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ABSTRACT

Morgan, Jameson D. M.S.C.E., Department of Computer Science and Engineering, Wright State
University, 2020. GeoAware - A Simulation-based Framework for Synthetic Trajectory Generation
from Mobility Patterns.

Recent advances in location acquisition services have resulted in vast amounts of tra-

jectory data; providing valuable insight into human mobility. The field of trajectory data

mining has exploded as a result, with literature detailing algorithms for (pre)processing,

map matching, pattern mining, and the like. Unfortunately, obtaining trajectory data for

the design and evaluation of such algorithms is problematic due to privacy, ethical, dataset

size, researcher access, and sampling frequency concerns. Synthetic trajectories provide

a solution to such a problem as they are cheap to produce and are derived from a fully

controllable generation procedure. Citing deficiencies in modern synthetic trajectory pro-

cedures, we propose a data-driven, seasonally-aware and simulation-based procedure that

incorporates macro- and micro-level patterns from reference trajectories. The procedure is

implemented as an alpha-release package; allowing an analyst to produce synthetic trajec-

tories via the use of a modular coding framework and analysis tools.
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Chapter 1 — Introduction

Understanding human mobility is vital for a variety of undertakings in urban planning.

Models of human mobility have been applied in traffic planning contexts [206] [54] [19]

[166] [24], evacuation planning [233] [110] [138], and even for privacy protection [94]

[126]. As with any model, the inner-workings of human mobility models must be tested and

their ability to model reality demonstrated [171]. Often, such verification and validation

relies on external data.

As location acquisition services and mobile technology continue to improve and be-

come more widespread, vast amounts of trace-level data detailing the path followed by

an individual agent are being produced [143]. Such trajectories, as they are called, are

of immense value when trying to understand mobility and facilitate fine-grained analysis

that was not possible using the historically prevalent aggregate data sources (e.g. roadway

counts) [237] [119]. This ever growing collection of trajectories has sparked new mobility

models specifically designed to take advantage of the low-level information provided by

such a data source [237]. As such, the field of trajectory data mining [237] has exploded

with literature detailing trajectory (pre)processing [51], map matching [231], access and

storage [49], pattern mining [83] and the like.

Ideally, because trace-level mobility algorithms are used in the real world, the verifi-

cation and validation of such algorithms would be performed with real world trajectories

[64]. Obtaining such data, however, is problematic. Although recent improvements in

technology and penetration have substantially reduced the cost of obtaining real trajectory
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datasets [50], other considerations, such as user privacy, ethical concerns, dataset size, re-

searcher access, and sampling frequency still make acquiring a suitably large and detailed

dataset of trajectory data challenging [171] [143] [119] [174]. While the collection of such

information is often passively performed by many companies for internal purposes (such

as service delivery, quality of service or analytics), any publicly available data is typically

aggregated to protect user privacy1. Moreover, even if a dataset of suitable detail and scale

could be found, various aspects of the dataset, such as the roadway network and/or the de-

mand generation process, would be beyond the control of the analyst, thereby limiting the

analysis that could be performed.

Such a situation makes it difficult to test new (or old) models of human mobility

which rely on low-level trajectories. In essence, a dichotomy exists between the suitability

of trajectory data for understanding human mobility and the availability of such data for

verifying and validating models. An answer to this dilemma is the generation of synthetic

trajectories (synthetics).

1.1 Synthetic Trajectories

Synthetic trajectories are valuable for a number of reasons. First, the production of syn-

thetic trajectories is controllable. In real-world scenarios, it is impossible to have access

to the underlying process generating the observed trajectories but in the production of syn-

thetic trajectories, the analyst has full control over the generation process. Quantities such

as the level of detail, the vehicle classes involved, the roadway network, the output pro-

duced and even the situations induced (e.g. traffic accidents, anomalies or congestion) are

fully controllable based upon the application and desires of the analyst. Because of this,

synthetic data or examples are quite common in transportation modeling literature during

the discussion of results [119] [64], as a comparison point [80] [57] [75] [174] [40] or for

1See https://movement.uber.com for instance.
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numerical analysis [132] [179].

Another motivating aspect of synthetic trajectories is that data generation is cheap

and trajectories can be produced for any geographic region at any scale and level of detail.

As such, access, use restrictions, and privacy concerns become irrelevant, enabling greater

flexibility in usage.

Synthetic trajectories also facilitate reproducible experimentation. As noted in [121],

scientific computing — the use of a computer to perform scientific experimentation — has

become pervasive in the scientific community but unfortunately how to perform proper re-

search and experimentation has not. In their book, [121] argue that reproducibility is critical

to effective research and experimentation and the greater goal of open science. Of course,

research on both real-world and synthetic trajectories can benefit from proper methods but

synthetic trajectories provide an unrivaled testbed for research, experimentation, and anal-

ysis. For instance, if pseudo-random number generators (RNGs) with known seed values

are used when generating synthetic trajectories, probabilistic procedures can be recreated

so that experiments can be compared without wondering whether the variation between the

experiments is attributable to probabilistic differences.

Before leaving this section, it is important to note that despite the advantages of syn-

thetics, real world trajectories are not without merit. It must be understood that while use-

ful, synthetic trajectories are merely a model of the real-world. Because various assump-

tions must be made during the modeling process, the output is necessarily a “reflection”

of reality and will never replicate the real world exactly. On the other hand, real-world

trajectories capture a myriad of subtleties, such as noise, agent-to-agent interactions or

network-demand interactions, which synthetic trajectories are unable to fully replicate. A

second advantage of real-world data is that various situations are captured without thought

by the analyst. In contrast, when generating synthetic trajectories the analyst must con-

sider what types of situations are likely to occur and make sure the produced synthetics

contain such events. Indeed, the overlooking of situations is a major challenge which must
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be mitigated when using synthetic trajectories.

1.2 Synthetics Production via Traffic Simulator

One approach to creating such synthetics is to use a traffic simulator. Simulation-based

techniques to transportation modeling, despite their mathematical intractability (due to the

inherently ill-behaved nature of traffic) [169], have enjoyed much success because of their

ability to capture complex interactions, particularly that of congestion, which cannot be

effectively defined mathematically [195] [191] [115] [169] [70] [20] [238]. Microscopic

traffic simulators are a specific type of traffic simulator designed to operate at the individual

agent level [20] and have become particularly prevalent in recent years due to increases in

computer hardware speed [76]. Yet, despite the success of microscopic models in simulat-

ing roadway conditions (see examples such as [165] [229] [236]), a largely neglected topic

is the use and appropriateness of microscopic traffic simulators for generating synthetic tra-

jectories. This omission is likely due to the fact that in most microscopic traffic simulators

the trajectories produced are merely treated as intermediaries whose purpose is to induce

various macro-level demand-supply interactions (such as link counts or queuing) [64] [15].

In other words, the low-level routing of agents is assumed to only be of use for bringing

about certain phenomenon which an analyst wishes to evaluate. Because the production

of trace-level output is not the main purpose of microscopic simulators, a procedure must

exist or be created in order to efficiently extract such information from the simulation.

Utilizing microscopic traffic simulators for synthetics production also requires that

the simulation be calibrated if the synthetics are to be used in real-world situations. Merely

running a microscopic simulation and collecting the traces produced will result in traces

that are reflective of simulation parameter defaults not real-world conditions. Despite the

prevalence of calibration techniques for microscopic traffic simulations in the literature (see

[101], [210], [16], or [120] for typical approaches and [23], [235], [211] for case studies),
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such procedures often (i) utilize aggregate [101] or behavioral [206] data sources for cali-

bration, (ii) focus on recreating a set of observed conditions (termed base-year conditions)

[172], and (iii) are often applied as a post-fact corrective measure to fix simulation out-

put. Each of these points presents issues when trying to obtain accurate synthetics from a

microscopic simulation.

First, by utilizing aggregate data, the low-level aspects of a simulation cannot be cal-

ibrated against real-world data. When microscopic traffic simulators are used for planning

purposes at a macroscopic scale, it may be possible to ignore such inconsistencies but

when one wishes to utilize a microscopic traffic simulator for producing synthetics, such

low-level accuracy is required. Second, as [172] notes, focusing only on replicating a set

of conditions makes the simulation applicable only in such conditions. Indeed, as they

argue, any simulation can be made to conform to a set of conditions but this does not

mean it captures the average or general conditions present [172]. If the variables used to

calibrate the simulation are not transferable to other situations, neither will the resulting

simulation. Third, often calibration, particularly that of demand calibration, is performed

after the initial demand has been generated and its only purpose is to try and correct the

generated demand to fit with observed values. While such processes are needed, its need

arises from the fact that the underlying demand models are not generating demand in line

with real-world observations.

1.3 The Proposed Framework

Motivated by the appropriateness of microscopic traffic simulators for producing realis-

tic synthetics that mirror real life, we present a framework for producing such synthetics

via a microscopic traffic simulation calibrated from transferable seasonal demand patterns

extracted from reference vehicle traces. As presented earlier, trajectories provide rich in-

formation about mobility patterns and therefore, we seek to push the state of practice in
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synthetics generation by utilizing such trajectories to calibrate the demand model of a mi-

croscopic simulation so that the synthetics produced reflect real-world demand patterns.

The framework is called GeoAware as it presents a geographically-aware framework for

producing synthetic trajectories at a desired scale and detail.

The framework’s demand model is calibrated from the reference traces using a data-

driven process which incorporates the seasonality present in mobility data [199] [142] [87]

[184] [157]. The demand model captures mobility at both macro- and micro-level scales.

Macro-level demand between regions in the network is captured using a seasonally dy-

namic stochastic block model (SDSBM). Micro-level demand patterns capture the seasonal

patterns of departure times and incident weights. Path-level demand patterns2 are replicated

through the incorporation of a map-matching algorithm which allows the simulation to re-

produce routes exhibited in the reference trajectories.

A motivating example for such a framework can be found in the taxicab dataset made

publicly available by the city of Chicago3 [156]. For privacy reasons, this dataset only

provides the pickup and dropoff regions of agents, excluding any of the route details. Thus,

if one where interested in studying mobility patterns in the Chicago area, such a dataset

would necessarily limit analysis to high-level pickup and dropoff statistics. However, if

one where able to infer mobility pattern statistics from this more limited data source, a

calibrated microscopic simulation could be used to generate synthetic trajectories whose

behavior is based upon such pickup and dropoff trends but at a scale and detail not available

in the original dataset [119].

We implement this framework in an alpha-release package4 aimed at enabling fully

reproducible, data-driven vehicle simulations. Using this package, an analyst is able to go

from ingesting reference trajectories to generating synthetic trajectory data via the use of

a modular coding framework and analysis tools. The package components are designed

2As will be presented subsequently, path-level demand pattern inference requires that the trajectories
provided are full vehicle traces.

3The latest collection of records can accessed at: https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
4Due to sponsor requirements, the source code cannot be made publicly available.
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to be deployable and extensible. Due to the author’s strong belief in reproducible and

self-documenting research, the high-level framework modules are implemented in the R

programming language [178] in order to take advantage of the data analysis, documenta-

tion and reproducibility tools available in R. Low-level, memory and computation intensive

modules are written in C++ and are exposed to the R programming environment. The pack-

age modules are designed to interconnect, allowing an analyst to define vehicle simulations

rapidly and efficiently. The package interfaces with SUMO (Simulation of Urban MObil-

ity) [140], an open-source package for microscopic road simulation, allowing us to take

advantage of the rich feature set provided by SUMO when performing the microscopic

roadway simulations necessary for generating synthetic mobility-records.

1.4 Contributions

The goal of the GeoAware framework is to use a demand-calibrated microscopic traffic

simulator to produce synthetics that (i) behave realistically, (ii) can be generated at any

scale, and (iii) are not subject to privacy concerns. Such a goal took inspiration from a prior

research effort that inferred geospatial mobility patterns and anomalies from trajectory data

[153] and results in contributions to the current state-of-practice in synthetics generation in

the following areas:

(i) The development of a data-driven, seasonally-aware, and simulation-based synthetics

generation procedure incorporating transferable macro- and micro-level trend infor-

mation;

(ii) The use of trajectory data for generator calibration; and

(iii) The incorporation of this generation procedure into an extensible, application fo-

cused, alpha-release software package for generating fully reproducible vehicle sim-

ulations within the R programming environment.
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The focus of this work is on presenting a solution to a common research problem

and is therefore application focused. As such, we do not seek to show that the proposed

framework is suited for generating synthetics in a specific scenario but instead, aim to

convey the general principles of the framework which may be used by an analyst to generate

synthetics in a variety of contexts. Rather than establishing new theory, we focus on the

integration of (mostly) pre-established tools and algorithms into a software pipeline capable

of achieving the aforementioned goal. It is our hope that the resulting framework will be

of immediate utility and pushes the state of practice.

1.5 Organization

We now detail the organization of this work. We begin with a literature review in chapter

2. Here, we focus on approaches to generating synthetic vehicle traces and motivate the

modern approach presented in the current work. Next, the methodology chapter (chapter

3) defines the GeoAware framework. The chapter begins by detailing the framework data

requirements in section 3.1, proceeds to describe the demand model in section 3.2, outlines

the creation of a simulation scenario in section 3.2.6, and concludes by describing the

simulation process in section 3.3. Following the methodology chapter, the framework is

evaluated in chapter 4. We evaluate the framework both qualitatively (section 4.1) and

quantitatively (section 4.2). Finally, we present our concluding remarks, discuss areas of

improvement and hint at future work in chapter 5.

This work is primarily an applied project, focused on incorporating available tools

and techniques in order to solve a real-world problem. At times, this incorporation requires

some preliminary knowledge about a tool or technique. Rather than present all of these

preliminaries up front in a separate section, we have opted to introduce any required pre-

liminaries “just-in-time”. We believe that introducing the applicable content when required

aids reader understanding and focuses our writing on explaining and justifying the use of

8



such preliminaries in our project.

Finally, as an applied research work, an emphasis has been placed on reproducibil-

ity. To assist in this endeavor, the methodology and evaluation chapters (chapters 3 and

4, respectively) are presented in a vignette-style, providing a step-wise description of the

framework which is easy to understand and evaluate. As our purpose is to present a general

framework, we refrain from specifying an exact scenario during these discussions. Nev-

ertheless, to demonstrate the overall utility, we do present an example in the concluding

section of the evaluation chapter.
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Chapter 2 — Related Works

The goal of synthetic trajectory generation is to create a set of artificial trajectories from

a collection of a priori and/or empirically derived distributions as real world trajectories

are often unavailable or of limited size due to factors such as user privacy and ethics [119],

collection or storage limitations [64] [119], and/or researcher access. A major application

of synthetic trajectories is in the design and evaluation of spatiotemporal algorithms [171]

[237] [49] [106] [6]. Synthetic trajectories are also valuable for privacy protection [94]

[126] and testing the performance of spatial database operations [171] [64] [40] [56] [159].

A review of the related literature indicates that there are three commonly used ap-

proaches for constructing human related, synthetic trajectories, namely (i) moving object

generators, (ii) human mobility models, and (iii) machine learning techniques. We review

the literature pertaining to each approach in the subsequent sections. We conclude this

chapter by comparing and contrasting the reviewed works with the proposed framework. It

is our intention that such a discussion will motivate the proposed work.

