
COMPLEX INTERACTIONS BETWEEN
MULTIPLE GOAL OPERATIONS IN AGENT

GOAL MANAGEMENT

A Dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

By

SRAVYA KONDRAKUNTA
M.S., Wright State University, 2017

B.Tech., Koneru Lakshmaiah University, 2015

2021
Wright State University

WRIGHT STATE UNIVERSITY
GRADUATE SCHOOL

January 4, 2022

I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER MY
SUPERVISION BY Sravya Kondrakunta ENTITLED Complex Interactions between Multiple
Goal Operations in Agent Goal Management BE ACCEPTED IN PARTIAL FULFILL-
MENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy.

Dr. Michael T. Cox, Ph.D.
Dissertation Co-Director

Dr. Mateen M. Rizki, Ph.D.
Dissertation Co-Director

Dr. Yong Pei, Ph.D.
Computer Science & Engineering PhD Program Director

Barry Milligan, Ph.D.
Vice Provost for Academic Affairs

Dean of the Graduate School

Committee on
Final Examination

Dr. Michael T. Cox

Dr. Mateen M. Rizki

Dr. Michelle A. Cheatham

Dr. Matthew M. Mollineaux

Dr. Michael L. Raymer

ABSTRACT

Kondrakunta, Sravya. P.h.D., Department of Computer Science & Engineering, Wright State Univer-
sity, 2021. Complex Interactions between Multiple Goal Operations in Agent Goal Management.

A significant issue in cognitive systems research is to make an agent formulate and

manage its own goals. Some cognitive scientists have implemented several goal operations

to support this issue, but no one has implemented more than a couple of goal operations

within a single agent. One of the reasons for this limitation is the lack of knowledge about

how various goals operations interact with one another. This thesis addresses this knowledge

gap by implementing multiple-goal operations, including goal formulation, goal change,

goal selection, and designing an algorithm to manage any positive or negative interaction

between them. These are integrated with a cognitive architecture called MIDCA and applied

in five different test domains. We will compare and contrast the architecture’s performance

with intelligent interaction management with a randomized linearization of goal operations.

iii

Contents

1 Introduction 1
1.1 Thesis Contributions . 4
1.2 Cognitive Architectures . 6
1.3 Goal Operations in Cognitive Architectures 10
1.4 Outline of the thesis . 12

2 MIDCA 14
2.1 The Goal Graph . 17
2.2 Goal Operations . 19

3 Goal Selection 22
3.1 Formal Representation of Goal Selection 23
3.2 Implementation and Empirical Evaluation of the Goal Selection operation . 25

3.2.1 The Construction Domain . 25
3.2.1.1 Experimental Design: The Construction Domain 26
3.2.1.2 Empirical Results: The Construction Domain 28

3.2.2 The Restaurant Domain . 30
3.2.2.1 Experimental Design: The Restaurant Domain 31
3.2.2.2 Empirical Results: The Restaurant Domain 32

3.3 Summary of Goal Selection . 34

4 Goal Change 35
4.1 Formal Representation of Goal Change 36
4.2 Implementation and Empirical Evaluation of the Goal Change operation . . 39

4.2.1 The Construction Domain . 39
4.2.2 Experimental Design . 40
4.2.3 Experimental Results . 41

4.3 Summary of Goal Change . 42

5 Goal Formulation 44
5.1 Formal Representation of Goal Formulation 45
5.2 Implementation and Empirical Evaluation of the Goal Formulation Operation 46

iv

5.2.1 The Naval Mine Clearance Domain 46
5.2.1.1 Experimental Design: The Naval Mine Clearance Domain 48
5.2.1.2 Empirical Results: The Naval Mine Clearance Domain . 48

5.2.2 The Labor Relations Domain . 50
5.2.2.1 Experimental Design: The Labor Relations Domain . . . 51
5.2.2.2 Empirical Results: The Labor Relations Domain 52

5.3 Summary of Goal Formulation . 53

6 The Interaction among Goal Operations 54
6.1 Example Scenario Depicting the Interaction of Goal Operations 55
6.2 Goal Management when Multiple Goal Operation Co-occur 59

6.2.1 Effects of an Anomaly on the Agent 60
6.2.1.1 Negative Effects on Agent’s Goals 61
6.2.1.2 Negative Effects on Agent’s Health 62
6.2.1.3 Anomaly Repetition . 64
6.2.1.4 Summary of Negative Effects of an Anomaly on the Agent 65

6.2.2 Importance of the Agent’s Goals 65
6.2.3 Estimation of Agent’s Resources: 66
6.2.4 Goal Management when Multiple Goal Operation Co-occur 66

7 Implementation and Empirical Evaluation of the Goal Management Strategy 69
7.1 The Marine Survey Domain . 69

7.1.1 Experimental Design: The Marine Survey Domain 73
7.1.1.1 Goal Selection in The Marine Survey Domain: 74
7.1.1.2 Goal Change in The Marine Survey Domain. 75
7.1.1.3 Goal Formulation in The Marine Survey Domain. 76

7.1.2 Empirical Results : The Marine Survey Domain 76
7.2 The Construction Domain . 82

7.2.1 Experimental Design: The Construction Domain 83
7.2.1.1 Goal Selection in The Construction Domain: 84
7.2.1.2 Goal Change in The Construction Domain: 84
7.2.1.3 Goal Formulation in The Construction Domain: 84

7.2.2 Empirical Results: The Construction Domain 85
7.3 Summary of Interaction among Goal Operations 87

8 Literature review 88

9 Conclusion and Future work 99

Bibliography 102

A Appendix A 117

B Appendix B 120

v

List of Figures

1.1 Soar Architecture . 6
1.2 Act-R Architecture . 7
1.3 Clarion Architecture . 9
1.4 Icarus Architecture . 10

2.1 MIDCA Architecture . 15
2.2 Goal Graph Knowledge Structure . 18
2.3 An Instance of the Goal Graph . 19

3.1 Result(Smart Vs. FIFO) with deadline = 5: The Construction Domain . . . 28
3.2 Result(Smart Vs. FIFO) with deadline = 10: The Construction Domain . . 29
3.3 Result(Smart Vs. FIFO) with budget = 20: The Restaurant Domain 32
3.4 Result(Smart Vs. FIFO) with budget = 50: The Restaurant Domain 33

4.1 An Instance of the Goal Change Operation in the Construction Domain . . 40
4.2 Result for different number of resources and without goal change operation 41
4.3 Result for different number of resources and with goal change operation . . 42

5.1 Naval Mine Clearance Domain . 47
5.2 Result comparing the goal formulation with GDA, baseline, and Eager

agents: The Naval Mine Clearance Domain 49
5.3 Result comparing the goal formulation with GDA, baseline, and Eager

agents: The Labor Relations Domain . 52

6.1 Example scenario in the Naval Mine clearance example 55
6.2 Affects of the anomaly on the agent . 61
6.3 Anomaly Effect: Negative Effects on the Agent’s Goals 62
6.4 Anomaly Effect: Negative Effects on the Agent’s Health 63
6.5 Anomaly Effect: Anomaly Repetition . 64
6.6 Goal Priority by Goal Type . 65
6.7 Resource availability to achieve the goals 66
6.8 Algorithm to select goal operations . 67

7.1 The Marine Survey Domain . 70

vi

7.2 Working Example in The Marine Survey Domain 72
7.3 Result(Time Vs. Percentage of goals): Single Hot-spot scenario in The

Marine Survey Domain . 77
7.4 Result(Time Vs. Percentage of goals): Multiple Hotspot scenario in The

Marine Survey Domain . 78
7.5 Result(Anomalies Vs. Percentage of goals): Single Hot-spot scenario in

The Marine Survey Domain . 79
7.6 Result(Anomalies Vs. Percentage of goals): Multiple Hot-spot scenario in

The Marine Survey Domain . 80
7.7 Result(Time Vs. Number of Hot-spots): Multiple Hotspot scenario in The

Marine Survey Domain . 81
7.8 An Instance in The Construction Domain 83
7.9 Result(Times Vs. Percentage of goals): The Construction Domain 85
7.10 Result(Anomalies Vs. Percentage of goals): The Construction Domain . . . 86

vii

List of Tables

3.1 Formal Representation of the Goal Selection Operation 24
3.2 The time values to stack blocks . 27

4.1 Predicate Transformations for the Goal Change Operation 37
4.2 Choose Function for the Goal Change Operation 38

5.1 Formal Representation of the Goal Formulation Operation 45
5.2 Formal Representation of the Problem . 46

7.1 Method for structured search (SS) . 75

viii

Acknowledgments
I am genuinely honored to take this opportunity to express my profound gratitude towards

my advisor, Dr. Michael T. Cox. I find his enthusiasm toward seeking new research

problems very contagious. In addition, he constantly inspires me through his thoughts, work

ethic, and professionalism. I respect him for his guidance throughout the pursuit of my

Ph.D. Furthermore, he always provides enough space and time to develop my ideas while

encouraging me to ask questions. He profoundly impacted my personality and my research

approach.

In my second set of acknowledgments, I would like to extend my thanks to Dr. Michelle

A. Cheatham. Dr. Cheatham is one of my role models in the Department of Computer

Science at Wright State. Her skills, along with her cheerful and friendly attitude, always

remind me to remain humble. Furthermore, I want to extend my gratitude to Dr. Matthew

M. Molineaux. Dr. Molineaux constantly inspires me through his confidence, work ethic,

and solution approaches to research problems. In addition, I want to thank Dr. Mateen M.

Rizki for his support throughout my master’s and Ph.D. Finally, I express my thanks to Dr.

Michael L. Raymer for his ideas and suggestions on my thesis.

I want to show my warmest appreciation to my family for their immense support. First, I

thank My parents, Tulasi Ram Anjaneyulu Kondrakunta and Varalakshmi Kondrakunta

for their courage, patience, unwavering support, and encouragement throughout my six long

years in graduate school. Second, I thank my sister, Dr. Bhagya Sree Divya Kondrakunta,

my best friend, cheers me up every time. Finally, I thank My Husband, Dr. Venkatsampath

Raja Gogineni, for his support in all aspects of my life. I deem myself very lucky to have

such a wonderful family.

The National Science Foundation supports this research under grant 1849131, AFOSR

Grant Number FA2386-17-1-4063, and the Office of Naval Research under grant N00014-

18-1-2009.

ix

I dedicate this thesis to my parents, my sister, and my husband.

x

Introduction

One of the main goals of artificial intelligence is to build a robust Intelligent Physical System

(IPS). The IPS must hold several types of intelligent behaviors to work robustly in the

real world. In theory, multiple types of intelligence [39] exist. Some include linguistic

intelligence, logical-mathematical intelligence, spatial intelligence. Linguistic intelligence

deals with the ability to learn, understand, express using a language. Logic-mathematical

intelligence implements one’s ability to reason about numbers and quantitative parameters.

Spatial intelligence includes the ability to detect patterns, understand and manipulate patterns

around the space. Over the years, because of the advent of technology, we are approaching

the idea of IPS. A couple of examples include Sophia [54], and Waymo [98]. Although

both are awe-inspiring accomplishments, they exploit only linguistic or spatial intelligence.

However, robustness demands all kinds of intelligent behaviors. Furthermore, an agent

containing all types of intelligence will compare to human intelligence and will possess

human-like capabilities.

We claim that there are four main capabilities that the IPS must hold. The capabilities

include perception, thought, action, and communication. Perception gathers information

about the world around it. Thought processes the collected information, generates goals,

and creates plans to achieve them. Action performs behavior in the real world to execute

the plans and achieve the goals. Finally, communication can express, justify, and explain

its thought process to other humans or agents. We also claim that the agent-containing

all four capabilities will be called a IPS with general intelligence. Several research areas

1

attempt to reach general intelligence behaviors in autonomous agents. Some of these include

developing the agents through neural nets, reflex agents, utility-based agents, learning agents,

and cognitive architectures. This thesis will consider the approach of cognitive architectures,

which subsumes many of the approaches mentioned above. We use a goal-based cognitive

architecture, where we expect the agent to achieve specific goals. We argue that one of

the critical abilities for such a goal-based IPS is to manage its goal set (i.e., the agenda of

the agent) by reasoning about selecting, formulating, monitoring, achieving, evaluating,

delegating, sharing and changing its goals.

We define a goal as a future state that the agent wants to achieve. The state could

include the environment and the objects around the agent, including itself. An external

source can provide goals to the agent, or the agent can formulate its own goals. In most

cases, humans provide an agent with multiple goals, and it must be able to achieve a majority

of these. In such cases, the agent should be wise to perform several operations on the goal

set to be highly flexible and robust. These operations include:

• Selecting and ordering its goals;

• Formulating new goals to tackle new situations;

• Monitoring if the conditions of the environment are valid to achieve a goal;

• Achieving and performing actions in the real world;

• Evaluating if an agent achieved its goal;

• Delegating a goal to a cooperative agent when it cannot achieve its goals;

• Sharing a goal with a cooperative agent when one agent cannot achieve it;

• Changing its goal set when the environment changes.

Such goal operations make an agent flexible and self-reliant, and they improve common sense

and both interpersonal and intrapersonal intelligence. Specifically, this thesis focuses on

2

three goal operations: goal selection, goal change, and goal formulation. But, in addition to

examining the mechanism of each goal operation in isolation, we investigate the interaction

between goal operations. Here We develop a novel goal management algorithm when

multiple-goal operations interact. This contribution stands as the central idea of the thesis.

The goal selection operation selects one or more goals from the goal set of the agent.

For example, humans perform goal selection almost every day. We prioritize personal goals

according to individual preferences and work toward achieving the goals. Similarly, the

goal selection is required for the agent when it has a list of goals to pursue, and the agent

cannot spend time on all of them simultaneously or when there is a limit to the amount of

resources present. In the two scenarios above, the user must provide specific goals to the

agent. which is very tedious when working on complex domains. So, goal selection makes

the agent self-reliant when multiple goals exist.

The goal change operation helps the agent change its current goal to a similar goal,

such that the main objective of the original goal remains the same. This operation arises

when the current goal is no longer achievable due to several reasons. For example, some of

the reasons are that the situations in the world might have changed and the current goal is

no longer valid, the agent is out of resources to achieve the current goal, or some other agent

has already achieved the goal. In the situations mentioned earlier, if the agent cannot change

its goal, it might get stuck while acting, repeat the completed task, or perform actions that

make it seem unintelligent. So, goal change makes the agent flexible and intelligent while

protecting itself and its environment.

Finally, the goal formulation operation helps the agent generate its own goals without

the help of an external source. For example, consider a situation where the agent has more

than a sufficient amount of resources. There could be instances when the agent can use

those resources to achieve a goal that might be useful to the user in the future or to handle

an emergency like a fire. In the latter case, the agent should formulate a goal to save itself

when a person is not around to save the agent. Goal formulation will be crucial in these and

3

similar situations. This, goal formulation allows the agent to be self-reliant, smart, and a

reasonable entity.

Apart from working on the above three-goal operations individually, we also focus on

the interactions among the operations. It is essential because negative interactions may lead

to poor performance if not chosen carefully, and neglected positive interactions represent

missed opportunities. The next subsection details the contributions of the thesis.

1.1 Thesis Contributions

The thesis focuses on developing a goal management algorithm for handling multiple-

goal operations that co-occur. We study all the goal operations under a relatively new

research area called goal reasoning. Goal reasoning research that casts thinking in terms of

goal operations [23, 58, 61, 45] is relatively recent and underdeveloped. The problem of

interaction has never before been examined. The following are the main contributions of the

thesis:

• This work implements the goal selection operation using three strategies. Specifically,

we implemented a first in first out strategy [58], a cost to benefit strategy (which draws

inspiration from the work of [55]) and Hill Climbing [63] strategy (which is a greedy

algorithm). The first in first out strategy strategy represents achieving the goals in the

order the agent receives. The cost to benefit strategy analyses the costs and benefits

of attaining all individual goals in the goal set and chooses one goal with the best

cost to benefit ratio. Finally, Hill Climbing implements a greedy algorithm based on

domain-specific values for selecting goals. We implement the selection operation in

the construction, restaurant, and marine survey domains. In addition, we also provide

a formal representation of the goal selection operation (Chapter 3, 6).

• This work implements the goal change operation in several domains. Some domains

4

include the construction domain and the marine survey domain. We implement the

goal change operation by changing the predicate or arguments of the goal. We also

formally represent the goal change operation (Chapter 4, 6).

• This work implements a novel method to perform the goal formulation operation in a

naval mine clearance domain, a labor relations domain, a construction domain, and

a marine survey domain. The thesis also formally represents the goal formulation

operation (Chapter 5, 6).

• The main contribution of the thesis is the novel goal management method to aid in

an agent’s decision-making when multiple-goal operations co-occur. In addition, the

thesis also implements and tests the method across two different domains to prove its

generality. The domains are the marine survey domain and the construction domain

(chapter 6).

The idea of individual goal operations is not new. Several research efforts realize

the implementation of each goal operation to some extent. Still, no one has attempted

to integrate all of the operations in a single agent framework. This thesis addresses the

knowledge gap present by developing a novel method for the agent to handle such situations.

We evaluate the developed method by generating experimental evidence and showing its

statistical significance. The generated evidence also supports the following claims.

• Claim 1: Individual goal operations aid the agent in many situations. We show that the

individual goal operations are limited in their ability to handle many decision-making

situations robustly.

• Claim 2: There is a measurable advantage to the agent performance with the inclusion

of the goal management. In a dynamic environment where there is a possibility of

interaction of multiple goal operations, we need the extra decision-making algorithms

for the agent to act robustly.

5

This work implements goal operations using a cognitive architecture called the Metacog-

nitive Integrated Dual-Cycle Architecture. Before diving deep into it, the following subsec-

tion provides a brief background on several alternative cognitive architectures.

1.2 Cognitive Architectures

There are many cognitive architectures in development; some well-known cognitive archi-

tectures in the research area are SOAR, ACT-R, CLARION, and ICARUS. We will focus on

the primary operations and principles of each of these architectures.

Figure 1.1: Soar Cognitive Architecture [66]. The SOAR interacts with the real world
through the perception and action modules. All the data is initially stored in short-term
memory and then classified into long-term (procedural, semantic, episodic) after processing.

Soar [66] derives its name from this basic cycle of State, Operator, And Result. Fig-

ure 1.1 depicts the general architecture of SOAR. It contains perception and action modules

to interact with the world. The SOAR architecture also has different types of memory called

short-term, procedural, semantic, and episodic. It also has a decision module that would

6

make decisions according to the algorithms implemented. Soar updates the procedural

memory module with the help of reinforcement learning techniques.

The theory behind developing the cognitive architecture is the Problem Space Hypothe-

sis. While attempting to achieve a goal, the Problem Space Hypothesis states that an agent

can achieve the goal-oriented behavior by searching through a space of possible states (a

problem space). At each step, a single operator is selected and then applied to the agent’s

current state, leading to internal changes, such as retrieval of knowledge from long-term

memory or modifications or external actions in the world. The Soar architecture is the oldest

and most famous cognitive architecture. Hence, it works on several game domains like

Towers of Hanoi, Tic Tac Toe, and others that might use AI agents such as StarCraft and

Minecraft.

Figure 1.2: Act-R Cognitive Architecture [91]. The Act-R interacts with the real world
through the motor, speech, vision, and Aural modules.

Figure 1.2 depicts the general architecture of Adaptive Control of Thought - Rational

(ACT-R) [91, 102, 5]. It contains vision, aural, motor, and speech modules to interact

with the world. It also has a central decision module that would make decisions called

7

the productions module. This module works similarly to the procedural knowledge rules.

Initially written in LISP, the developers created Act-R in 1973.

Unlike Soar, ACT-R focuses on human cognition and human intelligence to understand

them closely and attempts to reproduce the observations. Scientists try to understand

human behavior by various physiological tests. In general ACT-R looks like a programming

language. It is a framework to create multiple models, which adds the user’s assumptions

to the agent. In addition to using deductions from psychology experiments conducted on

humans, ACT-R also uses information about the domain to model cognition. The ACT-

R evaluates the results by comparing the accuracy of results, measuring the time taken

to perform an operation, and from the neurological data of FMRI. One of the ACT-R

implementations, which is very successful, is ”the cognitive tutor for mathematics.” One

of the works relevant to this thesis here is an integrated model of cognitive control in task

switching [3] which discusses how humans control their everyday tasks and switch between

those tasks. The author developed a cognition control model for these abstractly and then

linked six basic behavioral effects to the model. They have finally compared the results of

task switching with task repetition and depicted them in graphical format. The agent showed

an increase in its performance because of the task switching.

Next is CLARION, Connectionist Learning with Adaptive Rule Induction On-line

[99, 100]. Figure 1.3 depicts the architecture of CLARION with its four subsystems (Sun,

2007). In the metacognitive subsystem, the architecture does not behave like a single-

minded system. Instead, it has the flexibility to choose its behavior by collecting all available

information through other subsystems and interacting with them. CLARION has four

subsystems that have their roles.

• Action-centered subsystem: This controls all types of actions that the agent performs.

• Nonaction-centered subsystem: This maintains the knowledge of the agent.

• Motivational subsystem: This provides the inspirations for perception, action, and

8

Figure 1.3: Clarion Cognitive Architecture [99]. The image also depicts all four subsystems
of Clarion: action-centered subsystem, nonaction centered subsystem, motivational subsys-
tem, and Meta-cognitive subsystem.

cognition.

• Meta-cognitive subsystem: This monitors and modifies all the other subsystems.

The ICARUS architecture [96, 16] took some of its assumptions from the Soar and

ACT-R cognitive systems. However, the ICARUS architecture stands alone from other

systems by focusing on perception and action to develop a cognitive system.

Figure 1.4 depicts ICARUS, its memories, and processes. The modules of ICARUS

9

Figure 1.4: Icarus Cognitive Architecture [96]. Icarus interacts with the real world using
perception and action modules.

include learning, problem-solving, skill execution, and conceptual interface. All the modules

are cascaded, and the lower-level modules help or provide their outputs to the higher-level

modules. ICARUS [15, 67] also performs the goal selection operation from a given set of

goals by assigning priority values to each goal. The range of the values varies from 0 to 10;

the value zero indicates the least priority, and ten indicates the highest priority. However,

the author did not put much focus on how the values are assigned.

