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ABSTRACT

Groeger, Alexander H. M.S., Department of Computer Science and Engineering, Wright State
University, 2021. Texture-Driven Image Clustering in Laser Powder Bed Fusion.

The additive manufacturing (AM) field is striving to identify anomalies in laser powder

bed fusion (LPBF) using multi-sensor in-process monitoring paired with machine learn-

ing (ML). In-process monitoring can reveal the presence of anomalies but creating a ML

classifier requires labeled data. The present work approaches this problem by printing

hundreds of Inconel-718 coupons with different processing parameters to capture a wide

range of process monitoring imagery with multiple sensor types. Afterwards, the process

monitoring images are encoded into feature vectors and clustered to isolate groups in each

sensor modality. Four texture representations were learned by training two convolutional

neural network texture classifiers on two general texture datasets for clustering compari-

son. The results demonstrate unsupervised texture-driven clustering can isolate roughness

categories and process anomalies in each sensor modality. These groups can be labeled by

a field expert and potentially be used for defect characterization in process monitoring.
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Introduction

1.1 Motivation and Objective

The manufacturing industry has traditionally practiced subtractive manufacturing. One of

the more common processes is machining. Parts are built by carving or cutting away ma-

terial from a block or sheet to achieve a desired geometry. While effective, this approach

produces a lot of wasted material, which elevates production costs. Additive manufacturing

(AM) provides a solution to this by taking the opposite approach of building onto the part

until a desired geometry is realized. This allows for more complex geometries while reduc-

ing material waste. AM typically achieves this advantage by slicing a part’s geometry into

very thin 2D cross sections, called layers, and building these layers on top of each other one

at a time. Figure 1.1 depicts the difference between machining and additive manufacturing.

There are many unique processes to AM, but the one we are particularly interested in is

laser powder bed fusion (LPBF).

(a) Machining uses carving tools on bulk mate-
rial to shape the final part.

(b) Additive Manufacturing builds successive
layers to shape a part.

Figure 1.1: Illustration of machining vs additive manufacturing.
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The LPBF process is continuously being optimized for consistency and reliability in

part quality. There are many physical phenomena that arise from the interaction between

the laser and powder that influence the quality of the fabricated part by the integration of

pores. It is important to manufacturers that these phenomena are monitored and controlled

within acceptable levels to guarantee the consistent production of high-quality parts with

specific properties. This problem is addressed using process monitoring.

Most approaches to process monitoring use in-situ sensors to capture different aspects of

the process. These sensors come in different modalities that capture distinct regions of the

light spectrum using specific exposure times and frame rates to extract unique information

from the process. Some examples of these modalities include visible recoat (post-spread

and post-fusion imaging) and infrared video. The use of analytics in process monitoring

can aid manufacturers in the development of processing parameters when working with

new materials, defect mitigation strategies, and anomaly detection notification systems of

which all save time and resources in production. One challenge with developing statistical-

model analytics for LPBF data is generalization as they typically are tuned for a specific

material and lighting with fixed camera configurations (i.e. gain and exposure). For more

advanced analytics, machine learning can be utilized, but a majority of tasks require data

labeled by a field expert, which in this work there are no labels nor is it known every phe-

nomenon that can be captured by each sensor modality. This thesis work overcomes this

limitation by using an unsupervised approach to reveal inter-data relationships.

The choice of method is image clustering where the task is to isolate groups of similar im-

ages that cluster together in a high-dimensional space. Since most in-situ monitoring data

is recorded as images, this approach can be applied to all sensor modalities to isolate image

patches containing similar features contributing toward similar phenomena. This approach

requires little field expert knowledge and gives unbiased data-driven groupings.

The goal is to provide LPBF manufacturers with better understanding of their process mon-

itoring data and how it can be segmented for anomalous phenomena. This problem is ap-
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proached using texture analysis and deep learning without the need for labels. Texture is

emphasized because bulk regions within a part’s layer geometry do not contain significant

edges or shape information.

This thesis proposes an approach that addresses the problem of unsupervised analysis of

LPBF data from several process monitoring sensor modalities by embedding images into a

compact textural representation using deep learning. Figure 1.2 shows the process flow for

our experiments.

Figure 1.2: Flow diagram of an experiment. All 4 experiments use a unique combination
of texture training set and deep learning model that produces 5 texture representations for
analysis.

The contributions of this work are the following.

1. Four experiments are performed each of which train one of two deep learning models

for texture classification on one of two texture datasets. The trained encoders are

repurposed afterwards to extract and embed textural features from each modality of

the LPBF data to obtain textural feature spaces.
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2. Each sensor modality feature space is clustered using a hard density-based clustering

algorithm and samples from each cluster are visualized to understand what LPBF

process phenomena are being segmented in each sensor modality and why.

3. The arrangement of texture features and biases in texture distributions due to external

factors are revealed through colored projections of those feature spaces from each

sensor modality.

1.2 Organization

This thesis is organized as follows. In Chapter 2, we discuss the background of the AM

LPBF technology we are studying in Section 2.1, an overview of image clustering in Sec-

tion 2.2, and texture analysis in Section 2.3. In Chapter 3, we introduce the texture training

data and LPBF data to be analyzed in Section 3.1, how we adopted and modified texture-

based deep learning architectures in Section 3.2, the clustering method in Section 3.3, and

how we visualize feature spaces in Section 3.4. In Chapter 4, we show our results and anal-

yses of the texture data in Sections 4.1.1 (Kylberg) and 4.1.2 (ALOT), and the LPBF data

in Sections 4.2.1 (Recoat post-spread), 4.2.2 (Recoat post-melt), 4.2.3 (Thermal tomog-

raphy), 4.2.4 (LWIR), and 4.2.5 (Spatter). In Chapter 5, we summarize our conclusions.

Finally, in Chapter 6, we discuss future work that can build off of this work.
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Background

2.1 Laser Powder Bed Fusion

Laser Powder Bed Fusion (LPBF) is an additive manufacturing process where parts are

constructed layer-by-layer by melting and fusing metallic powder with a laser. Several

machine configurations exist, so we provide background information that pertains to the

machine we used from OpenAdditive, LLC.

The process is held within a chamber to isolate its environment from the outside environ-

ment because welding in LPBF requires a low-oxygen environment. This is achieved by

pumping the chamber with a non-reactive gas, typically argon, to drive out oxygen. Within

the chamber, powder is managed by a build plate, feeder, recoater, and catch. See the ma-

chine setup illustration in Figure 2.1. The build plate is initially positioned at the same

level of the build plane. When a layer is built, the build plate retracts leaving a gap for a

thin layer of powder to be received. This displacement fixes the height of the build plane

to avoid the need for refocusing the laser after each layer and prevents the part from ob-

structing the recoater while it spreads a new layer of powder. The powder feeder pushes

fresh powder on a piston-actuated plate up above the build plane. The powder recoater

swipes over the powder feed plate using a soft silicon blade to collect powder above the

build plane. As the recoater moves, it deposits powder uniformly along the build plate to

fill the gap between the build plate and plane. Excess powder is pushed into the overflow

powder catch for recycling. Then a class 4 laser welds the freshly spread powder onto the
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build plate or prior layer of the part. This process is repeated until the part is complete.

The welding process produces soot which can create problems. Flying hot particles landing

and fusing onto a part can cause build issues or even build failure. The laser performance

can be degraded either from the plume and smoke obstructing the laser beam or smoke ris-

ing and covering the laser window. These problems are mitigated using an airflow across

the build layer to catch and drag the soot away. The soot is collected by an air filter which

circulates clean argon back into the airflow. As a part is built up, the build plate retracts

using a piston to offset the new layer. Process monitoring cameras capture data on the build

layer throughout the process until the part is completed.

Figure 2.1: Diagram of LPBF machine accurate to OpenAdditive’s configuration.

One of the challenges in LPBF is understanding how to control part quality. Pro-

cessing monitoring is often necessarily to accomplish this. Most LPBF machines come

equipped with a visible recoat camera to capture post-spread and post-melt images of the

build plate while some systems additionally supply a thermal camera to capture weld emis-

sions. These data can be analyzed to find anomalous activities, discover how they affect
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the quality of the part, and learn what elements of the process cause these phenomena and

how to control them. A recent research review on in-situ monitoring [11] reports much re-

search has been done on analyzing process monitoring data for part defects using machine

learning algorithms.

AddiGuru [2] developed an image segmentation approach to locate defects in LPBF post-

spread images. These defects include recoat streaking, recoat hopping, and material protru-

sion whose characterization from powder spreads has been studied in [25]. Recoat streak-

ing and hopping can be detected by finding parallel or perpendicular lines to the recoater

movement direction in the powder. Material protrusion can be detected by finding melted

material poking up through the powder layer. AddiGuru is a business selling products,

therefore the details of their algorithms remain unknown to the public.

Scime et al. [26] developed a layer-wise pixel-wise post-spread image segmentation algo-

rithm using a convolution-based deep learning model to precisely locate and classify known

anomalies. The scope of anomalies this model can classify in LPBF are recoater hopping,

recoater streaking, incomplete spreading, swelling, debris, spatter, soot, super-elevation,

part damage, and misprinting. The model was trained in a supervised manner using post-

spread images labeled for anomalies pixel-by-pixel by field experts.

Baumgartl et al. [5] developed an image segmentation approach to identify spatter and de-

lamination anomalies in infrared process monitoring imagery. The approach uses a simple

convolution-based deep learning model with a dropout layer in-place of a fully connected

classifier. The model solves a 3-class characterization problem by labeling the input as

either normal, spatter, or delamination. The overall accuracy of the model was 98.9%.

Additionally, gradient-weighted class activation mapping was used to visually demonstrate

where class predictions were strongest in input image.

While many of these approaches demonstrate an important contribution to process moni-

toring in AM, they all require labeled data to train their models. In our case, we do not

have labels nor know every phenomenon that can be captured in our sensor modalities. We
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overcome this limitation using unsupervised approaches which reveal inter-data relation-

ships without the need for labels or limitation in scope.

Part quality can be evaluated in different ways, but one basic method is taking porosity

measurements to assess the part’s density and potential breaking points. Porosity is mea-

sured using X-ray scans or cross section polishing to reveal the presence of small holes and

cracks. To minimize the porosity of a part, it needs to be printed using processing parame-

ters within an acceptable window for its specific geometry and material.

According to Kurzynowski et al. [15], there are 5 primary adjustable processing param-

eters that can be experimented with to optimally fabricate a part. There are powder layer

thickness (L), laser power (P), laser speed (V), laser spot size (f), and hatch spacing (H).

These parameters are chosen to control the Volume Energy Density (V EDH) [23] whose

formula is described in Equation 2.1. It generally describes the average energy delivered

within the volume of material melted by the laser spot.

V EDH =
P

V HL
(2.1)

Powder layer thickness controls how many layers will be needed. Time can be saved

by using fewer thicker layers, but this results in rougher surfaces and demands a higher

laser power. This value ranges from 20 to 200 microns depending on material and part

geometry. Laser power varies how much energy is delivered on the laser spot. Higher

powers are more appropriate for thicker layers where more energy is required to melt larger

volumes of material. This value usually ranges from 50 to 500 Watts (W). Laser speed must

be chosen to accommodate the conductivity, viscosity, and surface tensor of the material.

Faster speeds reduce the V EDH . This value usually ranges from 200 to 2000 mm/s. Laser

spot size influences the laser intensity and weld spot area. Increasing the laser spot size

can produce wider weld beads, however if the laser power is fixed for even larger sizes, the

bead width will shrink due to lower average laser intensity. This value usually ranges from

35 to 200 microns. Hatch spacing measures the distance weld lines are separated by. The
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spacing is directly proportional to the weld bead width as increasing the spacing requires a

wider weld bead to maintain the necessary small overlap between welds. This value usually

ranges from 10 to 200 microns.

The hatching strategy describes the laser scan pattern for a single layer. This can be very

unique, but a typical strategy for bulk regions is to melt overlapping stripes and rotate

their orientation by a fixed number of degrees each layer. Figure 2.2 shows the difference

between continuous and striped hatches. Typically stripes are rotated with a hatch angle

of 67 degrees because it maximizes the number of layers between repeated angles while

creating a significant change between successive layers that prevents residual stress and

material buildup in a single direction. Sometimes a hatch angle of 90 degrees is used to

simplify scientific experiments.

(a) Continuous hatching. The weld lines
stretch across the entire part creating inconsis-
tent lengths as the geometry varies.

(b) Striped hatching. The weld lines are limited
in length for consistency across varying geome-
tries.

Figure 2.2: Illustration of continuous hatching vs striped hatching.

Manufacturers will use different laser surface parameters to optimize the melting of

each surface of a part. These 5 parameter sets are known as in-fills, contours, up-skins,

down-skins, and supports. In-fills melt bulk geometries fast and hot to reduce build time

while maximizing part volume density. Contours melt layer boundaries slower to produce

a sharper split from unfused powder and a smoother outer surface. Up-skins smooth-finish

upward-facing surfaces with a slow hot laser to produce a glossy appearance. Down-skins
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build overhangs using less energy to prevent over-heating previous layers and avoid clump-

ing to the downward-facing surface. Supports provide a weak mechanical support and heat

sink to overhangs that is easy to remove in post-processing. Figure 2.3 shows where each

parameter set would be used for a part. In this thesis, we analyze coupons printed using

only in-fill parameter sets.

Figure 2.3: Illustration of where laser surface parameters are used.

2.2 Image Clustering

Image clustering typically uses the same algorithms as standard clustering, but it is impor-

tant to tailor the approach towards images. A naı̈ve approach would be to cluster images in

pixel space where each pixel is treated as its own independent dimension. This approach

has several flaws. Spatial relationships across multiple pixels are not preserved. It is sen-

sitive to spatial and rotational variation. The dimensionality of the pixel space is often too

large making it time consuming to perform clustering. Image feature embedding solves

these issues.
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Image encoders can be utilized to extract higher-order features spanning several pixels and

embed the presence of those features across individual dimensions. This yields a richer,

compact feature space capturing high-level information that correlates better to the seman-

tics of an image while drastically reducing the dimensionality. We use feature embedding

to boost the performance of our clustering.

Recent works have been combining the clustering and feature extraction processes to im-

prove the overall clustering [30]. We originally worked on a similar solution using a Vari-

ational Autoencoder (VAE), however due to some training complications with reconstruc-

tions, we found clustering after feature extraction was satisfactory.

2.3 Texture Analysis Using Image Preprocessing

Texture classification is an area of research under visual texture analysis. The task is to clas-

sify images of surfaces containing textural components. Textures contain varieties of wide

gradients, edges, and high-frequency noise. They can vary in levels of spatial homogene-

ity which measures the repeatability of the texture. This means spatially in-homogeneous

textures do not contain repeating patterns [31]. This is important to acknowledge because

most of the LPBF in-situ monitoring data is spatially in-homogeneous thus we don’t need

to incorporate self-similarity techniques.

One of the early approaches to texture analysis is feature engineering of texture images

using gray-tone spatial dependency matrices [12]. There was success using the piece-wise

linear discriminant function method and min-max decision rule as approaches to texture

classification using these texture features, however the efficiency of these features heavily

rely on parameterization on the gray-tone spatial dependency matrix.

Varma et al. [28] developed a texture classification approach that utilizes 2 learning stages

before the classification stage. In the first learning stage, texton dictionaries are built for

each class using filter responses obtained by convolving images with filter banks. The sec-
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ond learning stage generates multiple models per class by obtaining filter responses from

training images and labeling those responses with the nearest texton. This generates texton

frequency histograms with heights corresponding to the number of filter responses labeled

with a particular texton. The classification stage computes the texton frequency histogram

of the test image and classifies it with the label of the nearest neighboring model histogram.

This approach using filter banks worked well and was not far off from the next step, but

with the recent success of convolutional neural networks (CNN) [22], filter banks and their

filter response distributions can be learned to fit many image recognition tasks.

Much research [4][8] has been using deep representation learning to perform feature ex-

traction and embedding for texture classification. There has been some success by tailoring

CNNs specifically for texture images.

Andrearczyk et al. [4] developed TextureCNN which is a modifies a standard CNN such

that the final convolution layer is pooled instead of flattened before the fully connected lay-

ers. This discards unnecessary global spatial information while speeding up computation.

In addition, all pooling layers replace max with average pool operations as [9] showed av-

eraging is better suited for capturing texture features.

Fujieda et al. [8] demonstrated standard CNNs operate on low frequency data making them

less efficient on textures. To solve this problem, they developed a WaveletCNN that uses

several wavelet [27] transforms embedded into its architecture as layers to capture mul-

tiresolution high-frequency information thus boosting performance on image classification

tasks.

We use these two models as image encoders in our experiments.
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Experiments

In each experiment, we use deep learning to provide us with a better understanding of

process phenomena captured in the LPBF data by analyzing clusters within an embedded

texture feature space. Learning to encode raw pixel images into texture representations will

boost the clusterability among samples which can lead to semantically similar phenomena

being closer in feature space. This is desirable because we want to understand what LPBF

process phenomena are being captured by each sensor and whether our approach can ef-

fectively isolate them by clustering.

3.1 Datasets

This section describes the datasets we used and their corresponding preprocessing. The

texture datasets provide a necessary foundation for our encoders to learn a compact texture

representation. The LPBF dataset is our target for analysis. It contains layer-by-layer

images from several sensors for a single build using a wide range of processing parameters

to produce a variety of sensor responses.
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3.1.1 Texture Datasets

To obtain texture representations, we leverage deep learning to extract textural features

from images. For a model to learn textural features, a diverse set of texture data is required.

For this reason, we considered two publicly available texture datasets, namely Kylberg and

ALOT.

The Kylberg [16] dataset is a collection of texture images. It includes 28 classes with 160

unique samples per class. All samples are 576 x 576 monochrome 8-bit depth images

standardized with a fixed mean of 127 and standard deviation of 40. Figure 3.1 shows

a sample of each class. Notice how some textures are more spatially homogeneous like

ceiling2 and scarf1 versus stone1 and wall1. Classes like lentils1 and cushion1 are made

up of circular textural components while grass1 and rug1 utilize lines. High, medium, and

low frequency features can be observed in floor2, ceiling1, and scarf2, respectively. We

reserve this data as a baseline training set due to its smaller size and adequate textural

diversity.
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Figure 3.1: Kylberg samples from each class.

As for the preprocessing of Kylberg, we resize each sample down to 192 x 192 using

Lanczos resampling and split them up into 9 non-overlapping 64 x 64 tiles. We chose these

scale and split values to maximize the number of new samples while preserving an adequate

resolution for detail and window area for texture variety. Figure 3.2 shows an example of

this preprocessing.
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Figure 3.2: Preprocessing steps for Kylberg.

The Amsterdam Library of Textures (ALOT) [6] is a huge and diverse collection of

textures. It includes 250 classes with 100 lighting-augmented samples per class. There

are multiple resolutions of this data, however we found using a 4X-downscaled version

(384 x 256) was sufficient. Unlike the Kylberg dataset, this data is not initially normalized.

Observe in Figure 3.3 the lighting across different classes plays a large role on the image

contrast. It is for this reason that we perform standardization per image, and Kylberg

follows suit. We reserve ALOT data for experiments that test whether the textural diversity

of Kylberg is sufficient to extrapolate feature encoding to LPBF data.
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Figure 3.3: ALOT samples from each class.
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As for the preprocessing of ALOT, we resize each sample down to 192 x 128 using

Lanczos resampling and split them up into 6 non-overlapping 64 x 64 tiles. Our reasoning

is the same as Kylberg. Figure 3.4 shows an example of this preprocessing.

Figure 3.4: Preprocessing steps for ALOT.
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3.1.2 LPBF In-situ Sensor Data

In this thesis we analyze LPBF in-situ process monitoring data from a single build pro-

duced by OpenAdditive. This build was made from argon-atomized Inconel-718 powder.

Nine square (10 mm) coupons were built 3267 layers (135 mm) tall using 67-degree con-

tinuous hatch rotations and 243 unique processing parameter combinations varying in layer

thickness, laser speed, laser power, laser spot size, and hatch spacing. Table 3.1 lists the

variations in each processing parameter. These variations can produce a wide range of pro-

cess phenomena that can be captured by process monitoring. In each coupon, 27 5 mm

sections are assigned a random parameter set without replacement, therefore the image

samples from each coupon section should have a similar texture distribution. If there is any

bias in the texture distribution for individual coupons, rows, or columns in the build plane,

other environment variables are suspected to be the cause.

Laser Power Laser Speed Hatch Spacing Layer Thickness Laser Spot Size
(W) (mm/s) (µm) (µm) (µm)
180 400 70 30 55
230 800 90 45 86
280 1200 110 60 115

Table 3.1: Pool of processing parameters. All 243 combinations of these parameters were
built by switching parameter sets every so many layers across 9 coupons.

Most approaches to process monitoring in LPBF use at least one sensor. We focus

on 4 modalities provided by OpenAdditive. These are visible recoat, thermal tomography,

long-wave infrared (LWIR), and spatter. Figure 3.5 shows how these sensors are arranged

above the build plane. Each modality is captured by an off-axis camera, so we were given

a calibration image to compute a homography matrix to calibrate camera perspective of

the images into an overhead view. After calibration, each layer image is cropped to the

internal area of each coupon. These 9 cropped regions are resampled up or down using

Lanczos4 interpolation to 64 x 64 pixels. In the next sections, we discuss how the data for
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each modality was collected and preprocessed.

Figure 3.5: Arrangement of cameras above and coupons within the build plane.

Visible Recoat

The recoat data is captured by a Basler acA4024-29um camera with a Sony IMX226 CMOS

sensor that takes 2456 x 2052 resolution monochrome pictures of the build area after

spreading a powder layer and after melting it. The camera had a 3 rows and 2 columns
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of dead pixels due to prior laser damage. We filled in 2 rows of dead pixels obstructing

the coupon data with their nearest neighboring pixels. Figure 3.6 shows an example of

powder spread and melt recoat images. This is one of the more common sensor modali-

ties used in production. The post-spread images can reveal the uniformity of the powder

spread and whether material from previous layer is protruding into the next layer. The

post-melt images may reveal how defects in the powder spread affect the melted material.

They also document each layer such that defects in other process monitoring data may be

cross-validated with this data.

(a) After powder spread. (b) After laser melting.

Figure 3.6: Examples of in-situ recoat images. The angled horizontal black line in both
images is residue after preprocessing and laser damage to the sensor.

Thermal Tomography

The thermal tomography is captured by a Basler acA4024-29um camera with a Sony

IMX226 CMOS sensor equipped with near-infrared (750-1000 nm) and neutral density

filtering lenses. It is configured for long-exposure (250 ms) and low-frame-rate (4 Hz) at a

2000 x 2500 resolution. The sensor had several noisy pixels which required the images to
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be cleaned using a median window convolution around the hot pixels. Figure 3.7 shows a

preprocessed example layer of this data. Each coupon has a unique processing parameter

set that influences the amount of energy in the welding process. This affects the emission

of photons within the camera’s operating wavelength spectrum. Sometimes the sensor is

not calibrated to handle the full range of emissions which coincidentally washes out texture

detail when the sensor response is maxed out by too many emissions. The texture in this

sensor modality can be very informative because several phenomena are known to show up

in thermal tomography. These include white comets (spatter), dark spots (missing powder),

dark lines (recoater streaking or hopping), bright edges (delamination).
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Figure 3.7: Example of thermal tomography for a single layer. The center left coupon is
experiencing washout.

LWIR

The LWIR data is captured by an Optris PI 640i long-wave infrared (8-14 µm) camera. It

operates at a 32 Hz frame-rate capturing temperatures between 150 - 900 C◦ in a 640 x

480 16-bit matrix. We convert the raw data into 8-bit images such that the pixel values 0

- 255 correspond to temperatures 150 - 900 C◦ while maintaining a precision error below

0.4% or about 3.5 C◦. These images resemble frames capturing the heating and cooling
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rates at each spatial point over the printing duration of the layer. We compile these frames

using pixel-wise max to capture the peak temperatures across the build. Figure 3.8 shows

a preprocessed example layer of this data. When LWIR is compiled in this way, its texture

can reveal uneven distributions of the max temperature potential; however scan lines in the

coupon heat maps may skew analysis to some extent. These lines are induced by passes

of the laser producing hotter pixels and hatch spaces where the laser does not pass through

producing cooler pixels.

Figure 3.8: Example of peak temperatures from LWIR for a single layer. The hatch angle
can be observed by the lines in the coupons.
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Spatter

Spatter data is captured by a Basler acA1920-155um camera with a Sony IMX174 CMOS

sensor equipped with a near-infrared lens. It is configured for short-exposure (500µs) and

high-frame-rate (150 Hz) at a 1100 x 1200 resolution. Since the exposure of the collection

is very low, images capture the melt pool and spatter. These images are compiled into one

final image for the entire layer by pixel-wise addition followed by an exponential activation

function with a horizontal asymptote that bounds the sum beneath the 8-bit pixel depth

(255). The specific function constants were chosen such that a fully bright pixel represented

in 200+ images maps to a fully bright pixel in the compiled image. The reasoning is

driven by the high frequency capture rate of images and the overlap of melt pools across

images. This scaling helps reduce over-saturation from occurring thus preserving textural

information. Figure 3.9 shows a preprocessed example layer of this data. Spatter compiled

in this way reveals a lot of textural information. It may inform us where melt pools were

larger or smaller, and where more or less spatter was ejected. There is a possibility that this

data may skew analysis due to lattice artifacts produced by the hatching strategy and frame

rate.
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Figure 3.9: Example of compiled spatter for a single layer. Notice the coupon tails. These
are hot emissions and soot being pulled away by the airflow.