2.1 Moving Object Generators

A spatiotemporal moving object generator (MOG) is a configurable algorithm for produc-

ing high resolution spatiotemporal traces of moving objects. The earliest spatiotemporal

MOG is [208]. Its construction was motivated by the need to evaluate the performance of

spatiotemporal database systems that were, at that time, being developed [40] [208]. At
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that time, what was needed was an algorithm that could produce artificial traces that in-

corporated spatiotemporal properties. Despite the original purpose of MOGs, the ability

to construct trace-level data given a set of configurable parameters makes them useful for

tasks beyond performance evaluation; such as the evaluation of spatiotemporal algorithms

and data structures [171].

The related literature concerning moving object generators is not vast and can be

grouped into two categories1. The first category generates trajectories in unconstrained

free space. The second, generates trajectories that are network constrained. We begin by

reviewing the free space approaches.

2.1.1 Generation in Free Space

As noted earlier, the earliest MOG was detailed in [208]. The generator was presented

alongside design and evaluation considerations for spatiotemporal databases and is called

GSTD (Generate Spatial Temporal Data). The framework operates in free space and gen-

erates timestamped location tuples. The framework supports point and rectangular data.

The algorithm allows users to specify distributions (from a set of supported distributions)

controlling the jump between subsequent timestamps (called the duration), the shift of an

object and the resizing of an object (non-point data only). A later extension [173] enables

directed movement by adding an additional parameter and supports the creation of rectan-

gular infrastructure objects to simulate movement in obstructed free space.

A central issue with the original GSTD algorithm presented above is that the move-

ment is not necessarily as smooth as might be expected in the real world. While [173]

later addresses this through the introduction of a direction interval (holds the direction for

a certain period of time), [187] also addresses this issue in an earlier work. Their work is

inspired by a fishing scenario where trawlers go out in search of fish while avoiding stormy

1Moving object generators for indoor environments also exist but are of limited relevance to the current
work as vehicle traces are external events. See [104] and [135] for two approaches.
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areas. This work uses object avoidance as ships use a repulsion vector to avoid stormy

areas and an attraction vector to navigate towards shoals of fish. While motivated by a

very specific scenario, the general principles can be used to create moving objects for any

scenario where attractive and repulsive forces are present.

While the GSTD and Oporto algorithms allow for the generation of moving objects

which change their size, the shapes are limited to rectangles. While it is true that complex

shapes are often represented by bounding rectangles [187], at times it is necessary to fully

represent the complex shape. Examples include tracking storms or the evaluation of pattern

mining algorithms [13]. [215] presents the G-TERD (generator of time-evolving regional

data) framework which supports arbitrary 2D shapes that change their spatial location, size

and/or shape according to speed, zoom and rotation angle parameters. The framework

also hints at object interaction, something that will become more readily implemented in

network-constrained MOGs, by allowing regions to avoid each other and pass over others

(e.g. a cloud passing over an island). The framework produces a sequence of multicolored

images.

The ERMO-DG framework also generates moving object regions of arbitrary size but

does so with a focus on incorporating spatiotemporal patterns so that the produced tra-

jectories can be used in evaluating spatiotemporal pattern mining algorithms [13]. The

framework operates by constructing randomly generated (but configurable) feature types

that control the shape, area, lifetime, velocity and acceleration attributes of the generated

objects. Next, a collection of core and overlap patterns are produced by randomly combin-

ing feature types. Those patterns are assigned to spatial neighborhoods which will generate

instances that follow the patterns specified. The framework is highly parameterized, allow-

ing an analyst to construct datasets that meet certain pattern criteria.

Moving object generators have also been proposed for creating call detail record

(CDR) data. The CENTRE (CEllular Network Trajectory Reconstruction Environment)

framework extends the GSTD algorithm and features many notable improvements [82].
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First, through the use of a GIS program, obstacles of arbitrary shape can be constructed.

Second, group behavior, where objects share similar attributes, can be achieved in a sin-

gle simulation run and objects can shift between groups. The synthetic CDR data can

be transformed into trace-level trajectories through a naı̈ve trajectory reconstruction algo-

rithm. The WHERE framework provides another approach to generating synthetic CDR

data but unlike CENTRE, WHERE incorporates empirically derived distributions control-

ling home and work locations, commute distance, spatial call patterns and temporal call

patterns [108]. While the framework does not claim to be a MOG, the synthetically pro-

duced CDRs implicitly provide a description of movement, even if it is at a course level.

The GAMMA (Generating Artificial Modeless Movement by genetic-Algorithm) frame-

work presents the earliest attempt at tuning a MOG from field data2 [102]. The framework

views trajectory generation as an optimization problem and uses the genetic algorithm to

select valid trajectories according to a fitness score while permuting others to obtain new

(hopefully more representative) solutions. The generator requires a collection of reference

trajectories from which to infer the fitness score and thereby incorporate real-world behav-

ior. Applications are presented for generating CDRs and semantic trajectories.

2.1.2 Network Constrained Generation

In contrast to the previous set of MOGs which generate objects in an unconstrained (or

minimally constrained) environment, network constrained MOGs generate objects which

are confined to a network topology. Obviously, in some situations such a constraint makes

sense. For instance, motorists must travel from their onset location to their destination

according to the roadway network available to them.

The work presented in [40] is widely cited as the first attempt to constrain the move-

ment of generated objects in a realistic way (even though SUMO [140] technically appeared

2The SUMO framework presented later [140] does feature some native calibration tools for configuring
demand but such tools are not requirements in the simulation pipeline and therefore a default SUMO config-
uration is unlikely to produce accurate synthetics.
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earlier) . Motivated by the field of traffic telemetrics, the author details a generator capable

of producing network constrained objects on any arbitrary network. The framework se-

lects an onset and terminus node (through user controlled procedures) and routes an agent

along the network according to fastest path principles. Interaction between other objects in

the network is limited to the induced characteristics on edge speed and the resulting route

chosen. The framework is often referred to as Brinkhoff after the author’s name.

The BerlinMOD generator is similar in spirit to the generator presented in [40] but

focuses on the production of long-term observations (e.g. a month) [64]. The framework

focuses primarily on trips between home and work with additional trips being modeled in

the evenings or weekends. The trips are generated in a heuristic fashion and objects do

not interact with each other on the roadway (i.e. it is as if they are the only object on the

network). The framework features a number of native data export options and the default

map of Berlin that is used for generation can be substituted for another location.

Microscopic traffic simulators may also be used to generate network constrained mov-

ing objects if the simulator supports the exporting of vehicle positions. Microscopic traf-

fic simulators increase the fidelity of the generated output by incorporating car following,

lane-changing and gap acceptance theories; ensuring that interactions between objects are

modeled according to established traffic theory [70]. A prominent example of a traffic sim-

ulator supporting the generation of moving object data is the Simulation of Urban MObility

(SUMO) framework [140]. SUMO is highly configurable and allows an analyst to specify,

amongst other quantities: traffic control structures (e.g. stop signs or traffic lights), lane-

level details, vehicle types, traffic assignment approaches and intermodal routing. (Indeed,

SUMO’s rich feature set provided strong motivation for its incorporation into the present

work.) The enhanced realism of microscopic traffic simulators does come at a cost and

therefore, distributed architectures have also been proposed [228] [234].

Intermodal routing is not a common feature in MOGs, prompting the creation of MW-

Gen (mini world generator), a MOG specifically designed to handle intermodal routes
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[230]. The simulation space is constructed from five infrastructure representations that

detail the roadway network, outdoor environment, bus network, metro network and indoor

floor plans. A global space is constructed on top of the infrastructure to facilitate infras-

tructure interaction. Synthetic trips between any two arbitrary points are constructed using

intermodal routes, if necessary.

A drawback in many of the reviewed MOGs thus far is that, with few exceptions,

no formal method is given to calibrate the various framework parameters so that the pro-

duced trajectories reflect reality. Indeed, merely moving objects along network edges only

partially increases the reality of the trajectories produced. To obtain more representative

parameter settings, information must be inferred from representative data. A handful of

literature pieces address this concern and present various solutions to the problem.

The ST-ACTS (Spatio-Temporal ACTivity Simulator) framework uses “various geo-

statistical data sources and intuitive principles” when constructing synthetics; features, the

authors claim, were neglected in earlier MOGs [84]. The simulator relies on real-world

data sources detailing (i) demographics, (ii) business/facility information, and (iii) con-

sumer surveys. Synthetics are constructed by creating a synthetic population according to

the distributions present in the real-world data and then performing a discrete event simu-

lation using the generated population. The trajectories produced are symbolic. A potential

drawback of this approach is the large amount of data required.

Recent examples of MOGs continue to incorporate field data when producing synthet-

ics. Hermoupolis produces annotated, network constrained, pattern incorporating trajecto-

ries by using generalized mobility patterns (GMPs) extracted from reference trajectories

[170]. [200] presents a SUMO-based framework which generates traffic demand using L2

logistic regression and routes the resulting demand through SUMO.
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2.2 Human Mobility Models

Moving object generators are not the only technique available for obtaining synthetic trajec-

tories. As research continues to explore and demonstrate the predictability of human mobil-

ity [199] [60], increasingly better models of human mobility are being proposed which can

be used to generate synthetics at the scale of the individual3. In contrast to moving object

generators which are typically based on simplified models of mobility (notable exceptions

being SUMO [140], Hermoupolis [170] and GAMMA [102]), human mobility models are

concerned with accurately capturing a characteristic (or characteristics) of human mobility.

The ability to generate trajectories from such a model is merely a side effect.

2.2.1 Random Walk Models

Random walk models are an easy and often used, albeit not particularly accurate, ap-

proach for modeling human mobility [86]. In a random walk model, the position (any

arbitrary number of dimensions) of an agent after N steps is given by the random variable4

XN =
∑N

i=1 ∆Xi, where the displacement ∆Xi is a random variable extracted from the

distribution f(∆x) with statistically independent draws. Each draw is referred to as a jump

as it represents a movement of the agent to a new position.

There are three techniques derived from the random walk model which are particu-

larly common in human mobility modeling [17]. The first is Brownian motion5 (also used

for modeling particles suspended in fluids [221]) which stipulates that the displacement

∆Xi be drawn from a Gaussian distribution with a mean of zero and a variance propor-

tional to time t. The second commonly utilized technique is known as the Lévy flight6

3While models of human mobility exist at both the individual- and population-level, we restrict our liter-
ature review to those of individual movement since they are capable of producing trace-level trajectories and
are therefore most relevant to the proposed work. For an excellent and current review of human mobility at
both the individual and population level, the reader is encouraged to consult [17].

4We borrow the notation of [17] for all equations in this section.
5Named after the botanist Robert Brown who first described it.
6Named after the French mathematician Paul Lévy.
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model and can be constructed by requiring that the displacement ∆Xi follow a heavy-

tailed distribution. The last random walk derivative commonly used for modeling human

mobility is the continuous time random walk (CTRW) model7 which extends the basic

random walk by also modeling the time between jumps according to the random variable

TN =
∑N

i=1 ∆Ti. [41] argues that human mobility is characterized as a CTRW Lévy flight

model with heavy-tailed jump and time distributions but evidence suggests that such results

are not representative in general [86].

Instead, [86] argues that human mobility exhibits strong spatial and temporal regu-

larity as individuals regularly frequent a few select locations. [198] proposes a solution to

account for this trait by introducing two extensions to the traditional CTRW model. The

first is termed exploration as it models the probability that an agent will visit a new location

and is given by Pnew = ρS−γ , where S is the number of previously visited locations. The

second is termed preferential return as it models the probability that an agent will return to

a previously visited location and is given by the complimentary probability Pret = 1−Pnew.

When returning, a location is chosen with a probability proportional to the number of visits

Πi = fi and the model parameters ρ and σ are empirically derived from data. Collectively,

the exploration and preferential return steps are collectively referred to as the EPR model.

Despite the improvement of the EPR model, it is not without its faults. As noted

in [18], by only considering the frequency of visitation when returning to a location, the

preferential return extension will cause earlier visited locations to receive more visits and

prevents an individual from changing his/her preferences. To address this issue, the authors

present a model where with probability 1− α an individual chooses to return to previously

visited location and each location’s selection probability is proportional to its recency rank

KS .

Social interactions, such as family and friends, have also been shown to influence

mobility patterns. As [17] points out in its review of state-of-the-art mobility models (see

7Introduced in [152].
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section 4.1), the social network of an individual reflects the geography of their life. One

example further extends the EPR model for short-term social contexts by making a propor-

tion of the locations selected in the exploration and return stages dependent upon locations

visited by a similar social contact [214].

2.2.2 Markov-based Models

A commonly held assumption in many of the models discussed thus far is that human

mobility is Markovian [127]. This Markov assumption implies that agents are memoryless

and therefore the next state of an agent is only based upon its current state (or a limited

number of previous states k). Of course, such an assumption is not entirely true [127]

[73] but Markov processes do have their place and are often advantageous due to their low

computational complexity [127], their inherently generative nature (generating a trajectory

for each step conditioned on the previous k states [94]), and the ability to define transition

probabilities between locations based on past trajectories [77] [73].

The Markov property is commonly applied to the task of location prediction [142]

[221] [11] [78] [180] [94] [162] [136] and such algorithms can be used to sequentially

construct trajectories (with known issues; see [56]) by taking advantage of the inherently

generative nature of Markov processes [56]. Probably the earliest work to use a Markovian

model for location prediction is [136] which presents a Gauss-Markov model for predicting

the future location of a mobile device in a cellular network. As with any location-based

model, the resolution of the generated trajectories when using such models is dependent

upon the level of discretization used in the spatial domain [116].

Because Markov-based models are naturally generative, some works do not detail a

formal generation procedure for producing synthetics. Others, however, explicitly incorpo-

rate the mobility model into a process for generating synthetic trajectories. For instance,

[94] presents a framework capable of generating trace-level synthetic trajectories with ε-

differential privacy. The notable contributions of this work include the use of a hierarchical
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reference system (HRS) to decompose the spatial domain so as to capture variances in agent

speed and the inclusion of differential privacy.

[111] defines a generative process for constructing location-level trajectories between

three location types (home, work and other) as inferred from suitable data (GPS or CDRs).

The workplace is assumed to have fixed location, start time and duration. The remaining

temporal aspects are modeled at the individual level by a time-inhomogeneous Markov

chain with three parameters capturing (i) the weekly home-based tour number (to other

locations), (ii) the dwell rate, and (iii) the burst rate. Spatial choices, excluding work-

place selection, are modeled using a rank-based exploration and preferential return (r-EPR)

model. [162] proposes a framework which similarly separates the temporal and spatial as-

pects for modeling purposes. The process begins by learning time dependent trip diaries

which specify abstract locations (e.g. home, workplace, shopping mall). Then, the d-EPR

algorithm [164] [161] is used to to assign physical locations to the abstract ones in a data-

driven manner. Once again, the trajectories produced are location-level, not trace-level.

