequently.

When reading a mathematical formula, the elements forming it may be compared

to the words assembling a natural language sentence as the mathematical operators
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may take the place of the verbs and operands are the substitutes of the nouns.
Formulas and equations follow the standard grammatical rules that apply to words;
therefore, mathematical symbols can correspond to different parts of speech. For

instance, 14+2=3 is a perfectly good complete sentence.

The symbol “=" acts like a verb. Below are a couple more examples of complete
sentences. Further examples may be the expressions 3xy < —2 and 5z € R. On the
other hand, an expression like 2x—10y is not a complete sentence as there is no

verb. Such expressions should be treated as nouns.

The proposed formal language also provides a method for the synthesis of different
mathematical functions. We define the Grammar of the FL as G=(N, T, S, P),

where:

e N is the non-empty, finite set of the non-terminal symbols. Non-
terminal symbols are illustrated with capital letters and can only be

found on the left side

e T is the finite set of the terminal symbols. The symbols that are not

in the non-terminal set, are called terminal symbols or alphabet
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symbols and they are the symbols that make up the strings in the

language. No rule can be applied to these symbols.

e S stands for the start symbol of the Grammar. This is the special
symbol required for each application of rules to begin the derivation
of strings in the language. Subsequently, the only grammatically
correct strings for a given grammar are the strings that can be derived

by rule applications from the start symbol.

e P is the corpus of the production rules, presented in Section 4.4.

Finite languages are those containing only a finite number of words and they are
regular languages, as one can create a regular expression that is the union of every
word in the language. Every finite set represents a regular language. The purpose
of a regular grammar is to specify how to form grammatically correct strings in the
language the grammar represents. In our system, a regular language is applied for

the generation of syntactically correct mathematical formulas.

The execution of the production rules is a recursive procedure where each non-
terminal symbol is assigned a concatenation of a number of terminal symbols [36].

The execution of a number of the production rules in order to form and output a
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sentence , is called production. By using the formal language, we focus on the
syntactical aspect of the language, meaning the internal structural patterns of it.
Through every production, a different selection of production rules is made, based
on randomness, which results in a totally different mathematical formula. At this
point of the generation process, it is obvious that the formal grammar generates
sentences that do not make semantic sense, but they are syntactically correct,
following the syntax of mathematics. As a result, the grammar that was developed
is able to generate any sentence, which may or may not have a semantical meaning.
Due to this vagueness of the generated objects, the semantically valid mathematical
formulas are assessed during the second step of the processing. During that layer
of processing, a number of regulations are stipulated, to distinguish the formulas
that have a meaning, from the ones that are not valid and would never appear in

a scientific document.

4.4 Production rules

The set of the production rules describe the way that the words will be arranged
in a sentence and each rule describes the way that the symbols may be replaced.
In our grammar, we aim to generate formulas which may be found in scientific

documents, so, the format of the generated formula will be of type
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<expression><symbol of relation><expression>. In fact, this is the format to

which our start symbol leads.

1. S-> EXP SIGN EXP

2. EXP-> FACTOR | EXP BINOP FACTOR | NEGOP EXP
3. BINOP -> PLUS | MINUS | TIMES

4. NEGOP -> MINUS

5. SIGN -> EQS | GRS | LSS | GOES | LOES

6. FACTOR-> VAR | NUMBER | PARENTHESIS | FRACTION | SQROOT
| ABS | EXPONENTIAL | FACTORIAL | LIMIT | INTDEF | INTINDEF |
LOGARITHM | LOGNAT | SUMMATION | PRODUCTION | ROOT | SINE |
COSINE | TANGENT | MODULUS | DERIVATIVE

7. VAR -> LETTER | LETTER VAR | BCSL PI | BCSL EPSILON

8  LETTER ->'a'|'b'|'c" |'d" | 'e" | 'f'['g"| ' [ ' || K" || m' | ™' |
O P! [

9. PARENTHESIS -> LP EXP RP

10.  FRACTION -> BCSL FRAC LBR EXP RBR LBR EXP RBR

11. ABS-> VB EXP VB

12. ROOT -> BCSL SQRT LSQBR INTEGER RSQBR LBR EXP RBR

13. SQROQOT -> BCSL SQRT LBR EXP RBR

14.  EXPONENTIAL -> EXP CARET LBR EXP RBR

15.  FACTORIAL -> SEPEL EXM

16. INTDEF -> BCSL INT US LBR EXP RBR CARET LBR EXP RBR LBR
EXP RBR DIFF LBR EXP RBR

17. INTINDEF -> BCSL INT LBR EXP RBR DIFF LBR EXP RBR
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18.  LIMIT -> BCSL LIM US LBR EXP BCSL RARROW EXP RBR LBR
EXP RBR

19.  SUMMATION -> BCSL SUM US LBR VAR EQS EXP RBR CARET LBR
EXP RBR LBR EXP RBR

20. PRODUCTION -> BCSL PROD US LBR EXP EQS EXP RBR CARET
LBR EXP RBR LBR EXP RBR

21.  LOGARITHM -> BCSL LOG US LBR EXP RBR LBR EXP RBR | LOG
LBR EXP RBR

22.  LOGNAT -> BCSL LN LBR EXP RBR

23.  SINE -> BCSL SIN LBR EXP RBR

24.  COSINE -> BCSL COS LBR EXP RBR

25.  TANGENT -> BCSL TAN LBR EXP RBR

26.  MODULUS -> SEPEL BCSL MOD SEPEL

27.  DERIVATIVE -> SEPEL DERS

28. NUMBER -> INTEGER | INTEGER DOT INTEGER | BCSL INFS
29. INTEGER -> NUMERIC | INTEGER NUMERIC

30.  NUMERIC ->"'0"|['1"|"2"|'3"|['4"|'5" | '6"|'7T" | '8" | "9’
31.  PLUS -> '4'

32. MINUS -> '-!

33. TIMES -> "%

34.  MOD -> 'bmod'

35.  LP->"'(

36. RP->")'

37.  LBR->'Y{'

38. RBR->'}'
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39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

ol.

52.

53.

54.

95.

56.

57.

58.

99.

60.

61.

62.

LSQBR -> "'
RSQBR ->'|'
EQS -> '='
GRS -> '>!
LSS -> '<'
GOES -> '>=!
LOES -> '<='
VB -> '

EXM -> "'
FRAC -> 'frac'
LOG -> 'log'
LN -> 'In'

INT -> '"int'
CARET-> '
SQRT -> 'sqrt'
LIM -> 'lim'
SIN -> 'sin'
COS -> 'cos'
TAN -> 'tan'
SUM -> 'sum'
PROD -> 'prod'
DERS -> "
DOT -> "

RARROW -> 'rightarrow'
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63.

64.

65.

66.

67.

68

69.

Us->"'"

DIFF -> 'd'

INFS -> 'infty'

BCSL -> "\

PI -> 'pi'

EPSILON -> 'epsilon'

SEPEL -> VAR | PARENTHESIS

Detailed description of production rules introduced above:

1)

The very first rule to be defined is the production of the start symbol ‘S’
which signifies the point at which the generation of the string will begin. At
this point, it is made sure that the format of the formula will be a
mathematical expression related to a second mathematical expression
through a symbol that defines their relationship. The symbol may describe
an equality or inequality between the two expressions, it is indicated as

SIGN in this grammar and is thoroughly described by rule 5.

