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ABSTRACT

Grunden, Beverly K. Ph.D., Interdisciplinary Applied Science and Math Ph.D. Program, Wright
State University, 2021. On the Characteristics of a Data-Driven Multi-scale Frame Convergence
Algorithm.

In recent years, data-driven representation methods have been introduced to improve

compressed sensing image reconstruction. This research explores a recently proposed

algorithm that utilizes a data-driven multi-scale Parseval frame for image compression.

Because a sensing matrix by itself may be insufficient to obtain a sparse representation for

an image, a frame is combined with the compressed sensing matrix to increase flexibility in

obtaining a sparse representation. The two-step algorithm optimizes the representation by

alternating between adjusting a sparse coefficient vector and tuning a small filterbank which

determines the frame. The structure of the frame and its relationship with the underlying

filterbank were examined. Numerical experiments to characterize the algorithm include

a search for the appropriate regularization parameters that control emphasis between the

two terms of the objective function, examination of the effect of image size, a parameter

sweep of the relaxation factor of the Weak Matching Pursuit function in the first step of the

algorithm, and the relaxation of the Parseval constraint in the second step. Performance

metrics used to assess the numerical results include execution time and number of loops to

reach convergence, sparsity of the representation, and two image quality measures – peak

signal to noise ratio (PSNR) and Structural Similarity (SSIM). The experiments indicated

the algorithm takes a very long time to reach convergence, even for images of moderate

size, and that reconstructions will result in greater accuracy on image patches with a small

number of pixels (fewer than 100). It was also found that algorithm performance varies

depending on the image format used to specify image brightness of the pixels. Finally, the

Parseval constraint could be removed from the algorithm with improvement in execution

time and sparsity, but without loss of accuracy.
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Chapter 1

Introduction

Digital imaging has had an impact on all parts of our lives from everyday activities to scien-

tific problems in mathematics, physics, engineering, chemistry, and psychology. Acquisition

of these digital images comes from different kinds of sensors that convert the information

into digital signals, which are then processed by a computer. The result is ultimately used

by the consumer.

Handheld digital cameras and those mounted on drones create photographs for profes-

sionals and amateur enthusiasts, but other kinds of sensors allow diverse types of imaging to

be generated. The medical field uses X-rays for imaging, such as digital radiography, fluo-

roscopy, and CT scans; and gamma rays for digital imaging, such as scintigraphy, SPECT,

and PET scans. Sensors employing sound are used in medical ultrasonography and sonar;

radio waves are utilized in military installations to handle radar. In geology, electromagnetic

and sonographic sensors are used to detect seismic reflection and refraction. Physicists use

terahertz radiation for material characterization. Chemists use fluorescence spectroscopy

and hyperspectral analysis to detect the presence of certain gases. Analysis by InfoTrends

indicates that people now take more than 1.4 trillion photos per year, and there are at least

7.4 trillion digital photos stored as of 2020 [1].

Images might be stored on computer hard drives, flash drives or in the cloud. The

1



Internet is a place for sharing, editing, and viewing digital images – not only for personal

use, but also for educational, law enforcement, scientific and medical uses. It is well-known

that a single uncompressed digital image can take up a great amount of memory in terms

of megabytes, or even gigabytes for some purposes, depending on the image resolution.

Therefore, being able to store and transmit these digital images is hampered by the potentially

large file size. Keeping them in their original file sizes will preserve the image quality, but

it is usually necessary to reduce the file size to allow for quicker transmission and faster

downloads. The difficulty is how this can be accomplished without giving up too much

quality and allowing reconstruction with fidelity. This research explores one algorithmic

method of representation and examines the parameters used in this algorithm to determine

where improvements could be made.

In image processing, tight frames have become more frequently applied in handling

both natural and cartoon-type images for almost two decades [2–4]. Fixed, redundant-signal

representation systems, which were described in the early part of this time period, performed

most efficiently for cartoon-type images but did not do nearly so well for images with

complex texture patterns or those without self-recursive image structures, such as fingerprint

and medical images [5]. They rely on functional assumptions that may be invalid for

particular types of images, e.g. isolated objects with 𝐶2 singularities assumed by some tight

frame methods. Such an assumption is applicable to cartoon-type images but not to textured

images [6].

More recently, adaptive methods were developed to improve the efficiency of image

processing for images that lack self-recursive structures. K-SVD1 and other dictionary

learning methods are examples of these adaptive approaches [7–9]. However, overcomplete

dictionaries present at least two problems for image reconstruction. First, they lack the

perfect reconstruction property, which ensures the given signal can be perfectly repre-

sented by its canonical expansion in a manner similar to orthonormal bases; secondly, the

1A dictionary learning algorithm that generalizes the K-Means Clustering process using Singular Value
Decomposition
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overcomplete system often results in a severely ill-posed problem [6].

The next iteration of image processing methods began to take advantage of the infor-

mation stored in the image to generate data-driven representations [5, 6, 10–12]. While

early methods used a fixed tight frame, newer data-driven image processing methods were

developed to use the information stored in the image to derive a dynamically tailored tight

frame system. These image processing methods were extended to more fields of research,

including image denoising, geophysics, medicine, and seismic data analysis. Some of the

early methods using data-driven tight frames were developed in the field of medicine to

reconstruct computed tomography (CT) and magnetic resonance images (MRI) [13, 14]

and in harmonic analysis for image denoising [6]. Research using data-driven methods

has continued to progress in areas such as the analysis of seismic data by interpolation

and denoising [15], redundant transforms based on Parseval frames [16], adaptive wavelet

tight frame construction for accelerating MRI reconstruction [17], and limited angle CT

reconstruction based on total variation (TV) and data-driven tight frames [18].

In the past several years, wavelet tight frames have been used to create sparse represen-

tations of images and signals. These sprang from a generalization of orthonormal wavelet

bases. Because it permits redundancy, a frame provides more flexibility in obtaining sparsity

than orthonormal bases can [19, 20]. By introducing a multi-scale wavelet, frames can

efficiently capture the complex texture patterns that appear in natural images and have the

property of perfect reconstruction. In addition, the construction of a multi-scale tight frame

is more likely to result in a highly sparse approximation of the input image than previous

methods, and it has been shown that the minimization problems arising in the construction

of these tight frames are better conditioned than those of generic overcomplete dictionaries

[6].

The multi-scale wavelet frame is versatile in its ability to decompose images. The

low-pass portion of the multi-scale wavelet filters generates coefficients used to express

the global scales of the image, while the high-pass portion produces coefficients used to
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represent the local scales of the image [21]. By combining the multi-scale nature of this

frame with a small number of compressed sensing measurements, this algorithm aims to

produce sparse representations for a wide variety of images.

Compressed sensing is a field of study that was introduced in 2006 [22] and has

developed into an important tool in many fields including applied mathematics, computer

science, and electrical engineering. The key concept is that the signal itself is sparse (i.e.,

has a small number of non-zero entries), or has a sparse representation. Data acquisition

condenses the signal directly into the compressed representation, without taking a large

number of samples, most of which would have otherwise been thrown away when converted

to a lossy compression format, such as jpeg. Reducing the file size allows more images

to be stored in a given amount of memory space. Efficient algorithms exist to recover

a high-dimensional signal from a small number of measurements when that signal has a

sparse representation against some suitable basis or frame [23]. During the last fifteen

years, applications that use compressed sensing have grown to encompass photography,

holography, facial recognition, magnetic resonance imaging, network tomography, seismic

data analysis, and transmission electron microscopy.

A model combining a sensing matrix with a data-driven multi-scale wavelet frame to

increase the flexibility in obtaining a sparse representation was presented by Cao and Gao

[10]. They proposed an iterative, two-step algorithm to obtain the image representation. The

purpose of this research is to characterize that algorithm, including the tuning of optimization

parameters and aspects that affect the structure of the multi-scale frame, and to discuss

additional refinements regarding the implementation of the algorithm.

1.1 Organization of Dissertation Chapters

The dissertation is organized as follows. Chapter ?? describes background information

that lays the foundation needed for the algorithm being researched. Section 1.2.1 presents
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the compressed sensing model, and Section 1.2.2 introduces frame theory. These two

methods are combined to allow more flexibility in obtaining a sparse representation for

the original image. Section 1.3.1 details the calculation of the tight frame matrix 𝐷,

Section 1.3.2 discusses the model that leads to the two-step representation algorithm shown

in Section 1.3.3.

In Chapter ??, the specifics of the implementation of the algorithm are explained.

Section 2.1 points out how the MATLAB® solvers were chosen. Section 2.2 lays out

specific details for collecting data, such as the filterbanks used to initialize the frame 𝐷, the

generation of the sensing matrix 𝐴, the dilation of filters, and the performance metrics used

to measure algorithm results. Two image formats are described in Section 2.4.

Chapter ?? contains the results of searches for parameters that will optimize algorithm

execution and results. In Section 3.1 the parameters needed for MATLAB solver fminsearch

are narrowed down to a feasible set from which a user may choose to obtain optimal results,

and in Section 3.2, regularization parameters are chosen for three different scenarios that

appear in the next chapter.

Chapter ?? contains the results of the research questions laid out near the beginning of

this study. In Section 4.1 the effects of image size and two maximum dilation levels on the

metrics is described. Section 4.2 explores the results of all possible maximum dilation levels

for a limited set of image sizes. The effect of the relaxation factor of the Weak Matching

Pursuit function used in Step 1 of the algorithm is explored in Section 4.3. In Section 4.4, the

results of applying two different filterbanks is reported, while in Section 4.5, two different

image formats are explored. And finally, Section 4.6 contains the results of interacting three

parameters, i.e. filterbank size, maximum dilation level, and image format.

In Chapter 5, three possible functions used to relax the Parseval constraint are outlined

in Section 5.1, and the results of the relaxation are given in Section 5.3.
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1.2 Background Information

In recent years, wavelet tight frames have been used to create sparse representations of

images and signals. These applications sprang from a generalization of orthonormal wavelet

bases. The construction of these tight frames does not work well on all types of images, so

an alternate approach is to utilize a data-driven method to generate the representation system.

Two important ideas, compressed sensing and frame theory, come together in the model

used and analyzed in this research to generate a representation of the original measured

image.

1.2.1 Compressed Sensing

Classes of high dimensional signals are typically concentrated in or near lower dimensional

subspaces, thus allowing the signal to be represented by a sparse linear combination of

vectors from some basis [19]. Compressed sensing models an original signal f ∈ R𝑁 by

collecting 𝑚 � 𝑁 observed linear measurements g ∈ R𝑚 such that

g = A∗f + e (1.1)

where A ∈ R𝑁×𝑚 is a sensing matrix whose columns represent sensor elements, and e ∈ R𝑚

is an error term that represents noise. The goal is to reconstruct the signal f based on the

observed measurements g and the known sensing matrix A. By convex programming, one

finds the solution to

argmin
f̃∈R𝑁




f̃



1

𝑠.𝑡.




A∗f̃ − g




2
≤ 𝜀, (1.2)

where ‖·‖2 denotes the standard Euclidean norm, ‖ 𝑓 ‖1 =
∑ | 𝑓𝑖 | is the ℓ1-norm and 𝜀 is an

upper bound on the noise [24].

In the earliest compressed sensing literature, the unknown signal f was assumed to

be sparse or compressible in an orthonormal basis [22]. In this research, the signals are
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assumed to be sparse in a redundant frame D ∈ R𝑁×𝑟 where 𝑁 < 𝑟 . Then f = Dv, where v

is a sparse coordinate representation for f , that is, f is sparse or compressible in the frame

D and f can be found by solving Equation (1.3) for v and using it to computef .

v̂ = argmin
v∈R𝑟

‖v‖1 𝑠.𝑡. ‖A∗Dv − g‖2 ≤ 𝜀. (1.3)

1.2.2 Frame Theory

This section presents preliminary information on frames, tight frames, and Parseval frames

in a Hilbert space H � F 𝑚 for some field F . Let 〈·, ·〉 and ‖·‖ denote a preferred inner

product and associated norm for H , respectively. For an index set I ⊂ Z, a sequence of

vectors {φ𝑖}𝑖∈I ⊂ H is a frame for H if there exist 0 < 𝐴 ≤ 𝐵 < ∞ such that for all

f ∈ H ,

𝐴‖f ‖22 ≤
∑︁
𝑖∈I

|〈φi, f 〉|2 ≤ 𝐵‖f ‖22. (1.4)

The constants 𝐴 and 𝐵 are called, respectively, the lower and upper frame bounds for the

frame. If it is possible that 𝐴 = 𝐵, then {φ𝑖} is called a tight frame. If it is possible that

𝐴 = 𝐵 = 1, then {φ𝑖} is called a Parseval tight frame.

There are three important operators associated with a given frame {φi}𝑖∈I . One is the

synthesis operator, defined as Φ : ℓ2(I) → H where

Φ(c) := 𝚽c =
∑︁
𝑖∈I

φ𝑖𝑐𝑖,

for any sequence {𝑐𝑖} = 𝑐 ∈ ℓ2(I). When represented against a basis that is orthonormal

with respect to the given inner product, the matrix that represents the synthesis operator has

columns which are coordinate vectors for the frame vectors: 𝚽 = [. . . φ𝑖 . . . ].
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Another is the analysis operator defined as Φ∗ : H → ℓ2(I), where

Φ∗(f ) := {〈φi, f 〉}𝑖∈I .

Note that this notation differs from frame theory literature that uses traditional inner product

notation, which is conjugate-linear in the right, and this uses the more modern inner product

notation which is conjugate-linear in the left hand side. The modern notation ensures that

when vectors are represented against an orthonormal basis, the inner product corresponds

with the dot product: 〈𝑥, 𝑦〉 = 𝑥∗𝑦.

Finally, the frame operator is defined as 𝑆 = ΦΦ∗ : H → H . It might be considered

the most important operator associated with a frame, because it encodes crucial properties

of the frame [19]. The property of most importance for this research is that Φ is Parseval if

and only if 𝑆 = 𝐼. In addition, the condition 0 < 𝐴 ≤ 𝐵 < ∞ in the definition for a frame

ensures that 𝑆 is bounded and invertible.

For a thorough introduction to the basics of frame theory, it is recommended that the

reader consult Chapter 1 in the book by Casazza and Kutyniok [19].

1.3 Tight Frame D, Model, and Representation Algorithm

The two-step representation algorithm being studied [10] is summarized here to improve

clarity. Individual filters are dilated to various levels and used to calculate the multi-scale

frame D. The model provides the foundation of the two-step algorithm, and is followed by

the motivation for the two-step format.
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1.3.1 Multi-scale Frame D

To create the multi-scale frame D used in this research, a set of 𝑘 filters {ℎ𝑖}𝑘−1𝑖=0 , each of

length 𝑏, is selected as a starting point [10, 25]. To create the multi-scale features of the

frame, the filters are dilated to different scales, or levels, before being combined in the final

matrix D. At level 𝑙, each filter is dilated by inserting 2(𝑙−1) − 1 zeros between consecutive

filter elements. Level 𝑙 = 1 corresponds to the original undilated filter, and level 𝑙 = 𝐿 to the

maximum dilation level allowed by the size of the image or perhaps restricted by the user.

For a given filter ℎ𝑖 at any dilation level 𝑙 ∈ {1, 2, . . . , 𝐿}, the dilated sequence ℎ = ℎ(𝑙) is

created as shown in Equation (1.5).

ℎ(𝑙) :=

{
ℎ𝑖 (1), 0, . . . , 0︸   ︷︷   ︸

2(𝑙−1) − 1

, ℎ𝑖 (2), 0, . . . . . . , 0, ℎ𝑖 (𝑏 − 1), 0, . . . , 0︸   ︷︷   ︸
2(𝑙−1) − 1

ℎ𝑖 (𝑏)
}

(1.5)

It is somewhat more convenient to index this dilated sequence as ℎ = {ℎ( 𝑗)}𝐽
𝑗=−𝐽 , so that

ℎ(0) is in the middle. Note that if 𝑏 is the length of each filter, ℎ𝑖, then the number of

elements in the dilated sequence, ℎ(𝑙) , will be:

2𝐽 + 1 = 𝑏 + (𝑏 − 1) (2(𝑙−1) − 1). (1.6)

The matrix S (ℎ), a convolution operator under the Neumann (symmetric) boundary

condition and shown in definition (1.7) below, is the sum of a Toeplitz matrix plus a Hankel

matrix. It is noted here that the convolution operator S (ℎ) is following the convention of

previous papers on this topic and should not be confused with 𝑆 typically used as the frame

operator in frame theory. Regardless of the dilation level of ℎ, each of these matrices will be

𝑁 ×𝑁 , where 𝑁 is the total number of pixels in the original image. Zeros fill out the Toeplitz

matrix in the outer diagonal rows; for the Hankel matrix, zeros fill in the skew diagonals

from the center to meet the entries from ℎ in the upper left and lower right corners.
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S (ℎ) :=

ℎ(0) ℎ(−1) . . . ℎ(−𝐽) 0

ℎ(1) . . .
. . .

. . .

...
. . .

. . .
. . . ℎ(−𝐽)

ℎ(𝐽) . . .
. . .

. . .
...

. . .
. . .

. . . ℎ(−1)

0 ℎ(𝐽) . . . ℎ(1) ℎ(0)



+



ℎ(1) ℎ(2) . . . ℎ(𝐽) 0

ℎ(2) . .
.

. .
.

... . .
.

. .
.

ℎ(−𝐽)

ℎ(𝐽) . .
.

. .
. ...

. .
.

. .
.

ℎ(−2)

0 ℎ(−𝐽) . . . ℎ(−2) ℎ(−1)


(1.7)

To simplify the notation for D, define H (𝑙)
𝑖

:= S (ℎ(𝑙)
𝑖
). These 𝑁 × 𝑁 matrices at

different dilation levels are then multiplied together to create blocks in the multi-scale

synthesis operator D as shown in Equation (1.8).

D :=

[
𝐿∏
𝑙=1

H (𝑙)
0

�����
(
𝐿−1∏
𝑙=1

H (𝑙)
0

)
H (𝐿)

1

����� . . .
�����
(
𝐿−1∏
𝑙=1

H (𝑙)
0

)
H (𝐿)

𝑘−1�����
(
𝐿−2∏
𝑙=1

H (𝑙)
0

)
H (𝐿−1)

1

�����. . .
�����
(
𝐿−2∏
𝑙=1

H (𝑙)
0

)
H (𝐿−1)

𝑘−1

...����� H (1)
1

�����. . .
����� H (1)

𝑘−1

]
(1.8)

To clarify the composition of the factors of D, observe that although its structure is
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actually

D = [ A | B11 | . . . | B1𝑐 | B21 | . . . | B𝑟𝑐 ], (1.9)

in order to highlight the repetition in the block structure in Equation (1.8), it has been

formatted as shown below.

D = [ A | B11 | . . . | B1𝑐
...

| B𝑟1 | . . . | B𝑟𝑐 ]

The frame D consists of 1 + (𝑘 − 1)𝐿 blocks which are each 𝑁 × 𝑁, so D has 𝑁 rows

and (1 + (𝑘 − 1)𝐿)𝑁 columns. Thus the choice of 𝐿 has two related effects on D, both of

which make it more flexible for representing data. First, each increase in 𝐿 adds 𝑘 − 1 more

blocks to D providing more vectors (columns) to choose from. Second, the matrix products

in those new blocks have an additional term H (𝐿)
𝑖

created from a more dilated filter than in

other blocks, so that the resulting columns of D in those new blocks have more non-zero

entries, or larger support.

1.3.2 Model

Consider the compressed sensing model in Equation (1.1), where if it can be assumed that f

is sparse, the recovery algorithm could take the form

min
f

‖f ‖0, 𝑠.𝑡. g = A∗f , (1.10)

where ‖f ‖0 represents the number of non-zero entries in f . Solving this problem exactly

is NP-hard. Replacing the ℓ0-pseudo-norm with the ℓ1-norm is a convex relaxation of

Equation (1.10) and yields a problem that is more easily solved. This formulation of the

problem is known as Basis Pursuit [26–28] and is defined as

min
f

‖f ‖1, 𝑠.𝑡. g = A∗f . (1.11)
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To recover f from the small number of measurements in g, compressed sensing

algorithms assume the fixed matrix A is represented against an appropriate basis such

that f is sparse in that basis. In practice, f may belong to a class of signals which is not

well understood or one may want to work with multiple classes, so it’s not clear which

measurement matrix will lead to a sparse f . Instead of assuming f is sparse in the relevant

basis, it can represented against a frame D as f = Dv, where v is a coefficient or coordinate

vector for f in terms of D. By tuning the filter-bank scalars that determine D, the sparsity

of v can be improved. As frames can have more flexibility than a basis, in general there’s

a better chance for v and a data-driven, multi-scale frame D taken together to provide a

sparse representation for f . The usual compressed sensing model in Equation (1.1) is now

replaced by Equation (1.12).

g = A∗Dv + e (1.12)

The minimization problem in Equation (1.11) now becomes the one presented in [10]

and shown in Equation (1.13),

min
v,{ℎ𝑖}𝑘−1𝑖=0

(
𝜇‖A∗Dv − g‖22 + ‖v‖1

)
𝑠.𝑡. DD∗ = 𝐼, (1.13)

where 𝜇 > 0 is some regularization parameter, A ∈ R𝑁×𝑚 is a compressed sensing matrix,

D is the multi-scale frame in Equation (1.8), v is the sparse representation of the vectorized

image, as described above, and g ∈ R𝑚 is the vector of observed measurements of the

original image. The constraint DD∗ = 𝐼 ensures D is a Parseval frame, that is, tight with

frame bounds equal to 1.

1.3.3 Representation Algorithm

The optimization problem given in Equation (1.13) is minimized over two different types

of variables. Rather than trying to optimize it all at once, splitting it into alternating steps
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that address D and v independently permits the use of the most efficient algorithm for

each purpose. Starting with an initial filterbank so that D is nonzero, Step 1, shown

in Equation (1.14), holds the filterbank fixed while minimizing the objective function

with respect to v. The first term in the objective function ensures the accuracy of the

representation, while the ℓ1-norm term encourages the sparsity of v.

Step 1: v := argmin
v

(
𝜇1‖A∗Dv − g‖22 + ‖v‖1

)
(1.14)

A regularization parameter 𝜇1 is used to control the emphasis placed on the two terms of the

objective function. More on the regularization parameter will be explained in Section 3.2.

In Step 2, shown in Equation (1.15), the vector v found in Step 1 is held fixed, while

minimizing the error term with respect to the filterbank {ℎ𝑖}𝑘−1𝑖=0 , subject to the Parseval

constraint.

Step 2: {ℎ𝑖}𝑘−1𝑖=0 := argmin
{ℎ𝑖}𝑘−1𝑖=0

(
‖A∗Dv − g‖22

)
𝑠.𝑡. DD∗ = 𝐼 (1.15)

After Step 2, D is updated using the filterbank {ℎ𝑖}𝑘−1𝑖=0 and control returns to Step 1.
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Chapter 2

Implementation

The representation algorithm studied in this research was originally presented by Cao and

Gao [10]. Because the manner used by the authors to implement the algorithm was not

exactly clear, methods of how this might be accomplished were investigated. This was

followed by questions regarding how the algorithm parameters and conditions might be

varied, with a goal of improving accuracy and execution time.

To implement the algorithm in Section 1.3.3, it was necessary to choose suitable solvers

(i.e., MATLAB functions) to find the coefficient vector v in Step 1 and the updated filterbank

in Step 2. It should be noted that the speed of execution was a significant limiting factor and

motivated many of our choices early on in the process. It was taking days to run 1000 pixel

image patches, and an estimate of the time to complete the full images with 65, 000 pixels

(thought to have been used by Cao and Gao) could have taken months or years. The solvers

considered for Steps 1 and 2 are reviewed in Section 2.1. Details of the implementation, such

as fixed parameters and filterbanks are included in Section 2.2. Alternate forms considered

for the error term are discussed briefly in Section 2.3. In Section 2.5, a verification of the

correct direction of multiplication was performed, and in Section 2.4, reviews of two image

formats used in this research were completed.
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2.1 Solvers

To implement the two-step algorithm, several MATLAB solvers were considered, including

fminunc, quadprog, fseminf, fmincon, fminsearch and variations of OMP (Orthogonal

Matching Pursuit). Several of the solvers were eliminated because they did not correctly

apply to our objective function, but those that were appropriate for the settings in Step 1 and

Step 2 and resulted in reasonable execution times were retained. The final set of possible

MATLAB solvers explored for Step 1 were quadprog, Orthogonal Matching Pursuit (OMP),

and Weak Matching Pursuit (WMP), and for Step 2 were fmincon and fminsearch.

For Step 1, time tests were performed on the solvers quadprog, OMP, and WMP.

Quadprog required reformulating the objective function in a specific quadratic programming

format. This included requiring the entries of 𝑣 to be positive, accomplished by separating

𝑣 into the sum of its positive and negative entries. This added complexity to the objective

function and may be part of the reason quadprog did not perform as well as OMP and WMP,

taking much longer to execute and resulting in far less accuracy. OMP was explored next,

having the goal of constructing a target support by adding vectors one at a time from a frame

by iteratively finding the vector that best matches the remaining unrepresented portion of the

target vector [29–31]. WMP, a variation of OMP, specifies a factor 𝑤 ∈ (0, 1] and allows

for a suboptimal choice of the next vector to be included such that it is a factor 𝑤 away from

the optimal choice. When 𝑤 = 1, WMP is identical to OMP. By stopping when it finds a

vector that is good enough (as defined above), WMP executes faster than OMP. The function

WMP was selected for Step 1, because of the need to decrease run-time and because in early

experimentation it was found that the representation algorithm produced similar accuracy

results with WMP as it did with OMP.

The choice of WMP presented a concern: neither of MATLAB’s built in OMP/WMP

functions could be used for Step 1, because they wouldn’t minimize the complete objective

function shown in Equation (1.14), but just the error term, ‖A∗Dv − g‖22. Minimizing only

the error term is inadequate, because the standard OMP and WMP functions would stop
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execution when the norm of the unrepresented residual was smaller than some threshold.

That isn’t sufficient in this case, because the minimum of Equation (1.14) is not expected

to approach zero. As more non-zero entries are placed in v, the error term decreases

monotonically and the 1-norm term increases monotonically.

A version of the WMP function was written to include ‖v‖1 and to be used specifically

for Step 1 in the representation algorithm. It was observed that the error term and 1-norm

terms did not change smoothly, rather changing in spurts such that Equation (1.14) tended

to have local minima near the global minimum and the WMP function would exit when it

encountered the first local minimum. This was accepted, because experimentation showed it

was nearly as good as the global minimum. It took less time than guaranteeing the global

minimum had been found, and it emphasized the sparsity of v. For all numerical results, the

revised WMP function was used with MATLAB’s default value 𝑤 = 0.6 except for those

reported in Section 4.3, which explored the choice of 𝑤.

For Step 2, the MATLAB solver fmincon (a general constrained minimization solver)

was tried on the formulation shown in Equation (1.15), but for speed purposes was switched

out in favor of using fminsearch which required the unconstrained formulation in Equa-

tion (2.1).

{ℎ𝑖}𝑘−1𝑖=0 := argmin
{ℎ𝑖}𝑘−1𝑖=0

(
‖A∗Dv − g‖22 + 𝜇2‖DD∗ − 𝐼 ‖2𝐹

)
(2.1)

All results presented used WMP for Step 1 and fminsearch with the form shown in Equa-

tion (2.1) for Step 2.

2.2 Details

In this section additional important information relevant to our implementation is described.

Two-dimensional images were vectorized into one-dimensional signals. This is a linear
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transformation that converts the two-dimensional image matrix into a column vector by

stacking columns, beginning with column 1, then column 2, etc. For all numerical experi-

ments, the sensing matrix A was a random i.i.d. Gaussian matrix, scaled so that it satisfied

the Restricted Isometry Property (RIP) with high probability [32]. The sampling rate for A

was 𝑝 = 1/2, such that A ∈ R𝑁×(𝑁/2) .

It was determined that computing the full frame D all at once was of concern, because

of the amount of execution time and the computer memory required. Even when using

sparse data structures, the memory required was significant, but further, D consists of

several block matrices multiplied together after which it is used to compute the product Dv.

When faced with a matrix-matrix-vector product, it is much faster to do the matrix-vector

product first, and so it’s best to break v into corresponding blocks and multiply them by

each Toeplitz-plus-Hankel matrix, H (𝑙)
𝑖

. This can be done in such a way that each block

H (𝑙)
𝑖

is only needed once and can then be discarded before constructing the next. For Step 1,

the entire matrix A∗D is needed in memory all at once to construct v, but similarly this

can be built faster and with less memory by combining A∗ with the appropriate blocks,

rather than by constructing D first. Finally, when testing the Parseval condition, it is better

to construct DD∗ block-wise rather than by computing D first and multiplying DD∗.

MATLAB functions were written to facilitate these multiplication strategies.

The numerical experiments and parameter searches were run under MATLAB R2019a

(64 bit) on a high performance cluster with 2x Intel Ten Core Xeon processors (2.2 GHz)

each having 128 GB of memory, or under MATLAB R2020a (64 bit) on a PC workstation

with an 8 core INTEL CPU (4.2 GHz) and 32 GB of memory.

The stopping rule for the representation algorithm was a test of convergence. At the

end of each step of the representation algorithm, the maximum changes in the individual

elements of v and the filterbank ℎ were calculated. If both changes were less than a specified

tolerance the algorithm would finish. The tolerance value 𝑡𝑜𝑙 =
√
𝑒𝑝𝑠 u 1.49−8 was used
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for this research1. The filterbank obtained in the last iteration of Step 2 was used to find the

data-driven frame D. The vector v found in the last iteration of Step 1 was used along with

D to generate the reconstructed image by calculating f = Dv.