We introduced four different cognitive architectures in this subsection. In addition, we

also discussed the operations and motivations behind each of the cognitive architectures. The

next subsection describes the implementation of the goal operations in the four architectures.

1.3 Goal Operations in Cognitive Architectures

The Soar architecture heavily concentrates on selecting, evaluating, and achieving its

problem-solving operators as opposed to goals. Therefore, goal reasoning task is not

directly accomplished or implemented in the Soar. However, the agent performs goal rea-

soning to some extent using operators. However, we believe that goal reasoning could be a

10

crucial improvement in some domains of Soar architecture. For example, consider Soar’s

implementation in one of the game domains mentioned in the earlier sections. Consider the

game of tic-tac-toe. Instead of always playing towards the goal to win the game, the agent

can lose the game. One example of such a case is when trying to teach a kid. Therefore, we

can use reasoning capabilities directly and quickly with the goal reasoning module instead

of choosing from many operators in the problem space (or) waiting for one goal from a user.

ACT-R produces a goal-directed behavior by assigning weight values to goals. One

version of ACT-R presents a Goal-Restricted Production System (GRAPES) model of ACT-

R [4]. In addition, ACT-R also implements the sub-goaling of a given goal. Sub-goaling

refers to breaking down a goal into several small goals that achieve the original goal when

combined. Although it seems like ACT-R could perform some level of goal reasoning, both

Soar and ACT-R are limited to one top-level goal. Explicitly, the focus of both architectures

is not on goal reasoning or goal operations. However, implicitly, both architectures perform

goal achievement.

Clarion emulates the goal-directed behavior with the help of its four reasoning subsys-

tems. First, Clarion performs goal setting, which is similar to the selection/ formulation

operation in the Motivational Subsystem (MS). The Action Centered Subsystem (ACS)

focuses on goal achievement. The Meta-Cognitive Subsystems (MCS) reasons about goals

and pushes the MS toward goal setting. Although the Clarion does not implement goal

reasoning with explicit goal operations, it implicitly performs some goal operations like

selection/formulation.

The Icarus architecture implements the goal selection operation by assigning priority

values to goals. In addition, it performs goal achievement and goal re-achievement if environ-

mental conditions make the goal invalid. So, the agent must be performing implicit/explicit

goal monitoring. Furthermore, Icarus also performs goal formulation operations using rules

in the long-term memory.

After examining the goal reasoning capabilities in each architecture, we believe that all

11

the architectures would greatly benefit from including explicit goal reasoning in each of them.

Let us now turn our focus toward implementing all the goal reasoning capabilities using one

architecture. We present the architecture in the next chapter 2of the thesis. However, before

diving into MIDCA, let us look at the organization of the thesis document in the following

subsection.

1.4 Outline of the thesis

We organize the next chapters of the thesis in the following format. Chapter 2 presents the

background knowledge about MIDCA. Chapter 3, chapter 4, and chapter 5 represent the

goal selection, goal change, and goal formulation operations in detail. Chapter 6 represents

the ideas on the interactions of the goal operations. It also presents a novel algorithm that

addresses the problem. Chapter 8 outlines the literature review and offers the ideas of other

researchers in a similar field. Finally, chapter 9 concludes the thesis.

More specifically, chapter 2 introduces the cognitive architecture which we use for this

thesis. It describes the cognitive architecture in general and discusses goal management in

the architecture with a knowledge structure called the goal graph. This chapter will also

talk about various other goal operations and briefly describes each of them. In addition, this

chapter will provide the user with the necessary knowledge to understand the context and

content of the thesis.

Chapter 3 discusses the goal selection operation in detail and introduces a formal

representation of the operation. In addition, we also describe the domains in which we

implement the operation. Next, chapter 3 presents the evaluation method used in the domains

to test the agent’s performance and finally depicts the results in graphical format.

Chapter 4 explains details about the goal change operation. First, it introduces the for-

mal algorithm of the operation and the formal representation of the predicate transformation,

which aid in the implementation of the operation. Next, we describe the domain in which

12

we implement the operation. The domain is called the construction domain. Finally, we

provide the method of evaluation and show the results.

Chapter 5 provides the details about goal formulation. It also provides a formal

representation of the operation. This chapter also describes the rich domains in which the

operation is implemented and presents the evaluation method. Finally, we present the results.

After describing these three goal operations, chapter 6 introduces the main problem

which the thesis attempts to solve. Then, it explains the developed method to manage the

interaction of goal operations. It also evaluates the implementation against several different

agents. Finally, the chapter 7 provides the performance comparison among different agents

in graph format.

Chapter 8 provides the literature review for this thesis from relevant papers. This

chapter includes the work on various goal operations like selection, change, and formulation.

In addition, it also looks at several cognitive architectures to provide a contextual comparison

with the MIDCA architecture. Furthermore, the chapter also presents work on multi-agent

systems to present future extensions of the current work. Finally, we will explore some of

the planning agents and psychology papers relevant to the thesis.

Chapter 9 summarizes the thesis work and its contributions and presents future ideas to

develop and refine the research further.

13

MIDCA

The Metacognitive Integrated Dual-Cycle Architecture (MIDCA)[22] is the cognitive archi-

tecture for our implementations. The concept of cognition was around for a long duration.

However, Cox initially put forth the concept of computational metacognition [19, 24] having

taken his inspiration from the work of Nelson and Narrens [77] on metamemory in the early

1990s. The current architecture was first proposed in 2011 by Cox, Oates, and Perlis [25]

which was influenced by the work of Don Norman [79] and Michael Lewis [68]. MIDCA is

capable of both cognitive and metacognitive tasks. In addition, MIDCA uses an approach

called Goal-Driven Autonomy (GDA). GDA manages the goals of an agent, which allows the

agent to better distinguish between goals and actions. The earliest GDA approach, INTRO,

originally described an agent that generated its own goal while trying to explain an anomaly

in the world [20].

As the name suggests, MIDCA has two cycles of operation: one a cognitive cycle and

the other metacognitive. The cognitive cycle achieves goals related to the physical world to

manage the environment. The metacognitive cycle works on meta-level goals to manage the

cognitive cycle. Figure 2.1 below depicts the MIDCA architecture. The orange represents

the cognitive cycle, and the blue represents the metacognitive cycle. Six phases in each

cycle perform distinct operations. The operations of each phase [22] in the cognitive layer

are as follows.

14

Figure 2.1: MIDCA Cognitive Architecture. MIDCA operates on three levels: ground
level, object level, and meta-level. The ground level represents all the real-world objects
and simulators. The object level (cognition) processes information from the ground level
and interacts with the ground level to achieve goals in the real world. The meta-level
(metacognition) works on the object level and modifies the agent’s cognition. In addition,
the orange color represents the phases in the cognitive cycle, and the blue color represents
the phases in the metacognitive cycle.

• Perceive: Monitors the environment (Ψ), inputs percepts (−⇀p) and updates the repre-

sentations of the world in MIDCA as states (sj). Currently, we represent the world

states using a first-order predicate-argument format.

15

• Interpret: Validates all the state information, detects anomalies and reasons about

them to formulate any new goals (gn). This phase also gets all the goals from the

user and stores them in the goal agenda (Ĝ̂ĜG). The agenda is represented by a structure

called the goal graph (see section 2.1).

• Evaluate: Checks to see if a goal state is achieved or not. If it is, then it removes the

achieved goal from the agenda.

• Intend: Performs the goal selection operation. This phase chooses a current goal set

(gc) from all the goals in the goal agenda by following various strategies.

• Plan: Gets all the selected goals from the Intend phase. It checks if a plan (πk) exists

to achieve gc. If a plan exists, then nothing happens. Otherwise, it generates sequence

of actions (πk = ⟨α1, α2, ...αn⟩) to constitute the current plan.

• Act: Iterates through the plan and performs one action per cycle. This is executed in a

simulator or in the real world when MIDCA is connected to a robot or other physical

platform.

The phases in the metacognitive cycle perform similar actions to the cognitive cycle.

For example, the Monitor phase monitors the cognitive cycle. The meta-level Interpret

phase generates the goals. The meta-level Evaluate phase evaluates if an agent achieved its

goal. The meta-level Intend phase selects the current goal from the meta-level goal set. The

meta-level Plan phase generates a plan to achieve the current goal. Finally, the Control phase

performs actions on the cognitive cycle. In MIDCA, there is no strict ordering of the phases;

it provides the flexibility to add or remove phases according to the application demand.

Earlier, we introduced a structure called the goal graph. It is a knowledge structure that helps

MIDCA maintain its current goal set. The following section describes the functionalities

and importance of the goal graph.

16

2.1 The Goal Graph

As introduced earlier, a goal graph helps manage the goal and the plans for the current goal

agenda; it does this by providing partial ordering to all the unique goals. A goal graph is a

simple data structure representing each goal as nodes, root nodes, or leaf nodes. According

to the nature of the goals, there might be one or more roots for the goal graph tree structure.

For example, consider the two goals on(A, B) and on(D, C), where letters represent toy

blocks stacked on one another. These two goals are similar, so they are considered different

root nodes with the same priority. Later, Intend will select one of them based on various

factors. MIDCA initializes an empty goal graph whenever MIDCA first starts. Below is

how each phase interacts with the goal graph:

• Perceive: No interaction

• Interpret: Gets the goals from the user and inserts them into the goal graph. Interpret

also inserts the formulated goal when an anomaly is detected and places it above the

root node to prioritize it.

• Evaluate: Checks to see if the agent achieved its current goal and, if so, removes the

goal set and the corresponding plan from the goal graph.

• Intend: Checks to see if the goal graph is empty. If it is empty, then the agent skips

Intend. Otherwise, it checks if the current goal set is empty. If it is, then based on

strategies (example: first in first out, hill climbing, or information measures), select a

new goal set and assign it to the current goal. If a current goal exists, then Intend is

skipped.

• Plan: Checks the goal graph for a matching plan. If one exists, it checks validity. If

no matching plans exist or are not valid, the Plan phase generates a new plan and

inserts it into the goal graph.

17

• Act: Iterates over the plan from the goal graph and implements one action at a time

until the agent achieves all actions in the plan.

Figure 2.2: The goal graph knowledge structure. The knowledge structure contains three
main classes: goal, goal node, and goal graph.

Figure 2.2 presents all the components of the goal graph knowledge structure. There

are three classes for the goal graph: goal graph, goal node, and goal. The goal graph class

creates the overall goal graph by establishing the set of roots. Each element of the roots is a

goal node object. In addition, the goal graph also stores all the plans. Each plan contains a

pointer to the goal that it is trying to achieve. The goal node contains the goal class object

and has pointers to the parents and children of each goal. Each element of the parents and

children is also the goal node’s object. The goal class constitutes a goal in the format of a

predicate and its arguments.

The goal graph knowledge structure is a directed tree/lattice structure, an instance of

the structure is shown in Figure 2.3. A child node has lower precedence than its parent, and

all the sibling nodes have equal priority. Here the ¬onfire(A) is the root and has the highest

18

importance. The child nodes on(B, D), on(A, B), and on(D, C) have equal priority, with the

preference being less than their parent goal.

Figure 2.3: The figure depicts one instance of a goal graph knowledge structure. The block,
A, not being on fire is the goal with the highest priority. That is the root node in the image.
The child nodes are the goals to stack blocks on top of one other.

In conclusion, the goal graph helps MIDCA better manage its goals by inputting all

goals, validating them, and organizing them in a tree structure. A goal graph validates a

goal by checking the predicates and arguments of a goal and checking if they are present in

agents’ memory. The validation is essential to easily read, achieve, and remove from the

goal graph. Since we learned how MIDCA manages its goals, let us look at the operations

MIDCA can perform on its goals.

2.2 Goal Operations

One of the factors in determining an agent’s performance is its capability to create, under-

stand, and manage its goals. MIDCA instantiates such capabilities as goal operations. There

are several actions which the agent can perform on goals [23, 58], some of which are as

follows.

• Goal Selection: Selection of one or more goals from the goal agenda (Ĝ̂ĜG) of the agent

to become the current goal set (gc). This operation helps organize the goals of the

agent by prioritizing them according to the situation using various strategies [58].

19

Currently, we use three approaches to perform this operation, which we elaborate on

in subsequent chapters.

• Goal Change: Changes the current goal set (gc) to another set because of several

reasons. Some of the reasons include sudden environmental changes or the agent

being out of resources to achieve gc. In such situations, checking for alternate goals

that could satisfy the goal. Currently, we achieve goal change through predicate

transformations in MIDCA [23]. Look at chapter 4 for details.

• Goal Formulation: An agent generating its own goals (gn) without the help of an

external user. Goal formulation is a high-level task that is the basis of the GDA

approach. Currently, MIDCA formulates its goals when a discrepancy is detected and

perceived as a problem [61, 64]. We include details about the operation in chapter 5.

• Goal Delegation: Transfer of one or more goals to either a human or another agent.

This operation is advantageous in a multi-agent domain [45]. Some triggering reasons

for this operation are: the agent has more goals than it can accomplish, or the agent

does not know how to plan the goal.

• Goal Achievement: Checking the current goal set (gc) and monitoring it to see

whether the agent achieved its goal or track the percentage of the goal achieved.

Currently, MIDCA checks to see if the whole goal is achieved or not.

• Goal Monitoring: Monitoring the changes in the environment and updating them

to see if the reasons for the goal are still valid [33]. Monitoring is an essential goal

operation as it continuously informs the agent when planning or plan execution may

no longer be necessary.

Among the above goal operations, this thesis focuses on three: goal selection, goal

change, and goal formulation—the reasoning behind why the mentioned three-goal operation

20

is not the focus of this thesis. Let us now examine each of them in detail in the following

three chapters.

21

Goal Selection

The goal selection operation allows the agent to choose and prioritize its goals according to

its preferences. This powerful operation enables the agent to be independent when multiple

goals exist in its agenda. We implement the goal selection operation in the Intend phase of

MIDCA. Intend is a good fit for goal selection because the selection is the main functionality

of the phase. Currently, three strategies exist to implement the goal selection: First In First

Out (FIFO) [60], a cost to benefit ratio from the domains [60], and a greedy hill-climbing

selection [63]. We discuss the first two methods in the subsequent paragraphs. However, we

describe the greedy approach in the later chapters.

As the name suggests, FIFO selects the goals in the same order as the input. It is

a simple implementation method for the selection operation. In this method, an agent

accomplishes the goals without considering limitations or available resources. This method

is suitable when a relatively unlimited amount of resources exist in the world, and the order

of the goals does not matter. However, since that is not the case in many domains, we

developed a second method that uses domain-specific performance metrics.

The idea to use the metrics from domains to prioritize or select goals was inspired by

the work of Johnson [55]. Johnson uses domain-specific metrics in an airport domain. The

airport domain contains one airport and two office buildings, which are partially observable

to the agent. The agent’s goal is to locate an officer in the environment within a specific time

limit. As the agent traverses through the environment, it updates its knowledge and reduces

the amount of uncertainty about the world to find the officer. The author uses information

22

metrics such as area traversed and time-lapsed to select the goals. First, the author calculates

the ratio of information measure (area traversed and time) for every goal. After which, the

algorithm selects the goal with a minimum ratio because it minimizes the uncertainty of

the location. This work is strictly domain-specific, and we cannot implement it in domains

other than time-limited search. In this work, we consider performance metrics similar to

the information measure in each domain to aid in the goal selection. The metrics used to

perform the goal selection will act as a measure of the performance of the agent in that

domain. Currently, the user provides the agent with performance measures for the agent in a

domain. In general, the performance measure ratio is the ratio of a performance measure

over a limiting value related to the specific domain, as represented in the formula below.

Ratio =
Expected Performance measure

Limiting V alue
(3.1)

.

In equation 3.1, the performance measure refers to a resource gain of the agent after

achieving the goal. The limiting value represents the number of resources the agent needs to

spend to achieve the goal.

3.1 Formal Representation of Goal Selection

This section represents the goal selection operation using formal notation. This representa-

tion allows the user to understand the operation with all the necessary conditions to perform

the selection operation.

Table 3.1 tabulates the formalism for goal selection [60]. The Ĝ is the goal agenda

of the agent. All goals in the agenda follow a first-order predicate-argument structure

(px(obja, objb, ..., objy)), where px is the predicate and obja, objb, ..., objy are objects. When

given Ĝ, the goal selection operation verifies three preconditions (pre(δse)) and results in

23

a goal set gc for immediate achievement. The first precondition (pre1(δse)) checks if the

agent’s current goal set is empty. The second precondition (pre2(δse)) iterates through all

goals in agent’s goal agenda, Ĝ, applies the selection function and returns a final goal set

gret. Finally, the third precondition (pre3(δse)) assigns the returned goal gret to the current

goal set gc of the agent and verifies the goal validity. To validate the goal, agent checks if the

predicates of each goal belong to the class hierarchy tree (CL) [8], which is present in the

domain knowledge of the agent. Bergmann [8] presents the notation of the CL, where the

are leaf classes that have a root class, and the root class has a superclass. In addition, it also

checks if all the objects of the goal obj1, obj2, ...objm belong to the objects in the domain

Objs. After satisfying all the conditions in pre(δse) the agent can now output a selected

goal(s) (res(δse)) and work towards achieving it.

Table 3.1: The table presents the formal representation of the goal selection operation.
The operation inputs goal agenda (Ĝ) and output the current goal set (gc) for immediate
achievement. We use δse to represent the goal selection operation. CL represents the class
hierarchy of all predicates, we borrow the notation of CL from [8]. Objs represent all the
objects in the domain.

δse(Ĝ : G) : Gδse(Ĝ : G) : Gδse(Ĝ : G) : G
head(δse) = selection

parameter(δse) = Ĝ = {g1, g2, ..., gn}
pre1(δ

se) = gc = {}
pre2(δ

se) = gret ← argmaxg∈Ĝ{SelectionFunction}
pre3(δ

se) = (gc ← gret) ∧ gret = p(obj1, obj2, ...objm) ∧ p ∈ CL
∧obj1 ∈ Objs ∧ obj2 ∈ Objs... ∧ objm ∈ Objs

pre(δse) = {pre1(δse), pre2(δse), pre3(δse)}
res(δse) = gc = {gret}

So far, we have presented the goal selection operation. In addition, we also represented

the strategies used by the Selection Function in pre2. To meet the second precondition, the

agent starts implementing the strategies (example: FIFO). Although we do not explicitly

represent it in the table 3.1, the agent implements an appropriate strategy to choose the

current goal set gc. The next sections present the implementation of goal selection operation

24

in the construction and restaurant domains.

3.2 Implementation and Empirical Evaluation of the Goal

Selection operation

In this section, we implement the goal selection operation in two different domains [58, 60].

The first is the construction domain, which extends the blocks world domain. The second is

the restaurant domain, which captures and implements the main functions of a real-world

restaurant. We then present the experimental setup and provide the empirical results in each

domain mentioned above.

3.2.1 The Construction Domain

As mentioned, the construction domain is an extension to the blocks world domain, and the

goals generated are to build towers. For example, there are a specific number of blocks in

the domain. Each block has a distinct identifier (A , B , Z). The agent attempts to stack

the blocks on top of one other to build towers (goals). We randomly generate the goals (the

number of towers to construct with their heights). The height of a tower ranged between

one and seven. We have two assumptions for this domain, first no two goals in one goal

agenda (Ĝ) share the same height. In addition, they do not share the same block. Second, If

we use a block named ’A ’ in one tower, we do not use it in a different tower in the same

agenda. The two assumptions are essential to reduce the ambiguity and avoid additional

goal generation.

Initially, we assume all the blocks are in a warehouse, which we do not show in the

simulator. The construction site would be empty at the beginning of each goal set. Whenever

we generate a new goal set, the agent selects one current goal (gc) for immediate achievement.

The agent selects gc by FIFO and the ratio of the performance measures. After selecting gc,

25

the agents generate a plan (πc) to achieve the goal, gc. Agent implements relevant actions

using operators to achieve gc. After achieving gc the agent chooses a new gc. The agent

continuously selects until it achieves all goals in the goal set (Ĝ) or is run out of resources

to achieve any other goals. Interpret generates a new goal set with a new set of resources for

the agent to achieve for experimental purposes. The agent resets the world for the new goal

set by erasing the previous goal.

The operators described in this domain include stack, stack mortared, unstack, un-

stack mortared, pickup, putdown, get from warehouse, put out fire. Stack places one

block on top of another block. Unstack picks up one block from the top of another block.

stack mortared is similar to stack operator, but this is more sturdy with mortar. The agent can

only execute pickup when the block is on the construction site. Similarly, the agent executes

putdown only to place the block on the construction site. Finally, the agent implements

get from warehouse to fetch the blocks from the warehouse.

3.2.1.1 Experimental Design: The Construction Domain

As stated earlier, goal selection operation in the construction domain uses two methods:

FIFO and performance measures. Whenever we initialize MIDCA, Interpret generates a

goal set to construct a certain number of towers. Intend then performs goal selection on the

input using FIFO and performance measure criteria. As explained, FIFO selects gc in the

order of goal generation, and the performance measure calculates the performance estimate

utilizing the ratio of the measures. A scoring function constantly calculates the ratio to help

the agent choose gc.

A scoring function assigns each tower a performance number in the construction do-

main. The performance number quantifies the gain obtained after successfully constructing

a tower within time constraints. For a successful construction of a tower of height ′h′, let us

assume the score achieved is ′h′. Similarly, for constructing m number of towers the merit is

h1, h2, ...hm. A cumulative score is given by 3.2. The towers which exceed the time limit

26

will receive a score of 0.

p̂ =
m∑

n=1

hn (3.2)

The construction of any tower takes time. Hence we consider time as a limiting factor

in this domain. The agent must be more cautious when building tall towers instead of short

towers. Therefore, the time taken to construct a tower increases exponentially with its height.