The second rule describes the definition of mathematical expressions: a
mathematical expression consists of mathematical numbers or variables

or a combination of them, using operations such as addition, subtraction,
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multiplication etc. For a better legibility of the terms in the formal grammar
definition, we define as a factor any mathematical element that can have a
value prior or post calculation. This definition is better described in rule

number 5.

This present rule has a second part on the right side, which also includes the left
part of the rule, which makes it a recursive rule, when existing mathematical
expressions are combined with factors through operations, as mentioned above.
The operators connecting these factors are binary operators that require two
operands for the evaluation. In order to include the negative numbers, rule 4 was
also introduced and is described below. For the formation of a negative number,
the number follows the minus symbol. This rule also takes under consideration
expressions that have a negative sign in the front, as the symbol EXP can indicate
a factor of an expression, which may be a variable, a number or any mathematical

operation.

3) The third rule includes the binary operators that can be found in any
mathematical expression. PLUS, MINUS, and TIMES, stand for the signs
of the addition, subtraction, and multiplication, respectively. The operation

of division is left outside of this category due to the different syntax in the

IATEX format, which assorts it in fractions.
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4)

NEGOP stands for the negation operator and is defined in rule 4 for the

formation of negative values. This the minus sign that is generated by rule

32 further to this rule.

This rule contains all the relation signs that can be occurred between any

two expressions, according to rule 1. More specifically, this rule introduces

that the sign connecting two expressions can be among the “equal”, “greater

than”, “less than”, “greater than or equal to” and “less than or equal to” signs,

represented by the symbols EQS, GRS, LSS, GOES and LOES, respectively.

FACTOR symbol describes all the different math elements which may occur

in a mathematical expression, including numbers and variable names. The

elements participating in the right part of this production rule represent the

mathematical operations that were listed in Table 5, excluding the first

four operations-which are the binary operations defined in rules number 2

and 3.

e VAR stands for a variable name, which can be a factor of an

expression or stand as a full expression by itself. The definition of

VAR symbol is found in rule 7.
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e NUMBER represents any umber that is eligible for participating in
a mathematical expression or forming one. The definition of

NUMBER symbol is described in rule 28.

e Parentheses in a mathematical expression are handled as a distinct
entity of an expression which includes some expression in it, despite
the fact that they are not listed as an operation. The description of

symbol PARENTHESIS is defined further in rule 9.

e The rest of the symbols in this production are the mathematical
operations included in the Table 5, with the correspondence of one

symbol per operation.

7) Every variable in a mathematical expression can be named by a letter or
a word-which is a concatenation of letters. Based on this knowledge, rule 7
is defined: each variable, represented by the grammar symbol VAR, is a
letter or letters following one each other in a string. Thus, the first part of
the production is used to represent the one-letter variables, and the second
part to include variables which their names are words. Again, this
production uses recursion to generate and illustrate words formed by letters.
One of the elements of this present production is number pi, which is a

mathematical constant and is represented using Greek letter Pi, or epsilon.
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8)

The letters used in rule 7 for the formation of word variables, but also to

describe variables named after a letter, are provided in this production rule.

The symbol used to describe every each one of these letters is LETTER.

As mentioned in rule 6, parentheses are treated as distinct operations in
a mathematical expression, by convention. This is a way to clarify that
inside each pair of parenthesis signs, an expression is found, and so
parenthesis sign pair is expected to be empty. This production rule, when
executed, makes use of rules 35 and 36, where the terminal signs of left and
right parentheses are defined. Additionally, the second argument of this rule
derives from rule 2, where an expression is defined. Therefore, it is clear that
an instance of a parenthesis is formed by the left parenthesis sign, an
expression as the component of the parenthesis, and a right parenthesis sign,

in this order.

10) Because of the IATEX format we are using for the format of the formulas

generated, all the operations described in an expression must follow this

format. For a fraction representation, the symbol string representation in
IATEX is \frac{inputl}{input2}, where inputl is the numerator and

input2 is the denominator of the fraction. Subsequently, this production rule

is formed by the concatenation of a backslash (rule 66), symbol of fraction,
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FRAC (rule 48), left bracket (rule 37), the symbol string of the expression
representing the numerator of the fraction (rule 2), right bracket (rule 38),
left bracket (rule 37), the symbol string of the expression representing the
denominator of the fraction (rule 2), and a right bracket (rule 38). Any
expression (either number, variable, or mathematical operation) may consist
the numerator or the denominator of the fraction, this is why the symbol of

expression (EXP) is used.

11) We use ABS symbol to describe the absolute value of an expression.
Again, the symbol of expression is used to indicate that any expression can
be the interior of an absolute value operation. So, production 11 defines the
absolute value of an expression as the concatenation of two vertical bars
with a symbol string of any expression in between (rule 2). Vertical bar is a

terminal symbol defined in rule 46.

12) Again, based on the IATEX format, a root is described as

\sqrt|degree|{input} so this is the format we will use as well. Based on this,
in rule 12, a square root operation is defined as the concatenation of a
backslash (rule 66), symbol of square root, SQRT (rule 53), left square
bracket (rule 39), an integer symbol (rule 29) as the degree of the root, right

square bracket (rule 40), left bracket (rule 37), the symbol string of the

60



expression representing the inner expression of the root as an expression

(rule 2), and a right bracket (rule 38).

13)In many cases, roots are illustrated missing the degree number. These are

the cases where a square root is presented, and we handle them as a
different operation. The IATEX format of a square root is \sqrt{input}.

Based on this, in rule 13, a square root operation is defined as the
concatenation of a backslash (rule 66), symbol of square root, SQRT (rule
53), left bracket (rule 37), the symbol string of the expression representing

the inner expression of the square root, and a right bracket (rule 38).

14) Powers of values and expressions are described as exponential operations
in rule 14. The expression that forms the base of the exponential may be a
variable name or a number, or even any expression. In the case of an
expression as a base of the exponential, the expression is expected to be
within a parenthesis, as the math notation requires. To make sure that our
grammar complies with this rule, production 69 is used to define the
separate elements that may form the base of an exponential operation.
Whereupon, an exponential component is defined as the concatenation of

the base (rule 69), the caret sign (rule 53), left bracket (rule 37), the symbol
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string of the expression representing the exponent expression (rule 2), and

a right bracket (rule 38).

15)Factorials are also required to be applied on an expression of a single
number or variable, or an expression which will be demarcated by
parentheses, so instead of using the EXP symbol, we will use the SEPEL
(rule 69) as well. The syntax of a symbol string describing an exponential
operation is a SEPEL symbol (variable or parenthesis) followed by an

exclamation mark symbol (rule 47).

16)For the definite integrals, we introduce production rule 15, where the
arguments required to fully define the integral are given, again, in a specific

order, after the LATEX format. Therefore, the symbol INTFIN, representing

a definite integral operation, consists of the concatenation of the backslash
(rule 66), the symbol of the integral (rule 51),an underscore (rule 63) to
signify the lower bound of the integral, a left bracket (rule 37), the symbol
string of the expression representing the lower bound (rule 2), a right
bracket (rule 38), the caret sign (rule 53) to indicate the upper bound of the
integral, a left bracket (rule 37), the symbol string of the expression
representing the upper bound (rule 2), a right bracket (rule 38), a left

bracket (rule 37), the symbol string of the expression inner the integral
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operation (rule 2), a right bracket (rule 38) to indicate the end of the inner-
main expression, the letter ‘d’ (as a terminal symbol introduced in rule 64)
used along the differential factor of the integral, and finally, the
differentiator as an expression (rule 2), again within brackets (rules 37 and

38). The above syntax refers to the symbol string \int {lower bound} ~

{upper bound}{inner expression} d {differentiator} in IATEX.