2.3 Machine Learning Techniques

One drawback with the approaches presented thus far is that each assumes a model of

human mobility can be defined and the required parameters estimated [74]. Given the

complexity of human mobility [74] [128], defining a model that strikes the right balance

between expressiveness and simplicity can be challenging. Motivated by the complexity of

such a situation, researchers began applying parameter-free (or non-parametric) machine

learning techniques to synthetics generation. The earliest attempt is claimed by [201] in

which the authors proposes a four-layer, “multi-task deep LSTM learning architecture” for

learning (predictive) models of movement and transportation mode from GPS traces [201].

In a more recent (2019) [105], the authors note that often the datasets used when

training a neural network are of limited size due to privacy and access constraints and
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propose the use of a variational autoencoder to construct a hidden space which captures

characteristics of the input and can be used to construct synthetic trajectories. Results

indicate the potential of the solution but the error may be too high for some applications.

[159] presents a state-of-the-art, GAN-based (generative adversarial network) tech-

nique for trajectory generation that utilizes trains a neural network (called the generator) to

produce trajectories which are indistinguishable from truth. The resolution of the trajecto-

ries is dependent upon the network grid discretization used. Other GAN-based techniques

for generating synthetic trajectories include [74], [128], and [56].

2.4 Comparison to GeoAware

Given the brief introduction of the framework in chapter 1 and the just presented litera-

ture review, one can see that there are similarities and differences between the proposed

approach and the relevant literature. Probably the most important similarity is that the

GeoAware framework appears to span all three categories. While the framework appears

to most closely fit within the network constrained MOG category, it also has features that

fall into the other two categories as well. Specifically, the the GeoAware framework and

the reviewed MOGs share the same purpose, namely, producing trace-level trajectories of

moving objects.

Nevertheless, unlike many MOGs, the GeoAware framework does not resort to purely

heuristic models but instead produces synthetics that are backed by a rational, seasonally-

aware process. The incorporation of a model that is not merely heuristic resembles the

approach taken by the reviewed human mobility models (see section 2.2). The GeoAware

framework is also similar to the reviewed machine learning approaches as it also posits that

mobility models are complex and subject to definition errors and expressiveness issues. As

such, the models used in GeoAware do not attempt to reason about the observed patterns

but instead only aim to accurately capture such patterns.
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Just like other MOGs, the GeoAware framework also focuses on providing an analyst

accessible framework for producing synthetics. In contrast, the mobility models and ma-

chine learning approaches are typically not designed with such a goal in mind and therefore

typically require much more analyst involvement in order to obtain usable trajectories. The

focus on producing a framework means that the goal is not merely to present a method by

which synthetics may be produced but is instead motivated by the need to make synthetics

generation available in many contexts where analyst knowledge of human mobility is lim-

ited. In GeoAware, accessibility is achieved by making the entire framework controllable

from the R programming environment. The MNTG framework shares this philosophy and

presents a web-based portal for producing synthetics using the reviewed, Brinkhoff [40]

and BerlinMOD [64] generators [151]. [163] presents a similar framework focused on hu-

man mobility models. The framework allows an analyst to load, represent, clean, analyze,

generate and assess the privacy risk of mobility data.

Probably the chief difference between the proposed work and the reviewed literature

is the focus the GeoAware framework places on using field data to configure the MOG so

that it produces synthetics which are realistic. To be sure, recent MOGs increasingly in-

corporate field data for calibrating generator parameters [84] [170] [200] [108] [102], but

the integrated approach and the data source used by GeoAware is uncommon in the liter-

ature. Of the reviewed MOGs, only a few specifically use trajectories when constructing

their models for synthetics generation [170] [102] [200]. Of these, none present a modular

and reusable component aimed at producing calibrated settings from such data. Instead,

because of the extremely general nature or a highly specific application, an analyst would

have to properly ingest the trajectory data in order to utilize the framework. In contrast, the

GeoAware framework presents an approach which only requires an analyst to point to the

proper source files. In many modules, if an analyst wishes to provide a custom algorithm it

can be done but he/she need not do this in order for the framework to function.

Furthermore, in many of the reviewed MOGs the calibration of generator settings is
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limited to minor parameter settings or specifying the infrastructure. While such settings

are important, they are not sufficient for producing realistic trajectories. Of course, the

GeoAware framework does not calibrate all possible settings but by using low-level tra-

jectories, the GeoAware framework calibrates the demand used to generate the synthetic

trajectories. The idea is that if realistic demand can be provided to a microscopic traffic

simulator, the simulator’s car following, lane changing and gap acceptance models can be

used to produce realistic synthetics.
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Chapter 3 — Methodology

The GeoAware framework for producing intelligently-calibrated synthetics is illustrated

in figure 3.1 and can be divided into two main components. The geoaware component

calibrates the demand component of a vehicle simulation scenario using inferred mobil-

ity patterns from the supplied trajectory data while the libsumor component generates the

desired synthetic vehicle trajectories by building a simulation from the produced scenario

and running it. Splitting the framework in this manner highlights the distinction between

building a scenario to represent a real-world environment and the actual running of that

scenario to produce the desired synthetic trajectories. This partitioning also enhances code

reusability, as the base-level simulation engine becomes a reusable module that performs

simulations according to a given scenario. The inputs to the framework are (i) trajectory

data, (ii) a roadway network, (iii) community definitions, (iv) timing parameters, and (v)

a configuration file. Before proceeding to detail the framework and its use of such in-

formation, we start with a high-level sketch that illuminates the interaction of the various

components.

To obtain the synthetic vehicle trajectories we seek, it is necessary to build a simula-

tion scenario for the transportation system under study. A simulation scenario is a repre-

sentation of a real-world system that is described by a fitted model. A simulation scenario

is a powerful data structure as it allows an analyst to adjust properties of the model in order

to analyze various situations. For instance, one scenario might represent the current-state
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The GeoAware Framework

geoaware libsumor

scenario
Macro Demands

Micro Demands

Mode Choice

Trip Generation

Mode: Synthetics

Mode: Wrapper

Mode: XML

Path Assignment

Data SUMOFour Step

Figure 3.1: High level component decomposition of the GeoAware framework

whereas under a different parameter set a future-state scenario may be represented.

The construction of a calibrated simulation scenario is handled by the geoaware com-

ponent and is represented by the green block in figure 3.1. The first step towards creating

such a scenario is specifying the location of the required inputs. Section 3.1 presents this

discussion, detailing the relevance and formatting requirements of the (i) trajectory data,

(ii) roadway network, (iii) community definitions, (iv) timing parameters, and (v) configu-

ration file. This step is represented by the blue data block in figure 3.1.

Next, in section 3.2 we construct a model of agent demand from the reference trajecto-

ries. We align our work with the state of practice in urban demand modeling and present an

approach based on the traditional, four-step transportation model [3]. This fact is noted by

the black block shown within the geoaware component of figure 3.1. Section 3.2.2 opens

with a historical preliminary that justifies the use of the four-step model in the current work.

Afterwards, we construct the various pieces of the four-step model by inferring quantities

from the reference trajectories. Specifically, this means (i) inferring demand through sea-

sonal, macro- and micro-level procedures as detailed in section 3.2.3; (ii) specifying the

mode of travel as detailed in section 3.2.4; (iii) generating stochastic trips and (iv) assign-

ing paths to the trips using the procedures presented in section 3.2.5. In figure 3.1, these

steps are represented by the green sub-blocks of the geoaware component and the Path

24



Assignment sub-block of the libsumor component (path assignment relies on SUMO).

The demand model fitted, the last step of the geoaware component is to build a sim-

ulation scenario. In our discussion of the framework so far, we have specified the required

inputs and outlined how to fit a demand model using inferred mobility patterns but we

have not used this data to obtain a more realistic simulation environment. Section 3.2.6

addresses this topic by detailing the components of a scenario. This process is shown as

the pink ellipse in figure 3.1.

At the conclusion of the geoaware component, a scenario calibrated according to

the observed mobility patterns now exists. The next step is to evaluate this scenario in

order to obtain synthetic vehicle trajectories. Due to the complex (and often unobservable)

set of interactions in transportation models, realistic evaluation becomes intractable using

analytic approaches [70] [169]. Instead, simulation must be used to evaluate the scenario

in order to capture the rich set of intricacies that analytic approaches fail to recover [70].

In the GeoAware framework, we have chosen to use the SUMO microscopic traffic

simulator due to its open-source nature, its extensive suite of features and its ability to

be extended [123]. We implement our extension for scenario evaluation in the libsumor

component as detailed in section 3.3. The libsumor component is shown as the orange

block in figure 3.1. The black box within the libsumor component notes that we rely on

SUMO to perform the microscopic simulation.

The libsumor component takes the specified scenario and evaluates it via a custom-

built interface with the SUMO engine. The network provided at scenario definition details

the roadway on which to route the simulated agents and details supply constraints such as

the number of lanes, junction locations, speed limits, traffic lights, and many other such

features. The trips specified in the scenario guide the onset and destination selection of

the simulation routing procedure such that the generated vehicle paths reflect the patterns

inferred from the reference trajectories. The synthetic mobility records are then extracted

by retaining the relevant statistics from each of the simulated agents injected into the sim-
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ulation. In addition to producing synthetics, the libsumor component also provides XML-

based simulation support for SUMO as well as a prototype wrapper class that provides

enhanced control of the SUMO simulation engine from within the R programming envi-

ronment. The various operation modes are shown as the orange sub-blocks of the libsumor

component in figure 3.1.

3.1 Data Preprocessing

In order to obtain a simulation scenario that is calibrated from micro- and macro-level mo-

bility trends, the GeoAware package requires data inputs detailing the (i) trajectory data,

(ii) roadway network, (iii) community definitions, (iv) timing parameters, and (v) a con-

figuration file. Where necessary, these inputs must undergo a preprocessing step to ready

them for use by the framework. In this section, we detail the relevance of such inputs and

the formatting requirements for each. We begin by considering the reference trajectories.

3.1.1 Reference Trajectory Data

A trajectory (also known as a mobility-record) represents a geospatial trace of agent move-

ment across time. The detail level of the trace may vary from being minimalist, only

including details such as the onset and terminus [156], to exhaustive, specifying the entire

path traveled [190]. To a large extent, the level of detail dictates the applicability of the

trajectories for certain applications.

The positions of agents are captured through a location acquisition system such as GPS

(global positioning system), GSM (global system for mobile communications) or WAMI

(wide area motion imagery) [174]. As noted earlier, mobility-records are capable of pro-

viding powerful insights which aid in knowledge discovery of environment dynamics. In

the present work, we are interested in inferring and replicating certain macro-level mobility
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trends as well as, to the degree supported by data, micro-level trends present within such

trajectories since such trends are indicative of the dynamics driving a geospatial environ-

ment.

The macro-level inference performed within the GeoAware framework requires that

the trajectories minimally detail a starting and ending region with associated timestamps

whereas micro-level inference requires the specification of a starting and ending location.

Minimally then, we require that the trajectory data CSV provided to the GeoAware cali-

bration procedure detail at least the onset and terminus locations with rows consisting of

the four-tuple of attributes (<id>, <timestamp>, <x>, <y>) for the onset and

terminus locations of each agent (when no precise location data is available, the x and y

locations are set to the centroid of the region).

3.1.2 Roadway Network

The layout of roadways and intersections within a geographic environment may be natu-

rally modeled as a directed graph G = {V,E} where the vertices V represent intersections

and the edges E represent directed roadways between vertices [81]. To make the graph

more realistic, one often ascribes various features to its components, such as the intersec-

tion type (traffic light, all-way stop, 2-way stop, etc.), intersection location, speed limit,

shape of the roadway, or number lanes. We refer to such a graph and its collection of fea-

tures as a roadway network map. A map is foundational when generating synthetic traces

as it specifies the physical constraints of a roadway environment as well as, when loaded

into a simulation, the temporal aspects of the environment (e.g. speed of link under de-

mand). The accuracy and detail of the map directly affect the accuracy and detail of the

generated mobility-record traces.

Given the importance of obtaining an accurate roadway network map, a logical next

question concerns how to obtain such a map. Unfortunately, no single answer exists as

each situation requires a different level of accuracy and may mandate a particular data
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source. Typical free sources for roadway maps include OpenStreetMap1, the Census Bu-

reau’s TIGER/Line Shapefiles2 or governmental authorities. In situations where a high

degree of accuracy is required such sources may not be enough and therefore obtaining

a roadway network may become a more manual process, requiring the fusion of multiple

resources. In projects with more moderate accuracy requirements, minor adjustments to

such sources may be all that is necessary. Such maps may be stored in a variety of file

types, with the most popular being shapefiles, GeoJSON (JSON with geometry support),

GML (Geography Markup Language), OSM (open street map XML), and KML (Google

Keyhole Markup Language).

The SUMO traffic engine used by GeoAware details its own XML-based format for

defining roadway networks3, making the conversion of a source map to the SUMO format

an almost certainty. The SUMO specification splits the network into five (5) different XML

files that detail the nodes, edges, edge types, connections and traffic light logic associated

with the network. Once the files are specified, the SUMO netconvert command must

be issued to generate a single network file (*.net.xml) from the component files.

Thankfully, SUMO natively supports conversion from a handful of sources, including

shapefiles and the OpenStreetMap XML format (OSM), avoiding the need to hand-define

the component files. Nevertheless, despite the native support, this does not mean that every-

thing will be converted as expected or without any analyst input. At a minimum, a review

of the converted network is necessary but more often parameter tweaking is required in or-

der to obtain a network of the desired quality. The GeoAware framework expects the paths

to the various network component files.

1https://www.openstreetmap.org
2https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.2019.html
3https://sumo.dlr.de/docs/Networks/PlainXML.html
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3.1.3 Community Definitions

The ability to infer mobility patterns assumes that the roadway network may be decom-

posed into a collection of known and disjoint, geographically-defined communities. Such

community definitions provide a level of aggregation, allowing for the recovery of trends

that may not be noticeable (or accurate) when only observing individual tracks.

The communities are merely a polygon (or a collection of polygons) that is associated

with a unique identifier. Typical examples include census tracts or communities within a

city, although, grouping by different metrics, such as income, is also possible. The frame-

work expects the community polygons to be defined in a single CSV file with a row per

polygon point that details the following attributes:

<region-label>, <community-label>, <x>, <y>. The <region-label>

field must be unique to each polygon, however, the <community-label>may be reused,

allowing communities to consist of multiple regions.

The traffic analysis zones are built from the community definitions provided and there-

fore it is assumed that TAZs are known prior to utilizing the GeoAware framework. In the

GeoAware framework, traffic analysis zones (TAZs) are a geographic discretization of a

roadway network into delineations of edges that share common properties. A TAZ may be

any size depending upon the needs of the analyst. The GeoAware framework represents

TAZs as objects which associate the edges belonging to TAZ with a label. The TAZ may

have any number of fields, allowing for storage by other components in the framework and

extensions. TAZs are used to define the blocks used by the SDSBM-based trip demand

procedure and for inferring micro-level inference at a per-TAZ level.