Thus, the time taken is a nonlinear function. In the current implementation, the user provides

estimates of time values manually. Table 3.2 below presents the values of time taken for all

the possible towers. The units in the virtual simulation are seconds which is not equivalent

to the real world.

Table 3.2: The table presents the time taken by the agent to construct a tower. On the left
column, it represents the height of the tower. On the right column, is its corresponding time.

Tower height Time taken
(sec)

1 1
2 2.2
3 3.4
4 5.4
5 8.4
6 13.4
7 22.4

The agent calculates the ratio of the performance function over the estimated time for

all the goals in the goal set (Ĝ) to choose the current goal (gc). The agent chooses the tower

with the highest ratio first. After the agent achieves the first goal, it selects the second goal

with the second-highest ratio. The agent continuously performs selection until it achieves

all the goals in Ĝ or the agent runs out of resources such as blocks.

C =
P̂

t̂
(3.3)

.

Equation (3.3) shows where P̂ is the estimated performance and t̂ is the estimated time

taken to complete the goal. We evaluate the agent performance by taking in two cases. One

27

has no time limit, and the other has a specific deadline value. Let D indicate the overall

deadline for a particular problem.

3.2.1.2 Empirical Results: The Construction Domain

This section presents the results obtained with the evaluation described earlier. In addition to

different scenarios, we also compare the FIFO and the performance measure (smart method).

Figure 3.1: The result depicts the comparison between smart and FIFO agents with a
deadline of 5 units in the construction domain. The X-Axis represents the problem set, and
the Y-Axis shows the cumulative score obtained by the agents. In this graph, the benefit
received by the agent varies by 50%. In addition, the time required by the agent to stack
blocks varies by 50%.

Figure 3.1 above depicts the results comparing FIFO and the selection method at the

constant deadline of 5 seconds. In addition, we introduce a sudden variation in the time taken

to construct the tower. We either increase or decrease the time value by 50% of its original

value. This variation adds a non-deterministic factor to assess the agent’s performance. As

the graph depicts, the performance measures’ score is higher than using FIFO. In addition,

we also depict the expected scores for each of these methods. Expected methods depict

28

the agent performance in a deterministic environment (with no variation in the time taken).

The x-axis depicts the problem sets (or) goal agenda sets. Each problem set is averaged

across three other sets. The Y-axis presents the agent performance normalized within values

0-5. The maximum percentage of goals achieved by any agent in this experiment is around

35-40%.

Figure 3.2: The result depicts the comparison between smart and FIFO agents with a
deadline of 10 units in the construction domain. The X-Axis represents the problem set, and
the Y-Axis shows the cumulative score obtained by the agents. In this graph, the benefit
received by the agent varies by 50%. In addition, the time required by the agent to stack
blocks varies by 50%.

Similar to the previous results, figure 3.2 above depicts the results comparing FIFO

and the selection method. The variation in time taken to construct the tower remains the

same as 50%. However, we increase the constant deadline to 10 seconds. This graph follows

a similar pattern to the previous results. The graph shows that the performance measures’

achieved score is higher than using FIFO. In addition, we also depict the expected scores

for each of these methods. The x-axis depicts the problem sets (or) goal agenda sets. Each

problem set is averaged across three other sets. The Y-axis presents the agent performance

29

normalized within values 0-5. Any agent’s maximum percentage of goals in this experiment

is between 75-80%. The increase in agent performance is the increase in its deadline to

achieve more goals.

3.2.2 The Restaurant Domain

The restaurant domain is similar to the construction domain. The agent attempts to prepare

food orders within a limited menu. It receives orders from a group of customers simultane-

ously, and each customer might order from one to all the items on the menu. There are fifteen

items on the menu varying in cost. Goals in this domain are to serve the customer their order.

If a customer orders three different items, the agent receives the order as three goals. In one

goal set Ĝ, the agent receives goals from one to eight customers. In this domain, to reduce

ambiguity, we assume that the orders of any two customers might contain the same items

but not in the same order. There are no customers and no orders in the restaurant domain in

the initial state. When MIDCA generates the goal set, the agent prepares orders based on

the limited investment. So, the agent can only prepare a certain number of the dishes for the

fixed investment. So the goal selection is implemented to choose the goals which yield the

best customer satisfaction within the investment amount. We implement goal selection using

FIFO and performance metrics similar to the construction domain. Even in this domain, the

agent must perform some actions using operators to achieve its current goal gc.

The operators in this domain include take order, prepare order, serve order. First,

Take order receives the order from the customer and marks the order state as pending. Then

the Prepare order takes the pending orders and prepares the dish. Finally, Serve order

performs the serving action.

30

3.2.2.1 Experimental Design: The Restaurant Domain

Selection with FIFO is similar to the construction domain in the restaurant domain. However,

the performance metrics selection method is different in the restaurant domain. The limiting

factor is money in this domain instead of the time in the other one. The calculation of both

the functions is as depicted.

A scoring function assigns the score for each customer based on the number of dishes

the customer ordered. The agent receives a quantitative score of ’1’ for each customer’s

order item or goal. So, if a customer orders m items say i1,i2, ...im, then the agent will be

awarded a score which is a satisfaction (see equation 3.4)

p̂ =
m∑

n=1

in = m (3.4)

. The orders which exceed the investment limit will receive a score of 0. We do not assign

scores for partially completed orders.

In addition to score, each item on the menu is also assigned a cost. For example, as

mentioned there are fifteen items on the menu with varying costs. So, if a customer orders

”n” items with each costing m̂1,m̂2,...m̂n respectively, then the overall cost is shown in

equation 3.5.

m̂ =
n∑

n=1

mn (3.5)

.

We depict the equation calculating the performance ratio using both the benefit p̂

and cost factors m̂ in 3.6. The agent selects the order with the maximum ratio to ensure

maximum customer satisfaction. The agent repeats selection until it achieves all the goals in

Ĝ or until it is out of resources.

C =
P̂

m̂
(3.6)

.

31

The next subsection presents the empirical results obtained in the restaurant domain.

3.2.2.2 Empirical Results: The Restaurant Domain

Figure 3.3 depicts the results comparing FIFO and the selection method. The investment

limit is $20. We vary the investment limit by 50%. In this domain, the graph clearly shows

that the score achieved using the performance measures is higher than that achieved by using

FIFO. In addition to varying the investment by 50%, we also depict the expected scores with

no variation. The x-axis depicts the problem sets (or) goal agenda sets. Each problem set

is averaged across three other sets. The Y-axis presents the agent performance normalized

within values 0-5. The maximum performance achieved is by using performance measures

achieved 30%, and FIFO achieved around 25%.

Figure 3.3: The result depicts the comparison between smart and FIFO agents with a budget
of 20 dollars in the restaurant domain. The X-Axis represents the problem set, and the
Y-Axis shows the cumulative score obtained by the agents. In this graph, the benefit received
by the agent varies by 50%. In addition, the money required by the agent to prepare dishes
varies by 50%.

Figure 3.4 below depicts the results comparing FIFO and the selection method. The

32

investment limit is $50. We vary the investment limit by 50%. In this domain, the graph

clearly shows that the score achieved using the performance measures (smart method) is

higher than that achieved by using FIFO. In addition to varying the investment by 50%, we

also depict the expected scores with no variation. The X-axis depicts the problem sets (or)

goal agenda sets. Each problem set is averaged across three other sets. The Y-axis presents

the agent performance normalized within values 0-5. The maximum performance achieved

is with the cost-benefit method, the is greater value is greater than 75%, and FIFO achieved

around 70%.

Figure 3.4: The result depicts the comparison between smart and FIFO agents with a budget
of 50 dollars in the restaurant domain. The X-Axis represents the problem set, and the
Y-Axis shows the cumulative score obtained by the agents. In this graph, the benefit received
by the agent varies by 50%. In addition, the money required by the agent to prepare dishes
varies by 50%.

33

3.3 Summary of Goal Selection

Goal selection allows the agent to make independent decisions when encountering multiple

goals. We presented the goal selection operation with simple FIFO and cost-benefit ratio

methods in two domains. The cost-benefit method provides a noticeable improvement in the

agent’s performance in both the construction and the restaurant domains.

Some ideas to further improve the selection operations are to improve the current

cost-benefit method to fit into other domains. We can extend this method to include other

qualitative factors such as the quality of the building or food. Currently, we use one

factor to measure the cost or benefit, but we can extend the equations 3.3, 3.6 to include

multiple parameters. We can implement the goal selection operation in different cognitive

architectures and compare their performances. Furthermore, the work of Schank [93]

classifies the goals into several goal types based on the nature of the goal. Each goal type

is different and may have its advantages to the agent. For example, achievement goals are

the professional goals a human user sets, and crisis goals are the goals the agent generates

in a crisis event. This type of classification might be useful for the agent when assigning a

priority to the goals. Finally, we also implemented the selection operation using a greedy

hill-climbing approach. We depict the method in Chapter 6

34

Goal Change

The goal change operation is the process of changing the current goal to a similar goal.

This operation is significant because it aids the agent in situations where the agent is out of

resources or in an undesirable state in the environment.

As mentioned in earlier chapters, metacognition reasons about the agent’s cognition.

Therefore, metacognition allows the agent to assess its own goals and decisions. Since the

goal change operation requires the agent to reason about its own goals and resources, we

claim goal change to be a meta-level operation. Similar to the process of metacognition, the

meta-layer in MIDCA controls the cognitive layer. Hence, we implement the goal change

operation in the meta-level Control phase of MIDCA. Currently, we implement goal change

using three predicate transformations[27]: generalization, specialization, and identity.

Generalization changes the predicate of the goal to a more abstract predicate in the

conceptual hierarchy of predicates. Specialization changes the predicate of the goal to

a more specific predicate in the hierarchy. Identity makes no change and is an essential

decision not to change the goal. Cox proposed the method to perform the goal change

operation using predicate transformations [27]. This paper suggests the importance of goal

change and its implementation in an Air Camping Planning (ACP) domain. In the ACP

domain, the agent’s main goal is to make the river impassable for the enemy troops. The

commander estimates and allows one resource for every bridge to destroy it, thus making

the river impassable. However, when working in the environment, if the agent discovers an

extra bridge, it should still be able to make the river impassable. The agent can achieve the

35

goal by either getting more resources or changing its goal of ”making the river impassable”

to ”restricting the movement across the river.” In both scenarios, there implements a goal

change action. The author refers to the first change as goal intrusion and the next as goal

erosion transformation by the author.

There are other predicate transformations besides the ones mentioned above: abstrac-

tion, concretion, and escalation. Each of these predicate transformations performs a distinct

type of change. An agent can choose any predicate transformations and order them accord-

ing to its situation to reach the desired goal. For this purpose, there is a choose functionality

in the goal change operation. Let us now look at the formal representation of the operation.

4.1 Formal Representation of Goal Change

This section depicts the formalism [23] for the predicate transformations: identity (δI),

generalization(δge), and specialization (δsp). It also represents the algorithm for the goal

change operation. As stated earlier, generalization transformation chooses a generic pred-

icate; specialization transform changes the predicate to a specific predicate, and identity

transform represents no change. Table 4.1 shows the preconditions and results required and

obtained for each transformation. The generalization transform (δge) has three preconditions

(pre(δge)): the first precondition (pre1(δge)) states that the current predicate should belong

to the class hierarchy [8] tree and all the objects related should belong to the object class; the

second precondition (pre2(δge)) specifies that there should be another predicate that belongs

to the superclass of the current predicate; and the third precondition (pre3(δge)) checks if

the number of resources present is sufficient to achieve the current goal. This transformation

results in a new goal with a more generalized predicate. Specialization (δsp) also has three

preconditions (pre(δsp)) : the first (pre1(δsp)) is the same as generalization transform; the

second (pre1(δsp)) specifies that the current goal predicate should not be the leaf node of

the class hierarchy. The third (pre1(δsp)) checks if there are extra resources to achieve the

36

Table 4.1: The table presents the formal representation of the predicate transformations
for the goal change operation. Specifically, we present the generalization, specialization,
and identity transformations. We use δ∆ to represent the goal change operation and δge,
δsp, and δI to represent generalization, specialization, and identity transformations. Each
transformation inputs the current goal set (gc) and outputs the changed goal for immediate
achievement. CL represents the class hierarchy of all predicates; we borrow the notation of
CL from [8]. Finally, Objs represents all the objects in the domain.

δge(gc : G) : Gδge(gc : G) : Gδge(gc : G) : G
head(δge) = generalization
parameter(δge) = gc = p(obj1, obj2)
pre1(δ

ge) = p ∈ CLCLCL ∧ obj1 ∈ Objs ∧ obj2 ∈ Objs
pre2(δ

ge) = ∃p, p′ | p ∈ CLCLCL ∧ p′ ∈ CLCLCL ∧ psuperclass = p′ ∧ p =
((pname, p

′, (p.A1, p.A2, ...p.Am)) ∧ p′ ̸= ⊤
pre3(δ

ge) = limitedResourcesForGoals(s, gc)
pre(δge) = {pre1(δge), pre2(δge), pre3(δge)}
res(δge) = p′(obj1, obj2)

δsp(gc : G) : Gδsp(gc : G) : Gδsp(gc : G) : G
head(δsp) = specialization
parameter(δsp) = gc = p(obj1, obj2)
pre1(δ

sp) = p ∈ CLCLCL ∧ obj1 ∈ Objs ∧ obj2 ∈ Objs
pre2(δ

sp) = ∃p′, p | p′ ∈ CLCLCL ∧ p ∈ CLCLCL ∧ p′superclass = p ∧ p′ =
((p′name, p, (p

′.A1, p
′.A2, ...p

′.Am)) ∧ p′ /∈ Lc

pre3(δ
sp) = surplusResourcesForGoals(s, gc)

pre(δsp) = {pre1(δsp), pre2(δsp), pre3(δsp)}
res(δsp) = p′(obj1, obj2)

δI(gc : G) : GδI(gc : G) : GδI(gc : G) : G
head(δI) = identity
parameter(δI) = gc
pre(δI) = ⊤
res(δI) = gc

transformed goal. This transformation results in a new goal with a more specific predicate.

Finally, identity transformation (δI) has one precondition (pre1(δI)) that always remains

true and yields the same goal.

37

Table 4.2 below represents the algorithm β for goal change. As mentioned earlier,

goal change requires a choose functionality choose() to select the number and order of

the transformations to reach a specific goal. The inputs to the algorithm β are the agent’s

state s, current goal gc, and the list of all transformations possible ∆ where the order of the

operations is reversed for implementation purposes and the agent stores it as ∆̂. If a specific

transform δ∗ is in the list of transformations, then the agent applies it to the current goal

gc in the goal agenda Ĝ or if there are multiple transformations δ1, δ2,... δm then they are

applied to the current goal gc. For example, δ∗ is an insertion transformation. We will talk

more about it in the next chapter. Finally, the choose() includes all possible transformations

that satisfy the preconditions in the order of their existence in the ∆ function.

Table 4.2: The table presents the method to choose one predicate transformation δ∗ out of
all possible transformations ∆ for the goal change operation. The function takes the current
state (s), the current goal set (gc), and the list of all possible transformations (∆) as input.
Finally, the function outputs the modified goal agenda, Ĝ, as the output.

β(s : S; gc : G) : Gβ(s : S; gc : G) : Gβ(s : S; gc : G) : G

∆̂← reverse(choose(s, gc,∆)

ifδ∗in∆̂then

if∆̂ = ⟨δ∗⟩then //insertion only

Ĝ← {g1, g2, ...gc, ...gn} ∪ δ∗()
β ← gc ∧ δ∗

else ⟨δ1, δ2, ...δm⟩ = ∆̂← ∆̂− δ∗() //insertion plus others

Ĝ← {g1, g2, ...δm(...δ2(δ1(gc))), ...gn} ∪ δ∗()
β ← δm(...δ2(δ1(gc))) ∧ δ∗()

else Ĝ← {g1, g2, ...δm(...δ2(δ1(gc))), ...gn} //no insertion
β ← δm(...δ2(δ1(gc)))

choose(s : S; gc : G,∆ = {δ1 |, δ2, ...} : poset) : sequence
if∆ = {}then choose← ⟨⟩
elseif∀x | x ∈ pre(δ1) ∧ satisfied(x)then

choose← δ1 | choose(∆− {δ1})
elsechoose(∆− {δ1})

38

4.2 Implementation and Empirical Evaluation of the Goal

Change operation

4.2.1 The Construction Domain

We implement the goal change operation in the construction domain. The construction

domain is the same as the one mentioned in the goal selection operation, but the goals are

different. Here the goal is to build ’stable towers’ rather than just building towers. The

number of towers and resources present are random. When the agent is out of resources, it

chooses to either abandon the goal and wait for more resources or to change its goal to a

more generic goal of ’building towers’ and continue to work on the generic goal. The goal

change operation is decided based on the preferences of the user. If the agent is fine with

wobbly building towers rather than sturdy ones, the agent can change its goal. If not, the

choice is to abandon the goal until it finds resources. Then, the agent can change its current

goal to a generic goal and achieve the maximum possible success in the current version. The

goal change also uses two different trees called predicate and object trees. These two are

specified while defining the domain. So, according to the transformation requirement, the

respective tree is parsed to obtain the result.

The operators in this domain are also the same as before, but our focus will be on stack

and stack mortared. The operator stack mortared builds a sturdy tower using a mortar block

in the middle of regular blocks, and the stack builds a less sturdy tower by placing the blocks

on top of each other. The goals in this domain are to build a stable tower always. Let us now

look into the experimental setup in the domain.

39

4.2.2 Experimental Design

In this domain, if the agent is out of resources, then it tries to complete the goal predicate by

replacing the goal of ”stable-on” with ”on” (see fig 4.1). Next, we evaluate the performance

of MIDCA with and without goal change. First, we assign a score of 2 for ”stack mortared”

each operation and 1 for ”stack” each operation. We then record the scores by varying the

number of resources for the same 30 problem sets by counting the ”stack mortared” and

”stack” operators.

Figure 4.1: Goal Change operation from ”stable-on” to ”on” and vice versa. The image
illustrates the generalization and specialization transformations. The black squares with
alphabets are blocks and the red rectangle is mortar.

For example, consider the problem set of two towers T1 and T2, with five and six

respective heights. The number of mortars present is seven. All the goals here are to

construct a stable tower using mortar blocks. To construct the stable tower T1, we need four

mortar blocks. After the completion of T1, the agent has three mortar blocks. Now T2 will

be constructed, and after stacking four stable blocks, the agent will be out of resources, and

the goal is transformed from ”stable-on” to ”on,” and the agent places the remaining two

blocks. In this scenario, the score achieved will be that the score for T1 is 4*2=8, the score

for T2 is (3*2)+1+1= 8. Therefore, the overall score is score(T1)+score(T2) = 8+8 = 16.

40

For the same scenario but without goal change, the agent will stop the construction when

the agent is out of resources, so the score achieved for T2 will be 0 as it does not complete,

and the final score achieved for T1 will be 4*2 =8.

4.2.3 Experimental Results

Figure 4.2: The result depicts the agent performance for a different amount of resources
without a goal change operation. The X-Axis represents the problem set, and the Y-Axis
shows the cumulative score obtained by the agents. In this graph, we vary the number of
mortars in increments of five. The initial number of mortars is five, and the final is 20.

Figure 4.2 depicts the scores achieved by MIDCA with no goal change for varying

numbers of mortars. Each goal set (problem set) is an average of three trials. The minimum

score achieved here is when the available mortar is five and the agent’s efficiency is 20%.

The maximum score achieved is at the number of mortars being 20. The efficiency achieved

is 100% as 20 mortars are sufficient to make all the towers stable.

41

Figure 4.3: The result depicts the agent performance for a different amount of resources
with the goal change operation. The X-Axis represents the problem set, and the Y-Axis
shows the cumulative score obtained by the agents. In this graph, we vary the number of
mortars in increments of five. The initial number of mortars is five, and the final is 20.

Figure 4.3 above depicts the results achieved by MIDCA with goal change for a varying

number of mortars. Each problem set is an average of three trials. The minimum score

achieved here is when the available mortar is five, and the agent’s efficiency was around 70%.

Here we can observe that the agent’s efficiency with goal change has significantly improved

with the same number of resources for the same problem sets. As with both figures 4.2,

4.3 the maximum score achieved is at the number of mortars being twenty, the efficiency

achieved at this point is 100% as twenty mortars are sufficient to build all the towers stable.

4.3 Summary of Goal Change

Goal change allows the agent to change its goal. This operation allows the agent to take

independent decisions whenever it identifies itself in a position of not achieving the goal.

We implement the change operation in the construction domain. The results clearly show an

42

increase in agent’s performance with this operation.

In future, we want to implement other predicate transformations apart from gener-

alization, specialization, and identity. In addition, we also want to implement the object

transformations to further improve the goal change operation. Apart from the predicate

and object transformations, we want to explore other ways to implement the goal change

operation. In addition to the construction domain, we implement the goal change in other

domains. We present the work in chapter 6.

43

Goal Formulation

A goal formulation operation allows the agent to generate its own goals. This operation is

crucial when the agent cannot achieve its current goal for several reasons. For example, a

dynamic environment could render the agent’s current goal invalid; an agent with surplus

resources and an empty goal set should generate goals and work toward their achievement.

Currently, we perform goal formulation when the agent encounters an anomaly (unexpected

event). For example, an agent formulates a new goal for anomalies that require a quick

response; emergencies like fire generates a goal to put off the fire. In MIDCA, Interpret

phase attempts to explain the reasons for an anomaly occurrence. Hence, we implement

goal formulation in the Interpret phase of the cognitive layer in MIDCA.

Whenever MIDCA encounters an anomaly, it tries to explain it and formulates a goal if

necessary. The current method, which generates the agent’s goals, explains every anomaly

with an explanation generator called ”Meta-AQUA”[26]. In addition to explaining every

anomaly, the explanation generator distinguishes the anomalies that the agent needs to

address (problems) from the ones that need not. An agent tackles the problem anomalies by

generating a goal with the help of an explanation generator. However, it ignores the regular

anomalies. The idea of an agent generating its own goals draws its inspiration from the work

done by Cox [23] and in work earlier done by Cox and Ghallab [20][41]. Here, the user’s

idea of goals provided to the agent is relaxed, and the authors introduce goal formulation

as a separate operation. This thesis further elaborates on the goal formulation operation

presented in the above works.