17)Regarding indefinite integrals, the production follows the same pattern,
with the lower and upper bounds of the integral missing. Therefore, as the
syntax of an indefinite integral is \int{inner expression}d{differentiator} in
IATEX format, this production rule is formed by the concatenation of a
backslash (rule 66), the symbol of the integral (rule 51), a left bracket (rule
37), the symbol string of the inner expression of the integral (rule 2), a right
bracket (rule 38) to indicate the end of the inner-main expression, the
differential symbol, a left bracket (rule 37), the expression inner the integral

operation, a right bracket (rule 38).

18)Rule 18 defines the limits, which in IATEX have the syntax of

\lim_{expressionl \rightarrow expression2}{main expression}, that

describes the limit of the expression “main expression” when expressionl
p p p
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“approaches” expression2. Although we could assume that expressionl is a
variable, and expression2 is either a variable or a number(including infinity
symbol), as most limit operations tend to be defined, in the context of the
formality of the grammar, we assign these two expressions as any expression,
not limiting their content to a variables and number. Later, though, we are
going to eliminate elements with high complexity in these argument

positions.

19)Summation operation is formed as the concatenation of the backslash (rule
66), the symbol of the summation, SUM (rule 58),an underscore (rule 63)
to signify the starting point of the summation, a left bracket (rule 37), the
variable symbol based on which, the summation will operate (rule 7), the
equality sign symbol (rule 41), an expression which value will be assigned
initially to the variable (rule 2), a right bracket (rule 38), the caret sign to
indicate the ending point of the operation (rule 53), a left bracket (rule 37),
the symbol string of the expression representing the ending point of the
operation, a right bracket (rule 38), a left bracket (rule 37), the symbol
string of the expression inside the summation, and a right bracket (rule 38)
to indicate the end of the main expression. Again, at this point, and because

of the definition of the context-free grammar we are introducing, any

64



component of a mathematical operation is assigned as mathematical
expression, which makes a set of unlimited terms prospective for any

argument of an operation.

20)On the same base as the summation operation, production operation
requires exactly the same arguments as an input to be completely defined.
Consequently, as the IATEX format of a production operation is

\prod {variable= expressionl}~{expression2}{main expression}, the
execution of rule 20 that defines this present operation will output the
concatenation of the following symbols: the backslash (rule 66), the symbol
of the production, PROD (rule 59),an underscore (rule 63) to signify the
starting point of the production, a left bracket (rule 37), the variable symbol
based on which, the production will operate (rule 7), the equality sign
symbol (rule 41), an expression which value will be assigned initially to the
variable (rule 2), a right bracket (rule 38), the caret sign to indicate the
ending point of the operation (rule 53), a left bracket (rule 37), the symbol
string of the expression representing the ending point of the operation, a
right bracket (rule 38), a left bracket (rule 37), the symbol string of the
expression inside the production, and a right bracket (rule 38) to indicate

the end of the main expression.
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21) This rule describes the format of the logarithm symbol in our language.
For the complete definition of a logarithm, two arguments are required, the
base of the logarithm and the mathematical expression within the logarithm.

For the formation of the MTEX format of the logarithmic operation, we use

the sequence of a backslash (rule 66), the symbol of the logarithm, LOG
(rule 49), an underscore (rule 63) to signify the base of the logarithm, a left
bracket (rule 37), the symbol string of the expression representing the base
(rule 2), a right bracket (rule 38), a left bracket (rule 37), the symbol string
of the expression inside the logarithm (rule 2), and a right bracket (rule 38).
Alternatively, the logarithm operation may occur without an argument
defining the base. In this case, the syntax is as follows: a backslash (rule
66), the symbol of the logarithm, LOG (rule 49), a left bracket (rule 37),
the symbol string of the expression inside the logarithm (rule 2), and a right
bracket (rule 38). The occurrences where the base is not provided refer to
cases in which no confusion is possible, because of the context given, or in

cases where the argument of the base does not matter.

22)For the natural logarithm, the IATEX format for its representation is

\In{expression}, so we define it as the concatenation of a backslash (rule

66), the symbol of the natural logarithm, LN (rule 50), a left bracket (rule
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37), the symbol string of the expression inside the natural logarithm (rule

2), and a right bracket (rule 38).

23) Rule 23 explains the production of the trigonometric operation of sine. In
IATEX format, sine is represented as a backslash followed by the ‘sin’, which

is followed by the operation, which sine is to be evaluated, in brackets.
Therefore, our symbol representation is the concatenation of the symbols of
a backslash (rule 66), the symbol of the sine operation, SIN (rule 55), a left
bracket (rule 37), the symbol string of the expression inside the sine

operation (rule 2), and a right bracket (rule 38).

24) Identically to sine operation, cosine has the same syntax, which makes rule
24 to generate a word consisting of a backslash (rule 66), the symbol of the
cosine operation, COS (rule 56), a left bracket (rule 37), the symbol string
of the expression inside the cosine operation (rule 2), and a right bracket

(rule 38).

25) Similarly to the previously introduced trigonometric operations, tangent is
described in rule 25, where its IATEX format is \tan{expression}. This

production rule, therefore, defines the word of the tangent as the sequence

of a backslash (rule 66), the symbol of the tangent operation, TAN (rule
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57), a left bracket (rule 37), the symbol string of the expression inside the

tangent operation (rule 2), and a right bracket (rule 38).

26) Binary operator modulus in our grammar is introduced as a distinct
mathematical operator, rather than including it in the rule of binary
operators (rule 3). Two expressions (in this case, we assume that the two
arguments of the modulus operation may be variables or expressions within
parentheses, so that the expression’s component is delimited by the
parenthesis signs) are connected, with the modulus symbol (defined in rule
34) between them. This concatenation forms a symbol string describing the

modulus operation between two expressions.
27)First order derivatives of expressions are described by the expression

followed by an apostrophe, which is the exact same syntax used in IATEX.

In rule 27, the syntax of a first order derivative of an expression (symbol
EXP) is described as the sequence of a separate element symbol (SEPEL),
describing a variable or an expression in a parenthesis, followed by an

apostrophe.

28) To fully define a number as a quantity in our formal language, we define

rule 28 which defines mathematical quantities in a more abstract way, as it
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includes numeric values but also the infinity sign. Therefore, the NUMBER
symbol incorporates integer and real numbers (composed of integer numbers
split by a dot, to define the integer from the decimal part of the number),

and the infinity symbol.

e INTEGER : this symbol is described in rule 29 and defines any

integer type of a value participating in the formula.

e INTEGER DOT INTEGER : this sequence of symbols describes a
real number, where the integer part constitutes of an integer symbol
(defined in rule 29), followed by a decimal separator (the DOT
symbol defined in rule 61 standing for the decimal point), and, again,
an integer symbol that will now stand for the fractional part of the

number.

e BCSL INFS : for the representation of the infinity symbol, the IATE

X format requires a backslash followed by ‘infty’ which is a keyword
for the infinity symbol. The terminal symbol ‘infty’ is given by rule

65 for the symbol INFS (standing for infinity symbol).

29) This rule is a recursive production of an integer number, where an integer

may be any one-digit number represented by a numeric symbol (0-9), as
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designated in rule 30, or a concatenation of numeric symbols with an integer,

for the representation of integers of two or more digits.