2.2.1 B-Spline Wavelet Tight Frames

The blocks H (𝑙)
𝑖

used to build the synthesis operator D, described in Section 1.3.1, require

a set of filters, called a filterbank. These filters may be considered a set of ‘complementary’

wavelets, which will decompose data without gaps or overlap so that the decomposition

process is mathematically reversible. It is well-known that once the one-dimensional frame

filterbank {𝑎𝑖}𝑘𝑖=1 for generating a tight frame is given, a two-dimensional tight frame could

be constructed by the tensor product {𝑎𝑖 ⊗ 𝑎 𝑗 }𝑘𝑖, 𝑗=1 of the one-dimensional frame filters.

To minimize execution time and computer memory requirements, for this research, the

two-dimensional image with 𝑁 pixels was viewed as a vector in R𝑁 by stacking the columns,

beginning with the first column on top of the stack, followed by the second column, etc.

For this research, two versions of the B-spline framelet filter were used to initialize

D, both described by Shen et al [33]. For most of the research, D was initialized with the

piecewise linear B-spline framelet shown in Equation (2.2), which consists of filters {ℎ𝑖}2𝑖=0
of length 𝑏 = 3.

[
ℎ0 ℎ1 ℎ2

]
=
1

4



1
√
2 −1

2 0 2

1 −
√
2 −1


(2.2)

The results of using this set of filters was contrasted with those obtained by using a

larger set of filters { 𝑗𝑖}4𝑖=0 of length 𝑏 = 5. For this comparison, the cubic B-spline filter

shown in Equation (2.3) was chosen.

1In MATLAB, 𝑒𝑝𝑠 gives the machine precision, the difference between 1.0 and the nearest distinguishable
floating point number.
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[
ℎ0 ℎ1 ℎ2 ℎ3 ℎ4

]
=

1

16



1 2 −
√
6 −2 1

4 4 0 4 −4

6 0 2
√
6 0 6

4 −4 0 −4 −4

1 −2 −
√
6 2 1



(2.3)

The possible levels of dilation that can be applied to a filter are constrained by 𝑏, the

length of the filter, and 𝑁 , the number of pixels in the image. Referring back to Equation (1.5)

and Equation (1.7), the number of elements in the filter at any level 𝑙 ∈ [1, 𝐿] must fit into

the upper left hand corner of the 𝑁 × 𝑁 Toeplitz matrix:

𝑏 + (𝑏 − 1) (2(𝑙−1) − 1) ≤ 2𝑁 − 1 (2.4)

𝑀𝑎𝑥𝐿 represents the maximum possible dilation level, and it can be obtained by solving

Equation (2.4) for 𝑙, then taking the floor of the upper bound to get the largest valid integer.

𝑙 ≤ 𝐿 ≤ 𝑀𝑎𝑥𝐿 = floor

(
1 + log2

2(𝑁 − 1)
𝑏 − 1

)
(2.5)

It is possible the user may choose to restrict the value of 𝐿 to something smaller than its

upper bound. Reasons for preferring 𝐿 < 𝑀𝑎𝑥𝐿 are usually due to limited computing

resources or a need for faster run time, but may also be due to its effect on accuracy, as

will be seen in Section 4.2. Unless specified differently in the description of the numerical

experiments, the maximum dilation level parameter was held fixed at 𝐿 = 3.
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2.2.2 Performance Metrics

Six metrics were used to compare the performance of the representation algorithm in

all the scenarios explored in this research. 𝑇𝑖𝑚𝑒 was a platform-dependent measure (in

seconds) and 𝐿𝑜𝑜𝑝𝑠 was a platform-independent measure of how long it would take to reach

convergence. (Note that in order to detect convergence, a final ‘static’ loop with no change is

always needed.) Two metrics describe the vector v; they are the number of nonzero entries

in v represented by 𝑣0, and the 1-norm of v denoted by 𝑣1.

Finally, two metrics measure the accuracy of reconstruction. The first accuracy measure

is Peak Signal to Noise Ratio (𝑃𝑆𝑁𝑅), whose values lie in the interval [0,∞). 𝑃𝑆𝑁𝑅 is a

commonly used measure that is easy to calculate. The formula is shown in Equation (2.6)

𝑃𝑆𝑁𝑅 = 10 log10
2552

𝑀𝑆𝐸
, (2.6)

where 𝑀𝑆𝐸 = 1
𝑀∗𝑁

∑𝑀
𝑖=1

∑𝑁
𝑗=1( 𝑓 (𝑖, 𝑗) − 𝑔(𝑖, 𝑗))2, and 𝑓 (𝑖, 𝑗), 𝑔(𝑖, 𝑗) are the pixel values

of the original image and estimate of the image, respectively, and the dimensions of both

images are 𝑀 × 𝑁 . Note that the value of 255 in the numerator corresponds to the maximum

brightness level of a pixel in the image when using the integer format. Section 2.4 contains

a more detailed discussion of this topic.

The second accuracy measure is the Structural Similarity measure (𝑆𝑆𝐼𝑀), and is

based on a product of three factors that are indicators of luminance, contrast, and structure.

Hore and Ziou [34] explain this more complicated formula shown in Equation (2.7)

𝑆𝑆𝐼𝑀 ( 𝑓 , 𝑔) = 𝑙 ( 𝑓 , 𝑔) ∗ 𝑐( 𝑓 , 𝑔) ∗ 𝑠( 𝑓 , 𝑔), (2.7)
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Table 2.1: Performance metrics used in this research.

Metric Description

𝑇𝑖𝑚𝑒 Time to complete representation algorithm (in seconds)
𝐿𝑜𝑜𝑝𝑠 Number of loops to complete representation algorithm
𝑣0 ‖𝑣‖0 - number of nonzero entries (pseudo-norm notation)
𝑣1 ‖𝑣‖1 - the 1-norm of v

𝑃𝑆𝑁𝑅 Peak Signal to Noise Ratio - measure of accuracy
𝑆𝑆𝐼𝑀 Structural Similarity - measure of accuracy

where

𝑙 ( 𝑓 , 𝑔) =
2𝜇 𝑓 𝜇𝑔 + 𝐶1

𝜇2
𝑓
+ 𝜇2𝑔 + 𝐶1

𝑐( 𝑓 , 𝑔) =
2𝜎 𝑓𝜎𝑔 + 𝐶2

𝜎2
𝑓
+ 𝜎2

𝑔 + 𝐶2

𝑠( 𝑓 , 𝑔) =
𝜎 𝑓 𝑔 + 𝐶3

𝜎 𝑓𝜎𝑔 + 𝐶3

(2.8)

The first definition in Equation (2.8) is the luminance comparison function and uses means

𝜇 𝑓 and 𝜇𝑔. This factor is maximized and equal to 1 only if luminance is the same for both 𝑓

and 𝑔. The second definition in Equation (2.8) is the contrast comparison function and uses

standard deviations 𝜎 𝑓 and 𝜎𝑔. This factor is maximized and equal to 1 only if contrast is

the same for both 𝑓 and 𝑔. The third definition is the structure comparison function which

measures the correlation coefficient between 𝑓 and 𝑔 using the covariance 𝜎 𝑓 𝑔. The positive

constants 𝐶1, 𝐶2, and 𝐶3 are used to avoid a null denominator.

Formally, 𝑆𝑆𝐼𝑀 can be negative (for example, by comparing a photograph and its

film negative), but comparing two random and completely unrelated images will yield an

𝑆𝑆𝐼𝑀 of 0 on average, and for our purposes of trying to match an original image with a

reconstruction, 𝑆𝑆𝐼𝑀 should lie in the interval [0, 1]. Note that larger values for either

measure indicate greater accuracy in the representation and reconstruction. Interestingly, it

has been shown there is an analytical relation between 𝑃𝑆𝑁𝑅 and 𝑆𝑆𝐼𝑀 [34].

Ideally, one would like the largest possible values for 𝑃𝑆𝑁𝑅 and 𝑆𝑆𝐼𝑀, but the
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smallest possible values for 𝐿𝑜𝑜𝑝𝑠, 𝑇𝑖𝑚𝑒, 𝑣0 and 𝑣1. These will be the goals when choosing

parameters in the research that follows.

2.3 Alternate Forms Considered

As part of the exploration of this algorithm, alternate forms of the objective function were

considered in Step 1. An early attempt to improve upon the representation algorithm

collapsed the two-step algorithm into a single step method. This updated both the coefficient

vector 𝑣 and the filterbank {ℎ𝑖}𝑘−1𝑖=0 in the same step, as shown in Equation (2.9)

min
v,{ℎ𝑖}𝑘−1𝑖=0

(
𝜇‖A∗Dv − g‖22 + ‖v‖1

)
𝑠.𝑡. DD∗ = 𝐼 (2.9)

Both MATLAB solvers, fmincon and fminsearch were applied in time tests. However, this

single step was inefficient, regardless of the solver used. Because of the time and computer

resources required to complete the single step, it was abandoned.

Another early attempt explored variations on the norms used in the objective function in

Step 1 of the representation algorithm. Forms (2.10) and (2.11) are variations of Form (2.12),

used by the authors of the algorithm. These were considered in the hope that something

faster would be found - fast enough to handle the 65, 000 pixel images the authors [10]

appeared to use for their reported results. They were abandoned, because both resulted in

larger reconstruction errors, took longer to execute, and showed no obvious advantages.

‖A∗Dv − g‖2 + ‖v‖1 (2.10)

‖A∗Dv − g‖22 + ‖v‖21 (2.11)

‖A∗Dv − g‖22 + ‖v‖1 (2.12)
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2.4 Test Images and Image Formats

Test images were utilized to explore the efficiency and accuracy of the representation

algorithm, which is the focus of this research. Those shown in Figure 2.1 are commonly

used in image processing research, because they demonstrate a range of textures and

brightness values. Each of these were stored as 256 × 256 grayscale images, resulting in a

total of 𝑁 = 216 pixels.

Figure 2.1: Test images: 256 × 256 grayscale pixels.

The test images were stored in integer format, where each pixel value has an intensity

or brightness value equal to an integer in the interval [0, 255]. The value ‘0’ represents

black, ‘255’ represents white, and values in between represent shades of gray. Figure 2.2

displays the range of brightness values for this format [35].

 

Figure 2.2: In integer format, grayscale images are stored with 256 different integer values.

Sometimes images are stored using floating point values, instead of integer values. The

range of values for floating point images have intensity or brightness values in the interval
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[0, 1]. The value ‘0’ still represents black, but ‘1’ represents white, and decimal values in

between ‘0’ and ‘1’ represent shades of gray. Figure 2.3 displays the range of shades of gray

for this format [35].

 

Figure 2.3: In floating point format, grayscale images are stored with decimal values in
[0, 1].

The image format might have an effect on the execution of the representation algorithm

and the metrics used to characterize it. Section 4.5 explores these effects and provides details

about them using descriptive statistics. To get the floating point format from the integer

format, each pixel value was divided by 255 to obtain a value in [0, 1].

2.5 Determining the Correct Order of Multiplication of

the Blocks in D

It was not clear whether to interpret the matrix multiplication in Equation (1.8) as the

usual left to right multiplication or as in operator composition, resulting in multiplication

from right to left, especially since some sources conflated whether the expressions in

Equation (1.8) were producing the analysis or synthesis operator for the frame, which are

transposes of each other. To be absolutely certain, the construction of D was performed

in two different ways: first by multiplying the matrix components H (𝑙)
𝑖

of all blocks as
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indicated in Equation (1.8), i.e., the forward direction, and second by multiplying them

together in the reverse order. For example, when 𝐿 = 3 the first block of D would look like

H (1)
0 H (2)

0 H (3)
0 in the forward direction and H (3)

0 H (2)
0 H (1)

0 in the reverse. These results

are briefly included here as a guide to readers.

For each of the 𝑛 = 105 observations, the algorithm was run constructing D in both

forward and reverse directions. Means and standard deviations were calculated for each

of the performance metrics in both directions. Paired t-tests were used to compare means

and Kolmogorov-Smirnov (KS) tests to compare distributions. Those results are shown in

Table 2.2. More information about the statistical tests used here can be found in Chapters

7.2 and 13.7 in the book by Wayne Daniels [36].

Table 2.2: Paired t-tests compare means and K-S tests compare distributions of forward and
reverse directions of block multiplications for constructing the analysis operator D.

Forward
Mean ± SD

Reverse
Mean ± SD

Paired t-test:
p-value

K-S test:
p-value

𝑇𝑖𝑚𝑒(𝑠) 22.1 ± 4.9 118.2 ± 26.2 1.6 × 10−59 1.6 × 10−45

𝐿𝑜𝑜𝑝𝑠 16.6 ± 4.2 42.7 ± 13.4 1.8 × 10−34 5.3 × 10−42

𝑃𝑆𝑁𝑅 22.8 ± 4.6 2.4 ± 4.5 1.4 × 10−61 7.2 × 10−43

𝑆𝑆𝐼𝑀 0.46 ± .15 0.01 ± .02 2.1 × 10−53 1.6 × 10−45

𝑣0 117.1 ± 10.6 128.0 ± 0.1 3.0 × 10−17 1.9 × 10−39

𝑣1 43,818 ± 11,520 65,043 ± 44,612 1.5 × 10−06 2.8 × 10−07

Histograms of the data observations are shown in Figure 2.4. Smaller values for 𝐿𝑜𝑜𝑝𝑠,

𝑇𝑖𝑚𝑒, 𝑣0, and 𝑣1 are desirable, and the data represented by the blue bars for the forward

direction in the histograms are obviously smaller than the data represented by the red bars

used for the reverse direction. Larger values are preferred for 𝑃𝑆𝑁𝑅 and 𝑆𝑆𝐼𝑀 . For these

two metrics the forward data is clearly larger than for the reverse data. The histograms

certainly indicate the forward direction appears to be significantly better than the reverse

direction for all the metrics. The p-values for the K-S and paired t-tests in Table 2.2 strongly
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support this conclusion, even after taking into consideration the number of tests that were

performed.
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Figure 2.4: Histograms display distributions of individual observations in forward and
reverse directions of multiplication in the construction of the analysis operator D. Forward
direction distributions display more desirable values, i.e., smaller for 𝐿𝑜𝑜𝑝𝑠, 𝑇𝑖𝑚𝑒, 𝑣0, and
𝑣1, and higher for 𝑃𝑆𝑁𝑅 and 𝑆𝑆𝐼𝑀 .

Visual examination of two randomly chosen image patch reconstructions verified the

extreme inaccuracy indicated by the reverse order, to the point that one would not even

consider those to be representations of the original. Figure 2.5 shows the forward and reverse

reconstruction results of two randomly chosen image patches.

The extremity of the results provides a clear indication that the forward direction is the

correct order of multiplication, and this direction was used for all experiments described in

this research.
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Figure 2.5: Originals of two randomly chosen image patches from the Cameraman and Boat
test images and reconstructions using forward and reverse directions of multiplication of 𝐷.
The reconstructions for the reverse directions are clearly inferior to the forward direction
results.
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2.6 Chapter Summary

This chapter reported many of the details that were important in the implementation of

the representation algorithm being characterized. Time tests were used to determine that

Weak Matching Pursuit (WMP) would be best suited for Step 1 of the algorithm, while the

MATLAB function fminsearch would be best for Step 2. It was found, however, that the

MATLAB function for WMP did not minimize the entire objective function, only the error

term ‖A∗Dv − g‖22. A version of the WMP function was written specifically to include

‖v‖1.

Additional details that were outlined include two different filterbanks to initialize the

frame matrix 𝐷, metrics to measure performance under different scenarios, the test images

that were used to examine the proposed parameter variations, and a comparison of two image

formats, i.e., methods of representing the brightness of pixels in the test images. Alternate

forms of the error term in the objective function were considered, and a verification of the

multiplication direction of the blocks making up the frame matrix 𝐷 was shown.
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Chapter 3

Parameters

Some of the parameters used in the implementation of the algorithm were related to settings

for a MATLAB solver, while others were part of the objective function that is minimized.

This chapter explores choices of tolerance parameters for MATLAB solver fminsearch

and regularization parameters that control emphasis of the terms of the objective function

minimized in the two-step algorithm studied here.

3.1 Tolerance Parameters for fminsearch

The MATLAB solver 𝑓 𝑚𝑖𝑛𝑠𝑒𝑎𝑟𝑐ℎ has two tolerance parameters that govern its termination,

and these were examined with the goals of improving execution duration and sparsity, while

maximizing reconstruction accuracy. The first, 𝑇𝑜𝑙𝑋 , sets a tolerance for the step size in the

independent variable (i.e., the filterbank ℎ) and the second, 𝑇𝑜𝑙𝐹𝑢𝑛, sets a tolerance for the

change in the output of the objective function (i.e., Equation (2.1)), and the algorithm stops

when both changes are smaller than the specified tolerances. Matlab sets the default values

of these parameters as 𝑇𝑜𝑙𝑋 = 10−4 and 𝑇𝑜𝑙𝐹𝑢𝑛 = 10−4.

For this experiment, ranges of values were explored for the parameters 𝑇𝑜𝑙𝑋 and
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Figure 3.1: Heat maps displaying means of the metrics by termination tolerance parameters
𝑇𝑜𝑙𝐹𝑢𝑛 and 𝑇𝑜𝑙𝑋 , used in MATLAB solver fminsearch. Log scales are used for both axes.

𝑇𝑜𝑙𝐹𝑢𝑛. They are 𝑇𝑜𝑙𝑋 = 10 𝑗 , where 𝑗 ∈ {−6.5,−6.25, . . . , 1.75, 2}, and 𝑇𝑜𝑙𝐹𝑢𝑛 = 10𝑖,

where 𝑖 ∈ {−6,−5.75, . . . , 3.75, 4}. There were 𝑛 = 50 observations collected for each

(𝑇𝑜𝑙𝑋 , 𝑇𝑜𝑙𝐹𝑢𝑛) combination. The ranges for each of the tolerance parameters include the

default values, but they are extended in the direction that preliminary exploration suggested

the optimal values might exist for this application. Heatmaps displaying means of the six

metrics are shown in Figure 3.1.

Except at the edge where 𝑇𝑜𝑙𝑋 ≤ 10−6, the means for 𝐿𝑜𝑜𝑝𝑠, 𝑇𝑖𝑚𝑒, and 𝑣0 clearly

display movement toward optimal values as 𝑇𝑜𝑙𝐹𝑢𝑛 increases. For 𝑇𝑜𝑙𝑋 > 10−6 the means

change only when 𝑇𝑜𝑙𝐹𝑢𝑛 changes, indicating 𝑇𝑜𝑙𝑋 has no effect on these three metrics in

this interval. The plots also indicate that using the MATLAB default value 𝑇𝑜𝑙𝐹𝑢𝑛 = 10−4

makes the algorithm work harder and brings in more non-zeros entries of v, which in turn,

accesses more columns of D. Based on only these three plots, choosing 𝑇𝑜𝑙𝑋 > 10−6 and
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Figure 3.2: Heat maps displaying blurred versions of plots in Figure 3.1 for 𝑃𝑆𝑁𝑅, 𝑆𝑆𝐼𝑀 ,
𝑣1. Each point is an average of the data within 2 grid points (horizontally and vertically)
around each (𝑇𝑜𝑙𝑋, 𝑇𝑜𝑙𝐹𝑢𝑛) combination.

𝑇𝑜𝑙𝐹𝑢𝑛 > 10−1 would yield more optimal values for 𝐿𝑜𝑜𝑝𝑠, 𝑇𝑖𝑚𝑒, and 𝑣0.

In contrast, for the mean plots of 𝑃𝑆𝑁𝑅, 𝑆𝑆𝐼𝑀, and 𝑣1 in Figure 3.1, it is unclear

whether the high and low values are concentrated in certain regions or distributed across

the space. It appears that the upper half of each of these plots shows more mean values

in the optimal direction than the lower half, but to explore this further, means were calcu-

lated using all data within 2 grid points (horizontally and vertically) around each (𝑇𝑜𝑙𝑋 ,

𝑇𝑜𝑙𝐹𝑢𝑛) combination. In Figure 3.2, each point is an average of 𝑘 grid points where

𝑘 ∈ {25, 20, 16, 15, 12, 9}, depending on how close the point is to the boundaries of the

parameter space. Now it is clear from these blurred versions of the plots that the upper half

of each of these will contain optimal values for 𝑇𝑜𝑙𝐹𝑢𝑛. The results observed for 𝐿𝑜𝑜𝑝𝑠,

𝑇𝑖𝑚𝑒, and 𝑣0 combined with those from the blurred plots for 𝑃𝑆𝑁𝑅, 𝑆𝑆𝐼𝑀 , and 𝑣1 suggest

that 𝑇𝑜𝑙𝑋 ∈ [10−5, 102] and 𝑇𝑜𝑙𝐹𝑢𝑛 ∈ [10−1, 104] would be good values for the use of

fminsearch in Step 2 of this representation algorithm.
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3.2 Regularization Parameters

When minimizing an objective function, it is common to place a large (positive) regular-

ization parameter, or weight, on the term that needs more emphasis (rather than placing a

small scalar on the term that needs less emphasis). These values must be chosen, but there

is nothing inherent to this problem that would indicate good values, nor is it clear what the

authors of the algorithm used. They did include a regularization parameter for Step 1, but

for Step 2 it seems likely they used the Lagrange factor method [37] in order to enforce

the Parseval constraint shown in Equation (1.15). The Lagrange factor method was tested,

but the run-time took far too long and limited the feasible number of contexts that could

be explored. This led to a reformulation of Equation (1.15) as Equation (2.1). For Step 1,

the regularization parameter, 𝜇1, used by the authors was retained. Its purpose is to apply

emphasis on driving the error term to be zero, while the 1-norm term keeps the coefficient

vector v as sparse as possible. For Step 2, Equation (2.1) was developed by converting the

Parseval constraint in Equation (1.15) to a new term in the objective function. The inclusion

of the regularization parameter, 𝜇2, enforces that constraint by pushing the frame operator

DD∗ toward the identity matrix and D toward being Parseval.

The process of selection of the values of 𝜇1 and 𝜇2 and the motivation behind it is

described in the sections below. The following articles are a small sample of the still growing

field of research on regularization for discrete ill-posed problems [38–41].

It is notable that a large emphasis is highly desired on terms which should be zero,

but starting with a value that is too large can make the optimization sensitive to the initial

conditions, and it may get locked into an undesirable local minimum early on. One way

to avoid this is to start with a smaller value and increase it over the execution of the

algorithm. This permits more flexibility to move across the search space, while still ending

the optimization with a large emphasis on the desired terms. To incorporate this paradigm,

constant and increasing values for both 𝜇1 and 𝜇2 were explored.

A sensitivity analysis was performed for each of the four scenarios in which these
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parameters were needed. The following sections lay out the method and specific details used

to determine the regularization parameters included in the algorithm. It was not assumed

that one pair of parameters would be appropriate in all settings, and the general method was

repeated for the cases shown below. The goal was to prioritize accuracy of the reconstruction,

followed by execution speed.

The results of the sensitivity analyses in searching for optimal regularization parameters

for three of the scenarios appear in the sections below. However, the fourth scenario required

more information about Parseval Relaxation and is included in Chapter ??.

3.2.1 Regularization Parameters: Integer Format and 3×3 Filterbank

To do a thorough sensitivity test, both constant and increasing functions of the loop index

were tested for each of the regularization parameters. After a bit of preliminary exploration,

the first set of test functions were chosen for 𝜇1 and 𝜇2. The initial sets of functions

spanned a broad parameter space, but without much resolution. The constant functions

tested were 10𝑥 , where 𝑥 ∈ {5, 10, 15, . . . , 40}. The increasing functions tested were 𝐵𝑡 ,

where 𝑡 was the loop index of the representation algorithm, and 𝐵 ∈ {
√
2, 2, 5, 10}. All

possible combinations of 𝜇1 and 𝜇2 were examined for 𝑛 = 50 data points, and because the

parameter space was large, smaller 8×8 image patches were utilized. It is generally desirable

to seek parameters that will minimize values of 𝐿𝑜𝑜𝑝𝑠, 𝑇𝑖𝑚𝑒, and 𝑣0, but maximize values

of 𝑃𝑆𝑁𝑅 and 𝑆𝑆𝐼𝑀 .

The results for this first stage of testing are summarized as descriptive statistics shown

in Table 3.1. This was a first attempt to convey the results concisely, and the data tables

from which these statistics were calculated can be seen in Appendix A.1. First, it was noted

that regardless of 𝜇2, a constant function for 𝜇1 was not optimal. When 𝜇1 is constant, the

number of 𝐿𝑜𝑜𝑝𝑠 required to reach convergence was very small and showed little variability

as measured by the standard deviations (SD = 0.5 when 𝜇2 is constant and SD = 0.0 when 𝜇2

is increasing). For most of these (𝜇1, 𝜇2) combinations, the algorithm reached convergence
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Table 3.1: Descriptive statistics based on means for round 1 tests of constant and increasing
𝜇1 and 𝜇2. Data collected utilizing integer image format and 3 × 3 filterbank.

Constant 𝜇2 Increasing 𝜇2

Loops Time (s) PSNR SSIM Loops Time (s) PSNR SSIM

Max 3.0 2.6 22.8 0.51 2.0 0.2 22.8 0.51
Constant Mean 2.4 1.3 22.8 0.51 2.0 0.2 22.8 0.51
𝜇1 Mode 2.0 2.6 22.8 0.51 2.0 0.2 22.8 0.51

Min 2.0 0.2 22.8 0.51 2.0 0.2 22.8 0.51
SDa 0.5 1.1 0.0 0.00 0.0 0.0 0.0 0.00

Max 23.1 8.4 23.4 0.54 42.5 18.4 23.2 0.53
Increasing Mean 6.5 3.5 23.0 0.52 31.3 11.6 22.9 0.52
𝜇1 Modeb 3.5 3.2 23.4 0.53 — — 22.9 0.52

Min 3.3 0.9 22.8 0.51 18.2 4.0 22.6 0.50
SD 4.6 1.8 0.2 0.01 6.8 4.6 0.2 0.01

a Standard Deviation
b No mode exists: —

after only 2 iterations. Because the algorithm detects convergence after a final loop where

both v and D are essentially unchanged, converging when 𝐿𝑜𝑜𝑝𝑠 = 2 means each step

was executed just once in the first loop. One small region of the parameter space having

constant 𝜇1 showed that 3 loops were executed, however, neither of these 𝐿𝑜𝑜𝑝𝑠 values

indicates a robust execution of the two-step algorithm. Because 𝑇𝑖𝑚𝑒, 𝑃𝑆𝑁𝑅, and 𝑆𝑆𝐼𝑀

also showed little variability in this part of the parameter space, all combinations where 𝜇1

was a constant function were rejected.

In the next part of the parameter space to be examined both 𝜇1 and 𝜇2 were increasing

functions. Both 𝑃𝑆𝑁𝑅 and 𝑆𝑆𝐼𝑀 have reasonably good results with Max, Min, and Mean

all close to 𝑃𝑆𝑁𝑅 = 23 and 𝑆𝑆𝐼𝑀 = 0.52, but 𝐿𝑜𝑜𝑝𝑠 and 𝑇𝑖𝑚𝑒 display unwanted, large

values. This observation suggested the combination of increasing 𝜇1 and increasing 𝜇2

should be avoided. Finally, for the last part of the parameter space, 𝜇1 was increasing and 𝜇2

was constant. In this region, the values of all four metrics were within reasonable ranges and
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Figure 3.3: Surface plots based on means for round 2 tests of increasing 𝜇1 and constant
𝜇2. Data collected utilizing integer image format and 3 × 3 filterbank. The base 𝐵 of 𝜇1 is
shown on the left axis and the exponent of 𝜇2 is shown on the right axis in reverse order.

indicate the algorithm is executing as expected. By process of elimination, the conclusion

was to use 𝜇1 as an increasing function of the loop index 𝑡 and 𝜇2 as a constant function.

Based on the values observed and the conclusions noted in the paragraph above, the

second, more refined parameter search was focused on the area with better results and

included increased resolution. The increasing functions tested in the second round were

𝜇1 = 𝐵𝑡 , where 𝐵 ∈ {1.1, 1.2, . . . , 2.0}. The constant functions tested were 𝜇2 = 10𝑥 , where

𝑥 ∈ {5, 6, . . . , 19}.

Results of the second set of tests with refinements as described above are shown in

Figure 3.3 as surface plots of the metric means. In Figure 3.3(a) the means of 𝐿𝑜𝑜𝑝𝑠

decrease as both 𝐵(𝜇1) and log(𝜇2) increase. In Figure 3.3(d) the 𝑇𝑖𝑚𝑒 plot shows similar
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behavior. The plot for 𝑣0 shown in Figure 3.3(b) shows a decrease (i.e. increasing sparsity)

as 𝐵(𝜇1) increases and as log(𝜇2) decreases. Finally, 𝑃𝑆𝑁𝑅 and 𝑆𝑆𝐼𝑀 do not seem to

exhibit any trends except, perhaps, a tendency to decrease when log(𝜇2) gets larger. After

examining all these plots more carefully, it was determined that for future analyses that

utilize the integer format and 3× 3 filterbank, the regularization parameters employed would

be 𝜇1 = 1.4𝑡 and 𝜇2 = 1013.

3.2.2 Regularization Parameters: Floating Point Format

The effect on this algorithm of using a floating point format to store the image pixel

values was explored. It was necessary to select a potentially different pair of regularization

parameters to be used when floating point image formats were utilized. The method used to

choose appropriate regularization parameter values followed along the same lines as that

used for the default integer format with 3 × 3 filterbank shown in Section 3.2.1.

In Round 1 of testing, both constant and increasing functions were included in the

search for 𝜇1 and 𝜇2. The constant functions tested were 10𝑥 , where 𝑥 ∈ {5, 10, 15, . . . , 40}.