44

5.1 Formal Representation of Goal Formulation

This section presents the formal representation of the goal formulation operation. Table 5.1

depicts the preconditions and results of goal formulation. The first precondition, pre1, says

an explanation exists that provides a cause ω for the anomaly where the expected state does

not match the currently observed state sc.5.2 The second precondition checks if the agent

has sufficient resources to generate a goal, which will make the first precondition false.

When the agent satisfies all the preconditions, the result will be a new goal to solve the

agent’s problem.

Table 5.1: The table presents the formal representation of the goal formulation operation.
The formulation operation inputs the goal agenda (Ĝ) and output a new goal set (gn). We use
δ∗ to represent the goal formulation operation. χ represents an explanation for the anomaly
ω. gn represents the response goal for χ such that the agent is no longer in the anomaly state
¬ω.

δ∗(Ĝ̂ĜG : G) : GG) : GG) : G
head(δ∗) = formulation

parameter(δ∗) = Ĝ̂ĜG
pre1(δ

∗) = ∃ χ : ω → (se ̸= sc)
pre2(δ

∗) = ResourcesFor(gn)
pre(δ∗) = {pre1(δ∗), pre2(δ∗))}
res(δ∗) = gn ← ¬ω

Table 5.2 details the first precondition of the table above and represents it formally.

It takes the current state (sc); Background knowledge (Bk); expected state (se), Current

History (Hc), Remaining plan (πr) and explanation (χ) and reasons about the inputs by

searching through the case-base [45][64][61] and outputs, a Boolean of anomaly, are true or

false. Then the explanation backtracks to the cause of the problem and formulates a new

goal to eliminate the cause. Cox [21] represents the initial problem in the GDA context and

presents a distinction between a classical planning problem and a GDA problem. The paper

also puts forth a compelling argument about why a new problem formalism is necessary for

the context of GDA. This thesis further modifies the work and builds upon it to refine the

45

Table 5.2: The table presents the formal representation of the problem in the GDA context.
The formulation operation inputs the current state sc, the background knowledge Bk, the
expected state se, the current history Hc, the remaining plan πr, and the explanation χ. The
function outputs if the current anomaly is a problem.

Pgda : (sc, Bk, se, Hc, πr, χ)
sc = γ(πc, s0)
Bk = (Σ,∆)
se ∈ S
Hc = (πc, gc)
πc ◦ πr = πgc

χ = SearchAndRetrieveSimilarCaseFromCaseBase
res(Pgda) = ⊤|⊥

formal definition.

5.2 Implementation and Empirical Evaluation of the Goal

Formulation Operation

We implement the goal formulation operation in two domains: the naval mine clearance

domain and the labor relations domain.

5.2.1 The Naval Mine Clearance Domain

Figure 5.1 depicts the naval mine clearance domain [45, 43, 46, 47, 61, 64]. We build the

domain using the Mission Oriented Operating Suit-Interval Programming (MOOS-IvP)

framework, a middleware used to simulate the behavior of various underwater platforms.

The agent’s goal in this domain is to prepare a harbor for use during maritime operations.

To achieve this goal, an agent needs to conduct mine clearance activities to ensure the safe

passage of ships as they transit between the sea and the port in the harbor. Usually, we

establish a network of safe shipping lanes to reduce the size of the search area within the

harbor. The area used by the ships to traverse the sea is called a Q-route [43, 47, 64]. The

46

Figure 5.1: The figure depicts the naval mine clearance domain. The agent is the red
cylindrical object at the top center of the image. The yellow objects on the left are the freight
ships. The area between the two parallel lines is the Q-route. The two octagonal shapes are
the green areas.

Q-route in the figure 5.1is the area between the parallel lines. The two octagonal areas are

called Green-Area1(GA1) and Green-Area2(GA2), where the agent expects the mines to

be present. So, the agent assumes that mines are present only in the two areas. In turn,

this leads to the assumption that all mines outside of the green areas are anomalies. In this

domain, the agent is an Autonomous Underwater Vehicle (AUV) named Remus-100. It is

the red cylindrical object on the upper left side of the image. The shaded area around it is

a sonar sensor; Remus detects mines only if they fall under that sensor range. The yellow

objects are ships, and the green triangles are mines. The goals in this domain are to clear the

mines in GA1 and GA2.

The operators in this domain include fast-survey; slow-survey; clear-mines. The fast

survey allows the agent to move quickly in the areas where it does not anticipate mines.

The slow survey allows the agent to move carefully in the regions where it expects mines.

Finally, when detected, the clear mines operator removes mines from the location.

47

5.2.1.1 Experimental Design: The Naval Mine Clearance Domain

To evaluate both the domains, we introduce two new agents along with our GDA agent.

These are eager agents and baseline agents. They each respond differently to anomalies.

Anomaly detection in the GDA agent works on select anomalies which the agent perceives

as problems. In contrast, the eager agent addresses all anomalies that it encounters. The

baseline agent plans only for its original goals and ignores all anomalies. We assess the

three agents’ performance, present the results in different environments, and average the

results for ten different runs for each mine scenario.

In the naval mine clearance domain, we calculate the performance of the agents based

on the number of ships that reach the other side of the harbor safely. Various mine density

scenarios exist with six ships and three mine patterns: low, medium, and high. We also

include deadlines ranging from 0 to 2 seconds in the domain with increments of 0.5 seconds.

These deadlines specify the time gap between the agent starting from home to clear the

mines and the ships starting their journey from one side of the shore to the other. Note that

the seconds indicate the simulation time, not real-world time. So, the maximum score that

an agent can achieve in this domain is 6.

5.2.1.2 Empirical Results: The Naval Mine Clearance Domain

Figure 5.2 shows the scores achieved by the three different agents in all mine density

(average of low, medium, and high density) scenarios for the varied deadlines. The X-axis

depicts the delay with which the ships start, and the Y-axis indicates the number of ships

that safely traverse the Q-route. Here, when we start looking at the values from the left side

of the graph, at the delay of 0, very few ships could traverse the Q-route successfully for all

three agents. Those that were able to reach the other side could cross the Q-route in the low

mine density scenarios, while very few or no ships made it across in the medium and high

mine density scenarios.

48

Figure 5.2: The figure depicts the results for the goal formulation operation in the naval
mine clearance domain. We compare the performance of the GDA agent with the baseline
and the eager agents. The X-Axis represents the time delay of the ships, and the Y-Axis
shows the number of ships that reach the other end of the Q-route.

To understand what a delay of 0.5 seconds means, consider what each agent can

accomplish within that time frame in a characteristic scenario. For example, after 0.5

seconds, the baseline agent clears mines in GA1 and is on its path to clear the mines in GA2.

At the same point in time, the GDA agent cleared all mines in GA1 and some mines within

the Q-route; the eager agent cleared mines outside of the Q-route and in GA1.

After 1 second, the baseline agent cleared the mines in green areas and headed towards

home. The GDA agent cleared some mines within the path from GA1 to GA2 and some

mines within GA2. In comparison, the eager agent works on the mines within the Q-route

after clearing the ones in GA1.

In these conditions (delay of 0.5 and 1 seconds), the difference between the performance

of the GDA and eager agents does not seem very large. Because the average of the various

mine density scenarios also contains low mine density fields where the two agents perform

49

almost identically since the eager agent only has a few mines to clear outside of the Q-route.

However, the difference in performance for medium and high mine density scenarios is two

ships.

All agents have performed all clearance tasks intended at a delay of 1.5 seconds or

greater; thus, performance does not change for delays greater than 1.5 seconds.

5.2.2 The Labor Relations Domain

Second is the labor relations domain; employee strikes at various institutions motivate this

domain. Analogous to real institutions, this domain describes a virtual institution where the

agent acts as institute head. Several employees and customers exist in this domain. The

institution starts with an initial reputation value and a budget represented by numbers. The

agent’s goal is to enact policies, where implementing a policy requires a known fixed amount

of budget and increases the institutes’ reputation value by a fixed amount. Disagreements

about enacted policies will arise between the head of the institute and the employees with

certain intensity values. High-intensity disagreements may lead to a strike. Intensity values

vary for each disagreement and are unpredictable. Disagreements can be resolved by

negotiating with employees. Negotiating to solve a disagreement also costs money, so the

budget varies with the intensity of the disagreement. Moreover, negotiations also decrease

the reputation value as a function of intensity. So, the goals are to pass policies, and the

anomalies are disagreements. Anomalies with higher intensity values are considered a

problem. This domain is not related to trading and marketing agents in artificial intelligence,

and we do not simulate it using third-party software.

The operators in this domain include make-policy, inform-policy, resolve-disagreement,

ignore-disagreement, and others. Similar to other domains, each operator performs distinct

action. For example, make policy designs a policy for the agent to implement, inform policy

shares the policy with the employees, resolve disagreement tries to negotiate with employees

and tries to resolve disagreement and ignore disagreement ignores the disagreement and

50

does nothing about it.

5.2.2.1 Experimental Design: The Labor Relations Domain

Similar to the previous domain, we introduce two new agents along with our GDA agent.

These are eager agents and baseline agents. They each respond differently to anomalies.

Anomaly detection in the GDA agent works on select anomalies which the agent perceives

as problems. In contrast, the eager agent addresses all anomalies that it encounters. The

baseline agent plans only for its original goals and ignores all anomalies. We assess the

three agents’ performance, present the results in different environments, and average the

results for ten different runs for each mine scenario.

To assess the performance of the three agents in the labor relations domain, we compare

the reputation values of all agents after they implement a certain number of policies. There

are some numerical values in this domain. The initial reputation is 500, and the total

budget is $4000. Implementing any policy reduces the budget by $25. The intensity value

of a disagreement is a random number between (1, 100). When a disagreement arises,

the employees can demand a budget amount which is a random number between (1, 25).

Providing any amount within 40% to 60% of the amount demanded by employees solves

the disagreement.

If there is no disagreement when an agent implements a policy, then the institution’s

reputation is increased by five. However, if the agent encounters a disagreement, it has two

options: solve the disagreement or ignore it and strictly adhere to the initial policy. In the

first option that addresses the disagreement, the reputation is neither decreased nor increased,

i.e., the reputation change is zero. If the agent does not address the disagreement, then the

reputation value is decreased as a function of intensity value. So, if the intensity is <=34

then Rep = -Int/100 and, if the intensity is >=35 then Rep = -[(n+2)*Int]/100 where n =

integer((I-35)/5). The integer() acts as a rounding function. There is an interesting value-

added to the budget after implementing every 50 policies with a rate of 2.5%. Reputation

51

values can become negative if the agent does not address disagreements.

5.2.2.2 Empirical Results: The Labor Relations Domain

Figure 5.3: The figure depicts the results for the goal formulation operation in the labor
relations domain. We compare the performance of the GDA agent with the baseline and
the eager agents. The X-Axis represents the number of policies, and the Y-Axis shows the
reputation value for the institution.

Figure 5.3 shows the reputation achieved by the three different agents over 200

policies. The X-axis depicts the number of policies implemented, and the Y-axis indicates

the reputation value scaled to 10. All the agents have an initial reputation of five. Each point

on the lines contains an average of 20 policies. The reputation value is cumulative and can

reach a maximum value of 10. In this experiment, if any agent is out of budget, it starts

to behave as a baseline agent. The reason is the debt should be as minimum as possible

when the agent implements all policies. Starting with the baseline agent, after completing 50

policies, the baseline agent already has a negative reputation because it does not address any

52

of the disagreements, so the reputation value drops and keeps on decreasing monotonically.

The GDA agent gets a little behind the eager agent from 50 to 120 policies because the

GDA agent will not address the anomalies with lower intensity values. In contrast, the eager

agent addresses all the anomalies and spends its budget on every anomaly. However, this

means the eager agent is out of its budget much sooner than the GDA agent.

The eager agent is out of budget at 140 policies and starts behaving as a baseline agent,

thus dropping its reputation. The GDA agent preserves its budget and continues to increase

its reputation value by around 150. The baseline agent’s reputation value is still sinking

to much lower values, but we adjust the scale to make the negative values only visible up

to -10. These results indicate that the GDA agent should perform better over time and

maintain a higher reputation than the eager agent by a significant amount. The GDA agent

under-performed by a negligible amount for some time compared to an eager agent because

of the higher amount of resources. A smart agent is not needed if the amount of resources

present is infinite, but this is not realistic. As long as resources have a limit, there will be a

need for the GDA agent to use them sustainably.

5.3 Summary of Goal Formulation

Goal formulation allows the agent to formulate its own goals without the help of an external

user. However, it is one of the hardest goal operations to implement because even we humans

are unsure about the origination of goals. In this work, we generate goals with the help of

case based explanations[61, 43] when unexpected events occur. We implement the goal

formulation in the mine clearance domain and the labor relations domain.

We can look into other methods or scenarios of doing this operation. For example, one

of the methods includes the agent having plenty of resources and does not have any goals to

achieve. Instead, it can develop goals that the agent might need soon.

53

Interaction of Goal Selection, Goal

Change and Goal Formulation

From chapters 3, 4, and 5, it is evident that goal operations increase the agent’s performance

in dynamic environments. We implement all of the goal operations individually in MIDCA.

But, more often, in dynamic environments, multiple goal operations co-occur. For example,

consider an agent working toward selecting its current goal gc when a fire erupts in an area

nearby. In this situation, the agent must decide between selecting its current goal gc or

abandoning selection to create a new goal gn to tackle the fire. Therefore, the next step is to

integrate all of the goal operations. This step requires addressing two of the most important

issues. First is the knowledge about how goal operations interact with one another, and the

second is a rich, complex domain in which all operations co-occur.

The focus of this thesis is to address the first issue and make use of the complex

domains to test the claim. To learn how the three-goal operations interact with each other

and why the knowledge about their interaction is important, let us take a look at the example

scenario in the next section.

54

6.1 Example Scenario Depicting the Interaction of Goal

Operations

Let us consider a scenario in the naval mine clearance domain [43, 47, 61] and look at it in

detail to understand the interaction of the three-goal operations.

Figure 6.1: The figure depicts an example scenario in the naval mine clearance domain. The
agent is the red cylindrical object at the top center of the image. The yellow objects on the
left are the freight ships. The area between the two parallel lines is the Q-route. The two
octagonal shapes are the green areas. In addition, the yellow circular region is the new green
area with mines.

Figure 6.1 depicts a problem in this domain. The initial goal set of the agent is

ĜGG = {g1, g2, g3}, where g1 = cleared mines(GA1), g2 = cleared mines(GA2) and

g3 = at home(Remus). The first goal of the agent is to clear mines in GA1, the second is

to clear mines in GA2, and the third is to be back home. Since our agent is smart enough to

ignore the anomalies that are not problems, it ignores the mines it encounters while traveling

from its initial position to GA1 as they do not threaten the shipping. Let us assume that

55

it accomplished g1 and is headed toward GA2 to achieve g2. The agent now encounters

new mines on its path to GA2. The agent cannot ignore these mines because the ships

use the Q-route for transportation purposes, and hence the agent should now generate a

goal to handle the situation. Currently, MIDCA just generates a single goal of clearing the

encountered mines in Q-route δ∗ = g4 = cleared mines(m118). Apart from this one goal,

there is a possibility to formulate several other goals with further reasoning. They are as

follows.

• δ∗ = g5 = apprehend enemy(mission). This agent formulates this goal when it

tries to reason about the root cause of the anomaly. Let us assume that based on the

pattern of the mines that the agent encounters, it identifies that a ship might have laid

the mines. It can now formulate a new goal of apprehending the enemy ship to reduce

the occurrence of anomalies in the future.

• δ∗ = g6 = cleared mines(GA3). This agent formulates this goal when it tries to

reason about the number of anomalies present in the Q-route. After looking at the

pattern of mines that it encountered, it can develop a new area GA3 where the agent

expects mines to be present.

If we look at the goals g4 and g6, they are not two different goals. Goal g6 can subsume

g4, which means that the agent can effectively change g4 to g6 based on its resources. So,

only one goal between those two should go into the goal agenda. So, the new goal agenda

now looks like Ĝ′G′G′ = {g4, g5, g2, g3} if the agent performs the goal formulation operation

first and it has a sufficient amount of time to reason about the world.

Let us elaborate on the ordering of the goal operations to understand the last statement

in the above paragraph and realize the importance of interaction between the goal operations.

The goal agenda after achieving g1 looks like ĜGG = {g2, g3}. It is the goal agenda we consider

for the scenarios presented below. There is a possibility of two-goal formulations (i.e., g4,

g5), one goal change (i.e., g4 to g6) and goal selection whenever there are more than one

56

goal. Several assumptions are required before we proceed: the goal selection follows FIFO

strategy; formulation will only generate one goal (g4), and goal change will only change the

current goal. Consider the following scenarios with different ordering of goals:

• Scenario1. Let us consider the initial situation where the agent formulates a goal and

then performs selection then change. (i.e., δ∆(δse(δ∗(ĜGG))))

δ∗(ĜGG) = {g4, g2, g3} //formulates the goal g4

δse(δ∗(ĜGG)) = {g4, suspended(g2)}//suspends the current goal g2 and selects g4

δ∆(δse(δ∗(ĜGG))) = {g6, suspended(g2)}//g4 is changed to g6

=⇒ the agent achieves g6 and later resumes to work on the suspended goal g2.

Reason: The goal selection is performed on the goal agenda after the new goal

g4 is formulated. The selection then selects g4 and then the goal change is performed

on the current goal g4, which will transform g4 to g6.

• Scenario2. Let us consider the situation where the agent formulates a goal and then

performs change and later selects the goals.(i.e., δse(δ∆(δ∗(ĜGG))))

δ∗(ĜGG) = {g4, g2, g3}//formulates the goal g4

δ∆(δ∗(ĜGG)) = {g4, g2, g3}//current goal g2 is changed to g2

δse(δ∆(δ∗(ĜGG))) = {g4, suspended(g2)}//selection suspends g2 and selects g4

=⇒ the agent achieves g4 and later resumes to work on the suspended goal g2.

Reason: The goal change operation is performed on the current goal. In this

situation, the current goal will still be g2 because g4 is not selected yet. So, the goal

change operation just performs an identity transform on g2 and then goal selection

selects g4.

• Scenario3. Let us consider the situation where the agent performs a change and then

performs goal formulation and finally selects the goal.(i.e., δse(δ∗(δ∆(ĜGG))))

δ∆(ĜGG) = {g2, g3}//does nothing because no goal is selected

δ∗(δ∆(ĜGG)) = {g4, g2, g3}//inserts formulated goal g4

57

δse(δ∗(δ∆(ĜGG))) = {g4, suspended(g2)}//suspends the current goal g2 and selects g4

=⇒ the agent achieves g4 and later resumes to work on the suspended goal g2.

Reason: The agent changes its current goal g2 and then formulates a goal a

g4 and finally selects the g4 suspending g2. The agent will first work on g4 and after

achieving it moves onto the suspended g2.

• Scenario4. Let us consider the situation where the agent selects a goal and then

performs goal formulation and change operations. (i.e., δ∆(δ∗(δse(ĜGG))))

δse(ĜGG) = {g2}//selects g2

δ∗(δse(ĜGG)) = {g4, g2}//inserts formulated goal g4

δ∆(δ∗(δse(ĜGG))) = {g4, g2}//changes g2 to g2

=⇒ the agent achieves g2 and later moves to the next goal g4 in the agenda.

Reason: The agent selects g2 and then the agent will formulate g4 but will still

work on g2 because there is no selection operation to select g4. Goal change changes

g2 to g2. The agent will work on g2 and move to the next goal g4.

• Scenario5. Let us consider the situation where the agent selects a goal and then

performs goal change and finally formulates a goal.(i.e., δ∗(δ∆(δse(ĜGG))))

δse(ĜGG) = {g2}//selects g2

δ∆(δse(ĜGG)) = {g2}//changes g2 to g2

δ∗(δ∆(δse(ĜGG))) = {g4, g2}//inserts formulated goal g4

=⇒ the agent achieves g2 and later moves to the next goal g4 in the agenda.

Reason: The agent selects the goal g2 and then the agent performs goal change

on g2 which results in g2. After achieving it, agent formulates a new goal g4.

• Scenario6. Let us now consider the situation where performs a goal change operation

and then tries to select a goal and then formulates a goal.(i.e., δ∗(δse(δ∆(ĜGG))))

δ∆(ĜGG) = {g2, g3}//does nothing because no goal is selected

δse(δ∆(ĜGG)) = {g2}//selects g2

58

δ∗(δse(δ∆(ĜGG))) = {g4, g2}//inserts formulated goal g4

=⇒ the agent achieves g2 and later moves to the next goal g4 in the agenda.

Reason: The agent does not do a goal change operation because there is no

goal selected by the agent, so it outputs a null and then selects g2 and formulates g4

after it achieves g2.

In all of the six scenarios above, with only one fixed goal to generate, only one goal

change operation, and a fixed selection strategy, there are three distinct outcomes. This

clarifies that ordering of the goal operations matter and is worth spending time on to follow

the best possible choice. Among the six scenarios presented above, scenario1 is the best for

the context above, as it clears most mines by using fewer resources. Scenario2 and scenario3

yield the same result, and they do not clear all the mines in the Q-route but clear the mines

m118 the agent encounters within its path and move onto the next goals. The final set of

scenarios is scenario4, scenario5, and scenario6, which is the worst because the agent clears

the mines in GA2 and then comes back to clear the mine m118. This set uses more resources

than the amount required. This raises the question, How can a system manage interactions

among multiple-goal operations?. This question stands as a central idea to this thesis.

6.2 Goal Management when Multiple Goal Operation Co-

occur

Goal operations can co-occur in multiple scenarios. However, the thesis focuses on scenarios

when the agent discovers an anomaly, which affects the agent negatively. Also, the algorithm

presented focuses mainly on goal selection, goal change, and goal formulation. But, the

algorithm is generic enough to include other goal operations, to demonstrate which we

provide an example with goal delegation. Similar to other goal operations, we implement

the algorithm in MIDCA [63, 62].