The terminal symbols introduced in rules 30-67 are the letters forming the words
of the language we introduce. Consequently, every word that may occur in a
sentence of this formal language must be a concatenation of the terminal symbols

described above.

4.5 Example

After every execution of the formal grammar using the production rules, the output
is a new mathematical formula in a IATEX format. For a better understanding of

the previously introduced grammar rules, we present an example of a randomly
generated mathematical formula symbol string along with its optical representation
and the tree illustrating the production rules executed for the generation of the
formula. The term randomly in this case indicates that any random combination
of the introduced production rules will result to a well-formed mathematical
expression. The randomly generated mathematical formula, making use of the

formal grammar introduced above, is:
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j=Arac{ 3 °{z} }H{[cl|}

and when this symbol string is compiled through IATEX, the output is the optical
representation of the formula, which is:

) 3%
> —
J 21

This output is a result of a sequential execution of production rules of our grammar,
which is initiated by the execution of the production of the start symbol S, and for
every non-terminal symbol of the grammar, the execution moves forward until a
terminal symbol is reached and is mounted on the sentence as a word. The image
below shows the execution tree whose leaves are the words of the generated
sentence in our language. The final form of the sentence is a concatenation of all

the leaves of the tree (which are the terminal symbols), from left to right.

At this point of our work, it is vital to mention that the manual execution of the
production rules can output to any possible mathematical formula, though, when
executed in an application, the loop of the execution can go under a big number of

recursions, which is a problem that can cause issues considering the memory usage.
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GRS FACTOR
1> FRACTION
BCSL FRAC LBR EXP RBR LBR EXP RBR
\ | I l | | \
" "frac' '{' FACTOR '}' '{'FACTOR '}'
EXPONENTIAL ABS
///////:::::;ijj7§ii\\\\\\ VL EXP VL
EXP POW  LBR EXP RBR | | |
| [ J \ | "|'  FACTOR '|°
FACTOR  'A! "{' FACTOR '}’ ‘
'. VAR
NUMBER VAR ‘
', ‘ LETTER
INTEGER LETTER ’
| |
NUMERIC 1z
|3l

Figure 13 - The tree representation of the execution of the production
rules that output the symbol string j > \frac{ 3 “{z } }{ | c | }. The
execution terminates when all the symbols in the symbol string are

lowercase, indicating that they are all terminal symbols. Similarly, to

the presented example, more complex MF can be formed.

4.6 Syntactical and Logical Restrictions

Each generated mathematical formula is based on the execution of the production
rules making our grammar. The grammar is a tool that ensures that the outcome
of the rule execution will be a syntactically valid sentence, which in our case is
going to be a mathematical formula, taking no notice of the semantical correctness

of it. Consequently, it is not necessary that the newly formed formula will combine
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mathematical elements that their associations will make sense. The generated
formula is forwarded to a second layer of processing. During this second step, every
formula which was generated using the formal grammar undergoes a set of checks.
There are several rules to define the validity of the generated formulas in terms of
semantics and syntactical optimization. The checks that the formula goes under
are in a form of constrains that describe any mathematical formula found in a
scientific document in the field of engineering. By this, it is clarified that formulas

describing theoretical mathematics are out of our area of interest.

The checks are critical because they aim to preserve the integrity of the formula

regarding the syntax of it, and they are presented as restrictions on the formulas:

e Syntactical restrictions

The restrictions that try to eliminate the redundant notation which was caused by
the grammar rules and does not supply any additional functionality to the elements
of the formula. Table 6 illustrates the different cases where excess notation was

detected in the formula, and representative examples are provided.

e Logical restrictions

These restrictions deal with undefined forms of mathematical expressions and

indeterminate forms and values in the formulas that when found in specific
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positions in the formula, the formula does not make sense. Logical restrictions are

presented in Table 7, along with examples that embody each distinct case.

Syntactical Restrictions

Restr. No Description example 1 example 2
S1 Redundant parentheses x |(x-1)]
y>(3)
S2 Double parentheses ((x-y))
S3 Double absolute value signs ||x-v|
Table 6 - The syntactical restrictions in a
generated formula.
Logical Restrictions
Restr. No Description Example 1 Example 2
1
, x3-2
L1 Low border greater than high border —'dx
x!
4
Variable in differential not in z 3.9
X -
L2 7 dy
function of integral : '
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Variable in start value not in 10
Ak
LS 7
argument of summation n=1
Starting point in summation greater
L4 Ok
than upper limit n=10
Variable of limit "approaching" a 1
Ls lim I
: : . x>0y +1
value not in the function of the limit
Le False inequality 3<1 4=9
Square root principal: value inside
L~ V-2
the root must be non-negative
Logarithm principal: value inside the
Ls log(-7) log(0)
logarithm must be positive
Logarithm principal: value inside the
Lo In(-2) In(0)
natural logarithm must be positive
Lo Indeterminate forms o0 + (-0) 0*(o0)
. 0 X
Ln Undefined forms 0 0
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) 00 00

Lo Indeterminate forms — —
0 0

L3 Indeterminate forms 1* 009

Table 7 - The logical restrictions in a generated
formula.

In the case that a syntactical restriction is detected in the generated formula, term
which violates the restriction may be modified, and the generated formula may
process to the next step of the procedure. When a logical restriction is occurred,
the formula is considered invalid, and is rejected — will not be taken under

consideration for further processing.

Let us consider an example of a generated mathematical formula such as

k
1

We can see that this formula is syntactically correct. The variable of the differential
of the integral (element y), though, does not occur in the inner function of the
integral, which does not make sense for an integral declaration. This is also what
rule L2 indicates, making the formula invalid. As a result, this generated formula

is going to be rejected.
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For a second example, we have the formula 2.2 below, which also includes an

integral. In this example, there are many restrictions violated.

3
1
a= f dx (2.2)
50 16 2)]

According to S1, the denominator of the function inside the integral has redundant
parenthesis, which, if missing, the context of the formula would not be affected.
Logical restrictions are eligible to transform the formula to a more simplified one,
rejecting redundant elements inside the formula. After processing the formula 2.2,
applying the rule Si, the unneeded set of parentheses will be removed, so the

formula will turn into 2.3.

3
1
a= ——dx (2.3)
L9 Ik=2]

There are no further syntactical restraints to be violated in this example, so we
will now check the logical restrictions. Regarding the logical restrictions, there are
L1 and L2 to be infringed. When logical rules are violated, the generated formula
may not be transformed to a valid one, and it simply gets rejected. Therefore, for
the execution of the syntactical and logical rules, we will initially check for the
logical restraints in a formula. In the case that there is no violation of them, the
execution may proceed to the check of the syntactical restraints, otherwise, the

formula will be rejected directly.
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4.7 Generated Formulas

In this section, we present examples of formulas that were generated by the

execution of the production rules. Each generated sentence of the formal language
is formed by symbols that form the encoding of a mathematical expression in IAT
EX, and the optical representation of the formulas is also provided. The examples

are collected in Table 8.

Generated formula visualized in IATEX Valid
M Yes
wu
—2 | >b
h>=¢g—3 Yes
v 62
6 fQ ﬁda
b >— x”OH Yes
7
N
v <= Z sin k ©
d=4
d > kﬂ': No
/ - 5
limg_; > < v/m
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Table 8 — In this table we present examples of randomly generated
mathematical formulas and evaluate their logical validity according to the rules
presented above. Any generated formula will be rejected as invalid if one or
more occurrence of constraints from Table 7 is applied to the formula.