3.2 Models

Our goal is to train an encoder to extract textural features from images and embed those

features compactly into a vector. We leverage deep learning by training a convolutional

neural network (CNN) to classify texture imagery. We implement two modified published

architectures, namely TextureCNN in Section 3.2.1 and WaveletCNN in Section 3.2.2.

26



Across both models, we use the same fully connected layers. The first two layers use are

activated with leaky ReLU (0.2 slope), the third with ReLU, and the last with log softmax.

These layers are designed such that the raw feature map vector obtained from the convolu-

tional encoder is projected into high-dimensional space, compressed through a bottle neck

layer, and finally mapped to a class prediction vector which varies in dimension based on

the number of classes in the texture dataset. The bottle neck layer is low-dimensional to

mimic the bottle neck in an auto encoder. We refer to the activation of the bottle neck as

the latent vector for the input image. This vector has 16 dimensions realizing a 2048:1

dimensionality compression ratio. We cluster LPBF imagery using latent vectors.

Both models share some properties in their convolutional encoders. Convolution layers

will double the number of feature maps while preserving their height and width. These

layers are activated with a 0.2-sloped leaky ReLU and average pooled using a 2 x 2 kernel.

Exceptions are listed individually. All models are trained using the Adam optimizer. The

learning rate is exponentially decreased from 1e-4 by 1% per epoch. While training, indi-

vidual images are standardized to have a zero mean and unit standard deviation. We chose

to standardize in this way because lighting can vary contrast and energy can vary average

pixel intensity in LPBF sensor imagery. The rest of the augmentation includes random

flips, 90◦ rotations, and small Gaussian noise. We stop training when losses flattens out on

a log scale or overfitting starts to occur.

3.2.1 TextureCNN

We adopt the use of energy layers from TextureCNN [29] to craft a similar architecture.

Our encoder uses 4 convolution layers and 4 energy layers. These energy layers are applied

after each convolution layer to shortcut the filter responses from both low and high order

feature maps directly to the classifier’s fully connected layers. This design is intended to

boost the representation of low-level features into the latent vector. The last convolution

keeps the model smaller by does not doubling the number of feature maps. Our specific
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model architecture is presented in Figure 3.10.

Figure 3.10: Our TextureCNN architecture.

3.2.2 WaveletCNN

We adopt and modify the WaveletCNN [8] architecture which utilizes wavelet layers that

perform multi-resolution spectral analysis to extract stronger textural features from images

for texture classification. We design our encoder to utilize 4 wavelet layers and 4 convolu-

tion layers. An input image is wavelet transformed and its 1st order wavelet maps are fed

as feature maps to the first convolution layer. While this is occurring, the lowest frequency

wavelet map from the first wavelet layer is ran through a second wavelet layer to perform

multi-resolution analysis. These 2nd order wavelet maps are appended onto the feature

maps produced by the first pooling layer. This process repeats until the wavelet maps and

feature maps are 4 x 4, which then we apply one last convolution layer, a 4 x 4 kernel

average pooling, and flattening. Figure 3.11 shows our modified WCNN architecture.
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Figure 3.11: Our WaveletCNN architecture.

3.3 Fast Density Clustering

Clustering is the method we use to analyze our unlabeled LPBF data. We expect to find

different process phenomena in each sensor modality manifested by a unique textural repre-

sentation. By clustering these texture representations, we can discover what textures group

together, understand how they correspond to process phenomena, and save time in labeling

towards the development of a nearest-neighbor process anomaly classifier.

We do not know the distribution of textures in the LPBF data, so we select a multiscale

clustering algorithm that does not require the number of clusters to be known beforehand.

Alexandreday, et al. [3] developed a Github repo for a Fast Density Clustering (FDC) al-

gorithm founded on kernel density maps and density graphs. Its speed comes from quick

nearest neighbor searches using kernel-density trees. It supports clusters varying in size,

density, and convexity. It benchmarks well with many density-based clustering algorithms

and datasets in Scikit-learn library [24]. It has a few parameters but is reasonably robust,

so we only consider tuning the noise threshold which merges overlapping clusters. FDC is
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most efficient on low-dimensional datasets. Since we learn texture representations in only

16 dimensions, we find this algorithm fills our needs.

3.4 UMAP Dimensionality Reduction

Uniform Manifold Approximation and Projection (UMAP) [18] is a dimensionality reduc-

tion algorithm. Points far apart in the data space will also be far apart in the mapped space.

It is similar to t-Distributed Stochastic Embedding (t-SNE) but is faster, consumes less

memory, and preserves more global structure. We utilize the UMAP Github repo [21] to

project our dataset feature spaces onto a 2D plane for scatter plot visualization. This helps

us grasp how texture feature spaces cluster for a given dataset. While UMAP can be used

as a preprocessing step for clustering [19], we do not find it necessary since our texture

representation is already low-dimensional.

It is critical to note that the design of UMAP, like tSNE, has a few limitations that im-

pact interpretability. UMAP is a stochastic algorithm and requires some parameter tuning.

Leland et al.[18] describe two primary parameters; the minimum distance controls how

close points are packed together while the number of neighbors controls how much global

structure is preserved. The broader topology of data can be preserved by focusing more

on global structure from increasing the number of neighbors and increasing the minimum

distance to expand neighboring clusters until they connect. Additionally, Coenen et al.

[7] showed for several toy datasets that cluster sizes and exact distances between clusters

usually mean nothing and cannot be used to draw conclusions while comparing clusters

in a visualization. We acknowledge these findings and use caution when interpreting our

results.

We illustrate the utility of UMAP visualization on MNIST [17]. MNIST contains 70,000

hand-written digits encoded as 28 x 28 grayscale images. By flattening these images into

784-pixel vectors, we can visualize how the data groups together using UMAP to project
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the pixel space onto a 2D scatter plot as shown in Figure 3.12. The clustering is consider-

ably good despite no prior feature embedding. This performance can be accredited towards

the simplicity of MNIST. Samples do not differ much in translation nor rotation, which

explains why semantically equal samples will be close in pixel space.

There’s a few observations to point out here. Clusters 4, 7, and 9 are very close because

their digits share a right vertical line. This also occurs for clusters 3, 5, and 8 because their

digits share a lower curve. Clusters 0 and 1 may not necessarily be far apart because their

pixel representation is vastly different, but because the 2D space cannot preserve topologi-

cal properties, such as wrapping, that show up in higher-dimensional spaces.

Figure 3.12: UMAP Visualization of MNIST flattened image vectors parameterized with a
minimum distance of 0.1 and 15 nearest neighbors. The points are colored by their class
label. The homogeneity of color in each cluster indicates most samples in tight proximity
share the same semantic label which we view as a desirable clustering.
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Results and Discussion

In this chapter we analyze each LPBF sensor modality in 4 experiments. In each experiment

we choose a model and a texture dataset to train that model. For Kylberg, we use a 9:1 train-

test split that yields 1296 samples per class in the training set. We use a 5:1 train-test split

for ALOT which yields 500 samples per class in the training set. We train a model on one

of these datasets until the loss plot flattens or shows signs of overfitting. Afterwards, we run

each LPBF sensor modality data through the model to obtain feature vectors. We perform

FDC on these feature spaces, examine the images within each cluster, and visualize these

clusters on a scatterplot using UMAP.

Table 4.1 lists the experiment classification scores. Our TCNN model for Kylberg performs

similarly in [4] despite our preprocessing steps and bottleneck layer. Our WCNN does not

perform as well on Kylberg, however this could be a result of early stopping. The ALOT

models have noticeably lower scores. This is most likely explained by the fact that ALOT

has nearly 9x more classes than Kylberg.

Dataset Model Accuracy Epochs
Kylberg TCNN 0.9797 85
Kylberg WCNN 0.9524 50
ALOT TCNN 0.7306 67
ALOT WCNN 0.7428 88

Table 4.1: Classification accuracies of each experiment.

These scores are reasonably important, however we just use them to gauge how well

the encoders are learning. We are primarily interested in using these encoders to extract
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and embed textural features from new data which we can cluster and visualize on a 2D

scatter plot projected by UMAP.

The main discussions here highlight clustering the feature spaces of each dataset. We

start by analyzing the texture datasets in Section 4.1 to assess the utility of our approach.

Afterwards we apply our approach on LPBF data in Section 4.2.
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4.1 Texture Datasets

In this section we analyze the feature spaces of each texture dataset. Given a texture dataset,

we train a TCNN and WCNN on that dataset. After training each model, we transform the

texture set images into feature vectors using those models to obtain two feature spaces.

These spaces are clustered using FDC and projected to a plane using UMAP for scatter

plot visualization. We analyze Kylberg in Section 4.1.1 and ALOT in Section 4.1.2.
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4.1.1 Kylberg

In this section we cluster the Kylberg feature space from a TCNN and WCNN trained on

Kylberg. We begin our analysis by plotting the average activation of each feature dimension

for both models in Figure 4.1. We observe not all the dimensions are being used for both

models. The Kylberg-TCNN has 5 dead dimensions (dimensions 7 and 15 are nonzero),

while the Kylberg-WCNN has 3. This behavior might be explained by the ReLU activation

on the bottleneck in both models. Nevertheless, both models were still able to perform well

even with 11 and 13 dimensions. We note that some dimensions have different ranges than

others. Whenever we cluster data using the Kylberg-TCNN or Kylberg-WCNN texture rep-

resentation, we drop the dead dimensions and normalize the rest. We make the assumption

all dimensions are of equal importance because it is beneficial for clustering.

Figure 4.1: Plot of the average activation in each feature dimension from Kylberg for both
models trained on Kylberg. Lines indicate the range of the activations.

With 28 classes, we would expect to see 28 clusters assuming the texture representa-

tions of each class are distinct. For both models, we show the number of clusters Kylberg

breaks into while varying the noise threshold in Figure 4.2.
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Figure 4.2: Plot of the average number of clusters Kylberg breaks into at different noise
thresholds for two experiments. The range over 5 runs is indicated by a line on each bar.

With a noise threshold of 0, the number of clusters exceeds the number of classes

two-fold. Both models produce similar number of clusters, so we cluster using a noise

threshold of 0.2 for both models because the number of clusters produced is closer to the

number of classes. Higher noise thresholds are not considered because they result in fewer

clusters than there exist classes. In the following sections, we discuss the Kylberg-TCNN

and Kylberg-WCNN experiments.

Kylberg-TCNN

Beginning with the TCNN, we cluster with a noise threshold of 0.2 to produce 35 clusters.

These clusters are relabeled sorted by size and plotted in Figure 4.3.
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Figure 4.3: Kylberg cluster sizes of the Kylberg-TCNN feature space. Clustering noise
threshold is 0.2.

From this graph we notice an imbalance in cluster sizes; however, the sizes of clusters

16 to 32 follow the expected uniform distribution. Larger clusters 33 to 35 are not as ho-

mogeneous as they must contain several samples from neighboring classes, while smaller

clusters 1 to 15 likely contain intra-class variations. We explore these clusters by showing

randomly sampled images from each cluster in Figure 4.4.
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(1) Floor1 (2) Blanket2 (3) Scarf2

(4) Ceiling2 (5) Scarf2 (6) Ceiling2

(7) Seat2 (8) Seat1 (9) Stoneslab1
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(10) Ceiling2 (11) Blanket2 (12) Stoneslab1

(13) Blanket2 (14) Seat1 (15) Seat2

(16) Floor1 (17) Grass1, Rug1 (18) Sand1
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(19) Canvas1 (20) Sesameseeds1 (21) Cushion1

(22) Screen1 (23) Blanket1 (24) Lentils

(25) Rice2 (26) Wall1 (27) Stone3
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(28) Floor2 (29) Ceiling1 (30) Oatmeal1

(31) Rice2 (32) Pearlsugar1 (33) Scarf1, Blanket2

(34) Linseeds1, Rug1 (35) Stone1, Stone2

Figure 4.4: Normalized images sampled from each cluster in the Kylberg Kylberg-TCNN
feature space.

We dive into the smaller clusters first. All of these correspond to classes with a strong

structural pattern. Scarf2 breaks up among clusters 3, 5, and 13 based on the where the pat-

tern was cropped. Cluster 3 features an extra light stripe, while cluster 5 features an extra
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dark stripe. Cluster 13 is a mix between featuring equal number of the stripes. Ceiling2

breaks up into clusters 4, 6, and 10 based on the scale. Blanket2 splits into clusters 2, 11,

and 33 due to normalization and cropping. Cluster 2 features small bright areas against a

darker background, while clusters 11 and 33 feature a mix of lighter and darker zigzags.

Floor1 splits into clusters 1 and 16 with the majority in the latter due to cropping. Cluster 1

captures a unique part of the pattern that is overall brighter than cluster 16 containing more

dark spaces. Seat1 is spread across clusters 8 and 14 by a subtle difference. Cluster 8 has

tighter, brighter stripes, while they blend in more in cluster 14. Seat2 splits into clusters

7 and 15; however we cannot confidently conclude what the differentiating feature is. Fi-

nally, Stoneslab1 splits nearly in half into clusters 9 and 12, but once again a reason is not

readily obvious.

We discuss the other clusters next. Clusters 18 through 29 and 31 appear homogeneous.

The other clusters show signs of noisy segmentation. Cluster 35 combines both Stone1 and

Stone2 classes as they share similar peak-value distributions and frequencies. Cluster 17

shows a mixture of samples from Grass1 and Rug1. This is likely caused by the structural

similarity between the rug fibers and grass blades. Cluster 30 primarily contains Oatmeal1,

but some samples from Grass1 are present. This could be accredited to the similarity be-

tween clovers and oatmeal flakes. Cluster 32 is made up of Pearlsugar1 with a few samples

from Rug1 and Oatmeal1 likely due to the similarity in pixel intensity distributions. Clus-

ter 33 includes a few Blanket2 samples within a primarily Scarf1 cluster. The small holes

and low-frequency dark and bright regions appear to be common features between these

classes. Cluster 34 is a larger composed primarily of Linseeds1 with some Rug1, Pearl-

sugar1, and Oatmeal1. Cluster 35 primarily groups Stone1 and Stone2 together as they are

very similar in appearance.

From clusters 17, 30, 32, 34, and 35 we notice most of the segmentation noise is rooted

among their classes. To confirm this, we visualize the Kylberg feature space by apply-

ing UMAP dimensionality reduction. We varied UMAP’s minimum distance and number
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of neighbors parameters until we found a satisfactory projection. We show the Kylberg-

TCNN visualization colored by class and cluster in Figures 4.5, 4.6, respectively

Figure 4.5: UMAP visualization of the Kylberg Kylberg-TCNN feature space colored by
class. Minimum distance of 0.25 and 300 neighbors were used.
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Figure 4.6: UMAP visualization of the Kylberg Kylberg-TCNN feature space colored by
cluster number. Minimum distance of 0.25 and 300 neighbors were used.

From Figure 4.5 we see most classes are well-isolated within the projection with sim-

ilar classes neighboring each other. Most of the spatially homogeneous classes reside on

the border of the projection likely due to their unique texture representation being spatially

distant from others. From Figure 4.6 we notice most density-based clusters are seman-
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tically homogeneous. However, among the tight neighborhood of Linseeds1, Oatmeal1,

Pearlsugar1, Grass1, and Rug1, the majority of semantic inhomogeneity comes from the

Grass1 cluster extending itself into its neighboring Rug1 cluster. Additionally, Stone1 and

Stone2 pack together in one cluster which partially extends into the tail of the Grass1 and

Rug1 cluster. Split classes such as Seat1, Seat2, Ceiling2, Floor1, Scarf2, Stoneslab1, and

Blanket2 have differently colored regions representing the clusters that split each class.

Kylberg-WCNN

Finishing with the WCNN, we cluster using a noise threshold of 0.2 yielding 29 clusters.

These clusters are relabeled sorted by size and plotted in Figure 4.7.

Figure 4.7: Kylberg cluster sizes of the Kylberg-WCNN feature space. Clustering noise
threshold is 0.2.

The distribution depicts a similar imbalance with 3 larger clusters. The sizes of clus-

ters 17 to 26 follow the expected uniform distribution with clusters 27 to 29 being a bit

larger. In the TCNN experiment, the biggest cluster contained nearly 3000 samples, but

the largest 3 clusters in this distribution surpass that. To understand why, we explore these
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clusters by showing randomly sampled images from each cluster in Figure 4.8.

(1) Blanket2 (2) Blanket2 (3) Screen1

(4) Scarf2 (5) Screen1 (6) Scarf2

(7) Ceiling2 (8) Stone3 (9) Seat1
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(10) Blanket2 (11) Scarf2 (12) Seat1

(13) Screen1 (14) Wall1 (15) Stone3

(16) Ceiling2 (17) Rice2 (18) Canvas1
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(19) Ceiling1 (20) Seat2 (21) Cushion1

(22) Floor1 (23) Blanket1 (24) Lentils1

(25) Sesameseeds1 (26) Rice1 (27) Scarf1

48



(28) Pearlsugar1, Oatmeal1,
Rug1 (29) Sand1, Wall1 (30) Floor2, Stoneslab1

(31) Linseeds1, Oatmeal1,
Grass1, Rug1

(32) Grass1, Rug1, Stone1,
Stone2

Figure 4.8: Normalized images sampled from each cluster in the Kylberg Kylberg-WCNN
feature space.

We dive into the smaller clusters first. Like before, Scarf2, Ceiling2, Blanket2, Seat1

are splitting into multiple clusters; however Stoneslab1, Floor1, and Seat2 do not split.

Screen1 splits across clusters 13, 5, and 3 with each respective cluster having sharper lines.

Stone3 breaks up into clusters 8 and 15 being slightly rougher and smoother, respectively.

Wall1 splits into clusters 14 and 29 with coarser samples being grouped in the latter cluster

with Sand1.

We discuss the other clusters next. Clusters 17 through 26 appear homogeneous. The other

clusters show signs of noisy segmentation. Cluster 27 primarily contains Scarf1 with some

samples from Blanket2. Cluster 28 shows a similar mix to cluster 30 from the TCNN.

Cluster 29 primarily contains Sand1, but also some of the coarser Wall1 samples. Cluster
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30 combines both Floor2 and Stoneslab1 due to their high-frequency low-level features.

Cluster 31 is similar to cluster 34 from the TCNN. Finally, cluster 32 being the largest

shows the Grass1 and Rug1 cluster combined with the Stone1 and Stone2 cluster from the

TCNN projection. To confirm this, we show the Kylberg-WCNN visualization colored by

class and cluster in Figures 4.9, 4.10, respectively.

Figure 4.9: UMAP visualization of the Kylberg Kylberg-WCNN feature space. Minimum
distance of 0.25 and 300 neighbors were used.
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Figure 4.10: UMAP visualization of the Kylberg Kylberg-WCNN feature space. Minimum
distance of 0.25 and 300 neighbors were used.

From Figure 4.9, we see a similar arrangement of clusters from Figure 4.5. The main

differences are Stone1 is attached to Grass1, Sand1 sits between Stone3 and Wall1, and

Oatmeal1 is stretched towards Linseeds1 and Grass1 but away from Rug1 and Pearlsugar1.

From 4.10 we observe the clustering splits Scarf2, Ceiling2, Seat1, Screen1, Blanket2, and

Stone3. We see Sand1 over extends into Wall1. While UMAP split Stoneslab1 and Floor2

into two neighboring clusters, they were grouped into one cluster in high-dimensional
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space. This is likely caused by the noise threshold being high enough to combine the

overlapping clusters. The major cluster group breaks into 3 clusters. Pearlsugar1 captures

a few of its neighbors but is otherwise well isolated. Oatmeal1, Linseeds1, and half of

Rug1 group together. Finally Grass1, Stone1, Stone2, and some of Rug1 cluster together.

This confirms our initial observations.

Summary

In both experiments, most classes segmented cleanly in both the clustering and the pro-

jection. Similar classes and clusters were often neighbors in the projection. This was

especially the case for Lentils1, Rice1, and Rice2 because their higher-order features de-

scribed piles of round smooth objects. Some classes such as Stone1 and Stone2 neighbored

each other so closely that neither clustering could distinguish between them. Although both

experiments produced similar results, there were some differences. The TCNN clustered

classes semantically better than the WCNN; however, this might be related to its higher

classification score. The WCNN prioritized grouping classes based on the frequency level

of their textural components. We list a few examples of this. Floor2 and Stoneslab1 both

sharing high-frequency low-level noise clustered together in WCNN experiment but not in

the TCNN-experiment. Sand1 acted as an interpolation between Stone3 and Wall1 because

it is a gradual transition in frequency with a similar level of coarseness. This concludes our

analysis of Kylberg. We discuss our results from ALOT in the next section.
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4.1.2 ALOT

In this section we cluster the ALOT validation set feature space from a TCNN and WCNN

trained on ALOT. We begin our analysis by plotting the average activation of each feature

dimension for both models in Figure 4.11. Similar to the Kylberg models, both models

have dead dimensions with varying ranges. The ALOT-TCNN representation does not

use dimensions 3, 9, 13, and 15, while the ALOT-WCNN representation does not use

dimensions 3, 4, 6, and 12. We drop the dead dimensions and normalize the rest.

Figure 4.11: Plot of the average activation in each feature dimension from ALOT for both
models trained on ALOT. Lines indicate the range of the activations.

With 250 classes, we expect to see a fewer clusters due to the similarity between many

classes. For both models, we show the number of clusters ALOT breaks into while varying

the noise threshold in Figure 4.12.
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Figure 4.12: Plot of the average number of clusters ALOT breaks into at different noise
thresholds for two experiments. The range over 5 runs is indicated by a line on each bar.

We observe a significantly smaller number of clusters indicating the presence of over-

lapping features in multiple classes. The WCNN consistency produces slightly fewer clus-

ters than the TCNN implying the WCNN feature spaces do not break apart well enough for

FDC to isolate as many distinct density neighborhoods. We later learn the frequency analy-

sis performed by the wavelet layers is less effective at learning a well-separated embedding

for textures with large shapes and solid regions. Due to the size of ALOT, we change our

criteria for selecting the noise threshold. For both models, we select a noise threshold of

0.01 because the number of clusters produced is most similar between models.

We begin our analysis on the TCNN. Clustering the ALOT-TCNN feature spaces yields 28

clusters. We plot the cluster sizes in Figure 4.13.
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Figure 4.13: ALOT cluster sizes of the ALOT-TCNN feature space. Clustering noise
threshold is 0.01.

We observe nearly half of the data is thrown into one cluster, while smaller clusters

1 to 14 likely isolate a few classes. We are primarily interested in the larger clusters as

they contain more samples that will span more classes that could describe a broader textual

group. Figure 4.14 shows images randomly sampled from each cluster and labeled by a

general textual description. We inspect these images to get a better evaluation on the textu-

ral homogeneity per cluster.
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(1) Square grid (2) Scattered tendrils (3) Foil-like

(4) Many scattered bright and
dark regions

(5) Small round bright and dark
objects (6) Small round objects

(7) Most bright, some dark ob-
jects (8) Coarse, several bright spots (9) Line patterns
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(10) Fine bright and dark spots (11) Round objects, dark spots
(12) Bright and dark round ob-
jects

(13) Low-frequency, round ob-
jects

(14) Large objects / shadows,
no bright reflections

(15) Round objects with bright
reflections

(16) Large lattices
(17) Coarse, bright and dark
spots (18) Small lattices
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(19) Gears and lattices (20) Sand-like (21) Fine structured patterns

(22) Large round objects (23) Rods and grooves (24) Coarse and rough

(25) Fine and flat (26) Edges, shadows, holes (27) Wide variety, rough
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(28) Low frequency, solid re-
gions

Figure 4.14: Normalized images sampled from each cluster in the ALOT ALOT-TCNN
feature space.

Most clusters group classes based on component shapes and sizes, spatial structural

homogeneity, and distribution of bright and dark spots. Clusters 6, 9, 11, 13, 16, and 18

contain more samples with a repeating pattern. Clusters 10, 17, 20, 21, 24, and 25 contain

finer samples with tiny features. Clusters 1, 2, 5, 6, 7, 9, 11, 12, 13, 14, 15, 16, 19, 22, 24,

26, 27, and 28 contain coarser samples with larger shapes, shadows, and solid regions. To

see how these classes group together, we color and partially label a UMAP projection of

this ALOT feature space by cluster in Figure 4.15. We labeled the larger clusters and only

a few of smaller ones to keep the visualization cleaner.
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Figure 4.15: UMAP visualization of the ALOT ALOT-TCNN feature space colored by
cluster. Minimum distance of 0.10 and 15 neighbors were used.