The increasing functions tested were 𝐵𝑡 , where 𝑡 was the loop index of the representation

algorithm, and 𝐵 ∈ {
√
2, 2, 5, 10}. As was noted for the first regularization parameter search,

only the combinations that included increasing 𝜇1 and constant 𝜇2 resulted in appropriate

values for all performance metrics. The tables containing Round 1 means, based on 𝑛 = 20

observations for all combinations and for all metrics are shown Appendix A.2.

The round 2 search restricted the parameter space to increasing 𝜇1 = 𝐵𝑡 where

𝐵 ∈ {1.3, 1.5, 1.7, . . . , 3.9, 4.1}, and constant 𝜇2 = 10𝑥 , where 𝑥 ∈ {5, 7, . . . , 19}. Re-

sults for the means for all the metrics are shown as surface plots in Figure 3.4. The metrics

𝐿𝑜𝑜𝑝𝑠, 𝑇𝑖𝑚𝑒, and 𝑣0 show the most desirable values where log(𝜇2), is smallest. Unfortu-

nately, this part of the parameter space is also where the accuracy measures, 𝑃𝑆𝑁𝑅 and

𝑆𝑆𝐼𝑀 , are smallest and least desirable.

Because a good pair of choices for 𝜇1 and 𝜇2 was not evident in the Round 2 results,
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Figure 3.4: Surface plots based on means for round 2 tests of increasing 𝜇1 and constant 𝜇2.
Data collected utilizing floating point image format and 3 × 3 filterbank. The base 𝐵 of 𝜇1
is shown on the horizontal axis and the exponent of 𝜇2 is shown on the vertical axis.

a third search was performed with an expanded search area. The values were extended to

test increasing 𝜇1 = 𝐵𝑡 where 𝐵 ∈ {4.0, 4.1, , . . . , 4.4, 4.5, 5, 6, . . . , 14, 15}, and constant

𝜇2 = 10𝑥 , where 𝑥 ∈ {3, 4, 5, 6, 7}. The tables with conditional formatting are shown in

Figures 3.5, 3.6, and 3.7. Note that more desirable values are formatted in green, while less

desirable values are formatted in red.

Figure 3.5 indicates that larger values of 𝐵(𝜇1), labeled as 𝑀𝑢1, will yield faster

execution time and fewer loops for convergence of the algorithm. Figure 3.6 points to two

pairs of values within that area of the parameter space that appear likely to provide larger

accuracy. Although smaller values of 𝐵(𝜇1) might have reduced sparsity slightly, it was

determined that 𝜇1 = 14𝑡 and 𝜇2 = 105 would best for floating point image format data.
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Mean Mu2 Constant FPR3
Loops 1E+03 1E+04 1E+05 1E+06 1E+07

Mu1  4.0 9.90 9.30 8.80 8.95 8.10
4.1 9.65 9.35 8.75 8.50 8.20

4.2 9.95 9.55 8.85 8.30 7.95

4.3 9.95 9.45 8.60 8.55 8.15

4.4 10.10 9.55 8.60 8.25 8.25

4.5 9.10 9.40 8.45 8.35 8.25
5.0 9.20 8.65 7.95 7.65 7.40

6.0 8.40 8.25 7.55 7.40 7.35

7.0 7.70 7.85 6.60 6.60 6.25
8.0 7.65 7.60 6.85 6.15 6.35

9.0 7.60 7.00 6.90 6.25 6.30

10.0 7.60 7.20 6.85 6.15 6.05

11.0 6.80 7.20 6.50 5.75 5.95
12.0 7.25 6.85 6.40 5.85 5.70

13.0 6.90 6.40 6.40 5.90 5.80

14.0 7.10 6.60 6.20 5.85 5.75
15.0 6.45 6.40 6.15 5.55 5.45

In
cr

ea
si

n
g

Mean Mu2 Constant FPR3
Time 1E+03 1E+04 1E+05 1E+06 1E+07

Mu1  4.0 3.25 2.28 1.64 1.60 1.42

4.1 3.23 2.30 1.59 1.50 1.44

4.2 3.27 2.34 1.56 1.48 1.38
4.3 3.18 2.30 1.54 1.52 1.43

4.4 3.06 2.27 1.49 1.51 1.44

4.5 2.87 2.19 1.47 1.54 1.46

5.0 2.70 2.08 1.36 1.36 1.28

6.0 2.46 2.00 1.24 1.35 1.24

7.0 2.09 1.77 1.10 1.05 1.01

8.0 1.86 1.57 0.98 0.93 1.03

9.0 1.87 1.43 0.99 0.96 1.00

10.0 1.83 1.38 0.94 0.95 1.00

11.0 1.63 1.37 0.85 0.80 0.97

12.0 1.73 1.29 0.86 0.83 0.92

13.0 1.67 1.09 0.91 0.85 0.90

14.0 1.64 1.07 0.86 0.83 0.88
15.0 1.51 1.06 0.84 0.78 0.83
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g

Figure 3.5: Conditionally formatted tables displaying round 3 means for 𝐿𝑜𝑜𝑝𝑠 and 𝑇𝑖𝑚𝑒

in search for regularization parameters of floating point data with 3 × 3 filterbank. Mu1
is the base of 𝜇1 = 𝐵𝑡 and Mu2 is 𝜇2. More desirable values are formatted in green, less
desirable values are formatted in red.

Mean Mu2 Constant FPR3
PSNR 1E+03 1E+04 1E+05 1E+06 1E+07

Mu1  4.0 21.96 22.41 23.72 24.86 24.47
4.1 22.24 22.45 23.89 24.83 24.70

4.2 22.36 22.49 24.02 25.00 24.72

4.3 22.22 22.26 23.89 24.80 24.84

4.4 22.09 22.99 24.21 24.72 24.84

4.5 21.60 23.27 24.32 24.73 24.83
5.0 22.67 23.48 24.29 24.46 24.94

6.0 22.86 22.70 24.94 24.83 24.96

7.0 23.16 23.61 24.79 24.84 24.58
8.0 23.39 23.59 24.86 24.85 24.85

9.0 23.17 23.25 24.82 25.08 24.97

10.0 23.38 24.09 24.51 24.94 25.01

11.0 23.47 23.21 24.50 24.76 24.97
12.0 22.79 24.56 24.71 24.86 24.96

13.0 23.38 24.62 25.39 24.89 24.84

14.0 23.74 24.77 25.36 24.89 24.84
15.0 24.27 24.71 25.10 25.00 24.84
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ea
si

n
g

Mean Mu2 Constant FPR3
SSIM 1E+03 1E+04 1E+05 1E+06 1E+07

Mu1  4.0 0.362 0.371 0.432 0.470 0.453

4.1 0.372 0.387 0.428 0.474 0.462

4.2 0.375 0.396 0.430 0.473 0.456
4.3 0.380 0.385 0.422 0.472 0.469

4.4 0.368 0.414 0.437 0.467 0.469

4.5 0.350 0.430 0.445 0.467 0.468

5.0 0.387 0.445 0.450 0.461 0.472

6.0 0.385 0.405 0.476 0.480 0.479

7.0 0.401 0.423 0.481 0.474 0.467

8.0 0.410 0.430 0.484 0.478 0.478

9.0 0.408 0.424 0.469 0.496 0.495

10.0 0.424 0.457 0.462 0.488 0.497

11.0 0.427 0.411 0.458 0.481 0.494

12.0 0.390 0.478 0.472 0.488 0.494

13.0 0.415 0.472 0.516 0.489 0.485

14.0 0.430 0.479 0.516 0.489 0.485
15.0 0.458 0.480 0.503 0.491 0.485
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Figure 3.6: Conditionally formatted tables displaying round 3 means for 𝑃𝑆𝑁𝑅 and 𝑆𝑆𝐼𝑀

in search for regularization parameters of floating point data with 3 × 3 filterbank. Mu1
is the base of 𝜇1 = 𝐵𝑡 and Mu2 is 𝜇2. More desirable values are formatted in green, less
desirable values are formatted in red.
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Mean Mu2 Constant FPR3
V0 1E+03 1E+04 1E+05 1E+06 1E+07

Mu1  4.0 31.60 31.60 30.55 30.70 29.35
4.1 31.10 31.70 30.60 30.60 30.35

4.2 31.35 31.70 31.60 30.05 30.00

4.3 31.40 31.80 31.55 31.50 31.20

4.4 31.70 31.75 31.65 30.60 31.35

4.5 31.55 31.80 31.75 30.60 31.50
5.0 31.75 31.45 31.70 30.50 30.40

6.0 31.75 31.80 31.55 31.70 31.80

7.0 31.75 31.75 30.55 29.70 28.65
8.0 31.65 31.70 30.75 29.65 29.70

9.0 31.70 31.80 31.60 31.90 31.90

10.0 31.75 31.80 31.85 31.85 31.85

11.0 31.75 31.70 31.90 31.65 31.90
12.0 31.85 31.90 31.80 31.65 31.85

13.0 31.95 31.90 31.85 31.85 31.90

14.0 31.95 31.90 31.90 31.90 31.90
15.0 31.95 31.75 31.90 31.90 31.90
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Figure 3.7: Conditionally formatted tables displaying round 3 means for 𝑣0 in search for
regularization parameters of floating point data with 3 × 3 filterbank. Mu1 is the base of
𝜇1 = 𝐵𝑡 and Mu2 is 𝜇2. More desirable values are formatted in green, less desirable values
are formatted in red.

3.2.3 Regularization Parameters: Integer Format and 3×3 Filterbank

This research included the use of a larger 5 × 5 filterbank, shown in Equation (2.3) and

described in [33]. Before using this filterbank, a sensitivity analysis was performed to

determine if the regularization parameters used in the research with the 3 × 3 filterbank

should be adjusted to values more appropriate for the larger 5 × 5 filterbank.

A small number of observations showed that, as in the testing for 3 × 3 filterbanks and

for floating point data, only the (𝜇1, 𝜇2) combinations for which 𝜇1 was increasing and 𝜇2

was constant produced results that were considered reasonable. The search was focused

on the area with better results and included increased resolution. The increasing functions

tested were 𝜇1 = 𝐵𝑡 , where 𝐵 ∈ {1.1, 1.2, . . . , 1.7}. The constant functions tested were

𝜇2 = 10𝑥 , where 𝑥 ∈ {12, 13, . . . , 18}.

The results for the performance metrics in this round of tests are shown as surface

plots in Figure 3.8. Examination of the plots indicated that only a slight change from the
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Figure 3.8: Surface plots based on means for round 2 tests of increasing 𝜇1 and constant
𝜇2. Data collected utilizing integer image format and 5 × 5 filterbank. The base 𝐵 of 𝜇1 is
shown on the horizontal axis and the exponent of 𝜇2 is shown on the vertical axis.

regularization parameters used for the 3 × 3 filterbank would result in better results for all

five metrics whose means were observed. The final choice of 𝜇1 = 1.6𝑡 and 𝜇2 = 1014

yielded better accuracy without increasing execution time and sparsity too much.

3.3 Chapter Summary

Two groups of parameters were examined in this chapter. The first was the pair of parameters

needed for the MATLAB function fminsearch. TolX sets the tolerance for the stepsize of

the independent variable, the filterbank ℎ, and TolFun, sets the tolerance for the change in

the objective function used in Step 2. The algorithm exits when both changes are smaller

than the specified tolerances. It was found that tolerance values resulting in more desirable

values for all metrics are 𝑇𝑜𝑙𝑋 ∈ [10−5, 102] and 𝑇𝑜𝑙𝐹𝑢𝑛 ∈ [10−1, 104].
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The second group to be explored included the pairs of regularization parameters 𝜇1 in

Step 1 and 𝜇2 in Step 2. It was found that different pairs of regularization parameters were

appropriate for different settings. Three of these settings were : (1) integer format and 3 × 3

filterbank, (2) floating point format and 3 × 3 filterbank, and (3) integer format and 5 × 5

filterbank. The regularization parameters are shown in Table 3.2. A fourth setting required

information not yet developed, and is shown in Chapter ??.

Table 3.2: Regularization parameters for first three settings, where 𝑡 is the loop index of the
representation algorithm.

Image Format FB 𝜇1 𝜇2

Integer 3 × 3 1.4𝑡 1013

Floating Point 3 × 3 14𝑡 105

Integer 5 × 5 1.6𝑡 1014
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Chapter 4

Numerical Experiments

Numerical experiments were performed to determine the effect that different variables had

on the effectiveness of the representation algorithm, as measured by the performance metrics.

This chapter describes these explorations and draws conclusions, where possible. Section 4.1

examines how the size of the image patch would affect the performance metrics. The results

were expected to depend on the maximum dilation level 𝐿, and results were compared

using 𝐿 = 3, the default maximum dilation level used by the authors, and 𝐿 = 𝑀𝑎𝑥𝐿, the

maximum possible dilation level based on image and filter sizes. Section 4.2 examines

the results when 3 ≤ 𝐿 ≤ 𝑀𝑎𝑥𝐿 for image patches having number of pixels 𝑁 = 2 𝑗

where 𝑗 ∈ {3, 4, . . . , 10}. The image patch sizes were chosen because these 𝑁 showed

important results in Section 4.1. Section 4.3 explores the choice of relaxation parameter,

𝑤, specified in the WMP function used in Step 1 of the representation algorithm. This

exploration was expanded to include the interaction of the choice of 𝑤 with the sampling rate

𝑝, which governed the number of columns in the sensing matrix 𝐴. Section 4.4 compares

the performance metrics between usage of filterbanks of size 3× 3 and 5× 5, and Section 4.5

makes a comparison between the two image formats described in Section 2.4. The last

section in this chapter pulls together parameters in a three-way analysis to find interactions

among filterbank sizes, image formats and maximum dilation levels.
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4.1 Algorithm Behavior for Number of Pixels Between

Powers of 2

The initial goal for this experiment was to characterize the best performance of the repre-

sentation algorithm in terms of accuracy. Authors of the original article used 𝐿 = 3, but it

seemed likely that a larger maximum dilation level might yield better results by providing

more frame vectors to choose from, so 𝐿 = 𝑀𝑎𝑥𝐿 was included. Data for this exploration

was generated using different image patch sizes, and for each 𝑁 , used the largest dilation

level possible. Because the filters have length 𝑏 = 3, Equation (2.5) becomes the simplified

relationship between 𝑁 and 𝑀𝑎𝑥𝐿 shown here.

𝑀𝑎𝑥𝐿 = floor(1 + log2(𝑁 − 1))

𝑁 ∈
(
2 𝑗−1, 2 𝑗

]
⇐⇒ 𝑀𝑎𝑥𝐿 = 𝑗

Image patch dimensions were chosen so that 𝑁 is the product of height (HT) and width

(WD), where HT and WD are integers and the aspect ratio was restricted to the interval
[
1
2 , 2

]
.

If more than one pair of dimensions produced the same value of 𝑁 , the pair with aspect

ratio closest to 1 was used. There were 𝑛 = 112 observations collected for each of the 178

possible values of 𝑁 ∈ [6, 512]. For each of the patch sizes, because they were vectorized

vertically, the observations were evenly split between tall and wide patches, to avoid the

orientation becoming a confounding factor.

In the results, a pattern was noted in the behavior of some performance metrics within

each level of 𝑀𝑎𝑥𝐿. To highlight this pattern, in Figure 4.1 each interval of 𝑁 ∈
(
2 𝑗−1, 2 𝑗

]
=

(0.5, 1] · 2 𝑗 was scaled to the interval (0.5, 1]. Figure 4.1 shows a peak at the middle of

each scaled interval for 𝐿𝑜𝑜𝑝𝑠, 𝑇𝑖𝑚𝑒, and 𝑣1, becoming more pronounced as 𝑁 and 𝑀𝑎𝑥𝐿

increase. 𝐿𝑜𝑜𝑝𝑠 and 𝑣1 can have a significant drop after the middle of the Scaled 𝑁 axis.

𝑇𝑖𝑚𝑒 also appears to have a dip, but a much smaller one. The final observation to make
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Three Metrics with Scaled N (L = MaxL)
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Figure 4.1: Means for 𝐿𝑜𝑜𝑝𝑠, 𝑇𝑖𝑚𝑒, 𝑣1 when 𝐿 = 𝑀𝑎𝑥𝐿. Each set of N values, having the
same value of 𝑀𝑎𝑥𝐿, has been scaled to (0.5, 1] allowing a comparison of behavior among
different values of 𝑀𝑎𝑥𝐿.

from Figure 4.1 is to note that each of these metrics exhibits an upward step as 𝑁 transitions

from one interval to the next as 𝑀𝑎𝑥𝐿 increments.

To see if this pattern held for smaller values of 𝐿, the plots for 𝐿𝑜𝑜𝑝𝑠, 𝑇𝑖𝑚𝑒, and 𝑣1

are shown in Figure 4.2, for 𝐿 = 3. The same pattern between powers of 2 is not observed

at this level of 𝐿, nor is there a stepped increase in these metrics as 𝑁 transitions through

powers of 2. It was expected these behaviors would become gradually present and more

pronounced as 𝐿 approached 𝑀𝑎𝑥𝐿 (rather than due to some special phase shift that only

occurs, for example, when 𝐿 goes from 𝑀𝑎𝑥𝐿 − 1 to 𝑀𝑎𝑥𝐿).

It seemed likely the ’swoosh’ pattern in 𝐿𝑜𝑜𝑝𝑠 and 𝑣1, and to a lesser extent in 𝑇𝑖𝑚𝑒,

must develop as 𝐿 increases from 𝐿 = 3 to 𝑀𝑎𝑥𝐿. To explore that expectation, another

set of plots examine the transition from 𝐿 = 3 to 𝐿 = 𝑀𝑎𝑥𝐿 for the set of 𝑁 such that

27 < 𝑁 ≤ 28. These values of 𝑁 have 𝑀𝑎𝑥𝐿 = 8, and the plots include sets of points for

𝐿 ∈ {3, 4, 5, 6, 7, 8}. For the given set of 𝑁 , it seems that the ’swoosh’ develops more and
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Three Metrics with Scaled N (L = 3)
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Figure 4.2: Means for 𝐿𝑜𝑜𝑝𝑠, 𝑇𝑖𝑚𝑒, 𝑣1 when 𝐿 = 3. Each set of N values, having the
same value of 𝑀𝑎𝑥𝐿, has been scaled to (0.5, 1] allowing a comparison of behavior among
different values of 𝑀𝑎𝑥𝐿. The jump in 𝑇𝑖𝑚𝑒 occurring between 𝑁 = 190 and 192 (shown
in red squares) is likely due to machine architecture.

more as 𝐿 increases, becoming obvious when 𝐿 = 7. However, the stepped increase as 𝑁

transitions through powers of 2 as seen in the 𝐿 = 𝑀𝑎𝑥𝐿 plots does not appear in the plots

of Figure 4.3.

It was noted the 𝐿 = 3 results exhibit an odd jump in 𝑇𝑖𝑚𝑒 when 𝑁 goes from 190 to

192. The jump is also seen in Figure 4.3 for 𝐿 = 4, but begins to fade out for 𝐿 = 6. This

jump was observed on two different sets of data generated on the cluster, but the jump was

not present there when run on the PC workstation. 𝑇𝑖𝑚𝑒 is expected to vary from machine

to machine, but the other metrics in the desktop results were consistent with the results from

the cluster, so it is likely the observed gap is due to machine specific architecture of the

cluster.

The other three metrics, 𝑣0, 𝑃𝑆𝑁𝑅, and 𝑆𝑆𝐼𝑀, show no such sensitivity to 𝑀𝑎𝑥𝐿

and exhibit smoother behavior as 𝑁 increases, as shown in Figure 4.4 and Figure 4.5. It

is worth noting here that the number of measurements 𝑚 = 𝑝𝑁 forms an upper bound for
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Three Metrics: 27<N 28; Variable L
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Figure 4.3: Means for 𝐿𝑜𝑜𝑝𝑠, 𝑇𝑖𝑚𝑒, 𝑣1 for 27 < 𝑁 ≤ 28 and maximum dilation levels
𝐿 ∈ {3, 4, 5, 6, 7, 8}. 𝑁 has been scaled from (27, 28] to (0.5, 1].

𝑣0 (where 𝑝 is the sampling rate). This occurs because the WMP function used in Step 1

sequentially selects linearly independent columns of A∗D to represent g in R𝑚 and stops

when the residual is small. By the time 𝑚 columns are selected, WMP has constructed a

basis for R𝑚 (so that the residual is the zero vector). These results were produced using

𝑝 = 0.5, and a linear fit through the means of 𝑣0 in Figure 4.4(a) has slope 0.436 (0.454 for

Figure 4.4(b)), indicating that on average this algorithm will produce a vector v with 87%

as many non-zero entries (91% for 𝐿 = 3) as the number of measurements made.

Counterintuitively, an examination of Figures 4.5, (a) and (b), shows that after an initial

increase for extremely small 𝑁 , both 𝑃𝑆𝑁𝑅 and 𝑆𝑆𝐼𝑀 indicate a minor decline in accuracy

as the sizes of image patches increased. More research is required to determine why this

occurred. It should be noted that there is no relationship between the limits in the vertical

axes for Figure 4.5. While 𝑆𝑆𝐼𝑀 is restricted to [0, 1] (for our purposes), 40 was chosen

as a nice round upper value for the 𝑃𝑆𝑁𝑅 axis, because it made the axes and data easy to

compare. For 𝐿 = 3, 𝑃𝑆𝑁𝑅 is slightly smaller but 𝑆𝑆𝐼𝑀 decreases more, when compared
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Figure 4.4: Means and maximum possible values of 𝑣0. The red line is 𝑚 = 𝑝𝑁 = 𝑁/2.
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Figure 4.5: Mean 𝑃𝑆𝑁𝑅 and Mean 𝑆𝑆𝐼𝑀 for 𝐿 = 𝑀𝑎𝑥𝐿 and 𝐿 = 3.

to these metrics for 𝐿 = 𝑀𝑎𝑥𝐿. These results are consistent with the findings in [34], and

all values in Figure 4.5 are consistent with a curve just above the one highlighted in red in

Figure 2 of that paper, corresponding with a covariance value slightly below 𝜎 = 102.

4.2 Setting Dilation Level: 𝐿 < 𝑀𝑎𝑥𝐿 vs 𝐿 = 𝑀𝑎𝑥𝐿

In the calculation of the Parseval frame D, there are several things to consider when choosing

between letting 𝐿 take on its maximum possible value, or fixing it at some smaller value.

The choice depends on parameters such as the length of filters in the filterbank, the number

of pixels in the image, and the various costs of additional execution time as the value of

𝐿 increases. This experiment attempts to determine what dilation level might be most

appropriate for different image patch sizes and constraints on resources.
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Figure 4.6: Heat maps of means for metrics with image sizes 𝑁 = 2 𝑗 for 𝑗 ∈ {3, 4, . . . , 10}
and dilation levels 𝐿 ∈ {3, 4, . . . , 𝑀𝑎𝑥𝐿}. Means of 𝑇𝑖𝑚𝑒, 𝑣0 and 𝑣1 are plotted on a log
scale.

Figure 4.6 shows heatmaps of the means for the six performance metrics. Because

of the jump in execution time going from 𝑁 = 2 𝑗 to 𝑁 = 2 𝑗 + 1 shown in Figure 4.1(b),

the data for this numerical experiment were generated using image patch sizes 𝑁 = 2 𝑗

for 𝑗 ∈ {3, 4, . . . , 10}. For each value of 𝑁 the dilation levels were set to all possible

values of 𝐿 ∈ {3, 4, . . . , 𝑀𝑎𝑥𝐿}. Because 𝑀𝑎𝑥𝐿 = 𝑗 for 𝑁 = 2 𝑗 , this produced the

triangular-shaped parameter space shown in Figure 4.6. Here, vertical lines correspond with

fixed 𝑁 , horizontal lines correspond with fixed 𝐿, and the grid points on the hypotenuse

correspond with 𝐿 = 𝑀𝑎𝑥𝐿. There are 36 possible (𝑁, 𝐿) ordered pairs in this parameter

space, and 𝑛 = 100 observations were collected for each. For this section, the data for the

36 points correspond with the vertices in the figure, and the heatmap color is interpolated

between those grid points. The metrics 𝑇𝑖𝑚𝑒, 𝑣0, and 𝑣1 are displayed with a log scale

because extreme values in the upper-right corner had oversaturated the heatmaps, making it

impossible to interpret the variation in the rest of the space.

The purpose of Section 4.1 was to examine the algorithm performance as 𝑁 increases,
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ranging between powers of 2. The purpose of this Section 4.2 is to examine the algorithm

behavior in the space between 𝐿 = 3 and 𝐿 = 𝑀𝑎𝑥𝐿. Note the data for Section 4.1 was

collected along the 𝐿 = 𝑀𝑎𝑥𝐿 step-function just above the hypotenuse (up to 𝑁 = 29) but

with data collected for values of 𝑁 between powers of 2.

The (nearly) parallel bands of color in Figure 4.6(a), (b), (d), and (e) make it seem

like those heatmaps represent linear surfaces, but in fact only Figure 4.6(b) is linear. An

indicator of sparsity, 𝑣0 does not depend on the dilation level 𝐿 and is in fact a simple

multiple of 𝑁 as indicated in Figure 4.4. The pseudo-linear appearances of the other three

figures make it seem that 𝑇𝑖𝑚𝑒 and 𝑣1 depend on 𝑁 in a polynomial fashion (since those are

log-log plots) and on 𝐿 in an exponential manner, and make it seem 𝐿𝑜𝑜𝑝𝑠 has a logarithmic

relationship with 𝑁 and a linear one with 𝐿. However, these three surfaces are actually not

as linear as these color gradients make them appear, i.e., they still contain curvature, so these

relationships are not so straightforward. However, it can still be said that 𝐿𝑜𝑜𝑝𝑠, 𝑇𝑖𝑚𝑒, and

𝑣1 grow faster with 𝐿 than they do with 𝑁 . Interestingly, since 𝑣0 does not depend on 𝐿 but

𝑣1 grows rapidly with 𝐿, this means that as the dilation level increases and D provides more

vectors to choose from, the vector v is not picking up additional entries but is choosing

more extreme values to scale the vectors in D.

Of special note, there is less yellow in the corner of the 𝑇𝑖𝑚𝑒 plot in Figure 4.6(d)

(which is plotted on a log scale) than the amount of yellow in the corner of 𝐿𝑜𝑜𝑝𝑠 plot in

Figure 4.6(a). This means that if you were to plot 𝑙𝑜𝑔(𝑇𝑖𝑚𝑒) against 𝐿𝑜𝑜𝑝𝑠 then it would

curve upward, indicating that execution 𝑇𝑖𝑚𝑒 grows much faster than one might expect

based on the number of loops.

Finally, the behavior of 𝑃𝑆𝑁𝑅 and 𝑆𝑆𝐼𝑀 is different from the other metrics. Both

of these metrics are largest at 𝑁 = 25 = 32 along the hypotenuse where 𝐿 = 𝑀𝑎𝑥𝐿 = 5,

which corresponds with the peak at the very left end in Figure 4.5. This indicates that to

emphasize accuracy, one should break the image of interest into 4 × 8 or 8 × 8 patches and

use 𝐿 = 𝑀𝑎𝑥𝐿. Note that since the horizontal axis for Figure 4.6 is 𝑙𝑜𝑔2(𝑁), most of the
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Figure 4.7: Boxplots of metrics for 𝑁 = 210, with 𝐿 ∈ {3, 4, . . . , 10}, corresponding with
the rightmost edge of the triangles in Figure 4.6. Whiskers extend to the largest and smallest
values that are not outliers. Outliers are indicated by ‘+’.

heatmap area corresponds to small values of 𝑁 .

Larger values of 𝑁 may be of some interest, and Figure 4.7 shows boxplots of the

observations where 𝑁 = 210, corresponding with the rightmost vertical edge of the triangular

parameter space shown in Figure 4.6. The boxes span the 1𝑠𝑡 to the 3𝑟𝑑 quartiles and

the whiskers extend to the largest and smallest non-outlier values, where outliers are any

observations more than 1.5 times the inner-quartile range away from the box. Outliers are

shown as ‘+’. Note that 𝑇𝑖𝑚𝑒 and 𝑣1 are still plotted logarithmically, but that 𝑣0 is not,

because it made that chart harder to read. As noted before, for the most part 𝑣0 does not

depend on 𝐿, however, higher 𝐿 permits lower 𝑣0 outliers. Because 𝑇𝑖𝑚𝑒 and 𝑣1 appear

to have a linear relationship with 𝐿 on a logarithm plot (except for 𝐿 = 10), they grow

exponentially with 𝐿. Boxplots for 𝑃𝑆𝑁𝑅 and 𝑆𝑆𝐼𝑀 may indicate a slight improvement

going from 𝐿 = 3 to 𝐿 = 4, but no discernible improvement for larger values of 𝐿. As

observed for the heatmaps in Figure 4.6, 𝐿𝑜𝑜𝑝𝑠 increases with 𝐿.
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4.3 Effect of WMP Factor w on Performance Metrics

The WMP algorithm was originally chosen for Step 1, because of the need for faster run-time

to permit more observations on larger image patch sizes. Taken alone, WMP executes faster

than OMP and our early experimentation showed it gave similar results for the objective

function in Step 1. The 𝑇𝑖𝑚𝑒 metric in Figure 4.8 showing a faster execution time at 𝑤 = 1,

however, indicates that OMP in Step 1 coupled with fminsearch for Step 2 is faster than

using WMP coupled with fminsearch. That is, OMP takes slightly longer in Step 1, but the

resulting v permits Step 2 to run faster, enough to make up for the slightly longer Step 1.

The WMP function was written to exit when it encountered the first local minimum,

because experimentation showed that it was nearly as good as the global minimum. This

took less time than guaranteeing the global minimum had been found, and it emphasized the

sparsity of v.