5. Detecting and Recognizing of Pseudo-Algorithms in

Scientific Documents and SPN representation
5.1 Introduction

Technical documents are formed by several modalities including plain text,
diagrams, tables, algorithms, images etc. Algorithms have a significant place in
technical documents not limited in publications in the field of computer science
and software engineering, but moving further to computer vision, bioinformatics

etc. In this work we present the extraction and recognition of algorithms and their
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components in scientific technical documents. The intend here is the processing of
any image illustrating a page of a technical document to detect any algorithmic
component inside the image and analyze it for understanding purposes. In other
words we aim to detect algorithmic components in an image of a technical
document based on their structural features in the text and represent them in a
Stochastic Petri-net form for evaluating its functional behavior. The process is
divided into two different processing parts. The first one is the detection and the
extraction of the algorithmic components in a document and the second one is the
translation of it into a graph and its SPN representation. Specifically, the first part
consists of two steps; the first one is the detection of the sections of the document
that describe the algorithm. In the second step we perform image processing so we
can extract information about the component of it and proceed to the recognition
of the algorithm. Finally, in the second part, the generation of the graph for the
algorithm and its SPN mapping is described in an effort to express the algorithm

first level functional associations.
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5.2 Optical Detection of Pseudo-codes in Documents

5.2.1 Extraction of different text blocks in documents

It is always an interesting idea to follow a recognition process that attempts to
simulate the way the human brain interprets the algorithmic components in the
documents. Thus, here we attempt to follow such an approach that attempts to
emulate the detection and recognition of pseudo algorithms in technical documents
at a high level of representation. The first step towards this simulation is the
extraction of the distinct components in the document, so that we can then
recognize whether each component describes an algorithm in it, or not. This process
is part of the pre-processing of the input document, as the images representing the
entire technical document will undergo different layers of modifications. These
images are further segmented into blocks to be examined for algorithmic
components. Thus, a pyramidal reduction scheme methodology can be used for the
recognition and extraction of the various components of the document. According
to this methodology, the image is subject to repeated smoothing and subsampling
until we reach a point to which the individual structural parts of the image are
distinguished [37]. For this purpose, a variety of different smoothing kernels may
be used, mainly changing depending on the size of the font used in the text found

in the document. Thus, here for the simulation of the pyramidal reduction, and in
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order to maintain all the information of the initial image, we simulate the result of
a higher level of the pyramid using dilation. Dilation is one of the morphological
transformations used on binary images where a kernel is used and based on its size,
the area of the objects in the binary image increases. This way, the larger the
dimensions of the kernel, the more the area that will be merged and included in a
distinct block. After multiple tests on sample documents and based on the IEEE
Standards which require normal text to be single-spaced in 10-point font, the kernel
which would output the most accurate recognition results was a 7x6 sized kernel.
This size of the kernel is large enough to ensure that the extracted blocks will not
be one-word text blocks, but will contain sets of words, and at the same time it
must be small enough not to perceive the whole document as a single block. Ideally,
this size of kernel will return the input image split in blocks, where each block will
represent the title, or a paragraph, a sequence of paragraphs, an image, or an

algorithm etc.

5.2.2 Pyramidal image representation

A pyramid is a multi-scale image representation which is used for the detection of
objects in images using different scales [38]. During this representation, the input

image at its original size is located at the bottom of the pyramid, and in each next
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layer, the image of the previous layer is resized and smoothed using Gaussian
blurring. Each image is progressively subsampled until it has reached a size

(minimum size), where no further resizing is needed.

In the following images we can see the different layers produced through the
pyramidal process. While moving towards the higher layers, it is notable that,
although the details of the image are not available, there is additional information
about the structure of the elements in the image, such as the number of text blocks
existing in the input image in forms of headlines, paragraphs or pseudo-algorithm

blocks [39].
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function KSAnp(PROGRAM p, CONCEFTSLICE ¢)
returns: function from St rEvENTto R

et £ = {}
let N be the longest acyelic path in the SDG of p
for each s; i Statements(e)
for cachuy in PV{c)
let d;; = Dist(p. sy, FinalUse({Statements(c).v;))
endfor
let )y =min; d;
let £¥=FU {50 ""\."' }
endfor :
return &

Figure 5: Key Statement Analysis ‘BallEick' St yle

tation (normalized by concepr size) which one con-
cept contributes to the computation of another. T o
compute this we use an approach based on the slice-
based coupling metric of Harman er al. [14]. This
approach is a coupling metric, similar to the cohesion
metrics of Bieman and Ott [25],

The metric is computed using the principal vari-
ables of a concept. The nmion of slices (rescricted
1o concept ) is then formed. This is the part of
¢ which contributes to the computation of the prin-
cipal variables of ¢. The w eigh of the edge from
< to ¢ is considered to he the relative amount of ¢
(normalized by the of ¢') which Jies in the union
of slices. This normalized ‘amount of computation’
forms a crude way of determining the amount of ¢
which contributes to the computation denoted by e,

The algorithum starts with an empty graph (G) and
goes throngh each concepr (the 3 loop) adding in
w eigh tingdrom each of the other concepts (the 7
loop} in the graph. Fo b pair of concopts, the
union of slices on principal variables, Clomp, is com-
puted and this is used to determine the eontribution,
Clont, that one coneept makes to the other, This con-
tribution is reformulated into a metric value betw een
0 and 1. by ealenlating its size relative to the sze of
the whole contriburing coneepr.,

7 A Case Study

This sectiopresen 13 a case study which illustrates
the application of the four algorithins introduced in
the paper. The program concerned (see Figure §) is
based on one drawn from a large financial services or-
ganisation and, among othier things, caleulates mort-
gage repa ymens. In the example, w eha veused a
library of 25 concepts and their associated evidence
to generate concept hindings and segments,
Suppose that the mortgage praduets of the organi-
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function CDA(ProGram p. DovainMonre D)
returns: CONCEPTGRAPH

let G = {}
for eache; € Canceptaip. D)
for cach ¢; € Concepts(p, D) (j £ i)
for each variable v, in PV{e;)
let 3 = Stice(p. { Finall'se{e;, v 1}

endfor
let Comp = |, sk
let Cont = Clomp N Statementsic;)

let &f = G
let G = G U {(ci. 5. M)}
endfor
endfor
return (7

Figure 6: The Concept Dependency Analysis Algo-
rithm

sation are to be overhauled. The legacy system which
computes mortgage payments is to be reverse and
reemginested, Specifically, consider the seenario in
which an engineer is looking to locate the code which
calenlates mortgage payments to re-nse it {possibly
in an amended form) in the re-engineered system.

Thus, the roverse engineer is secking, initially. to
retain the code for caleulating mortgage interest,
while discarding the inder of the
natural step would be to identify the code which
implements mortgage calculations.  Unfortunately
pure slicing cannot help unless the engineer kno ws
which variables are important for this computarion.
The engineer may be only partially familiar with the
code and, therefore, unable to select a suitable vari-
ahle or set of variables. Concept assignment ean
be used to produce a sel of con tiguousstatements
for which there is evidence that the code performs
actions relating to mortgage interest, but the en-
gineer cannor simply extract and rense this code,
since the code sequence is not an exccutable sub-
program. How eer, hy forming the ECS for the
Calculate:Nortgage In tees tconcept the reverse
engineer can extract the code of interest as a wxe-
cutable sub-program.