From this visualization, the classes split into two major categories. The left half is

composed of surfaces with finer features, while the right half is composed of large objects

with various shapes, overlap, and shadows. Each major category breaks into smaller dis-

tinct groups that vary in other features. For the surfaces, levels of roughness, noise, and

spatial homogeneity are distinguishing factors. For the objects category, shape, size, and

lighting are distinguishing factors.
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Many clusters are contiguous in the projection, however some, like cluster 27, are scattered

across the surface and object categories. We do not necessarily expect clusters in feature

space to be contiguous in the projections due to the nature of dimensionality reduction and

the differences between UMAP and FDC. We note most samples from cluster 27 appearing

in the object category are piles of small uniformly-shaped objects, such as pellets. These

piles may resemble similar rough non-spatially homogeneous surfaces in feature space.

Clusters 1, 9, 15, and 18 break away from the major connected components in the projec-

tion. We suspect their unique textural representation and homogeneity may be the cause. A

large portion of the objects category groups into cluster 28 where further splitting could be

realized. After inspecting cluster sizes with a noise threshold of 0, we found cluster 28 only

decreases in size by 20%; therefore we rule out the noise threshold as a cause for cluster

28 being so large. This leads us to believe the textural representation of the TCNN might

be entangled or not segmented well enough for FDC to identify smaller overlapping dense

regions in feature space.

We move onto the analysis of WCNN for comparison. Clustering the ALOT-WCNN fea-

ture space yields 24 clusters. We plot the cluster sizes in Figure 4.16.

Figure 4.16: ALOT cluster sizes of the ALOT-WCNN feature space. Clustering noise
threshold is 0.01.
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We observe a non-uniform distribution similar to the previous one, except the tail does

not decay as gradually. The two largest clusters likely have lower textural homogeneity as

they are even larger than those observed in the TCNN experiment. Clusters 20 to 22 are

sized uniformly within a size range that could capture general textural groups with higher

textural homogeneity. We gauge this on the fact that each class is represented by 100 sam-

ples in the validation set which ideally could correspond to about 15 similar classes being

clustered together. The rest of the clusters 1 to 19 are small with high textural homogeneity

as they contain only a few classes. We inspect these clusters closer by randomly sampling

and describing images from each cluster in Figure 4.17.
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(1) Denim
(2) Bright and dark small round
objects

(3) Smooth dull round objects
with shadows

(4) Tiny round objects
(5) Solid areas, round and
straight edges (6) Small dark spots

(7) Flat, scattered bright and
dark areas (8) Round glossy objects

(9) Smooth and powdery ob-
jects

63



(10) Shadows, smooth and
powdery

(11) Chunky objects with dark
shadows

(12) Sharp edges split bright
and dark regions

(13) Linear structural patterns (14) Small elliptical objects (15) Rough surfaces with holes

(16) Round shiny objects
(17) Shapeless, smooth with
specks

(18) High-frequency small
components
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(19) Large regions, bright
specks

(20) Wide variety of speckled
surfaces (21) Sand-like and lattices

(22) Fine and rough (23) Coarse (24) Wide variety of objects

Figure 4.17: Normalized images sampled from each cluster in the ALOT ALOT-WCNN
feature space.

In comparison to the TCNN experiment, we obtain more small clusters isolating sam-

ples from a couple classes. Clusters 1, 5, 6, 7, 13, 15, 18, and 20 are generally surfaces,

while clusters 2, 3, 4, 8, 9, 10, 11, 12, 14, 16, 17, and 19 are objects. Clusters 21 and

22 generally describe grainy surfaces, while cluster 23 contains coarser surfaces and some

objects. Nearly all object classes are located in cluster 24. Like before, we color a UMAP

projection of this ALOT feature space by cluster in Figure 4.18 to demonstrate where clus-

ters are located.
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Figure 4.18: UMAP visualization of the ALOT ALOT-WCNN feature space. Minimum
distance of 0.10 and 15 neighbors were used.

We observe a similar structure compared to the one we saw by the TCNN, except the

split between the surfaces and object categories is more pronounced. On the right side, we

have almost all the object classes captured by cluster 24 which appears to be an extension

of cluster 28 from the TCNN experiment. On the left side, Clusters 20 to 23 make up the

majority of the surface classes. Cluster 23 extends into a few object regions containing lat-

tices. The other clusters are small and isolated within the projection. We observe cluster 1
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from the TCNN experiment containing square grids is now grouped with cluster 24 despite

the visible separation in the projection. After clustering with a noise threshold of 0, we

found better separation in both the surfaces and objects with a similar cluster size distribu-

tion and UMAP visualization to the TCNN experiment. This separation was able to isolate

the square grids cluster from the TCNN experiment indicating the ALOT-WCNN texture

representation does not isolate unique representations from others as well. In general, the

WCNN splits ALOT into fewer, larger clusters with less textural homogeneity. This might

be accredited to a stronger focus on frequency analysis which works better at segmenting

surfaces, but not necessarily as well on the shapes of objects.

Unlike Kylberg, we observed it was more difficult to break ALOT into finer clusters with a

couple classes, however we did not see individual clusters forming due to intra-class varia-

tion. We suspect the primary reason ALOT is much harder to cluster is due to the number

of classes. We note that we are using unsupervised learning, so we expect this to occur

especially in similar textured classes. When two classes are similar, their feature represen-

tations can closely neighbor each other to the point that FDC observes their neighborhood

as a single cluster. We saw this behavior in Kylberg with classes Stone1 and Stone2. If

many classes neighbor each other, then by transitivity FDC may label a chain of clusters

as a single elongated cluster. We noticed a glimpse of this behavior in the Kylberg-WCNN

feature space from Figure 4.10. Having demonstrated the utility of our approach on Kyl-

berg and ALOT using FDC and UMAP, we analyze the LPBF data in the same way in the

next section.
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4.2 LPBF In-situ Analysis

In the following sections, we cluster the recoat post-spread (4.2.1), recoat post-melt (4.2.2),

thermal tomography (4.2.3), LWIR (4.2.4), and spatter (4.2.5) data. We repeat this cluster-

ing per experiment for comparison. Our goal is to determine which textural representations

can isolate individual categories of process phenomena captured in each sensor modality.

When clustering, we typically select a noise threshold of 0 to obtain the maximum num-

ber of clusters possible because we can always group similar clusters together manually.

If a low noise threshold produces too many clusters to manage, we select a higher noise

threshold. When results across experiments are similar, we limit discussions to highlight

differences or reinforce earlier claims.
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4.2.1 Recoat Post Spread

The recoat post-spread data consists of powder spreads from each coupon on each layer. It

is known this modality reveals the presence of recoat streaking, recoat hopping, material

protrusion, and soot. The textural representation of recoat streaking and hopping will likely

be similar as they often show up as lines in the powder spread. Similarly, material protru-

sion and soot appear as small blobs. In this section, we perform clustering to group similar

powder spreads. The benefit of clustering this data would be realized if powder spreads

with the same roughness and anomalies group together cleanly. We begin by assessing

how many clusters the recoat post-spread feature space can break into while varying the

noise threshold of FDC. We display the number of clusters per threshold for each experi-

ment in Figure 4.19.

Figure 4.19: Plot of the average number of clusters the post-spread data breaks into at
different noise thresholds for each experiment. The range over 5 runs is indicated by a line
on each bar.

The variation in the number of cluster between experiments indicates the feature set

and model have an influence. When the noise threshold is very high, most experiments

settle on the same number of clusters implying there may be a similar global clustering in

each feature space. We dive into a clustering from each experiment.
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Kylberg-TCNN

Starting with Kylberg-TCNN, we cluster the recoat post-spread feature space a noise thresh-

old of 0 which produces 39 clusters. We relabel these clusters sorted by size and report them

in Figure 4.20.

Figure 4.20: Recoat post-spread cluster sizes of the Kylberg-TCNN feature space. Cluster-
ing noise threshold is 0.

From this graph, we notice the post-spread data is breaking up into 8 significantly

large clusters 32 to 39 and 31 small clusters. To find out why, we inspect each cluster by

randomly sampling and describing the powder spreads from a textural perspective in Figure

4.21.
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(1) Fine; bright corner/edge (2) Smooth; large corners/edges
(3) Gradients; small dark cor-
ners; few large dark spots

(4) Smooth; large dark corners
(5) Gradients; small dark cor-
ners

(6) Fine; small bright corners;
few dark spots

(7) Fine; small bright/dark cor-
ners/spots; lines (8) Clumpy; shiny border (9) Fine; large etched corners

71



(10) Coarse; few dark spots
(11) Smooth; large corners and
spots

(12) Fine; tiny bright corners
and dark spots

(13) Smooth; dark corners
(14) Smooth; Large bright/dark
corners

(15) Smooth; large cor-
ner/edges

(16) Gradients; several small
bright spots

(17) Fine; bright/dark corners;
lines

(18) Smooth; bright corner-
s/edges; small dark spots
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(19) Smooth; bright/dark cor-
ners

(20) Fine; bright corners/edges;
spots

(21) Coarse; tiny bright corners;
several dark spots

(22) Fine; bright/dark corners;
few lines and spots (23) Smooth; shiny border

(24) Fine; small bright corners
and dark spots

(25) Fine; bright spots; small
dark spots (26) Gradients; dark corners

(27) Smooth; bright corners;
few dark spots
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(28) Gradients; several small
spots

(29) Fine; large bright/dark cor-
ners; lines

(30) Fine; small bright/dark
corners

(31) Coarse; dark spots
(32) Coarse gradients; dark
spots

(33) Gradients; few dark large
spots

(34) Fine gradients; lines; few
dark spots (35) Fine gradients; few spots (36) Fine; lines; few dark spots,
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(37) Coarse; several dark spots (38) Fine; few small spots (39) Fine; lines; dark spots

Figure 4.21: Normalized images sampled from each cluster in the recoat post-spread
Kylberg-TCNN feature space. We describe the textural roughness of the powder spread
followed by textural descriptions of other defects.

The Kylberg-TCNN texture representation segmented major and minor textural differ-

ences among the post-spread data. We observe most of the smaller clusters differ from the

larger clusters by the presence of coupon corners protruding up through the powder layer.

Among these smaller clusters, they segment apart by corner size and other phenomena in

the powder.

This clustering demonstrates the roughness of powder spreads is a strong feature for seg-

mentation because nearly all clusters are homogeneous in this manner, especially the large

ones. Powder spreads segment depending on whether they are smooth, fine, coarse, or have

gradients. These gradients are created by uneven lighting and reflections across the build

plate. In some samples, the striped gradients hint at a subtle recoat hopping phenomena.

In general, most clusters are noisy in that they cannot isolate powder spreads sharing the ex-

act same combination of features. We give two examples. Cluster 36 contains fine powder

spreads, but the presence of lines and spots is not consistent. Similarly, cluster 14 contains

smooth powder spreads with bright corner protrusion, but some include soot while others

do not. We hypothesize the presence of some features (i.e. roughness of powder) may be a

priority for clustering over others despite feature normalization.

We observe larger clusters 36 and 39 contain many samples with dead pixel residue lines.

75



This is sensor damage, not a process anomaly; however they do resemble the appearance

of recoat streaking anomalies. These clusters suggest recoat streaking could be isolated

if these lines were created from this phenomenon. In light of that, we do see pure recoat

streaking in cluster 34. While these instances are more subtle, they are not grouped with

dead-pixel residue lines.

Most clusters contain a mix of process phenomena with cluster 38 having the least. For

a better interpretation of these clusters from the side of LPBF, we categorize them by the

most common process phenomena from their powder spreads in Table 4.2. This labeling

saves times, but sacrifices accuracy.

Phenomena Clusters
Minor corner protrusion 1, 3, 5, 6, 7, 12, 17, 18, 19,

20, 21, 22, 24, 25, 28, 29, 30
Major corner protrusion 2, 4, 9, 11, 13, 14, 15, 27

Border protrusion 8, 23
Spot material protrusion 7, 9, 11, 16, 17, 28, 35, 39

Severe soot 37
Recoater Streaking 3, 7, 17, 29, 34, 36, 39

Table 4.2: Table of LPBF phenomena seen in Kylberg-TCNN recoat post-spread clusters.

Having analyzed the images from each cluster, we move onto the analysis of the spatial

connection between clusters. To illustrate this, we color and label a UMAP projection of

this feature space by cluster number in Figure 4.22.
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Figure 4.22: UMAP visualization of the Recoat Post-Spread Kylberg-TCNN feature space
colored by cluster number. Minimum distance of 0 and 50 neighbors were used.

We observe there are many sparse regions in the projection corresponding to most of

the smaller clusters containing protruding coupon corners. The larger clusters 31 to 39

without corner protrusion compose the bulky regions. Near the center of the projection,

there is a smaller cluster primarily containing powder spreads from many coupons with

severe material protrusion, large soot, and recoat streaks. We show image samples from

this cluster in Figure 4.23.
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Figure 4.23: Normalized images sampled from severe defects cluster in the recoat post-
spread Kylberg-TCNN feature space UMAP projection.

This cluster is visually isolated in the projection, but FDC grouped it with cluster 39.

We believe the reason is textural overlap. The tail of cluster 39 transitions into spreads with

small bright corners and material protrusion. The left side of the severe defects cluster starts

with smaller bright spots and quickly transitions to the other defects mentioned earlier.

In many samples, several features such as small bright/dark spots and lines are present

simultaneously which contributes to the textural overlap.

We turn our attention to the bulky regions in the projection. Upon further inspection, we

find these regions segment by coupon. To demonstrate this, we color the projection by

coupon number in Figure 4.24.
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Figure 4.24: UMAP visualization of the Recoat Post-Spread Kylberg-TCNN feature space
colored by coupon number. Minimum distance of 0 and 50 neighbors were used.

The separation is clear and implies the physical location of the coupon on the build

plate influences its post-spread image which in turn is reflected in its textural representation.

We conclude the most likely cause is non-uniform lighting produced by various reflections

and sources within the machine environment. Coupons physically located in the same row

on the build plate tend to neighbor each other in the projection. This neighboring is tighter

or entangled in the projection among coupons in the left and center columns. See coupon
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pairs 1 and 2, 4 and 5, and 7 and 8. Coupons 4 and 5 are more distinct due to differences in

their dead pixel residue.

While we suspect lighting plays a role, the airflow across the build plate may be too.

Coupons 7, 8, and 9 reside in the front row and have much less soot in their spreads.

When soot is carried away by the airflow, some of it may fall back onto the other coupons.

After inspecting hundreds of samples from each coupon, we observe powder spreads from

coupons in the first row have much less soot on average compared to the coupons in the

proceeding rows. We also noticed the right column of coupons 3, 6, and 9 have less soot

than their respective row-neighbors indicating the airflow may not be uniformly distributed.

This concludes our analysis of the Kylberg-TCNN experiment. While this experiment pro-

duced the most number of clusters, we look at clusters from other experiments for compar-

ison; however in the proceeding experiments, the analysis methods and most of the results

are similar, therefore we limit our discussions to pointing out a few similarities and differ-

ences.

Kylberg-WCNN

Proceeding in the same way, we cluster the recoat post-spread Kylberg-WCNN feature

space with a noise threshold of 0 which produces 22 clusters. We relabel clusters sorted by

size and report them in Figure 4.25.
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Figure 4.25: Recoat post-spread cluster sizes of the Kylberg-WCNN feature space. Clus-
tering noise threshold is 0.

While we still have many small clusters, the 3 largest clusters show a significant jump

from the other larger clusters. The sizes of those clusters are much higher than those

previously implying this clustering may have less textural homogeneity. To verify this,

we inspect randomly sampled images from each cluster and show them in Figure 4.26.
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(1) Fine; bright corners (2) Smooth; bright corners (3) Smooth; large corners

(4) Smooth; corner/edges
(5) Fine; small bright corners;
few spots (6) Clumpy; shiny border

(7) Fine; bright corners
(8) Fine; bright corners/edges;
few spots

(9) Fine; small bright corners;
spots
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(10) Smooth; large etched cor-
ners (11) Smooth; shiny border

(12) Fine; bright/dark corners;
lines

(13) Fine; small dark corners;
lines; large spots (14) Coarse; bright/dark spots (15) Smooth; bright corners

(16) Fine; small corners; large
spots (17) Fine gradient; lines (18) Fine gradient; few spots
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(19) Fine gradient; bright and
dark spots (20) Fine; lines; dark spots (21) Coarse; dark spots

(22) Fine; few spots

Figure 4.26: Normalized images sampled from each cluster in the recoat post-spread
Kylberg-WCNN feature space.

Despite having much fewer clusters, many of them are texturally similar to those in

Kylberg-TCNN implying the model architecture only provides local changes to the feature

space. We give two examples of clusters shared across the Kylberg experiments. Cluster 17

contains a similar distribution of samples in Kylberg-TCNN cluster 34. They both describe

fine powder spreads with subtle recoat streaking lines from coupon 6. Cluster 6 is identical

to Kylberg-TCNN cluster 8. Both clusters are small containing powder spreads of the same

significant coupon border protrusion.

Many small and some large clusters have merged together from Kylberg-TCNN. To see this

better, we color UMAP projections of this feature space by cluster and coupon in Figures

4.27 and 4.28, respectively.
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Figure 4.27: UMAP visualization of the Recoat Post-Spread Kylberg-WCNN feature
space. Minimum distance of 0.00 and 50 neighbors were used.

85



Figure 4.28: UMAP visualization of the Recoat Post-Spread Kylberg-WCNN feature space
colored by coupon number. Minimum distance of 0 and 50 neighbors were used.

From these plots, we observe the geometry of this projection differs from the Kylberg-

TCNN one, but the topology is very similar in that one end contains bulky regions that

are coupon-homogeneous while the other end is reserved for corner protrusion. We ob-

serve coupons built in the right column of the build plate are still distinctly isolated in the

projection. These observations are reflected in the clustering too, but we highlight some

differences. Coupons 1 and 2 containing coarse powder spreads are better split in the pro-
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jection and are grouped together into cluster 21. It is a similar case for coupons 4, 7, and 8

containing fine powder spreads in cluster 22. Many of the smaller Kylberg-TCNN clusters

containing similar corner protrusion are now grouped into a broader cluster 15. We observe

cluster 16 is at the same intersection between the two major clusters indicating it isolates

the severe defect cluster found in the Kylberg-TCNN projection. This an improvement in

clustering because the isolation of these defects supports anomaly detection. Clusters 19

and 21 are no longer split, which is unfortunate because some of their children clusters,

such as Kylberg-TCNN cluster 16 containing speckled material protrusion, were more tex-

turally homogeneous.

Overall, the WCNN produced a recoat post-spread feature space that is generally more

connected which is seen by fewer clusters and a more contiguous projection. The textu-

ral homogeneity of most clusters was lower, with the redeeming exception of cluster 16

isolating most of the severe defects.

ALOT-TCNN

Next we consider experiments using features learned from ALOT. We cluster the ALOT-

TCNN feature space with a noise threshold of 0 which yields 25 clusters. We relabel

clusters sorted by size and report them in Figure 4.29.
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Figure 4.29: Recoat post-spread cluster sizes of the ALOT-TCNN feature space. Clustering
noise threshold is 0.

The distribution of cluster sizes is more uniform for clusters 20 to 23 and larger clus-

ters 24 and 25. The remaining clusters gradually decay in size. This distribution differs

more from the Kylberg experiments in that the larger clusters are smaller and vice versa

implying large clusters are splitting and smaller clusters are merging. Both effects are de-

sirable for isolating broad, texturally homogeneous clusters. We randomly sample images

from each cluster and label them in Figure 4.26.
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(1) Fine; bright edges (2) Clumpy; shiny border (3) Fine; bright corners

(4) Smooth; shiny border (5) Smooth; large corner edges (6) Coarse gradients; dark spots

(7) Fine; small corners
(8) Fine gradients; small cor-
ners

(9) Smooth or fine gradients;
dark corners and spots
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(10) Coarse; few dark spots (11) Coarse; large dark spots
(12) Fine; corners, lines, and
raised spots

(13) Fine; corners, lines, and
raised spots

(14) Coarse; many large dark
spots (15) Smooth; large corners

(16) Fine; large corners
(17) Coarse; few bright and
dark spots

(18) Fine; small bright corners
and spots
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(19) Coarse gradients; few
spots (20) Fine; few spots and lines (21) Fine; subtle lines

(22) Coarse; dark spots (23) Fine gradients; few spots (24) Fine

(25) Fine; lines and dark spots

Figure 4.30: Normalized images sampled from each cluster in the recoat post-spread
ALOT-TCNN feature space.

Once again, coupon border material protrusion isolates well with clusters 16 and 18

grouping larger and smaller corners together. Smaller clusters 10, 11, 14, and 17 containing

coarse powder spreads differ in the amount of soot implying the cluster containing coupons
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1 and 2 has split. The severe defect cluster is not well isolated like in the Kylberg-WCNN

experiment. We see similar large clusters 20 to 25 likely corresponding to coupons as seen

in previous experiments. To illustrate these clusters further, we color and label the UMAP

projection of this feature space by cluster and coupon in Figures 4.31 and 4.32, respectively.

Figure 4.31: UMAP visualization of the Recoat Post-Spread ALOT-TCNN feature space.
Minimum distance of 0.00 and 50 neighbors were used.
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Figure 4.32: UMAP visualization of the Recoat Post-Spread ALOT-TCNN feature space
colored by coupon number. Minimum distance of 0 and 50 neighbors were used.

The projection shape is different at a local scale, but overall the experiments tend to

settle on the same topology the separates powder spreads by the presence corner protrusion.

The separation of coupons is still clear with the exception of the entangled coupons 7 and

8. From these colorings, the previously mentioned smaller clusters 10, 11, 14, and 17 are

primarily splitting coupon 1. One difference that could be the cause is coupon 2 has more

samples with gradients while coupon 1 does not. We notice the severe defect cluster has
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split in the projection and clustering; however similar anomalies are isolated locally in the

projection but are grouped into larger clusters with different phenomena. It is not clear

why this is the case. Clusters 15, 16, and 18 isolate the different levels of coupon corner

protrusion which helps generalize the clustering without sacrificing semantic homogeneity.

A similar generalization was recognized in the Kylberg-WCNN experiment, but not in

the Kylberg-TCNN experiment because it break ups into many more smaller clusters. It is

becoming apparent that each of these experiments have their own strengths and weaknesses,

but generally agree on many clusters.

ALOT-WCNN

Finally, we cluster the recoat post-spread ALOT-WCNN feature space with a noise thresh-

old of 0 yielding 21 clusters. We relabel these clusters sorted by size and report them in

Figure 4.33.

Figure 4.33: Recoat post-spread cluster sizes of the ALOT-WCNN feature space. Cluster-
ing noise threshold is 0.

We see a similar distribution to the one from the ALOT-TCNN experiment, except

instead of two equally large clusters, we have one large cluster with over twice the size. We

94



suspect the two large clusters from another experiment combined to produce cluster 21. To

verify, we randomly sample images from each cluster and label them in Figure 4.34.

(1) Fine; corners; lines; spots (2) Fine; corners; lines; spots (3) Smooth; large corners

(4) Fine; bright corners
(5) Fine; lines; small corners;
spots (6) Fine; many lines; spots

(7) Coarse; dark and bright
spots (8) Smooth; shiny border (9) Fine; small spots
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(10) Smooth; bright/dark cor-
ners; spots (11) Coarse gradients; spots

(12) Variety of border and cor-
ners

(13) Fine; bright corners; few
spots and lines (14) Fine; bright/dark spots

(15) Coarse gradients; few
spots

(16) Fine gradients; lines; spots (17) Fine gradients; lines (18) Fine; lines; dark spots
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(19) Coarse gradients; dark
spots (20) Coarse; dark spots (21) Fine; few spots

Figure 4.34: Normalized images sampled from each cluster in the recoat post-spread
ALOT-WCNN feature space.

We see similar clusters from previous experiments; however we get different separa-

tion and merging. Regarding separation, cluster 7 was able to isolate abundant small bright

spot material protrusion similar to Kylberg-WCNN cluster 16. This phenomenon has only

been isolated in WCNN experiments implying frequency analysis is better at embedding

this feature. Clusters 1, 2, 5, and 6 contain samples with more severe defects, but do not

completely make up the severe defect cluster. Unlike the Kylberg-WCNN, the distinction

between coupons 1 and 2 has been preserved. Regarding merging, corner protrusion clus-

ters 8 and 12 are a bit noisy varying in levels of severity. Cluster 21 being much larger

with a few subtle gradient samples implies the distinction between coupons 7, 8, and 9 has

been lost. In the ALOT-TCNN experiment, the coupon 1 cluster containing coarse powder

spreads with no gradients split into varying levels of soot, but this splitting is not realized

by cluster 20. To emphasize these observations, we color the UMAP projection of this

feature space by cluster and coupon in Figures 4.35 and 4.36, respectively.
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Figure 4.35: UMAP visualization of the Recoat Post-Spread ALOT-WCNN feature space.
Minimum distance of 0.00 and 50 neighbors were used.
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Figure 4.36: UMAP visualization of the Recoat Post-Spread ALOT-WCNN feature space
colored by coupon number. Minimum distance of 0 and 50 neighbors were used.