It is known that arbitrary delineations can skew the statistics obtained [158], therefore,

care should be taken when constructing the community delineations. In traditional trans-

portation modeling, zones are typically coordinated with census data in order to determine

demographic properties.
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3.1.4 Timing Parameters

The timing parameters control the aggregation used when inferring patterns and the res-

olution of the produced synthetics. There are three parameters that must be specified.

The SDSBM fit intervals control the level aggregation used when inferring macro-level

demands. Coarse resolutions result in more data aggregation. The fit intervals must be

provided to the framework as a two column CSV file with headers <onset-time> and

<terminus-time> where each row is assumed to represent a sequential interval (a, b].

The seasonal periodicity parameter details the length of the seasonal cycle. This value

is set based upon analyst intuition and/or exploratory data analysis. For instance, to model

mobility with weekly seasonality, the analyst would set the periodicity parameter to a week.

The periodicity is used by both the macro- and micro-level inference procedures.

The simulation granularity controls the resolution of the produced synthetics by sub-

dividing the SDSBM fit intervals according to the granularity specified. This parameter is

necessary to translate the macro-level demands into a finer resolution as the macro-level

procedure scales with the sample size and it is therefore often impractical to set the fit

intervals to the resolution that is ultimately desired.

3.1.5 Configuration File

The configuration file controls various parameters pertaining to the libsumor component.

The file serves three (3) main functions, namely, (i) configuring the simulation engine, (ii)

configuring the libsumor mode, and (iii) detailing the locations of required files. The file

is YAML-based4 and hence, encodes the settings and corresponding values as a series of

<key>: <value> pairs. A table summarizing the available keys is presented in table

3.1. Keys requiring additional detail are discussed below.

4https://yaml.org
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Key Description Required

sumocfg
string — Where to write the SUMO con-

figuration file (.sumocfg) to.
X

input.net-file
string — Location of the network that

should be used during simulation.
X

input.route-files
string — Where to write the constructed

trips to.
X

input.additional-files

string — Where to write the additionals

(*.additionals.xml) file to. Stores

vehicle type information here.

If

vType

is set.

<configType>.<setting>
string — General format for specifying ar-

bitrary SUMO parameters.

vType
collection — Specifies custom vehicle

types. See body text for formatting.

geo

bool — Store trajectory positions in Carte-

sian (FALSE) or latitude/longitude format

(TRUE). Requires synthetics mode to be

effective.

csv

string — Where to write trajectories CSV.

Need not be supplied if all records are to

be stored in memory. Requires synthetics

mode to be effective.

csv detail

collection — Bitmask indicating CSV

level of detail. See body text for format-

ting details. Requires synthetics mode to

be effective.

If csv

is set.
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Key Description Required

csv precision

integer — Precision when writing out

floating point values. Requires synthetics

mode to be effective.

If csv

is set.

csv sep
string — The CSV separator character.

Requires synthetics mode to be effective.

If csv

is set.

depart

bool — Filter synthetics by departure time

field. Requires synthetics mode to be ef-

fective.

edges

collection — Filters the synthetic vehicles

produced by the edges in the provided list.

See body text for formatting details. Re-

quires synthetics mode to be effective.

intervals

collection — Filters the synthetic vehicles

produced by the supplied time intervals.

See body text for formatting details. Re-

quires synthetics mode to be effective.

Table 3.1: Configuration file parameters

The keys used to configure the SUMO simulation engine come from the XML-based

SUMO configuration schema5 and provide an analyst with fine-grained control over such

quantities as the time settings, processing parameters, routing algorithm and output. The

keys are constructed by preprending the configuration type of the setting (a type of parent

class denoted in the schema as configurationType) to the setting name with a dot

5https://sumo.dlr.de/xsd/sumoConfiguration.xsd
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(“.”) between the quantities. For instance, the key for configuring the file path to the

roadway network is input.net-file since the net-file setting is a member of the

input configuration type.

The keys used to configure the operating mode allow an analyst to control the detail of

the produced synthetics, specify edge- and time-based filtering, and specify vehicle types.

The csv detail key takes a bitmask value that allows an analyst to control the amount

of data written out to the produced CSV file. An example bitmask with the associated fields

is presented in table 3.2. In this example, the <id>, <x>, <y> and time are saved only

for the bounds of the trip, namely the onset and terminus locations.

bo
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id
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pe x y tim
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1 1 0 1 1 1 0 0 0 0

Table 3.2: CSV output bitmask

The libsumor component also supports multiple vehicle types and is further detailed

in section 3.2.7. The vehicle types are defined through the vType key which takes a

YAML-encoded collection of dictionaries: [{id: <type1>, ...},

{id: <type2>, ...}, ..., {id: typen, ...}]. For example, an ana-

lyst could define a taxicab type through the following statement: vType: [{id:

taxicab, accel: 5, maxSpeed: 70, vClass: taxi}]. The SUMO sim-

ulation engine supports many vehicle type attributes6 controlling the maximum speed, ac-

celeration, car following model, vehicle class, vehicle capacity, and GUI parameters.

The depart, edges and intervals keys define the filtering that is performed on

the produced synthetics. For the edges key, if depart: TRUE, the synthetic vehicle

must depart from an edge in the provided list in order to be retained, otherwise, only the

portions of the trajectories that coincide with the edges in the provided list are retained

from each of the produced vehicles. In the intervals key, if depart: TRUE, the
6https://sumo.dlr.de/docs/Definition of Vehicles, Vehicle Types, and Routes.html
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Figure 3.2: Breakdown of the geoaware component

synthetic vehicle must depart during a valid interval, otherwise, only the portions of the

trajectories that coincide with valid intervals are retained from each of the produced vehi-

cles. The intervals are supplied as consecutive intervals in ascending order. For example,

intervals: [a, b, c, d] corresponds to the intervals [a, b) and [c, d).

3.2 The geoaware Component

The data preprocessing steps complete, we now define the geoaware component. The job

of the geoaware component is to produce a demand-calibrated simulation scenario. The

geoaware component achieves this goal in two steps. First, the supplied data is ingested

and a model of the agent demand produced. Next, the demand model is stochastically

queried to produce a simulation scenario with calibrated demand.

The organization of this section is centered around these two steps. Sections 3.2.1

— 3.2.5 detail the production of the demand model while sections 3.2.6 and 3.2.7 discuss

the production of a demand-calibrated simulation scenario. A graphical overview of these

sections is shown in figure 3.2. Throughout the discussion, we provide updated graphics

which indicate our current position within this figure.
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3.2.1 The Demand Model

geoaware
The Demand Model

We begin by detailing the model we will use for constructing demand. Vehicle mo-

bility models fall into either trip- or activity-based approaches, with the former being far

more prevalent [38] [206] [192] [8]. Trip demand modeling is the process by which statis-

tical properties of trips are inferred from data and used to forecast (predict) the amount of

trips that should be generated (demanded). In the context of our current application, a trip

demand model is necessary for two reasons. First, we desire to extract patterns of mobility

exhibited in the trajectories. We are not merely interested in replicating the trajectories

but instead seek to discover patterns that are characteristic of the data. The second reason

why a demand model is necessary is so that it can be queried during the production of the

synthetic vehicle traces. Having a model makes the querying process trivial.

Arguably, the most famous (and infamous) demand model is the Urban Transportation

Planning (UTP) procedure which presents a trip-centric, four-step process for modeling

trip demand [192] [147]. Such an approach is contrasted with the activity-centric view of

activity-based approaches. Activity-based approaches argue that travel (i.e. trips) is the

consequence of actors who need/want to engage in certain geospatially located activities

and therefore emphasis is placed on modeling the behavior that produces travel demand7

[206] [8]. Regardless of the approach taken, its important to understand that demand mod-

eling is not purely scientific as it involves irrational humans and therefore, since all models

will by their nature be “metaphors” of reality, the best one can hope for is a model that

provides the necessary level of detail and approaches the true state while being fully aware

7For a thorough discussion of activity-based demand models, please see the book-length treatment pub-
lished by the Transportation Research Board (TRB) [45] or the academic paper by Algers, Eliasson and
Mattsson [8].
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that such a model is not the true state [192].

Given our deliberate desire to remain as data-driven as possible and avoid placing

any unnecessary assumptions on the data, we have chosen to utilize UTP-based procedure

for modeling demand in the GeoAware framework due to the lack of behavioral data in

trajectories (as well as the general lack of behavioral data [192]). In aligning our work

with the UTP procedure, we do not intend to present a framework for traffic planning (al-

though it could certainly be used for it) nor are we unaware of drawbacks associated with

the UTP procedure. Instead, despite the drawbacks, we utilize the UTP procedure as it

presents an established, logical, and extendable procedure for constructing a trip demand

model capable of producing the synthetics we seek. Additionally, due the prevalence of

the UTP procedure in Metropolitan Planning Organizations (MPOs are the federally rec-

ognized organizations responsible for transportation planning within an urban area) [206]

[192], aligning our approach with such a procedure supports the immediate utility of the

work.

The UTP procedure is an iterative approach to travel demand modeling that is com-

monly employed by traffic forecasters to assess future travel demand in response to land

usage, population demographics and/or infrastructure [25]. Using forecasts of land use,

population, employment and infrastructure, future estimates of travel demand and the in-

duced supply-demand interactions can be obtained using the UTP procedure [25].

The procedure is divided into four sequential steps and is really an abstraction of a

traveler’s decision making process. As noted in [206], the itemization of four steps is not

meant to imply that travelers go through these exact four steps in the order specified but

is instead a model of traveler behavior which produces suitable results in traffic research

[38] [206]. The model’s fundamental unit is a trip which represents the movement of some

quantity of people (e.g. a single individual or a vehicle with riders) between an onset and

terminus location without any intermediate stops [206].
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The initial step8 in the UTP procedure is the trip generation step. This step seeks to

detail how much traffic should be attracted to and departing from an aggregate geographic

region known as a TAZ based upon the land use and demographic indicators associated

with the TAZ [206]. Trips are segmented by purpose under the assumption that different

trip purposes give rise to different behavioral characteristics [206]. The three classic trip

purposes are ”home-based work”, ”home-based nonwork” and ”non home-based” each of

which illustratively detail the general goal of the trip [206].

The next step is trip distribution and it is concerned with disaggregating the trip pro-

ductions and attractions produced for each TAZ during the trip generation step into macro-

level flows between TAZs in an attempt to satisfy the demanded flow properties (incoming

and outgoing) for each TAZ. A gravity model is typically employed for the decomposition

[206].

The next step is known as mode assignment and it further decomposes the trip dis-

tributions by travel mode based upon a variety of factors [90] [206]. Two popular mode

choices are the private vehicle and public transit.

The final step, and arguably the most involved step, is called route assignment. Route

assignment is concerned with assigning routes through the network to the trips demanded

by the trip distribution step according to the chosen modalities [206]. This step is done

so as to obtain the induced affects of supply-demand interactions, such as edge flow and

congestion, on travel times through the network [54] [206].

In sections 3.2.2 — 3.2.5, we detail each of these steps and indicate how the model is

constructed from the supplied data. Specifically, we begin with a brief history of the UTP

procedure in section 3.2.2 which establishes the prevalence and extensibility of the UTP

procedure. Then, in section 3.2.3 we detail the trip generation and distribution steps via the

use of macro- and micro-level inference procedures. Specifically, we (i) infer macro level

travel patterns between TAZs using an SDSBM, (ii) capture the temporal distribution of

8We present the four steps in the traditional order but alternative orderings do exist. See [38] for a discus-
sion.
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trips within each block, and, when available, (iii) capture the edge selection choices. Next,

section 3.2.4 details the mode assignment step by specifying how the GeoAware framework

supports multiple modalities. Last, in section 3.2.5 we detail how routes are assigned to

each of the trips demanded.

3.2.2 A Review of Urban Transportation Planning

geoaware
The Demand Model

A Review of Urban Transportation Planning

In this section we present a brief history of the UTP procedure. This presentation is

meant to be more than merely informative and seeks to establish a context for the proposed

modeling approach and demonstrate the prevalence of the UTP procedure throughout the

history of urban transportation planning. For a more thorough treatment, the interested

reader is encouraged to consult the works of Shuldiner and Shuldiner [192], Boyce and

Williams [38] and Jones [112].

Urban transportation planning originated in the United States and arose out of a cul-

mination of advances in the 20th century. The dominance of the United States’ economy,

widespread automobile ownership, urbanization (both urban and suburban) and an array of

infrastructure projects (most notably the Federal Aid Highway Act of 1956) resulted in an

ever-increasing number of vehicles on the roadway and its inevitable side-effect: conges-

tion [192] [30] [112]. Obviously an annoyance when traveling, early traffic planning (prior

to the 1960s) focused predominantly on measuring traffic and “fixing” congestion through

infrastructure capacity additions [192]. Congestion still remains a central motivation for

traffic planning today.

By the mid 1950s, because of the large-scale highway infrastructure contemplated

with the passage of the 1956 Federal Aid Highway Act, a paradigm shift was needed in
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order to appropriately model the contemplated situations. Two foundational transportation

studies of Chicago, Illinois (1955-1959) and Detroit, Michigan (1955-1956) during this

era led the way in what would become the current, decades old practice of using land-use

characteristics to forecast travel demand [192] [206]. The Chicago-based study was the

first transportation study to use a process resembling the current four-step UTP procedure

[38].

The 1960s saw the solidification of the land use-based, four-step UTP procedure and

its prevalence in traffic planning due to the passage of the 1962 Federal Aid Act which

hinged the expenditure of Federal funds in urban areas of more than 50,000 in population

on some form of transportation planning [192].

The 1970s brought many lasting changes to transportation modeling. Various disag-

gregate improvements to the UTP procedure based upon microeconomic consumer demand

theory were proposed [227] [177] [224] [10] [37] [38], some of which have become stan-

dard practice [206]. Dynamic traffic assignment (DTA) materialized as researchers sought

to model variations in traffic flows and conditions which were, up to that point, assumed

to remain static (time invariant) throughout the forecasting period [169] [54]. The use of

simulation became widespread during this era (with an “explosion” during the 80s and 90s)

and as a result, the mainframe-based modeling programs were replaced by private-sector

(or academic), personal computer-based applications [137] [35].

Activity-based approaches also began to appear in the 1970s, bringing activity-based

travel theory to transportation modeling in order to rectify certain inadequacies of the UTP

procedure [37] [92]. Such approaches were fundamentally different than those previously

proposed as they saw travel as merely demand derived from individuals who need/desire to

engage in certain geospatially located activities [37]. Notable examples of activity-based

frameworks include [186], [37] [89], [182], [181] and [216]. Activity-based approaches

have been applied in cities such as San Francisco, California; New York, New York; and

Columbus, Ohio [206].
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As we advance to the current era in transportation modeling, despite an ever growing

collection of traffic planning related literature, the theoretical popularity of activity-based

approaches (particularly in academia), and the overwhelming amount of data available (or

capable of being captured) regarding an individual, the state of practice in travel planning

has not changed substantially since the introduction of the four-step UTP procedure back in

the 1950s [35] [38] [206]. The push for deployable solutions by traffic planning practition-

ers has resulted in a rift between the practical and the theoretical which every so often is

theoretically challenged but more often is bridged by various theoretical extensions which

aim to solidify the predominantly pragmatic underpinnings of practical approaches. [38]

hints at this notion in their review of travel forecasting when they say that “the remarkable

longevity of those models of the ‘traditional form [such as the UTP procedure],’ however,

is due to their capacity to absorb innovations” and “in spite of known deficiencies, pro-

fessionals trained in the use of these methods are, on the whole, comfortable with their

results.” It is within this historical context that we introduce the geoaware component; an-

other extension to the UTP procedure which increases the realism of the demand produced.