59

We argue that the following three classes of factors are very useful for enabling the

agent to pick one goal operation among multiple operations.

• Anomaly effects: When the agent is in an anomalous situation, it must reason about

the anomaly. As mentioned, the agent only considers the negative effects of the

anomaly.

• Goal priority: The agent must have a general idea of the importance of every goal in

its goal agenda Ĝ.

• Resource availability: The agent must also consider the number of resources re-

quired for all the goals while deciding on goal operations. Therefore, it must have a

consumption estimation of the resources. In addition, it must also continuously update

its expectation according to actual observation.

The agent uses the above three-factor classes and decides on a goal operation to pursue. The

following few subsections dive deep into each of these factors.

6.2.1 Effects of an Anomaly on the Agent

An unexpected event in a dynamic world can affect the agent positively or negatively.

As mentioned previously, the thesis focuses only on the negative anomalies. To study

the negative effects of the anomaly, we further classify the effects into three categories:

negative effects of the anomaly on agent’s goals, negative effects of the anomaly on agent’s

health, and the number of times the anomaly repeats (which is not a direct negative effect,

but it can estimate the cumulative negative effect of the anomaly in future). So far, we

have identified three factors to study the negative effects of an anomaly on the agent. To

estimate the negative effects the agent must have a model to approximate the values. After

building models for each factor, we translate the outputs to qualitative factors. Currently, the

60

qualitative factors we use are high and low. We present the importance of such qualitative

classification in later sections.

Figure 6.2 presents the three factors. Specifically, the agent looks at the negative

effects of an anomaly on the agent’s goals, the negative effects of an anomaly on the agent’s

anomalies, and the anomaly repetition factor. The next paragraphs subsections the modeling

of each of the factors.

Figure 6.2: The figure represents the negative effects of the anomaly on the agent. We
further divide this class into three sub-classes: the negative effects on the agent’s health,
the negative effects on the agent’s goals, and the number of times an anomaly repeats. We
model each sub-classes using various approaches (example: using knowledge base). Finally,
we classify the output as quantitative values high or low.

6.2.1.1 Negative Effects on Agent’s Goals

To model the negative effects of the anomaly on the agent’s goals, we use a knowledge base.

If the anomaly occurred previously, the agent finds a case relating to the negative effects

in the knowledge base and retrieves the case. After retrieval, the agent then classifies the

negative effects as high or low. If the agent encounters the anomaly for the first time, the

agent considers the anomaly to be a higher risk anomaly. Later, based on its encounter, it

creates a new case for the new anomaly and stores it in the knowledge base. The figure 6.3

presents the negative effects on the agent’s goals.

61

Figure 6.3: The figure represents the negative effects of the anomaly on the agent’s goals.
We model this using a knowledge base. Finally, we classify the output as quantitative values
high or low.

6.2.1.2 Negative Effects on Agent’s Health

To model the negative effects of the anomaly on an agent’s health, we created a cumulative

numeric function 6.1 to track it. We assume that the agent’s health starts at a maximum

value of 100. The cumulative function keeps track of the agent’s health by considering many

sub-factors that affect health. For example, consider that n is the total number of sub-factors

affecting the agent’s health, and hi is the numeric value of health affected for each factor.

Then, we define the overall cumulative function as:

H = Σn
i=1(hi) (6.1)

Every sub-factor affecting the agent’s health is different. Hence, we can define each

hi using one of the basic functions: simple linear, quadratic, exponential, or logarithmic

function. For example, the actions an agent performs to achieve its goal linearly reduce

its health (over time, the battery of the agent reduces). Therefore, for one goal achieved,

we define the factor by which the health decreases as hgoal number 1 = x1 ∗ g1; where x is

a value between 0 to 1, and g1 is also a domain-specific value set by a human expert for

each goal type. Of course, the exact value of x for each goal differs. Currently, a human

expert provides the x value. So, for ’m’ goals, the sub-factor (performing actions) would be

a simple summation given in (6.2).

h1 = hactions = Σm
y=1(hgoal number y) = Σm

y=1(xy ∗ gy) (6.2)

62

Consider a second sub-factor fire. Fire affects the agent’s health exponentially. Hence,

similar to a linear function, we should use an exponential function 1 to model the negative

effects of fire. Let us indicate the second sub-factor in the equation 6.3where t is the time.

h2 = hfire = et (6.3)

For example, let us consider the two sub-factors (hactions, hfire) defined and substitute

them in the cumulative function 6.1. The sequence of steps below presents the calculation

for the agent’s health.

H = Σ2
i=1(hi) = h1 + h2

H = hactions + hfire

H = Σm
y=1(hgoal number y) + et

H = Σm
y=1(x ∗ gy) + et

We perform similar calculations for sub-factor to include them in the cumulative

function. We calculate the agent’s health value before and after the anomaly. If the

difference looks higher than an expert set threshold, we classify the health affected as high;

otherwise, it remains low. The figure 6.4 presents the negative effects on the agent’s health.

For the specific values used for implementation, look at the appendix A and B.

Figure 6.4: The figure represents the negative effects of the anomaly on the agent’s health.
We model this using a cumulative function. Finally, we classify the output as quantitative
values high or low.

1e is the Euler’s number

63

6.2.1.3 Anomaly Repetition

Finally, one of the last categories that we need to consider is to check the frequency of the

anomaly repetition. Although the anomaly might not affect the agent’s goal or health, if it

occurs very frequently, the agent should possess knowledge about the anomaly because it

might be of interest to the agent in the future. Since the occurrence of an anomaly is an

independent event, we use Poisson distribution to predict the frequency of occurrence of the

anomaly by storing its past occurrences.

P (x) =
e−λλx

x!
(6.4)

Equation (6.4) depicts the Poisson distribution function. Where λ is the mean of the anomaly

occurrences over time, and x is the number of occurrences. The plot of the Poisson values

obtained for several x values looks like a bell curve. We then determine the peak value of

the bell curve to be the frequency of anomaly repetition. If the determined frequency value

obtained exceeds a certain threshold set by an expert, the agent classifies the outcome as

high else low. Figure 6.5 presents as the anomaly repetition factor. Look at the appendix A

and B.

Figure 6.5: The figure represents the number of times an anomaly repeats. We model this
using Poisson distribution. Finally, we classify the output as quantitative values high or low.

64

6.2.1.4 Summary of Negative Effects of an Anomaly on the Agent

This section summarizes the negative effects of the anomaly on the agent. It presents the

three anomaly effects we considered: negative effects on agent’s goals, health, and anomaly

repetition estimate. It also depicts the qualitative classification of the output, high or low.

6.2.2 Importance of the Agent’s Goals

The second major factor we used in the algorithm to select goal operations is determining

the priority of each agent’s goal. Every agent needs to understand the importance of each

goal it achieves or tries to achieve. To capture such a factor, we modeled the goal types of

[93]. Here Schank broadly categorizes goals into several types and prioritizes one type over

another. We used three goal types that best fit our decision algorithm out of all the goal types.

Specifically, we consider crisis: goals generated in response to a crisis event; preservation:

goals that help in the agent’s self-preservation or resource preservation; and achievement:

goals provided to the agent to achieve a task or reach a goal state. In general, we prioritize

crisis goals over preservation and preservation over achievement goal types. We name these

three factors qualitatively as C, P, A. C refers to a crisis, P refers to preservation, and A

refers to achievement. The figure 6.6 presents the goal types in pictorial format.

Figure 6.6: The figure represents the priority for each goal using its goal type. There are three
goal types[93]: crisis, preservation, and achievement. Crisis goals are the goals generated
in response to a problem, preservation goals are the goals to preserve an agent’s health or
resources, and achievement goals are the regular goals the agent achieves. Therefore, we
prioritize crisis over preservation over achievement.

65

6.2.3 Estimation of Agent’s Resources:

The third major factor we use in the algorithm to choose goal operations is to continuously

check the resource availability for goal achievement. To model this factor, we use a knapsack

algorithm. Such an estimation algorithm is crucial because it can provide a rough estimate

of the goals an agent could achieve with a lower cost compared to the planning cost for all

the goals. A knapsack algorithm uses a resource value to pick the maximum set of goals

an agent can achieve. If the agent predicts that the agent can achieve greater than 85% of

its goals with the resources available, then it sends a qualitative value ”Yes”; otherwise, it

sends a qualitative value ”No.” The figure 6.7 depicts such in a pictorial format.

Figure 6.7: The figure represents the class to estimate the number of resources for the agent.
We model this using a simple knapsack algorithm. For example, if an agent can achieve
85% of its goals, then we classify the resources as sufficient(yes), else we classify them as
insufficient(no).

6.2.4 Goal Management when Multiple Goal Operation Co-occur

Now we have access to all the qualitative factors required to make an informed decision for

selecting a goal operation. We use all three factors and formulate generic rules. The generic

rules are instrumental across several domains. The figure 6.8 depicts all the components of

the algorithm together.

After generating all the qualitative factors, the agent then compares the results to the

generic rules in MIDCA. Each rule outputs a specific goal operation. If the factors match

any of the rules, the agent chooses a specific goal operation. Specifically, some of the rules

we used to decide are as follows. In addition, the agent analyzes the rules in the given order.

66

Figure 6.8: The figure represents the entire method to select goal operations. First, we
consider three classes of factors: anomaly effects, goal priority, and resource availability.
Next, we model each factor and classify the model’s output into qualitative factors. Finally,
we compare the outputs to the general rules in MIDCA and pick a goal operation appropriate
to the agent’s situation.

• If any of the anomaly effects is ”high” and the resources available are sufficient, ”yes,”

then prioritize goal formulation.

• If all the anomaly effects are ”low” and resources are sufficient, ”yes,” for both

selection and change and selection and change generate different goal types, then

prioritize one goal operation based on the goal type, ”Crisis > Preservation >

Achievement.

• If all the anomaly effects are ”low” and resources are sufficient, ”yes,” for both

selection and change and selection and change generate same goal types, then prioritize

one goal operation that uses fewer resources.

The rules mentioned above are generally sufficient to make an informed decision when

formulation, change, and selection operations co-occur. However, the algorithm can also

easily include other goal operations. For example, we could easily include a delegation rule

as follows:

• If resources available are not sufficient, ”no,” then choose goal delegation over all the

67

remaining operations.

In addition, we also realize that these generic might need adaptation based on the agent’s

situation in the real world. Therefore, we plan to update the rules or add new rules in

the future through the reinforcement obtained from the real world. We implement the

goal management method in two different domains: the marine survey domain and the

construction domain.

68

Implementation and Empirical

Evaluation of the Goal Management

Strategy

As mentioned in the earlier chapter, we implement and evaluate the developed goal manage-

ment method in the marine survey and construction domains. The marine survey domain

attempts to survey water bodies to gather information on the water body and the fish patterns

in the water. The construction domain is similar to the one defined in chapters 3, 4, but

includes extra anomalies.

7.1 The Marine Survey Domain

In the marine survey domain, we attempt to solve the problem of time-limited surveys of

marine environments with autonomous underwater vehicles (AUVs) [63, 62]. Typical goals

in this domain include measuring salinity, temperature, and pressure throughout the water

column. They can also incorporate acoustic receivers to investigate key aspects of marine

life. An important goal within a marine ecosystem is identifying the presence of hot spots

or regions of high fish density. These areas and the aquatic pathways between them that

fish transit represent areas of ecological sensitivity. Thus, discovering the location of major

69

hot spots, especially for endangered species, is an important application. However, many

anomalies exist in such environments that hinder agents’ performance. For example, sea

creatures may attach themselves to platforms and slow progress. In addition, tides and

currents exist that also impede progress, and obstacles may appear requiring course change.

Finally, conditions may change, limiting the detection range of acoustic receivers [36, 72].

Figure 7.1: Gray’s Reef National Marine Sanctuary is located off the coast of Georgia and
contains a research area shown in the insert shaded in pink. Within this, we represent a
5x5 subsection. This grid contains fish hot spots that are of interest to marine scientists,
here within the cell at locations (1,3) and (3,1). The agent (indicated by the red streak) is in
(0,3) cell. The highlighted square around the agent indicates the sensor range for detecting
acoustic fish tags (the small red dots).

Our research team regularly deploys AUVs such as Slocum gliders and custom robotic

fish for science-driven experiments, testing, and evaluation of new platforms. During

missions, the platforms surface to communicate on regular schedules or in response to

forced interrupts. AUV surveys make a valuable contribution to management efforts in

Gray’s Reef National Marine Sanctuary, located on the inner shelf of the South Atlantic

Bight off the coast of Savannah, GA (see Figure 7.1). Gray’s Reef contains fish tagged with

70

transmitters that send an acoustic signal or ’ping’ at a pre-determined frequency (5 minutes

for short experiments, 30-180 minutes for long-term tracking) containing identifiers unique

to that instrument, allowing researchers to classify detection’s by source.

We implemented the domain using an open-source simulator to test search techniques

prior to deployment. The simulator is called Mission Oriented Operating Suite (MOOS)[7].

It provides modeling for underwater platforms. The lower left of the figure 7.1 shows the

portion of the research area modeled by the MOOS simulator, and we split it into 25 cells.

We present one scenario of fish distribution in the lower left of the figure. The red dots

depict 1000 fish (currently assumed to be static) that emit a ping every 17-time steps. In

this scenario, hot spots are near the coordinates (1,3) and (3,1). The red streak represents

an AUV controlled by MIDCA, and the highlighted square area represents the receiver

detection radius. At Gray’s Reef, the detection radius varies with environmental conditions,

but currently, the simulator assumes it to be constant. As mentioned, an agent can identify

hot spots based on the number of pings.

An example scenario from the marine survey domain can help us understand the

importance of the agent using the proposed algorithm to prioritize goal operations. Therefore,

we refer to the agent using the proposed algorithm as a smart agent.

The figure 7.2 represents an example scenario in the Marine Survey Domain. As

mentioned, there are twenty-five survey goals for the smart agent. We name each cell by

its X, Y coordinate values, with both X and Y values ranging from 0-4. The cell’s initial

location is on the lower left (its coordinate is (0,0)). In addition, several types of anomalies

exist in the domain. First, Remora attacks hinder the agent’s movement; second, obstacles

(represented in red and green lines) hinder the agent’s movement from one location to the

blocked location. The green obstacles allow movement of the agent by either diving up or

down. The agent can only learn about such an obstacle if it stops and inspects the obstacle

to gain more information. The red obstacles do not allow the movement of the agent.

Consider a scenario where the smart agent performs goal selection and surveys the

71

Figure 7.2: An example in the Marine Survey Domain. We divide the region into 25
equal-sized cells. The anomalies in this domain are Remora attacks (cannot be depicted in
the image) and obstacles (shown by the red and green lines along cell edges). The agent
(indicated by the red cylinder) is at the location (0,3). The highlighted area around the agent
indicates the sensor range for detecting acoustic fish tags (the red dots). The hot spots are at
(1,3) and (3,1).

location (0,3). It then encounters a Remora attack. The agent has two choices; select a new

survey location (Goal Selection), or formulate a goal to remove the organism by gliding

backward (Goal Formulation). The agent now reasons about the anomaly effects. Since the

Remora attack hinders the agent’s movement and the Remora also chips the paint off of the

agent, the agent considers the anomaly to be a ”high” threat to its health. According to the

goal management method from 6.8, if any anomaly effects are high, the agent must choose

the goal formulation. So, the smart agent prioritizes goal formulation and glides backward

to free itself from the Remora attack. After this, it completes the survey in (0, 3). Since the

agent does not have a current goal, it performs a goal selection operation and pursues a new

goal. Let us assume that the agent selects the goal of surveying (0, 2). So, the agent must

72

move from its current location (0, 3) to the destination location (0, 2).

The smart agent now encounters an obstacle anomaly that hinders movement from

(0, 3) to (0, 2). Thus, it now has two choices; select a new survey location between (1, 3)

and (0, 4), or formulate a new goal to inspect the entrance to understand the cause of the

obstacle. In this scenario, the obstacle does not affect the agent’s health or the agent’s goals.

In addition, since this is the first occurrence of obstacle anomaly, the anomaly repetition

is also low. Hence, the agent prioritizes goal selection and surveys the location given by

the selection operation. Similarly, the smart agent prioritizes other goal operations as well.

Such prioritization helps the agent address its goals promptly in the dynamic world.

7.1.1 Experimental Design: The Marine Survey Domain

To demonstrate the importance of the goal management procedure developed, we compare

the performance of four different agents. The first is a baseline agent that performs only

planning and no goal operations. The second is an ideal agent, i.e., an agent achieving its

goals in a perfect world (without any anomalies but with goal operations). The third is a

random agent that chooses a goal operation in random when multiple co-occur. Finally, the

fourth is a smart agent. It implements the developed strategy to choose a goal operation

when they co-occur.

In the marine survey domain, the agent searches all cells for hotspots until a maximum

deadline of 600-time units. In addition, we create multiple hotspot patterns in the 5x5 survey

region. The first scenario has one hotspot at the cell location of (1,4). The second has four

hotspots at four corners cells of the 5x5 grid. One trial requires an agent to traverse all the 25

cells of a particular scenario. The agent starts at a given initial location and works towards

finding all hotspots before the deadline. For each scenario, we vary trials with 100 different

starting locations. We also repeat the experiment by randomizing the anomaly occurrences

(with two other seed values). Therefore, we have 300 trials in total.

To set up the experiment in this domain, first, we need to implement the three-goal

73

operations goal selection, goal change, and goal formulation. Then we implement the method

to manage goal operations when they co-occur. We discuss the individual implementation

of the goal operations in subsequent sections.

7.1.1.1 Goal Selection in The Marine Survey Domain:

We modify the stochastic hill-climbing algorithm [80] to perform a greedy structured search.

However, some limitations apply to stochastic hill climbing. For example, it cannot function

well if it encounters a local maximum. Therefore, the agent backtracks and continues its

search to overcome the inability and continue the search in a structured search strategy. The

table 7.1 presents the procedure for structured search.

The agent starts in one specific location of all the 25 cells (line 1). It then adds the cell

to the visited stack (line 3). Next, the agent searches the current cell for unique pings (line

4) and records all unique pings. In addition, it also records the location of the pings and

classifies them into four boundary edges in a cell. The agent then selects a neighboring cell

with the highest unique ping density (line 6). The agent then continuously visits cells that

increase in unique pings (lines 9-11). However, when the unique pings in its current cell are

less than that of the previously visited cell (line 12), it backtracks and visits the unexplored

best neighbor of the last visited cell (line 14). The agent performs this procedure until it

visits all cells (lines 7-8) or meets the mission deadline.

CSearch(searchCell, visited) is a support function that accepts inputs from a searched

cell and the visited cell stacks and returns the searched cell’s best neighbor to visit (lines

18-20). However, if all the input cell neighbors are visited (line 21), it recursively checks

for the best non-visited neighbor from a previously visited cell and returns it (lines 25-26).

In addition to structured search, we also implement an ergodic search [63] and structured

search combined with an ergodic search [63]. However, we do not present the details of the

other selection strategies as they are not the focus of this thesis.

74

Table 7.1: The table depicts the method for structured search (SS). First, the agent surveys
the current cell and compares the pings it hears in all four cell directions. Finally, the agent
chooses the adjacent cell with the highest pings. In addition, the agent also backtracks in
case of local maximums to complete the search of all 25 regions.

1. currentCell← startCell // Initial location of the agent
2. visited← initStack() // Keep track of the surveyed cells for backtracking
3. visited.push(currentCell)
4. currentCellP ings← UniquePings(currentCell) // Survey current cell and get the no:of fish tags
5. loop do
6. currentCell, visited← CSearch(currentCell, visited) // Best neighbor of the current cell
7. if visited.empty()
8. break // Stop the search as all the cells have been surveyed
9. currentCellP ings← UniquePings(currentCell)
10. previousCell← visited.top() // Get previously surveyed cell
11. visited.push(currentCell) // Add the current cell to the visited list
12. if currentCellP ings < UniquePings(previousCell)
13. visited← SortByMaxUniqueTags(visited)
14. currentCell← previousCell // Agent is at the top of the hill, perform backtracking

CSearch(searchCell, visited)
15. N,S,E,W = GetExpectedPings(searchCell) // get north, south, east, west expected fish tags
16. SearchCell = UnvstedMaxCell(N,S,E,W, visited)) // Unvisited cell with max projected fish tags
17. if searchCell is None // When the neighbors of the current cell are visited
18. if visited.empty()
19. return searchCell, visited // Agent has surveyed all the cells
20. else
21. newSearchCell← visited.pop() // Backtrack to the neighbors of the previously visited cells
22. return CSearch(newSearchCell, visited) // Recursively find the best neighbor
23. else
24. return searchCell, visited // Best neighboring cell with max projected fish tags

7.1.1.2 Goal Change in The Marine Survey Domain.

Similar to the discussion in chapter 4. We implement the goal change operation using

predicate transformations from a brief survey of a cell to a deep survey of a cell. For

example, in the marine survey domain, when the agent observes a potential to find a hot

spot, it could change its goal to perform a deeper search and collect more values.

75

7.1.1.3 Goal Formulation in The Marine Survey Domain.

Similar to the discussion in the chapter 5, we implement the goal formulation operation

using anomaly detection and explanations. The agent generates goals to tackle the Remora

attacks, unexpected flow, and obstacles in this domain. When remora latch onto the AUV

and hinder the agent’s movement, it needs to glide backward to get rid of it. In the event of

an unexpected flow, the agent must dive deeper to reduce the effects of currents. Finally, in

the event of an obstacle, the agent must generate a knowledge goal to gain more knowledge

about the obstacle. Equipped with this new knowledge, the agent can generate a goal to pass

through some obstacles either by diving up or down while the remaining obstacle remains

impassable.

7.1.2 Empirical Results : The Marine Survey Domain

This section depicts the empirical results obtained from running an experiment with the

setup mentioned above, as our main aim is to maximize the number of goals achieved. We

plot the results as a function of time, a function of anomalies.