This projection differs most from the other experiments. The coupon clusters are

stretched alongside each other. Coupon 3 is a prime example of this. From the Kylberg

experiments, coupon 6 breaks away leaving coupons 4 and 5 being close neighbors, but

cluster 5 breaks away instead. A similar but more subtle observation is realized in the

ALOT-TCNN projection. We suspect the difference in ALOT and Kylberg feature embed-

ding must be the cause.
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Coupons 7, 8, and 9 are tightly strung alongside another in the projection. It follows that

they are all grouped into cluster 21. Coupons 1 and 2 group into clusters 20 and 19 but do

not split further like in the TCNN experiments. Once again, at the tail of coupons 1 and

2, we find the severe defect cluster. Some categories of the defects are distinguished, such

as speckled material protrusion in cluster 7, but most others end up being grouped within

larger clusters. For example, cluster 14 primarily contains powder spreads with tiny bright

corners, but it also captures spreads with several small bright material protrusion spots. The

textural representation is likely similar and less sensitive to positioning.

Summary

In the recoat post-spread data, we effectively clustered roughness categories of powder

spreads ranging from smooth, fine, and coarse. Among these, there were subcategories

with material protrusion, recoat streaking, soot, and severe defects. UMAP projections iso-

lated a region with severe defects; however this region rarely isolated well in the clustering.

The recoat post-spread feature space UMAP projections were globally similar due to the

high sensitivity to coupon positioning.

The influence of coupon positioning led to most powder spread images grouping together

if they came from the same coupon. There were several driving forces behind this bias.

Non-uniform lighting across the columns revealed subtle gradients only on right column

coupon powder spreads. The focus of the camera varied along the rows thereby producing

coarser powder spread imagery for coupons in the back row. Sensor damage varied for

coupons 4 and 5 thereby making them more distinct. Additionally, soot was more common

in the back row powder spreads due to higher turbulence in the argon cross-bed airflow.

These biases were confirmed separately by FDC and UMAP across all experiments. This

unfortunately makes most defect labeling inaccurate and spatially dependent.

We consider a few modifications for the future. Corner protrusion was a significant feature

and sometimes confused with spot material protrusion. The distinction relies on knowing
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the part geometry; but if images were cropped to exclude coupon borders before clustering,

the internal areas might cluster better. This could be the case in general if the window size

is reduced as there would be less textural overlap and anomalies within the part geometry

would have a larger footprint in the field of view. Mitigating the effect of lighting biasing

the texture distribution across the build plane is a high priority. We propose two techniques.

A preprocessing step such as localized histogram equalization or lighting calibration could

reduce global lighting gradients but may not be sufficient to remove local lighting artifacts.

Positioning light sources in a more uniform arrangement may provide more equal illumi-

nation across the build plane.

Among these experiments, we found clustering prioritized the roughness of the powder and

whether coupon corner protrusion was present. The TCNN experiments produced sparser

projections and more clusters that better separated samples by levels of soot and corner

protrusion. The WCNN experiments produced highly-connected projections and fewer

clusters with less textural homogeneity. Each experiment had pros and cons; however we

reserve the Kylberg experiments for further research as the Kylberg-TCNN had the most

separation while the Kylberg-WCNN isolated the severe defects cluster.

In summary, the recoat post-spread data was heavily biased and segmented by roughness

category and the presence of material protrusion. Our goal of isolating soot and severe

defects was barely achieved with the few clusters capturing these phenomenon exhibiting

many false positives. Since the recoat post-melt data is captured by the same sensor, we

suspect the lighting will have a similar influence.
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4.2.2 Post Melt

The recoat post-melt data consists of melted powder from each coupon on each layer. It

is known this modality can reveal characteristics of the melted material surface roughness.

Surfaces can appear as glossy, shiny, etched, grooved, coarse, bumpy, fine, and/or rough.

Spatter can land on the powder spread introducing sporadic bumps on the melted surface

making it rough. These bumps can show up as material protrusion in the proceeding pow-

der spread. When a melted surface is etched, it is revealing the laser scan lines that melted

it. Glossy surfaces can make the part shine but also experience texture washout where the

entire surface reflects too much light causing over-saturation. This leads to a trivial texture

where all the pixels are the max value, so we exclude these instances from our analysis.

In this section, we perform clustering to group similar melted surfaces. This clustering

would be beneficial if broad categories of surfaces can be isolated. We begin by assess-

ing how many clusters the post-melt feature space can break into while varying the noise

threshold of FDC. We display the number of clusters per threshold for each experiment in

Figure 4.37.

Figure 4.37: Plot of the average number of clusters the post-melt data breaks into at differ-
ent noise thresholds for each experiment. The range over 5 runs is indicated by a line on
each bar.

The number of clusters varies a lot depending on the experiment. In the post-spread
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recoat analysis, we found the Kylberg-TCNN representation produced the most clusters by

a large margin; however the opposite holds for this data demonstrating one experiment may

not be sufficient for clustering all datasets. Additionally, we cannot generally conclude a

single model nor dataset will produce a sparser feature space resulting in more clusters,

thereby re-emphasizing the need for multiple experiments to obtain a good clustering. We

note the ALOT-TCNN experiment produces the most clusters at a noise threshold of 0, but

it is also the most sensitive to the random seed indicating there is more fluidity among clus-

ters. At higher noise thresholds, the Kylberg-WCNN and ALOT-TCNN produce nearly the

same number of clusters implying their clusters may be similar. We dive into a clustering

for each experiment.

Kylberg-TCNN

Starting with Kylberg-TCNN, we cluster using a noise threshold of 0 which produces 17

clusters, the fewest out of all experiments. We relabel these clusters sorted by size and

report them in Figure 4.38.

Figure 4.38: Recoat post-melt cluster sizes of the Kylberg-TCNN feature space. Clustering
noise threshold is 0.

At first glance, most of the data is segmented into two general categories, which can
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be uninformative if clusters 16 and 17 are noisy or too broad; however we remark it is

unlikely coupon positioning is affecting this clustering as we would expect to see more

equally large clusters corresponding to each coupon. We look to smaller clusters 1 to 15

to provide us with more meaningful and cleaner separation. We inspect these clusters by

randomly sampling and labeling their images in Figure 4.39.
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(1) Glossy; few bright specks;
large bright corners/edges (2) Solid; few very dark spots

(3) Glossy etching; bright cor-
ners

(4) Coarse; uniformly bumpy (5) Shiny; large gradients
(6) Smooth etching; raised cor-
ners/edges

(7) Fine etching; specks
(8) Smooth etching; raised cor-
ners/edges

(9) Smooth and glossy; few
bright speck/corners/edges
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(10) Glossy; large bright cor-
ner/edges

(11) Smooth etching; bright
spots

(12) Glossy; bright specks/-
corners

(13) Smooth; several subtle
specks; bright edges (14) Coarse and wavy

(15) Smooth; rough specks;
bright edges

(16) Rough and coarse (17) Rough

Figure 4.39: Normalized images sampled from each cluster in the recoat post-melt Kylberg-
TCNN feature space.

In the larger clusters 16 and 17, we have an overlap of rougher surfaces making up the

majority of the post-melt data. Cluster 16 differs from cluster 17 in that samples are finer
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with smaller bumps and waves. Subcategories of these samples from these two clusters

have yet to be observed in other experiments. Unlike in the post-spread analysis, smaller

clusters do not segment from larger ones primarily by coupon corners but rather by the

surface roughness. As expected, the smaller clusters are texturally homogeneous. We

provide several examples of these. Clusters 2 and 5 contain shiny surfaces nearly washed

out from over-saturation. Clusters 1, 10, and 12 capture glossy surfaces varying in the size

of shiny corners and edges. Clusters 4 and 14 isolate coarse bumpy surfaces. Clusters 6 and

8 group smooth surfaces whose reflections indicate significantly raised edges. Clusters 11,

13, and 15 capture smooth surfaces varying in the size of shiny edges, corners, and severity

of specks. Cluster 7 alone captures fine surfaces. To understand how these clusters are

organized, we color a UMAP projection of this feature space by cluster number in Figure

4.40.
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Figure 4.40: UMAP visualization of the Recoat Post-Melt Kylberg-TCNN feature space.
Minimum distance of 0.00 and 50 neighbors were used.

From this projection, we observe the feature space forms a single cluster containing

nearly all the data. After running UMAP with fewer neighbors, we verify this is still the

case likely due to high overlap in the feature space. Looking at the arrangement of these

clusters, we find rough, coarse, and fine surfaces in clusters 17 and 16 towards the center.

The bottom end transitions into coarse bumpy surfaces in clusters 4 and 14. On the left

side of the rough surfaces region, we find several fine surfaces, but most of these grouped
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into clusters 17 followed by 16. Interestingly, cluster 7 unexpectedly does not appear on

the same side where the fine surfaces are located. Towards the upper end of the rough

region we find smoother surfaces within clusters 11, 13, and 15 which eventually transition

into glossy surfaces in clusters 9, 10, and 12. We observe clusters 6 and 8 contain shiny

and smooth surfaces with rough corners and edges curling up which places them alongside

the transition from rough to smooth surfaces. As clusters 2 and 5 are much different from

other samples in that most of the surface is over-saturated, it follows that their samples

are isolated far from others in the projection. Before moving onto the next experiments, we

take a moment to assess the influence of coupon positioning and sensor damage by coloring

the projection by coupon row, column, and index in Figure 4.41.
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(1) Coupon row (2) Coupon column

(3) Coupon index

Figure 4.41: UMAP visualization of the Recoat Post-Melt Kylberg-TCNN feature space
colored by coupon features. Minimum distance of 0.00 and 50 neighbors were used.

The influence of coupon column positioning appears negligible as coupons from each

column are uniformly distributed along the projection. This is not the case for the coupon

row as samples spatially cluster together in the projection with the same row index. This

is also illustrated by veins in the coupon index coloring. For instance, observe how back

row coupons 1, 2, and 3 run along the right side of the projection together. This happens
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similarly for the other coupons. The middle row coupon surfaces are influenced the most.

These coupons compose most of the fine region while avoiding the coarse region in the

projection. This impacts the clustering in that cluster 16 captures much fewer middle row

surfaces; however rough surfaces in cluster 17 remain unaffected. The bias could be related

to more light being concentrated over the middle row thereby casting minimal shadows and

producing a grainy image. The recoat post-spread analysis revealed a similar phenomenon

leading to this same reasoning.

Regarding dead pixel residue lines induced by prior sensor damage, they are barely visible

in the samples and show little to no influence on the clustering and projection. We conclude

the reason is related to the distribution of pixel values before normalization. Post-melt im-

agery typically has a wider range and higher standard deviation of pixel values that surpass

the deviation of dead pixel residue from the mean. This is prevents dead pixel residue

from being mapped to the darkest values during normalization thereby making them stand

out less and avoid being embedded as a significant feature in the textural representation.

This concludes our analysis of this baseline Kylberg-TCNN experiment. We continue by

pointing out similarities and differences in other experiments.

Kylberg-WCNN

Proceeding with the Kylberg-WCNN, We cluster the recoat post-melt feature space with a

noise threshold of 0 to produce 36 clusters, which is over twice that in the baseline Kylberg-

TCNN clustering. We relabel these clusters sorted by size and report them in Figure 4.42.
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Figure 4.42: Recoat post-melt cluster sizes of the Kylberg-WCNN feature space. Cluster-
ing noise threshold is 0.

This distribution is very different in comparison to the Kylberg-TCNN cluster size

distribution. It is more uniform in that the bigger clusters have split into several medium-

sized ones. We can expect more textural homogeneity from these and the smaller clusters.

We visually assess this intuition by inspecting randomly sampled images from each cluster

in Figure 4.43.
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(1) Grooved; Bright top edge (2) Shiny; large gradients (3) Shiny; large gradients

(4) Solid; few dark spots (5) Coarsely fine
(6) Glossy; bright corner-
s/edges

(7) Coarse and wavy
(8) Glossy etching; bright cor-
ners (9) Glossy etching; bright edges
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(10) Grooved and rough; dark
edges/spots; bright (11) Glossy, large shiny corners

(12) Smooth etching; raise cor-
ners/edges

(13) Glossy; large corner gradi-
ents

(14) Grooved and rough; dark
edges/spots; bright

(15) Smooth etching; bright
corners/edges

(16) Etched; small bright spot-
s/edges/corners

(17) Smooth; subtle spots;
bright corners

(18) Glossy; subtle spots; bright
corners/edges
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(19) Smooth; small specks;
bright corners/edges

(20) Smooth; rough spots;
small bright corners/edges (21) Coarse and wavy

(22) Coarse; large specks
(23) Fine etching; specks; mi-
nor edges (24) Coarse

(25) Fine etching; rough specks
(26) Smooth etching; rough
specks (27) Coarse
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(28) Semi-rough; specks (29) Finely coarse; specks (30) Rough; large specks

(31) Rough, semi-coarse
(32) Smooth and fine; subtle
specks; bright edges/corners

(33) Smooth; rough specks;
bright edges

(34) Coarse, semi-rough
(35) Semi-rough; grooves and
spots (36) Semi-rough; bright specks

Figure 4.43: Normalized images sampled from each cluster in the recoat post-melt Kylberg-
WCNN feature space.

From these cluster images, we observe a higher textural homogeneity not only for

smaller clusters but for many larger ones too. Among the new additions of clusters, we ob-
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tain more subcategories of surfaces. We give two examples. Clusters 1, 10, and 14 isolate

bright rough surfaces that reveal grooves. Clusters 28 to 31 and 34 to 36 split rougher sur-

faces varying on levels of coarseness and surface features. We point out a couple instances

of this clustering that are too specific. Cluster 1 captures near-identical grooved surfaces

with a bright top edge when they could easily fit into cluster 14. Clusters 2 and 3 could be

grouped as they capture the same shiny surfaces. Some clusters are capture near-identical

groups but differ in a small feature. Cluster 6, 8, and 9 contain glossy samples, but vary in

the severity of etching. Cluster 6 has none, while the etching in cluster 8 is sharper than in

cluster 9.

In general, this finer clustering is superior to the one we saw in the Kylberg-TCNN experi-

ment. We find it possible to provide a reasonably accurate labeling of clusters correspond-

ing to general surface categories in Table 4.3. Note some clusters must be represented in

multiple surface categories because clusters are not truly homogeneous.

Surface Category Clusters
Glossy 6, 8, 9, 11, 13, 18
Smooth 12, 15, 17, 18, 19, 20, 26, 32

Fine 5, 16, 23, 25
Rough 28, 30, 34, 35, 36
Coarse 5, 7, 21, 22, 24, 27, 29, 31, 34
Etching 8, 9, 12, 15, 16, 23, 25, 26
Grooves 1, 10, 14
Saturated 2, 3, 4, 10, 14

Table 4.3: Table of surface categories seen in Kylberg-WCNN recoat post-melt clusters.

We compare projections next. We color the UMAP projection of this feature space by

cluster in Figure 4.44.
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Figure 4.44: UMAP visualization of the Recoat Post-Melt Kylberg-WCNN feature space.
Minimum distance of 0.00 and 50 neighbors were used.

We observe a sparser projection with similar topology in that the same global transi-

tion from coarse to glossy surfaces is preserved. Unlike in the Kylberg-TCNN experiment,

bulky regions break into more equally-sized clusters that isolate transitions and subcate-

gories with a higher textural homogeneity. For example, cluster 36 contains rough surfaces,

but these become more uniformly coarse when transitioning through clusters 31, 34, and

22. We see a similar behavior for smooth to glossy surfaces through clusters 33, 20, 32,
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and 8. Notice that cluster 32 is not contiguous in the projection and is split among smooth

and fine surfaces. We suspect the smooth and fine categories may be closer neighbors in

feature space than the projection is conveying.

For consistency, we also look at the effect of coupon positioning on melted surfaces by

coloring the projection by coupon row, column, and index in Figure 4.45.

(1) Coupon row (2) Coupon column

(3) Coupon index

Figure 4.45: UMAP visualization of the Recoat Post-Melt Kylberg-WCNN feature space
colored by coupon features. Minimum distance of 0.00 and 50 neighbors were used.
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Coupon row separation is clearer in this projection while coupon column remains

non-influential. The majority of the separation does not separate coupons between surface

categories but among surface categories with the exception of finer surfaces primarily be-

longing to middle row coupons 4, 5, and 6. As we transition to the ALOT experiments, we

evaluate whether the homogeneity and utility of their clusters match these.

ALOT-TCNN

Proceeding with the ALOT-TCNN, we cluster the recoat post-melt feature space with a

noise threshold of 0 yielding 44 clusters, the most out of all experiments. We relabel these

clusters sorted by size and report them in Figure 4.46.

Figure 4.46: Recoat post-melt cluster sizes of the ALOT-TCNN feature space. Clustering
noise threshold is 0.

This distribution is similar to the one in the Kylberg-WCNN experiment in that there

are many large similar-sized clusters; however we do have 3 significantly larger clusters

with less textural homogeneity. Most clusters 1 to 34 are small with some likely being

too specific. We inspect randomly sampled images from each cluster in Figure 4.47 to

understand why the distribution is different.
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(1) Glossy etching; shiny top
edge (2) Coarse; mostly bright (3) Coarse and wavy

(4) Glossy; raised corner-
s/edges; specks

(5) Smooth etching; bright cor-
ners/edges; specks (6) Glossy etching; bright edges

(7) Rough; overall bright; dark
edges (8) Fine bumpy

(9) Smooth; bright spot-
s/edges/corners

121



(10) Coarsely rough; bright
spots

(11) Glossy etched; raised cor-
ners/edges

(12) Glossy etched; raised cor-
ners

(13) Solid; dark spots
(14) Flat etching; small bright
corners/edges

(15) Glossy; raised corner-
s/edges

(16) Shiny; large gradients
(17) Coarse; dark reliefs;
specks

(18) Glossy; shiny corner gradi-
ents
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(19) Grooved; bright corner-
s/edges (20) Semi-rough; specks

(21) Glossy; raise corner-
s/edges

(22) Uniformly coarse (23) Grooved rough; dark edges
(24) Coarse and wavy; mostly
bright

(25) Fine; rough specks (26) Smooth; rough specks (27) Fine etching; light specks
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(28) Flat; rough specks (29) Grooved rough
(30) Glossy; bright edges/-
corners; specks

(31) Coarse; mostly bright (32) Flat; rough specks (33) Fine etching; bright spots

(34) Semi-rough
(35) Grooved and etched; bright
rough spots

(36) Glossy and semi-rough;
specks
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(37) Semi-rough; specks (38) Smoothly rough
(39) Coarse and wavy; mostly
bright

(40) Glossy; bright edges/-
corners/specks (41) Glossy and rough (42) Rough; large specks

(43) Rough; large specks (44) Rough and coarse

Figure 4.47: Normalized images sampled from each cluster in the recoat post-melt ALOT-
TCNN feature space.

We see many similar clusters from to the Kylberg-WCNN experiment, with a few

unique additions. Cluster 1 has a mere 20 samples that are nearly identical. This cluster is
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distinct, but would be better grouped with cluster 6 since samples from both clusters capture

etched glossy surfaces. Cluster 17 introduces a new useful subcategory of coarse surfaces

with dark reliefs. Unlike in the Kylberg-WCNN experiment, cluster 16 containing shiny

surfaces no longer splits unnecessarily. The largest clusters 42 to 44 appear reasonably ho-

mogeneous in the rough category, but clusters 35, 36, and 41 are questionably intermingling

smoother and rougher surfaces. We see clearer separation for fine surfaces among clusters

27, 28, 32, and 33. This clustering competes with that in the Kylberg-WCNN experiment

as it segments finer surfaces cleaner but introduces more textural confusion among smooth

and rough surfaces. We look to the UMAP projection in Figure 4.48 colored by cluster to

see how these observations are reflected spatially.
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Figure 4.48: UMAP visualization of the Recoat Post-Melt ALOT-TCNN feature space.
Minimum distance of 0.00 and 50 neighbors were used.

We observe a significantly different shape compared to the Kylberg experiments; how-

ever the topology appears to be consistent as it probably is data-driven and varies primarily

at a local level depending on the textural representation. We confirm a few initial obser-

vations. Clusters 35, 36, and 41 are not contiguous and spread across the smooth, rough,

and coarse regions in the projection, which we saw was reflected in the clustering. The

fine surface region pulls away from the rest of the projection and segments cleaner over the

127



composition of clusters 25, 27, 28, 32, and 33.

The projection is overall sparser. We can see some spatial separation between the major

surface categories such as coarse from rough. Many clusters are isolated away from the

main group with the glossy surfaces being clusters 13, 16, and 18, and the coarse surfaces

being clusters 2, 7, and 24. Note that 7 is not as similar to cluster 2 and 24 for being coarse

than it is for being overall bright. Part of the transition through the coarse region leads

to this over-saturated coarse surface subcategory. We finish our discussion for this experi-

ment by examining the effect of coupon positioning by coloring this projection by coupon

number in Figure 4.49.
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(1) Coupon row (2) Coupon column

(3) Coupon index

Figure 4.49: UMAP visualization of the Recoat Post-Melt ALOT-TCNN feature space
colored by coupon features. Minimum distance of 0.00 and 50 neighbors were used.

This coloring, like the previous ones from the Kylberg experiments, reveals the in-

fluence of build plane row positioning. In the Kylberg projections, the coarse region tail

was two-sided with one side containing saturated textures, but in this projection the non-

saturated samples do not extend alongside the brighter half. The saturated samples belong

to the front row coupons, while the dimmer samples belong to the back row coupons. This
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is why coupons 1, 2, and 3 do not extend far into the fine or coarse surface regions in this

projection. It is suspected the back row coupons 1, 2, and 3 had insufficient lighting re-

flections to produce this behavior within that region of the build plane. Lastly, we cross

validate from the Kylberg experiments that middle-row coupons 4, 5, and 6 primarily make

up the fine surface region. This concludes our analysis for this experiment directing our

attention to the ALOT-WCNN texture representation.

ALOT-WCNN

Finishing with ALOT-WCNN, we cluster the recoat post-melt feature space using a noise

threshold of 0 yielding 25 clusters. We relabel these clusters sorted by size and report them

in Figure 4.50.

Figure 4.50: Recoat post-melt cluster sizes of the ALOT-WCNN feature space. Clustering
noise threshold is 0.

This distribution has a nearly identical shape to the Kylberg-WCNN, but the clusters

are larger in general. We expect the quality of this clustering to be somewhere between

the Kylberg-TCNN and Kylberg-WCNN. In Figure 4.51, we randomly sample and label

images from each cluster.

130



(1) Glossy etching; raise cor-
ners

(2) Glossy etching; raised cor-
ners (3) Solid; dark spots

(4) Grooved; dark edges (5) Shiny; large gradients (6) Wavy; mostly bright

(7) Coarse; mostly bright (8) Fine etching; specks (9) Semi-rough
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(10) Rough; specks (11) Coarse and wavy (12) Smooth; rough specks

(13) Fine; rough specks
(14) Glossy; bright corner-
s/edges (15) Coarse; rough specks

(16) Glossy; raise corner-
s/edges

(17) Coarse and wavy; mostly
bright (18) Fine; bumpy
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(19) Roughly coarse (20) Semi-coarse
(21) Smooth; bright corner-
s/edges/specks

(22) Rough (23) Coarsely rough (24) Semi-rough

(25) Smooth, semi-rough

Figure 4.51: Normalized images sampled from each cluster in the recoat post-melt ALOT-
WCNN feature space.

We observe many similarities to previous experiments. In the ALOT-TCNN cluster-

ing, smooth and rough classes were being mixed together in many clusters. A less severe

case occurs in the largest cluster 25 whose samples are a mix between those in clusters
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12 and 24. In the Kylberg-WCNN clustering, coarse and rough subcategories were es-

tablished, and those persist among clusters 7, 10, 11, 15, 17, 19, 20, 22, and 23. Across

all experiments, glossy and shiny surfaces isolate well, especially those in clusters 1, 2,

3, 5, 14, and 16. This is also the case for fine surfaces in clusters 8, 13, and 18. These

clusters demonstrate sufficient segmentation of surface categories. We verify the spatial

relationships of these clusters are still similar to those in previous experiments by coloring

a UMAP projection of this feature space by cluster in Figure 4.52.

Figure 4.52: UMAP visualization of the Recoat Post-Melt ALOT-WCNN feature space.
Minimum distance of 0.00 and 50 neighbors were used.
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Once again, the topology is similar in that there is a global transition from coarse to

glossy surfaces. The overall shape is quite different simply due to stretching and warping.

This elbow shape is realized by the close neighboring of the fine and smooth surface regions

causing the entire projection to bend.

We observe a few transitions. The transition within the rough region from coarse to smooth

is realized by the chain of clusters 23, 22, and 24. Cluster 25 shortcuts this transition with

less textural homogeneity. Smooth surfaces transition into glossy surfaces from clusters

12 and 21 to 14 and 16 with the special varieties in clusters 2, 3, and 5. Fine surfaces

transition into coarse surfaces from clusters 8 and 20 to 15, 18, and 17. This concludes our

analysis of these clusters. For completeness, we show the projection colored by coupon in

Figure 4.53. We observe coupon positioning has a similar influence as mentioned from the

ALOT-TCNN experiment.
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(1) Coupon row (2) Coupon column

(3) Coupon index

Figure 4.53: UMAP visualization of the Recoat Post-Melt ALOT-WCNN feature space
colored by coupon features. Minimum distance of 0.00 and 50 neighbors were used.