Selecting the ‘calenlate mortgage interest’ concept
produces the concept highlighted by light shading in
the loft-hand column of Figure 8. Figare 1 depic
the fragment of the domain madel nsed to locate tl
concept, Using the algorithm in Figure 8 the ECS
for caleulate mortgage interest addivionally identifies
the boxed lines shown in the figure. Notice that the
line of code
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Image 1 - Example of input image as .jpg format
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Image 2 - Different levels of text structure extraction after

pyramidal transformation of input image
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In order to achieve these results while still being capable of extracting information
of the image component by using the morphological transformation of dilation. It
is performed on greyscale images, and it preserves the shape of elements in the
image, using a structuring element and a kernel for the transformation operation.
Through dilation, the area of an element found in the input image is enlarged by

gradually increasing the boundaries of the regions of the foreground pixels.
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A Case Study
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Image 7 - Page Dilation Example: Dilated image
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Image 8 - Page Dilation Example: Dilated image

with a 4x4 kernel after frame removal

Note that, based on the IEEE Standards that are followed in the published
scientific documents we process and adjust the kernel of the dilation process
accordingly, so that we detect text paragraphs as text blocks rather than word

blocks (in this case, kernel size would have to be smaller).
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5.2.3 Decomposition and classification of the pseudo code

sections

Following the pre-processing of an input image representing a document page, we
have now obtained a set of rectangular blocks, in form of images, with each block
representing a distinct element of the document. The main goal is to examine each
of these blocks, using image processing techniques, and make decisions on whether
they include algorithmic components. After a series of examples, we have identified
four attributes which may indicate the given image describes algorithmic
component. These four attributes are the text structural definition represented by
the indents in the text, the number of specific keywords found in the text, the
occurrence of pairs of certain keywords which may indicate loops, and percentage

of the image area occupied by text.

5.2.4 Attributes used in the decision making

For each extracted block, four different features are evaluated for the identification
of the block component as algorithmic: 1) the number of the indents in every line
of the text appearing in the block, 2) the number of the keywords detected in the

text of the block, 3) the aligned pairs of specific keywords that indicates beginning
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and end of loops or selection branches, and 4) the amount of the area in the block

which is not occupied by text.

1. Indents in text

Algorithms are usually distinguished by human eye easily because of the structure
of the text forming it, which is something that differentiates algorithms from plain
text in paragraphs of technical documents. It is ordinary for a text paragraph that
almost all of the text lines in it to begin at the leftmost point of the line, with the
exception of the first line which formally includes an indent. In contrast to plain
text components, algorithmic components, in a great number of cases, use indents
at the very beginning of the lines to signify, along with the keywords, the levels of
the execution and make the set of the algorithm commands more readable and
maintainable. For the system to detect the number of the indents in the text of
the block, the extracted text block is again dilated over a new kernel, which is now
able to detect the structure of the text according to the higher size of the font in
the text of the image. Following this and starting from the leftmost and topmost
point of the image, when an indent is detected, it is considered the first level of

nesting of the command component.
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let G = {}
for eache; € Concepts(p, D)
for each ¢; € Concepts(p, D) (j #1)
for each variable vi in PV (¢;)
let s = Slice(p, { FinalUse(c;,vi)})
endfor e ——
let Comp = |, s&
let Cont = Comp N Statements(c;)
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return G

Image 10 - Text structure shape

Image 9 - Text structure shape indicates plain text in paragraph

indicates algorithm form

Accordingly, for each subsequent indent occurred, which will start towards to the
right side of the previously detected indent (this is the case where the x coordinate
of the detected pixel on the image will be higher than the x coordinate of the last
level of nesting), the level of the nesting will be increasing by one. Finally, the
number of the maximum level of nesting in the text will be kept as the feature

describing the indents of the text in the image block.

Usually, blocks with maximum number of indents equal to one will not be
considered to be algorithms, while blocks with a maximum number of indents being

higher of one will have a higher probability to represent an algorithm.
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let G = {}
for eache; € Concepts(p, D)
for each ¢; € Concepts(p,D) (j # 1)
for each variable vy in PV (c;)
let s;. = Slice(p, {FinalUse(cj,vx)})
endfor
let Comp = |J, sk
let Cont = Comp N Statements(c;)
let A7 = Sondl
let G=GU {(ry.r'J. M)}
endfor
endfor
return G
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Figure 14 - In the images above we see the extracted block after the intensity inversion
where the white areas represent the text detected in the block while the black areas
represent empty areas. In the left one we distinct the first level of loop nesting while in
the one on the right we have proceeded gradually to all three levels of loop nesting.

2. Keywords

Another feature that contributes to the identification of a text as an algorithm, is

the number of keywords that may be found in it. Each different programming

operation is identified by a keyword, which is universal, especially for the case of
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pseudo-algorithms, where not a specific programming language is used, thus there
are no limitations on the syntax. For example, loops are usually described through
the keywords ‘while’ and ‘for’, which describe the ‘while loop’ and ‘for loop’,
respectively. In the same context, there are keywords like ‘if’; ‘then’, ‘function’,
‘end’, ‘input’, ‘output’, etc. that may also describe algorithmic operations, but are
also very likely to appear in plain text components. Finally, the keyword ‘return’
is largely found in function declarations or other algorithm components and can be
used in the detection of an algorithm. For the extraction of the keywords in each
block, we applied OCR methods where all the words of each text line were

recognized.

3. Aligned pairs of keywords

Following the detection of specific keywords that are very often found in algorithms
and describe specific algorithmic operations, we move one step forward and we aim
to recognize pairs of keywords which are strongly connected to each other, and
which are expected to be found one below the other in the algorithm. These sets
of keywords usually indicate the start and end of a loop or a branch, or even the

opening and closing of a method e.g. {‘for’,’endfor’}, {‘if’,’else’}, {‘else’,’endif’} etc.

For the detection of this kind of sets, following the detection of the keywords which

are to be examined, the position on the image of these keywords is also kept and
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compared to the rest of the keywords, towards the y coordinate of them. We have
also set a small threshold for the deviation of these words in the x axis, for error

purposes.

4. Amount of text occupied in image block

It is very ordinary for a text paragraph the text component to dominate towards
the empty space in a text image. In order to have a measure for the amount that
the lines of the text occupy in the mage, we will take under consideration the
percentage of the x coordinates for which an imaginative line x=xg is more than
80% full of “black” (text). Following this process, in cases of text paragraphs, this
percentage is going to be higher than 90%, while in algorithms, it will hardly exceed

50%. The following examples will give a better idea of the concept.

Two images in original and dilated form. On the upper one, the percentage of
columns of pixels that are more than 80% full of text is 93, while on the lower
example we see this percentage being 40%, giving a greater chance to describe an
algorithm. Finally, after taking under consideration the evaluation of these four
attributes, our system gives out the decision of whether the block contains an
algorithm or not. This is a rule based approach as we have set specific values as

thresholds for the classification process.
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5.2.5 Learning

As a next step on the recognition of algorithms in published technical documents,
we used a machine learning technique, in addition to our previously introduced
rule-based approach, in order to improve the accuracy of the detection of the
algorithms-pseudocodes from an input document image. For the prediction process,
a logistic regression model was used, which is one of the simplest and commonly
used Machine Learning algorithms [39|. This is a useful classification method
mainly for solving a binary classification problem such ours, where we get to decide
whether an input image is a description of an algorithm or not. Logistic regression
is a statistical method for predicting binary classes. The outcome or target variable

is dichotomous in nature.