4.3.1 Single Factor Analysis with w

As discussed above, WMP uses a factor 𝑤 ∈ (0, 1], permitting it to quickly choose a vector

from a frame that, when compared to the vector OMP would choose, is a less optimal fit

to the target by this factor. In this numerical exploration, testing values of the parameter

𝑤 ∈ {0.05, 0.1, 0.15, . . . , 0.95, 1.0} was performed. To avoid confounding the results, data

collection was organized so that all possible values of 𝑤 would be used once with the same

sensing matrix A and 16 × 16 image patch. This was repeated with new random sensing

matrices and image patches for a total of 𝑛 = 200 observations at each value of 𝑤. Figure 4.8

shows these observations as box plots for each metric and value of 𝑤. The boxes span the

1𝑠𝑡 to the 3𝑟𝑑 quartiles and the whiskers extend to the largest and smallest non-outlier values,

where outliers are any observations more than 1.5 times the inner-quartile range away from

the box. Outliers are shown as ‘+’.

Examination shows that there is not one value of 𝑤 that optimizes all of the metrics.
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Figure 4.8: Boxplots of metrics for each WMP value of 𝑤 ∈ {0.05, 0.1, . . . , 0.95, 1.0}.
Whiskers extend to the largest and smallest values that are not outliers. Outliers are indicated
by ‘+’.

𝐿𝑜𝑜𝑝𝑠, 𝑇𝑖𝑚𝑒, 𝑣0, and 𝑣1 tend to improve as 𝑤 approaches 1 (i.e., as WMP approaches

OMP), because it is generally desirable to have these as small as possible. In contrast, where

larger values of 𝑃𝑆𝑁𝑅 and 𝑆𝑆𝐼𝑀 indicate better accuracy, 𝑤 = 0.65 gives the highest means

for these metrics, the highest median for 𝑆𝑆𝐼𝑀 and nearly tied for the highest median of

𝑃𝑆𝑁𝑅.

4.3.2 Two Factor Analysis with w and Sampling Proportion p

A parameter not yet explored is the number of measurements taken of the original image,

specified in this numerical experiment by the sampling rate 𝑝. The value of 𝑝 controls the

number of columns in the sensing matrix A, whose the dimensions are 𝑁 × (𝑝𝑁). This

experiment combines 𝑝 with the relaxation parameter 𝑤 from the WMP algorithm in a

design of experiments approach to see the effect of both parameters on the six performance
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Figure 4.9: Surface plots for means of metrics plotted by 𝑤 and sampling rate 𝑝. The plot
for 𝑣1 is on a log scale.

metrics.

Data collection for this numerical experiment used all possible combinations of the

factor 𝑤 ∈ {0.05, 0.1, 0.15, . . . , 1.0} and sampling rate 𝑝 ∈ {0.05, 0.1, 0.15, . . . , 0.50}. The

same 16 × 16 image patch and sensing matrix were applied with all 200 combinations of

𝑤 and 𝑝. A total of 𝑛 = 120 observations were collected using this procedure. Figure 4.9

shows the results of the six metrics as surface plots with independent variables 𝑤 and 𝑝.

Note that 𝑣1 is plotted on a log scale to better understand the effect of 𝑤 and 𝑝 on that

metric.

Ideally, one would like combinations of 𝑤 and 𝑝 that produce the largest possible

values for 𝑃𝑆𝑁𝑅 and 𝑆𝑆𝐼𝑀 , but the smallest possible values for 𝐿𝑜𝑜𝑝𝑠, 𝑇𝑖𝑚𝑒, 𝑣0 and 𝑣1.

However, no single point in the (𝑤, 𝑝) plane will provide the optimal point for all of the

performance metrics simultaneously. To understand what will work best, one must consider
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what the needs of the user will be.

The surface plots for the accuracy measures, 𝑃𝑆𝑁𝑅 and 𝑆𝑆𝐼𝑀 , exhibit similar behavior

patterns in Figure 4.9(c) and Figure 4.9(f). The 𝑤 range showing reasonably good results is

widest when 𝑝 = 0.5 and gets narrower as 𝑝 decreases. However, as 𝑝 decreases, the plateau

for 𝑃𝑆𝑁𝑅 is sustained longer than for 𝑆𝑆𝐼𝑀. For these data, the mean 𝑃𝑆𝑁𝑅 has a local

maximum of 23.2 at the point 𝑤 = 0.55, 𝑝 = 0.5, and the mean 𝑆𝑆𝐼𝑀 has local maximum

of 0.4766 at the point 𝑤 = 0.6, 𝑝 = 0.5.

Another important requirement might be that of sparsity, as measured in this research

by 𝑣0. Examination of Figure 4.9(b) suggests that as 𝑝 increases and more measurements of

the original image are taken, the vector v contains more nonzero elements, i.e. becomes

less sparse. Also note that when 𝑤 → 1, there is a slight decrease in the number of nonzero

entries in v, but, according to the 𝑃𝑆𝑁𝑅 and 𝑆𝑆𝐼𝑀 plots, there is a considerable decrease

in accuracy. The surface plot for 𝑣1, shown in Figure 4.9(e) presents a more straightforward

analysis. It remains relatively flat for values of 𝑤 ≥ 0.5, then increases rapidly as 𝑤 → 0.

The surface plots for 𝐿𝑜𝑜𝑝𝑠 and 𝑇𝑖𝑚𝑒, shown in Figure 4.9(a) and Figure 4.9(d) have

similar structure, peaking near the point where 𝑤 = 0.05 and 𝑝 = 0.5, and falling away as

𝑤 increases and 𝑝 decreases. On both of these plots there are valleys on the edge where

𝑝 = 0.05. Those might appear to be optimal positions for measures of execution time, but

it’s more likely they represent scenarios in which the representation algorithm reached a

local minimum from which it could not move away.

In conclusion, it is clear that small 𝑝 should be avoided, because of the very small

accuracy observed, regardless of the value of 𝑤. For 𝑝 ≥ 0.2, 𝑤 does not depend on 𝑝, and

choosing a moderate value of 𝑤, say 𝑤 ∈ [0.55, 0.65] would maximize the accuracy, while

not affecting the execution duration and sparsity too adversely.
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4.4 Algorithm Behavior for 3× 3 vs 5× 5 Filterbank

Previous work on this project used the piecewise linear B-spline framelet 𝐹𝐵 = 3 × 3

shown in Equation (2.2) to initialize the synthesis operator D. In this section, the results

of the larger, cubic B-spline framelet 𝐹𝐵 = 5 × 5 shown in Equation (2.3) was compared

to the results of the smaller filterbank. Before comparing the mean performance metrics

results for the two filterbank sizes, a sensitivity analysis was performed to determine if the

regularization parameters used in the research utilizing 𝐹𝐵 = 3 × 3 should be adjusted to

values more appropriate for the larger 𝐹𝐵 = 5 × 5. Table 4.1 displays the regularization

parameters used for each filterbank in the data collection for this section. Section 3.2.1 and

Section 3.2.3 explained how these regularization parameters were determined.

Table 4.1: Regularization parameters for comparison of 3 × 3 and 5 × 5 filterbanks.

Filterbank 𝜇1 𝜇2

3 × 3 1.4𝑡 1013

5 × 5 1.6𝑡 1014

To compare the behavior of the metrics under the two different filterbank sizes, 𝑛 = 100

observations were generated. For each of these, a random sensing matrix A and 16×16 image

patch were created. The algorithm first used the 3 × 3 filterbank to find the representation

and reconstruction of the image patch, then repeated the process by using the 5×5 filterbank.

The mean metrics were calculated by filterbank across the total set of observations. These

data are reported in Table 4.2.

It is noted that, although the larger filterbank takes longer to process, fewer loops are

required. In addition, when 𝐹𝐵 = 5 × 5 the reconstructions were more accurate and resulted

in much lower sparsity than that obtained by 𝐹𝐵 = 3 × 3. My conclusion is that if time is

not a serious constraint, better results can be obtained by using the larger 5 × 5 filterbank.
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Table 4.2: Means of metrics for 3 × 3 and 5 × 5 filterbanks.

Filterbank 𝑇𝑖𝑚𝑒(𝑠) 𝐿𝑜𝑜𝑝𝑠 𝑃𝑆𝑁𝑅 𝑆𝑆𝐼𝑀 𝑣0 𝑣1

3 × 3 17.5 16.8 23.0 0.47 117.9 45035
5 × 5 25.8 7.5 27.4 0.67 86.9 52797

4.5 Algorithm Behavior for Integer and Floating Point

Image Formats

The representation algorithm studied here used four grayscale images shown in Figure 2.1

as initial image signals to be reconstructed. These images were stored with integer pixel

values in the interval [0, 255], but sometimes grayscale images are stored with floating point

values in the interval [0, 1]. It was possible the image format might affect the execution of

the representation algorithm and the metrics used to characterize it. This section compares

the means of the metrics under each of the image formats described above. The maximum

dilation level 𝐿 = 3 and the 3 × 3 filterbank shown in Equation (2.2) were utilized for both

formats.

Table 4.3: Regularization parameters for comparison of image formats.

Image Format 𝜇1 𝜇2

Integer 1.4𝑡 1013

Floating Point 14𝑡 105

Regularization parameters were selected for the floating point format using the method

described in Section 3.2.2. The increasing 𝜇1 and constant 𝜇2 parameters chosen for the

floating point format are given in Table 4.3, along with the corresponding parameters used

for the integer format comparison. Data were collected by generating 𝑛 = 100 observations.

For each of these, a sensing matrix A and 16 × 16 image patch were randomly chosen. The
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Table 4.4: Means of metrics for integer and floating point formats.

Format 𝑇𝑖𝑚𝑒(𝑠) 𝐿𝑜𝑜𝑝𝑠 𝑃𝑆𝑁𝑅 𝑆𝑆𝐼𝑀 𝑣0 𝑣1

Integer: [0, 255] 15.2 16.8 22.7 0.48 117.5 176.4a

Floating Point: [0, 1] 2.2 7.2 22.5 0.47 125.3 170.6
a Integer format 𝑣1 was divided by 255 to make the comparison between formats meaningful

representation algorithm was applied to each patch stored in the integer format [0, 255], then

to the same patch stored in the floating point format [0, 1]. The means of the metrics are

shown in Table 4.4. Note that for the integer format [0, 255] the metric 𝑣1 was divided by

255 to make the appropriate comparison with the same metric for the floating point format

[0, 1].

It was noted that compared to the integer format, the floating point format required

fewer loops through the representation algorithm, and considerably less time to execute.

The sparsity, as measured by 𝑣0, however, was better (i.e., smaller) for the integer format

than for the floating point format. The metrics 𝑃𝑆𝑁𝑅, 𝑆𝑆𝐼𝑀 , and 𝑣1 did not seem to differ

between the two formats.

Even though a single byte uint8 variable can represent integer values from 0 to 255,

we used double data type variables to represent pixel values for both integer and floating

point image formats. Thus the differences seen in Table 4.4 by switching to the floating

point format do not come from being able to represent a higher number of values close to

valid pixel values. These differences might be due to the orders of magnitude of the sets of

values that represent the shades of gray.
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4.6 Looking for Interactions Among Filterbanks, Image

Formats and Maximum Dilation Levels

In Section 4.4, the metrics were compared for 3×3 and 5×5 filterbanks and in Section 4.5 the

metrics were compared for the two image formats commonly used in image representation.

For most of the research, the maximum dilation level to was set to 𝐿 = 3. In [42] it was

found that increasing the maximum dilation level to 𝐿 = 4 might increase the accuracy, but

increasing to maximum dilation levels larger than 𝐿 = 4 did not seem to provide additional

improvement. In this section, these algorithm parameters are combined in a three-way

analysis.

The factors analyzed and their levels are shown in Table 4.5. They were Image Format

(integer and floating point), Filterbank (𝐹𝐵 = 3×3 and 𝐹𝐵 = 5×5), and Maximum Dilation

Level (𝐿 = 3 and 𝐿 = 4). Each factor has two levels, and all combinations of those two

levels were used in this analysis. A total of 𝑛 = 100 observations were collected for each of

the eight possible combinations of the three factors.

For data collection, different regularization parameters were used for the two image

formats. For the four combinations involving integer formats, the default regularization

parameters developed in Section 3.2.1 (𝜇1 = 1.4𝑡 , 𝜇2 = 1013) were used. For the four

combinations involving floating point format combinations, the regularization parameters

developed in Section 3.2.2 (𝜇1 = 14𝑡 , 𝜇2 = 105), were used.

Table 4.5: Factors and levels for three-way analysis of image format, filterbank size (𝐹𝐵),
and maximum dilation level (𝐿).

Analysis Factors and Levels
Image Format Filterbank Max Dilation Level

Integer: [0, 255] 𝐹𝐵 = 3 × 3 𝐿 = 3

Floating Point: [0, 1] 𝐹𝐵 = 5 × 5 𝐿 = 4
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Table 4.6: Arithmetic Mean (Standard Error) of each metric for two-way analysis of integer
format by filterbank size and maximum dilation level 𝐿, based on 𝑛 = 100 observations per
combination.

Factor Combinations - Integer Format
𝐹𝐵 𝐿 𝑇𝑖𝑚𝑒(𝑠) 𝐿𝑜𝑜𝑝𝑠 𝑃𝑆𝑁𝑅 𝑆𝑆𝐼𝑀 𝑣0 𝑣1

3 × 3 3 16.6(0.4) 16.6(0.5) 22.2(0.6) 0.48(0.02) 116.6(1.3) 177.8(5.5)
3 × 3 4 27.8(0.6) 18.4(0.4) 25.1(0.6) 0.57(0.02) 117.9(0.9) 213.2(6.3)
5 × 5 3 13.0(0.8) 3.2(0.1) 25.2(0.6) 0.62(0.02) 53.2(1.4) 194.5(6.6)
5 × 5 4 68.1(7.6) 12.5(1.4) 26.8(0.7) 0.64(0.02) 80.4(3.3) 275.2(11.2)

Preliminary analyses include the statistics shown in Table 4.6 and Table 4.7, i.e., the

arithmetic means and standard errors of the performance metrics for the integer and floating

point formats, respectively. It can be noted that in general, the floating point configurations

were faster and took fewer loops to reach convergence, except for the combination 𝐹𝐵 = 5×5

and 𝐿 = 3. The two image formats show similar accuracy, though 𝑃𝑆𝑁𝑅 and 𝑆𝑆𝐼𝑀 tend

to be slightly higher for the integer format, but it will be shown that the differences are

not statistically significant. The integer format configurations show better sparsity (lower

𝑣0), especially those for 𝐹𝐵 = 5 × 5. To get a better idea of how these factors affected the

metrics, statistical results were generated using SAS®, and the relevant output is shown in

Appendix ?? and summarized below.

Table 4.7: Arithmetic Mean (Standard Error) of each metric for two-way analysis of floating
point format by filterbank size and maximum dilation level 𝐿, based on 𝑛 = 100 observations
per combination.

Factor Combinations - Floating Point Format
FB 𝐿 𝑇𝑖𝑚𝑒(𝑠) 𝐿𝑜𝑜𝑝𝑠 𝑃𝑆𝑁𝑅 𝑆𝑆𝐼𝑀 𝑣0 𝑣1

3 × 3 3 2.5(0.2) 7.4(0.6) 22.7(0.5) 0.47(0.01) 125.0(0.1) 180.7(5.1)
3 × 3 4 3.1(0.1) 7.3(0.2) 24.1(0.6) 0.56(0.02) 124.5(0.2) 205.3(6.7)
5 × 5 3 20.8(1.6) 12.1(0.9) 26.2(0.7) 0.62(0.02) 124.5(0.2) 222.2(7.0)
5 × 5 4 19.9(1.1) 7.7(0.4) 25.1(0.7) 0.60(0.02) 116.9(2.8) 265.3(11.9)
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A three-way ANOVA was initially run for each of the metrics, 𝑇𝑖𝑚𝑒, 𝐿𝑜𝑜𝑝𝑠, 𝑃𝑆𝑁𝑅,

𝑆𝑆𝐼𝑀 , and 𝑣0. The three-way interaction 𝐹𝑜𝑟𝑚𝑎𝑡 ∗𝐹𝐵∗𝐿 was examined first and decisions

about the next steps proceeded from there. Results were considered statistically significant

if 𝑝 < 0.05.

I expected to see means of the metrics 𝑇𝑖𝑚𝑒, 𝐿𝑜𝑜𝑝𝑠, 𝑃𝑆𝑁𝑅, and 𝑆𝑆𝐼𝑀 become larger

and the mean for metric 𝑣0 become smaller as the maximum dilation level increased from

𝐿 = 3 to 𝐿 = 4 or as the size of the filterbank increased from 𝐹𝐵 = 3 × 3 to 𝐹𝐵 = 5 × 5.

The statistical results that explain if this was true are summarized in the tables shown

below. The means in the tables are sorted in ascending order. The least squares means, i.e.,

means that are adjusted for other factors in the model, and relevant 𝑝-values are reported

for any significant effects that were observed. In some cases, a transformation of the

response variable was required to meet model assumptions for the ANOVA method, and the

transformations used are noted. In the event that a transform was required, the least squares

means reported were back-transformed from the results shown in the SAS output. Note that

when there are more than two possible factor combinations, Tukey Groups are used to show

which group means are significantly different. Two means having the same Tukey Group

letter are not significantly different.

4.6.1 Time and Loops

Analysis of Variance models require homogeneity of variances and normality in the sub-

populations of the combinations of the three factors. These were not satisfied by either

𝑇𝑖𝑚𝑒 or 𝐿𝑜𝑜𝑝𝑠, but a natural log transform on each allowed these model assumptions to be

satisfied for both. Because normality was still not satisfied, it was determined that analyzing

both 𝑇𝑖𝑚𝑒 and 𝐿𝑜𝑜𝑝𝑠 separately by image format would alleviate the problem. These

metrics displayed significant two-way interactions between maximum dilation level 𝐿 and

filterbank size 𝐹𝐵 for both image formats. Post-hoc tests were performed for the significant

interactions and are shown in Table 4.8 for 𝑇𝑖𝑚𝑒 and in Table 4.9 for 𝐿𝑜𝑜𝑝𝑠.
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Under the integer image format, the means of 𝑇𝑖𝑚𝑒 for all four factor combinations

are significantly different from each other. For the integer format, 𝑇𝑖𝑚𝑒 decreased as 𝐿

decreased for both 𝐹𝐵 sizes, 𝑇𝑖𝑚𝑒 decreased for 𝐿 = 4 when 𝐹𝐵 size decreased, and Time

decreased for 𝐿 = 3 when 𝐹𝐵 size increased. When using the floating point format, 𝑇𝑖𝑚𝑒

was significantly different for all combinations except the two involving 𝐹𝐵 = 5 × 5. 𝑇𝑖𝑚𝑒

decreased for both levels of 𝐿 as 𝐹𝐵 size decreased, and 𝑇𝑖𝑚𝑒 decreased for 𝐹𝐵 = 3 × 3

when 𝐿 decreased. SAS output for these results is in Appendix B.1.

Table 4.8: Least squares means of 𝑇𝑖𝑚𝑒 for significant two-way interactions between 𝐿

and 𝐹𝐵. Response variable was 𝑙𝑛(𝑇𝑖𝑚𝑒), but means reported below have been back-
transformed.

𝑇𝑖𝑚𝑒

Integer Format: 𝑝 < 0.0001 Floating Point Format: 𝑝 = 0.019

𝐿 𝐹𝐵 𝑇𝑖𝑚𝑒(𝑠) Tukey 𝐿 𝐹𝐵 𝑇𝑖𝑚𝑒(𝑠) Tukey

𝐿 = 3 5 × 5 10.9 A 𝐿 = 3 3 × 3 2.3 A
𝐿 = 3 3 × 3 16.0 B 𝐿 = 4 3 × 3 3.0 B
𝐿 = 4 3 × 3 26.8 C 𝐿 = 3 5 × 5 17.3 C
𝐿 = 4 5 × 5 47.7 D 𝐿 = 4 5 × 5 17.4 C

The metric 𝐿𝑜𝑜𝑝𝑠 behaved very differently than 𝑇𝑖𝑚𝑒, exhibiting unexpected reversals

as 𝐿 and 𝐹𝐵 decreased. For the integer format, the means of 𝐿𝑜𝑜𝑝𝑠 were significantly

different for all combinations except the two involving 𝐹𝐵 = 3 × 3. 𝐿𝑜𝑜𝑝𝑠 decreased for

both levels of 𝐿 as 𝐹𝐵 size increased, and decreased for 𝐹𝐵 = 5 × 5 when 𝐿 decreased. For

the floating point format the combination 𝐿 = 3 and 𝐹𝐵 = 5 × 5 was significantly different

from the remaining combinations. 𝐿𝑜𝑜𝑝𝑠 decreased for 𝐹𝐵 = 5 × 5 when 𝐿 increased, and

for 𝐿 = 3 when 𝐹𝐵 size decreased. SAS output for these results is in Appendix B.2.
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Table 4.9: Least squares means of 𝐿𝑜𝑜𝑝𝑠 for significant two-way interaction between 𝐿

and 𝐹𝐵. Response variable was 𝑙𝑛(𝐿𝑜𝑜𝑝𝑠), but means reported below have been back-
transformed.

𝐿𝑜𝑜𝑝𝑠

Integer Format: 𝑝 < 0.0001 Floating Point Format: 𝑝 < 0.0001

𝐿 𝐹𝐵 𝐿𝑜𝑜𝑝𝑠 Tukey 𝐿 𝐹𝐵 𝐿𝑜𝑜𝑝𝑠 Tukey

𝐿 = 3 5 × 5 2.9 A 𝐿 = 3 3 × 3 6.9 A
𝐿 = 4 5 × 5 9.3 B 𝐿 = 4 3 × 3 7.0 A
𝐿 = 3 3 × 3 15.8 C 𝐿 = 4 5 × 5 7.1 A
𝐿 = 4 3 × 3 17.8 C 𝐿 = 3 5 × 5 10.2 B

4.6.2 PSNR and SSIM

The three-way ANOVA models for 𝑃𝑆𝑁𝑅 and 𝑆𝑆𝐼𝑀 easily satisfied the assumptions of

homogeneity of variances and normality. In both cases, the three-way interactions were not

significant with 𝑝 = 0.5291 for 𝑃𝑆𝑁𝑅 and 𝑝 = 0.3246 for 𝑆𝑆𝐼𝑀 . For each metric, reduced

models were performed that included all possible 2-way interactions.

For 𝑃𝑆𝑁𝑅, two of the interactions were significant, with 𝑝 = 0.0331 for 𝐿 ∗ 𝐹𝐵

and 𝑝 = 0.0280 for 𝐹𝑜𝑟𝑚𝑎𝑡 ∗ 𝐿. The interaction 𝐹𝑜𝑟𝑚𝑎𝑡 ∗ 𝐹𝐵 was not significant, with

𝑝 = 0.8778. Post-hoc tests were performed and are shown in Table 4.10. For the interaction

𝐿 ∗ 𝐹𝐵, only the mean for the combination of 𝐿 = 3 and 𝐹𝐵 = 3 × 3 was significantly

different (i.e., smaller) than the means for the other three combinations. 𝑃𝑆𝑁𝑅 increased

for 𝐿 = 3 when 𝐹𝐵 size increased, and for 𝐹𝐵 = 3 × 3 when 𝐿 increased. For the

interaction 𝐹𝑜𝑟𝑚𝑎𝑡 ∗ 𝐿 only the means for the two combinations involving integer format

were significantly different, and 𝑃𝑆𝑁𝑅 increased for this image format when 𝐿 increased.

SAS output for these results is in Appendix B.3.

For 𝑆𝑆𝐼𝑀 , only the interaction 𝐿 ∗ 𝐹𝐵 was significant, with 𝑝 = 0.0002. The interac-

tions 𝐹𝑜𝑟𝑚𝑎𝑡 ∗ 𝐹𝐵 and 𝐹𝑜𝑟𝑚𝑎𝑡 ∗ 𝐿 were not significant with 𝑝 = 0.7628 and 𝑝 = 0.3170,
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Table 4.10: Least squares means of 𝑃𝑆𝑁𝑅 for significant two-way interactions 𝐿 ∗ 𝐹𝐵 and
𝐹𝑜𝑟𝑚𝑎𝑡 ∗ 𝐿.

𝑃𝑆𝑁𝑅

𝐿 ∗ 𝐹𝐵: 𝑝 = 0.0331 𝐹𝑜𝑟𝑚𝑎𝑡 ∗ 𝐿: 𝑝 = 0.0280

𝐿 𝐹𝐵 𝑃𝑆𝑁𝑅 Tukey 𝐹𝑜𝑟𝑚𝑎𝑡 𝐿 𝑃𝑆𝑁𝑅 Tukey

𝐿 = 3 3 × 3 22.4 A Integer 𝐿 = 3 23.7 A
𝐿 = 4 3 × 3 24.6 B Floating Point 𝐿 = 3 24.4 AB
𝐿 = 3 5 × 5 25.7 B Floating Point 𝐿 = 4 24.6 AB
𝐿 = 4 5 × 5 26.0 B Integer 𝐿 = 4 25.9 B

respectively. Post-hoc tests are reported in Table 4.11. All the means were different, except

for the means involving 𝐹𝐵 = 5 × 5. The metric 𝑆𝑆𝐼𝑀 increased for both levels of 𝐿 as

𝐹𝐵 size increased, and for 𝐹𝐵 = 3 × 3 as 𝐿 increased. SAS output for these results is in

Appendix B.4.

Table 4.11: Least squares means of 𝑆𝑆𝐼𝑀 for significant two-way interaction 𝐿 ∗ 𝐹𝐵.

𝑆𝑆𝐼𝑀

𝐿 ∗ 𝐹𝐵: 𝑝 = 0.0002

𝐿 𝐹𝐵 𝑆𝑆𝐼𝑀 Tukey

𝐿 = 3 3 × 3 0.475 A
𝐿 = 4 3 × 3 0.568 B
𝐿 = 3 5 × 5 0.621 C
𝐿 = 4 5 × 5 0.621 C

4.6.3 Sparsity Measure 𝑣0

The ANOVA model for metric 𝑣0 failed to satisfy assumptions of homogeneity of variances

and normality. A Box-Cox procedure suggested the transformation 𝑣40, but it also failed to
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satisfy assumptions. As had been performed for 𝑇𝑖𝑚𝑒 and 𝐿𝑜𝑜𝑝𝑠, the data were separated

by image format, and two-way ANOVA models were run on each.

For the integer format, model assumptions were satisfied and a transpose was not

required. The interaction 𝐿 ∗ 𝐹𝐵 was significant with 𝑝 = 0.0020. The post-hoc test results

are shown on the left side of Table 4.12. All the means were significantly different, except

for the two involving 𝐹𝐵 = 3 × 3. The metric 𝑣0 decreased for both levels of 𝐿 as 𝐹𝐵 size

decreased, and decreased for 𝐹𝐵 = 5 × 5 when 𝐿 decreased.

The metric 𝑣0 for the floating point data required a transformation, and the Box-Cox

procedure suggested that 𝑣120 would satisfy the model assumptions. For this floating point

analysis the interaction 𝐿 ∗ 𝐹𝐵 was not significant, 𝑝 = 0.7560, and a main effects model

was performed. Both main effects were significant, with 𝑝 = 0.0045 for 𝐿 and 𝑝 = 0.0067

for 𝐹𝐵. The means are shown on the right side of Table 4.12. For the floating point data, the

mean 𝑣0 decreased as 𝐿 increased and as 𝐹𝐵 size increased. SAS output for these results is

in Appendix B.5.

Table 4.12: Least squares means of 𝑣0 by image 𝐹𝑜𝑟𝑚𝑎𝑡 for the significant interaction
𝐿 ∗ 𝐹𝐵 under the image format, and for main effect 𝐿 and 𝐹𝐵 under the floating point
format.

Sparsity: 𝑣0

Integer Floating Point

𝐿 ∗ 𝐹𝐵: 𝑝 = 0.0020 Significant Main Effects

𝐿 𝐹𝐵 𝑣0 Tukey Effect p-value Levels 𝑣0

𝐿 = 3 5 × 5 53.2 A 𝐿 𝑝 = 0.0045 𝐿 = 4 124.27
𝐿 = 4 5 × 5 80.4 B 𝐿 = 3 124.87

𝐿 = 3 3 × 3 116.6 C 𝐹𝐵 𝑝 = 0.0067 5 × 5 124.29
𝐿 = 4 3 × 3 117.9 C 3 × 3 124.86

It should be pointed out that the least squares (LS) means for each of these main

effects are significantly different, but appear to be very close in value. By comparing to the
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Table 4.13: Least squares means (back-transformed) compared to arithmetic means from
Table 4.7.

Sparsity: 𝑣0

Main Effect Level LS Means Arithmetic Means

𝐿 = 4 124.27 120.70
𝐿 = 3 124.87 124.75

5 × 5 124.29 120.70
3 × 3 124.86 124.75

arithemetic means that appear in Table 4.7, it can be seen that the means are indeed different,

as shown in Table 4.13. Note that averaging the pairs of means from Table 4.7 for each main

effect is feasible, because the sample sizes are 𝑛 = 100 for each combination. One must also

be reminded that statistically significant differences are not always meaningful differences,

and common sense must be applied when claiming differences are meaningful or important.

4.7 Chapter Summary

In this chapter, the results of several numerical experiments were reported. In Section 4.1,

the effect of image patch size, 𝑁 , and dilation level was explored by setting the maximum

dilation level to 𝐿 = 𝑀𝑎𝑥𝐿 and then to 𝐿 = 3, for comparison. The plots for 𝐿𝑜𝑜𝑝𝑠, 𝑇𝑖𝑚𝑒,

and 𝑣1 displayed a non-linear swoosh pattern that indicated image patch sizes close to, but

smaller than, powers of 2 would yield desirable values for these metrics. Closer examination

of a set of 𝑁 , all having 𝑀𝑎𝑥𝐿 = 8, showed that as the dilation level increased from 𝐿 = 3

to 𝐿 = 8, the swoosh gradually appeared. The other three metrics did not display this pattern,

and were analyzed separately. The sparsity metric, 𝑣0, was plotted as a nearly linear function

of 𝑁 . A linear fit through the points indicated that for 𝐿 = 𝑀𝑎𝑥𝐿, sparsity can be estimated

as 87% of the number of measurements made, and for 𝐿 = 3 as 91% of the number of
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measurements made. The plots for both 𝑃𝑆𝑁𝑅 and 𝑆𝑆𝐼𝑀 displayed maximum values near

𝑁 = 25 = 32, and gradual decreases for 𝑁 larger than that.