Summary

In the recoat post-melt data, we effectively clustered broad categories of surfaces ranging

from glossy, smooth, fine, rough, and coarse. Among these, we saw additional separation

at transition areas within the projections and subcategories exposing over-saturation, etch-

136



ing, and grooves. Visualizing the spatial relationships of clusters obtained by FDC using

UMAP projection verified both algorithms agreed on the neighboring of surface categories.

Coupon positioning had less influence on the recoat post-melt feature space structure com-

pared to the recoat post-spread feature space. We observed coupon images grouped together

row-wise but not individually. Fortunately, this grouping was primarily within surface cat-

egories. If the group was across surface categories, the position on the build plane would

be the leading factor for clustering surfaces which would nullify any attempt of identifying

the true physical surface roughness of the melted material using the same machine setup.

There was one exception in the clustering. The finer surfaces category was primarily com-

posed of middle row coupons likely due to lighting and camera focus.

From these results, we recommend similar future modifications as mentioned in the recoat

post-spread analysis. Lighting still influenced the ability to accurately isolate surfaces, but

dead pixel residue from sensor damage was negligible, thus not a priority. We experienced

a new obstacle, namely over-saturation, which led to surfaces with neighboring each other

in projections because they shared over-saturation features despite some of their other dis-

similar surface features. Lowering the light level may resolve this issue.

Among these experiments, smaller clusters containing more specific instances of surface

categories were nearly identical. Larger clusters primarily contained rougher surfaces

which were best split by the Kylberg-WCNN texture representation. Although the ALOT-

TCNN produced the most clusters and isolated a unique subcategory of coarse surfaces,

there was some confusion between smooth and rough surfaces within larger clusters. The

distribution of raised points and bright specks on smooth surfaces contributed to this as-

sociation with rough surfaces. We established the Kylberg-TCNN clustering as a baseline

and reserve the Kylberg-WCNN clustering for further research.

In summary, the recoat post-melt data was cleaner and easier to achieve our goal of isolat-

ing general categories of melted surfaces. The following modalities do not use the same

sensor nor operate in the same optical spectrum; therefore we do not expect lighting to
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influence their clusterings. In the next section we analyze the thermal tomography data.
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4.2.3 Thermal Tomography

The thermal tomography data consists of thermograms from each coupon on each layer.

These thermograms are known to reveal spatter, cold spots, and roughness in the energy

emissions. Spatter are hot ejected particles of powder that release a lot of energy. They are

manifested as bright blobs in thermal imagery. Cold spots are low-energy density areas.

They may imply there is a lack of fusion in the powder. Some instances are induced by se-

vere spatter on previous layers. They appear as dark reliefs in thermograms. This modality

can experience texture washout when the entire region of interest emits too much energy

causing over-saturation. This typically happens when the energy density of the processing

parameters is too high. A similar scenario occurs when the energy density is too low. In

both cases, they yield no texture as all the pixels are the same value. We exclude these

instances from our analysis.

In this section, we perform clustering to group similar thermograms. This clustering would

be beneficial if thermograms segment by spatter, cold spots, and levels of roughness. We

begin by assessing how many clusters the thermal tomography feature space can break into

while varying the noise threshold of FDC. We display the number of clusters per threshold

for each experiment in Figure 4.54.
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Figure 4.54: Plot of the average number of clusters the thermal tomography data breaks
into at different noise thresholds for each experiment. The range over 5 runs is indicated
by a line on each bar.

At most noise thresholds, the Kylberg experiments consistently produce more clusters

than the ALOT experiments. We hypothesize the Kylberg clusterings will be finer with

a higher textural homogeneity in general. In following experiment sections, we evaluate

whether this is the case and whether any of the ALOT experiments have an advantage

despite producing fewer clusters.

Kylberg-TCNN

Starting with Kylberg-TCNN, we cluster the thermal tomography feature space using a

noise threshold of 0 which yields 40 clusters, the most out of all experiments. We relabel

these clusters sorted by size and report them in Figure 4.55.
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Figure 4.55: Thermal tomography cluster sizes of the Kylberg-TCNN feature space. Clus-
tering noise threshold is 0.

This distribution reveals several clusters 1 to 19, 20 to 30, and 31 to 36 are relatively

uniform in size to each other. We expect the smaller of these clusters to capture less com-

mon phenomena with higher textural homogeneity. Clusters 37 to 40 are noticeably larger

than other clusters. We expect them to contain more common and broader categories. We

inspect these clusters by randomly sampling and labeling their images in Figure 4.56.
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(1) Coarse (2) Semi-rough, edge gradients
(3) Solid bright border; large
dark region

(4) Solid bright border; streaked
dark region (5) Solid border; dark regions

(6) Smooth grains; bright cor-
ners; dark edge

(7) Fine; subtle gradient
(8) Smooth; grains; bright cor-
ners; gradients (9) Solid; small dark regions
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(10) Solid; small dark regions
(11) Smooth; dark grains;
bright spots/corners

(12) Fine, semi-coarse; edge
gradients

(13) Smooth; large dark edge/-
corner

(14) Smooth grains; bright cor-
ners

(15) Smooth; grains; gradients;
bright corner

(16) Smooth; large gradients;
bright corner (17) Solid; dark specks

(18) Smooth; large gradients;
bright corner
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(19) Finer coarse; dark reliefs
(20) Smooth; subtle grains;
bright spots

(21) Smooth; rough grains;
bright corners

(22) Solid corners; dark grained
relief (23) Coarse; bright/dark spots

(24) Smoother semi-rough;
edge gradients

(25) Semi-rough; edge gradi-
ents

(26) Semi-rough; edge gradi-
ents

(27) Smooth; subtle grains;
bright corners
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(28) Smooth grains; bright spot-
s/corners (29) Semi-rough; grains; spots (30) Fine, semi-coarse

(31) Fine; reliefs
(32) Smooth grains; bright
spot/corner (33) Finer coarse

(34) Smooth; edge gradients
(35) Fine; gradient reliefs; dark
edge (36) Rough; bright/dark spots
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(37) Semi-rough (38) Fine
(39) Semi-rough; edge gradi-
ents

(40) Coarse

Figure 4.56: Normalized images sampled from each cluster in the thermal tomography
Kylberg-TCNN feature space.

By inspection, most clusters are texturally homogeneous regardless of size. They pri-

marily isolate textures by levels of roughness. We name many clusters corresponding to

these general texture groups. Finer samples are observed in clusters 7, 12, 19, 30, 31,

35, and 38. Coarser samples are distributed among clusters 1, 12, 19, 23, 30, 33, and 40.

Rougher samples are grouped into clusters 24, 25, 26, 29, 36, 37, and 39. Smoother sam-

ples span clusters 6, 8, 11, 13, 14, 15, 16, 18, 20, 21, 27, 32, and 34. Finally, low frequency

textures with solid regions are spread across clusters 3, 4, 5, 9, 10, 17, and 22. In Table 4.4,

we summarize which clusters capture different roughness levels and process phenomena.

From this table, we note there exists a lot of textural overlap such that many clusters could

be merged. This hard labeling is not very accurate, but a fuzzy labeling could be.
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Texture Clusters
Fine 7, 12, 19, 30, 31, 35, 38

Coarse 1, 12, 19, 23, 30, 33, 40
Rough 36

Semi-rough 2, 24, 25, 26, 29, 37, 39
Smooth 6, 8, 11, 14, 16, 18, 20, 21, 22, 24, 27, 28, 32, 34

Saturated 3, 4, 5, 9, 10, 17, 22, 27
Grains 4, 6, 8, 11, 14, 15, 21, 22, 27, 28, 29, 32

Gradients 2, 6, 8, 12, 13, 15, 16, 18, 19, 24, 34, 35, 39
Center-relief 3, 4, 5, 9, 10, 22, 27

Spatter 2, 8, 11, 20, 28, 29, 32, 36, 37, 40

Table 4.4: Table of process phenomenon seen in Kylberg-TCNN thermal tomography clus-
ters.

Regarding process phenomena, we acknowledge spatter is not isolating well. In many

clusters where some spatter is present, we suspect the background pixels are the driving

force for segmentation. For example, compare the smooth cluster 20 and the rough cluster

36. While both clusters contain some samples capturing spatter, the overall roughness

of those samples matches the roughness category of the other samples in their respective

cluster. Cold spots were lacking in this dataset, but the clustering can segment samples by

the depth of reliefs. We observe this when comparing cluster 19 and cluster 38. To avoid

confusion, we clarify samples with a large central dark region such as those in clusters 3

and 4 are not considered cold spots. This is a separate phenomenon created by powder

being bulldozed by the laser to the extent that its height obstructs the camera’s view of the

weld emissions.

In general, this clustering adequately distinguished thermograms by levels of roughness

as well as other features such as gradients and bright/dark corners/edges, but it could be

better in two ways. Several near-identical clusters should be grouped together such as

clusters 5, 9, 10, and 17. Spatter should segment into its own cluster. We proceed analysis

by visualizing the spatial relationships between clusters and categories of thermograms

depicted from a UMAP projection of this feature space colored by cluster in Figure 4.57.
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Figure 4.57: UMAP visualization of the Thermal Tomography Kylberg-TCNN feature
space colored by cluster. Minimum distance of 0.00 and 50 neighbors were used.

From previous sensor modalities, we have observed UMAP projects most of the data

into a single contiguous cluster. Thermal tomography is no exception, but the appearance

of two major clusters bridged by cluster 39 is visible. From the recoat post-melt data, we

saw general categories of surfaces grouping together. In this projection, we observe a sim-

ilar relationship. Fine thermograms transition to coarse ones through clusters 35, 31, 7, 38,

30, 33, 23, and 40. Similarly, samples get rougher and smooth out when passing through
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clusters 36, 25, 37, 26, 29, and 21. Most clusters near the bottom region in the projection

are smoother with bright or dark corners and edges. Some of these samples feature subtle

or deep grains. Others feature gradients and a large central dark relief. Most spatter falls

to the bottom of the projection along with smooth samples. This entanglement is observed

when looking at the samples from clusters 20 and 32. Over-saturation is more common in

this dataset, so we see a larger strand of it in the projection composed of clusters 5, 9, 10,

and 17. These clusters vary in the amount of pixels having the same value.

This projection reveals an intuitive topology describing the arrangement of general cate-

gories of thermograms. We observe a lot of textural overlap and transitions between cate-

gories. This appears to be the case for most datasets. For consistency, we evaluate whether

coupon positioning on the build plane influences the clustering by coloring the projection

by coupon row, column, and index in Figure 4.58.
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(1) Coupon row (2) Coupon column

(3) Coupon index

Figure 4.58: UMAP visualization of the Thermal Tomography Kylberg-TCNN feature
space colored by coupon features. Minimum distance of 0.00 and 50 neighbors were used.

This visualization reveals coupon positioning may have a influence in the top cluster,

but otherwise coupon samples are equally distributed. The primarily observation is coarse

samples from coupon 4, 5, and 6 in the middle row are less common. This concludes our

analysis for the Kylberg-TCNN experiment. Overall the results were quite pleasing. In

the following experiments, we talk about consistencies and differences. We anticipate the
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segmentation of spatter in the one of the following experiments may be better.

Kylberg-WCNN

We cluster the Kylberg-WCNN feature space with a noise threshold of 0 which produces

33 clusters. We relabel these clusters sorted by size and report them in Figure 4.59.

Figure 4.59: Thermal tomography cluster sizes of the Kylberg-WCNN feature space. Clus-
tering noise threshold is 0.

This distribution is similar to the Kylberg-TCNN but differs in that instead of 4 notice-

ably larger clusters, there is only one cluster 33. We suspect some samples from the larger

clusters have spread across the smaller clusters. This clustering will likely be similar. We

randomly sample images from each cluster and show them in Figure 4.60.
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(1) Smooth; gradients; subtle
grains; bright corners

(2) Smooth; gradients; subtle
grains; bright corners

(3) Smooth; gradients; subtle
grains; bright corners

(4) Smooth; gradients; subtle
grains; bright corners

(5) Smooth; gradients; dark cor-
ner (6) Fine; edge gradient

(7) Solid; dark specks
(8) Smooth bright border; gra-
dients; large dark region

(9) Smooth bright border; large
dark region
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(10) Solid; dark spots (11) Solid; dark spots (12) Fine; reliefs

(13) Fine; bright corners; re-
liefs; gradients

(14) Semi-rough; edge gradi-
ents

(15) Smooth; subtle grains;
bright corners/spots

(16) Fine; edge reliefs
(17) Smooth; subtle grains;
bright corners (18) Fine; reliefs
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(19) Solid bright border;
streaked dark region (20) Rough, semi-rough (21) Smooth; edge gradients

(22) Semi-rough; gradients
(23) Smooth; bright corners;
subtle grains (24) Coarse, rough

(25) Smooth; grains; rough re-
liefs; bright spots (26) Smooth; edge gradients (27) Fine, semi-coarse
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(28) Coarse
(29) Fine; reliefs; dark edge/-
corner (30) Fine

(31) Fine, semi-rough; reliefs
(32) Smooth; rough reliefs;
grains; bright spots/corners (33) Semi-rough

Figure 4.60: Normalized images sampled from each cluster in the thermal tomography
Kylberg-WCNN feature space.

We observe similar clusters and categories. For example, cluster 27 is an interpolation

between coarse and fine clusters 28 and 30. This scenario is reflected respectively in the

Kylberg-TCNN experiment for cluster 23 interpolating between clusters 40 and 38. The

presence of gradients and bright or dark corners and edges continues to be a splitting fea-

ture. This is observed across fine clusters 29 and 30 and smooth clusters 26 and 32. Solid

region clusters 7, 10, and 11 continue to isolate well. In comparison to cluster 13 from the

Kylberg-TCNN experiment, cluster 5 isolates similar smooth dark corners and gradients.

The textural homogeneity of this clustering is no better than the Kylberg-TCNN experi-

ment. Some clusters could be merged together. An obvious example would be the smallest

clusters 1 to 4 as their textural representation is nearly identical. Solid region clusters 7,
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10, and 11 could be combined, likewise for fine clusters 16 and 18. Some clusters could

be better segmented. Clusters 9 and 23 are primarily smooth but contain over-saturated

samples that fit better in cluster 10. For clusters capturing spatter, none purely isolate these

anomalies. To see how these clusters are arranged, we color a UMAP projection of this

feature space by cluster in Figure 4.61.

Figure 4.61: UMAP visualization of the Thermal Tomography Kylberg-WCNN feature
space colored by cluster. Minimum distance of 0.00 and 50 neighbors were used.

From this projection, the shape is different with less emphasis on the separation of
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two major clusters, but the arrangement of categories is nearly the same. There is a similar

transition across the projection from fine to coarse to rough to semi-rough to smooth and

finally to over-saturation. There are some differences. The fine region is not contiguous

as clusters 29 and 31 stretch above the rough region. This disconnected region primarily

captures fine samples with bright/dark corners/edges which explains why it is close to the

upper half of the projection that captures larger sized features such as gradients, center

relief, and spatter. Most spatter is grouped homogeneously into two regions within this

projection. The upper cluster that breaks away primarily captures spatter on a smooth

background while the other cluster captures spatter on a rougher background with reliefs.

We show samples from these spatter regions in Figure 4.62. Unfortunately, both of these

regions are grouped into a larger cluster 32 spanning smooth thermograms with grains;

therefore, neither Kylberg experiment purely isolates spatter.

(1) Upper cluster; smooth background (2) Lower cluster; rougher background

Figure 4.62: Normalized images sampled from the spatter regions in the thermal tomogra-
phy Kylberg-WCNN feature space UMAP projection.

In the Kylberg-TCNN experiment, we saw some influence of coupon positioning, but

to verify that is still the case, we color the projection by coupon row, column, and index in

Figure 4.63.
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(1) Coupon row (2) Coupon column

(3) Coupon index

Figure 4.63: UMAP visualization of the Thermal Tomography Kylberg-WCNN feature
space colored by coupon features. Minimum distance of 0.00 and 50 neighbors were used.

It appears coupon segmentation is emphasized more in the lower region of this pro-

jection. The coarse region is primarily composed of back row coupons 1, 2, and 3. We saw

this in the Kylberg-TCNN projection too. The fine region near the bottom of the projec-

tion partially splits front row coupons 7, 8, and 9. Inspecting clusters 30 and 29 lead us to

suspect gradients might be the differentiating feature. We require more results from other
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experiments before our final evaluation on the influence of coupon positioning.

Overall, both Kylberg experiments produced similar clusters and projections that isolated

general categories of textures along with other anomalous features such as bright/dark

edges/corners/spots, gradients, and grains. Spatter is still a challenge to segment out via

unsupervised clustering. Part of the issue could be tied back to bright corners resembling

spatter in a spatially invariant textural representation. Another factor could be that the av-

erage activation of texture features washes out anomalies with a small footprint. This could

be the case because while bright corners are small, they have a large impact on normal-

ization to squash down other pixel values hence making the texture overall smoother. This

explains why smoother samples are within the bright corners region. With these concluding

statements, we proceed onto the ALOT experiments in the next sections.

ALOT-TCNN

We cluster the ALOT-TCNN thermal tomography feature space using a noise threshold of

0 yielding 22 clusters. We relabel these clusters sorted by size and plot their sizes in Figure

4.64

Figure 4.64: Thermal tomography cluster sizes of the ALOT-TCNN feature space. Clus-
tering noise threshold is 0.
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This distribution follows an exponential curve. Most clusters are small with a few

larger ones, namely clusters 15 to 22. Many subcategories have likely be grouped into

larger clusters. We suspect clusters 20 to 22 will have less textural homogeneity because

of their size. In Figure 4.65 we randomly sample and label images from each cluster to get

a visual assessment.
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(1) Solid; dark region (2) Fine; reliefs; bright corner (3) Smooth; bright spots

(4) Smooth; large dark relief (5) Smooth; large gradients
(6) Smooth bright border; dark
relief

(7) Smooth, coarse; bright spots
(8) Smooth; grains; bright cor-
ners (9) Fine

161



(10) Fine; reliefs; bright cor-
ner/edge (11) Semi-rough; bright corners (12) Fine; dark reliefs

(13) Solid; dark regions (14) Fine (15) Fine; reliefs

(16) Smooth; grains; spots;
bright corners (17) Fine; reliefs (18) Smooth, semi-rough
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(19) Smooth; subtle grains;
bright corner (20) Smooth; semi-rough (21) Fine, semi-coarse

(22) Coarse, semi-rough

Figure 4.65: Normalized images sampled from each cluster in the thermal tomography
ALOT-TCNN feature space.

These clusters capture previous categories; however, there are some differences. We

obtain two new small clusters 3 and 7 purely capturing spatter. They overlap differing in

the overall roughness. Cluster 7 captures more coarse samples. While these two clusters

do not cover all instances of spatter, we can accurately isolate some of it. The cluster con-

taining large dark corners is missing. We saw it as cluster 13 from the Kylberg-TCNN and

cluster 5 from the Kylberg-WCNN experiments. The solid category only splits into two

clusters, namely cluster 1 for larger dark spots and cluster 13 for smaller dark spots.

We assess the textural homogeneity of larger clusters. Clusters 18 and 20 capture a mix of

smooth and semi-rough samples. This confusion was also observed in the ALOT-TCNN

experiment on the recoat post-melt feature space. Cluster 21 acts almost as transition clus-
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ter isolating coarser fine samples. Cluster 22 captures coarser and rougher samples. The

transition among these categories is no longer distinct in the clustering. We proceed to

visualizing the spatial relationship among clusters in the UMAP projection of this feature

space colored by cluster in Figure 4.66.

Figure 4.66: UMAP visualization of the Thermal Tomography ALOT-TCNN feature space
colored by cluster. Minimum distance of 0.00 and 50 neighbors were used.

Like in the Kylberg experiments, we confirm the arrangement of texture categories

persists. The fine region wraps around to both the coarse and semi-rough regions. Smooth
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regions differ in spatter, gradients, grains, and center reliefs, but all instances have a bright

corner or spot. Over-saturation continues to break away. In the recoat post-melt projec-

tions, the arrangement of texture categories tended to be consistent across experiments. We

expect this to hold for the remaining sensor modalities including this one too.

We discuss clusters next. The spatter region barely breaks off from cluster 18 and 19 con-

taining smooth grained samples with bright corners. It is composed of clusters 3 and 7 as

expected by the image sampling, but clusters 18 and 20 are present too. This is because

their spatter samples are overall rougher. At the break away port of the spatter cluster, there

are samples from clusters 18 and 19 capturing spatter and large dark reliefs. Looking at

the larger clusters 21 and 22, they span a wide area of the projection. Cluster 21 resides

at the border between fine and coarse. It stretches up towards clusters 2 and 10 where fine

samples begin capturing larger features such as bright/dark corners/edges and gradients.

Cluster 22 spans most of the coarse and rough regions stretching partially into the semi-

rough region primarily dominated by cluster 20 which also extends into the rough region.

The transition between coarse and rough categories has been lost in terms of being its own

cluster. This is also the case between fine and coarse as well as rough and semi-rough.

A few clusters are not contiguous in the projection. We observe this behavior for clusters

5, 6, 10, and 20. Cluster 5 splits darker more gradual gradients on the left and lighter

sharper gradients on the right. The reason the right cluster breaks away from the projection

is because its samples do not feature bright corners. Cluster 6 splits barely as samples vary

slightly in the presence of grains, but the distance between its clusters is likely a meaning-

less artifact from UMAP using local distances. Cluster 10 splits finer samples with reliefs

and bright corners near cluster 2 and rougher fine samples with grain-like reliefs and bright

edges near cluster 5. Some of cluster 10 appears to be taking samples away from cluster

5. Cluster 20 splits because some spatter samples have the same overall roughness as its

average sample.

Overall, this clustering does not deviate far from the those in Kylberg experiments. With

165



less clusters, transitions between roughness categories were not distinguished as their own

clusters. The distinction between some smooth clusters were lost. The redeeming factor of

this experiment is the isolation of spatter within clusters 3 and 7. While not all the spatter

was isolated by FDC in feature space, one could label spatter in the projection for better

results. This could be done in the Kylberg experiments too. We wrap up by evaluating the

effect of coupon positioning for this experiment by coloring the projection by coupon row,

column, and index in Figure 4.67.
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(1) Coupon row (2) Coupon column

(3) Coupon index

Figure 4.67: UMAP visualization of the Thermal Tomography ALOT-TCNN feature space
colored by coupon features. Minimum distance of 0.00 and 50 neighbors were used.

Similar to the Kylberg-WCNN experiment, the back row coupons 1, 2, and 3 tend to

compose coarser regions in the projection with middle row coupons 4, 5, and 6 residing

more in the fine region. In addition, coupons are well distributed in the smooth region. It

is possible coupon-positioning is an influential factor we need to address in the analysis of

thermal tomography. We use our final experiment to confirm some of these observations in
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the next section.

ALOT-WCNN

Finishing with ALOT-WCNN, we cluster the thermal tomography feature space using a

noise threshold of 0 which produces 15 clusters, the fewest out of all experiments. We

relabel these clusters sorted by size in Figure 4.68.

Figure 4.68: Thermal tomography cluster sizes of the ALOT-WCNN feature space. Clus-
tering noise threshold is 0.

This distribution is not very uniform. Most of the data is grouped into clusters 13, 14,

and 15. We expect these clusters to have a low textural homogeneity as their sizes imply

they must capture multiple texture categories and/or transitions between them. We expect

clusters 3 to 12 will be useful for isolating categories that are not too specific nor too broad.

In Figure 4.69, we randomly sample and label images from each cluster.
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(1) Solid; dark specks (2) Solid; dark spots
(3) Smooth; edge/corner gradi-
ents

(4) Fine; gradients (5) Solid; dark spots
(6) Solid bright border; dark re-
lief

(7) Fine (8) Fine; edge reliefs
(9) Smooth; bright border;
grains
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(10) Semi-rough (11) Fine, semi-coarse
(12) Smooth; rough grain-
s/spots

(13) Smooth; gradients; grains;
bright corners

(14) Rough, semi-rough,
smooth (15) Coarse, semi-rough

Figure 4.69: Normalized images sampled from each cluster in the thermal tomography
ALOT-WCNN feature space.

This clustering still segments major groups, but there is more confusion. The dis-

tinction between coarse, semi-rough, and rough is not as clear regarding clusters 14 and

15. Unlike the ALOT-TCNN experiment, we do not observe any pure spatter clusters. We

suspect most spatter is contained within clusters 12 and 14. Despite having fewer clusters,

over-saturated samples still split into clusters 1, 2, and 5. Additionally, similar fine samples

differing in reliefs split among clusters 4, 7, 8, and 11.