After the dilation of the input image and the extraction of the several text blocks
in the image, a logistic regression model is built, which based on specific features,
will predict whether a text block contains an algorithmic component or not. The
features used for the model to be trained and tested are the four attributes used in
the rule-based classification process: the number of the indents in the text block,
the number of keywords found, the count of the aligned pairs of keywords and the
percentage of the text in the block image area. In this approach we included an

extra feature representing the number of the pairs of the keywords regardless of
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their placement in the text, in order to check for unstructured text of algorithmic

nature.

Logistic Regression is a special case of linear regression where the target variable
is categorical in nature. It uses a log of odds as the dependent variable. Logistic
Regression predicts the probability of occurrence of a binary event utilizing a logit

function.

The equation of the linear regression, where Yi represents the dependent variable
and Xi represents the independent variable, f stands for the function, and p stands

for the unknown parameters.

After the application of the Sigmoid function on linear regression (p=1/1+e™), this

is the logistic regression function which describes our model.

Properties of Logistic Regression:

e The dependent variable in logistic regression follows Bernoulli Distribution.

e Estimation is done through maximum likelihood.
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¢ No R Square, Model fitness is calculated through Concordance, KS-

Statistics.

The Dataset

A number of 213 images were collected and processed to form our dataset. Each of
the image input was an image representing a pdf page from a technical document,
mainly in a two-column format. Each of the input images was preprocessed and
gone through the pyramidal process in order to produce the several blocks which
would be evaluated for the detection of algorithmic component. After the
preprocessing, these collected pdf images in a .jpg format would give almost 3000

block elements for our dataset.

As an example of how the input images will be split into several blocks, the table

below describes the several image blocks extracted from the following image:
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erences as follows:

Definition LL4. (Direct Defence Preference): Given A, B €
A, an argument A defends itself against an argument B which
defears A iff A is directly preferred to B. We define a direct
defence preference DPref between argumenis A and B as
DPref — A 4 B, which means that argument A is directly
preferred 1o argument B due to defence by A itself. For a given
abstract argumentation framework (AAF) and extension £, we
denvie the set of all direct defence preferences as DPrefs =
{DPref,, .., DPref,.}.

Definition WL, (Indirect Defence Preference):  Given
A,B,C € A an argumeni C defends an argument A against
an argument B which defeats A iff A is indirectly preferred
1o B because of defence by C, where A, B,C are all unigus
arguments. We define an indirect defence preference IPref
berween arguments A and B as IPref = A > B, which
means thar argument A is indirecily preferred 1o argument
B due to defence by a third argument C. For a given
abstract argumentation framework (AAF) and extension £,
we denote the set of ali indirect defence preferences as
Prefs = {IPref,,.... IPref . }.

‘We define a set of all defence preferences PrefSet as
follows.

Definition 1IL6. The set of all defence preferences PrefSet
for a given abstract argumentation framework (AAF) and
extension € is as follows: PrefSet = DPrefs\) IPrefs, where
DPrefs and 1Prefs are the sets of direct and indirect prefer-
ences given in Definition 1114 and Definition IHL.5 respectively.

IV. COMPUTING AND VERIFYING PREFERENCES

We present Algorithm 3 that takes an abstract argumentation
framework (AAF) and an extension (consisting of conflict-free
arguments) as input and computes the set of all the defence
preferences PrefSet that are valid for the acceptability of the
arguments in the input extension. Algorithm 1 computes the
set of all direct defence preferences DPrefs and Algorithm 2
computes the set of all indirect defence preferences [Prefs.

Algorithm 2 Compute indirect defence preferences
Require* AAF, an ahstracl argumentation framework
&,an isting of conflict-free arguments
Ensure: [Prefs, the set of all indirect defence preferences
1: procedure CUMPUTB]NDIRBLTPREFERBNCE.S(AAF £)
for cach A € £ do
3 Attackers +— {B | (B, A) € R} o get all
3 attackers of A
for all B € Atlackers do
Defenders « {C | C# A,C € £,(C,B) €
R} & O # A attacks B & defends A
& if Defenders # ( then
7 for each ' & Defenders do
&
9

LB ]

IPrefs « IPrefs U {A >¢ B}
return [Prefs

Algorithm 3 Compute all defence preferences

Require: AAF, an abstract argumentation framework
Require: £, an extension consisting of conflict-free arguments
Ensure: PrefSet, the set of all defence preferences

4 1: procedure COMPUTEPREFERENCES(AAF, £)

x DPrefs + ComputeDirectPreferences(AAF, £)
k3 IPrefs + ComputelndirectPreferences(AAF, £)
4 PrefSet « DPrefs U IPrefs

LH return PrefSetl

Algorithm 1 Compute direct defence preferences.
Require: AAF, an abstract argumentation framework
Require: £, an extension consisting of conflict-free arguments
Ensure: DPrefs, the set of all direct defence preferences

i: procedure COMPUTEDIRECTPREFERENCES(AAF, E)

z for each A € £ do

3 Attackers « {B | (B, A) ¢ R} > get all
attackers of 4

a for all B ¢ Attackers do

5 Defenders + {C | C # A,C € £,(C,B) €
R} = O # Aattacks B & defends A

& if Defenders = then & if B not attacked by
any

% DPrefs + DPrefs U{A >, B}

8 return DPrefs
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Algorithm 4 takes an abstract argumentation framework
(AAF) and a set of all defence preferences PrefSet as input
and computes an extension £'. Algorithm 5 verifies that the set
of all the defence preferences PrefSet returned by Algorithm 3
is comect by using Algorithm 4. If the computed extension £
returned by Algorithm 4 is equal to the initial extension £
given as input 1o Algorithm 3, then PrefSet is the comreet set
of all defence preferences.

The following theorem is used for verifying the correciness
5 of the set of all defence preferences PrefSet.

Theorem IV.1. Algorithm 3 is sound in that given an abstract
argumentation framework AAF and an extension £ as input,
the output preference set PrefSet, when applied to the AAF
results in the input £ (under a given semantics).

‘We now present a worked example to show the computation
of preferences by using Algorithm 3 and also show how they
can be verified by using Algorithm 5.

6 @o ®

Figure 3. Example abstract argumentation framework AAFa

7 283

8 N o S T T, B e o W e R

Table 9 - The several image parts extracted from an image through dilation. Fach
individual image part is a new image in the dataset

Evaluation of learning process

For the evaluation process of the model performance and our features effectiveness,
our dataset is divided into a training set and a test set. A number of experiments
took place, with different ratios of data splitting, 70%-30%, and 80%-20% and 90%-

10% following the Stratified cross validation technique.

The metrics of our model on the specific features returns an accuracy of 0.99, while
the precision was the absolute 1 and the metric of recall equal to 0.88. Overall

metric is the F1 score, which was calculated at 0.94, implying a satisfying model
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for our predictions. The metric of the area under the ROC curve is 0.997 which

also verifies the model promising results.

Predicted label

400

I'rue Negatives False Positives o
= 428 0
300
§ 200
False Negatives True Positives =
e -4 32 100
- 0
0 1
Accuracy 0.991
Precision 1.0
Recall 0.888
F1 0.941
AUC 0.997

Image 12 - Output metrics of accuracy, precision, recall, F1 score and area

under the curve.
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Figure 15 - Receiver Operating Characteristic(ROC) curve is a plot of the true positive
rate against the false positive rate. It shows the tradeoff between sensitivity and
specificity. AUC of 1 shows the ability to identify all true positives while avoiding false
positives. Applying a learning process in our system is highly promising as the
system will be able to recognize algorithmic components in the image which are
not easily distinguished to be pseudo-algorithms.