3.2.3 Trip Generation and Distribution

geoaware
The Demand Model

A Review of Urban Transportation Planning

Trip Generation and Distribution

SDSBM Fitting

Block-based Departure Time Profile

Block-based Edge Weights

The first step in our model towards generating calibrated trip demand is to generate

trips. In the UTP procedure, this step is separated into trip generation and trip distribution
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steps9 [206]. The goal of the trip generation step is to generate a pair of trip productions

and trip attractions per TAZ over the analysis interval [226]. The idea is that features of the

TAZs induce a certain production and attraction of trips. For instance, a central business

district in a city is likely to attract many more trips than it produces in the morning hours

due to the high number of businesses within the area.

The trip distribution step of the UTP procedure disaggregates the trip productions and

attractions into macro-level flows between pairs of TAZs [226]. The output is typically

represented in an origin-destination matrix (O-D matrix); so called because the form suc-

cinctly codifies the distribution of the trips between the origin and destination TAZ pairs

as a matrix where the rows and columns represent the TAZs. This step can be thought

of as attempting to satisfy the flow constraints specified by the production and attraction

pairs articulated during the trip generation step10. As there are a myriad of onset-terminus

pairs that satisfy the flow demanded, a model must be used to select the relative frequency

of each pair. For instance, consider a three TAZ network where the TAZs are categorized

according to whether the land is predominantly used for residential dwellings, commercial

establishments or dining/recreation. In this environment, the trip generation step might say

that for the time period under study the residential TAZ should produce 1000 trips. The

choice in model dictates how the required trips should be distributed between the TAZs.

As one may have noticed in the above discussion, the trip generation and trip distribu-

tion steps of the UTP procedure are merely a procedural decomposition of the original trip

creation objective. While such a decomposition may be necessary in methodologies that

rely on aggregate statistics which contain no information regarding the distribution of trips,

the use of disaggregate statistics may make this decomposition unnecessary if the higher

9Strictly speaking, the UTP procedure segments by trip purpose before generating trips, however, in the
GeoAware framework we do not consider trip purpose as the SDSBM natively supports such demarcations
through its block structure if desired.

10We note that a drawback of estimating productions and attractions separately is that while the total
number of productions and attractions across the network are equal in theory, the separate estimation of these
quantities during the trip generation step may produce unbalanced productions and attractions in practice
[206].
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fidelity data implicitly includes such trip distribution information. The reference trajecto-

ries used by GeoAware are such a source and for this reason, we merge the trip generation

and distribution steps into one simultaneous step11.

In the geoaware component, the creation and distribution of trip demand begins by

using a SDSBM to infer macro-level, seasonal patterns between TAZs in the reference

trajectories. Many authors have cited the seasonal (or regular) nature of mobility patterns

[199] [142] [87] [184] [157], making a process capable of inferring seasonal trends valuable

for accurately modeling mobility. Next, the temporal distribution of the trips is captured

through a micro-level inference procedure that constructs seasonal time profiles of trip

departures for each of the SDSBM blocks. Finally, to disaggregate the distribution of

trips to the edge level (i.e. roadway), an edge-weight inference engine captures the edge

selection behavior of agents at a per-block level by producing a seasonally-aware edge

selection distribution for the onset and terminus TAZs of each block.

SDSBM Fitting

To accurately capture the quantity and macro-level distribution of trips from reference tra-

jectories, we utilize a dynamic stochastic block model (DSBM) that is specifically designed

to capture the seasonality exhibited in mobility patterns. The model is known as a seasonal

DSBM (SDSBM) and has been shown to accurately model regular, time dependent sea-

sonal processes12 [183].

The SDSBM, like all stochastic block models (SBMs), requires that the data to be

modeled is formatted as a graph G consisting of a set of vertices V that represent communi-

ties and a set of edges E that represent movement between communities [85]. To construct

such vertices V = {1, ..., n} from the reference trajectories, we associate the onset and

terminus locations of the trips with the TAZ (defined from the supplied community defi-

nitions; see section 3.1.3) that encompasses each location. In this way, the multitudinous

11Various steps have been merged in earlier literature [47] [212] [225].
12As an applied work, we present only a review of the SDSBM. The interested reader is encouraged to

consult [183] and [184] for a more thorough and theoretically focused discussion.
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node locations associated with trip onset and termination (i.e. residences, marketplaces,

coffee shops, workplaces, etc.) are made structurally equivalent to a set of super-nodes

representing communities of interest [85]. Edge formation in the graph is assumed to be

dependent upon the (i) communities to which the incident nodes belong and (ii) time [183].

The time interval of study T is discretized into T intervals T = [1, 2, 3, ..., T ] and edges are

only drawn between vertices if a trip (now represented by an onset TAZ, terminus TAZ and

trip duration) is active during the considered time interval. This produces a time-ordered

series of static graphs D = {G1,G2, ...,GT} which we call a dynamic network since the

edges appear and disappear (i.e. are dynamic) with time. The time interval information is

supplied via the SDSBM fit intervals presented in section 3.1.4.

The geoaware component represents the dynamic trajectory data networkD as a time-

ordered set of adjacency matrices A = {A1,A2, ...,AT}. Each adjacency matrix At is a

n×n matrix where the rows and columns represent the vertices and the value in cell [At]i,j

indicates the number of active trips in the current time interval t between communities (ver-

tices) i and j13. In SBMs, each directional pairing of vertices (i, j) is known as a block and

each block’s observations y[t](i,j) are assumed to be characterized by a latent (unobserved)

random variable x[t](i,j) [148]. The relationship between a block’s edge counts in the ad-

jacency matrices y[t](i,j) and its latent random variable x[t](i,j) is given by a state space

model14 (SSM) [93]. Specifically, for each block (i, j) the edge counts y[t](i,j) are related

to the p× 1 latent signal vector x[t](i,j) according to the Bayesian linear model

y[t](i,j) = hx[t](i,j) + w (3.1)

where h is a 1 × p observation vector that transforms the latent signal state into the obser-

13For efficiency purposes, the GeoAware framework actually linearizes the collection of adjacency matrices
to form a single T × N matrix where each cell represents the quantity of trips for a block (pair of vertices)
during a specific time interval.

14The power of state space model representations lies in their ability to relate observations to unobserved
latent states through an observation equation. For an excellent treatment on SSMs, the reader is encouraged
to consult chapter 3 of [93].
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vations and w is Gaussian-distributed observation noise with probability density function

(PDF) w ∼ N (0, σ2
obs). The p× 1 latent signal vector x[t](i,j) evolves with time according

to the Gauss-Markov model

x[t](i,j) = Ax[t− 1](i,j) + Bu (3.2)

where A is a p×p transition matrix, u is a r×1 transition noise vector distributed according

to u ∼ N (0, Q) and B is a p × r matrix that applies the noise to the correct terms of the

signal state x[t](i,j). The transition noise u of the signal model serves to propagate the signal

vector x[t](i,j) through time whereas the observation noise w represents the uncertainty in

the observations. The a priori parameters of the model are θ = {A, B, h, σ2
obs,Q}.

With the structure of the block model defined, we now identify the elements of θ. To

capture the seasonality exhibited within the edge counts of each (i, j) block, [184] proposes

the use of a basic structural model (BSM) [93]

y[t](i,j) = b[t](i,j) + s[t](i,j) + ε(i,j) (3.3)

consisting of a bias term b[t](i,j) that establishes the general signal trend, a seasonal term

s[t](i,j) that shifts the bias according to the current seasonality position and a noise term ε.

The bias term b[t]15 is computed by adding transition noise ub ∼ N (0, σ2
b ) to the previous

bias state

b[t] = b[t− 1] + ub (3.4)

The seasonal term is calculated based upon the length of the seasonal period p according to

the following zero-sum16 formula

15As each (i, j) block is modeled using its own BSM, hereafter, we drop the explicit reference to the block
for notational simplicity.

16The enforcement of the zero-sum criterion ensures that the seasonal components sum to zero over the
seasonal period. The notion behind the zero-sum constraint is that the average of p seasonal components
should be 0.
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s[t] = −
p−1∑
i=1

s[t− i] + us (3.5)

where us is transition noise distributed according to the PDF us ∼ N (0, σ2
s) and p is a

hyperparameter set by the analyst that controls the seasonality length while the inclusion

of the stochastic noise term us allows the seasonal effects to change with time [93].

Transforming the BSM presented in equation 3.3 into the SSM representation of equa-

tions 3.1 and 3.2 is trivial as all linear univariate structural models have a state space repre-

sentation [93]. The bias terms b[t](i,j) and seasonal terms s[t](i,j) presented in equation 3.3

represent the latent state x[t] as we observe the affects of these variables (edge counts) but

not the variables themselves. To represent these latent terms according to equation 3.2 we

define the latent signal x[t] as a p× 1 state vector17

x[t] =

[
b[t] s[t] s[t− 1] . . . s[t− p+ 2]

]T
(3.6)

the p× p transition matrix A as

A =



1 0 0 . . . 0 0

0 −1 −1 . . . −1 −1

0 1 0 . . . 0 0

0 0 1 . . . 0 0

...
...

... . . . ...
...

0 0 0 . . . 1 0


(3.7)

17We note that the pth seasonal term is not included in the signal state (keeping the signal state of dimension
p) since the zero sum constraint ensures that the pth term can always be recovered using the other p − 1
seasonal terms.
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the p× 2 noise assignment matrix B as

B =

1 0 0 0 . . . 0

0 1 0 0 . . . 0


T

(3.8)

and the covariance matrix Q of the transition noise u as

Q =

σ2
b 0

0 σ2
s

 (3.9)

The system transitions from state x[t] to x[t − 1] according to the transition matrix A.

Multiplying the first row of A by the signal vector x[t − 1] computes the bias term b[t] of

equation 3.4 without noise. Similarly, multiplying the second row of A by the signal vector

x[t− 1] produces the seasonal term s[t] of equation 3.5 without noise. The remaining p− 2

rows serve to permute the location of the seasonal terms so each seasonal term is updated

after p time steps. The B matrix identifies the terms in the signal state to which noise is

added.

To translate the latent signal into the observed edge counts, we utilize the observation

model specified in equation 3.1. In the BSM presented in equation 3.3, the edge counts

y[t] are related to the latent space through a simple summation of the bias term b[t], the

seasonality term s[t]18 and some noise ε. Thus, the 1× p observation vector h is simply

h =

[
1 1 0 . . . 0

]
(3.10)

It is easily seen that multiplying h times the the latent signal state x[t] results in equation

3.3 without the noise term. The noise term is handled by letting ε = w and drawing the

18We always reference the seasonal term in the second position of the signal state vector x[t] because the
transition matrix A (see equation 3.7) permutes the seasonal terms such that the seasonal term s[t] for the
current time interval t is always in the same location.
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observation noise according to the PDF of w (defined above).

With the state space model defined, we now proceed to estimate the latent signal states

X = {x[t](i,j); i, j ∈ V} so that an edge count model can be constructed for each block

(i, j). Estimating the latent signal state for a particular (i, j) block amounts to finding the

posterior PDF Pr(x[t] | y[t]; θ) for all t using the edge count data observed for that block

y[t] and the a priori parameter set θ [117]. One extremely common approach to finding the

posterior is to estimate it using a Kalman filter19 [114] which sequentially estimates a sig-

nal embedded in noise using observation data [117]. Before proceeding to use the Kalman

filter however, we must first estimate the unknown parameters in θ, namely θ′ = {σ2
obs,Q}.

To estimate these quantities, we perform numerical maximum likelihood estimation (MLE)

which seeks to find the values of σ2
obs and Q that maximizes the likelihood of the observa-

tions y[t] according to the state space model detailed in equations 3.1 and 3.2. A detailed

treatment of the MLE procedure can be found in Chapter 7 of [117].

Once the missing a priori parameters have been estimated, the latent signal states

X = {x[t](i,j); i, j ∈ V} governing the edge counts of each block can be estimated using

using the aforementioned Kalman filter algorithm. The Kalman filter oscillates between

prediction and update steps20 for each time t. The goal of the prediction step is to compute

a “best-guess” estimate of the current signal state x[t|t− 1] given the immediately previous

signal state x[t − 1]. The update step refines this prediction (i.e. the prior) through a

weighted difference of the observation y[t] and its prediction x[t|t−1]. The weighting used

is called the Kalman gain and can be scaled depending upon our trust in the observations.

We assume that the latent signal (comprised of the bias b[t](i,j) and seasonal s[t](i,j) terms)

is Gaussian distributed as are the observation noise w(i,j) and the transition noise u(i,j),

resulting in a minimum mean square error (MMSE) estimator21 [117].

When the full set of observations is known in advance, as in the present case, a smooth-

19A process which estimates a signal z[t] using data {c[0], c[1], ..., c[t]} as t continues to increase is called
a filter.

20Please consult Chapter 13 of [117] for details on each step.
21The interested reader is encouraged to consult Chapter 13 of [117] for the derivation.
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ing technique can be applied to obtain better posterior state estimates by considering all the

available data [184]. The GeoAware package uses the KFAS22 package for performing the

Kalman filtering as well as the Kalman smoothing. The smoothing procedure implemented

in the KFAS package is based on the work of [66]. The central idea of the algorithm is to

update the state predictions through a backwards recursive procedure that indirectly allows

each state prediction to take advantage of the observations that comes after. For a detailed

discussion of the smoothing procedure, the reader is encouraged to consult Appendix A of

[98].

Upon termination, the SDSBM fitting procedure outlined above produces edge count

fits for each block {(i, j); i, j ∈ V} by estimating the expected value of the posteriors

E(x[t](i,j)|y[1 : T ](i,j)). The edge count fits detail the number of trips to generate for a

particular block over a specified time interval and are called trip demands. The resolution of

the supplied SDSBM fit intervals directly controls the detail level of the demands obtained.

Block-based Departure Time Profile

The demands produced via the SDSBM fitting procedure are at the detail level specified

in the provided SDSBM fit intervals (see section 3.1.4). Unfortunately, due to practical

efficiency constraints, the time intervals used in fitting the SDSBM (the provided SDSBM

fit intervals) are unlikely to be at the resolution desired for the produced synthetics. Such

constraints arise because the MLE procedure and the Kalman filtering procedure scale with

the size of the data. Thus, as the data increases in size so too does the processing time. For

instance, if the SDSBM procedure detailed above is used to infer mobility patterns over a

month of data at a resolution of a day, the resulting process is based on 31 data samples. If

however, the same time period is modeled at a resolution of fifteen minutes, the process is

now based on 2,976 data samples.