In general, we do not observe any new clusters or better qualities in this clustering. We

proceed onto the analysis for the UMAP projection of this feature space colored by cluster

in Figure 4.70.
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Figure 4.70: UMAP visualization of the Thermal Tomography ALOT-WCNN feature space
colored by cluster. Minimum distance of 0.00 and 50 neighbors were used.

The shape is quite different. Typically, we saw the fine, coarse, and rough regions

forming a larger wider region in the projection, but this experiment shows them distributed

along the projection tail. The topology is similar from a global scale, but along the tran-

sitions from fine to rough, the upper and lower halves segment by bright or dark features

along the border. In this upper half of the tail, the fine region still wraps around to the

semi-rough region. The spatter region is primarily contained in clusters 12 and 14 along
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the bottom of the projection head up to cluster 3, but it does not cleanly break away. Some

evidence of splitting is visible. We finish our analysis of this experiment by assessing the

influence of coupon positioning by coloring the projection by coupon row, column, and

index in Figure 4.71.

(1) Coupon row (2) Coupon column

(3) Coupon index

Figure 4.71: UMAP visualization of the Thermal Tomography ALOT-WCNN feature space
colored by coupon features. Minimum distance of 0.00 and 50 neighbors were used.

This projection shows there is some influence of coupon positioning within non-
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smooth texture categories. We observe more edge and gradient features along the top of

the tail where front row coupons 7, 8, and 9 reside. This could be a result of lighting or

cropping. If cropping captures too much of the coupon edge, a dark or bright gradient will

be captured; however, when cropping excludes more of the border, it is less likely for these

features to be included and possibly magnified from normalization. Once again, middle

row coupons do not extend far into the rougher regions but reside more in the fine region.

This phenomenon was observed in previous experiments include those on the visible recoat

modalities.

This concludes our analysis of the ALOT-WCNN experiment. It primarily confirmed pre-

vious observations but also better exposed how coupon positioning was influencing the

organization and segmentation of clusters and the projection.

Summary

In the thermal tomography data, we sufficiently clustered general categories of thermo-

grams ranging from fine, coarse, rough, and smooth. Among these, we saw additional sepa-

ration at transition areas within the projections and subcategories exposing over-saturation,

grains, gradients, reliefs, and spatter. The spatial arrangement of clusters in the projections

were consistent across all experiments.

Coupon positioning had a minor influence on the thermal tomography feature space struc-

ture similar to that in the recoat post-melt analysis. Coupons were grouped together row-

wise within non-smooth categories. Middle row coupons represented finer thermograms

more often than rougher ones which were populated primarily with back row coupons 1,

2, and 3. The cause could be related to lighting. Edges and corners were highlighted or

recessed more in front row coupons 7, 8, and 9. We believe imprecise cropping contributed

to the inclusion of these features.

From these results, we propose a few modifications. Over-saturation was more common for

this modality, so it would be beneficial to tune the camera settings or extend the bit depth
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of the thermal tomography images to prevent this from occurring. Tighter cropping to the

bulk of each coupon would probably eliminate capturing border phenomena, but could help

remove the influence of varying qualities of crops between coupons.

In these experiments smooth clusters contained high amplitude features such as bright or

dark corners, edges, spots, and gradients. Larger clusters primarily captured fine, coarse,

and rough thermograms which were best split into transitions and subcategories by the

Kylberg-TCNN texture representation. Although the ALOT-TCNN clustering was not gen-

erally as homogeneous compared to the Kylberg clusterings, it was the only experiment to

cleanly isolate spatter. This spatter segmentation excluded many rougher samples with

abundant, smaller spatter. The ALOT-WCNN continues to show no advantage over other

experiments in this modality and visible recoat. We propose further research focuses on the

Kylberg-TCNN clustering because several categories, transitions, and special cases were

isolated in clusters with high textural homogeneity. The ALOT-TCNN clustering could

also be included for its segmentation of spatter.

In summary, the thermal tomography data was reasonably free of issues and segmented

cleanly by general roughness categories. Some our goals were not fully achieved; they are

the following. Cold spots were too scarce in the build to be isolated, but the segmentation

of reliefs and gradients demonstrated a similar capability. Spatter segmentation was the

most challenging with only some instances isolating in one experiment clustering. In the

next section we analyze the LWIR data.
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4.2.4 LWIR

The long-wave infrared (LWIR) data consists of peak-temperature heat maps from each

coupon on each layer. The range of anomalies for this modality and preprocessing is still

being explored, so a list cannot be reported at this time, but there are a few features that ap-

pear in the dataset. The most common feature is the presence of lines in nearly all samples.

These lines reveal the laser scan path and are emphasized more after normalization. Spatter

may still be manifested in heat maps as brighter blobs, but this is assumed to appear less

often as the melt pool more commonly produces the hottest temperatures and the brightest

pixels in each image. Texture washout via over-saturation should not occur because this

modality uses a camera with a wide operating temperature range that extends beyond a

practical maximum temperature.

In this section, we perform clustering to group similar heatmaps. This clustering would

be beneficial if a few large groups with high textural homogeneity can be isolated. We

begin by assessing how many clusters the LWIR feature space can break into while vary-

ing the noise threshold of FDC. We display the number of clusters per threshold for each

experiment in Figure 4.72.

Figure 4.72: Plot of the average number of clusters the LWIR data breaks into at different
noise thresholds for each experiment. The range over 5 runs is indicated by a line on each
bar.
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From previous modalities, the ALOT-WCNN experiments showed no advantages. As

the ALOT-WCNN produces significantly fewer clusters than the other experiments, we

suspect this experiment will produce the worst results. The number of clusters produced

in the ALOT-TCNN experiments varies most indicating some clusters are not distinct and

depend on initialization. The Kylberg experiments both produce more clusters than the

ALOT experiments on average and are expected to yield a finer clustering. Finally, we

observe at higher noise thresholds the number of clusters diminishes significantly implying

these feature spaces are more uniformly dense than those from previous modalities. In the

following experiment sections, we dive into a clustering and assess its contributions.

Kylberg-TCNN

Starting with Kylberg-TCNN, we select a noise threshold of 0 which produces 19 clusters.

We relabel these clusters sorted by size and report their sizes in Figure 4.73.

Figure 4.73: LWIR cluster sizes of the Kylberg-TCNN feature space. Clustering noise
threshold is 0.

From this distribution, it is clear that there are a few general groups captured by clus-

ters 14 to 19. The smaller clusters 1 to 13 may be near-identical or rare instances. For

visual assessment, we randomly sample images from each cluster and label them by textu-
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ral description in Figure 4.74.

(1) Coarse lines; full dark bor-
der

(2) Smooth lines; large bright/-
dark corner/edge

(3) Smooth lines; full dark bor-
der

(4) Crisp lines; dark corner
(5) Smooth lines; bright/dark
corner/edge

(6) Blurred lines; full dark bor-
der

(7) Smooth lines; bright corner
(8) Blurred lines; spotlight gra-
dient

(9) Semi-coarse lines; dark cor-
ner
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(10) Rough blurry lines; bright
spots

(11) Smooth lines; dark cor-
ner/edge

(12) Smooth lines; bright cor-
ner/edge

(13) Smooth semi-coarse lines;
dark corner

(14) Smooth faded lines; bright
corners

(15) Smooth lines; bright spot-
s/corner

(16) Rough blurry lines;
bright/dark spots

(17) Smooth semi-rough lines;
bright corners

(18) Smooth and coarse lines;
bright/dark spots

178



(19) Crisp and coarse lines;
bright spots

Figure 4.74: Normalized images sampled from each cluster in the LWIR Kylberg-TCNN
feature space.

As mentioned earlier, most of the laser scan lines are visible in each sample. Clusters

vary depending on the roughness of these lines and border features. The smaller clusters

1 to 13 isolate specific instances of broader groups well. For example, clusters 1, 2, 3,

and 6 isolate samples with dark borders. Cluster 8 captures blurry samples with spotlight

gradients. These gradients might be induced by spatter. The center sample is one of a

couple rare instances of data loss, thus it is left out of this discussion.

The major categories are spread across larger clusters 14 to 19. In clusters 14 and 15, heat

maps with smoother lines and bright corners are isolated. Rough blurred lines with bright

spots appear in cluster 16. The gap between smooth and rough blurry heat maps could be

bridged by cluster 17. Samples from cluster 18 are more coarse with less blur. Finally,

cluster 19 captures a mix of crisp and coarse heat maps. This cluster overlaps with cluster

18. In Figure 4.75 we color a UMAP projection of this feature space by cluster to visualize

how clusters organize and overlap.
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Figure 4.75: UMAP visualization of the LWIR Kylberg-TCNN feature space colored by
cluster. Minimum distance of 0.00 and 50 neighbors were used.

As seen in most modalities, the projection depicts a single cluster connected by textu-

ral overlap with similar semantically homogeneous regions. We observe a transition around

the projection cluster passing through crisp, coarse, rough, smooth, and back to crisp. Sam-

ples get blurry when passing through the upper right region of the projection. The lower

right region houses samples with significant bright/dark corners/edges. A small region

breaks away from the other samples. These are heat maps with central dark borders. A
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region at the top of the projection composed of cluster 15 is labeled with reliefs. These

samples are dark and smooth within the center of the coupon, but their border is bright.

These instances were not isolated into their own cluster but could in other experiments.

We discuss the distribution of clusters. Notice cluster 19 extends through the coarse re-

gion that cluster 18 dominates. This was observed in the sampled images from cluster

19. Cluster 17 captures smoother heat maps residing below cluster 16 and extending to-

wards clusters 11 and 15 and the transition between clusters 16 and 15. Clusters 9 and 13

pull away from the major projection cluster capturing semi-coarse lines with dark corners.

Cluster 13 being smoother touches cluster 5 since it isolates dark corners and smooth lines.

Extending off the blurry cluster 15 is cluster 8 whose samples are blurry with a signifi-

cant gradient around highlighted spots. Smooth cluster 14 transitions into cluster 2 with a

stronger emphasis of dark border features. Following in this direction leads to clusters 1,

3, and 6 which have completely broken away from the major cluster. These clusters isolate

samples with full dark borders.

Overall, this clustering meets our goal, but the homogeneity of the larger clusters could

be better. The distinction of significantly bright or dark spots is still a strong feature for

segmentation. Unlike previous modalities, a blurry category had not been established until

now. There are some concerns regarding coupon positioning. In the raw LWIR images

before perspective calibration, there was a blur across the focal plane. This blur resulted

in left column coupons 1, 4, and 7 being blurry while right column coupons 3, 6, and 9

were sharper. This modality has a lower resolution than the others, so samples had to be

scaled up which could have introduced some blurring to all coupons. To determine whether

coupon positioning has influenced this clustering, we color this projection by coupon row,

column, and index in Figure 4.76.
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(1) Coupon row (2) Coupon column

(3) Coupon index

Figure 4.76: UMAP visualization of the LWIR Kylberg-TCNN feature space colored by
coupon features. Minimum distance of 0.00 and 50 neighbors were used.

From these visualizations, we observe there is a strong correlation between the coupon

column positioning and the texture of LWIR data. This relationship demonstrates coupons

in the left column are blurry while coupons in the right column are crisp. This confirms our

initial observation from inspecting pre-calibrated images. Additionally, upscaling images

did not equalize the influence of blurring across all coupons. Coupon index and row do not
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show a significant trend, but there appears to be some absence of back row coupons in the

crisp region. In the proceeding experiments we point out improvements, consistences, and

differences.

Kylberg-WCNN

Next, we cluster the Kylberg-WCNN feature space with a noise threshold of 0 yielding 23

clusters, the most of all experiments. We relabel these clusters sorted by size and report

them in Figure 4.77.

Figure 4.77: LWIR cluster sizes of the Kylberg-WCNN feature space. Clustering noise
threshold is 0.

This distribution depicts a more gradual incline in cluster sizes implying groups have

split more evenly. Similar to the Kylberg-TCNN experiment, the largest cluster still cap-

tures over a quarter of the entire dataset. The significant jump at cluster 23 implies it will

have less textural homogeneity among its samples compared to other clusters. Larger clus-

ters 13 to 22 may be isolating more common or broad categories of heat maps while smaller

clusters 1 to 12 probably contain rare or specific textural heat map patterns. In Figure 4.78

we assign a textural description to a group of randomly sampled images from each cluster

for visual inspection.
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(1) Blurry; dark central relief
(2) Blurred lines; full dark bor-
der (3) Smooth lines; dark corner

(4) Blurred lines; spotlight gra-
dient

(5) Blurred lines; spotlight gra-
dient (6) Crisp lines

(7) Coarse lines, dark cor-
ner/edge

(8) Coarse lines; full dark bor-
der

(9) Coarse lines; small bright
spots
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(10) Crisp semi-coarse lines;
bright spots (11) Coarse lines; dark corners

(12) Smooth lines; bright cor-
ners

(13) Coarse lines (14) Crisp coarse lines
(15) Smooth semi-coarse lines;
edge gradient

(16) Smooth blurred lines; cor-
ner/edge gradient (17) Coarse lines (18) Crisp lines
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(19) Rough lines (20) Coarse lines (21) Smooth lines; bright corner

(22) Coarse lines; bright spots
(23) Rough blurred and smooth
lines; bright/dark spots

Figure 4.78: Normalized images sampled from each cluster in the LWIR Kylberg-WCNN
feature space.

The images from these clusters depict reoccurring groups that were isolated in the

Kylberg-TCNN experiment. We illustrate a few differences. There is a finer separation

among crisp and coarse heat maps in clusters 6, 7, 9, 10, 13, 14, 17, 18, 20, and 22.

The addition of two new categories are captured by clusters 1 and 19. Cluster 1 isolates

instances with a dark central relief. These instances are rare, so their cluster happens to be

the smallest. Cluster 19 segments rough heat maps with less blur. Unlike in the Kylberg-

TCNN clustering, rough samples were grouped into cluster 16 regardless of blur. The

largest cluster 23 mixes rough blurry samples with smooth ones instead of mixing crisp

and coarse samples in cluster 19 from the Kylberg-TCNN experiment. These clusters are

characterized in Table 4.5.
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Texture Clusters
Crisp 6, 10, 14, 18

Coarse 7, 9, 10, 13, 14, 15, 17, 20, 22
Rough 19, 23
Blurred 1, 2, 4, 5, 16, 23
Smooth 3, 12, 15, 16, 21
Border 2, 3, 8, 11

Gradients 4, 5, 16, 21
Center-relief 1

Spatter 17, 19, 22, 23

Table 4.5: Table of process phenomenon seen in Kylberg-WCNN LWIR clusters.

Levels of roughness and other features have been identified in each cluster. Spatter is

more subtle in this modality and does not cover enough area per image to beat out the aver-

age feature activation; therefore it appears in rougher clusters but not as its own. This same

phenomenon was observed in the thermal tomography. We proceed analysis by assessing

whether the spatial arrangement of these clusters forms a similar category transition. Figure

4.79 depicts a UMAP projection of this feature space by cluster.
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Figure 4.79: UMAP visualization of the LWIR Kylberg-WCNN feature space colored by
cluster. Minimum distance of 0.00 and 50 neighbors were used.

We observe a similar projection forming a single cluster. The category transition from

crisp through coarse, rough, and smooth is preserved. In addition, border features reside

along the smooth-blurry region. Stronger examples of this are found in clusters 11 and 3

in the midst of cluster 23. It is not readily obvious why these two clusters are positioned

on the projection in this way, but lines from these clusters are more coarse. In a similar

manner to cluster 8 from the Kylberg-TCNN projection, clusters 4 and 5 extend off the
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right side capturing blurry heat maps with spotlight gradients. Clusters 2 and 8 break away

from the projection just how clusters 1, 3, and 6 did in the Kylberg-TCNN projection. We

compare the effects of coupon positioning for this feature space by coloring the projection

by coupon index, row, and column in Figure 4.80.

(1) Coupon row (2) Coupon column

(3) Coupon index

Figure 4.80: UMAP visualization of the LWIR Kylberg-WCNN feature space colored by
coupon features. Minimum distance of 0.00 and 50 neighbors were used.

From these visualizations, the column on the build plane still demonstrates a signifi-
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cant relationship to the texture of the data. Looking at the row coloring, we observe a subtle

bias where back row coupons are scarce in the crisp region. This was also observed in the

Kylberg-TCNN visualization. The reason is not known but suspected to be an artifact in

the data collection process.

This concludes our analysis of the Kylberg experiments. Both clusterings provided satis-

factory results; however the effect of blurring along the column axis is a negative influence

and might be corrected by adjusting the camera settings and positioning relative to the build

plane. In the next section we dive into the ALOT experiments for comparative results.

ALOT-TCNN

We cluster the ALOT-TCNN LWIR feature space using a noise threshold of 0 to produce

15 clusters. We relabel these clusters sorted by sizes and plot their sizes in Figure 4.81.

Figure 4.81: LWIR cluster sizes of the ALOT-TCNN feature space. Clustering noise
threshold is 0.

This distribution is quite similar to the Kylberg-TCNN in that there is a clear dis-

tinction between large and small clusters. Clusters 12 to 16 could be isolating 5 broad

categories while clusters 1 to 11 segment out specific or rare instances. To get a better

understanding of the semantics behind these clusters, we label randomly sampled images
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from each cluster in Figure 4.82.

(1) Blurred lines; spotlight gra-
dient (2) Dark central relief

(3) Smooth lines; bright cor-
ners; dark spot

(4) Coarse lines; dark border (5) Smooth; full dark border
(6) Crisp semi-coarse lines;
bright spots

(7) Coarse thick lines
(8) Smooth lines; bright blurry
spots/corners

(9) Smooth thick lines; bright
corner
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(10) Blurred lines; spotlight
gradient

(11) Coarse lines; bright/dark
corners (12) Smooth and fine lines

(13) Blurred and coarse lines;
bright corner/spot

(14) Smooth and rough blurry
lines; bright corners (15) Crisp and coarse lines

(16) Rough blurry and coarse
lines

Figure 4.82: Normalized images sampled from each cluster in the LWIR ALOT-TCNN
feature space.

This clustering is quite similar to those in the Kylberg experiments but offers two

thick lines categories among smaller clusters 7 (coarser) and 9 (smoother). Many of the

192



smaller clusters isolate the same smaller groups which were seen previously, but dark bor-

der samples like those in cluster 8 from the Kylberg-WCNN are no longer being captured

as purely. Some instances appear in cluster 4. In the larger clusters 12 to 16, general groups

are intermingled. Cluster 12 contains a mix of crisp and smooth heat maps. The transition

has likely been captured too. Cluster 13 groups blurry and coarse samples. Cluster 14 is

similar, but mixes smooth and blurry rough categories which have been seen as neighbors

from previous experiments. In a similar way, cluster 15 captures coarse and crisp samples.

Finally, cluster 16 being the largest absorbs rough and coarse heat maps. This cluster-

ing implies the projection of this feature space follows a similar arrangement to those in

the Kylberg experiments. We confirm this by coloring a UMAP projection of this feature

space by cluster in Figure 4.83.
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Figure 4.83: UMAP visualization of the LWIR ALOT-TCNN feature space colored by
cluster. Minimum distance of 0.00 and 50 neighbors were used.

As expected, the projection depicts a single cluster whose texture category arrange-

ment is nearly identical in the Kylberg experiments. Typically the full dark border samples

break off into a single cluster in the projection, but in this projection those samples break

off into two small strands. The larger of the two is not well isolated because it is primarily

composed of cluster 16 followed by clusters 4 and 13. The smaller, further isolated strand

is captured almost entirely by cluster 5. A new region has been labeled. The spatter region
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is primarily located in the small horizontally-elongated cluster that splits off on the top of

the projection tail. This region does not contain all instances of spatter for this data, but it

is highly homogeneous. The spatter blobs are not as pronounced as in the thermal tomog-

raphy data, but they are visible. To illustrate, we sample images from this spatter region

and present them in Figure 4.84.

Figure 4.84: Normalized images sampled from the spatter region in the LWIR ALOT-
TCNN feature space UMAP projection.

Overall this clustering has some small benefits but the distinction between broad cat-

egories captured among the larger clusters could be clearer. Additionally, the feature space

projection isolates spatter into a region that could be labeled with high accuracy. We wrap

up our discussion for this experiment by demonstrating the persistence of coupon position-

ing from projections colored by coupon row, column, and index in Figure 4.85.
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(1) Coupon row (2) Coupon column

(3) Coupon index

Figure 4.85: UMAP visualization of the LWIR ALOT-TCNN feature space colored by
coupon features. Minimum distance of 0.00 and 50 neighbors were used.

We observe the same trends hold. Left column coupon samples tend to be more blurry

and smooth while right column coupon samples are crisp and coarse. Back row coupons

are tend to populate the upper region half of the projection capturing rougher heat maps.

This concludes our analysis for this experiment. In the next section we analyze the final

experiment for this LWIR data.
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ALOT-WCNN

Finishing with the ALOT-WCNN, we cluster the LWIR feature space using a noise thresh-

old of 0 which yields only 4 clusters, the fewest of all experiments. We relabel these clusters

sorted by size and plot their sizes in Figure 4.86.

Figure 4.86: LWIR cluster sizes of the ALOT-WCNN feature space. Clustering noise
threshold is 0.

This distribution shows a significant imbalance in cluster sizes that tend towards the

trivial case of all points grouped into a single cluster. Clusters 1, 2, and 3 combined only

make up a tenth of the dataset. We expect cluster 4 to be too broad for utility. In Figure

4.87 we label groups of randomly sampled images from each cluster for visual assessment.
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(1) Coarse lines; full dark bor-
der (2) Crisp lines (3) Blurred lines; bright spots

(4) Variety of crisp, smooth,
and blurry lines

Figure 4.87: Normalized images sampled from each cluster in the LWIR ALOT-WCNN
feature space.

As implied from the cluster sizes, cluster 4 contains a mix of textures that require

further segmentation. The smaller clusters show some promise. Cluster 1 singles out a

narrow group of heat maps with dark circular borders. This is the cluster that isolated well

in the prior experiment projections. Cluster 2 captures a group of samples with crisp lines.

Finally, cluster 3 spans a broad group of heat maps with blurry lines, spots, and reliefs. We

show a UMAP projection of this feature space colored by cluster in Figure 4.88.
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Figure 4.88: UMAP visualization of the LWIR ALOT-WCNN feature space colored by
cluster. Minimum distance of 0.00 and 50 neighbors were used.

In this projection we confirm the footprints of each cluster are proportional to their

number of samples. The ends of cluster 4 splits their own clusters 2 and 3. Cluster 1 is a

unique group and appropriately breaks away from the rest of the projection. Despite the

poor clustering, the projection is comparable to previous ones in that the connectivity be-

tween texture categories is still preserved albeit the shape is a bit different. Similar to the

ALOT-TCNN projection, the spatter region is cleanly segmented.
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This experiment demonstrates a case where the performance of FDC degrades but the per-

formance of UMAP does not. Our final assessment of this experiment looks at the influence

of coupon positioning by coloring this projection by coupon row, column, and index in Fig-

ure 4.88.

(1) Coupon row (2) Coupon column

(3) Coupon index

Figure 4.88: UMAP visualization of the LWIR ALOT-WCNN feature space colored by
coupon features. Minimum distance of 0.00 and 50 neighbors were used.

From these visualizations, we confirm the column-texture and subtle row-texture trends
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hold. Overall this experiment does not provide a new benefit, clusters poorly, but confirms

prior observations. In the last section we summarize our results for this modality.

Summary

In the LWIR data, we clustered categories of heat maps ranging from blurry to smooth,

crisp, coarse, and rough. Among these, we saw additional separation at transition areas

within the projections and subcategories exposing dark borders and spotlight gradients.

UMAP visualizations of the feature spaces demonstrated spatial relationships of heat map

categories were consistent across experiments. Furthermore, UMAP projections revealed

the feature space of an experiment whose FDC clustering is poor may still preserve seman-

tically homogeneous regions and transitions that could be manually labeled if the density

of points is too uniform to segment clusters.

Coupon positioning had a strong influence on the LWIR feature space arrangement. We

observed coupons were grouped together column-wise and row-wise but not individually.

Unfortunately, this grouping occurred across heat map categories such that the distribution

of textures were more blurry for coupons in the left column position and more rough for

coupons in the back row position in the build plane. This makes it difficult to accurately

identify the true phenomena manifested in the heat map without tailoring the approach to

account for this non-uniformity in the build plane.

From these results, we recommend some future modifications to the data collection process

and preprocessing. Blurring on left column coupons influenced the uniformity of texture

representation across the build plane. We suspect this blur is induced by a misalignment

between the build plane and camera focal plane. This leads to some coupons being out of

focus in the collection of the LWIR data. To accommodate this we recommend finer tuning

of the camera settings, focus, and positioning. The preprocessing strategy used the peak

temperatures of layer frames to obtain an image per layer. This method produces brighter

pixels along the scan path of the laser; therefore, lines are present in all images even if they
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are subtle. We consider these lines to be an artifact that could interfere with clustering;

therefore, we recommend developing a different preprocessing strategy that avoids embed-

ding the laser scan path into the composite image.