5.3 Translation of algorithms to graphs and SPN

5.3.1 Generation of graph

After the recognition of any image block as an algorithm, we move towards the
analysis of the algorithmic component. For the part of the understanding of the
algorithm, we aim to extract the pseudo-algorithm text and, based on the structure

of it, generate a structural graph which represents the flow of the pseudocode steps
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execution. This is an automated procedure that will make use of previously used

techniques which will now have different contribution to the system process.

For the process of the translation of an image with algorithmic content into a
structural graph, the image will first get analyzed in a structural level, where the
distinct lines of text will be detected and the upper and lower bound of each line

will be kept and visualized with blue and green color, respectively.

The name of the keyword initiating each line, along with the number of the nesting
level will be the two factors which make the decision for the potential splitting of
the algorithm in an additional branch. This results to some lines forming a branch
by themselves, while other lines getting merged and encapsulated in a single

branch.

let G = {}
for eache; € Concepts(p, D)
for each ¢; € Concepts(p, D) (j # 1)
for each variable v in PV (¢;)
let s;. = Slice(p, {FinalUse(cj,vi)})
endfor
let Comp = |J,, sk
let Cont = Comp N Statements(c;)
et M = 9ol
let G =GU{(ci,c;,M)}
endfor
endfor
return G

Image 13 - Input block with algorithmic
components detected input to the process of
graph representation
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let G = {}
for eache; € Concepts(p, D
for each ¢; € Concepts(p, D) (j #1)
for each variable vy in PV (¢;)
let i = Slice(p, {FinalUse(c;,vi)})

ENATO
let Comp = U Sk
let Cont = Comp N Statements(c;

let M — ‘ﬂ’

ot |
ail
let G = GU {(c;,¢5, M)}

Image 14 - Detected text lines and their borders
in input image block

1 llet G={}
2 Ifor eache; € Concepts(p, D) I
3 |f0r each ¢; € Concepts(p,D) (j # /')|
4 [for each variable vy in PV (¢;) |
5|let s; = Slice(p,{FinalUse(c;j,vi)}) |
6 [endfor |
let Comp = J,, sk
7 |let Cont = Comp N Statements(c;)
let M = 1Contl

|eil

let G =GU{(ci,c;, M)}

8 [endfor
9

10 [return ]

Image 15 - Algorithm lines processed, assigned to
branches, and some are grouped as a single
branch
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For every line, the first word detected in it is assigned to be the command-word,
the keyword which represents the type of the command that is running in this

specific line.

During the process of the analysis of the text component in a block of an algorithm,

the placements of the command-word are evaluated for

e the decision of each line-command to be assigned to a new branch or an

existing one, and

e the next line-command that will be executed if we described the steps of the

algorithms with a flow chart diagram.

The process of assigning line-commands to branches and enumerating them,
followed by the process of detecting the order of the line-commands during the

execution process is presented in the next flow chart diagram.
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Figure 16 - Detected algorithm is translated to a graph representation in the form of a
flow chart graph. Each number corresponds to a numbered pseudo-code block as
presented above. Branches with line-commands where a condition is checked to be
true or false in order the execution to move on accordingly, are represented with the
diamond shapes. In this representation, evaluation of True is depicted with the ‘yes’,
while False statements in conditions are described with ‘no’. The rest of the branches
are illustrated with rectangles.
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5.3.2 Stochastic Petri Net Representation

The main purpose for this work is the translation of an image illustrating an
algorithm into a Stochastic Petri Net representation, which is the final step of the
system’s process. This step takes place after the graph representation as it enhances
the structural representation offered by a graph with the functional information

(timing and synchronization) of the translated component.

Every line-command, in order to be executed needs to have the token which will
cause the transition to fire. In cases of branches with conditions, the evaluation of
the condition will give or not the token to the place representing the branch in

order for it to be executed and move to the transition.

In our representation, the circles represent the places, and the rectangular

shapes represent the transitions.

Linear execution of commands

For the commands of the algorithm that follow a linear execution, the sample SPN

is presented below. In this example illustrated in the image below, the branches 7
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and 8 will execute linearly, one after the other, and the transition will fire when

the evaluation of the commands in branch 7 is complete.

Evaluate7
True

Figure 17 - Linear execution of command in SPN

Non-linear command execution

In cases of for loops, repetitions, branches such as if statements, steps, and
switching cases, the execution of one line-command does not necessarily ensure the
execution of the next in line branch. This is where the direction of the execution
depends on the validity of the condition in the command-keyword of the branch.
In the following example, we present the execution of a for loop, where the

command lines nested in the loop will get executed only while the condition checked
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in branch is true. For this purpose, for the conditions detected after the command-

keywords, a new place is created in order to check exclusively the veracity of the

condition.

Evaluate2
True

Evaluate2check Evaluate2_
True True
eval eval

Figure 18 - Branch 2 represents a for loop and branch 2check contains the check of the
value of the variable to be within limits in order for the execution of the loop to
continue. While this check returns True, the Evaluate2check transition will get fired
and the execution will proceed with branch 3. Otherwise, Evaluate2 will fire and the

execution will move forward with the commands in branch 10.
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According to the two previously described examples, the generated SPN of the
image translated to the flow chart diagram above is presented below. The execution

begins at the place with the name Start and finishes at the place which does not

point to any transaction - in our case this is place 10.

1
2 [for eachc; € Concepts(p, D) |
3 [for each ¢; € Concepts(p, D) (j #1)]
4 |for each variable vy in PV (c;)
5|let s; = Slice(p, {FinalUse(c;,vi)}) |

6 |endfor |

let Comp = |, sk

7 |let Cont = Comp N Statements(c;)

= GUI{((?,-,(Tj,j’\[)}

Figure 19 - Segregation of commands or set of
commands that belong in a loop
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Figure 20 - SPN representation of a complete
algorithmic component in a document
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6. Conclusion and Future Work

In this thesis, we introduced a methodology to parse and recognizing mathematical

formulas in IATEX format. A rule-based methodology to parse and understand a

mathematical formula is introduced and our purpose is to translate it to an SPN
representation by first converting it to an attribute graph representation. As an
additional functionality to our parsing methodology, we utilized a formal language
to be able to create new randomly generated mathematical formulas as an input
for parsing and also to provide syntactical evaluation to the detected formulas. As
numerous research efforts in the field of mathematical formulas processing have
taken place through times, our effort was focused on the parsing of mathematical
formulas with the aim of converting them into an SPN state machine, which
provides, not only structural information, but also functional information such as

timing and synchronization.

As the main contribution of this work, we implemented a system to automatically

parse technical documents in order to detect algorithmic component. The presented
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hybrid approach offers good satisfying results from the prediction model and which

makes it a unique successful methodology as a methodology to handle algorithms

from a computer vision perspective. In addition, the SPN representation of the

detected algorithms enhances the understanding of the machine towards the

analysis of technical documents containing pseudo-algorithms and at the same time

offers a different approach towards its functional implementation.

For future work, further extensions of the document pseudo algorithm can be made

by converting math formulas included in pseudo algorithms into SPNs and

comparing the outcomes. For example, semantical analysis and interpretation of

mathematical formulas can be studied and incorporated into the initial algorithm.

Finally, additional applications of the algorithmic component analysis methodology

can be explored.
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