To address this lack of precision in a data-driven manner, we define an empirical

inference procedure which constructs a departure time profile for each block based upon

22https://cran.r-project.org/web/packages/KFAS/
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the departure times exhibited within the reference trajectories. Constructing a separate time

profile for each block enables the geoaware component to capture block-level travel pattern

differences and incorporate such information when generating synthetics. The resolution

of the resulting time profile is controllable by a simulation granularity parameter which

is one of the required data inputs (see section 3.1.4). By appropriately setting the simu-

lation granularity, macro-level trends can be captured by the SDSBM and further refined

according to the empirically modeled departure times.

The geoaware component allows an analyst to define a custom profiling procedure

that is applied to each block’s set of trajectory records or use the built-in method which

constructs these time profiles by identifying the departure times associated with a particular

block and then constructing empirical PMFs of the departure times for each period in the

defined seasonal cycle (set in section 3.1.4). The built-in procedure also supports block-

level additive smoothing [155] and Bayesian updating [97] for each period in the seasonal

cycle; giving additional control to the analyst and preventing undesired ”zeros” when no

empirical data exists.

Block-based Edge Weights

Up to this point, the outlined trip creation procedure has inferred (i) macro-level trip de-

mand between TAZs and (ii) micro-level departure time profiles for each block. A facet that

is lacking from our model is the selection of a specific onset and terminus location. While

TAZ-level aggregation may be useful for inferring patterns across structurally similar nodes

(i.e. belonging to the same TAZ), it does not provide any information specifically detailing

the onset and terminus locations that should be chosen for trips. To address this need, we

present an empirical inference procedure for determining the selection weights of the edges

associated with the onset and terminus TAZs of each block. The procedure jointly models

the onset and terminus location selection associated with each block and is therefore able

to capture the joint affect of the onset and terminus TAZs on onset and terminus location

selection. In keeping with the rest of the framework, we assume that the macro-level trip
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demand is not at the resolution desired and therefore a simulation granularity parameter

has been specified indicating the desired resolution. Additionally, because we are seek-

ing edge-level details, the reference trajectories provided to the framework must be trace

level. If trace-level reference trajectories are not supplied, edge-level inference cannot be

performed.

To model the edge selection probabilities for the onset TAZ of a block at the resolu-

tion specified, the nearest edge associated with the onset location of each trajectory in the

block is found. Then, for each seasonally related set of onset records, an empirical PMF is

constructed detailing the probability of starting from each of the edges in the onset TAZ.

The seasonally related set of records is constructed by subdividing the SDSBM fit intervals

into smaller intervals according to the specified simulation granularity and then grouping

the records according to an augmented seasonality length23. For instance, if the SDSBM

fits were at a daily resolution, the desired simulation granularity set to fifteen minutes, and

the seasonality length set to seven days, because of the simulation granularity, every 96th

interval would be seasonally related.

To provide greater flexibility and to avoid ”zeros” when assigning the edge weights,

the procedure supports block-level additive smoothing [155] and Bayesian updating [97]

for each simulation interval in the seasonal cycle. The terminus weights are computed using

the above process but now only considering the seasonally related terminus records. The

output of this procedure is a pair of multidimensional arrays for each block that details the

edge selection weights of the onset and terminus TAZs. The dimensions for these arrays

are eC × s × p, where eC is the number of edges in TAZ C, s is the number of simulation

bins each fit interval needs to be divided into in order to achieve the desired simulation

granularity and p is the number of periods (fit intervals) in a seasonal cycle.

Unfortunately, despite the usefulness of detailed trajectory data for mirroring reality,

not all trajectory datasets provide information at a such a fine-grained level (see chapter 1).

23Due to the subdivision of the fit interval into simulation time intervals, the originally provided seasonal
period is no longer valid and must be augmented to take into account the subdivision.
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Therefore, in an effort to avoid making the GeoAware framework overly specific to a partic-

ular trajectory dataset, we have also made the edge weight inference procedure extensible

to allow different analyst-defined functions to be used when inferring edge weights.

3.2.4 Travel Mode Choice
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Travel Mode Choice

The travel mode choice step of the UTP procedure is where a mode of travel is as-

signed to the trip demands identified in the preceding steps [206]. Examples of travel modes

include walking, cycling, using a private vehicle, or using public transportation. The typi-

cal approach taken to assign travel modes employs some statistical regression model [53].

As presented in [31], the mode choice can affect not only on the quantity of demand but

also the temporal distribution of that demand. According to [90], the key factors influ-

encing travel mode choice are individual/household demographics, the built environment,

individual preferences and trip-level specifics [193] [189] [32] [213] [63] [26] [204] [144]

[219]. Imagining the influence of these decision factors in choosing a travel mode is not

difficult as it is a process familiar to most.

The geoaware component does not explicitly model travel mode choice as such infor-

mation is not relevant to the macro- and micro-level inference procedures used to construct

trip demand from reference data. Nevertheless, multiple, time-dependent travel modes

may be indirectly modeled using the built-in mobility-record type support provided by the

framework (see section 3.2.7).

In this approach, a trip demand model for each mode is constructed from reference
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trajectories. Next, trip realizations are drawn from each trip demand model (see section

3.2.6) and then merged together using the built-in mobility-record type support provided

by the framework (see section 3.2.7). The result is a multimodal realization that not only

models the relative frequency of each travel mode but also preserves the temporal mobility

patterns (as inferred from the trajectory data) associated with each modality. This ap-

proach is advantageous as the underlying macro- and micro-level procedures used to infer

trip demands are agnostic to the data generating procedure, imposing minimal modeling

assumptions and lessening the traditional subjectivity induced on the travel mode model

by omitted explanatory variables (see [46] for a discussion of this in relation to the built

environment) [53].

Despite the power of this approach, it is important to recall that a core assumption of

the framework is that the provided trajectories must be considered representative. Certainly,

trying to infer patterns of a population from an unrepresentative sample is inexpedient.

Also, it should be noted that the GeoAware package exclusively focuses on vehicular travel

modes as we rely on SUMO for synthetics generation.

3.2.5 Route Assignment
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Route Assignment

Edge-level Trip Specification

Trip Path Selection

Once the generated trip demands have been assigned to a transportation mode (if nec-
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essary), the next step is to disaggregate the demands into actual trips which can be indi-

vidually routed through the network. The route taken is known as a path and is simply a

navigable sequence of edges through the network that fulfills the onset and terminus speci-

fications of the trip. The process by which such paths are determined and assigned is known

as route assignment and constitutes the final step of the traditional UTP procedure.

In traditional transportation forecasting models, this step is done so as to obtain the

induced effects of supply-demand interactions, such as edge flow and congestion, on travel

times through the network [54] [206]. In the present work, we seek the simulated vehicles

which induce such network properties rather than just the effects themselves24.

In the geoaware component, route assignment occurs in two steps. In the first step, the

block-level trip demands are converted into edge-level trip specifications by assimilating

the inferred demands, departure time profiles and edge weights into a collection of trip

specifications that minimally detail the origin edge, destination edge, and the departure

time. Then, a route assignment procedure is specified which finds a navigable path through

the network to fulfill each of the specified trips. We begin by looking at the specification of

edge-level trips.

Edge-level Trip Specification

Before synthetic vehicles can be simulated by the libsumor component, it is necessary to

translate the inferred macro- and micro-level quantities into edge-level trip specifications.

This process can be thought of as constructing a vectored event signal where each event

indicates the arrival of an agent into the simulation and is minimally detailed as <id>,

<depart.time>, <from>, <to>. The <depart.time> details when the agent

should depart from the edge specified in <from>. The edge specified in <to> indicates

the edge an agent should end at. The actual path taken between the <from> and <to>

locations is handled by a route assignment procedure which we detail shortly. Constructing

such a signal from the inferred quantities is trivial but before we detail such a procedure we

24As we will explain in the forthcoming libsumor section (section 3.3), this necessarily requires that we
utilize a microscopic traffic simulation but we leave the formal justification for that section.
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review the creation of simulation intervals as the edge-level trip specifications are generated

with respect to such intervals.

Recall from the trip generation and distribution steps (see section 3.2.3) that each

block contains a demand signal which details the number of agents to generate over each

fit interval. As was noted earlier, often the fit intervals used when fitting the SDSBM are

not at the resolution desired for simulation and therefore the fit interval may be subdivided

according to a simulation granularity parameter. Such subdivisions of the original fit inter-

val are referred to as simulation intervals. Just as the SDSBM fit intervals were seasonally

related so are the simulation intervals. This means that each trip belongs to (i) a particular

seasonal period and (ii) a particular simulation interval within that period. For instance,

given a month of data fit using a SDSBM with daily counts, weekly seasonality and hence

a seasonal period of a day, each record would fall into one of the seven days of the week

(e.g. Sunday, Monday, Tuesday, etc.) and thereby influence the resulting SDSBM fit based

upon which day (seasonal period) a record belonged to. Now, if in order to achieve the

desired simulation granularity, we discretize each day into 24 bins of one hour each, then,

when presented with a month of data, each record would fall into a seasonal period — the

day of the week — and a simulation bin — the hour of the day.

We now define an iterative procedure for constructing such edge-level trip specifi-

cations. For each block25, the quantity of trips for each simulation interval is obtained by

multiplying the quantity of trips demanded over each fit interval by the inferred time profile

that the fit interval belongs to. The affect of this is a set of pairings detailing the simula-

tion interval and the quantity of trips to generate over the finer simulation interval. Trip

departure times (the time when an agent enters the simulation and departs from its onset

location) are then drawn for each simulation interval. The trip departure procedure natively

supports uniform, random and exponentially distributed departures but can be extended to

support other distributions. Next, onset and terminus edges are drawn for each of the depar-

25While the procedure is presented in a nested structure for readability, a linear algorithm is actually im-
plemented based upon some indexing niceties.
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ture times from the inferred edge weights based upon the seasonal period and simulation

interval each departure time belongs to. Lastly, once the trips have been generated for each

block, all the records are organized by departure time.

It is important to understand what is being done through this trip generation procedure.

By constructing the trips in this manner, we are calibrating the route assignment step of the

UTP procedure by intelligently influencing the quantity of agents we expect to see within

each block for a given time period and selecting the specific edges according to the edge

popularity weights. Another benefit of generating the trips in this manner is that it allows

us to re-generate trips according to the same demand model without having to re-perform

the inference procedures. This allows us to experiment with different time and edge draws

as well as change the parameters of the simulation.

Trip Path Selection

At this point, the trip specifications are not considered a complete assignment as there is no

path (a listing of edges from the onset to terminus) detailed for each of the trips. In order

to route agents through a network and collect the resulting location trace, a path must be

assigned to each of the specified trips. We present such a path assignment procedure next.

The goal of route assignment is to choose an optimal26 path through the network that

satisfies the onset and terminus requirements of the trip subject to the network supply con-

straints and supply-demand interactions [15]. The premise behind route assignment lies in

the assumption that path selection is influenced by various costs which a traveler wishes to

minimize [54]. Arguably, one of the most influential costs is that of travel time, but other

costs such as transportation cost (fare), parking fees and toll roads may also contribute to

the route chosen27 [54].

Unfortunately, finding such optimal paths is non-trivial as many costs, such as travel

time, are dependent upon how many other individuals are traveling; making it is neces-

26We emphasize that the definition of optimal can take on different meanings.
27Indeed, as there are many such costs and each individual likely weights such costs somewhat differently,

the selection of a finite set of factors is necessarily an approximation of the real. Please see [1] for an analysis
of commuters’ route choice behavior.
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sary to consider dependence between trips [54]. This necessarily induces a time depen-

dency on optimality which is easily substantiated through experience. For instance, com-

muters choosing their preferred route through a roadway network consider a variety of

time-varying properties that influence optimal path selection, such as path travel time vari-

ability [1], variable speed limits [88], or time-of-day based tolls [52].

A myriad of analytical and simulation-based approaches exist for route assignment but

all can be generally categorized as either static or dynamic depending upon how the time

dependency of network supply-demand interactions is modeled within the approach. Due

to the significant influence of congestion on travel times which is, as noted above, often

the primary source of cost information when performing route assignment [1] [206], much

of the distinction between static and dynamic approaches centers around the handling of

congestion [54].

Static assignment approaches assume that time has no influence over the network

supply-demand quantities for the period under study (hence the name static). As such, the

quantities of interest governing network supply-demand interactions are time invariant and

represent average behavior [54]. For instance, congestion in traditional static approaches

is described by a volume-to-capacity ratio where the edges of the network and the paths

assigned are assumed to be time independent [146] [54]. While historically prevalent [206]

[39], applicable in large-scale situations [54], and able to converge to a single equilibrium

[196] [54], static approaches suffer from a lack of accurate congestion modeling as the

volume-to-capacity ratio used neglects queuing effects [146]. Rather than queuing agents

behind the bottleneck and reducing the rate to that of the bottleneck capacity, no queuing

occurs and the rate simply continues to grow [146]. Obviously, such a situation does not

reflect reality and leads to misrepresenting congestion which results in inaccurate travel

time estimates [80] [146].

Dynamic traffic assignment (DTA) approaches are based on the exact opposite as-

sumption of static approaches by arguing that traffic networks are rarely in a steady-state
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for the entire modeling duration and therefore insist that time should influence network

supply-demand quantities [54]. To capture the temporal aspect, DTA departs from the

volume-to-capacity ratio of static approaches and models edges dynamically using a math-

ematical function known as the fundamental diagram (FD) of traffic flow [54]. Each edge

is associated with a FD (possibly unique [54]) that relates changes in edge density k to

edge velocity v, thereby allowing varying velocity estimates for an edge as the density of

that edge changes with time [54]. So long as the inflow is less than or equal to the out-

flow qin ≤ qout, congestion does not occur. But when the inflow becomes greater than

the outflow qin > qout, congestion occurs, bringing a reduction in edge velocity and the

queuing of vehicles since there are more vehicles entering than can be released. When the

queue reaches the edge entrance, the inflow can no longer be greater than the outflow since

the edge is at capacity and therefore must be immediately reduced to that of the outflow

[54] [194]. When this happens, the congestion now spills-back onto the incoming edges, at

which point the above process repeats itself on those edges.

Introducing the ability for the velocity of an edge to change with time results in two

notable improvements over static approaches. First, the travel time estimates can now be

more accurately estimated as the velocity estimates upon which travel times are based are

dependent upon the density of the edge when traveled (i.e. dynamic) not some average

value. Second, unlike the volume-to-capacity ratios used in static approaches, the velocity-

vs-density curve of the FD has a physical meaning that enables its utility in real-world

scenarios.

The goal of the geoaware component is to create the necessary demand model for

generating realistic synthetic vehicles not to define a new route assignment methodology.

For this reason, the exact route assignment approach chosen is irrelevant so long as the

approach is able to assign paths through the network to each of the previously generated

stochastic trips. Nevertheless, simulation-based DTA approaches are recommended due to:

(i) the enhanced traffic realism brought by simulation; (ii) the native support for dynamic
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modeling of network supply-demand quantities; (iii) the ability to handle the commonly

occurring, non-FIFO (First In, First Out) behavior of vehicle overtaking28 [54]; (iv) the

ability to handle non analytical behavior [169]; (v) the ability to use the simulation frame-

work itself for computing paths between points thereby avoiding the additional overhead of

an independent traffic router [169], and (vi) the focus on deployable solutions [169]. The

SUMO framework provides a number of route assignment algorithms which can be used

to assign paths to the specified trips. We review two of the most prominent examples.