The exploration of the effect of image patch size was extended in Section 4.2 to include

dilation levels 𝐿 ∈ {3, 4, . . . , 𝑀𝑎𝑥𝐿} for image patch sizes 𝑁 = 2 𝑗 for 𝑗 ∈ {3, 4. . . . , 10}. It

was observed that 𝐿𝑜𝑜𝑝𝑠, 𝑇𝑖𝑚𝑒, and 𝑣1 grow faster with 𝐿 than they do with 𝑁 . In contrast,

𝑣0 does not depend on the dilation level 𝐿 and depends only on 𝑁 . Metrics 𝑃𝑆𝑁𝑅 and

𝑆𝑆𝐼𝑀 are largest near 𝑁 = 25 = 32 along the hypotenuse where 𝐿 = 𝑀𝑎𝑥𝐿, also suggesting

that one should break the image of interest into 4 × 8 or possibly 8 × 8 patches and use

𝐿 = 𝑀𝑎𝑥𝐿.

In Section 4.3 it was found that regardless of the value of the sampling proportion 𝑝,

a moderate value of WMP relaxation factor, such as 𝑤 = 0.6, would yield better accuracy,

without pushing execution duration into unacceptable ranges. A comparison of metric means

for the two filterbank sizes was examined in Section 4.4. Using the smaller 3 × 3 filterbank

was faster but using the larger 5 × 5 filterbank required fewer loops, was more accurate, and

resulted in better sparsity. In Section 4.5 a comparison was made of metrics means for the

two image formats studied here. Using the floating point format resulted in faster execution

time with fewer loops, but using the integer format allowed for better sparsity.

A three-way analysis of filterbank size, image format, and dilation levels 𝐿 ∈ {3, 4}

was reported in Section 4.6. The results were very similar to those reported for individual

analyses, but with a one exception involving the 𝐿𝑜𝑜𝑝𝑠 metric: for the integer format,

the 5 × 5 filterbank, required fewer loops than the 3 × 3 filterbank, while for the floating

point format, the opposite was true, but only for 𝐿 = 3. For the metric, 𝑇𝑖𝑚𝑒, a significant

decrease occurred for the integer format when 𝐿 decreased, but for the floating point format

𝑇𝑖𝑚𝑒 decreased when the filterbank size decreased. Sparsity was best when using the 5 × 5

filterbank with both image formats. Accuracy improved when using the 5 × 5 filterbank for

either image format, but only significantly for 𝐿 = 3.
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Chapter 5

Parseval Relaxation

The authors of the algorithm restricted themselves to a Parseval frame due to the existence

of a theorem [24] that ensured the reconstruction error would be bounded for tight frames

and since tight frames have received increased attention in image processing applications

[10]. However, Candès et al. point out that their theorem does not require a tight frame, and

that constraint was employed to simplify the analysis. This, coupled with the fact that this

reconstruction algorithm does not seem to rely on the properties of tight frames in any way,

led us to explore the algorithm performance as the Parseval condition was relaxed.

The authors implemented this condition by including a constraint in the second step of

the representation algorithm that requires the frame D to be Parseval. Using the definition of

a frame in Equation (1.4), if there are frame bounds that satisfy the condition that 𝐴 = 𝐵, the

frame is tight. A special case of tight frame is a Parseval frame, in which the optimal frame

bounds are 𝐴 = 𝐵 = 1 ([19], pg 23). If D is Parseval, then the frame operator DD∗ = I

and the condition number of DD∗ is 𝜅 = 1.

One way to relax the Parseval condition is to let the condition number be larger than

1 (note, this would also permit non-tight frames since tight frames also have condition

number 1). The frame operator DD∗ is clearly Hermitian (and normal), so its condition

number is 𝜅 =
𝜆1
𝜆𝑚

, where 𝜆1 and 𝜆𝑚 are, respectively, the largest and smallest eigenvalues of
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DD∗. The proof of this formula can be found in any linear algebra textbook. The Parseval

condition will be relaxed whenever 𝜆1
𝜆𝑚

− 1 > 0.

5.1 Parseval Relaxation Functions

For each of the three relaxation methods proposed here, a tuning parameter 𝛼 > 0 will

be introduced to represent the amount of relaxation applied to the Parseval constraint.

For the first method, in Step 2 the expression ‖DD∗ − I ‖2𝐹 is replaced by 𝜅1 shown in

Equation (5.1):

𝜅1 := max

(
𝛼,

𝜆1

𝜆𝑚
− 1

)
(5.1)

This method provides a constant cost when 𝜅 ≤ 1 + 𝛼 and a gradually increasing cost

when 𝜅 > 1 + 𝛼. The second method proposed also provides a constant penalty for a small

condition number, but imposes an infinite penalty once 𝜅 > 1 + 𝛼. In this second method,

the expression ‖DD∗ − I ‖2𝐹 is replaced by the step function 𝜅2 shown in Equation (5.2):

𝜅2 :=


0 if 𝜅 ≤ 1 + 𝛼

∞ if 𝜅 > 1 + 𝛼

(5.2)

These first two methods relaxed the equality 𝜅 = 1. The third proposed method relaxes

the equality DD∗ = I , specified in the constraint of Step 2 shown in Equation (2.1). This

option is considered, because calculating the Frobenius norm might be faster than finding

the eigenvalues. The Parseval constraint is modified as shown in Equation (5.3):

𝑃3 := max (𝛼, ‖DD∗ − I ‖𝐹) (5.3)

To test the effectiveness of these relaxation methods, they were compared to the original

Step 2 Parseval constraint. This baseline is referred to as the Original method.
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5.2 Regularization Parameters for Parseval Relaxation

Before data could be collected, it was necessary to determine the appropriate values of the

regularization parameters, 𝜇1 and 𝜇2 appropriate for Step 1 and Step 2 of the representation

algorithm under these conditions. Past experience suggested that testing only increasing 𝜇1

and constant 𝜇2 would be required.

A bit of preliminary exploration gave direction to focus the search for both regular-

ization parameters. The round of values tested using 𝜅1 were increasing values of 𝜇1 = 𝐵𝑡

where 𝐵 ∈ {1.1, 1.2, 1.3, . . . , 1.9}, and constant 𝜇2 = 10𝑥 , where 𝑥 ∈ {15, 16, 17, . . . , 29}.

The final results selected were 𝜇1 = 1.1𝑡 and 𝜇2 = 1023. Complete results for the search for

regularization parameters are shown in Appendix A.4.

5.3 Data Collection and Results for Parseval Relaxation

To help the user make the best choice of 𝛼, testing values that were powers of 2, ranging

from 20 to 256 were used. The upper limit of this wide range is near the maximum possible

machine value, because it was important to see if there was a noticeable change in behavior at

any relaxation level for any of the methods proposed. The default regularization parameters

were retained for the original method, but for the three relaxation methods the regularization

parameters were adjusted to allow more degradation. These values were chosen as indicated

in Section 5.2. For each observation, a randomly chosen 16 × 16 image was sampled

using the same sensing matrix A and applied using all four methods. There were 𝑛 = 100

observations collected, each one using the original format and three relaxation methods.

Line plots, shown in Figure 5.1, were generated for all metrics to compare the three

methods of relaxing the Parseval constraint to the original method. Accuracy, as measured

by 𝑃𝑆𝑁𝑅 and 𝑆𝑆𝐼𝑀, did not differ among the four relaxation methods, but two of these

methods showed important differences for 𝐿𝑜𝑜𝑝𝑠, 𝑇𝑖𝑚𝑒, and 𝑣0. Both 𝜅1 and 𝑃3 are faster,
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use fewer loops„ and generate a more sparse coefficient vector 𝑣, i.e. 𝑣0 is smaller, for

values of 𝛼 larger than 215. This suggests the Parseval constraint could be relaxed, using

either 𝜅1 or 𝑃3, allowing greater sparsity while running faster and without loss of accuracy.
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Figure 5.1: Line plots of metric means for three methods to relax the Parseval constraint and
original unrelaxed constraint. The horizontal axis is on a 𝑙𝑜𝑔2 scale.

5.4 Chapter Summary

The algorithm being researched specifies a tight frame to find the representation of the

image, but uses a Parseval constraint to achieve that condition. This chapter shows that

relaxing the Parseval constraint can provide results that are faster, use fewer loops, and

improve sparsity, while maintaining accuracy at levels obtained when the Parseval constraint

is observed. Two methods were found to be effective. One directly relaxes the Parseval

condition ‖DD∗ − I ‖𝐹 , the other allows the condition number of the frame operator 𝐷𝐷∗
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to become larger than 1. Note that these relaxation methods would also permit non-tight

frames as well. An avenue of additional research would be to omit the Parseval constraint

completely from this algorithm.
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Chapter 6

Visual Results and Conclusions

All the numerical experiments in the previous sections were performed by selecting random

patches from a set of test images shown in the top row of Figure 6.1. These grayscale images

have dimension 256 × 256, resulting in a total of 𝑁 = 216 pixels. This size posed some

difficulty, because the extrapolated time required to find the representation for one of these

would be considerable. To reduce the time needed, each test image was divided into four

quadrants and the algorithm applied independently to each one, using the default values

𝑤 = 0.6 and 𝐿 = 3. These reconstructions were then pieced together to make the images in

the bottom row of Figure 6.1. The recombined versions were compared with the original

images and their accuracies computed, and Table 6.1 displays the means of metrics 𝑃𝑆𝑁𝑅

and 𝑆𝑆𝐼𝑀. It is likely the Cameraman image has a lower value of 𝑆𝑆𝐼𝑀, relative to the

other images, because the sky and dark coat in the original image are noticeably free of

texture.

Means of the other metrics could not be calculated for the entire 256 × 256 pixel

reconstructed image, and can only be reported as separate quadrants. See Table 6.2 for the

quadrant labels and Table 6.3 for the other performance metrics reported by quadrant.
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Figure 6.1: Original test images (top row) with their reconstructions (bottom row). The
images were reconstructed one quadrant at a time and then placed back together

Table 6.1: Accuracy metrics comparing the reconstructions with the originals, both shown
in Figure 6.1.

Barbara Boat Cameraman Lena
𝑃𝑆𝑁𝑅 21.3 21.1 21.2 23.1
𝑆𝑆𝐼𝑀 .47 .45 .36 .48

Table 6.2: Quadrant labels for Table 6.3.

A B
C D

73



Table 6.3: Metrics available for only individual quadrants of reconstructed images. Quadrant
A is upper left, B is upper right, C is lower left, D is lower right.

Quadrant 𝐿𝑜𝑜𝑝𝑠 𝑇𝑖𝑚𝑒(days) 𝑣0 𝑣1(×106)

A 26 8.54 7658 3.13

Barbara B 38 13.69 7985 2.81

C 30 10.23 7797 2.30

D 31 10.10 7811 2.41

A 18 4.67 7180 3.23

Boat B 34 11.65 7904 3.20

C 18 4.84 7154 2.89

D 29 9.16 7786 2.33

A 27 8.20 7607 2.73

Cameraman B 34 11.87 7918 3.32

C 17 4.35 6902 1.89

D 28 9.06 7449 2.86

A 20 5.31 7220 2.58

Lena B 31 9.97 7849 2.91

C 18 4.59 7076 2.26

D 30 9.37 7776 2.88
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6.1 Conclusions Regarding Original Algorithm

It is not clear whether Cao and Gao were able to run their algorithm on these full-sized

images, and if so, how long it took, nor how they were able to get the accuracy results shown

in [10]. Because image size was not discussed in the paper, I believed the authors had used

full-sized 256×256 pixel images. Thus, the need to find faster solvers and memory-reducing

strategies was paramount. The authors revealed in their correspondence they had used

OMP for Step 1 and fminsearch for Step 2. It was not possible to get the algorithm to

run fast enough using these functions, and investigating sparse allocation became another

avenue of exploration, and ultimately used in some of the MATLAB functions appearing in

Appendix C.

The algorithm as described in the paper indicated it ran for an unspecified, but fixed

number of loops, whereas in this research, to try to meet the reported accuracy levels, the

algorithm was run until convergence criteria were met. Further attempts to reach the authors

to obtain additional information were unsuccessful. It is possible they may have stitched

together smaller images, perhaps 8 × 8 patches, using averaging along the borders to avoid

artifacts such as those seen in the reconstructed images in Figure 6.1.

6.2 Important Findings

The effect of image size on the performance of the algorithm studied here, was evident in

several ways. Performance metrics relating to execution indicate the algorithm will perform

faster when image size 𝑁 (pixels) is a power of 2, or somewhat smaller (85 − 100% of a

power of 2), compared to when 𝑁 is larger than the nearest power of 2. Accuracy metrics

suggest that choosing image size close to 𝑁 = 25 will be optimal, additionally, maximum

dilation level 𝐿 = 4 yields higher accuracy than smaller values of 𝐿, but larger values of 𝐿

do not provide a significant increase in accuracy. Sparsity was found to have a linear relation

75



to image size 𝑁 , improving somewhat with increases in 𝐿.

It was found that using values near 𝑤 = 0.6 in the WMP function provides a nice

balance between accuracy and speed, but slightly smaller values of 𝑤 may be better when

the sampling rate, 𝑝, approaches zero.

It is desirable to have small execution-related and sparsity metrics. The smallest value

of 𝑇𝑖𝑚𝑒 and 𝐿𝑜𝑜𝑝𝑠 occurred for 𝐿 = 3, but for 𝐹𝐵 = 5 × 5 in the integer format and for

𝐹𝐵 = 3 × 3 in the floating point format. The behavior of the sparsity metric, 𝑣0, differed

somewhat between image formats. For the integer format, sparsity was smallest when

using 𝐹𝐵 = 5 × 5 and 𝐿 = 3, but for the floating point format when using 𝐹𝐵 = 5 × 5

and 𝐿 = 4. Accuracy measures are better when they have large values. For these data,

using 𝐹𝐵 = 5 × 5 resulted in the largest 𝑃𝑆𝑁𝑅 and 𝑆𝑆𝐼𝑀 values for both image formats,

regardless of maximum dilation level 𝐿.

Two methods were found to relax the Parseval constraint, specified in the algorithm.

One relaxed the condition number of the frame operator 𝐷𝐷∗, and the other relaxed the

constraint that 𝐷𝐷∗ = 𝐼. The improvements in sparsity (i.e., 𝑣0), and speed, as measured by

𝐿𝑜𝑜𝑝𝑠 and 𝑇𝑖𝑚𝑒, are considerable.

6.3 Future Work

Future work will include performing the algorithm on smaller 8 × 8 image patches from

the original full size 256 × 256 test images, and piecing them together. Of major interest

will be changes in execution speed, and accuracy. This research will also include further

exploration of the floating point image format and the 5 × 5 filterbank, both separately and

together.

Future research will include an examination of the Parseval Relaxation results. It is

intended to further explore the feasibility of removing the Parseval condition completely.

Results will be compared to those found with the constraint in place.
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Appendix A

Regularization Parameters

A.1 Regularization Parameters for 3×3 Filterbanks Using

an Integer Format

Pivot tables with conditional formatting are shown for all metrics and all combinations of

(𝜇1,𝜇2) that were tested in Round 1 for integer format with 3 × 3 filterbank. Descriptive

statistics taken from these tables are displayed in Table 3.1. Because accuracy is generally

considered most important, for Round 2 testing, the focus moved to combinations that

would yield optimal 𝑃𝑆𝑁𝑅 and 𝑆𝑆𝐼𝑀 values, but would also provide good sparsity and be

cost-effective in terms of execution duration, i.e., 𝐿𝑜𝑜𝑝𝑠 and 𝑇𝑖𝑚𝑒. The next area of the

parameter space to be searched included only increasing 𝜇1 and constant 𝜇2.
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Mean Mu2 Constant Increasing R1

Loops 1E+05 1E+10 1E+15 1E+20 1E+25 1E+30 1E+35 1E+40 sqrt(2) 2 5 10

Mu1   1E+05 2.00 2.00 2.00 2.00 2.00 3.00 3.00 3.00 2.00 2.00 2.00 2.00

1E+10 2.00 2.00 2.00 2.00 2.00 3.00 3.00 3.00 2.00 2.00 2.00 2.00

1E+15 2.00 2.00 2.00 2.00 2.00 3.00 3.00 3.00 2.00 2.00 2.00 2.00

1E+20 2.00 2.00 2.00 2.00 2.00 3.00 3.00 3.00 2.00 2.00 2.00 2.00

1E+25 2.00 2.00 2.00 2.00 2.00 3.00 3.00 3.00 2.00 2.00 2.00 2.00

1E+30 2.00 2.00 2.00 2.00 2.00 3.00 3.00 3.00 2.00 2.00 2.00 2.00

1E+35 2.00 2.00 2.00 2.00 2.00 3.00 3.00 3.00 2.00 2.00 2.00 2.00

1E+40 2.00 2.00 2.00 2.00 2.00 3.00 3.00 3.00 2.00 2.00 2.00 2.00

sqrt(2) 23.05 13.58 11.98 8.78 3.28 3.45 3.45 3.45 42.50 30.65 37.10 29.45

2 17.30 8.85 7.60 6.40 3.50 4.70 4.70 4.70 42.20 27.58 35.98 29.48

5 13.03 5.05 5.28 4.83 4.13 4.28 4.28 4.28 33.08 24.15 35.55 29.15

10 9.10 3.80 4.68 3.75 3.43 3.63 3.63 3.63 21.33 18.23 35.80 27.90
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Figure A.1: Round 1 means for 𝐿𝑜𝑜𝑝𝑠 in search for regularization parameters for integer
data with 3 × 3 filterbank. Desirable values are formatted in green, and undesirable values
in red.
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Mean Mu2 Constant Increasing R1

Time 1E+05 1E+10 1E+15 1E+20 1E+25 1E+30 1E+35 1E+40 sqrt(2) 2 5 10

Mu1   1E+05 0.25 0.30 0.41 0.54 0.67 2.64 2.64 2.64 0.18 0.18 0.18 0.18

1E+10 0.21 0.30 0.41 0.54 0.67 2.64 2.64 2.64 0.18 0.18 0.18 0.18

1E+15 0.21 0.30 0.41 0.54 0.67 2.64 2.64 2.64 0.18 0.18 0.18 0.18

1E+20 0.20 0.30 0.41 0.54 0.67 2.64 2.64 2.64 0.18 0.18 0.18 0.18

1E+25 0.20 0.30 0.41 0.54 0.67 2.64 2.64 2.64 0.18 0.18 0.18 0.18

1E+30 0.20 0.30 0.41 0.54 0.67 2.64 2.64 2.64 0.18 0.18 0.18 0.18

1E+35 0.20 0.30 0.41 0.54 0.67 2.64 2.64 2.64 0.18 0.18 0.18 0.18

1E+40 0.20 0.30 0.41 0.54 0.67 2.64 2.64 2.64 0.18 0.18 0.18 0.18

sqrt(2) 7.69 5.65 8.43 4.76 1.49 3.23 3.23 3.23 12.55 10.67 18.40 16.25

2 5.09 3.22 4.58 2.97 1.66 4.88 4.88 4.88 10.48 8.03 16.45 15.40

5 3.18 1.51 2.57 1.99 2.08 4.32 4.32 4.32 7.13 5.85 14.90 14.08

10 1.97 0.92 1.93 1.43 1.62 3.47 3.47 3.46 4.10 4.04 15.07 12.93
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Mean Mu2 Constant Increasing R1

PSNR 1E+05 1E+10 1E+15 1E+20 1E+25 1E+30 1E+35 1E+40 sqrt(2) 2 5 10

Mu1   1E+05 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79

1E+10 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79

1E+15 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79

1E+20 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79

1E+25 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79

1E+30 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79

1E+35 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79

1E+40 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79 22.79

sqrt(2) 23.16 23.20 23.31 22.87 23.42 23.37 23.37 23.37 22.87 22.61 22.96 22.68

2 23.11 23.27 23.02 22.89 23.13 23.02 23.02 23.02 23.25 23.02 23.08 23.20

5 22.95 23.12 22.87 22.79 22.80 22.80 22.80 22.80 22.83 22.72 22.87 22.70

10 23.10 22.87 22.85 22.80 22.80 22.79 22.79 22.79 23.18 23.18 23.02 22.94

C
o

n
st

an
t

In
cr

ea
si

n
g

Mean Mu2 Constant Increasing R1

SSIM 1E+05 1E+10 1E+15 1E+20 1E+25 1E+30 1E+35 1E+40 sqrt(2) 2 5 10

Mu1   1E+05 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51

1E+10 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51

1E+15 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51

1E+20 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51

1E+25 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51

1E+30 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51

1E+35 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51

1E+40 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51

sqrt(2) 0.54 0.53 0.53 0.51 0.53 0.53 0.53 0.53 0.52 0.50 0.53 0.51

2 0.53 0.53 0.52 0.51 0.52 0.52 0.52 0.52 0.53 0.52 0.52 0.53

5 0.52 0.53 0.52 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.50

10 0.52 0.52 0.51 0.51 0.51 0.51 0.51 0.51 0.52 0.52 0.52 0.51

C
o

n
st

an
t

In
cr

ea
si

n
g

Figure A.2: Round 1 means for 𝑇𝑖𝑚𝑒, 𝑃𝑆𝑁𝑅, 𝑆𝑆𝐼𝑀 in search for regularization parameters
for integer data with 3×3 filterbank. Desirable values are formatted in green, and undesirable
values in red.
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A.2 Regularization Parameters for Floating Point Image

Format

For the floating point image format, the 3 × 3 filterbank was utilized in all data collection.

The tables of mean metric values for Round 1 testing are shown below with conditional

formatting. Desirable values are formatted in green, and undesirable values in red. To

get a better separation of mean values in that part of the space, the lower left portion

of the pivot table results have been conditionally formatted separately from the rest of

the table for four of the metrics: 𝐿𝑜𝑜𝑝𝑠, 𝑇𝑖𝑚𝑒, 𝑃𝑆𝑁𝑅, and 𝑆𝑆𝐼𝑀. The increasing 𝜇1,

constant 𝜇2 combinations were selected as the best area of the parameter space for choosing

the regularization parameters in the next round of testing. The final results are shown in

Section 3.2.2.

86



Mean Mu2 Constant Increasing FPR1
Loops 1E+05 1E+10 1E+15 1E+20 1E+25 1E+30 1E+35 1E+40 sqrt(2) 2 5 10

Mu1   1E+05 2.00 2.00 2.00 2.00 2.00 2.25 2.25 2.25 2.00 2.00 2.00 2.00

1E+10 2.00 2.00 2.00 2.00 2.00 2.25 2.25 2.25 2.00 2.00 2.00 2.00

1E+15 2.00 2.00 2.00 2.00 2.00 2.15 2.15 2.15 2.00 2.00 2.00 2.00

1E+20 2.00 2.00 2.00 2.00 2.00 2.15 2.15 2.15 2.00 2.00 2.00 2.00

1E+25 2.00 2.00 2.00 2.00 2.00 2.15 2.15 2.15 2.00 2.00 2.00 2.00

1E+30 2.00 2.00 2.00 2.00 2.00 2.15 2.15 2.15 2.00 2.00 2.00 2.00

1E+35 2.00 2.00 2.00 2.00 2.00 2.15 2.15 2.15 2.00 2.00 2.00 2.00
1E+40 2.00 2.00 2.00 2.00 2.00 2.15 2.15 2.15 2.00 2.00 2.00 2.00

sqrt(2) 10.55 2.55 2.25 2.25 2.25 2.25 2.25 2.25 25.60 33.85 33.50 28.35

2 8.15 3.65 3.65 3.65 3.65 3.65 3.65 3.65 19.35 15.40 33.35 26.85

5 7.90 6.75 6.75 6.75 6.75 6.75 6.75 6.75 13.40 11.25 19.75 25.60
10 6.45 5.75 5.80 5.80 5.80 5.80 5.80 5.80 13.90 11.90 18.15 20.70
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Mean Mu2 Constant Increasing FPR1

Time 1E+05 1E+10 1E+15 1E+20 1E+25 1E+30 1E+35 1E+40 sqrt(2) 2 5 10

Mu1   1E+05 0.17 0.24 0.33 0.45 0.56 1.37 1.39 1.37 0.13 0.13 0.14 0.13
1E+10 0.17 0.24 0.33 0.44 0.55 1.40 1.39 1.39 0.14 0.13 0.14 0.13

1E+15 0.16 0.25 0.34 0.45 0.56 1.29 1.30 1.29 0.14 0.13 0.14 0.14

1E+20 0.16 0.24 0.34 0.45 0.56 1.30 1.30 1.30 0.14 0.13 0.14 0.14

1E+25 0.16 0.25 0.34 0.45 0.56 1.29 1.29 1.30 0.14 0.13 0.14 0.14

1E+30 0.16 0.25 0.34 0.45 0.57 1.30 1.30 1.30 0.14 0.13 0.14 0.14

1E+35 0.16 0.25 0.33 0.45 0.56 1.29 1.30 1.29 0.14 0.13 0.14 0.14
1E+40 0.16 0.25 0.33 0.45 0.56 1.29 1.29 1.29 0.14 0.14 0.14 0.14

sqrt(2) 2.50 0.37 0.41 0.55 0.70 1.39 1.39 1.38 210.30 243.37 275.07 245.61

2 1.68 0.62 0.89 1.18 1.46 2.96 2.95 2.98 134.86 125.44 254.60 232.82
5 1.32 1.35 1.92 2.56 3.19 6.38 6.35 6.36 69.43 61.67 140.58 193.91

10 0.85 1.12 1.59 2.14 2.66 5.29 5.32 5.34 59.15 49.54 108.63 146.68
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Figure A.3: Round 1 means for 𝐿𝑜𝑜𝑝𝑠, 𝑇𝑖𝑚𝑒 in search for regularization parameters for
floating point data with 3 × 3 filterbank. Desirable values are formatted in green, and
undesirable values in red.
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Mean Mu2 Constant Increasing FPR1
PSNR 1E+05 1E+10 1E+15 1E+20 1E+25 1E+30 1E+35 1E+40 sqrt(2) 2 5 10

Mu1   1E+05 21.88 21.88 21.88 21.88 21.88 21.88 21.88 21.88 21.88 21.88 21.88 21.88

1E+10 21.88 21.88 21.88 21.88 21.88 21.88 21.88 21.88 21.88 21.88 21.88 21.88

1E+15 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74
1E+20 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74

1E+25 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74

1E+30 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74

1E+35 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74
1E+40 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74 23.74

sqrt(2) 17.05 7.87 6.99 6.99 6.99 6.99 6.99 6.99 17.14 17.18 12.37 14.49

2 19.03 14.60 14.60 14.60 14.60 14.60 14.60 14.60 17.48 17.72 16.39 15.25

5 22.08 21.23 21.34 21.34 21.34 21.34 21.34 21.34 19.31 19.85 19.91 19.25
10 22.51 21.62 21.73 21.73 21.73 21.73 21.73 21.73 21.71 21.48 21.51 22.50
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Mean Mu2 Constant Increasing FPR1
SSIM 1E+05 1E+10 1E+15 1E+20 1E+25 1E+30 1E+35 1E+40 sqrt(2) 2 5 10

Mu1   1E+05 0.405 0.405 0.405 0.405 0.405 0.405 0.405 0.405 0.405 0.405 0.405 0.405

1E+10 0.405 0.405 0.405 0.405 0.405 0.405 0.405 0.405 0.405 0.405 0.405 0.405
1E+15 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428

1E+20 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428

1E+25 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428
1E+30 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428

1E+35 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428
1E+40 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428

sqrt(2) 0.173 0.031 0.026 0.026 0.026 0.026 0.026 0.026 0.228 0.241 0.126 0.194

2 0.266 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.247 0.273 0.228 0.184

5 0.420 0.381 0.385 0.385 0.385 0.385 0.385 0.385 0.333 0.352 0.347 0.324
10 0.439 0.398 0.401 0.401 0.401 0.401 0.401 0.401 0.404 0.375 0.402 0.439
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Mean Mu2 Constant Increasing FPR1
V0 1E+05 1E+10 1E+15 1E+20 1E+25 1E+30 1E+35 1E+40 sqrt(2) 2 5 10

Mu1   1E+05 31.75 31.75 31.75 31.75 31.75 31.75 31.75 31.75 31.75 31.75 31.75 31.75

1E+10 31.85 31.85 31.85 31.85 31.85 31.85 31.85 31.85 31.85 31.85 31.85 31.85

1E+15 31.70 31.70 31.70 31.70 31.70 31.70 31.70 31.70 31.70 31.70 31.70 31.70

1E+20 31.70 31.70 31.70 31.70 31.70 31.70 31.70 31.70 31.70 31.70 31.70 31.70
1E+25 31.70 31.70 31.70 31.70 31.70 31.70 31.70 31.70 31.70 31.70 31.70 31.70