Among these experiments, smaller clusters consistently captured specific or rare instances

of heat maps including blurred spatter and dark central reliefs. Larger clusters primarily

split heat maps by average roughness. These were best split by the Kylberg-WCNN tex-

ture representation which improved upon the Kylberg-TCNN. The ALOT-TCNN produced

fewer clusters and more confusion among roughness categories within larger clusters. The

ALOT-WCNN clustering split poorly, but its feature space was quite similar to the other

experiments. We conclude the Kylberg-WCNN texture representation is best for clustering

and further research.

In summary, the LWIR data had some obstacles, but we still achieved our goal of isolating

general categories of heat maps. Unfortunately, these results are not applicable until the

coupon positioning bias on texture is resolved. In the next section we analyze the spatter

modality.
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4.2.5 Spatter

The spatter data composes thousands of meltpool and ejecta emission images into a com-

piled image per coupon per layer. We developed this preprocessing strategy specifically

for spatter to reveal the spatial distribution of meltpools and ejecta within a given area on

the build plane. We have no prior knowledge of process phenomena that can be captured

texturally using this preprocessing, but by design we expect brighter spots correspond to

areas where the meltpool and ejecta were present more often and vice versa for dimmer

spots. There are two obstacles we face from the nature of this data. First, image values

need to be bounded, so we applied an activation function with a horizontal asymptote at

the max pixel value. For coupons experiencing more ejecta and larger meltpools, texture

washout can occur because an increase in pixel brightness associated with an increase in

emissions decays as the pixel brightness tends towards to the max pixel value. This means

that the distinction between large summed values is lost and mapped to the same pixel value

which can produce areas in the final image with no variation. Second, pattern artifacts can

be created when the periodicity of the frame rate and the laser hatching strategy overlap.

Different processing parameters influence these artifacts with scan speed being the most

influential.

In this section, we perform clustering to group similar spatter emission maps. The benefit

of this clustering would be realized if we can segment at least two large texturally homo-

geneous groups. For example, one cluster may isolate smooth distributions of emissions

while another captures rough distributions of emissions. We begin by assessing how many

clusters the spatter feature space can break into while varying the noise threshold of FDC.

We display the number of clusters per threshold for each experiment in Figure 4.89.
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Figure 4.89: Plot of the average number of clusters the spatter data breaks into at different
noise thresholds for each experiment. The range over 5 runs is indicated by a line on each
bar.

From this plot, we observe the Kylberg-TCNN experiment produces over twice as

many clusters as the other experiments. For most thresholds the Kylberg-WCNN, ALOT-

TCNN, and ALOT-WCNN experiments produce nearly the same number of clusters. Whether

these experiments produce the same clusters is discussed later. For the first time, the ALOT-

WCNN tends to produce more clusters than the ALOT-TCNN and Kylberg-WCNN imply-

ing its clustering could finer. In comparison to other modalities, the number of clusters

each experiment produces is generally lower indicating there may be fewer categories of

spatter emission maps in this build.

Kylberg-TCNN

Starting with Kylberg-TCNN, we select a noise threshold of 0 to produce 29 clusters, the

most of the spatter experiments. We relabel these clusters sorted by size and plot their sizes

in Figure 4.38.
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Figure 4.90: Spatter cluster sizes of the Kylberg-TCNN feature space. Clustering noise
threshold is 0.

This distribution splits groups of several clusters relatively uniform in size. These

groups are illustrated in small clusters 1 to 16 averaging 250 samples, medium clusters 17 to

24 averaging 1500 samples, and large clusters 25 to 29 averaging 3000 samples. We expect

the smaller clusters to isolate textures from a couple parameter sets, while medium and

large clusters capture general groups. We inspect these clusters by labeling and displaying

randomly sampled images from those clusters in Figure 4.91.
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(1) Large lattice (2) Smooth; reliefs
(3) Smooth; bright and dark
edge

(4) Smooth; bright edge/spots (5) Small lattice; bright edge
(6) Smooth; subtle spots; dark
edge gradient

(7) Small lattice; bright edge;
dark spots (8) Semi-rough; edge gradient

(9) Smooth; bright corner; dark
edge
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(10) Subtle small lattice; bright
edge/spot (11) Large lattice

(12) Smooth; subtle spots; dark
edge

(13) Subtle small lattice; large
gradient; bright edge

(14) Smooth; bright edge; sub-
tle spots (15) Rough

(16) Smooth small lattices; cen-
tral relief; bright edge (17) Rough

(18) Smooth and solid; bright
edge
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(19) Smooth, subtly rough; dark
edge (20) Semi-rough (21) Semi-rough

(22) Rough
(23) Smooth; gradients; subtle
spots (24) Smooth, semi-rough; spots

(25) Smooth, subtly rough;
edge gradient (26) Rough lattice (27) Rough lattice

208



(28) Rough, semi-rough (29) Rough, semi-rough

Figure 4.91: Normalized images sampled from each cluster in the spatter Kylberg-TCNN
feature space.

This clustering depicts large clusters primarily segmenting by average roughness.

Smaller clusters capture lattices and bright or dark edges, corners, and spots. These lat-

tice artifacts vary in size depending on the scanning speed. Many clusters semantically

overlap to the extent that some segmentation is unnecessary. For example, there is little to

no semantic distinction between cluster pairs 20 and 21, 26 and 27, and 28 and 29. More

examples exist, so we list clusters capturing different texture in Table 4.6 to demonstrate

where overlap is occurring. Some phenomena like cold spots and severe spatter are scat-

tered across too many clusters for concise listing and often appear in both smooth and rough

samples.

Texture Clusters
Smooth 2, 3, 4, 6, 9, 12, 14, 18, 19, 23, 24, 25

Semi-rough 8, 19, 20, 21, 24, 28, 29
Rough 15, 17, 22, 26, 27, 28, 29
Lattice 1, 5, 7, 11, 16, 22, 26, 27

Center-relief 4, 16

Table 4.6: Table of process phenomenon seen in Kylberg-TCNN Spatter clusters.

There are a few cases where better segmentation could be beneficial. Cluster 16 fails

to separate small lattices from dark central relief samples likely because both include a

bright edge and darker central area. Cluster 18 captures smooth samples, but some of
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these are over-saturated and could be distinguished for that reason. Clusters 22, 26, and

27 capture rough emission maps. Some of their samples include lattices varying in levels

of subtlety. This creates overlap in the embedded space making it difficult to draw the line

between clusters. Like in the thermal tomography and LWIR, isolating spatter is still a

challenge as many clusters contain some samples with at most a few small bright particles.

This reoccurrence suggests a texture class featuring a few bright spots was absent from the

training set. The experiment model will not learn features describing spatter if they are not

present in the training set. Cold spots have a similar problem. Although the presence of

cold spots is segmented between texturally similar clusters 5 and 7, the latter has noticeably

sharper lattices which happens to include cold spots too. To understand how these clusters

are arranged spatially, we color a UMAP projection of this feature space by cluster in

Figure 4.92.
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Figure 4.92: UMAP visualization of the Spatter Kylberg-TCNN feature space colored by
cluster. Minimum distance of 0.00 and 50 neighbors were used.

This projection depicts a single major cluster. It appears all of the LPBF sensor modal-

ities from this build overlap to the extent that UMAP consistently projects LPBF feature

spaces as a single large cluster with semantically isolated regions. These regions transition

gradually from rough to smooth with many samples capturing large lattices in the rough re-

gion and many samples with bright or dark edges, spots, and corners in the smooth region.

This general trend was observed in the other modalities, except coarse and fine regions do
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not exist in this projection because there are no samples from those categories in this spatter

data.

We make a few observations about the sparse regions in the projection. These regions are

solid, small lattice, central relief, and spatter. Samples from these regions capture bright or

dark edges, spots, and corners. The solid region is small capturing at most a couple hundred

samples bright a brighter edge experiencing over-saturation due to abnormally high emis-

sions. Many samples from the central relief, small lattice, and spatter regions are grouped

into cluster 16. The small lattice region is primarily captured by cluster 7 and neighbors the

spatter region. This spatter region only isolates a small subset of all the spatter samples.

Many clusters overlap in the projection while the distinction between some may not be

immediately applicable. Consider clusters 1 and 11. They occupy the same region in

the projection yet show no significant differences in their large lattice samples. The same

argument can be extended to rough clusters 26 and 27 and their more subtle lattices. Al-

though clusters 1 and 27 neighbor each other, it is useful that they are separated because

the textural representation of a large lattice from cluster 1 should be distinct from a spa-

tially in-homogeneous rough sample from cluster 27. In a similar manner, clusters 15 and

17 contain rough samples without lattices and could be combined but remain distinct from

clusters 26 and 27 to preserve the distinction between rough samples with and without

traces of lattices. Cluster 22 is a transition cluster containing rough samples with faint or

missing lattices. Transitioning towards the semi-rough region, clusters 28 and 29, 19 and

24, and 8, 20, and 21 could be combined as they do not show significant differences. In the

smooth region, clusters 23 and 25 could be joined. The other clusters are distinct enough

to warrant their own label; however cluster 18 would be better split as it extends down to

cluster 10 capturing less similar samples along the way.

Next, we visually assess whether texture is biased from coupon positioning by coloring the

projection by coupon row, column, and index in Figure 4.93.

212



(1) Coupon row (2) Coupon column

(3) Coupon index

Figure 4.93: UMAP visualization of the spatter Kylberg-TCNN feature space colored by
coupon features. Minimum distance of 0.00 and 50 neighbors were used.

From these figures depict subtle biases in coupon row and column. Middle row

coupons tend to populate the smoother side of the projection. Right column coupons reside

more along the concave side of the projection. In the rough region, this inner edge is com-

posed of samples lacking large lattices. We look to other experiments first before making

any additional conclusions. This concludes our analysis of the Kylberg-TCNN experiment.
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Kylberg-WCNN

Next, we cluster the Kylberg-WCNN feature space with a noise threshold of 0 yielding 12

clusters. We relabel these clusters sorted by size and report them in Figure 4.94.

Figure 4.94: Spatter sizes of the Kylberg-WCNN feature space. Clustering noise threshold
is 0.

This distribution exposes a gap between large and small clusters. Clusters 11 and

12 are large likely having lower textural homogeneity and corresponding to the smooth

and rough categories. Clusters 1 to 6 may reflect some of the smaller clusters from the

Kylberg-TCNN experiment. We expect clusters 7 to 10 capture broad texturally homo-

geneous groups. In Figure 4.95 we randomly sample images from each cluster and label

them.
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(1) Large lattice; dark spots (2) Smooth; bright edge/strands
(3) Smooth; dark center; bright
edge; subtle spots

(4) Smooth; bright edge; subtle
spots (5) Small lattice; bright edge

(6) Small lattice; bright edge;
dark spot

(7) Smooth; bright edge (8) Smooth; bright edge (9) Smooth, subtly rough
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(10) Smooth, subtly rough (11) Smooth, semi-rough (12) Rough, semi-rough

Figure 4.95: Normalized images sampled from each cluster in the spatter Kylberg-WCNN
feature space.

In the smaller clusters, we observe many resembling those in the Kylberg-TCNN ex-

periment. Cluster 1 captures samples from previous clusters 1 and 11. Clusters 3 and 4

appear as subgroups from previous cluster 16. Clusters 2, 5, and 6 correspond to previous

clusters 4, 5, and 7, respectively. The medium-sized clusters are nearly identical to each

other isolating smoother emission maps. Finally, cluster 11 captures smooth to semi-rough

samples while cluster 12 captures semi-rough to rough samples. To illustrate the segmenta-

tion spatially, the clusters are colored on a UMAP projection of the feature space in Figure

4.96.
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Figure 4.96: UMAP visualization of the Spatter Kylberg-WCNN feature space colored by
cluster. Minimum distance of 0.00 and 50 neighbors were used.

The shape and topology of this projection is almost identical to the Kylberg-TCNN

experiment. There are some minor differences. Within the rough region, large lattices

reside along the concave edge of the projection instead of the convex edge. Additionally,

some of these large lattices have broken off into their own cluster in the projection but are

still assigned to cluster 12. Samples from this large lattice cluster came from clusters 11,

26, and 27 in the Kylberg-TCNN experiment. The dark central relief samples group tighter
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and cleaner in the projection but are grouped into medium-sized clusters 9 and 10 instead

of their own cluster. Spatter is scattered along the projection, so it does not have a labeled

region.

We discuss the association of clusters to the regions. Cluster 12 captures the entire rough

region mixing large lattices with spatially in-homogeneous rough emission maps. Some of

these large lattices stem from this cluster into cluster 1. Cluster 11 spans the semi-rough

region extending toward the subtly rough region captured by cluster 9 which blends into the

smooth region in cluster 10. Cluster 7 and 8 are similar to clusters 9 and 11 but differ in the

presence of bright edges causing them to spatially pull away from the rest of the projection.

Clusters 5 and 6 capture small lattices. Finally, clusters 2, 3, and 4 occupy a region that is

both smooth and semi-rough induced by the presence of bright or dark edges and spots.

Overall, this clustering loses distinction between some features such as the large lattices but

captures general roughness categories with high homogeneity in as few clusters as possible.

We assess the influence of coupon position in Figure 4.97.
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(1) Coupon row (2) Coupon column

(3) Coupon index

Figure 4.97: UMAP visualization of the spatter Kylberg-WCNN feature space colored by
coupon features. Minimum distance of 0.00 and 50 neighbors were used.

These visualizations cross validate three previous observations. There are no large

regions in the projection that belong solely to a single coupon. The middle row coupons

slightly bias populating smoother regions. In rough regions the right column coupons have

a tendency to populate the side that is opposite to the large lattice domain; however some

of the clearest examples of large lattices found near cluster 1 are from these right column
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coupons. The impact and logic behind the positioning-texture bias is still unclear, so we

proceed analysis with the ALOT experiments.

ALOT-TCNN

We cluster the ALOT-TCNN spatter feature space using a noise threshold of 0 which pro-

duces 12 clusters, the same as in the Kylberg-WCNN experiment. We relabel these clusters

sorted by sizes and plot them in Figure 4.98.

Figure 4.98: Spatter cluster sizes of the ALOT-TCNN feature space. Clustering noise
threshold is 0.

This distribution tends towards the trivial case of all data being grouped into one clus-

ter. It appears quite different from the Kylberg-WCNN cluster size distribution implying

the semantics of the clusters are different despite the number of clusters being the same.

In Figure 4.99 we show labeled images randomly samples from each cluster for visual

assessment.
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(1) Large lattice
(2) Smooth; bright edge; subtle
spots (3) Solid; bright edge

(4) Smooth small lattice; bright
edge (5) Small lattice; bright edge (6) Large lattice

(7) Smooth lattice; large gradi-
ent; bright edge

(8) Smooth, subtly rough;
bright/dark edge

(9) Smooth, subtly rough; dark
edge
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(10) Smoothly speckled; dark
central relief; bright edge (11) Smooth; bright edge/spots (12) Mix of rough and smooth

Figure 4.99: Normalized images sampled from each cluster in the spatter ALOT-TCNN
feature space.

The small clusters are similar to those in the Kylberg experiments. Samples from clus-

ters 1, 4, 5, and 10 correspond to those in clusters 1, 5, 6, and 3 from the Kylberg-WCNN

clustering, respectively. Clusters 2, 3, and 7 draw samples from clusters 14, 18, and 13 in

the Kylberg-TCNN experiment, respectively. Some of the larger clusters are similar too.

Clusters 8 and 9 contain samples from smooth clusters 8, 9, and 10 in the Kylberg-WCNN

clustering. Although cluster 11 is significantly smaller than Cluster 12, its image sampling

implies lower homogeneity within the smooth bright edge region. As cluster 12 captures

most of the data, both smooth and rough samples are grouped together. This segmentation

behavior of ALOT-TCNN feature spaces has been confirmed in recoat post-melt, thermal

tomography, and LWIR clustering analysis; however this texture representation has also

shown to group instances of spatter better in the projection. To verify if this is the case, we

color a UMAP projection of this feature space by cluster in Figure 4.100.
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Figure 4.100: UMAP visualization of the Spatter ALOT-TCNN feature space colored by
cluster. Minimum distance of 0.00 and 50 neighbors were used.

This projection depicts a different shape but similar topology. The transition of re-

gions from large lattices to rough, semi-rough, and smooth is still preserved. Additionally,

the sparse region containing bright/dark corners, spots, and edges resides alongside the

smooth and semi-rough regions. Some of the less common regions are better isolated in

this projection. Small rough lattices sit between the transition from large lattices to rough

emission maps. These are different from the small lattices captured by clusters 4 and 5
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because those feature a bright edge. Spatter groups better stemming off slightly from the

rough region. The samples are abundant in these region and highly homogeneous in seman-

tics. We demonstrate this by showing an image sampling from this region in Figure 4.101.

The solid region cleanly splits away in the projection, but its samples are still grouped with

non-saturated samples in the cluster 3 region neighboring cluster 11. Finally, nearly all

central relief samples are grouped well in the both the projection and in cluster 10.

Figure 4.101: Normalized images sampled from the spatter region in the Spatter ALOT-
TCNN feature space UMAP projection.

Overall, this projection shows improvements over the Kylberg projections; however

the clustering only has a couple minor benefits such that cluster 10 that do not out-weight

the low homogeneity of cluster 12. In Figure 4.102, the projection is colored by coupon

row, column, and index to provide more evidence for the discussion of coupon positioning

biases.
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(1) Coupon row (2) Coupon column

(3) Coupon index

Figure 4.102: UMAP visualization of the spatter ALOT-WCNN feature space colored by
coupon features. Minimum distance of 0.00 and 50 neighbors were used.

Similar to the Kylberg experiments, coupon index shows no bias on texture, middle

row coupons tend to be a little smoother, and the right coupon column shows a clear sep-

aration from the other coupons along the rough and semi-rough regions. After comparing

hundreds of samples from the right column coupons to the other coupons, we observed

the right column coupons were slightly sharper at a low-level indicating images from the
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middle and left column coupons may be subtly blurred. This concludes our analysis on the

ALOT-TCNN experiment. In the next section we discuss the last experiment for the spatter

data.

ALOT-WCNN

Finishing with ALOT-WCNN, we cluster the spatter feature space using a noise threshold

of 0 yielding 13 clusters, one more than in the Kylberg-WCNN and ALOT-TCNN experi-

ments. We relabel these clusters sorted by sizes and plot them in Figure 4.98.

Figure 4.103: Spatter cluster sizes of the ALOT-WCNN feature space. Clustering noise
threshold is 0.

This distribution shows an improvement in uniformity among cluster sizes compared

to those in the Kylberg-WCNN and ALOT-TCNN experiments. While many clusters are

still small, we expect better textural homogeneity among the larger clusters 11, 12, and

13 given that this broader clustering has fewer clusters than the Kylberg-TCNN clustering.

We visually assess these clusters by labeling randomly sampled images from each cluster

in Figure 4.104.
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(1) Small lattice; bright edge;
small spots

(2) Smooth; bright edge; dark
central area

(3) Smooth; bright edge; dark
central area

(4) Smooth; dark edge
(5) Smooth and solid; bright
edge

(6) Smooth lattice; large gradi-
ent; bright edge

(7) Smooth; dark corner/edge (8) Rough (9) Rough, semi-rough
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(10) Large lattices, semi-rough (11) Smooth, subtly rough (12) Rough, semi-rough

(13) Large lattice, semi-rough

Figure 4.104: Normalized images sampled from each cluster in the spatter ALOT-WCNN
feature space.

Despite the distribution looking better, the textural homogeneity of larger clusters 10,

12, and 11 appears lower. Additionally, there is no cluster that solely isolates large lattices

nor small lattices with a bright edge and dark spots. Examples of these from the Kylberg-

WCNN clustering are clusters 1 and 6. Some of these clusters have been seen before.

Clusters 2 and 3 combined, 5, and 6 correspond to clusters 2, 3, and 7 from the ALOT-

TCNN experiment. Clusters 8 and 9 correspond to clusters 15 and 17 in the Kylberg-TCNN

experiment. Clusters 4 and 7 are both similar and capture samples like those in clusters 7

and 8 in the Kylberg-WCNN experiment. In Figure 4.105, we color a UMAP projection of

this feature space by cluster to assess how these clusters are spatially organized.
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Figure 4.105: UMAP visualization of the Spatter ALOT-WCNN feature space colored by
cluster. Minimum distance of 0.00 and 50 neighbors were used.

Once again, the shape is different, but the arrangement of texture categories remains

the same. The large lattice region transitions through the small lattice, rough, semi-rough,

smooth, and solid regions in that order. Like in the ALOT-TCNN projection, a region

primarily containing spatter exists, but this region is not as pure. While the solid region

segments better in the projection, it is split among clusters 2, 3, and 5. The central relief

region does not group as well in both the projection and clustering.
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We discuss how the clustering is spread along the projection. Clusters 13 and 1 are not con-

tiguous in the projection. Large lattices and semi-rough samples are spatially separated in

the projection but are grouped into cluster 13. The splitting of cluster 1 into the rough and

smooth regions is reasonable. The samples from cluster 1 both have small lattices with a

bright edge, but some are rougher while others are smoother. There is a significant amount

of overlap among clusters 8, 9, 10, 12, and 13 within rougher regions. Cluster 11 dominates

the smooth region lacking bright or dark corners, edges, and spots. Cluster 7 closely neigh-

bors 11 while capturing dark edges/corners. Among clusters 2 to 5, various dark central

reliefs are captured. Cluster 6 captures some samples with subtle small lattices, but those

with dark spots have been grouped into cluster 13 beneath cluster 8 in the projection.

Overall this experiment does not show a significant advantage. We conclude our analysis

by verifying the bias of coupon positioning on texture holds. In Figure 4.106 the projection

is colored by coupon row, column, and index.
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(1) Coupon row (2) Coupon column

(3) Coupon index

Figure 4.106: UMAP visualization of the spatter ALOT-WCNN feature space colored by
coupon features. Minimum distance of 0.00 and 50 neighbors were used.

These visualizations imply the coupon row and index do not have a significant in-

fluence on texture, but coupon column does. In the rough region, right column coupon

samples have rougher low-level features while the left column samples have smoother low-

level features. Additionally, middle column coupons appear to favor the smoother region.

The cause behind these trends remains unknown. This concludes our analysis of the spatter
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data. We summarize our findings for this data in the next section.

Summary

In the spatter data, we clustered categories of emission maps ranging from lattices to rough,

semi-rough, smooth, and solid. Among these categories, transition regions within the pro-

jections exist, but transition clusters were scarce in most experiments. Without transition

clusters, the utility of the clustering is degraded because the precision between roughness

categories is lower. Subcategories including lattices and dark central reliefs were isolated

in some clusters with bright spatter only isolating well in projections. UMAP visualiza-

tions of the feature spaces demonstrated roughness categories gradually transitioned into

each other and sparse regions residing near the smooth region contains samples with bright

or dark edges, corners, and spots.

Coupon positioning had a subtle influence on the spatter feature space arrangement. We

observed coupons grouped together column-wise and row-wise but not individually. The

column-wise bias arose from intra-category variations. This was primarily observed by the

right column coupons having finer low-level features in rough samples. This influence is

significant enough to beckon modifications. The row-wise bias spanned across texture cat-

egories such that middle row coupons were slightly smoother; however, this influence was

too subtle to draw conclusions.

From these results, we recommend only a couple modifications to the data collection pro-

cess and preprocessing. Rough right column coupon samples were finer at a pixel level.

This could be an indirect result of a subtle blur on the other coupons induced by a small

mismatch between the camera focal plane and the build plane. We suggest finer tuning of

the camera settings, focus, and positioning to correct the bias. The preprocessing strategy

applied an activation function onto the sum of layer frames to obtain an image per layer.

This method produced dimmer pixels at points where it was less common for the camera to

capture a frame when the melt pool was centered at those points; therefore, lattice patterns
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are present in many images with some being more subtle. We consider these lattices to be

an artifact that interfered with clustering; therefore, we recommend developing a different

preprocessing strategy that avoids embedding these into the composite image.

Among these experiments, smaller clusters consistently captured specific or rare instances

of emissions maps including spatter, lattices, and dark central reliefs. Larger clusters pri-

marily split by average roughness. These were best split by the Kylberg-TCNN texture

representation. The other experiments produced much fewer clusters. Both ALOT ex-

periments did not segment roughness categories well, but their smaller clusters and projec-

tions isolated samples with higher homogeneity. The Kylberg-WCNN clustering performed

well at isolating the general roughness categories in only a few clusters. We conclude the

Kylberg-TCNN texture representation is best for clustering and further research.

In summary, the spatter data was clean and separated well by levels of roughness; there-

fore, we achieved our goal of isolating smoother and rougher spatter emission maps with

an added bonus of other subcategories. This clustering can be labeled and used to describe

the spatter emission map texture of new similar samples. In the next section we cluster

coupon data from each layer using all modalities simultaneously.

233



Conclusion

In this thesis we developed an unsupervised approach to segment LPBF process monitoring

imagery by texture using general texture representations. In this chapter, we summarize the

data collection and preprocessing, the texture-driven clustering strategy, the contributions

from the results, and our final thoughts.