76

Figure 7.3: Results obtained in the marine survey domain with the one hotspot scenario. The
X-axis denotes the time, and Y-axis represents the cumulative percentage of goals achieved.
We compare the performance among four different agents: Ideal (agent working in a perfect
world), Smart (agent using the goal management algorithm), Random (agent selecting goal
operations randomly; and Baseline (the agent ignoring anomalies).

Figure 7.3 presents results for the scenarios with and without the goal management

strategy. The X-axis depicts time, and the Y-axis represents the percentage of goals achieved.

In addition, the results are obtained with a single hotspot scenario, having the hotspot at

location (1,4).

The baseline agent ignores anomalies, so eventually, when one remora attacks, the agent

does not respond. It prompts a multi-remora attack, and eventually, the agent comes to a halt.

The ideal agent, which works in a perfect world, achieves the highest performance possible

because no anomalies occur. The agent choosing goal operations in random performs

better than the baseline agent. However, eventually, it runs out of resources due to its poor

choices. The smart agent uses the goal management strategy to make an informed decision.

It gradually achieves its goals until it matches the performance of the ideal agent.

77

Figure 7.4: Results obtained in marine survey domain with the four hotspot scenario. The
X-axis denotes the time, and Y-axis represents the cumulative percentage of goals achieved.
We compare the performance among four different agents: Ideal (agent working in a perfect
world), Smart (agent using the goal management algorithm), Random (agent selecting goal
operations randomly; and Baseline (the agent ignoring anomalies).

Figure 7.4 presents results for the four hotspot scenarios with and without the goal

management strategy. The X-axis depicts time, and the Y-axis represents the percentage

of goals achieved. In addition, we obtain the results with a multiple hotspot scenario, with

hotspots at locations (0,0), (0,4), (4,0), (4,4).

Similar to the previous graph, the pattern remains constant. The baseline agent ignores

anomalies. So, it eventually halts, thus making its performance a flat-line. Once again, the

ideal agent achieves the highest performance. The agent choosing goal operations in random

perform better than the baseline agent but not better than the ideal or smart agents. The

smart agent uses the goal management strategy to make an informed decision. As in the

figure 7.4, it gradually achieves its goals until it matches the performance of the ideal agent.

78

Figure 7.5: The figure depicts the results obtained as a function of anomalies for the single
hot-spot scenario. The X-axis denotes the anomalies, and Y-axis represents the percentage
of goals achieved. We compare the performance among four different agents: Ideal (agent
working in a perfect world), Smart (agent using the proposed algorithm), Random (agent
selecting goal operations in random; and Baseline (the agent that ignores anomalies). The
results are for a single hotspot scenario.

Figure 7.5 presents results for the scenarios with and without the goal management

strategy. The X-axis depicts anomalies, and the Y-axis represents the percentage of goals

achieved. In addition, we obtain the results with a single hotspot scenario, with a hotspot at

location (1,4).

Since the baseline agent ignores anomalies and halts, it performs very poorly. The ideal

agent, which works in a perfect world, does not have any anomalies to plot against. Hence

we depict it as a line on X-axis. The agent choosing goal operations in random performs

better than the baseline agent. However, eventually, as the anomalies increase. It runs out

of resources and flat lines. The smart agent uses the goal management strategy to make

an informed decision. So, as the number of anomalies increases, the percentage of goals

achieved also increases.

79

Figure 7.6: The figure depicts the results obtained as a function of anomalies for the four
hot-spot scenario. The X-axis denotes the anomalies, and Y-axis represents the percentage
of goals achieved. We compare the performance among four different agents: Ideal (agent
working in a perfect world), Smart (agent using the proposed algorithm), Random (agent
selecting goal operations in random; and Baseline (the agent that ignores anomalies). The
results are for a single hotspot scenario.

Figure 7.6 presents results for the scenarios with and without the goal management

strategy. The X-axis depicts anomalies, and the Y-axis represents the percentage of goals

achieved. In addition, we obtain the results with a multiple hotspot scenario, with hotspots

at locations (0,0), (0,4), (4,0), (4,4).

Once again, the pattern remains similar. The baseline agent ignores anomalies and

halts it performs very poorly. The ideal agent, which works in a perfect world, does not have

any anomalies to plot against. Hence we depict it as a line on X-axis. The agent choosing

goal operations in random performs better than the baseline agent. However, eventually,

as the anomalies increase. It runs out of resources and flat lines. The smart agent uses the

goal management strategy to make an informed decision. So, as the number of anomalies

increases, the percentage of goals achieved also increases.

80

Figure 7.7: The figure depicts the results obtained in the Marine Survey Domain. The
X-axis denotes the time, and Y-axis represents the number of hotspots. We compare the
performance among four different agents: Ideal (agent working in a perfect world), Smart
(agent using the proposed algorithm), Random (agent selecting goal operations in random;
and Baseline (the agent that ignores anomalies). The results are for a multi hotspot scenario.

Figure 7.7 presents results for the scenarios with and without the goal management

strategy. The X-axis depicts anomalies, and the Y-axis represents the number of anomalies.

Once again, the pattern the agent presents in this graph is as expected. The baseline

agent ignores anomalies and halts. So, it performs very poorly. The ideal agent, which

works in a perfect world, identifies all hot spots. The agent choosing goal operations in

random performs better than the baseline agent but worse than the smart and the ideal

agent. However, it manages to identify around half of the total hot spots. The smart agent

eventually identifies all the hot spots.

The next section details the second implementation domain, the construction domain.

81

7.2 The Construction Domain

Similar to the domain in the chapter 4, the construction domain is an extension of the blocks

world domain. It is also an extended version of the constriction domain presented in the

chapter 3. The construction domain contains several blocks, and each block has a unique

name for identification. The domain contains two types of blocks: regular blocks and mortar

blocks. The agent attempts to stack one block over the other to build high-rise towers. If

the agent stacks the blocks without mortar, the tower is wobbly. Whereas, if it uses mortar

blocks, the tower is sturdy. In general, sturdy towers are more desirable compared to wobbly

towers. The agent gains reward for construction based on the type and height of the tower.

There are two other actors in the domain due to which unexpected events in this domain

arise. First, an arsonist destroys the constructed towers by lighting them on fire. The second

one is a thief who steals the construction blocks. Both the arsonist and thief act randomly.

The fig 7.8 shows an instance of the goals achieved by the agent in the construction

domain. The agent constructs towers of different heights by placing the blocks on top of

one another. Each goal provided to the agent is to construct one tower of a particular height.

As mentioned, an agent gains a benefit after the successful achievement of the goal and also

incurs a cost to achieve a goal. The benefit obtained for each tower is proportional to the

tower’s height and its type. Similarly, the cost for constructing each tower is proportional to

the number of blocks used for the tower. As mentioned, an arsonist lights the constructed

towers on fire. In addition, there is also a thief who steals the construction materials (or)

blocks at random.

82

Figure 7.8: The figure depicts an instance of the achieved goals in the construction domain.
The agent achieved three goals in the above illustration. The first tower has a height of four,
the second tower has a height of two, and the third tower will have a height of three.

The next section demonstrates the importance of choosing the goal operations by

implementing and comparing the agent’s performance in the construction domain. Finally,

it describes the experimental setup and empirical results obtained in both domains.

7.2.1 Experimental Design: The Construction Domain

Similar to the marine survey domain, we use the same four agents in the marine survey

domain for comparison, the baseline, ideal, random, and smart agents.

The agent starts with 100 initial blocks and mortar in the construction domain. In

addition, the agent builds towers until reaching a deadline of 100-time units. The anomalies

such as fire and theft occur randomly. The agent must either generate a goal to apprehend

the culprit or continue working on its goals. The agents work on 1000 goal sets (problem

sets). Each problem consists of towers varying in height from one to seven. We repeat the

problem set with two different seeds. Thus, the results report values averages across 2000

trials.

To set up the experiment in this domain, first, we need to implement the three-goal op-

erations goal selection, goal change, and goal formulation individually. Then we implement

the method to manage goal operations when they co-occur. The next subsections elaborate

83

on the individual implementation of goal operations.

7.2.1.1 Goal Selection in The Construction Domain:

We perform goal selection using cost-benefit analysis in this domain. The details of the

selection are the same as in the chapter3. We modify the benefit according to the tower type

(sturdy vs. wobbly). The sturdy tower gains more benefit. For details on the exact values,

see appendix A B.

7.2.1.2 Goal Change in The Construction Domain:

The goal change operation is similar follows a similar strategy as mentioned in the chapter

4. We implement both generalization and specialization goal transformation for goal change.

According to the availability of resources, the agent could either change its goal from ”stable-

on” to ”on,” or from ”on” to ”stable-on.” Previously, it could only change from ”stable-on”

to ”on.” Currently, with the thief, if the agent apprehends the thief, it can successfully restock

the stolen resources.

7.2.1.3 Goal Formulation in The Construction Domain:

Similar to the other domains in the chapter 5, the goal formulation operation occurs in case

of anomalous events. As mentioned, in this domain, the anomalies are the arsonist and thief.

The arsonist burns constructed towers randomly, and the thief steals blocks and mortar at

random. The goal generated here is either to ”extinguished fire,” ”apprehended arsonist,”

or ”apprehend the thief.” The agent generates goals according to its situation. For example,

it will not apprehend the thief if he steals only one block, as it is an unnecessary resource

expenditure to try and apprehend a thief (there is a good chance not to find the thief). Hence,

the agent is smart in differentiating anomalies with actual problems while goal formulation

[61].

84

7.2.2 Empirical Results: The Construction Domain

This section represents the obtained empirical results in the construction domain with the

above experimental setup.

Figure 7.9: The figure depicts the results obtained as a function of time in the construction
domain. The X-axis denotes the time, and Y-axis represents the percentage of goals achieved.
We compare the performance among four different agents: Ideal (agent working in a perfect
world), Smart (agent using the proposed algorithm), Random (agent selecting goal operations
in random; and Baseline (the agent that ignores anomalies). The graphs present values that
vary across 2000 trials.

Figure 7.9 presents results for the scenarios with and without the goal management

strategy. The X-axis depicts time, and the Y-axis represents the percentage of goals achieved.

In addition, we obtain the results with values averaged across 2000 runs.

Even in this domain, the baseline agent ignores anomalies, so eventually, either the

thief steals all the blocks, or the arsonist burns everything. Since the baseline agent does not

respond, it performs very poorly. The ideal agent, which works in a perfect world, achieves

the highest performance. The agent choosing goal operations in random performs better

than the baseline agent. However, eventually, it runs out of resources due to its poor choices.

85

The smart agent uses the goal management strategy to make an informed decision. Like the

marine domain, it gradually achieves all goals until it matches the performance of an ideal

agent. Although the graphs in these two domains asymptote at different values, they follow

the same trends.

Figure 7.10: The figure depicts the results obtained as a function of anomalies in the
construction domain. The X-axis denotes the anomalies, and Y-axis represents the percentage
of goals achieved. We compare the performance among four different agents: Ideal (agent
working in a perfect world), Smart (agent using the proposed algorithm), Random (agent
selecting goal operations in random; and Baseline (the agent that ignores anomalies). the
values are averages across 2000 trials.

Figure 7.10 presents results for the scenarios with and without the goal management

strategy. The X-axis depicts anomalies, and the Y-axis represents the percentage of goals

achieved. In addition, we obtain the results with values averaged across 2000 runs.

Since the baseline agent ignores anomalies and halts, it receives a very low score. The

ideal agent, which works in a perfect world, does not have any anomalies to plot against.

Hence we depict it as a line on X-axis. The agent choosing goal operations in random

performs better than the baseline agent. However, eventually, as the anomalies increase. It

runs out of resources and flat lines. The smart agent uses the goal management strategy to

86

make an informed decision. So, as the number of anomalies increases, the percentage of

goals achieved also increases.

7.3 Summary of Interaction among Goal Operations

In conclusion, it is essential to address the knowledge gap present about the interaction of

various goal operations because the output of various interactions is different and unique

in complex situations. Therefore, the agent must possess the knowledge to make a smart

choice when it finds itself in similar situations.

We develop a generic goal management strategy to aid the agent take such decisions.

The strategy uses three main factors: anomaly effects, goal types, and resource availability.

We model each of the methods using various methods. Then classify the output of these

values into specific qualitative values. We then use the qualitative values to determine the

outcome. All three factors play an important role in the goal management process. We

implement the strategy in two very different domains: a real-world marine survey domain

and a simulated construction domain. In addition, we also present the empirical evaluation

for the results obtained. Since the work is first in its series and the research area does not

advertise any official benchmark problem sets. We define four agents that operate with very

wide performance variations. This allows us to compare the performance of the developed

agent with the lower bound (baseline) and the upper bound (ideal) agents.

In the future, we want to further the research by including more qualitative factors

such as medium. We also want to include other goal operations such as goal delegation,

sharing, monitoring. One of the above subsections presents an idea about the inclusion

of goal delegation within the current goal management strategy. In addition, we can also

extend the work by including all the anomaly factors instead of just negative effects.

87

Literature review

Cognitive systems research is progressing by following many different paths and strategies.

Some well-known areas and concepts include Goal-Driven Autonomy(GDA), explanations,

expectations, meta-cognition, Belief-Desire-Intention(BDI) agents, and execution monitor-

ing. In this literature review, we will be looking at several papers that belong to the above

categories. The literature review would aid in understanding some of the active research

areas in the cognitive systems.

INTRO [20] introduced the concept of goal-driven autonomy. The main motivation

behind developing such autonomy is to investigate the reasons for the origin of goals.

Therefore, GDA focuses on building agents capable of generating and managing their own

goals. INTRO implements its research in Wumpus World, where the agent needs to avoid

pits and Wumpus while reaching a certain destination. This demonstrates the importance of

developing such an agent. Further work on GDA includes implementing the frameworks

developed with a cognitive architecture [81]. The cognitive architecture used is called

MIDCA. Moreover, since the motivation behind GDA is to investigate the origin of goals,

the work also presents some goal generation mechanisms called K-track, D-track, and

dual-track. K-track uses TF-trees to generate a goal, D-track uses an explanation system

called Meta-AQUA to generate a goal, and the dual-track is the combination of both K-track

and D-track. Later, the authors modify the work and extend it to a new domain [82] called

the arsonist domain. In this domain, random fire events occur because of the arsonist, and

the agent needs to generate goals to investigate the reasons for the cause of the fire. Our

88

current research builds upon the more recent version of the existing MIDCA architecture

and builds additional frameworks to facilitate a more robust GDA agent.

In addition to MIDCA, [57] implements GDA in an agent called Autonomous Response

To Unexpected Events(ARTUE). The authors implement discrepancy detection and study the

performance variation of the ARTUE system in terms of benefits and limitations. The work

on ARTUE is also further developed into several later versions called Trainable-ARTUE

(T-ARTUE) [86], and M-ARTUE [107]. T-ARTUE performs interactive learning to obtain

knowledge to select goals, whereas M-ARTUE uses motivators to formulate goals. The

work on implementing GDA in ARTUE and MIDCA demonstrates the generalizability of

the GDA frameworks across several platforms. This thesis also performs goal operations

such as selection and formulation, as in some of the works mentioned. In addition, however,

this thesis also implements other goals operations such as goal change. Moreover, our work

also developed a framework to study the interactions between different operations instead of

just implementing the individual operations.

GDA also allows the agent to perform mental operations on agent goals called goal

reasoning. Goal reasoning facilitates the agent to perform goal operations. Some goal

operations include goal selection, goal change, goal formulation, goal delegation, goal

monitoring. For example, Cox et al., [23] presents a list of goal operations and elaborates on

two particular goal operations: goal change and goal formulation. However, the operations

are not only explicit to the GDA framework. Several research works that do not focus on the

GDA also develop mentioned goal operations. Let us now look at relevant works for each of

the operations.

Goal selection operation allows the agent to prioritize its goals for goal achievement.

[55] performs goal selection using Goal Reasoning with Informative Measures(GRIM).

This work is domain-specific and implements the selection operation to locate an officer

by traversing uncertain locations. GRIM uses information metrics like distance traversed

and time to perform the goal selection operation. The extension to this work includes its

89

implementation in multiple domains. [59, 58] implements selection in the construction

domain as well as restaurant domain. In addition, the work demonstrates the generality of the

work in limited-resource domains. Similarly, T-ARTUE [86] performs interactive learning

to learn the knowledge of goal selection from a user. T-ARTUE not only learns through the

expert, but it also accepts criticism for a wrongly selected goal and corrects the selection

not to repeat it in the future. In addition, more works on selection include [105, 106] which

present a goal manager. This goal manager chooses goals based on a priority value. The

authors implement their work on autonomous underwater platforms. Further works on

selection include Dora the explorer, Hawes et al., [50] explores all the world to fill its gaps

in spatial knowledge. Here the priorities for the goals are set by the user manually to select

one goal. The goal selection operation is essential in many other applications. For example,

one application includes space [13, 14] where the agent triggers new goals based on the

outcomes of the previous goals. The work mentioned inspired the work of Rabideau and

colleagues, [87] to develop an algorithm for goal selection with oversubscribed resources.

In their algorithm, the constraints and priorities define which goal to select among the set

of all goals. [103] presents the performance improvement in Arcsecond Space Telescope

Enabling Research in Astrophysics (ASTERIA) CubeSat. ASTERIA was deployed into space

to demonstrate precision photometry in 2017. Although the above work does not explicitly

include goal selection, it implements it inherently.

Goal change operation changes the agent’s goal to a similar goal due to the evolving

environments. Initial work on goal change includes [27] implementation of the operation

in the Air Campaign (ACP) domain, where the agent should manage its goals along with

changing its goal. Furthermore, it presents a taxonomy of goal transformations, and the goal

change occurs due to the following reasons:

• When the planning system anticipates a change in the environment that dictates an

adjustment during planning or execution.

• When there are limited or high resources.

90

. The authors develop this work further in Cox et al., [23], where the authors use predicate

transformations to implement goal change operation. Specifically, the authors implement

generalization transformation and present the results in a construction domain. [58, 63] later

develops this work to include other predicate transformations such as specialization, identity

and implements goal change in different domains.

Goal formulation is an essential operation that allows the agent to generate its own

goals. Several works focus on developing goal formulation; for example, our previous

work generates goals [64, 61] when an agent encounters a problem. We define problems

as anomalies that affect the agent or its goals negatively. [107, 105] implements goal

formulation using domain-independent heuristics called motivators (opportunity, exploration,

and social). The authors calculate the urgency and fitness for each motivator using specific

formulas. They test their work in the Mars world domain using the M-ARTUE agent. The

works also present an approach to integrating high-level intelligent behavior with motion

autonomy while extending the work in multi-agent scenarios. The authors develop this

work further in [106], where the agent generates goals and assigns them a priority value for

goal management. [18] presents another system, which tries to formulate and manage its

own goals. The work includes the motivations of the agent to generate goals. The authors

develop the work in the Casper architecture and the NASA MER rover domains. Finally,

Hawes [49] develops work on both goal formulation and goal selection using a motivational

management framework. This work is a survey paper that also points to several other works

on formalization and selection.

This thesis implements mentioned three-goal operations individually, similar to many

of the works mentioned. However, it also studies their interactions. The contribution on

interactions stands as a novel contribution. None of the works mentioned above examine or

implement this contribution.

Some additional works on goals and goal reasoning include the life cycle of a goal from

Roberts et al., [92]. The work presents goal lifecycle in the form of goal mode transitions.

91

Another work on similar lines uses a hierarchy of goals for better representation. This work

allows easy management of the goals and goal operations using this hierarchy. Another

work also builds the type-level goal hierarchy using agent learned knowledge [51]. The

algorithm gradually reduces the cost of the construction of the hierarchy over time. The

authors implement their work in the Freeciv domain. Freeciv is a game to build civilizations

and conquer others. Although the current work does not implement such goal-level hierarchy

or life cycle, it is a very interesting avenue to pursue in the future.

The Wyatt and colleagues [108] also performs some goal management when multiple

goals are present for the agent to perform. There is also work on goal delegation [44].

In this multi-agent work, the agent works on multi-agent goal management by delegating

goals among multiple agents. Also, [76] uses goal reasoning to improve a sonar sensor’s

performance. These works on goal management are in line with our solution attempts.

However, our thesis’s current focus is on single agent’s goal management using goal

operations which is the main contrast to the above works.

Like all works, the GDA and goal reasoning also has certain limitations; [97] defines

and addresses the limitations of GDA. For example, one problem includes the scalability

of plan generation algorithms. The solution approach to tackling such problems uses a

higher-level goal decomposing into several sub-goals using a Goal Decomposition Planner

(GDP). This work is called Hierarchical Goal Networks (HGN). Although our current work

does not implement HGN’s, it is an interesting future direction to pursue. In addition to all

the work we discussed, several other concepts helpful in goal reasoning are expectations

and explanations.

Expectations help agents detect abnormal events that occur in the world. This aids the

agent in changing its behavior according to its situation. Expectations are very helpful in the

dynamic and partially observable worlds. The paper by Dannenhauer and his colleagues[29]

is one of the few papers which tries to address the expectations of the agents about their

mental cognition. Contributions of the paper are as follows:

92

• General formalism of the cognitive expectations

• Implementation of meta-cognitive expectations in an agent embodied within a cogni-

tive architecture

• Ablation experimental results indicating that an agent equipped with metacognitive

expectations outperforms agents operating without such capabilities

Authors perform experiments in the NBecons and arsonist domains. Some of the prior work

on expectations include work done by Dannenhauer[31] where the assumption of applying

expectation is applied to partially observable domains to collect data from the world. The

authors term these types of expectations as informed expectations. The work also makes

calculated planning and sensing costs. In addition, the work presented by Dannenhauer[30]

focuses on generating expectations with the help of hierarchical planning principles. The

Hierarchical Task Networks (HTN) [69], which are similar to HGN mentioned above are

used in shop planners. Types of expectations presented in this work include:

• Immediate: consists of preconditions and effects

• State: state and plan; the agent expects the result of applying the plan to state

• Informed: resulting state after applying tasks to the current state should be defined

first

The authors implement their work in Mars world and Arsonist domains. Other works

on expectations include the work by Kurup et al., 2012[65], where the agent performs

expectation-driven cognition. The agent generates expectations with the help of ACT-R’s

declarative memory, partial matching, and blending mechanisms. ACT-R is a cognitive

architecture that has been around since the 1970s. The author chose a real-world domain for

their implementation, pedestrian tracking, and behavior classification. The authors compare

the idea and implementation of this work with the KNN classifier. One other work on

expectations is by Ranasinghe and colleagues [88] is not entirely focused on expectations.