1E+30 31.70 31.70 31.70 31.70 31.70 31.70 31.70 31.70 31.70 31.70 31.70 31.70

1E+35 31.70 31.70 31.70 31.70 31.70 31.70 31.70 31.70 31.70 31.70 31.70 31.70
1E+40 31.70 31.70 31.70 31.70 31.70 31.70 31.70 31.70 31.70 31.70 31.70 31.70

sqrt(2) 10.55 1.90 1.40 1.40 1.40 1.40 1.40 1.40 26.50 24.90 27.75 30.35

2 16.00 5.80 5.80 5.80 5.80 5.80 5.80 5.80 31.40 30.60 30.85 30.85

5 31.40 27.25 27.25 27.25 27.25 27.25 27.25 27.25 31.85 31.80 31.75 31.95
10 31.90 30.70 30.70 30.70 30.70 30.70 30.70 30.70 31.95 31.95 31.80 31.70
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Figure A.4: Round 1 means for 𝑃𝑆𝑁𝑅, 𝑆𝑆𝐼𝑀, 𝑣0 in search for regularization parameters
for floating point data with 3 × 3 filterbank. Desirable values are formatted in green, and
undesirable values in red.
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A.3 Regularization Parameters for 5×5 Filterbanks Using

an Integer Format

Experience with previous searches for regularization parameters suggested that the parameter

space to be searched would include only increasing 𝜇1 and constant 𝜇2. The pivot tables

shown below include conditional formatting where green is more desirable and red is less

desirable. These are the means that were plotted in Figure 3.8.
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MLoops

Mu1 1E+12 1E+13 1E+14 1E+15 1E+16 1E+17 1E+18

1.1 21.90 8.90 5.10 2.90 2.20 2.20 2.20

1.2 14.90 8.40 6.70 2.50 2.30 2.30 2.30

1.3 16.50 11.50 5.20 2.90 2.30 2.30 2.30

1.4 15.90 6.50 3.30 2.30 2.30 2.30 2.30

1.5 10.60 6.30 3.80 3.00 3.00 3.00 3.00

1.6 19.20 6.70 3.80 2.90 2.90 2.90 2.90

1.7 15.90 6.60 4.10 3.20 3.20 3.20 3.20

Mu2

MTime

Mu1 1E+12 1E+13 1E+14 1E+15 1E+16 1E+17 1E+18

1.1 206.62 49.18 28.19 19.00 18.21 19.20 20.30

1.2 112.90 43.87 37.35 15.73 16.23 17.11 18.13

1.3 117.88 45.84 33.92 19.12 18.60 19.69 20.69

1.4 156.65 30.85 27.22 17.65 18.57 19.86 20.79

1.5 74.73 36.21 27.09 26.53 28.14 30.43 31.58

1.6 218.38 43.27 18.54 17.67 18.30 19.48 20.61

1.7 140.82 35.96 19.40 18.82 19.36 20.51 21.67

Mu2

MPSNR

Mu1 1E+12 1E+13 1E+14 1E+15 1E+16 1E+17 1E+18

1.1 26.77 26.76 26.81 25.56 25.72 25.72 25.72

1.2 27.57 26.72 26.43 25.56 25.56 25.56 25.56

1.3 26.87 26.77 26.40 25.32 25.43 25.43 25.43

1.4 27.16 26.74 26.77 25.62 25.62 25.62 25.62

1.5 27.05 27.50 26.99 26.96 26.96 26.96 26.96

1.6 27.13 27.19 27.87 27.00 27.00 27.00 27.00

1.7 26.90 27.16 27.61 26.87 26.87 26.87 26.87

Mu2

MSSIM

Mu1 1E+12 1E+13 1E+14 1E+15 1E+16 1E+17 1E+18

1.1 0.65 0.65 0.66 0.61 0.62 0.62 0.62

1.2 0.67 0.65 0.64 0.61 0.61 0.61 0.61

1.3 0.64 0.65 0.64 0.61 0.60 0.60 0.60

1.4 0.66 0.65 0.65 0.61 0.61 0.61 0.61

1.5 0.65 0.67 0.65 0.65 0.65 0.65 0.65

1.6 0.66 0.66 0.68 0.65 0.65 0.65 0.65

1.7 0.65 0.65 0.68 0.65 0.65 0.65 0.65

Mu2

MV0

Mu1 1E+12 1E+13 1E+14 1E+15 1E+16 1E+17 1E+18

1.1 19.40 14.30 13.30 12.40 12.10 12.10 12.10

1.2 21.90 17.50 15.10 12.40 12.40 12.40 12.40

1.3 24.50 19.20 15.60 13.90 12.60 12.60 12.60

1.4 23.90 20.10 14.00 12.80 12.80 12.80 12.80

1.5 23.10 20.60 16.00 15.10 15.10 15.10 15.10

1.6 25.60 22.40 17.10 15.20 15.20 15.20 15.20

1.7 26.70 22.30 19.10 16.80 16.80 16.80 16.80

Mu2

Figure A.5: Means for all metrics in search for regularization parameters for integer data
with 5 × 5 filterbank. Green formatting is more desirable and red is less desirable.
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A.4 Regularization Parameters for Parseval Relaxation

Methods

The search for regularization parameters to be used with the Parseval Relaxation function

relied on the experience obtained from earlier searches and restricted the exploration to

increasing 𝜇1 and constant 𝜇2. The pivot tables shown below include conditional formatting

where green in more desirable and red is less desirable. These are the means from which the

choice of final regularization parameters was made.
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Mean Mu2 Constant Pars

Loops 1E+15 1E+16 1E+17 1E+18 1E+19 1E+20 1E+21 1E+22 1E+23 1E+24 1E+25 1E+26 1E+27 1E+28 1E+29

Mu1     1.1 6.8 3.1 2.3 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2

1.2 5.8 3.3 2.5 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3

1.3 5.2 3.4 2.8 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6

1.4 5.0 3.6 3.1 2.9 2.8 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9

1.5 5.0 3.6 3.2 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

1.6 4.5 3.4 3.0 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9

1.7 4.6 4.1 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8

1.8 4.9 4.1 3.8 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9

1.9 4.8 4.1 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8

In
cr
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si

n
g

Mean Mu2 Constant Pars

Time 1E+15 1E+16 1E+17 1E+18 1E+19 1E+20 1E+21 1E+22 1E+23 1E+24 1E+25 1E+26 1E+27 1E+28 1E+29

Mu1     1.1 371.1 116.5 59.0 50.0 47.2 46.6 46.9 46.7 46.7 46.8 46.7 46.6 46.6 46.8 46.7

1.2 302.8 116.1 67.7 55.3 53.0 52.8 53.0 52.7 52.9 52.7 52.7 52.8 52.7 52.7 52.7

1.3 258.0 121.3 78.5 66.9 65.2 65.1 65.4 65.3 65.0 64.9 65.0 65.5 65.0 65.1 64.8

1.4 243.2 128.5 92.8 78.1 75.2 75.2 75.3 75.3 75.5 75.0 75.2 75.2 75.3 75.2 75.2

1.5 236.6 129.1 97.4 82.1 79.5 79.0 79.5 79.6 79.4 79.3 79.4 79.6 79.2 79.4 79.2

1.6 204.2 120.5 90.0 79.4 77.3 77.3 77.4 77.3 77.3 77.2 77.1 77.5 77.1 77.1 77.2

1.7 210.1 150.5 122.3 113.4 111.6 111.3 111.5 111.4 111.7 111.6 111.3 111.5 111.4 111.7 111.5

1.8 225.4 151.2 125.0 118.9 117.5 117.7 117.7 117.8 117.6 117.4 117.5 117.6 117.4 117.3 117.6

1.9 212.9 150.2 124.8 115.7 113.8 113.8 113.7 113.7 113.7 113.3 113.7 113.4 113.4 113.5 113.5
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Figure A.6: Round 1 means for 𝐿𝑜𝑜𝑝𝑠 and 𝑇𝑖𝑚𝑒 in search for regularization parameters
for Parseval relaxation methods. Desirable values are formatted in green, and undesirable
values in red.
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Mean Mu2 Constant Pars

Time 1E+15 1E+16 1E+17 1E+18 1E+19 1E+20 1E+21 1E+22 1E+23 1E+24 1E+25 1E+26 1E+27 1E+28 1E+29

Mu1     1.1 371.1 116.5 59.0 50.0 47.2 46.6 46.9 46.7 46.7 46.8 46.7 46.6 46.6 46.8 46.7

1.2 302.8 116.1 67.7 55.3 53.0 52.8 53.0 52.7 52.9 52.7 52.7 52.8 52.7 52.7 52.7

1.3 258.0 121.3 78.5 66.9 65.2 65.1 65.4 65.3 65.0 64.9 65.0 65.5 65.0 65.1 64.8

1.4 243.2 128.5 92.8 78.1 75.2 75.2 75.3 75.3 75.5 75.0 75.2 75.2 75.3 75.2 75.2

1.5 236.6 129.1 97.4 82.1 79.5 79.0 79.5 79.6 79.4 79.3 79.4 79.6 79.2 79.4 79.2

1.6 204.2 120.5 90.0 79.4 77.3 77.3 77.4 77.3 77.3 77.2 77.1 77.5 77.1 77.1 77.2

1.7 210.1 150.5 122.3 113.4 111.6 111.3 111.5 111.4 111.7 111.6 111.3 111.5 111.4 111.7 111.5

1.8 225.4 151.2 125.0 118.9 117.5 117.7 117.7 117.8 117.6 117.4 117.5 117.6 117.4 117.3 117.6

1.9 212.9 150.2 124.8 115.7 113.8 113.8 113.7 113.7 113.7 113.3 113.7 113.4 113.4 113.5 113.5

In
cr

ea
si

n
g

Mean Mu2 Constant Pars

SSIM 1E+15 1E+16 1E+17 1E+18 1E+19 1E+20 1E+21 1E+22 1E+23 1E+24 1E+25 1E+26 1E+27 1E+28 1E+29

Mu1     1.1 0.608 0.594 0.574 0.563 0.561 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560

1.2 0.610 0.591 0.572 0.562 0.561 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560

1.3 0.597 0.587 0.576 0.570 0.568 0.568 0.568 0.568 0.568 0.568 0.568 0.568 0.568 0.568 0.568

1.4 0.590 0.589 0.577 0.574 0.573 0.572 0.572 0.572 0.572 0.572 0.572 0.572 0.572 0.572 0.572

1.5 0.585 0.580 0.569 0.565 0.565 0.565 0.565 0.565 0.565 0.565 0.565 0.565 0.565 0.565 0.565

1.6 0.581 0.572 0.564 0.560 0.559 0.559 0.559 0.559 0.559 0.559 0.559 0.559 0.559 0.559 0.559

1.7 0.583 0.576 0.568 0.566 0.565 0.565 0.565 0.565 0.565 0.565 0.565 0.565 0.565 0.565 0.565

1.8 0.574 0.568 0.564 0.562 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561

1.9 0.569 0.564 0.556 0.553 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552
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Mean Mu2 Constant Pars

V0 1E+15 1E+16 1E+17 1E+18 1E+19 1E+20 1E+21 1E+22 1E+23 1E+24 1E+25 1E+26 1E+27 1E+28 1E+29

Mu1     1.1 18.2 16.5 15.9 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8

1.2 19.6 17.6 16.6 16.4 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3

1.3 20.8 18.8 18.0 17.7 17.7 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8

1.4 21.6 20.0 19.2 18.6 18.5 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6

1.5 23.0 20.7 19.6 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2

1.6 23.4 21.1 20.2 19.9 19.9 19.9 19.9 19.9 19.9 19.9 19.9 19.9 19.9 19.9 19.9

1.7 24.6 23.4 22.6 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5

1.8 26.0 24.2 23.3 23.4 23.4 23.4 23.4 23.4 23.4 23.4 23.4 23.4 23.4 23.4 23.4

1.9 26.0 24.4 23.6 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5
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Figure A.7: Round 1 means for 𝑃𝑆𝑁𝑅, 𝑆𝑆𝐼𝑀 and 𝑣0 in search for regularization parameters
for Parseval relaxation methods. Desirable values are formatted in green, and undesirable
values in red.
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Appendix B

SAS Output

Three-way analyses were performed for each metric outcome using three independent

variables: image format, filterbank size, and maximum dilation level. The results for each

metric are summarized in individual sections below.

B.1 𝑇𝑖𝑚𝑒

A three-way ANOVA was performed for the metric 𝑇𝑖𝑚𝑒. Model assumptions require

normality and homogeneity (equality) of variances among all the subpopulations, but these

were not sufficiently satisfied. The response variable 𝑇𝑖𝑚𝑒 was transformed by the natural

log and the analysis was re-run using 𝑙𝑛(𝑇𝑖𝑚𝑒) as the response variable. Because normality

was still an issue, the data were analyzed separating the data into two populations by image

format. Both groups were analyzed using a two-way ANOVA with the response 𝑙𝑛(𝑇𝑖𝑚𝑒),

and factors filterbank size 𝐹𝐵 and maximum dilation level 𝐿.

For data using the integer image format, the two-way interaction between 𝐿 and 𝐹𝐵

was strongly significant with 𝑝 < 0.0001. The means for all four combinations of these two

factors were significantly different from each other.
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For data using the floating point image format, the two-way interaction between 𝐿

and 𝐹𝐵 was strongly significant with 𝑝 = 0.0019. The means for all combinations of these

two factors were significantly different from each other, except for the two combinations

involving 𝐹𝐵 = 5 × 5.
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Time Full Model 

 

The GLM Procedure 

 

 

11:58  Tuesday, May 11, 2021   

Class Level Information 

Class Levels Values 

Format 2 Floating Point Integer 

L 2 L=3 L=4 

FB 2 3x3 5x5 

 
 

Number of Observations Read 800 

Number of Observations Used 800 



 

50 

Time Full Model: Assumptions Violated 

 

The GLM Procedure 

 

Dependent Variable: Time   Time 

 

 

11:58  Tuesday, May 11, 2021   

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 7 300813.4317 42973.3474 54.20 <.0001 

Error 792 627957.2979 792.8754   

Corrected Total 799 928770.7295    

 
 

R-Square Coeff Var Root MSE Time Mean 

0.323883 131.1431 28.15804 21.47123 

 
 

Source DF Type I SS Mean Square F Value Pr > F 

Format 1 78263.46219 78263.46219 98.71 <.0001 

L 1 54558.29049 54558.29049 68.81 <.0001 

Format*L 1 55330.38529 55330.38529 69.78 <.0001 

FB 1 64343.31538 64343.31538 81.15 <.0001 

Format*FB 1 34.62660 34.62660 0.04 0.8345 

L*FB 1 22441.07397 22441.07397 28.30 <.0001 

Format*L*FB 1 25842.27774 25842.27774 32.59 <.0001 

 
 

Source DF Type III SS Mean Square F Value Pr > F 

Format 1 78263.46219 78263.46219 98.71 <.0001 

L 1 54558.29049 54558.29049 68.81 <.0001 

Format*L 1 55330.38529 55330.38529 69.78 <.0001 

FB 1 64343.31538 64343.31538 81.15 <.0001 

Format*FB 1 34.62660 34.62660 0.04 0.8345 

L*FB 1 22441.07397 22441.07397 28.30 <.0001 

Format*L*FB 1 25842.27774 25842.27774 32.59 <.0001 
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Time Full Model: Assumptions Violated 

 

The GLM Procedure 

 

Dependent Variable: Time   Time 

 

 

11:58  Tuesday, May 11, 2021   

 

Fit Diagnostics for Time

0.3179Adj R-Square

0.3239R-Square

792.88MSE

792Error DF

8Parameters

800Observations

Proportion Less
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Residual
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Time Full Model Natural Log Transformation 

 

The GLM Procedure 

 

 

11:58  Tuesday, May 11, 2021   

Class Level Information 

Class Levels Values 

Format 2 Floating Point Integer 

L 2 L=3 L=4 

FB 2 3x3 5x5 

 
 

Number of Observations Read 800 

Number of Observations Used 800 
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Time Full Model Natural Log Transformation 

 

The GLM Procedure 

 

Dependent Variable: ln_Time 

 

 

11:58  Tuesday, May 11, 2021   

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 7 757.3817149 108.1973878 411.60 <.0001 

Error 792 208.1908207 0.2628672   

Corrected Total 799 965.5725357    

 
 

R-Square Coeff Var Root MSE ln_Time Mean 

0.784386 20.56637 0.512706 2.492933 

 
 

Source DF Type I SS Mean Square F Value Pr > F 

Format 1 273.9646072 273.9646072 1042.22 <.0001 

L 1 65.4964304 65.4964304 249.16 <.0001 

Format*L 1 35.9768193 35.9768193 136.86 <.0001 

FB 1 197.0888959 197.0888959 749.77 <.0001 

Format*FB 1 159.8538872 159.8538872 608.12 <.0001 

L*FB 1 5.6663570 5.6663570 21.56 <.0001 

Format*L*FB 1 19.3347180 19.3347180 73.55 <.0001 

 
 

Source DF Type III SS Mean Square F Value Pr > F 

Format 1 273.9646072 273.9646072 1042.22 <.0001 

L 1 65.4964304 65.4964304 249.16 <.0001 

Format*L 1 35.9768193 35.9768193 136.86 <.0001 

FB 1 197.0888959 197.0888959 749.77 <.0001 

Format*FB 1 159.8538872 159.8538872 608.12 <.0001 

L*FB 1 5.6663570 5.6663570 21.56 <.0001 

Format*L*FB 1 19.3347180 19.3347180 73.55 <.0001 

 
 



 

56 

Time Full Model Natural Log Transformation 

 

The GLM Procedure 

 

Dependent Variable: ln_Time 

 

 

11:58  Tuesday, May 11, 2021   

 

Fit Diagnostics for ln_Time

0.7825Adj R-Square

0.7844R-Square

0.2629MSE

792Error DF
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Integer: Time Two-way Interaction Model Natural Log Transformation 

 

The Mixed Procedure 

 

 

11:58  Tuesday, May 11, 2021   

Model Information 

Data Set WORK.BEV 

Dependent Variable ln_Time 

Covariance Structure Diagonal 

Estimation Method REML 

Residual Variance Method Profile 

Fixed Effects SE Method Model-Based 

Degrees of Freedom Method Residual 

 
 

Class Level Information 

Class Levels Values 

L 2 L=3 L=4 

FB 2 3x3 5x5 

 
 

Dimensions 

Covariance Parameters 1 

Columns in X 9 

Columns in Z 0 

Subjects 1 

Max Obs per Subject 400 

 
 

Number of Observations 

Number of Observations Read 400 

Number of Observations Used 400 

Number of Observations Not Used 0 

 
 

Covariance 
Parameter 
Estimates 

Cov Parm Estimate 

Residual 0.3181 
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Integer: Time Two-way Interaction Model Natural Log Transformation 

 

The Mixed Procedure 

 

 

11:58  Tuesday, May 11, 2021   

Fit Statistics 

-2 Res Log Likelihood 688.7 

AIC (Smaller is Better) 690.7 

AICC (Smaller is Better) 690.7 

BIC (Smaller is Better) 694.7 

 
 

Type 3 Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

L 1 396 312.07 <.0001 

FB 1 396 3.06 0.0810 

L*FB 1 396 72.20 <.0001 

 
 

Least Squares Means 

Effect L FB Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

L*FB L=3 3x3 2.7702 0.05640 396 49.12 <.0001 0.05 2.6593 2.8811 

L*FB L=3 5x5 2.3897 0.05640 396 42.37 <.0001 0.05 2.2788 2.5005 

L*FB L=4 3x3 3.2874 0.05640 396 58.28 <.0001 0.05 3.1765 3.3982 

L*FB L=4 5x5 3.8653 0.05640 396 68.53 <.0001 0.05 3.7544 3.9762 

 
 

Differences of Least Squares Means 

Effect L FB L FB Estimate 
Standard 

Error DF t Value Pr > |t| Adjustment Adj P Alpha Lower Upper 

L*FB L=3 3x3 L=3 5x5 0.3806 0.07977 396 4.77 <.0001 Tukey <.0001 0.05 0.2238 0.5374 

L*FB L=3 3x3 L=4 3x3 -0.5171 0.07977 396 -6.48 <.0001 Tukey <.0001 0.05 -0.6740 -0.3603 

L*FB L=3 3x3 L=4 5x5 -1.0951 0.07977 396 -13.73 <.0001 Tukey <.0001 0.05 -1.2519 -0.9382 

L*FB L=3 5x5 L=4 3x3 -0.8977 0.07977 396 -11.25 <.0001 Tukey <.0001 0.05 -1.0545 -0.7409 

L*FB L=3 5x5 L=4 5x5 -1.4756 0.07977 396 -18.50 <.0001 Tukey <.0001 0.05 -1.6324 -1.3188 

L*FB L=4 3x3 L=4 5x5 -0.5779 0.07977 396 -7.25 <.0001 Tukey <.0001 0.05 -0.7347 -0.4211 

 

Differences of Least Squares Means 

Effect L FB L FB 
Adj 

Lower 
Adj 

Upper 

L*FB L=3 3x3 L=3 5x5 0.1748 0.5864 

L*FB L=3 3x3 L=4 3x3 -0.7229 -0.3114 

L*FB L=3 3x3 L=4 5x5 -1.3009 -0.8893 

L*FB L=3 5x5 L=4 3x3 -1.1035 -0.6919 
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Differences of Least Squares Means 

Effect L FB L FB 
Adj 

Lower 
Adj 

Upper 

L*FB L=3 5x5 L=4 5x5 -1.6814 -1.2698 

L*FB L=4 3x3 L=4 5x5 -0.7837 -0.3721 

 
 

 

Residuals for ln_Time

BIC 694.66

AICC 690.69

AIC 690.68

Objective 688.68

Fit Statistics

Std Dev 0.5619

Maximum 2.4242

Mean -2E-15

Minimum -2.696

Observations 400

Residual Statistics
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Store Information 

Item Store WORK.INTEGERTIMEPLOT 

Data Set Created From WORK.BEV 

Created By PROC MIXED 

Date Created 10MAY21:13:03:58 

Response Variable ln_Time 

Distribution Normal 

Class Variables L FB 

Model Effects Intercept L FB L*FB 

 
 

Class Level Information 

Class Levels Values 

L 2 L=3 L=4 

FB 2 3x3 5x5 
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Model Information 

Data Set WORK.BEV 

Dependent Variable ln_Time 

Covariance Structure Diagonal 

Estimation Method REML 

Residual Variance Method Profile 

Fixed Effects SE Method Model-Based 

Degrees of Freedom Method Residual 

 
 

Class Level Information 

Class Levels Values 

L 2 L=3 L=4 

FB 2 3x3 5x5 

 
 

Dimensions 

Covariance Parameters 1 

Columns in X 9 

Columns in Z 0 

Subjects 1 

Max Obs per Subject 400 

 
 

Number of Observations 

Number of Observations Read 400 

Number of Observations Used 400 

Number of Observations Not Used 0 

 
 

Covariance 
Parameter 
Estimates 

Cov Parm Estimate 

Residual 0.2076 
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Fit Statistics 

-2 Res Log Likelihood 519.7 

AIC (Smaller is Better) 521.7 

AICC (Smaller is Better) 521.7 

BIC (Smaller is Better) 525.6 

 
 

Type 3 Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

L 1 396 10.57 0.0012 

FB 1 396 1714.62 <.0001 

L*FB 1 396 9.80 0.0019 

 
 

Least Squares Means 

Effect L FB Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

L*FB L=3 3x3 0.8190 0.04556 396 17.97 <.0001 0.05 0.7294 0.9086 

L*FB L=3 5x5 2.8483 0.04556 396 62.51 <.0001 0.05 2.7588 2.9379 

L*FB L=4 3x3 1.1097 0.04556 396 24.36 <.0001 0.05 1.0202 1.1993 

L*FB L=4 5x5 2.8539 0.04556 396 62.63 <.0001 0.05 2.7643 2.9434 

 
 

Differences of Least Squares Means 

Effect L FB L FB Estimate 
Standard 

Error DF t Value Pr > |t| Adjustment Adj P Alpha Lower Upper 

L*FB L=3 3x3 L=3 5x5 -2.0293 0.06444 396 -31.49 <.0001 Tukey <.0001 0.05 -2.1560 -1.9026 

L*FB L=3 3x3 L=4 3x3 -0.2907 0.06444 396 -4.51 <.0001 Tukey <.0001 0.05 -0.4174 -0.1641 

L*FB L=3 3x3 L=4 5x5 -2.0348 0.06444 396 -31.58 <.0001 Tukey <.0001 0.05 -2.1615 -1.9082 

L*FB L=3 5x5 L=4 3x3 1.7386 0.06444 396 26.98 <.0001 Tukey <.0001 0.05 1.6119 1.8653 

L*FB L=3 5x5 L=4 5x5 -0.00553 0.06444 396 -0.09 0.9317 Tukey 0.9998 0.05 -0.1322 0.1212 

L*FB L=4 3x3 L=4 5x5 -1.7441 0.06444 396 -27.07 <.0001 Tukey <.0001 0.05 -1.8708 -1.6174 

 

Differences of Least Squares Means 

Effect L FB L FB 
Adj 

Lower 
Adj 

Upper 

L*FB L=3 3x3 L=3 5x5 -2.1956 -1.8631 

L*FB L=3 3x3 L=4 3x3 -0.4570 -0.1245 

L*FB L=3 3x3 L=4 5x5 -2.2011 -1.8686 

L*FB L=3 5x5 L=4 3x3 1.5723 1.9048 



 

64 
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Differences of Least Squares Means 

Effect L FB L FB 
Adj 

Lower 
Adj 

Upper 

L*FB L=3 5x5 L=4 5x5 -0.1718 0.1607 

L*FB L=4 3x3 L=4 5x5 -1.9104 -1.5779 

 
 

 

Residuals for ln_Time

BIC 525.65

AICC 521.68

AIC 521.67

Objective 519.67

Fit Statistics

Std Dev 0.4539

Maximum 2.2094

Mean 5E-16

Minimum -1.83

Observations 400

Residual Statistics
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Store Information 

Item Store WORK.FLOATINGTIMEPLOT 

Data Set Created From WORK.BEV 

Created By PROC MIXED 

Date Created 10MAY21:13:04:05 

Response Variable ln_Time 

Distribution Normal 

Class Variables L FB 

Model Effects Intercept L FB L*FB 

 
 

Class Level Information 

Class Levels Values 

L 2 L=3 L=4 

FB 2 3x3 5x5 

 
 

 



B.2 𝐿𝑜𝑜𝑝𝑠

A three-way ANOVA was performed for the metric 𝐿𝑜𝑜𝑝𝑠. Model assumptions were not

sufficiently satisfied. The response variable 𝐿𝑜𝑜𝑝𝑠 was transformed by the natural log and

the analysis was re-run using 𝑙𝑛(𝐿𝑜𝑜𝑝𝑠) as the response variable. Because normality was

still an issue, the data were analyzed separating the data into two populations by image

format. Both groups were analyzed using a two-way ANOVA with the response 𝑙𝑛(𝐿𝑜𝑜𝑝𝑠),

and factors filterbank size 𝐹𝐵 and maximum dilation level 𝐿.

For data using the integer image format, the two-way interaction between 𝐿 and 𝐹𝐵

was strongly significant with 𝑝 < 0.0001. The means of 𝐿𝑜𝑜𝑝𝑠 for all combinations of these

two factors were significantly different from each other, except for the two combinations

involving 𝐹𝐵 = 3 × 3.

For data using the floating point image format, the two-way interaction between 𝐿 and

𝐹𝐵 was strongly significant with 𝑝 < 0.0001. The mean of 𝐿𝑜𝑜𝑝𝑠 for combination 𝐿 = 3

and 𝐹𝐵 = 5 × 5 was significantly larger than the means for all other combinations. No other

pairings were significantly different.