5.1 Data Collection and Preprocessing

5.1.1 Texture Datasets

The texture datasets, Kylberg [16] and ALOT [6], were publicly available online. Both

supplied features for learning texture embeddings. Kylberg was selected as baseline dataset

that could concisely capture a wide variety of texture features in only 28 classes. ALOT was

selected as a brute force approach with 250 classes to supersede the diversity of Kylberg in

the event that some vital features in the LPBF data were missing in Kylberg.

5.1.2 LPBF Datasets

The LPBF data was collected from an experiment designed to produce a wide variety of

process phenomena that could be captured via in-process monitoring without causing build

failure. The build consisted of printing nine coupons in a 3-by-3 grid 3267 layers tall using
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a total of 243 unique processing parameter combinations varying in laser power, scanning

speed, hatch spacing, powder layer thickness, and laser spot size. Each coupon was sec-

tioned into 27 equally-sized height segments each using a randomly assigned parameter

combination to prevent any textural bias in the build plane.

Data was collected from four sensors, namely visible recoat (post-spread and post-melt),

thermal tomography, long-wave infrared (LWIR), and spatter. Each sensor modality had its

own unique preprocessing steps followed by camera calibration and standardization. These

preprocessing steps are the following.

Visible Recoat

The visible recoat data was collected by taking two images per layer, one after spreading

powder and another after melting it; therefore, no compiling step was necessary. Due to

prior sensor damage, each image had a thick horizontal line of dead pixels obstructing

coupons 4 and 5. This damage was mitigated by filling rows of dead pixels with the nearest

neighboring rows, but these pixels were subtly darker. For this reason, we called them dead

pixel residue.

Thermal Tomography

The thermal tomography data was collected in multiple frames while melting to describe

the thermal topography per layer. These frames were summed together pixel-wise to create

a composite image. The compiling process produced bright pixel artifacts in the composite

image as a result of compounded small sensor noise. These artifacts were removed by

replacing their pixels with the median of their unaffected neighbors.
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LWIR

The LWIR data was collected in multiple frames while melting to model the cooling rates

per layer. Composite images were constructed pixel-by-pixel from the peak temperatures

across all frames. The compiling process produced dark line artifacts in the composite

images where the hatch space sat between laser passes.

Spatter

The spatter data was collected in multiple frames while melting to record quantitative statis-

tics of spatter particles emitted per layer. These were summed together pixel-wise followed

by an exponential scaling function to create a composite image. The compiling process

produced lattice artifacts in the composite images when the processing parameters and

hatching strategy shared a periodic overlap with the frame rate of the camera.

5.2 Texture-Driven Strategy

The texture-driven image clustering strategy was split into a supervised part followed by

an unsupervised part.

In the supervised part we adopted and modified two published CNNs (TextureCNN [4],

WaveletCNN [27]) tailored for texture classification and trained each one on two public

texture datasets, namely Kylberg and ALOT to obtained four texture embeddings for com-

parison.

In the unsupervised part after training all four models, the encoders were used to embed

texture datasets and LPBF imagery from each sensor modality into compact feature spaces.

The next step was to cluster these feature spaces using an appropriate clustering algorithm.

We suspected the distribution of anomalies to nominal phenomena in the LPBF data would

be imbalanced, so we used a density-based clustering algorithm (FDC) for its ability to

236



quickly find a non-user specified number of clusters of varying in size, shape, and variance.

After clustering, we randomly sampled images from each cluster for visual assessment. To

supplement analysis, we used UMAP for feature space visualization because of its speed

and ability to better preserve global information. Feature spaces were visualized on scatter

plots colored by cluster and labeled to demonstrate spatial relationships and transitions be-

tween clusters as well as mark regions belonging to general texture categories. Finally, the

applicability of the LPBF data was empirically observed by finding biases in the texture

distribution associated with the positioning in the build plane. This was achieved by color-

ing points in the projection that were associated with image samples taken from a specific

coupon row, column, and index.

5.3 Contributions

The contributions from the results in this thesis are discussed separately per dataset start-

ing with preliminary observations drawn from the analysis of Kylberg and ALOT followed

by the conclusions from the analysis of visible recoat post-spread and post-melt, thermal

tomography, LWIR, and spatter. Afterwards we summarize the comparison between exper-

iments.

5.3.1 Kylberg

The analysis of Kylberg showed most classes could be isolated in both the clustering and

projection. Spatially in-homogeneous classes would often neighbor each other in projec-

tions while classes with patterns were isolated individually along the outer border of the

projection. The TCNN clustered classes with higher semantic homogeneity compared to

the WCNN which clustered classes with similar frequency features together. Among both

models, classification scores were satisfactory at roughly 98% for the TCNN and 95% for
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the WCNN which supports why feature spaces segmented well.

5.3.2 ALOT

The analysis of ALOT demonstrated how strong texture overlap among its 250 classes can

lower the precision of clustering individual classes but improve the class connectivity in

feature space which can provide insight into the topological arrangement of features in the

texture representation. Among the TCNN and WCNN experiments, both achieved lower

classification scores around 74% and produced nearly identical feature space projections;

however, the clustering varied in that the WCNN did not split classes containing larger

objects and features as well because its frequency analysis components are not tailored for

capturing shape information.

5.3.3 LPBF Datasets

Among the LPBF sensor modalities, all of them demonstrated high textural overlap as

nearly all samples grouped into a single cluster in their projections similar to the ALOT

projections. As a result, we focused on discussing region semantics and transitions between

semantic categories. In following sections, we summarize our findings for each sensor

modality.

5.3.4 Recoat Post-Spread

Segmentation

Powder spreads clustered into smooth, fine, and coarse categories. Other phenomenon in-

cluding soot, minor recoat streaking, spotted and corner material protrusion grouped into

their own clusters. Within the projections, several cluster regions composed small varia-

tions in uniform powder spreads. A large sparse region in each projection was dedicated
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to powder spreads experiencing material protrusion. Among the sparse region, there ex-

isted a small cluster primarily capturing severe anomalies including recoat streaking, large

material protrusion and non-uniform powder spreads.

Challenges

There was one critical problem with this dataset. The texture distribution from each coupon

was unique; therefore, positioning within the build plane often determined the texture of

the powder spreads. This was realized by several large regions in the projection and clus-

ters grouping samples from a single coupon together because their average powder spread

features were similar. These clusters often could not distinguish samples by the presence

of soot/spatter. We speculate this position-texture bias was induced by both variations in

lighting reflections across the build plane and blur from a misalignment between the build

plane and camera focal plane. Both influences change the low-level pixel values which are

embedded by the first feature maps in the TCNN and the first wavelet layer in the WCNN.

Other larger-scale influential factors include dead pixel residue lines left over from miti-

gating sensor damage on coupons 4 and 5 as well as the distribution of soot being more

common in back row coupons due to more turbulence towards the back of the argon air-

flow over the build plane. Another challenge we faced was the distinction between infill

material protrusion and corner protrusion; however distinguishing them becomes easy if

the part geometry is included in the analysis.

Experiments

While Kylberg-TCNN produced the most clusters with one capturing bright speckled mate-

rial protrusion, the Kylberg-WCNN produced a cluster capturing most of the severe defects

with some false positives. The ALOT-TCNN clustering isolated coarse soot cleanly, while

the ALOT-WCNN experiment had no notable additions.
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Summary

In summary, we could effectively isolate powder spreads by roughness and the presence

of corner protrusion but most soot and severe defects could not be clustered cleanly. The

distributions of roughness levels in powder spreads heavily depended on the coupon posi-

tioning in the build plane thereby degrading the applicability of this approach and clusters

to powder spreads unless corrective modifications to the data collection and preprocessing

are made to equalize the sharpness and lighting angles across the build plane.

5.3.5 Recoat Post-Melt

Segmentation

The analysis of the recoat post-melt data revealed melted surfaces could be clustered by

roughness levels including coarse, fine, rough, smooth, glossy, and saturated as well as

by subtle features including etching and grooves. Within the projections, these roughness

categories were arranged in a linear progression from coarse to rough, smooth, glossy, and

finally saturated. The fine category would often reside alongside the transition from coarse

to rough regions.

Challenges

Similar issues in the recoat post-spread modality came up in this modality too which we

contribute to the fact that both visible recoat modalities use the same camera. Coupon posi-

tioning was still an issue; however, its influence did not degrade the utility of the approach

as much for two reasons.

First, the texture distribution from each coupon spanned most roughness categories more

uniformly, which is desirable. Samples grouped together by coupon row instead of by in-

dividual coupon. Nearly all fine melted surfaces came from the middle row coupons while
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over-saturated coarse surfaces primarily belonged to front row coupons. We contribute

these biases more towards the camera focus variations mentioned in the recoat post-spread

conclusions than the lighting conditions because the camera focus varied most across the

row axis in the build plane while the lighting produced a large gradient across the column

axis in the build plane.

Second, the dead pixel residue lines blended in with melted surfaces even after normaliza-

tion making it less likely for them to be detected and embedded into the texture represen-

tation. The reason for this was due to the fact that melted material often appears darker

than its powder spread which brings its average pixel value down closer to the darker pixel

values of the dead pixel residue lines. Additionally, the darkest pixels from shadows cast by

bumps in the melted surfaces were typically darker than the dead pixel residue lines thereby

making the residue pixels stand out less in comparison. For these reasons, we believe dead

pixel residue lines were not factor in the segmentation of the feature space.

Experiments

The Kylberg-WCNN produced the semantically finest clustering while the other experi-

ments often intermingled coarse and rough surface categories in larger clusters. The recoat

post-melt was the only modality where the Kylberg-TCNN produced the fewest clusters.

ALOT experiments had no notable benefits.

Summary

In summary, we could characterize melted surfaces by roughness categories with high accu-

racy; however the texture distributions heavily depended on the row positioning in the build

plane thereby degrading the utility of the approach unless similar modifications mentioned

in the recoat post-spread analysis are made.
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5.3.6 Thermal Tomography

Segmentation

The analysis of the thermal tomography data revealed thermograms could be clustered by

roughness levels including fine, coarse, rough, semi-rough, smooth, and saturated. Addi-

tionally, other features such as grains, central reliefs, large gradients, and spatter could be

isolated into their own clusters except for cold spots which were absent from this dataset.

The feature spaces revealed a smooth regional transition from fine to coarse, semi-rough,

rough, smooth, and finally saturated.

Challenges

Thermal tomography only experienced a minor imbalance in the texture distribution across

the rows in the build plane. Back row coupons were not as fine. Middle row coupons

were not as rough. We suspect these biases might be related to the camera focus producing

sharper imagery around the center row in the build plane. Additionally, coarse thermograms

from front row coupons featured more bright/dark edges which may have be caused by

imprecise image cropping.

Experiments

The Kylberg-TCNN produced the finest clustering, but could not isolate spatter into its own

cluster; however, this was achieved for some rough and smooth instances in the ALOT-

TCNN experiment. In general, both ALOT experiments were less effective at separating

coarse and rough thermograms in their clusterings, but better at grouping spatter in their

projections.
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Summary

We could cleanly isolate thermograms by roughness category, grains, gradients, reliefs, and

spatter. Modifications to the camera focus and image cropping that eliminate texture bias

in future data are not immediately necessary but should eventually be implemented.

5.3.7 LWIR

Segmentation

LWIR heat maps clustered into crisp, coarse, rough, blurry rough, smooth, and blurry

smooth categories. Less common features such as dark central reliefs and gradients formed

separate clusters but spatter did not. The projections demonstrated there was a smooth

transition from crisp to coarse, rough, and finally smooth categories in each feature space.

Within the rough and smooth regions, there was a transition to blurry rough and blurry

smooth sub-regions.

Challenges

There were two primarily issues that degraded the applicability of the texture embedding.

First, peak temperature heat maps produced subtle dark lines within the hatch spacing

between laser passes. These lines were magnified after normalization. Although they varied

in subtlety, every heat map captured these lines. We believe spatter was more difficult to

cluster because these lines interfered with its embedding.

Second, coupon positioning had a strong influence on the texture distribution. Unlike in the

recoat post-melt and thermal tomography modalities, texture distributions were unique to

the column instead of the row in the build plane. Heat maps were blurry if they came from

coupons in the left build plane column. Similarly, heat maps were crisp if they came from

coupons in the right build plane column. We suspect this was a result of non-uniformity in
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the camera focus on the build plane. Assuming it is a camera focusing problem, the reason

it occurs over columns instead of rows is because the azimuth of LWIR camera relative to

the build plane is rotated 90 degrees compared to the visible recoat and thermal tomography

cameras.

Experiments

The Kylberg-WCNN clustering performed the best at segmenting roughness categories

while the ALOT-WCNN clustering performed the worst grouping nearly all the data into

a single cluster. Across all experiments, the topology of the projection were similar. The

ALOT-TCNN projection was best at isolating a pure region of spatter.

Summary

We could effectively segment heat maps by roughness categories, dark central reliefs, and

gradients. Additionally, spatter could easily be labeled in the projections. Before this ap-

proach can become applicable, the data collection and preprocessing require modifications

that address the non-uniform blurring across the build plane and presence of laser scan lines

in the imagery.

5.3.8 Spatter

Segmentation

Spatter emission maps clustered into rough, semi-rough, and smooth categories. Less com-

mon phenomena including dark central reliefs, small and large lattices, and bright edges

grouped into separate clusters but spatter did not. The projections demonstrated a transition

from rough to smooth regions within the feature spaces. Among these two major regions,

large lattices gathered in the rough region while central reliefs and bright edges gathered in

the smooth region.
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Challenges

There were two issues with the data that may have degraded the utility of this approach.

First, the presence of lattice artifacts was introduced by the data collection and preprocess-

ing. The reason is related to overlap between the periodicity of the camera frame rate and

the laser hatching strategy. These lattices varied in subtlety and size. Second, the texture

distribution was slightly different between coupons in different columns. The primarily ob-

servation was emission maps from right column coupons were slightly sharper at the pixel

level. This implied there may be a subtle blur on the other coupons.

Experiments

The Kylberg-TCNN produced the finest clustering. Other experiments isolated less com-

mon phenomena better at the expense of poorer clustering among roughness categories.

Most notably, the ALOT-TCNN clustering grouped most of the data into a single cluster

thereby mixing smooth and rough categories but cleanly grouped dark central reliefs and

over-saturation into their own clusters.

Summary

We demonstrated spatter emission maps grouped together by roughness, central reliefs, lat-

tices, and bright edges via clustering. Although spatter was not segmented in the clustering,

it could easily be labeled in the projections. Modifications to the data collection and pre-

processing to remove lattices and equalize blurring are not required but would be beneficial

in future research and applications.

5.3.9 Model Evaluation

From the analysis of all these datasets, we observed a few trends in each experimental

model. The Kylberg-TCNN more often split datasets into the most number of clusters
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which yielded the cleanest overall separation. The Kylberg-WCNN often competed with

the Kylberg-TCNN sometimes producing the better clustering. Among both Kylberg ex-

periments, feature spaces and clusters were overall similar. The ALOT-TCNN clusterings

were competitive with those from Kylberg experiments; however the inability to distin-

guish rough samples from non-rough samples was a common issue. One benefit of the

ALOT-TCNN experiment was clearer separation of spatter in thermal tomography clus-

ters and the projections of LWIR and spatter feature spaces. The ALOT-WCNN usually

provided the worst clusters often mixing roughness categories and showing no additional

benefits compared to other experiments. Overall, the ALOT experiments performed worse

at separating roughness categories but better at separating small round phenomenon such as

spatter and soot compared to the Kylberg experiments. Part of the issue with ALOT exper-

iments lacking good separation in roughness categories may be related to the difficulty of

the ALOT classification problem due to having a magnitude more classes. We suspect the

reason rarer phenomenon were better isolated is related to ALOT-specific classes providing

the necessary features to learn features necessary for that segmentation.

5.4 Final Thoughts

We conclude with a few thoughts. Our approach was not tailored to any specific LPBF sen-

sor modality. Despite that, we demonstrated unsupervised clustering could segment LPBF

data by several roughness categories including fine, coarse, rough, and smooth. In addition,

anomalous features such as dark central reliefs, gradients, and bright corners/edges were

isolated. Given these capabilities, we believe the Kylberg texture embeddings can be used

for time-efficient labeling and prediction of whether these features are present in new sam-

ples. This may provide an immediate benefit to process phenomenon classification across

many sensor modalities; however, our approach could still be improved as it faced diffi-

culties in clustering process phenomena with a small footprints such as spatter particles.
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Additionally, texture biases from data collection and artifacts from preprocessing need to

be removed before this approach can truly be applicable. Modifications for improvements

and new strategies are reserved for future work in Chapter 6.
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Future Work

6.1 Modifications

6.1.1 Data Collection and Preprocessing

How data is collected and preprocessed should be considered carefully. Data analytics can

be degraded if the data collection process or preprocessing destroys insightful information

or introduces artifacts. For this reason we discuss strategies that mitigate texture biases in

the LPBF data.

Camera Focusing

Blurring induced by the target being out of focus can quickly reduce the granularity of the

image and change the overall texture. This is especially problematic when the blur is not

equally distributed across the focal plane. This occurred significantly in the visible recoat

and LWIR modalities and partially in the thermal tomography and spatter modalities. The

severe instances demand correction before accurate data collection and characterization can

be realized. To address this problem, we recommend installing a calibration lens onto each

sensor to ensure regions in the build plane all have equal number of pixels in corresponding

regions in the captured images. Additionally, when performing camera calibration with

homography, the calibrated image resolution should be tailored towards the side of the
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build plane with the fewest pixels to prevent upscaling in the calibration step from inducing

a texture bias across the build plane.

Lighting

Lighting often varies in any image. The lighting orientation, reflections, and shadows may

produce features in an image that dominate features of interest. This was primarily an

issue for the visible recoat modalities. In the post-spread data, the lighting was not uniform

across the column axis of the build plane. In the post-melt data, coupon reflections would

vary based on build plane positioning and the processing parameters. While normalization

was used to negate variations in the average pixel brightness, lighting conditions induced

unique low-level patterns in powder spreads and reflections in melted surfaces across the

build plane. Modifications to the physical arrangement of machine components are limited.

Placing a uniform surface light above the build plane would obstruct the laser beam and the

view of the sensors. A non-intrusive approach should be taken. For the post-spread data,

we recommend implementing a lighting calibration preprocessing step. By capturing local

pixel distributions across the first powder spread, subsequent powder spread pixels could

be calibrated locally using these distributions. For the post-melt data, we have not found

any viable strategies to discuss at this time.

Sensor Damage

The visible recoat camera had prior laser damage which yielded a thick line of dead pixels

in the captured the image. These pixels were black and represent missing data; however,

they also darkened their neighboring pixels. While we could have replaced both dead

and darkened pixels with clean neighbors, the amount of replacement would start creating

an artifact of its own. For this reason, we used the darkened pixels to replace the dead

ones as our Goldilocks zone; however, these pixels were still embedded into the texture

representation which caused artificial separation between coupons 4 and 5 in the powder
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spreads. While there are other image filling techniques that may calibrate the darkened

pixels to their correct brightness, we recommend replacing the sensor as it is inexpensive.

Normalization

In prior experiments that did not individually normalize images, we found textures seg-

mented more often by average brightness than roughness and anomalies. For that reason

we started using normalization to standardize the mean and variance per image sample to

ensure texture was prioritized. Although this preprocessing performed well, it did have

some side effects. When very bright or dark corners/edges/spots deviating from the mean

pixel value were present, they raised the standard deviation of the image which resulted in

the other pixel values being squashed down by normalization. This led to textures being

smoother if they featured bright or dark pixels that deviated far from the mean. We rec-

ommend replacing normalization with a mean-shift transform to ensure images have a zero

mean without changing their variance.

Compiling Frames

In thermal tomography, LWIR, and spatter, multiple frames were captured per layer. To

obtain a single texture image for the layer, these frames had to be compiled together; how-

ever the method of compilation yielded artifacts in LWIR and spatter. Max temperature

LWIR heat maps featured bright lines from the laser pass and darker lines within the hatch

spacing. Almost all image samples exhibited these lines. Some spatter maps embedded

varying lattice structures where pixels on these lattices were brighter. In both modalities,

these artifacts might skew analysis using new data that does not feature these artifacts.
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Cropping

In this work, images were cropped to fit the square coupon regions. This was done to

ensure 100% of the image modeled a texture pixel distribution that excluded sharp edges

at the coupon boundary. By cropping in this way, any part geometry can be analyzed

by convolving a window within the infill region of the part and embedding those regions

into a texture representation that can be characterized by finding a nearest neighbor in a

previous clustering; however this may not hold if boundary information is captured. It is

for this reason that we recommend tightening the cropping as some samples from front row

coupons in thermal tomography captured dark edges that over-extended beyond the coupon

boundary.

6.1.2 Model Architecture

Energy Layer

In the TextureCNN we used average pooling energy layers on feature maps from each level

to embed both low-level and high-level features into the latent vector. There were two is-

sues with this configuration. First, textures in the LPBF data were not semantically uniform

within the image window when anomalies were present. Most anomalies had a small foot-

print within the coupon, so their filter responses would be washed out by average pooling

in the energy layers because the rest of the feature map would have low responses for those

filters where the anomaly was not present. We suggest supplementing the TextureCNN fea-

ture maps with max pool energy layers to ensure small, uncommon features are included

in the embedding. Second, low-level features were embedded into the texture space which

helped characterize roughness categories; however due to blurring, this could promote the

model’s sensitivity to low-level texture distribution biases. This event was most extreme in

the visible recoat post-spread images. We recommend removing the energy layer from the

first set of feature maps to restrain pixel-level information from being prioritized.
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Bottleneck Layer

The bottleneck layer was responsible for embedding features into a compact latent vector

that could be used to classify the input via logistic regression in the last fully-connected

layer. This bottleneck layer was activated using a ReLU function; however, a few of its

neurons died during training. This means not every dimension in the latent space was used.

We recommend replacing ReLU with leaky ReLU or hyperbolic tangent as their gradients

are non-zero for their entire domain. This should prevent neurons from dying and ensure

all latent dimensions are utilized thereby producing a less entangled and more complete

texture representation.

6.1.3 Clustering

The LPBF feature space projections demonstrated there was high textural overlap within

the images from each sensor modality. This overlap led to distinct roughness categories

in the feature space being connected by hundreds of samples providing a smooth interpo-

lation between the two categories. As a result, the cut between clusters assigned by FDC

(hard clustering) became more arbitrary. For this reason, we recommend other clustering

approaches that describe the roughness labeling of clusters in a continuous domain rather

than a discrete one. Soft and hierarchical clustering algorithms such as Fuzzy DBSCAN

[13] and HDBSCAN [20] may be better suited for this task.

6.2 LPBF Tailored Approach

The strategy presented in this thesis relied on learning a compact texture representation

from features present in general texture datasets; however, each LPBF sensor modality and

its corresponding preprocessing produced a unique scope of texture images. If the learned

texture representation was scoped specific to each sensor modality, cleaner segmentation

252



with purer corresponding semantics may be achieved more easily. In deep learning liter-

ature, there exist architectures that can do this for unlabeled datasets such as the LPBF

data. These architectures build off a basic model, namely an autoencoder [10]. The task

of an autoencoder is to learn a compact representation by embedding an input into a low-

dimensional (latent) space such that its reconstructed output matches the input. In recent

literature, this basic model has been tailored to various tasks by supplementing it with other

mechanisms that improve performance. One of these developed architectures is a Varia-

tional Autoencoder (VAE) [14]. It changes how inputs are embedding by reparameterizing

them into mean and standard deviation components. This helps the model generalize fea-

ture combinations for input reconstructions and improve the connectivity and explorability

of the latent space. Training a VAE on a dataset can produce a latent space that better

isolates and organizes semantic information. By sampling the latent space with reconstruc-

tions, clustering and labeling become more effective.

The utility of a VAE does not end with semantic labeling and characterization. In an-

other material manufacturing domain, a TextureVAE [1] was developed using a pre-trained

VGG19 network and a style loss function to learn a representation for material microstruc-

ture images (i.e. cast iron). The latent space could be traversed along a single dimension to

vary a single attribute of generated microstructure images. Additionally, mechanical prop-

erties tied to microstructure elements were highly predictive in the latent space embedding.

This was demonstrated by training a linear regression model to map the dimensions of

the latent space to the mechanical properties in which it achieved R2 scores just shy of

0.9. This work is very relevant to the process development challenges faced in LPBF. To

demonstrate, we propose a series of steps that could be performed for each sensor modality

to map process parameters to process monitoring imagery.

1. Train a TextureVAE to learn a textural representation for a wide variety of sensor

data.

2. Cluster and label embedded images in the latent space.
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3. Train simple ML models to map latent dimensions back to processing parameters.

4. Explore the processing parameter space by visualizing generated sensor images using

the learned mapping between parameters and the latent dimensions.

5. Find processing parameters that produce desirable process monitoring imagery.

Given the potential of texture embedding, it is crucial that the strategies demonstrated in this

approach be applied in further research to improve process quality control and parameter

development with process monitoring. We initially attempted a similar solution by training

a smaller TextureVAE from scratch, but learning to generate sharp reconstructions was an

obstacle we did not overcome at the time. This would be a project to revisit.
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