93

Still, it identifies surprises or unexpected actions in the world based on condition, action,

and precondition. The agent should identify the precondition, and if the precondition is

different or very far from the observation, it considers a surprise. They have developed an

algorithm for surprise-based learning with rule splitting and some first-order predicate logic.

Although, we do not use expectations explicitly. We use the work on expectations to identify

anomalies for goal formulation operations. Whenever an anomaly occurs, the agent must

explain the reasons behind the anomaly. Hence, we will now focus on some related work on

explanations.

Explanations are instrumental to an agent because they allow them to understand and

learn more about the world. [45, 46] presents the work on the use of case-based reasoning

to explain an anomaly and to aid the agent to come up with a new goal if necessary. The

authors develop this work further to aid in goal operations such as selection [47] and goal

formulation [43]. Another work that implements explanations using a case-based system is

called Meta-AQUA [26]. This work presents a taxonomy of failure cases and inputs them

to the system as bias. After which, the agent tries to learn the success cases using the bias

provided. Other works on an autonomous system that automatically detects and explains the

discrepancies during execution include Williams[104], and Klenk[57]. Both Titan [104], and

Kirk [56] choose their actions by tracking the system state using a declarative specification

of the system behavior. In addition to the works mentioned, there is work on trying to

understand the plan by explaining actions using abduction principles [73]. One more similar

work includes learning the world through the surprises the agent encounters, this works

presents a variant of the FOIL learning module, and it is implemented in ARTUE system

[74]. [94] presents work in which the agent uses explanations to learn about the world. In

this work, the author presents a case-based approach to allow the agent to learn and adapt

to its environment better. Other works on the agent learning about the world based on the

surprises it encounters use prediction rules to predict the results of the actions it does in an

unknown world[88]. If the agent encounters a surprise, it tries to reason about it and learn

94

about the world. In this thesis, we make use of implicit explanations when anomalies occur.

In addition, in the context of smart agents, almost all of the work presented in expectation,

explanation has monitoring inherently or explicitly. Therefore, let us now look at some

related works in this regard.

Monitoring is also a very important action that helps the agent modify the model of

the world and allows it to reason about the world when some unexpected event occurs.

Pettersson [85] presents a survey on execution monitoring in the field of industrial control.

A paper on reverse execution monitoring [12] assumes that the effects of the actions are

already known to the agent and tries to reason about the action if the outcome is wrong.

[101] presents the process of continuous diagnosis. [1] present work on monitoring the plan

during plan execution and implementation. The authors extend this work to monitor the

reasons to achieve the goals in [33]. Finally, work by Chernova et al., [12] tries to update

the understanding of the agent using reverse plan monitoring while making the agent by

extracting new features from the world. This thesis only implements the environmental

monitoring implicitly. Apart from that, it does not implement any other kinds of monitors.

However, it is an exciting venue to pursue in the future.

Another research area is the planning and execution of the work in either simulation

or real-world settings. Almost many of the works discussed implement these operations.

However, let us add two specific real-world implementations of such work. Research

work that incorporates both control and cognitive level intelligence includes the Control

Architecture for Robotic Agent Command and Sensing (CARACaS), developed for autonomy

in underwater platforms [53]. CARACaS uses intelligent decision-making to make the

unmanned underwater agent robust. CARACaS uses three different components to make

such decisions. The first is a behavioral engine which is the core of the system. The

agent uses it in real-time for several generic behaviors of the agent. The second is a

perception engine that produces maps. Agents use these maps for navigation purposes.

Finally, a dynamic planner called Continuous Activity Scheduling Planning Execution and

95

Re-planning is used to handle goal-based planning and re-planning operations on-board.

In this work, the burden is on the planner for goal prioritization and goal achievement. In

addition, [78] uses a rule-based approach to integrate execution and planning.

Apart from all the topics discussed so far, we also argue that the agent must have a

model of itself and the world to work robustly in a real-world setting. One of the early works

on metacognition presented by the authors in the paper titled ’Perpetual self-aware cognitive

agents’ by Cox[20]. Some others working in a similar area include Wyatt[108], where

research on self-understanding and self-extension was the focus. The authors develop an

architecture for object detection and understanding using CAS architecture. They describe

CAS and have presented some good experiments for their architecture. Some other works

in the meta-reasoning include [52], [22], where the authors classify meta reasoning into

several categories and introduce each category. One another work in self-understanding and

how it will improve the agent is outlined in work by Murdock[75], which represents the

drawbacks of case-based reasoning, proposes a new self-model, and tries to come up with a

new plan whenever necessary. This work uses Task Method Knowledge (TMKL) agents for

implementation purposes as they can adapt themselves to a set of transformations whenever

necessary. The work presented by Flavall[38] is a theory paper that tries to classify the meta

knowledge and organize it. [28] uses expectations to help the agent to build a model of itself.

In our thesis, we implement goal change operation at the meta-level because the agent must

reason about its own goals to change them.

While trying to understand the world, it is also important for the agent to develop a better

representation. However, it should not ignore the costs of planning and sensing. We will now

examine works that represent the world better while keeping sensing costs in mind. This

would facilitate effective implementation of the goal operations. Golden et al., [48] presents

the representation of the sensing actions using UWL (strips-based representation language)

and ADL (classical representation framework). This work represents the knowledge goals.

Other works that represent world models attempt to include GDA to sense actions have [32].

96

This work implements the sensing costs while operating in a partially observable world.

[42] discusses the hierarchical representation of the capabilities of the agent to understand

the world, acquire operations, and plan. This aids the agent in improving its reasoning. One

other work which aids in planning when there is an incomplete representation about the

actions sensed is [84]. The solution proposes to use the knowledge represented in first-order

modal logic and the actions based on how they modify the knowledge states. In addition to

the works presented, there is also work on representing the knowledge about the world using

some philosophical ideas [71]. STRIPS[37], provides a representation of the world using a

simple predicate-argument format. It also searches the goal space and employs a resolution

theorem prover to answer some questions that the agent encounters. Baral[6] presents a

new representation of states using three values. This is a different version of representation

than using the classic Kripke structures. In, [2], the authors represent actions such that

they can use them in both the natural language and problems solving fields of artificial

intelligence. This paper also presents formalism about representation. Agents can also learn

to construct observations, actions, and knowledge by using the radial interactionism [40].

This is useful in understanding the world; the agent obtains input data for the algorithm

from sensorimeter readings of the system. There is also work on the reasoning that tries to

reason about knowledge, action, and time in certain domains, which is presented in work by

Patkos[83]. This is a formal work that makes use of event calculus. Finally, Shanahan[95]

presents the use of abductive reasoning methods to construct the world models through the

sensor inputs. Our thesis uses a descendant of STRIPS called PDDL in MIDCA for world

representation.

Apart from the goal-based agents mentioned until now, one other type of agent is Belief-

Desire-Intention(BDI) agents. Initially, these rationale agents are theorized and are presented

in practice [89]. Later, the belief change operation is performed using a generalized update

[9][10]. There is also work on belief extrapolation by Florence de Saint-Cyr and Jerome

Lang[34] which tries to complete the incomplete belief sets from the data obtained through

97

observations. The work provides many extrapolation operators. We think that the work

on such agents will better integrate the GDA with real-world control architectures such as

CARACaS mentioned above.

The basis for developing cognitive architectures is to understand the psychology of

thinking in general. Hence the literature also focuses on some relevant psychology pa-

pers. One work tries to focus on the improvement of the knowledge of the agent through

constructing the reality by narrating it [11]. The authors define the narrative in ten things:

Narrative diachronicity, Particularity, Intentional state entailment, Hermeneutic composabil-

ity, Canonicity and Breach, Referentiality, Genericness, Normativeness, Context sensitivity

and negotiability, and narrative accrual. All these ten at once describe the narrative, and

the constructed reality teaches us about the nature of reality built by the human mind.

Furthermore, there is also work which investigates how humans construct reality using

narration [11]. Michael Mateas and Phoebe Sengers[70] also present various systems that

use narrative intelligence. Both represent the importance of narrative intelligence and

present its applications. Work by Dennis E. Clayson[17] attempts to address the reason

behind students overestimating their exams scores. However, this paper could not determine

the exact reason for the overconfidence. Therefore, it lays out various possibilities for

overestimation. Dunlosky et al., [35] present a work trying to improve the grades of the

students by introducing an effective learning mechanism. There is also work that attempts to

investigate the initial feeling of knowing in humans [90]. The long-term goal of this thesis

is to build an agent capable of achieving goals and understanding the world similar to or

better than an average human.

98

Conclusion and Future work

The central idea of the thesis is to address the knowledge gap present about the interaction

of various goal operations in the research area. We developed a goal management strategy

to bridge this gap. The goal management strategy considered three main factors to address

multiple co-occurrences of goal operations. The factors include the negative effects of

anomalies, goal types, and resource availability. We elaborate on each factor and create

models to estimate all of them. We then translate the outputs of the models to a set of

qualitative outputs. Finally, we verify if the outputs match any specific rule in MIDCA to

output a decision. We implement the goal management strategy in the marine survey domain

and the construction domain. We then test the performance of the strategy and provide an

empirical evaluation. The results obtained depict the importance of such a strategy to the

robust goal achievement of the agent.

In addition to the central idea, we also implement three individual goal operations:

goal selection, goal change, and goal formulation. First, We implement the goal selection

operation using FIFO, a cost-benefit analysis, and a greedy hill-climbing method. We imple-

ment the goal selection operation in the construction, restaurant, and marine survey domains.

We also evaluate the individual importance of selection to the agent by obtaining results

across all the mentioned domains above. The results show the individual importance of the

goal selection operation. Next, we implement the goal change operation using predicate

transformations. Specifically, we implement the generalization and specialization transfor-

mations. We implement the goal change operation in the marine survey and construction

99

domains. We also evaluate the operation individually in the construction domain to study its

importance. Finally, we implement the goal formulation operation using anomaly detection

and explanations. We implement this operation in the mine clearance domain, the labor

relations domain, the marine survey domain, and the construction domain. We evaluate

the operation individually in the first two domains. In the future, we want to further this

research with the following ideas.

• Implement more qualitative factors: We can extend our work to include other

qualitative factors such as medium in addition to high and low. We could also include

other goal types such as enjoyment goals and delta goals and study the resulting goal

management strategy variations.

• Implement other goal operations: We can extend our work to include other goal

operations such as goal delegation, goal monitoring, goal evaluation, and goal sharing.

We present an approach to include goal delegation to the current goal management

strategies in subsection 6.2, but extending this to others promises ever-increasing

performance.

• Include positive anomaly factors: So far, the thesis has focused on the negative

anomaly effects. In the future, we would like to study how the positive anomalies

change the decisions and performance of an agent.

• Include the work of multi-agent systems: We can extend our work to multi-agent

goal management through such high-level decisions. We implement work on multi-

agent goal delegation to some extent [45].

• Improve individual goal operations: We can also work towards improving each

goal operation. For example, the agent can implement goal change using argument

transformations in addition to predicate transformations.

100

• Embody the work: We can work toward further embodying our research onto an

intelligent physical system.

101

102

Bibliography

[1] Zohreh Alavi and Michael T Cox. Rational-based visual planning monitors. In IJCAI,

pages 3968–3969, 2016.

[2] James F Allen. Towards a general theory of action and time. Artificial intelligence,

23(2):123–154, 1984.

[3] Erik M Altmann and Wayne D Gray. An integrated model of cognitive control in task

switching. Psychological review, 115(3):602–639, 2008.

[4] John R Anderson, Michael Matessa, and Christian Lebiere. Act-r: A theory of higher

level cognition and its relation to visual attention. Human–Computer Interaction,

12(4):439–462, 1997.

[5] John R Anderson and C Schunn. Implications of the act-r learning theory: No magic

bullets. Advances in instructional psychology, Educational design and cognitive

science, pages 1–33, 2000.

[6] Chitta Baral and Tran Cao Son. Approximate reasoning about actions in presence of

sensing and incomplete information. In ILPS, volume 97, pages 387–401, 1997.

[7] Michael R Benjamin, Henrik Schmidt, Paul M Newman, and John J Leonard. Nested

autonomy for unmanned marine vehicles with moos-ivp. Journal of Field Robotics,

27(6)(6):834–875, 2010.

103

[8] Ralph Bergmann. Experience management: foundations, development methodology,

and internet-based applications, volume 2432. Springer, 2003.

[9] Craig Boutilier. Generalized update: Belief change in dynamic settings. In IJCAI,

pages 1550–1556, 1995.

[10] Craig Boutilier. A unified model of qualitative belief change: A dynamical systems

perspective. Artificial Intelligence, 98(1-2):281–316, 1998.

[11] Jerome Bruner. The narrative construction of reality. Critical inquiry, 18(1):1–21,

1991.

[12] Sonia Chernova, Elisabeth Crawford, and Manuela Veloso. Acquiring observation

models through reverse plan monitoring. In Portuguese Conference on Artificial

Intelligence, pages 410–421. Springer, 2005.

[13] Steve Chien, Benjamin Cichy, Ashley Davies, Daniel Tran, Gregg Rabideau, Re-

becca Castano, Rob Sherwood, Dan Mandl, Stuart Frye, Seth Shulman, et al. An

autonomous earth-observing sensorweb. IEEE Intelligent Systems, 20(3):16–24,

2005.

[14] Steve Chien, Rob Sherwood, Daniel Tran, Benjamin Cichy, Gregg Rabideau, Re-

becca Castano, Ashley Davis, Dan Mandl, Bruce Trout, Seth Shulman, et al. Using

autonomy flight software to improve science return on earth observing one. Journal

of Aerospace Computing, Information, and Communication, 2(4):196–216, 2005.

[15] Dongkyu Choi. Reactive goal management in a cognitive architecture. Cognitive

Systems Research, 12(3-4):293–308, 2011.

[16] Dongkyu Choi and Pat Langley. Evolution of the icarus cognitive architecture.

Cognitive Systems Research, 48:25–38, 2018.

104

[17] Dennis E Clayson. Performance overconfidence: metacognitive effects or misplaced

student expectations? Journal of Marketing Education, 27(2):122–129, 2005.

[18] Alex Coddington, Maria Fox, Jonathan Gough, Derek Long, and Ivan Serina. Madbot:

A motivated and goal directed robot. In Proceedings of the National Conference on

Artificial Intelligence, volume 20(4), pages 1680–1681. Menlo Park, CA; Cambridge,

MA; London; AAAI Press; MIT Press; 1999, 2005.

[19] Michael T Cox. Field review: Metacognition in computation: A selected research

review. Artificial intelligence, 169(2):104–141, 2005.

[20] Michael T Cox. Perpetual self-aware cognitive agents. AI magazine, 28(1):32–32,

2007.

[21] Michael T Cox. Question-based problem recognition and goal-driven autonomy. In

Goal Reasoning: Papers from the ACS workshop, pages 10–25, 2013.

[22] Michael T Cox, Zohreh Alavi, Dustin Dannenhauer, Vahid Eyorokon, Hector Munoz-

Avila, and Don Perlis. Midca: A metacognitive, integrated dual-cycle architecture

for self-regulated autonomy. In Thirtieth AAAI Conference on Artificial Intelligence,

volume 5(1), pages 3712–3718, 2016.

[23] Michael T Cox, Dustin Dannenhauer, and Sravya Kondrakunta. Goal operations for

cognitive systems. In Thirty-First AAAI Conference on Artificial Intelligence, pages

4385–4391, 2017.

[24] Michael T. Cox, Zahid Mohammad, Sravya Kondrakunta, Venkatsampath Raja Gogi-

neni, Dustin Dannenhauer, and Othalia Larue. Computational metacognition. In

Proceedings of the Ninth Annual Conference on Advances in Cognitive Systems, pages

1–20. Cognitive Systems Foundation, 2021.

105

[25] Michael T Cox, Tim Oates, and Don Perlis. Toward an integrated metacognitive

architecture. In 2011 AAAI Fall Symposium Series, pages 74–81, 2011.

[26] Michael T Cox and Ashwin Ram. Failure-driven learning as input bias. In Proceedings

of the Sixteenth Annual Conference of the Cognitive Science Society, pages 231–236.

Erlbaum Hillsdale, NJ, 1994.

[27] Michael T Cox and Manuela M Veloso. Goal transformations in continuous planning.

In Proceedings of the 1998 AAAI fall symposium on distributed continual planning,

pages 23–30, 1998.

[28] Dustin Dannenhauer. Self monitoring goal driven autonomy agents. PhD thesis,

University of Lehigh, 2017.

[29] Dustin Dannenhauer, Michael T Cox, and Hector Munoz Avila. Declarative metacog-

nitive expectations for high-level cognition. In Advances in Cognitive Systems,

volume 6, pages 231–250. Springer, 2018.

[30] Dustin Dannenhauer and Hector Munoz-Avila. Raising expectations in gda agents

acting in dynamic environments. In Twenty-Fourth International Joint Conference on

Artificial Intelligence, pages 2241–2247. IJCAI Press, 2015.

[31] Dustin Dannenhauer, Hector Munoz-Avila, and Michael T Cox. Informed expec-

tations to guide gda agents in partially observable environments. In Twenty-Fifth

International Joint Conference on Artificial Intelligence, pages 2493–2499. IJCAI

Press, 2016.

[32] Dustin Dannenhauer, Hector Munoz-Avila, and Sravya Kondrakunta. Goal-driven

autonomy agents with sensing costs. In Twenty-Sixth International Joint Conference

on Artificial Intelligence, 2017.

106

[33] Zohreh Dannenhauer, Matthew Molineaux, and Michael T Cox. Explanation-based

goal monitors for autonomous agents. In Goal reasoning workshop, 2019.

[34] Florence Dupin de Saint-Cyr and Jérôme Lang. Belief extrapolation (or how to

reason about observations and unpredicted change). In Proceedings of the Eights

International Conference on Principles of Knowledge Representation and Reasoning,

pages 497–508. Morgan Kaufmann Publishers Inc., 2002.

[35] John Dunlosky, Katherine A Rawson, Elizabeth J Marsh, Mitchell J Nathan, and

Daniel T Willingham. Improving students’ learning with effective learning techniques:

Promising directions from cognitive and educational psychology. Psychological

Science in the Public Interest, 14(1):4–58, 2013.

[36] Catherine Edwards, Sungjin Cho, Fumin Zhang, and Sarah Fangman. Field and nu-

merical studies to assess performance of acoustic telemetry collected by autonomous

mobile platforms. Technical report, National Marine Sanctuaries Conservation Series,

Silver Spring, MD, 2020.

[37] Richard E Fikes and Nils J Nilsson. Strips: A new approach to the application of

theorem proving to problem solving. Artificial intelligence, 2(3-4):189–208, 1971.

[38] John H Flavell. Metacognition and cognitive monitoring: A new area of cognitive–

developmental inquiry. American psychologist, 34(10):906–911, 1979.

[39] Howard Gardner. Multiple intelligences: The theory in practice. Basic books, 1983.

[40] Joseph Garnier, Olivier L Georgeon, and Amélie Cordier. Inferring actions and

observations from interactions. In ACS, 2013.

[41] Malik Ghallab, Dana Nau, and Paolo Traverso. The actors view of automated planning

and acting: A position paper. Artificial Intelligence, 208:1–17, 2014.

107

[42] Yolanda Gil and Jim Blythe. How can a structured representation of capabilities help

in planning. In Proceedings of the AAAI–Workshop on Representational Issues for

Realworld Planning Systems, 2000.

[43] Venkatsampath Raja Gogineni, Sravya Kondrakunta, Danielle Brown, Matthew Mo-

lineaux, and Michael T Cox. Probabilistic selection of case-based explanations in

an underwater mine clearance domain. In International Conference on Case-Based

Reasoning, pages 110–124. Springer, 2019.

[44] Venkatsampath Raja Gogineni, Sravya Kondrakunta, and Michael T. Cox. Multi-

agent goal delegation. In Proceedings of the 9th Goal Reasoning Workshop, pages

1–13, 2021.

[45] Venkatsampath Raja Gogineni, Sravya Kondrakunta, Matthew Molineaux, and

Michael T Cox. Application of case-based explanations to formulate goals in an

unpredictable mine clearance domain. International Conference on Case-Based

Reasoning, pages 42–51, 2018.

[46] Venkatsampath Raja Gogineni, Sravya Kondrakunta, Matthew Molineaux, and

Michael T Cox. Case-based explanations and goal specific resource estimations.

In The Thirty-Third International Flairs Conference, pages 407–412. AAAI Press,

2020.

[47] Venkatsampath Raja Gogineni, Sravya Kondrakunta, Matthew Molineaux, and

Michael T Cox. Case-based explanations and goal specific resource estimations.

In Proceedings of Thirty-Third International Flairs Conference, pages 407–412.

AAAI, 2020.

[48] Keith Golden and Daniel Weld. Representing sensing actions: The middle ground

revisited. KR, 96:174–185, 1996.

108

[49] Nick Hawes. A survey of motivation frameworks for intelligent systems. Artificial

Intelligence, 175(5-6):1020–1036, 2011.

[50] Nick Hawes, Marc Hanheide, Kristoffer Sjöö, Alper Aydemir, Patric Jensfelt,

Moritz Göbelbecker, Michael Brenner, Hendrik Zender, Pierre Lison, Ivana Kruijff-

Korbayová, et al. Dora the explorer: A motivated robot. In Proceedings of the 9th

International Conference on Autonomous Agents and Multiagent Systems: volume

1-Volume 1, pages 1617–1618. International Foundation for Autonomous Agents and

Multiagent Systems, 2010.