111
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Class Level Information 

Class Levels Values 

Format 2 Floating Point Integer 

L 2 L=3 L=4 

FB 2 3x3 5x5 

 
 

Number of Observations Read 800 

Number of Observations Used 800 
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Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 7 18739.75500 2677.10786 58.38 <.0001 

Error 792 36317.12000 45.85495   

Corrected Total 799 55056.87500    

 
 

R-Square Coeff Var Root MSE Loops Mean 

0.340371 63.65808 6.771628 10.63750 

 
 

Source DF Type I SS Mean Square F Value Pr > F 

Format 1 3256.245000 3256.245000 71.01 <.0001 

L 1 531.380000 531.380000 11.59 0.0007 

Format*L 1 3073.280000 3073.280000 67.02 <.0001 

FB 1 2513.405000 2513.405000 54.81 <.0001 

Format*FB 1 7478.645000 7478.645000 163.09 <.0001 

L*FB 1 134.480000 134.480000 2.93 0.0872 

Format*L*FB 1 1752.320000 1752.320000 38.21 <.0001 

 
 

Source DF Type III SS Mean Square F Value Pr > F 

Format 1 3256.245000 3256.245000 71.01 <.0001 

L 1 531.380000 531.380000 11.59 0.0007 

Format*L 1 3073.280000 3073.280000 67.02 <.0001 

FB 1 2513.405000 2513.405000 54.81 <.0001 

Format*FB 1 7478.645000 7478.645000 163.09 <.0001 

L*FB 1 134.480000 134.480000 2.93 0.0872 

Format*L*FB 1 1752.320000 1752.320000 38.21 <.0001 
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Fit Diagnostics for Loops
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Class Level Information 

Class Levels Values 

Format 2 Floating Point Integer 

L 2 L=3 L=4 

FB 2 3x3 5x5 

 
 

Number of Observations Read 800 

Number of Observations Used 800 
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Natural Log Loops Full Model 

 

The GLM Procedure 

 

Dependent Variable: ln_Loops 
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Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 7 222.6157205 31.8022458 173.26 <.0001 

Error 792 145.3698871 0.1835478   

Corrected Total 799 367.9856076    

 
 

R-Square Coeff Var Root MSE ln_Loops Mean 

0.604958 20.03717 0.428425 2.138151 

 
 

Source DF Type I SS Mean Square F Value Pr > F 

Format 1 7.65313736 7.65313736 41.70 <.0001 

L 1 10.75897934 10.75897934 58.62 <.0001 

Format*L 1 32.99065379 32.99065379 179.74 <.0001 

FB 1 48.50128198 48.50128198 264.24 <.0001 

Format*FB 1 91.70439457 91.70439457 499.62 <.0001 

L*FB 1 5.16613541 5.16613541 28.15 <.0001 

Format*L*FB 1 25.84113803 25.84113803 140.79 <.0001 

 
 

Source DF Type III SS Mean Square F Value Pr > F 

Format 1 7.65313736 7.65313736 41.70 <.0001 

L 1 10.75897934 10.75897934 58.62 <.0001 

Format*L 1 32.99065379 32.99065379 179.74 <.0001 

FB 1 48.50128198 48.50128198 264.24 <.0001 

Format*FB 1 91.70439457 91.70439457 499.62 <.0001 

L*FB 1 5.16613541 5.16613541 28.15 <.0001 

Format*L*FB 1 25.84113803 25.84113803 140.79 <.0001 
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Fit Diagnostics for ln_Loops
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Model Information 

Data Set WORK.BEV 

Dependent Variable ln_Loops 

Covariance Structure Diagonal 

Estimation Method REML 

Residual Variance Method Profile 

Fixed Effects SE Method Model-Based 

Degrees of Freedom Method Residual 

 
 

Class Level Information 

Class Levels Values 

L 2 L=3 L=4 

FB 2 3x3 5x5 

 
 

Dimensions 

Covariance Parameters 1 

Columns in X 9 

Columns in Z 0 

Subjects 1 

Max Obs per Subject 400 

 
 

Number of Observations 

Number of Observations Read 400 

Number of Observations Used 400 

Number of Observations Not Used 0 

 
 

Covariance 
Parameter 
Estimates 

Cov Parm Estimate 

Residual 0.2202 
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Fit Statistics 

-2 Res Log Likelihood 543.0 

AIC (Smaller is Better) 545.0 

AICC (Smaller is Better) 545.0 

BIC (Smaller is Better) 549.0 

 
 

Type 3 Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

L 1 396 184.88 <.0001 

FB 1 396 621.17 <.0001 

L*FB 1 396 122.87 <.0001 

 
 

Least Squares Means 

Effect L FB Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

L*FB L=3 3x3 2.7618 0.04693 396 58.85 <.0001 0.05 2.6695 2.8541 

L*FB L=3 5x5 1.0720 0.04693 396 22.84 <.0001 0.05 0.9798 1.1643 

L*FB L=4 3x3 2.8797 0.04693 396 61.36 <.0001 0.05 2.7875 2.9720 

L*FB L=4 5x5 2.2303 0.04693 396 47.53 <.0001 0.05 2.1380 2.3225 

 
 

Differences of Least Squares Means 

Effect L FB L FB Estimate 
Standard 

Error DF t Value Pr > |t| Adjustment Adj P Alpha Lower Upper 

L*FB L=3 3x3 L=3 5x5 1.6898 0.06637 396 25.46 <.0001 Tukey <.0001 0.05 1.5593 1.8202 

L*FB L=3 3x3 L=4 3x3 -0.1179 0.06637 396 -1.78 0.0764 Tukey 0.2861 0.05 -0.2484 0.01256 

L*FB L=3 3x3 L=4 5x5 0.5315 0.06637 396 8.01 <.0001 Tukey <.0001 0.05 0.4010 0.6620 

L*FB L=3 5x5 L=4 3x3 -1.8077 0.06637 396 -27.24 <.0001 Tukey <.0001 0.05 -1.9381 -1.6772 

L*FB L=3 5x5 L=4 5x5 -1.1583 0.06637 396 -17.45 <.0001 Tukey <.0001 0.05 -1.2887 -1.0278 

L*FB L=4 3x3 L=4 5x5 0.6494 0.06637 396 9.79 <.0001 Tukey <.0001 0.05 0.5189 0.7799 

 

Differences of Least Squares Means 

Effect L FB L FB 
Adj 

Lower 
Adj 

Upper 

L*FB L=3 3x3 L=3 5x5 1.5185 1.8610 

L*FB L=3 3x3 L=4 3x3 -0.2891 0.05331 

L*FB L=3 3x3 L=4 5x5 0.3603 0.7027 

L*FB L=3 5x5 L=4 3x3 -1.9789 -1.6365 
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Differences of Least Squares Means 

Effect L FB L FB 
Adj 

Lower 
Adj 

Upper 

L*FB L=3 5x5 L=4 5x5 -1.3295 -0.9870 

L*FB L=4 3x3 L=4 5x5 0.4782 0.8206 

 
 

 

Residuals for ln_Loops

BIC 549.01

AICC 545.03

AIC 545.02

Objective 543.02

Fit Statistics

Std Dev 0.4675

Maximum 2.3547

Mean -2E-15

Minimum -1.781

Observations 400

Residual Statistics
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The PLM Procedure 
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Store Information 

Item Store WORK.INTEGERLOOPSPLOT 

Data Set Created From WORK.BEV 

Created By PROC MIXED 

Date Created 10MAY21:13:04:25 

Response Variable ln_Loops 

Distribution Normal 

Class Variables L FB 

Model Effects Intercept L FB L*FB 

 
 

Class Level Information 

Class Levels Values 

L 2 L=3 L=4 

FB 2 3x3 5x5 
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Model Information 

Data Set WORK.BEV 

Dependent Variable ln_Loops 

Covariance Structure Diagonal 

Estimation Method REML 

Residual Variance Method Profile 

Fixed Effects SE Method Model-Based 

Degrees of Freedom Method Residual 

 
 

Class Level Information 

Class Levels Values 

L 2 L=3 L=4 

FB 2 3x3 5x5 

 
 

Dimensions 

Covariance Parameters 1 

Columns in X 9 

Columns in Z 0 

Subjects 1 

Max Obs per Subject 400 

 
 

Number of Observations 

Number of Observations Read 400 

Number of Observations Used 400 

Number of Observations Not Used 0 

 
 

Covariance 
Parameter 
Estimates 

Cov Parm Estimate 

Residual 0.1469 
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The Mixed Procedure 
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Fit Statistics 

-2 Res Log Likelihood 382.6 

AIC (Smaller is Better) 384.6 

AICC (Smaller is Better) 384.6 

BIC (Smaller is Better) 388.6 

 
 

Type 3 Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

L 1 396 20.66 <.0001 

FB 1 396 23.23 <.0001 

L*FB 1 396 26.89 <.0001 

 
 

Least Squares Means 

Effect L FB Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

L*FB L=3 3x3 1.9357 0.03832 396 50.51 <.0001 0.05 1.8604 2.0111 

L*FB L=3 5x5 2.3192 0.03832 396 60.51 <.0001 0.05 2.2438 2.3945 

L*FB L=4 3x3 1.9603 0.03832 396 51.15 <.0001 0.05 1.8849 2.0356 

L*FB L=4 5x5 1.9462 0.03832 396 50.78 <.0001 0.05 1.8709 2.0216 

 
 

Differences of Least Squares Means 

Effect L FB L FB Estimate 
Standard 

Error DF t Value Pr > |t| Adjustment Adj P Alpha Lower Upper 

L*FB L=3 3x3 L=3 5x5 -0.3834 0.05420 396 -7.07 <.0001 Tukey <.0001 0.05 -0.4900 -0.2769 

L*FB L=3 3x3 L=4 3x3 -0.02453 0.05420 396 -0.45 0.6511 Tukey 0.9691 0.05 -0.1311 0.08203 

L*FB L=3 3x3 L=4 5x5 -0.01049 0.05420 396 -0.19 0.8467 Tukey 0.9974 0.05 -0.1170 0.09607 

L*FB L=3 5x5 L=4 3x3 0.3589 0.05420 396 6.62 <.0001 Tukey <.0001 0.05 0.2523 0.4655 

L*FB L=3 5x5 L=4 5x5 0.3729 0.05420 396 6.88 <.0001 Tukey <.0001 0.05 0.2664 0.4795 

L*FB L=4 3x3 L=4 5x5 0.01404 0.05420 396 0.26 0.7957 Tukey 0.9939 0.05 -0.09251 0.1206 

 

Differences of Least Squares Means 

Effect L FB L FB 
Adj 

Lower 
Adj 

Upper 

L*FB L=3 3x3 L=3 5x5 -0.5233 -0.2436 

L*FB L=3 3x3 L=4 3x3 -0.1644 0.1153 

L*FB L=3 3x3 L=4 5x5 -0.1503 0.1293 

L*FB L=3 5x5 L=4 3x3 0.2191 0.4987 
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Floating Point: Natural Log Loops Full Model 

 

The Mixed Procedure 
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Differences of Least Squares Means 

Effect L FB L FB 
Adj 

Lower 
Adj 

Upper 

L*FB L=3 5x5 L=4 5x5 0.2331 0.5128 

L*FB L=4 3x3 L=4 5x5 -0.1258 0.1539 

 
 

 

Residuals for ln_Loops

BIC 388.6

AICC 384.63

AIC 384.62

Objective 382.62

Fit Statistics

Std Dev 0.3818

Maximum 2.1914

Mean 91E-16

Minimum -1.253

Observations 400

Residual Statistics
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Floating Point: Natural Log Loops Full Model 

 

The PLM Procedure 
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Store Information 

Item Store WORK.FLOATINGLOOPSPLOT 

Data Set Created From WORK.BEV 

Created By PROC MIXED 

Date Created 10MAY21:13:04:30 

Response Variable ln_Loops 

Distribution Normal 

Class Variables L FB 

Model Effects Intercept L FB L*FB 

 
 

Class Level Information 

Class Levels Values 

L 2 L=3 L=4 

FB 2 3x3 5x5 

 
 

 



B.3 𝑃𝑆𝑁𝑅

A three-way ANOVA was performed for the metric 𝑃𝑆𝑁𝑅. Model assumptions were

satisfied, and no transformation was required. The three-way interaction 𝐹𝑜𝑟𝑚𝑎𝑡 ∗ 𝐿 ∗ 𝐹𝐵

was not significant with 𝑝 = 0.5291, and a follow-up model with only two-way interactions

was performed.

The interaction 𝐿 ∗ 𝐹𝐵 was significant with 𝑝 = 0.0331. The mean of 𝑃𝑆𝑁𝑅 for

combination 𝐿 = 3 and 𝐹𝐵 = 3 × 3 was significantly smaller than the means for all other

combinations. No other pairings were significantly different.

The interaction 𝐹𝑜𝑟𝑚𝑎𝑡 ∗ 𝐿 was significant with 𝑝 = 0.0280. The mean of 𝑃𝑆𝑁𝑅 for

the combination of integer format with 𝐿 = 4 was significantly larger than the mean for the

combination of integer format with 𝐿 = 3. No other pairings were significantly different.

The interaction 𝐹𝑜𝑟𝑚𝑎𝑡 ∗ 𝐹𝐵 was not significant, 𝑝 = 0.8778.
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PSNR Full Model 

 

The GLM Procedure 
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Class Level Information 

Class Levels Values 

Format 2 Floating Point Integer 

L 2 L=3 L=4 

FB 2 3x3 5x5 

 
 

Number of Observations Read 800 

Number of Observations Used 800 
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PSNR Full Model 

 

The GLM Procedure 

 

Dependent Variable: PSNR   PSNR 
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Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 7 1787.27192 255.32456 6.22 <.0001 

Error 792 32488.73745 41.02113   

Corrected Total 799 34276.00937    

 
 

R-Square Coeff Var Root MSE PSNR Mean 

0.052144 25.95938 6.404774 24.67230 

 
 

Source DF Type I SS Mean Square F Value Pr > F 

Format 1 18.910467 18.910467 0.46 0.4974 

L 1 298.080437 298.080437 7.27 0.0072 

Format*L 1 198.436470 198.436470 4.84 0.0281 

FB 1 1068.081877 1068.081877 26.04 <.0001 

Format*FB 1 0.970429 0.970429 0.02 0.8778 

L*FB 1 186.530328 186.530328 4.55 0.0333 

Format*L*FB 1 16.261911 16.261911 0.40 0.5291 

 
 

Source DF Type III SS Mean Square F Value Pr > F 

Format 1 18.910467 18.910467 0.46 0.4974 

L 1 298.080437 298.080437 7.27 0.0072 

Format*L 1 198.436470 198.436470 4.84 0.0281 

FB 1 1068.081877 1068.081877 26.04 <.0001 

Format*FB 1 0.970429 0.970429 0.02 0.8778 

L*FB 1 186.530328 186.530328 4.55 0.0333 

Format*L*FB 1 16.261911 16.261911 0.40 0.5291 
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PSNR Full Model 

 

The GLM Procedure 

 

Dependent Variable: PSNR   PSNR 
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Fit Diagnostics for PSNR
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PSNR Two-way Interaction Model 

 

The GLM Procedure 
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Class Level Information 

Class Levels Values 

Format 2 Floating Point Integer 

L 2 L=3 L=4 

FB 2 3x3 5x5 

 
 

Number of Observations Read 800 

Number of Observations Used 800 
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PSNR Two-way Interaction Model 

 

The GLM Procedure 

 

Dependent Variable: PSNR   PSNR 
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Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 6 1771.01001 295.16833 7.20 <.0001 

Error 793 32504.99936 40.98991   

Corrected Total 799 34276.00937    

 
 

R-Square Coeff Var Root MSE PSNR Mean 

0.051669 25.94949 6.402336 24.67230 

 
 

Source DF Type I SS Mean Square F Value Pr > F 

Format 1 18.910467 18.910467 0.46 0.4972 

L 1 298.080437 298.080437 7.27 0.0072 

Format*L 1 198.436470 198.436470 4.84 0.0281 

FB 1 1068.081877 1068.081877 26.06 <.0001 

Format*FB 1 0.970429 0.970429 0.02 0.8778 

L*FB 1 186.530328 186.530328 4.55 0.0332 

 
 

Source DF Type III SS Mean Square F Value Pr > F 

Format 1 18.910467 18.910467 0.46 0.4972 

L 1 298.080437 298.080437 7.27 0.0072 

Format*L 1 198.436470 198.436470 4.84 0.0281 

FB 1 1068.081877 1068.081877 26.06 <.0001 

Format*FB 1 0.970429 0.970429 0.02 0.8778 

L*FB 1 186.530328 186.530328 4.55 0.0332 
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PSNR Two-way Interaction Model 

 

The GLM Procedure 

 

Dependent Variable: PSNR   PSNR 
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Fit Diagnostics for PSNR

0.0445Adj R-Square
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40.99MSE
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PSNR Reduced Two-way Interaction Model 

 

The Mixed Procedure 
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Model Information 

Data Set WORK.BEV 

Dependent Variable PSNR 

Covariance Structure Diagonal 

Estimation Method REML 

Residual Variance Method Profile 

Fixed Effects SE Method Model-Based 

Degrees of Freedom Method Residual 

 
 

Class Level Information 

Class Levels Values 

Format 2 Floating Point Integer 

L 2 L=3 L=4 

FB 2 3x3 5x5 

 
 

Dimensions 

Covariance Parameters 1 

Columns in X 15 

Columns in Z 0 

Subjects 1 

Max Obs per Subject 800 

 
 

Number of Observations 

Number of Observations Read 800 

Number of Observations Used 800 

Number of Observations Not Used 0 

 
 

Covariance 
Parameter 
Estimates 

Cov Parm Estimate 

Residual 40.9395 
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PSNR Reduced Two-way Interaction Model 

 

The Mixed Procedure 
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Fit Statistics 

-2 Res Log Likelihood 5231.1 

AIC (Smaller is Better) 5233.1 

AICC (Smaller is Better) 5233.1 

BIC (Smaller is Better) 5237.8 

 
 

Type 3 Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

Format 1 794 0.46 0.4969 

L 1 794 7.28 0.0071 

FB 1 794 26.09 <.0001 

L*FB 1 794 4.56 0.0331 

Format*L 1 794 4.85 0.0280 

 
 

Least Squares Means 

Effect Format L FB Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

L*FB  L=3 3x3 22.4236 0.4524 794 49.56 <.0001 0.05 21.5354 23.3117 

L*FB  L=3 5x5 25.7002 0.4524 794 56.80 <.0001 0.05 24.8121 26.5883 

L*FB  L=4 3x3 24.6101 0.4524 794 54.39 <.0001 0.05 23.7220 25.4982 

L*FB  L=4 5x5 25.9553 0.4524 794 57.37 <.0001 0.05 25.0672 26.8434 

Format*L Floating Point L=3  24.4062 0.4524 794 53.94 <.0001 0.05 23.5181 25.2943 

Format*L Floating Point L=4  24.6309 0.4524 794 54.44 <.0001 0.05 23.7428 25.5190 

Format*L Integer L=3  23.7176 0.4524 794 52.42 <.0001 0.05 22.8295 24.6057 

Format*L Integer L=4  25.9345 0.4524 794 57.32 <.0001 0.05 25.0464 26.8226 

 
 

Differences of Least Squares Means 

Effect Format L FB Format L FB Estimate 
Standard 

Error DF t Value Pr > |t| Adjustment Adj P Alpha 

L*FB  L=3 3x3  L=3 5x5 -3.2767 0.6398 794 -5.12 <.0001 Tukey <.0001 0.05 

L*FB  L=3 3x3  L=4 3x3 -2.1866 0.6398 794 -3.42 0.0007 Tukey 0.0037 0.05 

L*FB  L=3 3x3  L=4 5x5 -3.5318 0.6398 794 -5.52 <.0001 Tukey <.0001 0.05 

L*FB  L=3 5x5  L=4 3x3 1.0901 0.6398 794 1.70 0.0888 Tukey 0.3224 0.05 

L*FB  L=3 5x5  L=4 5x5 -0.2551 0.6398 794 -0.40 0.6902 Tukey 0.9785 0.05 

L*FB  L=4 3x3  L=4 5x5 -1.3452 0.6398 794 -2.10 0.0358 Tukey 0.1532 0.05 
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PSNR Reduced Two-way Interaction Model 

 

The Mixed Procedure 
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Differences of Least Squares Means 

Effect Format L FB Format L FB Estimate 
Standard 

Error DF t Value Pr > |t| Adjustment Adj P Alpha 

Format*L Floating 
Point 

L=3  Floating 
Point 

L=4  -0.2247 0.6398 794 -0.35 0.7255 Tukey 0.9851 0.05 

Format*L Floating 
Point 

L=3  Integer L=3  0.6886 0.6398 794 1.08 0.2822 Tukey 0.7042 0.05 

Format*L Floating 
Point 

L=3  Integer L=4  -1.5283 0.6398 794 -2.39 0.0171 Tukey 0.0801 0.05 

Format*L Floating 
Point 

L=4  Integer L=3  0.9133 0.6398 794 1.43 0.1538 Tukey 0.4825 0.05 

Format*L Floating 
Point 

L=4  Integer L=4  -1.3036 0.6398 794 -2.04 0.0419 Tukey 0.1752 0.05 

Format*L Integer L=3  Integer L=4  -2.2169 0.6398 794 -3.46 0.0006 Tukey 0.0031 0.05 

 

Differences of Least Squares Means 

Effect Format L FB Format L FB Lower Upper 
Adj 

Lower 
Adj 

Upper 

L*FB  L=3 3x3  L=3 5x5 -4.5326 -2.0207 -4.9239 -1.6294 

L*FB  L=3 3x3  L=4 3x3 -3.4425 -0.9306 -3.8338 -0.5393 

L*FB  L=3 3x3  L=4 5x5 -4.7877 -2.2758 -5.1790 -1.8845 

L*FB  L=3 5x5  L=4 3x3 -0.1659 2.3461 -0.5571 2.7373 

L*FB  L=3 5x5  L=4 5x5 -1.5111 1.0009 -1.9023 1.3921 

L*FB  L=4 3x3  L=4 5x5 -2.6012 -0.08922 -2.9924 0.3020 

Format*L Floating 
Point 

L=3  Floating 
Point 

L=4  -1.4807 1.0312 -1.8720 1.4225 

Format*L Floating 
Point 

L=3  Integer L=3  -0.5674 1.9446 -0.9586 2.3358 

Format*L Floating 
Point 

L=3  Integer L=4  -2.7843 -0.2723 -3.1755 0.1189 

Format*L Floating 
Point 

L=4  Integer L=3  -0.3427 2.1693 -0.7339 2.5605 

Format*L Floating 
Point 

L=4  Integer L=4  -2.5596 -0.04760 -2.9508 0.3436 

Format*L Integer L=3  Integer L=4  -3.4729 -0.9609 -3.8641 -0.5697 
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PSNR Reduced Two-way Interaction Model 

 

The Mixed Procedure 
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Residuals for PSNR

BIC 5237.8

AICC 5233.1

AIC 5233.1

Objective 5231.1

Fit Statistics

Std Dev 6.3783

Maximum 22.913

Mean -1E-14

Minimum -15.64

Observations 800

Residual Statistics
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PSNR Reduced Two-way Interaction Model 

 

The PLM Procedure 

 

 

11:58  Tuesday, May 11, 2021   

Store Information 

Item Store WORK.PSNRPLOT 

Data Set Created From WORK.BEV 

Created By PROC MIXED 

Date Created 10MAY21:13:02:43 

Response Variable PSNR 

Distribution Normal 

Class Variables Format L FB 

Model Effects Intercept Format L FB L*FB Format*L 

 
 

Class Level Information 

Class Levels Values 

Format 2 Floating Point Integer 

L 2 L=3 L=4 

FB 2 3x3 5x5 
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PSNR Reduced Two-way Interaction Model 

 

The PLM Procedure 
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13 

PSNR Reduced Two-way Interaction Model 

 

The PLM Procedure 
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B.4 𝑆𝑆𝐼𝑀

A three-way ANOVA was performed for the metric 𝑆𝑆𝐼𝑀. Model assumptions were

satisfied, and no transformation was required for the metric 𝑆𝑆𝐼𝑀 . The three-way interaction

𝐹𝑜𝑟𝑚𝑎𝑡 ∗ 𝐿 ∗ 𝐹𝐵 was not significant with 𝑝 = 0.3246, and a follow-up model with only

two-way interactions was performed.

The interaction 𝐿 ∗ 𝐹𝐵 was significant with 𝑝 = 0.0002. The means of 𝑆𝑆𝐼𝑀 for all

combinations of these two factors were significantly different from each other, except for

the two combinations involving 𝐹𝐵 = 5 × 5.

The other two interactions were not significant, 𝑝 = 0.7628 for 𝐹𝑜𝑟𝑚𝑎𝑡 ∗ 𝐹𝐵 and

𝑝 = 0.3170 for 𝐹𝑜𝑟𝑚𝑎𝑡 ∗ 𝐿
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SSIM Full Model 

 

The GLM Procedure 
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Class Level Information 

Class Levels Values 

Format 2 Floating Point Integer 

L 2 L=3 L=4 

FB 2 3x3 5x5 

 
 

Number of Observations Read 800 

Number of Observations Used 800 
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SSIM Full Model 

 

The GLM Procedure 

 

Dependent Variable: SSIM   SSIM 

 

 

11:58  Tuesday, May 11, 2021   

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 7 2.92749990 0.41821427 13.68 <.0001 

Error 792 24.21415492 0.03057343   

Corrected Total 799 27.14165482    

 
 

R-Square Coeff Var Root MSE SSIM Mean 

0.107860 30.60756 0.174853 0.571273 

 
 

Source DF Type I SS Mean Square F Value Pr > F 

Format 1 0.03856769 0.03856769 1.26 0.2617 

L 1 0.43834248 0.43834248 14.34 0.0002 

Format*L 1 0.03064809 0.03064809 1.00 0.3170 

FB 1 1.96044004 1.96044004 64.12 <.0001 

Format*FB 1 0.00278652 0.00278652 0.09 0.7628 

L*FB 1 0.42701430 0.42701430 13.97 0.0002 

Format*L*FB 1 0.02970078 0.02970078 0.97 0.3246 

 
 

Source DF Type III SS Mean Square F Value Pr > F 

Format 1 0.03856769 0.03856769 1.26 0.2617 

L 1 0.43834248 0.43834248 14.34 0.0002 

Format*L 1 0.03064809 0.03064809 1.00 0.3170 

FB 1 1.96044004 1.96044004 64.12 <.0001 

Format*FB 1 0.00278652 0.00278652 0.09 0.7628 

L*FB 1 0.42701430 0.42701430 13.97 0.0002 

Format*L*FB 1 0.02970078 0.02970078 0.97 0.3246 
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SSIM Full Model 

 

The GLM Procedure 

 

Dependent Variable: SSIM   SSIM 
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Fit Diagnostics for SSIM
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SSIM Two-way Interaction Model 

 

The GLM Procedure 
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Class Level Information 

Class Levels Values 

Format 2 Floating Point Integer 

L 2 L=3 L=4 

FB 2 3x3 5x5 

 
 

Number of Observations Read 800 

Number of Observations Used 800 
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SSIM Two-way Interaction Model 

 

The GLM Procedure 

 

Dependent Variable: SSIM   SSIM 
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Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 6 2.89779912 0.48296652 15.80 <.0001 

Error 793 24.24385570 0.03057233   

Corrected Total 799 27.14165482    

 
 

R-Square Coeff Var Root MSE SSIM Mean 

0.106766 30.60700 0.174849 0.571273 

 
 

Source DF Type I SS Mean Square F Value Pr > F 

Format 1 0.03856769 0.03856769 1.26 0.2617 

L 1 0.43834248 0.43834248 14.34 0.0002 

Format*L 1 0.03064809 0.03064809 1.00 0.3170 

FB 1 1.96044004 1.96044004 64.12 <.0001 

Format*FB 1 0.00278652 0.00278652 0.09 0.7628 

L*FB 1 0.42701430 0.42701430 13.97 0.0002 

 
 

Source DF Type III SS Mean Square F Value Pr > F 

Format 1 0.03856769 0.03856769 1.26 0.2617 

L 1 0.43834248 0.43834248 14.34 0.0002 

Format*L 1 0.03064809 0.03064809 1.00 0.3170 

FB 1 1.96044004 1.96044004 64.12 <.0001 

Format*FB 1 0.00278652 0.00278652 0.09 0.7628 

L*FB 1 0.42701430 0.42701430 13.97 0.0002 
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SSIM Two-way Interaction Model 

 

The GLM Procedure 

 

Dependent Variable: SSIM   SSIM 
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Fit Diagnostics for SSIM
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Model Information 

Data Set WORK.BEV 

Dependent Variable SSIM 

Covariance Structure Diagonal 

Estimation Method REML 

Residual Variance Method Profile 

Fixed Effects SE Method Model-Based 

Degrees of Freedom Method Residual 

 
 

Class Level Information 

Class Levels Values 

Format 2 Floating Point Integer 

L 2 L=3 L=4 

FB 2 3x3 5x5 

 
 

Dimensions 

Covariance Parameters 1 

Columns in X 11 

Columns in Z 0 

Subjects 1 

Max Obs per Subject 800 

 
 

Number of Observations 

Number of Observations Read 800 

Number of Observations Used 800 

Number of Observations Not Used 0 

 
 

Covariance 
Parameter 
Estimates 

Cov Parm Estimate 

Residual 0.03054 
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Fit Statistics 

-2 Res Log Likelihood -491.0 

AIC (Smaller is Better) -489.0 

AICC (Smaller is Better) -489.0 

BIC (Smaller is Better) -484.3 

 
 

Type 3 Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

Format 1 795 1.26 0.2614 

L 1 795 14.35 0.0002 

FB 1 795 64.20 <.0001 

L*FB 1 795 13.98 0.0002 

 
 

Least Squares Means 

Effect L FB Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

L*FB L=3 3x3 0.4753 0.01236 795 38.46 <.0001 0.05 0.4510 0.4995 

L*FB L=3 5x5 0.6205 0.01236 795 50.21 <.0001 0.05 0.5962 0.6447 

L*FB L=4 3x3 0.5683 0.01236 795 45.99 <.0001 0.05 0.5440 0.5925 

L*FB L=4 5x5 0.6211 0.01236 795 50.26 <.0001 0.05 0.5968 0.6453 

 
 

Differences of Least Squares Means 

Effect L FB L FB Estimate 
Standard 

Error DF t Value Pr > |t| Adjustment Adj P Alpha Lower Upper 

L*FB L=3 3x3 L=3 5x5 -0.1452 0.01747 795 -8.31 <.0001 Tukey <.0001 0.05 -0.1795 -0.1109 

L*FB L=3 3x3 L=4 3x3 -0.09302 0.01747 795 -5.32 <.0001 Tukey <.0001 0.05 -0.1273 -0.05872 

L*FB L=3 3x3 L=4 5x5 -0.1458 0.01747 795 -8.34 <.0001 Tukey <.0001 0.05 -0.1801 -0.1115 

L*FB L=3 5x5 L=4 3x3 0.05219 0.01747 795 2.99 0.0029 Tukey 0.0154 0.05 0.01789 0.08649 

L*FB L=3 5x5 L=4 5x5 -0.00061 0.01747 795 -0.03 0.9722 Tukey 1.0000 0.05 -0.03491 0.03369 

L*FB L=4 3x3 L=4 5x5 -0.05280 0.01747 795 -3.02 0.0026 Tukey 0.0138 0.05 -0.08710 -0.01850 

 

Differences of Least Squares Means 

Effect L FB L FB 
Adj 

Lower 
Adj 

Upper 

L*FB L=3 3x3 L=3 5x5 -0.1902 -0.1002 

L*FB L=3 3x3 L=4 3x3 -0.1380 -0.04803 

L*FB L=3 3x3 L=4 5x5 -0.1908 -0.1008 
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Differences of Least Squares Means 

Effect L FB L FB 
Adj 

Lower 
Adj 

Upper 

L*FB L=3 5x5 L=4 3x3 0.007202 0.09718 

L*FB L=3 5x5 L=4 5x5 -0.04560 0.04438 

L*FB L=4 3x3 L=4 5x5 -0.09779 -0.00781 

 
 

 

Residuals for SSIM

BIC -484.3

AICC -489

AIC -489

Objective -491

Fit Statistics

Std Dev 0.1743

Maximum 0.4881

Mean -2E-17

Minimum -0.467

Observations 800
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Store Information 

Item Store WORK.SSIMPLOT 

Data Set Created From WORK.BEV 

Created By PROC MIXED 

Date Created 10MAY21:13:03:03 

Response Variable SSIM 

Distribution Normal 

Class Variables Format L FB 

Model Effects Intercept Format L FB L*FB 

 
 

Class Level Information 

Class Levels Values 

Format 2 Floating Point Integer 

L 2 L=3 L=4 

FB 2 3x3 5x5 
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B.5 𝑣0

A three-way ANOVA was performed for the metric 𝑣0. The model assumptions requiring

homogeneity of variances and normality was not satisfied. A Box-Cox procedure determined

that using response variable 𝑣40 should be tried, but model assumptions were still not satisfied.