SUMO implements the stochastic user-equilibrium (SUE) approach given in [79]

where each driver is assigned an origin, destination and departure time and chooses a path

through the network from a restricted path set according to a probability distribution [123].

Initially, the path set contains only the shortest path through the empty network, but as net-

work conditions change (through the iterative assignment procedure), new shortest paths

through the network are computed and added [123]. Each driver is assigned to one of the

paths in its path set according to the route selection probabilities which are continually up-

dated to favor lower cost paths [79]. The procedure can be configured to terminate after a

fixed number of iterations or based upon convergence to a desired average travel time29. As

the approach is simulation-based, a microscopic simulation is used to calculate the travel

times for each of the driver’s chosen routes.

SUMO also supports an alternative approach to SUE, termed one-shot assignment

[124]. One-shot assignment is advantageous when an analyst wishes to model trip behav-

ior based upon instantaneous travel times (at the instant of departure) or when the time

required to converge to an approximate equilibrium solution is not available; a situation

which can readily occur in networks of reasonable size [124]. There are three variations to

this approach which vary in the amount of feedback utilized during assignment [124]. The

first approach, incorporates no feedback of network conditions and simply assigns paths to

28Overtaking allows a vehicle that enters an edge after another vehicle to be able to overtake the earlier
vehicle by passing it and therefore exit the edge before the earlier vehicle. While not all DTA approaches
support overtaking, such a concept is completely foreign to FIFO enforcing static approaches [54].

29https://sumo.dlr.de/docs/Demand/Dynamic User Assignment.html
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origin-destination pairs from an appropriate set of fixed paths [54]. The second approach

regularly updates a set of shortest routes between the origin-destination pairs and assigns

the current shortest (or minimum cost) route between the origin-destination pair to the trip

at the time of departure [54]. The last approach incorporates the most feedback and in

addition to regularly updating and assigning the shortest route to new trips, also period-

ically updates the routes of en-route vehicles based upon the current network conditions

[54]. In SUMO, edge weights are updated every so often (a configurable parameter) based

upon current network conditions. Rather than being simply the travel time of the edge in

the last simulation period, the edge weights are instead smoothed using either a moving or

exponential average30.

In addition to the SUMO route assignment algorithms, if the reference trajectories are

at trace-level, the geoaware component also supports the ability to replicate routes taken

by agents in the reference trajectories. This process works by running a map matching

algorithm on the reference trajectories and associating the path taken with the departure

time of the trip. Then, when the trips are being specified, a certain percentage of trips in

each simulation interval are generated which have identical paths to those in the reference

trajectories during the same time frame. The percentage of trips is controllable by an

analyst and allows a user to specify the percentage of trips for each simulation interval in

each period of a seasonal cycle. For these trips, the route is already specified and does not

need to be further computed. We use the Fast Map Matching algorithm proposed by [231]

but any map matching algorithm should be compatible with proper extension.

3.2.6 Specifying a Scenario

The trips specified within the route assignment step (see section 3.2.5) are a stochastically

generated realization drawn from the constructed demand model. When the realizations

30Please see the help documentation at https://sumo.dlr.de/docs/Demand/Automatic Routing.html and [123] for addi-
tional details regarding the edge weighting algorithms.
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are coupled with a network and simulation settings we refer to the collection as a scenario

since it represents a configuration of a particular model instance. The scenario is detailed

using the libsumor::Scenario construct from the libsumor component and requires

specifying the (i) roadway network, (ii) trip specifications, and (iii) configuration file.

The roadway network specifies the SUMO-compatible map that establishes the infras-

tructure of the environment. This map is one of the assumed inputs (see section 3.1.2). The

trip specifications intelligently calibrate the simulation demand by specifying the onset and

terminus locations according to the inferred mobility patterns. As previously detailed, such

trips are specified through the macro- and micro-level procedure detailed in sections 3.2.3

— 3.2.5. The YAML-based configuration file allows an analyst to configure the behav-

ior of the libsumor component. Just like the map, the configuration file and associated

parameters are assumed as a priori input.

Containerizing the model realization and simulation settings in this way supports mod-

ularity and reusability, enabling the exchange of scenario components as application or

experimentation dictates. For instance, under this methodology, one can easily perform

Monte-Carlo style simulations by simply re-drawing the trips component of the scenario.

3.2.7 Handling Multiple Record Types

At times, it is useful to differentiate mobility-records according to some type identifier so

that properties can be set independent of other mobility-record types. One instance of this
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Handling Multiple Record Types

was presented when discussing travel mode choice. Supporting various travel modes how-

ever, is not the only use of type identifiers. Consider, for example, being able to adjust the

vehicle model used within the simulation based upon the time of day or coloring GUI vi-

sualizations based upon destination type. In the GeoAware framework, the trip realizations

produced during the route assignment step are assumed to belong to a single type; thus, it

is necessary to define an assimilation procedure to support multiple type identifiers.

The assimilation procedure requires that the mobility-records have been split by type

and a trip demand model for each type has been fit using the relevant data (see sections 3.2.3

— 3.2.5 for details on this procedure). Next, trip realizations must be drawn from each trip

demand model. This step ensures that the mobility patterns captured for a particular type

are preserved. The trips are then merged together and organized by departure time. This

produces a collection of trips with type identifiers where the relative frequency of each trip

type comes from the frequency of that trip type in the original mobility-records. The final

step is to produce a multi-typed scenario by combining the merged trips with a roadway

network model and a configuration file that supports multiple vehicle types.
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3.3 The libsumor Component

The concluding step in our goal to obtain synthetic vehicle traces is to capture the move-

ment of the agents specified in the generated scenario (see section 3.2.6). The scenario

specified during the last step of the geoaware component is a realization that links the

supply constraints of the roadway network (e.g. lane counts, junction locations, traffic light

timing, maximum speeds, etc.) with the trips generated from the macro- and micro-level

inference procedures.

The desire to obtain the traces of vehicles as they propagate through the network

subject to the supply-demand interactions necessitates the use of microscopic simulation

[70] [140]. Transportation simulation is a broad field that has proved useful for modeling

traffic environments because of its ability to capture the rich set of interactions between

agents which is not possible in analytical formulations [70] [169] [42] [99] [167] [20]

[140] [133] [61] [72] [21] [191] [154].

Computer simulation is an alternative to analytic evaluation that imitates a system

through an algorithmic process on a system model [19] [95] [65] [70]. Microscopic sim-

ulations [72] [140] [205] [96] differentiate themselves from other types of transportation

simulations by modeling agent movement at the individual level rather than at an aggregate

level, as in macroscopic simulations [160] [100] [96], or a hybrid level, as in mesoscopic

simulations [220] [191] [62] [133] [61] [130].

In microscopic simulations, the individual agents are simulated using car-following,

lane-changing and gap-acceptance theories; fundamental quantities in traffic theory [7]

[70]. Modeling traffic in this individual manner means that important travel quantities, such

as vehicle velocity, are tied to specific agents not the result of some aggregate computation

[42]. Of course, the additional detail level comes at a cost, often resulting in longer run-

ning times and increased storage requirements for microscopic-based transportation studies

[7][124].

Having justified the need for a microscopic simulator when producing the desired syn-
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thetics, the next step is to define a microscopic simulation framework capable of producing

the synthetics we seek. Certainly, one approach would be to create a custom simulator,

however, such a framework would likely be highly specific to a particular situation and

would necessarily require redoing basic simulation components that have already been de-

signed by others [123]. Indeed, as [123] points out in his work, often the defining of a traffic

simulation is tangential to the objective of the work. As our goal is not to construct a new

traffic simulator, we integrate our work with the SUMO microscopic traffic simulator [140]

due to its extensive suite of features, its open-source nature, and its ability to be extended

[123]. In addition to preventing re-implementations of core simulation components, this

modularity also helps to divorce the objective of the work from the actual implementation,

thereby increasing the utility of the proposed work.

With the simulation framework chosen, the next step is to “wrangle” the simulation

scenario produced by the geoaware component into a format suitable for simulation by

the SUMO framework so that synthetics may be produced. While an ad-hoc procedure

could be defined to create the desired synthetics, such a procedure would share many tasks

which are foundational to any traffic simulation irrespective of the modeling approach cho-

sen. Therefore, rather than produce a highly specific procedure that will only work with

demand produced by the geoaware component, we create a general, accessible and exten-

sible framework that allows an analyst to craft and run arbitrary traffic simulations.

Due to the widespread applicability of synthetic trajectory generators (see chapter 2

for a discussion), it is important that such generators are analyst accessible. While our

use of a microscopic simulator enables us to produce realistic synthetics, it also poses a

challenge to accessibility. Each microscopic traffic simulator is unique and has a myriad

of configurable options. Expecting that a user knows or wants to calibrate such parameters

when his/her primary goal is just to obtain synthetics is questionable. Instead, it would

be preferable if a user could utilize such a generator through a common research platform

with which he/she is already familiar. Such an approach would directly increase accessibil-
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ity, prevent re-implementations and reduce educational overhead. One commonly31 used

research platform is the R programming environment [178].

R provides a feature-rich ecosystem for data analysis, statistical modeling, machine

learning, visualization, and communication of results [222]. The R programming environ-

ment is particularly well suited for data wrangling and provides an excellent platform for

rapid development due to its functional (interpreted) nature. R also supports reproducible

research through a variety of constructs (such as R notebooks32, R markdown33, or shiny34).

Many features of R are considered invaluable to the future of transportation modeling and

smart cities [150] [176] [122].

Despite the prevalence of R for spatial data analysis [141] [34] and R packages for

various steps in transportation modeling35, a formal package enabling native microscopic

traffic simulation from within the R programming environemnt does not exist36. The lib-

sumor component of the GeoAware framework is our endeavor to provide a data-driven,

analyst friendly contribution to this lacking area of the R programming ecosystem. Using R

and the proposed libsumor component, a transportation professional can easily visualize,

model and experiment with transportation data; something not as easily accomplished in

31While quantifying the exact popularity of a language is difficult, recent language rankings, articles,
and conferences hint at usage statistics. The TIOBE Index (https://www.tiobe.com/tiobe-index, accessed 10/8/20)
places R at 9th place for October 2020. The 2020 IEEE Spectrum language ranking (https://spectrum.ieee.org/
static/interactive-the-top-programming-languages-2020, accessed 8/7/20) places R as the sixth most popular language.
The PYPL Index (based upon language tutorial searches) indicates a somewhat steady share of users in re-
cent years (http://pypl.github.io/PYPL.html, accessed 10/8/20). Several recent articles share a similar view (see
Programming language rankings: R makes a comeback but there’s debate about its rise, https://www.zdnet.
com/article/programming-language-rankings-r-makes-a-comeback-but-theres-debate-about-its-rise by Liam Tung, accessed
10/8/20 or Python, R, Other Programming Languages Thriving Long-Term, https://insights.dice.com/2020/08/04/
python-r-programming-languages-thriving-long-term/ by Nick Kolakowski, accessed 10/8/20). R also features an ac-
tive development community including local groups (https://www.meetup.com/topics/r-project-for-statistical-computing/,
accessed 10/8/20) and conferences (useR conference: https://user2020.r-project.org, accessed 10/8/20; rstu-
dio::conf: https://rstudio.com/conference/, accessed 10/8/20).

32https://rmarkdown.rstudio.com/lesson-10.html.
33https://rmarkdown.rstudio.com/lesson-1.html
34https://shiny.rstudio.com
35Examples include: osrm: https://github.com/rCarto/osrm, stplanr: https://github.com/ropensci/stplanr,

leaflet: https://rstudio.github.io/leaflet, igraph: http://igraph.org, and travelR: http://travelr.r-forge.r-project.org
36To be sure, simulations can be constructed in R and some simulation packages exist for R. Prominent

examples include simmer (https://r-simmer.org) and simulator (http://github.com/jacobbien/simulator). The CUBE
Voyager traffic simulator even facilitates analysis in R. Nevertheless, none are specifically structured for
microscopic traffic simulation.
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languages such as C, C++, or Java.

As the GeoAware framework relies on the SUMO traffic simulator to perform the low-

level simulation, the design of the libsumor component was largely an architectural effort

focused on the construction of a generic, analyst accessible framework for microscopic

transportation simulations within the R programming environment [178]. Guided by the

general requirements of a simulation scenario, we present a modular framework which is

able to handle general simulation scenarios and efficiently produce synthetic vehicle traces.

The modular decomposition of the libsumor component resulted in three complimentary

approaches to simulation which differ in the degree of control granted to the analyst. In

all approaches, the SUMO microscopic simulation engine is used but each varies in its

intended use and thus the features that are exposed to the analyst for control.

3.3.1 Mode: XML Intermediaries

One approach an analyst can take to perform microscopic traffic simulations from within R

is to utilize the XML Intermediaries mode of the libsumor component. This approach con-

figures the simulation using a collection of XML files (hence the name) natively supported

by SUMO and allows the simulation to be ran using the traditional sumo or sumo-gui

utilities. The XML files (i) configure SUMO, (ii) detail the trips to simulate, and (iii) iden-

tify vehicle types (if applicable). R-based wrapper functions pass the SUMO configuration

file to the sumo and sumo-gui utilities, allowing a user to run a simulation from within

the R environment.

The configuration file is built according to the SUMO configuration file definition37

using the relevant portions of the YAML-based configuration file provided at input. The

trip definitions are derived from the trip portion of the scenario and are specified ac-

cording to the SUMO trip and vehicle definitions38. The libsumor::Trips mod-

37SUMO Configuration File Definition: https://sumo.dlr.de/docs/Basics/Using the Command Line Applications.html#
configuration files

38Routes/Trips Definitions: https://sumo.dlr.de/docs/Definition of Vehicles, Vehicle Types, and Routes.html
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ule provides a method for producing such a file from a collection of trip specifications.

The trip specifications produced by the geoaware component are already formatted as a

libsumor::Trips object, however, any arbitrary demand can be appropriately format-

ted (see section 4.1.2 for an algorithm). The vehicle types file is only necessary if vehicle

types are supplied (see section 3.2.7) and is written out using a SUMO additional file39.

The benefits of the XML Intermediaries approach include its simplicity, ease-of-use

and low educational requirements. The approach is also the only approach provided by the

libsumor component that supports visualization. Additionally, because it uses the sumo

and sumo-gui executables, the XML Intermediaries approach does not require a source

distribution of SUMO.

As with any approach though, there are some drawbacks. The most limiting drawback

of the XML Intermediaries approach is that the configuration of SUMO is limited. While

SUMO provides a fairly expressive set of configuration options, the basic structure of the

simulation cannot be changed when using the sumo or sumo-gui utilities. Additionally,

if the production of synthetics is the ultimate goal, the resulting output will have to be

further processed. In a large simulation, such processing may require substantial effort.