[51] Thomas R Hinrichs and Kenneth D Forbus. Beyond the rational player: Amortizing

type-level goal hierarchies. In Goal reasoning: Papers from the ACS workshop, 2013.

[52] Eric Horvitz. Metareasoning: Thinking about thinking. MIT Press, 2011.

[53] Terry Huntsberger and Gail Woodward. Intelligent autonomy for unmanned surface

and underwater vehicles. In Proceedings of the OCEANS’11 MTS/IEEE KONA, pages

1–10. IEEE, 2011.

[54] Matthew Iklé, Ben Goertzel, Misgana Bayetta, George Sellman, Comfort Cover,

Jennifer Allgeier, Robert Smith, Morris Sowards, Dylan Schuldberg, Man Hin Leung,

et al. Using tononi phi to measure consciousness of a cognitive system while reading

and conversing. AAAI spring symposium: towards conscious AI systems, 2019.

[55] Benjamin Johnson, Mark Roberts, Thomas Apker, and David W Aha. Goal reasoning

with informative expectations. In Planning and Robotics: Papers from the ICAPS

Workshop. London, UK: AAAI, 2016.

[56] Phil Kim, Brian C Williams, and Mark Abramson. Executing reactive, model-based

programs through graph-based temporal planning. In IJCAI, pages 487–493, 2001.

109

[57] Matthew Klenk, Matt Molineaux, and David W Aha. Goal-driven autonomy for

responding to unexpected events in strategy simulations. Computational Intelligence,

29(2):187–206, 2013.

[58] Sravya Kondrakunta. Implementation and evaluation of goal selection in a cognitive

architecture. Master’s thesis, Wright State University, 2017.

[59] Sravya Kondrakunta and Michael T Cox. Autonomous goal selection operations

for agent-based architectures. In Working Notes of the 2017 IJCAI Goal Reasoning

Workshop. IJCAI, 2017.

[60] Sravya Kondrakunta and Michael T Cox. Autonomous goal selection operations for

agent-based architectures. In Proceedings from Advances in Artificial Intelligence

and Applied Cognitive Computing, page in press, Las Vegas, NV, 2021. Springer.

[61] Sravya Kondrakunta, Venkatsampath Raja Gogineni, Danielle Brown, Matt Molin-

eaux, and Michael T Cox. Problem recognition, explanation and goal formulation.

Advances in Cognititve Systems, 2019.

[62] Sravya Kondrakunta, Venkatsampath Raja Gogineni, and Michael T. Cox. Agent

goal management using goal operations. In Proceedings of the 9th Goal Reasoning

Workshop, pages 1–15, 2021.

[63] Sravya Kondrakunta, Venkatsampath Raja Gogineni, Michael T. Cox, Demetris Cole-

man, Xiaobo Tan, Tony Lin, Mengxue Hou, Fumin Zhang, Frank McQuarrie, and

Catherine R. Edwards. The rational selection of goal operations and the integration

of search strategies with goal-driven autonomy. In Proceedings of the Ninth An-

nual Conference on Advances in Cognitive Systems, pages 1–20. Cognitive Systems

Foundation, 2021.

110

[64] Sravya Kondrakunta, Venkatsampath Raja Gogineni, Matt Molineaux, Hector Munoz-

Avila, Martin Oxenham, and Michael T Cox. Toward problem recognition, explana-

tion and goal formulation. Sixth Goal Reasoning Workshop, 2018.

[65] Unmesh Kurup, Christian Lebiere, Anthony Stentz, and Martial Hebert. Using expec-

tations to drive cognitive behavior. In Twenty-Sixth AAAI Conference on Artificial

Intelligence, volume 26, pages 221–227, 2012.

[66] John E Laird. The Soar cognitive architecture. MIT press, 2019.

[67] Pat Langley and Dongkyu Choi. A unified cognitive architecture for physical agents.

In Proceedings of the National Conference on Artificial Intelligence, volume 21(2),

page 1469. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press;

1999, 2006.

[68] Michael Lewis. Designing for human-agent interaction. AI Magazine, 19(2):66–79,

1998.

[69] Amnon Lotem and Dana S Nau. New advances in graphhtn: Identifying independent

subproblems in large htn domains. In AIPS, pages 206–215, 2000.

[70] Michael Mateas and Phoebe Sengers. Narrative intelligence. John Benjamins

Publishing, 2003.

[71] John McCarthy and Patrick J Hayes. Some philosophical problems from the stand-

point of artificial intelligence. In Readings in artificial intelligence, pages 431–450.

Elsevier, 1981.

[72] Frank McQuarrie, C. Brock Woodson, and Catherine Edwards. Modeling acous-

tic telemetry detection ranges in a shallow coastal environment. In Proceedings

of the 14th ACM International Conference on Underwater Networks and Systems

(WUWNet’21), Guangdong, China, in press. ACM.

111

[73] Ben Leon Meadows, Pat Langley, and Miranda Jane Emery. Seeing beyond shadows:

Incremental abductive reasoning for plan understanding. In Workshops at the Twenty-

Seventh AAAI Conference on Artificial Intelligence, 2013.

[74] Matthew Molineaux and David W Aha. Learning unknown event models. In Twenty-

Eighth AAAI Conference on Artificial Intelligence, volume 28, pages 395–401. AAAI

Press, 2014.

[75] J William Murdock and Ashok K Goel. Meta-case-based reasoning: self-improvement

through self-understanding. Journal of Experimental & Theoretical Artificial Intelli-

gence, 20(1):1–36, 2008.

[76] Jill K Nelson and Steven Schoenecker. Goal driven autonomy as a model for reasoning

in cognitive active sonar. In Proceedings of the 2018 IEEE 10th Sensor Array and

Multichannel Signal Processing Workshop (SAM), pages 1–5, Sheffield, United

Kingdom, 2018. IEEE.

[77] Thomas O Nelson. Metamemory: A theoretical framework and new findings. In

Psychology of learning and motivation, volume 26, pages 125–173. Elsevier, 1990.

[78] Tim Niemueller, Till Hofmann, and Gerhard Lakemeyer. Goal reasoning in the clips

executive for integrated planning and execution. In Proceedings of the International

Conference on Automated Planning and Scheduling, volume 29, pages 754–763,

Berkeley, CA, 2019. AAAI Press.

[79] Donald A Norman and Stephen W Draper. User centered system design: New

perspectives on human-computer interaction. CRC Press, 1986.

[80] Una-May O’Reilly and Franz Oppacher. Program search with a hierarchical variable

length representation: Genetic programming, simulated annealing and hill climbing.

In International Conference on Parallel Problem Solving from Nature, pages 397–406,

Jerusalem, Israel, 1994. Springer.

112

[81] Matt Paisner, Michael Maynord, Michael T Cox, and Don Perlis. Goal-driven

autonomy in dynamic environments. In Goal Reasoning: Papers from the ACS

Workshop, volume 79, 2013.

[82] Matthew Paisner, Michael Cox, Michael Maynord, and Don Perlis. Goal-driven

autonomy for cognitive systems. In Proceedings of the 36th Annual Meeting of the

Cognitive Science Society, volume 36, page 2085–2090, 2014.

[83] Theodore Patkos and Dimitris Plexousakis. Reasoning with knowledge, action

and time in dynamic and uncertain domains. In Twenty-First International Joint

Conference on Artificial Intelligence, pages 885–890, 2009.

[84] Ronald PA Petrick and Fahiem Bacchus. A knowledge-based approach to planning

with incomplete information and sensing. In AIPS, volume 2, pages 212–222, 2002.

[85] Ola Pettersson. Execution monitoring in robotics: A survey. Robotics and Au-

tonomous Systems, 53(2):73–88, 2005.

[86] Jay Powell, Matthew Molineaux, and David William Aha. Active and interactive

discovery of goal selection knowledge. In Twenty-Fourth International FLAIRS

Conference, pages 413–418, 2011.

[87] Gregg Rabideau, Steve Chien, and David McLaren. Tractable goal selection with

oversubscribed resources. Pasadena, CA: Jet Propulsion Laboratory, National Aero-

nautics and Space, 2009.

[88] Nadeesha Ranasinghe and Wei-Min Shen. Surprise-based learning for developmental

robotics. In 2008 ECSIS Symposium on Learning and Adaptive Behaviors for Robotic

Systems (LAB-RS), pages 65–70. IEEE, 2008.

[89] Anand S Rao, Michael P Georgeff, et al. Bdi agents: from theory to practice. In

ICMAS, volume 95, pages 312–319, 1995.

113

[90] Lynne M Reder and Frank E Ritter. What determines initial feeling of knowing? famil-

iarity with question terms, not with the answer. Journal of Experimental Psychology:

Learning, memory, and cognition, 18(3):435–451, 1992.

[91] Frank E Ritter, Michael Schoelles, Laura Cousino Klein, and Sue E Kase. Modeling

the range of performance on the serial subtraction task. In Proceedings of the 8th

International Conference on Cognitive Modeling, pages 299–304, 2007.

[92] Mark Roberts, Swaroop Vattam, Ronald Alford, Bryan Auslander, Tom Apker, Ben-

jamin Johnson, and David W Aha. Goal reasoning to coordinate robotic teams for

disaster relief. In Proceedings of ICAPS-15 PlanRob Workshop, pages 127–138.

Citeseer, 2015.

[93] Roger C Schank and Robert P Abelson. Scripts, plans, goals, and understanding: An

inquiry into human knowledge structures. Psychology Press, 2013.

[94] Roger C Schank and David B Leake. Creativity and learning in a case-based explainer.

Artificial intelligence, 40(1-3):353–385, 1989.

[95] Murray Shanahan. Robotics and the common sense informatic situation’. In ECAI,

pages 684–688. PITMAN, 1996.

[96] Daniel Shapiro, Pat Langley, David J Stracuzzi, Dana Nau, Alan Fern, Ray Mooney,

Peter Stone, and Pedro Domingos. Transfer learning in integrated cognitive systems.

Technical report, Institute for The Study of Learning and Expertise, Palo Alto, CA,

2010.

[97] Vikas Shivashankar, Ron Alford UMD EDU, Ugur Kuter, and Dana Nau. Hierarchical

goal networks and goal-driven autonomy: Going where ai planning meets goal

reasoning. In Goal Reasoning: Papers from the ACS Workshop, 2013.

114

[98] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik,

Paul Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability

in perception for autonomous driving: Waymo open dataset. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2446–

2454, 2020.

[99] Ron Sun. The importance of cognitive architectures: An analysis based on clarion.

Journal of Experimental & Theoretical Artificial Intelligence, 19(2):159–193, 2007.

[100] Ron Sun. The clarion cognitive architecture: Toward a comprehensive theory of. The

Oxford handbook of cognitive science, pages 117–133, 2016.

[101] Michael Thielscher. A theory of dynamic diagnosis. Electronic Transactions on

Artificial Intelligence, 1(4):73–104, 1997.

[102] J Gregory Trafton, Laura M Hiatt, Anthony M Harrison, Franklin P Tamborello,

Sangeet S Khemlani, and Alan C Schultz. Act-r/e: An embodied cognitive architec-

ture for human-robot interaction. Journal of Human-Robot Interaction, 2(1):30–55,

2013.

[103] Martina Troesch, Faiz Mirza, Kyle Hughes, Ansel Rothstein-Dowden, Robert

Bocchino, Amanda Donner, Martin Feather, Benjamin Smith, Lorraine Fesq, Brian

Barker, and Brian Campuzano. Mexec: An onboard integrated planning and exe-

cution approach for spacecraft commanding. In Workshop on Integrated Execution

(IntEx)/Goal Reasoning (GR), International Conference on Automated Planning and

Scheduling (ICAPS IntEx/GR 2020), 2020.

[104] Brian C Williams, Michel D Ingham, Seung H Chung, and Paul H Elliott. Model-

based programming of intelligent embedded systems and robotic space explorers.

Proceedings of the IEEE, 91(1):212–237, 2003.

115

[105] Mark Wilson, Bryan Auslander, Benjamin Johnson, Thomas Apker, James McMahon,

and David W Aha. Towards applying goal autonomy for vehicle control. Technical

report, Naval Research Lab Washington Dc Navy Center For Applied Research, 2013.

[106] Mark A Wilson, James McMahon, Artur Wolek, David W Aha, and Brian H Houston.

Goal reasoning for autonomous underwater vehicles: Responding to unexpected

agents. AI Communications, 31(2)(2):151–166, 2018.

[107] Mark A Wilson, Matthew Molineaux, and David W Aha. Domain-independent

heuristics for goal formulation. In The Twenty-Sixth International FLAIRS Conference,

pages 160 – 165, 2013.

[108] Jeremy L Wyatt, Alper Aydemir, Michael Brenner, Marc Hanheide, Nick Hawes,

Patric Jensfelt, Matej Kristan, Geert-Jan M Kruijff, Pierre Lison, Andrzej Pronobis,

et al. Self-understanding and self-extension: A systems and representational approach.

IEEE Transactions on Autonomous Mental Development, 2(4):282–303, 2010.

116

Appendix A

The Marine Survey Domain: Details on

Numeric Values

This appendix describes all the numeric values used in this thesis for the marine survey

domain. Specifically, we present the values for the goal management strategy. The goal

management strategy (see chapter 6) uses three classes of factors: the anomaly effects, goal

priority, and the resource availability. Out of the three classes of factors the anomaly effects

relies heavily on numeric calculations. Therefore, we focus on the anomaly effects in this

chapter.

The anomaly effects class has three sub factors: the negative effects on agent’s goals;

the negative effects on the agent’s health; and the anomaly repetition. Among the three

sub factors, the agent uses a knowledge base for the first sub factor, hence it does not have

numeric values. However, the second and third sub factors use numeric values that are

elaborated below:

We measure the health in terms of battery life of the agent. The specific factors we

consider to calculate the negative effects on the battery life in this domain are: number of

goals achieved, remora attacks, blockades, and flow. We calculate the over all cumulative

function using equation (A.1). Here H is the total value, n is four and hi is the individual

sub factor (goals, remora, blockade, and flow).

117

H = Σn
i=1(hi) (A.1)

First, the number of total goals in this domain are 25. In addition, there are two types

of goal, brief survey, and deep survey. Brief survey uses ten units of battery and deep survey

uses 20 units of battery. We assume that type goals linearly effect A.2 the agent’s health.

Furthermore, we give a weight of 0.1 to both types of goals.

h1 = hgoals = Σ25
y=1(hgoal number y) = Σ25

y=1(xy ∗ gy) (A.2)

For example, if the agent performs only a brief search on all 25 goals. The amount of

the health reduced is given by, h1 = hgoals = Σ25
y=1(0.1 ∗ 10) = 25.

Second, the we consider the remora attack as a quadratic function. We provide the

function in the equation A.3; Where x is the battery affected by the remora attack and where

n is the number of remora attacks.

h2 = hremora = Σm
n=1x

n (A.3)

For now, we consider the value of x to be 5. Therefore, for one remora (n = 1) attack

the health affected would be, h2 = hremora = Σ1
n=15

1 = 5. The threshold value to classify

the negative effect as high is 4. Therefore, the smart agent reacts to every remora attack.

We do not consider that the obstacles or the flow to directly effects the health of the

agent. Hence, h3 = h4 = 0.

Finally the overall cumulative function in this domain is given by the following equation.

The equations, depicts a scenario with all 25 goals briefly surveyed and with one remora

attack. At any given point, the health of the agent must not change more than 4 threshold

points in this domain.

118

H = Σ4
i=1(hi) = h1 + h2 + h3 + h4

H = hgoals + hremora + hblockade + hflow

H = Σ25
y=1(hgoal number y) + Σm

n=1x
n + 0 + 0

H = Σ25
y=1(xy ∗ gy) + Σ1

n=1x
n

H = Σ25
y=1(0.1 ∗ 10) + Σ1

n=15
1

H = 25 + 5 = 30

The above set of equations conclude the calculation on negative effects on agent’s

health. Next, we consider the anomaly repetition sub factor A.4, where e is the Euler’s

constant, λ is the mean for specific time interval (10 units), and x is the expected number

of anomalies. We, find the P values for several x values to plot the bell distribution of the

poisson function. We then consider the peak of the bell curve, find the number of anomaly

occurrences, and compare it to an expert set threshold of 3.

P (x) =
e−λλx

x!
(A.4)

119

Appendix B

The Construction Domain: Details on

Numeric Values

This appendix describes all the numeric values used in this thesis for the construction

domain. Specifically, we present the values for the goal management strategy. The goal

management strategy (see chapter 6) uses three classes of factors: the anomaly effects, goal

priority, and the resource availability. Out of the three classes of factors the anomaly effects

relies heavily on numeric calculations. Therefore, we focus on the anomaly effects in this

chapter. The anomaly effects class has three sub factors: the negative effects on agent’s

goals; the negative effects on the agent’s health; and the anomaly repetition. Among the

three sub factors, the agent uses a knowledge base for the first sub factor, hence it does not

have numeric values. However, the second and third sub factors use numeric values that are

elaborated below:

We measure the health in terms of time (amount of time agents works without heating

its engine) for the agent. The specific factors we consider to calculate the negative effects

on its total time in this domain are: number of goals achieved, arsonist, thief. We calculate

the over all cumulative function using equation (B.1). Here H is the total value, n is three

and hi is the individual sub factor (goals, arsonist, and thief).

H = Σn
i=1(hi) (B.1)

120

First, the number of total goals in this domain vary according to the goal set an agent

generates. In addition, there are two types of goal, stable-tower, and wobbly-tower. stable-

tower uses two units of time and wobbly-tower uses one unit of time. We assume that

type goals linearly effect B.2 the agent’s health. Furthermore, we give a weight of the goal

corresponding to its height value. Example, a tower of height 1 will have a weight of 0.1,

tower or height 2 will have a weight of 0.2. The maximum height of a tower is the agent

generates is seven.

h1 = hgoals = Σn
y=1(hgoal number y) = Σn

y=1(xy ∗ gy) (B.2)

For example, if the agent constructs only five stable-towers with height of two each.

The amount of the health reduced is given by, h1 = hgoals = Σ5
y=1(0.2 ∗ 2) = 2.

Second, the we consider the arsonist attack as an exponential function. We provide the

function in the equation B.3; Where e is Euler’s constant and t is the time at which agent

discovers fire (starts at 1).

h2 = hfire = et (B.3)

For one time unit (t = 1) the health affected by the fire would be, h2 = hfire = e1 =

2.71. The threshold value to classify the negative effect as high is 2. Therefore, the smart

agent reacts to every fire event. We do not consider the thief to effect the agent’s health.

Therefore, h3 = 0

Finally, the cumulative function in this domain for a set of five sturdy goal with height

of 2 each, and one fire is given by the set of equations below:

121

H = Σ3
i=1(hi) = h1 + h2 + h3

H = hgoals + hfire + hthief

H = Σn
y=1(hgoal number y) + et + 0

H = Σ5
y=1(xy ∗ gy) + e1

H = Σ25
y=1(0.2 ∗ 2) + 2.7

H = 2 + 2.7 = 4.7

The above set of equations conclude the calculation on negative effects on agent’s

health. Next, we consider the anomaly repetition sub factor B.4, where e is the Euler’s

constant, λ is the mean for specific time interval (3 units), and x is the expected number

of anomalies. We, find the P values for several x values to plot the bell distribution of the

poisson function. We then consider the peak of the bell curve, find the number of anomaly

occurrences, and compare it to an expert set threshold of 3.

P (x) =
e−λλx

x!
(B.4)

In addition, to the factors. We perform goal selection using a cost-benefit method. In

this method, the benefit for stacking each block in sturdy tower is 2; and for each block in

wobbly tower is 1. The cost is just the amount of time given in chapter 4.

122

	Abstract
	Introduction
	Thesis Contributions
	Cognitive Architectures
	Goal Operations in Cognitive Architectures
	Outline of the thesis

	MIDCA
	The Goal Graph
	Goal Operations

	Goal Selection
	Formal Representation of Goal Selection
	Implementation and Empirical Evaluation of the Goal Selection operation
	The Construction Domain
	Experimental Design: The Construction Domain
	Empirical Results: The Construction Domain

	The Restaurant Domain
	Experimental Design: The Restaurant Domain
	Empirical Results: The Restaurant Domain

	Summary of Goal Selection

	Goal Change
	Formal Representation of Goal Change
	Implementation and Empirical Evaluation of the Goal Change operation
	The Construction Domain
	Experimental Design
	Experimental Results

	Summary of Goal Change

	Goal Formulation
	Formal Representation of Goal Formulation
	Implementation and Empirical Evaluation of the Goal Formulation Operation
	The Naval Mine Clearance Domain
	Experimental Design: The Naval Mine Clearance Domain
	Empirical Results: The Naval Mine Clearance Domain

	The Labor Relations Domain
	Experimental Design: The Labor Relations Domain
	Empirical Results: The Labor Relations Domain

	Summary of Goal Formulation

	The Interaction among Goal Operations
	Example Scenario Depicting the Interaction of Goal Operations
	Goal Management when Multiple Goal Operation Co-occur
	Effects of an Anomaly on the Agent
	Negative Effects on Agent's Goals
	Negative Effects on Agent's Health
	Anomaly Repetition
	Summary of Negative Effects of an Anomaly on the Agent

	Importance of the Agent's Goals
	Estimation of Agent's Resources:
	Goal Management when Multiple Goal Operation Co-occur

	Implementation and Empirical Evaluation of the Goal Management Strategy
	The Marine Survey Domain
	Experimental Design: The Marine Survey Domain
	Goal Selection in The Marine Survey Domain:
	Goal Change in The Marine Survey Domain.
	Goal Formulation in The Marine Survey Domain.

	Empirical Results : The Marine Survey Domain

	The Construction Domain
	Experimental Design: The Construction Domain
	Goal Selection in The Construction Domain:
	Goal Change in The Construction Domain:
	Goal Formulation in The Construction Domain:

	Empirical Results: The Construction Domain

	Summary of Interaction among Goal Operations

	Literature review
	Conclusion and Future work
	Bibliography
	Appendix A
	Appendix B