The data were separated into two populations by image format, and two-way ANOVAs were

performed for each image format.

For the integer format model assumptions were satisfied, and the two-way interaction

𝐿 ∗ 𝐹𝐵 was strongly significant with 𝑝 < 0.0001. The means of 𝑣0 for all combinations of

these two factors were significantly different from each other, except for the two combina-

tions involving 𝐹𝐵 = 3 × 3. The 5 × 5 filterbank combinations resulted in the best (smallest)

mean sparsity.

For the floating point format, model assumptions were not satisfied, and the Box-Cox

procedure was run again. For these data the transformation 𝑣120 was the response variable

that allowed model assumptions to be satisfied. For the transformed model, the two-way

interaction 𝐿 ∗ 𝐹𝐵 was not significant, with 𝑝 = 0.7560, however, both main effects were

significant. For 𝐿, the p-value was 𝑝 = 0.0045 and for 𝐹𝐵, the p-value was 𝑝 = 0.0067.

The mean sparsity for 𝐿 = 4 was significantly smaller (better) than the mean for 𝐿 = 3. The

mean sparsity for 𝐹𝐵 = 5×5 was significantly smaller (better) than the mean for 𝐹𝐵 = 3×3.

153
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Class Level Information 

Class Levels Values 

Format 2 Floating Point Integer 

L 2 L=3 L=4 

FB 2 3x3 5x5 

 
 

Number of Observations Read 800 

Number of Observations Used 800 
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Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 7 484424.3200 69203.4743 238.77 <.0001 

Error 792 229548.1600 289.8335   

Corrected Total 799 713972.4800    

 
 

R-Square Coeff Var Root MSE V0 Mean 

0.678492 15.85592 17.02450 107.3700 

 
 

Source DF Type I SS Mean Square F Value Pr > F 

Format 1 188375.2200 188375.2200 649.94 <.0001 

L 1 5202.0000 5202.0000 17.95 <.0001 

Format*L 1 16891.2200 16891.2200 58.28 <.0001 

FB 1 148621.5200 148621.5200 512.78 <.0001 

Format*FB 1 107369.7800 107369.7800 370.45 <.0001 

L*FB 1 4418.0000 4418.0000 15.24 0.0001 

Format*L*FB 1 13546.5800 13546.5800 46.74 <.0001 

 
 

Source DF Type III SS Mean Square F Value Pr > F 

Format 1 188375.2200 188375.2200 649.94 <.0001 

L 1 5202.0000 5202.0000 17.95 <.0001 

Format*L 1 16891.2200 16891.2200 58.28 <.0001 

FB 1 148621.5200 148621.5200 512.78 <.0001 

Format*FB 1 107369.7800 107369.7800 370.45 <.0001 

L*FB 1 4418.0000 4418.0000 15.24 0.0001 

Format*L*FB 1 13546.5800 13546.5800 46.74 <.0001 
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Fit Diagnostics for V0
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Dependent Variable BoxCox(V0) 

V0 

 
 

Number of Observations Read 800 

Number of Observations Used 800 

 
 

The TRANSREG Procedure Hypothesis Tests for BoxCox(V0) 
V0 

 
 

Box-Cox Analysis for V0
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Univariate ANOVA Table Based on the Usual Degrees of 
Freedom 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Liberal p 

Model 3 2.502E17 8.341E16 374.05 >= <.0001 

Error 796 1.775E17 2.23E14   

Corrected Total 799 4.277E17    

The above statistics are not adjusted for the fact that the 
dependent variable was transformed and so are generally liberal. 

 
 

Root MSE 14932817 R-Square 0.5850 

Dependent Mean 44880857 Adj R-Sq 0.5835 

Coeff Var 33.27213 Lambda 4.0000 
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Model Information 

Data Set WORK.BEV 

Dependent Variable V04 

Covariance Structure Diagonal 

Estimation Method REML 

Residual Variance Method Profile 

Fixed Effects SE Method Model-Based 

Degrees of Freedom Method Residual 

 
 

Class Level Information 

Class Levels Values 

Format 2 Floating Point Integer 

L 2 L=3 L=4 

FB 2 3x3 5x5 

 
 

Dimensions 

Covariance Parameters 1 

Columns in X 27 

Columns in Z 0 

Subjects 1 

Max Obs per Subject 800 

 
 

Number of Observations 

Number of Observations Read 800 

Number of Observations Used 800 

Number of Observations Not Used 0 

 
 

Covariance 
Parameter Estimates 

Cov Parm Estimate 

Residual 2.063E15 
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Fit Statistics 

-2 Res Log Likelihood 30212.6 

AIC (Smaller is Better) 30214.6 

AICC (Smaller is Better) 30214.7 

BIC (Smaller is Better) 30219.3 

 
 

Type 3 Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

Format 1 792 1297.07 <.0001 

L 1 792 17.06 <.0001 

Format*L 1 792 53.99 <.0001 

FB 1 792 626.64 <.0001 

Format*FB 1 792 476.75 <.0001 

L*FB 1 792 17.34 <.0001 

Format*L*FB 1 792 36.62 <.0001 
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Residuals for V04

BIC 30219

AICC 30215

AIC 30215

Objective 30213

Fit Statistics

Std Dev 4.52E7

Maximum 1.87E8

Mean 15E-9
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Model Information 

Data Set WORK.BEV 

Dependent Variable V0 

Covariance Structure Diagonal 

Estimation Method REML 

Residual Variance Method Profile 

Fixed Effects SE Method Model-Based 

Degrees of Freedom Method Residual 

 
 

Class Level Information 

Class Levels Values 

L 2 L=3 L=4 

FB 2 3x3 5x5 

 
 

Dimensions 

Covariance Parameters 1 

Columns in X 9 

Columns in Z 0 

Subjects 1 

Max Obs per Subject 400 

 
 

Number of Observations 

Number of Observations Read 400 

Number of Observations Used 400 

Number of Observations Not Used 0 

 
 

Covariance 
Parameter 
Estimates 

Cov Parm Estimate 

Residual 379.03 
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Fit Statistics 

-2 Res Log Likelihood 3493.5 

AIC (Smaller is Better) 3495.5 

AICC (Smaller is Better) 3495.5 

BIC (Smaller is Better) 3499.5 

 
 

Type 3 Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

L 1 396 53.88 <.0001 

FB 1 396 670.97 <.0001 

L*FB 1 396 44.11 <.0001 

 
 

Least Squares Means 

Effect L FB Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

L*FB L=3 3x3 116.56 1.9469 396 59.87 <.0001 0.05 112.73 120.39 

L*FB L=3 5x5 53.2000 1.9469 396 27.33 <.0001 0.05 49.3725 57.0275 

L*FB L=4 3x3 117.92 1.9469 396 60.57 <.0001 0.05 114.09 121.75 

L*FB L=4 5x5 80.4200 1.9469 396 41.31 <.0001 0.05 76.5925 84.2475 

 
 

Differences of Least Squares Means 

Effect L FB L FB Estimate 
Standard 

Error DF t Value Pr > |t| Adjustment Adj P Alpha Lower Upper 

L*FB L=3 3x3 L=3 5x5 63.3600 2.7533 396 23.01 <.0001 Tukey <.0001 0.05 57.9471 68.7729 

L*FB L=3 3x3 L=4 3x3 -1.3600 2.7533 396 -0.49 0.6216 Tukey 0.9604 0.05 -6.7729 4.0529 

L*FB L=3 3x3 L=4 5x5 36.1400 2.7533 396 13.13 <.0001 Tukey <.0001 0.05 30.7271 41.5529 

L*FB L=3 5x5 L=4 3x3 -64.7200 2.7533 396 -23.51 <.0001 Tukey <.0001 0.05 -70.1329 -59.3071 

L*FB L=3 5x5 L=4 5x5 -27.2200 2.7533 396 -9.89 <.0001 Tukey <.0001 0.05 -32.6329 -21.8071 

L*FB L=4 3x3 L=4 5x5 37.5000 2.7533 396 13.62 <.0001 Tukey <.0001 0.05 32.0871 42.9129 

 

Differences of Least Squares Means 

Effect L FB L FB 
Adj 

Lower 
Adj 

Upper 

L*FB L=3 3x3 L=3 5x5 56.2566 70.4634 

L*FB L=3 3x3 L=4 3x3 -8.4634 5.7434 

L*FB L=3 3x3 L=4 5x5 29.0366 43.2434 

L*FB L=3 5x5 L=4 3x3 -71.8234 -57.6166 
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Differences of Least Squares Means 

Effect L FB L FB 
Adj 

Lower 
Adj 

Upper 

L*FB L=3 5x5 L=4 5x5 -34.3234 -20.1166 

L*FB L=4 3x3 L=4 5x5 30.3966 44.6034 

 
 

 

Residuals for V0

BIC 3499.5

AICC 3495.5

AIC 3495.5

Objective 3493.5

Fit Statistics
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Store Information 

Item Store WORK.INTEGERVOPLOT 

Data Set Created From WORK.BEV 

Created By PROC MIXED 

Date Created 10MAY21:13:03:22 

Response Variable V0 

Distribution Normal 

Class Variables L FB 

Model Effects Intercept L FB L*FB 

 
 

Class Level Information 

Class Levels Values 

L 2 L=3 L=4 

FB 2 3x3 5x5 
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Class Level Information 

Class Levels Values 

L 2 L=3 L=4 

FB 2 3x3 5x5 

 
 

Number of Observations Read 400 

Number of Observations Used 400 
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Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 3 4591.71000 1530.57000 7.63 <.0001 

Error 396 79451.80000 200.63586   

Corrected Total 399 84043.51000    

 
 

R-Square Coeff Var Root MSE V0 Mean 

0.054635 11.54268 14.16460 122.7150 

 
 

Source DF Type I SS Mean Square F Value Pr > F 

L 1 1672.810000 1672.810000 8.34 0.0041 

FB 1 1672.810000 1672.810000 8.34 0.0041 

L*FB 1 1246.090000 1246.090000 6.21 0.0131 

 
 

Source DF Type III SS Mean Square F Value Pr > F 

L 1 1672.810000 1672.810000 8.34 0.0041 

FB 1 1672.810000 1672.810000 8.34 0.0041 

L*FB 1 1246.090000 1246.090000 6.21 0.0131 
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Fit Diagnostics for V0
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The GLM Procedure 

 

Dependent Variable: V0   V0 
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Dependent Variable BoxCox(V0) 

V0 

 
 

Number of Observations Read 400 

Number of Observations Used 400 

 
 

The TRANSREG Procedure Hypothesis Tests for BoxCox(V0) 
V0 

 
 

Box-Cox Analysis for V0
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Univariate ANOVA Table Based on the Usual Degrees of 
Freedom 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Liberal p 

Model 2 8.72E47 4.36E47 7.79 >= 0.0005 

Error 397 2.221E49 5.594E46   

Corrected Total 399 2.308E49    

The above statistics are not adjusted for the fact that the 
dependent variable was transformed and so are generally liberal. 

 
 

Root MSE 2.365248E23 R-Square 0.0378 

Dependent Mean 1.164425E24 Adj R-Sq 0.0329 

Coeff Var 20.31258 Lambda 12.0000 
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Floating Point: V0^12 Full Model 

 

The Mixed Procedure 
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Model Information 

Data Set WORK.BEV 

Dependent Variable V0_12 

Covariance Structure Diagonal 

Estimation Method REML 

Residual Variance Method Profile 

Fixed Effects SE Method Model-Based 

Degrees of Freedom Method Residual 

 
 

Class Level Information 

Class Levels Values 

L 2 L=3 L=4 

FB 2 3x3 5x5 

 
 

Dimensions 

Covariance Parameters 1 

Columns in X 9 

Columns in Z 0 

Subjects 1 

Max Obs per Subject 400 

 
 

Number of Observations 

Number of Observations Read 400 

Number of Observations Used 400 

Number of Observations Not Used 0 

 
 

Covariance 
Parameter Estimates 

Cov Parm Estimate 

Residual 8.074E48 

 
 

Fit Statistics 

-2 Res Log Likelihood 45736.9 

AIC (Smaller is Better) 45738.9 

AICC (Smaller is Better) 45738.9 

BIC (Smaller is Better) 45742.9 
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Floating Point: V0^12 Full Model 

 

The Mixed Procedure 
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Type 3 Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

L 1 396 8.15 0.0045 

FB 1 396 7.40 0.0068 

L*FB 1 396 0.10 0.7560 

 
 

 

Residuals for V0_12

BIC 45743

AICC 45739

AIC 45739

Objective 45737

Fit Statistics

Std Dev 283E22

Maximum 621E22

Mean 39E9

Minimum -13E24

Observations 400

Residual Statistics

-3 -2 -1 0 1 2 3

Quantile

-1E25

-5E24

-2E9

5E24

R
e

s
id

u
a

l

-14E24 -9E24 -45E23 -429E7 45E23 9E24

Residual

0
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10

15

20

25

P
e

rc
e

n
t

1.3E25 1.4E25 1.4E25 1.5E25

Predicted Mean

-1E25

-5E24

-2E9

5E24

R
e

s
id

u
a

l
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Floating Point: V0^12 Main Effects Model 

 

The Mixed Procedure 
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Model Information 

Data Set WORK.BEV 

Dependent Variable V0_12 

Covariance Structure Diagonal 

Estimation Method REML 

Residual Variance Method Profile 

Fixed Effects SE Method Model-Based 

Degrees of Freedom Method Residual 

 
 

Class Level Information 

Class Levels Values 

L 2 L=3 L=4 

FB 2 3x3 5x5 

 
 

Dimensions 

Covariance Parameters 1 

Columns in X 5 

Columns in Z 0 

Subjects 1 

Max Obs per Subject 400 

 
 

Number of Observations 

Number of Observations Read 400 

Number of Observations Used 400 

Number of Observations Not Used 0 

 
 

Covariance 
Parameter Estimates 

Cov Parm Estimate 

Residual 8.056E48 

 
 

Fit Statistics 

-2 Res Log Likelihood 45848.2 

AIC (Smaller is Better) 45850.2 

AICC (Smaller is Better) 45850.2 

BIC (Smaller is Better) 45854.2 
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Floating Point: V0^12 Main Effects Model 

 

The Mixed Procedure 
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Type 3 Tests of Fixed Effects 

Effect 
Num 

DF 
Den 
DF F Value Pr > F 

L 1 397 8.17 0.0045 

FB 1 397 7.42 0.0067 

 
 

Least Squares Means 

Effect L FB Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

L L=3  1.438E25 2.007E23 397 71.64 <.0001 0.05 1.398E25 1.477E25 

L L=4  1.357E25 2.007E23 397 67.60 <.0001 0.05 1.317E25 1.396E25 

FB  3x3 1.436E25 2.007E23 397 71.55 <.0001 0.05 1.397E25 1.475E25 

FB  5x5 1.359E25 2.007E23 397 67.70 <.0001 0.05 1.319E25 1.398E25 

 
 

Differences of Least Squares Means 

Effect L FB L FB Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

L L=3  L=4  8.113E23 2.838E23 397 2.86 0.0045 0.05 2.533E23 1.369E24 

FB  3x3  5x5 7.73E23 2.838E23 397 2.72 0.0067 0.05 2.15E23 1.331E24 
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Floating Point: V0^12 Main Effects Model 

 

The Mixed Procedure 
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Residuals for V0_12

BIC 45854

AICC 45850

AIC 45850

Objective 45848

Fit Statistics

Std Dev 283E22

Maximum 616E22

Mean 388E8

Minimum -13E24

Observations 400

Residual Statistics

-3 -2 -1 0 1 2 3

Quantile

-1E25

-5E24

-2E9

5E24

R
e

s
id
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-14E24 -9E24 -45E23 -429E7 45E23 9E24
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Appendix C

MATLAB Code

StartCode.m
This script file calls another script file to initialize most of the variables and calls all the
functions needed to run the algorithm. It also stores the values of six performance metrics in
the cell array Data.

1 %%%%%%%% LOAD IMAGE FILE %%%%%%%%
2
3 load Lena.mat img; % Example uses a MATLAB data set
4 %%%%%%%% OUTSIDE INITIALIZATION %%%%%%%%
5 rng('shuffle');
6
7 InitializeVariables
8 HT = 16;
9 WD = 16;

10 N = HT * WD;
11 RndRow = randi(256 = HT + 1); % choose random row
12 RndCol = randi(256 = WD + 1); % choose random column
13
14 %%%%%%%% GET IMAGE PATCH, MEASUREMENT MATRIX A AND VECTOR g %%%%%%%%
15 block = img(Rows(RandRow):Rows(RandRow)+HT=1, RandCol:RandCol+WD=1);
16 fvec = block(:); % vectorize image patch
17 A = randn(round(p*N),N)/sqrt(N);
18 g = A*fvec;
19 %%%%%%%% GET ESTIMATED IMAGE FOR THIS IMAGE PATCH %%%%%%%%
20 cbank1 = cbank;
21
22 [cbank1,v,loops,time] = Fitg_WMP_FMS(g, A, cbank1, L, maxLoops,...
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23 mu1, mu2, tol, wgt, FMSopts);
24 %%%%%%%% CALCULATIONS AND STORE DATA %%%%%%%%
25 estimg = reshape(Dv(cbank1, v, N, L), [HT,WD]);
26
27 Data{1} = time;
28 Data{2} = loops;
29 Data{3} = psnr(estimg,block,255);
30 Data{4} = ssim(estimg,block,'DynamicRange',255);
31 Data{5} = nnz(v);
32 Data{6} = norm(v,1);

InitializeVariables.m
This script file initializes important parameters before the main execution begins.

1 sq2 = sqrt(2);
2 cbank = [ 1, sq2, =1; % initial filterbank
3 2, 0, 2;
4 1, =sq2, =1; ] / 4;
5 b = 3;
6
7 L = 3;
8 p = 0.5;
9

10 mu1 = @(t) 1.4^t;
11 mu2 = @(t) 1e13;
12
13 tol = sqrt(eps); % tolerance for convergence test
14 wgt = 0.6; % wgt for WMP = Step 1
15 maxLoops = 1027;
16
17 FMSopts = optimset('Display','none');

blockgen.m
The script file generates a random image block of dimension 𝐻𝑇 ×𝑊𝐷 from the chosen
test image.

1 function [block, idx, RndRow, RndCol] = blockgen (imgs, HT, WD,
numimg)

2
3 idx = randi(numimg);
4 RndRow = randi(256 = HT + 1);
5 RndCol = randi(256 = WD + 1);
6 block = imgs(RndRow:RndRow+HT=1,RndCol:RndCol+WD=1,idx);
7 end
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Fitg_WMP_FMS.m
This file takes in 𝑔, 𝐴, 𝑐𝑏𝑎𝑛𝑘 , 𝐿, 𝑚𝑎𝑥𝐿𝑜𝑜𝑝𝑠, 𝑚𝑢1, 𝑚𝑢2, 𝑡𝑜𝑙, 𝑤𝑔𝑡, and 𝐹𝑀𝑆𝑜𝑝𝑡𝑠 as inputs
and executes the two-step algorithm to fit a representation to the measurement vector 𝑔,
returning updated filterbank 𝑐𝑏𝑎𝑛𝑘 and coefficient vector 𝑣, as well as 𝑡, the number of
𝐿𝑜𝑜𝑝𝑠, and 𝑡𝑖𝑚𝑒.

1 function [cbank, v, t, time] = Fitg_WMP_FMS(g, A, cbank, L, maxLoops,
mu1, mu2, tol, wgt, FMSopts)

2 tic;
3
4 N = size(A,2);
5 m = size(cbank,2);
6 r = ((m = 1)*L + 1)*N;
7
8 v = zeros(r,1);
9

10 oldcbank = zeros(size(cbank));
11
12 for t = 1:maxLoops
13 % STEP 1
14 oldv = v;
15 v = WMPe22x11(AD(cbank, A, N, L), g, mu1(t), tol, wgt);
16 % STEP 1
17
18 if Converged(oldv, v, oldcbank, cbank, tol)
19 break;
20 end
21
22 % STEP 2
23 oldcbank = cbank;
24 ObjFunc = @(cbank) FroNorm2(A*Dv(cbank, v, N, L) = g) ...
25 + mu2(t)*norm(spDDtMinusId(cbank, N, L), 'fro')^2;
26 cbank = fminsearch(ObjFunc, cbank, FMSopts);
27 % STEP 2
28
29 if Converged(oldv, v, oldcbank, cbank, tol)
30 break;
31 end
32 end
33
34 time = toc;
35 end
36
37 function conv = Converged(oldv, v, oldcbank, cbank, tol)
38 conv = ( max(abs(oldv = v ) ) < tol ...
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39 && max(abs(oldcbank = cbank), [], 'all') < tol );
40 end

WMPe22x11.m
This function calls the Weak Matching Pursuit function written for this research. It takes
in product 𝐴𝐷, 𝑔, 𝑚𝑢1, 𝑡𝑜𝑙, and 𝑤𝑔𝑡 as inputs and outputs the updated coefficient vector 𝑣.
Note that 𝑤𝑔𝑡 is referred to as 𝑤 in the text. This function then calls the function Converged
to test convergence. Inputs are 𝑜𝑙𝑑𝑣, 𝑣, 𝑜𝑙𝑑𝑐𝑏𝑎𝑛𝑘 , 𝑐𝑏𝑎𝑛𝑘 , and 𝑡𝑜𝑙 and the output is the
logical variable 𝑐𝑜𝑛𝑣 = 1, if ‘converged’ and 𝑐𝑜𝑛𝑣 = 0, if not converged. Then this function
calls the built-in MATLAB function fminsearch, which requires a call to function FroNorm2
and a call to the built-in MATLAB norm function, followed by another call to the function
Converged.

1 function x = WMPe22x11(M,b,mu,tol,wgt)
2 % Weakly Orthogonal Matching Pursuit algorithm that sparsely finds x
3 % to minimize mu*|Mx=b|_2^2 + |x|_1
4
5 szM = size(M);
6 szb = size(b);
7
8 if nargin < 5
9 wgt = 0.6;

10 if nargin < 4
11 tol = 1e=10;
12 if nargin < 3
13 mu = 1;
14 end
15 end
16 end
17
18 if length(szM) > 2 || prod(szM) == 0
19 warning('M must be a matrix. Exiting.')
20 elseif length(szb) > 2 || szb(2) ~= 1
21 warning('b must be a column vector. Exiting.')
22 elseif szM(1) ~= szb(1)
23 warning('M and b must have the same number of rows. Exiting.')
24 else
25 itermax = min(szM);
26 tempx = zeros(szM(2),1); % initialize tempx (=v) to zeros
27 x = tempx;
28 f = Inf;
29 nmM = vecnorm(M); % The norms of the columns.
30 nM = M ./ nmM; % M with the columns normalized.
31
32 r = b; % first residual is the vector b
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(=g)
33 nmr = r'*r; % norm of the residual
34
35 used = false(1,szM(2)); % matrix of logical zeros
36
37 for k = 1 : itermax % itermax is the total number of

atoms
38 if nmr < tol % if the norm of residual is very

small
39 break % break out of loop
40 end
41
42 IPs = abs(r'*nM(:,~used)); % IP of r with all unused

atoms
43 mx = max(IPs); % find mx = max IP (duh)
44 idx = find(IPs >= wgt*mx,1); % 1st atom with IP large

enough
45 temp = find(~used,idx);
46 idx = temp(end);
47
48 used(idx) = true;
49
50 B = M(:,used);
51
52 tempx(used) = (B'*B)\B'*b;
53 r = b = B*tempx(used);
54 nmr = r'*r;
55
56 tempf = mu*nmr + norm(tempx,1);
57 if tempf > f
58 break
59 else
60 f = tempf;
61 x = tempx;
62 end
63 end
64 end
65 end

AD.m
This function calculates the product 𝐴𝐷. It takes in the 𝑐𝑏𝑎𝑛𝑘 , 𝐴, 𝑁 , and 𝐿 and outputs the
product of matrices 𝐴 and 𝐷.

1 function ret = AD(cbank, A, N, L)
2 if size(A,2) == N
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3 m = size(cbank,2);
4 r = ((m = 1)*L + 1)*N;
5
6 ret = zeros(size(A,1),r);
7
8 ret(:, 1:N) = A;
9

10 for ell = 1 : L
11 for s = 2 : m
12 ret(:, ((m=1)*(L=ell)+s=1)*N+1 : ((m=1)*(L=ell)+s)*N) =

...
13 ret(:, 1:N) * spTpHt(cbank(:,s), ell, N);
14 end
15
16 ret(:, 1:N) = ret(:, 1:N) * spTpHt(cbank(:,1), ell, N);
17 end
18 else
19 warning('AD : The dimensions of A are not compatible with Dt.')
20 ret = zeros(size(A));
21 end
22 end

FroNorm2.m
This function takes in the matrix 𝑋 and outputs the square of the Frobenius norm of this
matrix.

1 function ret = FroNorm2(X)
2 ret = X(:)' * X(:);
3 end

spDDtMinusId.m
This function takes in 𝑐𝑏𝑎𝑛𝑘 , 𝑁 , and 𝐿 and calls another function spDDt.m to first calculate
a sparse version of the product 𝐷𝐷∗, then output the difference 𝐷𝐷∗ − 𝐼.

1 function ret = spDDtMinusId(cbank, N, L)
2 ret = spDDt(cbank, N, L) = speye(N);
3 end

spDDT.m
This function takes in 𝑐𝑏𝑎𝑛𝑘 , 𝑁 , and 𝐿, calls the function Recurse.m, which in turn calls
the function spTpH.m and returns a sparse version of the product 𝐷𝐷∗.

1 function ret = spDDt(cbank, N, L)
2 % spDDt(cbank, N, L) returns a sparse D*D'
3 ret = Recurse(cbank, N, L, 1);
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4 end
5
6 function ret = Recurse(cbank, N, L, ell)
7 if ell < L
8 ret = Recurse(cbank, N, L, ell+1);
9 H = spTpH(cbank(:,1), ell, N);

10 ret = H' * ret * H;
11 else
12 H = spTpH(cbank(:,1), ell, N);
13 ret = H' * H;
14 end
15
16 for k = 2 : size(cbank,2)
17 H = spTpH(cbank(:, k), ell, N);
18 ret = ret + H'*H;
19 end
20 end

spTpH.m
This function takes in ℎ, 𝑘 , and 𝑁 , dilates filter ℎ to level 𝑘 , then outputs an 𝑁 × 𝑁 Toeplitz
plus Hankel matrix 𝐻 = 𝐻

(𝑘)
𝑖

.

1 function H = spTpH(h, k, N)
2 sz = size(h);
3 b = prod(sz);
4
5 if ~ismatrix(h) || ( sz(1) > 1 && sz(2) > 1 ) || ~mod(b,2)
6 error("spTpH : Filter h must be a vector of odd length.")
7 % H = sparse(N,N); %On error, return the zero matrix.
8 else
9 if k > floor(1 + log2( (2*N = 2)/(b = 1) ))

10 error("spTpH : dilation level " + k + " is too large for N=" +
N + " and filter size " + b)

11 % H = sparse(N,N); %On error, return the zero matrix.
12 else
13
14 if k > 0
15 % Start with the middle
16 m = (b + 1)/2;
17
18 % To build the sparse matrix, array will contain:
19 % array = [ row indices;
20 % col indices;
21 % values ];
22 % array = zeros(N,3);
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23 array = zeros(b*N,3);
24 Start = 1;
25
26 num = N;
27 array(Start:Start=1+num, 1) = 1:N;
28 array(Start:Start=1+num, 2) = 1:N;
29 % array(Start:Start=1+num, 3) = val(h(m), num);
30 array(Start:Start=1+num, 3) = h(m);
31 Start = Start + num;
32
33 step = 2^(k=1);
34
35 for i = 1 : m=1
36 istep = i*step;
37
38 % Below the diagonal
39 num = istep;
40 array(Start:Start=1+num, 1) = num:=1:1;
41 array(Start:Start=1+num, 2) = 1:num;
42 % array(Start:Start=1+num, 3) = val(h(m+i),num);
43 array(Start:Start=1+num, 3) = h(m+i);
44 Start = Start + num;
45
46 num = N = istep;
47 array(Start:Start=1+num, 1) = (N=num+1):N;
48 array(Start:Start=1+num, 2) = 1:num;
49 % array(Start:Start=1+num, 3) = val(h(m+i),num);
50 array(Start:Start=1+num, 3) = h(m+i);
51 Start = Start + num;
52
53 % Above the diagonal
54 num = N = istep;
55 array(Start:Start=1+num, 1) = 1:num;
56 array(Start:Start=1+num, 2) = (N=num+1):N;
57 % array(Start:Start=1+num, 3) = val(h(m=i),num);
58 array(Start:Start=1+num, 3) = h(m=i);
59 Start = Start + num;
60
61 num = istep;
62 array(Start:Start=1+num, 1) = N:=1:(N=num+1);
63 array(Start:Start=1+num, 2) = (N=num+1):N;
64 % array(Start:Start=1+num, 3) = val(h(m=i),num);
65 array(Start:Start=1+num, 3) = h(m=i);
66 Start = Start + num;
67 end
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68
69 H = sparse(array(:,1), array(:,2), array(:,3), N, N);
70
71 else
72 % At level k=0, return the identity.
73 H = speye(N);
74 end
75 end
76 end
77 end % function
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