Finally, the XML Intermediaries approach does not provide in-memory access to the gen-

erated traces. This means that such information is not queryable from the R environment.

Such a hurdle prevents an analyst from being able to quickly use the synthetics produced.

3.3.2 Mode: Synthetics Generation

The second approach provided by the libsumor component for performing microscopic

simulations focuses exclusively on generating a portable collection of synthetic vehicle

traces and is referred to as the synthetics mode of the libsumor component. The pro-

39SUMO Additional File Definition: https://sumo.dlr.de/docs/Simulation/Basic Definition.html#additional files (ac-
cessed10/9/20); Type Definition: https://sumo.dlr.de/docs/Definition of Vehicles, Vehicle Types, and Routes.html (accessed
10/9/20)
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cedure is C++-based and makes use of SUMO’s Libsumo40 package for controlling the

SUMO simulation and collecting the traces. The Libsumo component is provided with

the source distribution of SUMO and provides low-level access to a running SUMO simula-

tion (similar to the TraCI interface but without the networking overhead) via a C++ library.

The C++-based synthetics module is made accessible to the R programming environment

through the Rcpp package; an extension to R that allows it exchange data with dynamically

loaded C++ modules [69] [67] [68].

Just like the XML intermediaries approach, the process begins by constructing XML

files detailing the scenario configuration, trip specifications and vehicle types (if needed).

Then, the configuration file is provided to a custom procedure which uses the Libsumo

package to query the various files. The custom procedure tracks the positions of all the

vehicles in the simulation and logs important metrics, such as the speed, angle or total

distance. As detailed in section 3.1.5, the synthetics mode can be configured to filter the

records retained by both edge and time. Additionally, the analyst can store the coordinates

in longitude/latitude mode as well. The records can be stored in memory for easy access

from R or dumped to a CSV file with variable levels of output and floating-point precision.

The most notable benefit of the synthetics approach is that it is specifically designed

for producing synthetics. As a result, the instantiation of various modules, their intercon-

nection and the parsing of data is internally handled so that a user need only focus on

generating synthetic trajectories. Just like the XML Intermediaries approach, the synthet-

ics approach relies on a (i) SUMO configuration file, (ii) trip specifications, and (iii) type

specifications (if applicable). (Once again, the geoaware component produces properly for-

matted trip specifications but any demand can be properly formatted — see section 4.1.2

for an algorithm.) Additionally, due to the use of C++, the approach benefits from the

efficiency of a compiled language. Another key benefit of the synthetics approach is that

it provides in-memory access to the produced synthetics; making further computation and

40Documentation: https://sumo.dlr.de/docs/Libsumo.html
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analysis much more efficient. Such in-memory access allows an analyst to easily run a

traffic simulation and interactively investigate the resulting traces without having to store

the information in an intermediary format.

Just like the XML Intermediaries approach, the most limiting drawback is that config-

uration is limited. The approach supports any SUMO configuration parameter in addition

to a set of parameters controlling the filtering and output of the approach, but once again,

fine-grained control over the underlying simulation is not possible. It should also be noted

that the ability to store traces in memory is dependent upon the amount of available mem-

ory. For very large simulations, dumping the records to a CSV is preferable due to memory

limitations.

3.3.3 Mode: Wrapper

The final approach provided by the libsumor component provides an analyst with the most

flexible and low-level approach to performing traffic simulations from within the R pro-

gramming environment. The approach is referred to as the wrapper mode of the libsumor

component since it provides a set of wrapper functions around the Libsumo package. Us-

ing the Libsumo library for facilitating the communication between R and SUMO, the

wrapper mode supports access to and modification of (where available) a myriad of set-

tings associated with the simulation, edges, junctions, induction loops, vehicles and other

such aspects.

The wrapper mode organizes the function calls of the Libsumo package to follow

the nomenclature of the R ecosystem and uses R641 classes and the Rcpp package to gen-

erate wrapper functions around their Libsumo counterparts. The wrapper mode extends

access to the SUMO framework to the R platform and is similar in premise to that of the

Python and Java counterparts provided with the source distribution of SUMO. As this is an

academic work, coverage of the Libsumo component is incomplete and instead our work

41R6 GitHub Page: https://github.com/r-lib/R6

68

https://github.com/r-lib/R6


focuses on establishing the necessary communication between R and Libsumo so as to

support our forthcoming evaluation.

The most notable benefit of the wrapper mode is that it provides fine-grained, pro-

grammatic control over the simulation steps. This increase in control allows an analyst to

construct and query simulations as needed without having to post-process results. Because

the approach is R-based, the result is the ability to interactively configure, run and and

query a traffic simulation.

Obviously, the increased control results in a greater educational burden for the user.

The instantiation, running and output of a simulation is no longer automatically handled and

must be explicitly configured by the user. This requires the user to have knowledge about

traffic simulations and how to interconnect the various components. Additionally, while

the ability to perform vehicle simulations from within the R environment greatly increases

accessibility, the accessibility comes at a cost to performance. Because R is interpreted, its

performance is not that of a compiled language. Nevertheless, while there is a performance

hit for using R, we believe its interactive and self-documenting nature are benefits which

are well worth the performance hit.
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Chapter 4 — Evaluation

The goal of the proceeding methodology chapter was to present a pipeline by which a traf-

fic simulation may be constructed and certain simulation demand metrics calibrated. In this

chapter, our aim is to validate the various components of the pipeline by demonstrating that

they achieve their respective design goals. In contrast to an application specific work, evalu-

ating a general purpose framework such as the one proposed is tricky as it requires carefully

enumerating goals common to many situations rather than merely evaluating performance

within a specific scenario. To complicate analysis further, general purpose frameworks of-

ten proport many intangible benefits, such as ease of use, modularity or extensibility, which

are hard to evaluate in any measurable sense. Therefore, in light of this, we seek to validate

generic functionality of the pipeline that is relevant across situations instead of crafting and

analyzing performance on, what would be, an application specific analysis. Because our

framework features both tangible and intangible benefits, we evaluate the framework from

both qualitative and quantitative viewpoints.

In the qualitative evaluation, we focus on evaluating the utility of the proposed frame-

work for creating data-driven vehicular traffic simulations. The evaluation is a pragmatic

one and is focused on assessing the framework’s suite of complexity managing, general

purpose tools for constructing simulations. Such tools are provided through the libsumor

component and our evaluation of that component allows us to assess our goal of providing

an accessible software package for data-driven traffic simulations. Because the libsumor

component of the GeoAware framework is designed as a general purpose software package
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for traffic simulations, the analysis presented in 4.1 focuses exclusively on the procedure

required to turn traffic demand, whatever form it may take, into a simulation. Our evalu-

ation demonstrates the ability to incorporate archetypical demand sources represented as

origin/destination (OD) matrices. Such a qualitative evaluation is well suited for this type

of component as a user of a software package is often less concerned about understanding

the mundane inner-workings of the library and is more concerned with understanding how

to use the package in their particular situation.

In contrast to the qualitative evaluation which focused on analyzing the capability

of the framework for generating traffic simulations, the quantitative evaluation seeks to

demonstrate that simulation demand calibrated using the geoaware component captures

behavioral patterns in the reference trajectories. Whereas the general purpose nature of

the libsumor component warranted a qualitative discussion, the geoaware component is

specifically crafted to assist in calibrating the demand of a simulation and therefore necessi-

tates a quantitative evaluation to demonstrate results. The traditional approach would be to

compare the proposed calibration procedure to other techniques but we believe such a rank-

comparison is ill-advised. As calibration procedures are extremely varied, a worthwhile

rank comparison would be extremely difficult to articulate as each calibration approach

may optimize different elements. Additionally, as the use of trajectory data in calibrating

traffic simulations is not commonplace in practice or the literature, evaluating the proposed

framework against typically employed calibration techniques would result in an “apples to

oranges”-like comparison with results which should never be considered similar in the first

place.

Instead, in a vein similar to that of [40], we believe a much more informative eval-

uation centers around demonstrating the ability of the geoaware component to calibrate

several simulation demand quantities. We present four different quantities of simulation

demand which the geoaware component calibrates. For each metric, we demonstrate how

the framework is able to infer such quantities through simulation experiments. Then, we
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provide a brief review of other literature pieces or simulation frameworks which also cal-

ibrate the same (or similar) quantity. Finally, for each quantity, we present a comparison

of our approach to the previously reviewed techniques. By focusing on the individual de-

mand quantities rather than on the final, resulting simulation we are able to compare our

approach to any calibration procedure by examining how each approach calibrates (or does

not calibrate) that quantity. Such a quantitative evaluation is presented in section 4.2.

Lastly, in an effort to be complete and demonstrate how the complete framework can

be used to generate synthetic trajectories from reference data, we present a use case involv-

ing the taxicab data from the city of Chicago, Illinois. In this use case, we demonstrate how

to turn publicly available taxicab data that logs the spatiotemporal pickup and dropoff re-

gions of taxi trips into a collection of synthetic trajectories using the GeoAware framework

proposed. This use case is presented in section 4.3.

4.1 Qualitative

In our discussion of related works (see chapter 2), we motivated the need for traffic sim-

ulations by citing their applicability in a myriad of applications, including the design and

evaluation of spatiotemporal algorithms [171] [237] [49] [106] [6], privacy protection [94]

[126], and testing the performance of spatial database operations [171] [64] [40] [56] [159].

As many of these applications are heavily reliant on data, in the methodology chapter (see

chapter 3) we argued for a data-driven simulation framework that was readily accessible

from a commonly used research platform and set about creating a first of its kind frame-

work for the R programming environment. The libsumor component is the result and it

allows an analyst to communicate with the popular and open source SUMO traffic frame-

work.

In the forthcoming sections, we evaluate the benefits of the libsumor component and

discuss future work that needs to be performed on the component. In section 4.1.1, we
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begin by introducing the libsumor API and explaining the general purpose functionality

provided to users of the package. Next, in section 4.1.2 we highlight how commonly used

sources of trip demand data can be preprocessed (or used directly) when performing a

simulation with the libsumor component. Finally, in the last section (section 4.1.3), we

note areas of the libsumor component which need improvement and discuss the trip-based

approach to simulation.

4.1.1 The libsumor API

The libsumor data model is structured around the concept of a simulation scenario which

details the components of a simulation by specifying the (i) trip demand, (ii) roadway

network, and (iii) configuration file for a particular situation. Constructing such scenarios

is an inherently data-driven task and therefore the data-science friendly R programming

language was chosen since it provides a rich suite of tools for efficient data manipulation

and management (for a more thorough justification behind the use of the R programming

environment, please refer to section 3.3). The general approach to constructing such a

scenario is outlined in algorithm1 1.

input : (i) trip demand, (ii) a roadway network, and (iii) a configuration file
output: a simulation scenario (libsumor::Scenario)

1 # the inputs
2 demand← a properly formatted trip demand
3 network← a SUMO-compatible roadway network
4 config← a configuration file (YML)

5 # generate scenario
6 scenario← generate.scenario(demand, network, config)

Algorithm 1: Constructing a simulation scenario

It is assumed that the network and configuration settings are known to the analyst.

1While the discussion and code examples are presented in an R-like nomenclature, no knowledge of R is
assumed.
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Generating or obtaining such network and configuration data is presented in the methodol-

ogy chapter in sections 3.1.2 and 3.1.5, respectively. The traffic demand can be obtained

from a number of sources and is typically the most involved step in constructing a sim-

ulation scenario. Because of this, we outline a general algorithm for producing properly

formatted traffic demand in the forthcoming section (section 4.1.2). In the context of the

GeoAware framework, such traffic demand is constructed using the geoaware compo-

nent.

Once a scenario has been constructed, it is passed to the libsumor component for

simulation along with a character string indicating the operation mode. As outlined in sec-

tion 3.3, the libsumor component may be operated in one of three different modes. Each

mode is designed for a particular use case in order to give the analyst a fair amount of

control when performing traffic simulations. The three operation modes are: (i) XML In-

termediaries, (ii) synthetics, and (iii) wrapper. For details regarding each approach, please

see section 3.3. Regardless of the operation mode chosen, an R-based connection to the

SUMO traffic simulator can be obtained using the procedure detailed in algorithm 2.

input : (i) a simulation scenario and (ii) a string indicating the simulation
mode

output: a connection to the SUMO traffic simulator

1 # the inputs
2 scenario← a properly constructed simulation scenario (see algo. 1)
3 mode← a string indicating the simulation mode

4 # generate scenario
5 simulation← libsumor(scenario, mode)

Algorithm 2: Performing a simulation

The XML Intermediaries mode operates using SUMO’s native XML support and can

be configured as detailed in section 3.1.5.

The synthetics mode is specifically designed for producing synthetic agents from a

traffic simulation and is therefore the ideal operating mode when performing synthetics
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Method Arguments Description
reload Reloads the connection to the SUMO traffic sim-

ulator thereby resetting the simulation
run Runs the simulation and produces synthetics up

to time end
end A numeric indicating the endpoint of the simula-

tion
status freq An integer indicating how often progress updates

should be printed out
getAgentRecord Returns the filtered record for the agent specified

by id
id A string indicating the agent id to obtain the

record for
getAgentRecords Returns the filtered records for all the agents who

have completed their trips
writeCSV Writes the filtered record for agent id out to the

file path detailed by fp
id A string indicating the agent record to write out
fp A string indicating where the CSV file should be

written
mode A binary vector codifying the properties of the

agent to write out
precision An integer detailing the precision of the doubles

written out

Table 4.1: Available methods of the libsumor component while configured in synthetics
mode

generation. The API available while configured in synthetics mode is detailed in table 4.1

along with the method objective.

Configuring the libsumor component in the wrapper mode enables an analyst to com-

pletely2 configure, run and query a simulation entirely from R and, unlike the previous two

approaches, does not require that a simulation scenario be defined. The wrapper mode

enables low-level use of the SUMO traffic simulator in R and allows an analyst to query a

running traffic simulation in an interactive, REPL3-like fashion.

As traffic simulations are naturally data-driven, often deriving demand from in-field

2Recall, as this is an academic work, coverage of SUMO is not complete.
3read-eval-print-loop
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measurements, an approach which fuses R’s data-driven workflow with a fast, C++-based

traffic simulator permits rapid construction of traffic simulations, data analysis and proto-

typing capabilities. The libsumor component provides an API for simple, programmatic

control of traffic simulations and reduces the amount of knowledge an analyst must know

about the used traffic simulator when performing a traffic simulation or generating synthet-

ics. The two main steps of this API are demonstrated in algorithms 1 and 2. Thus, as one

can see, the provided API benefits traffic analysts by providing a suite of analyst accessible

tools that help manage the construction and running of a simulation from a an easy to use

programming environment.

4.1.2 Sources of Trip Demand

At its most fundamental level, travel is the movement from one location to another. When

such travel is associated with a unique identifier, we call such movement a trip. A collection

of such trips within a region is referred to as demand and such demand is often specific to

a certain time interval. Obtaining accurate travel demand is critical to ensure that any

conclusions drawn from an urban study are based on realistic conditions.

Despite its importance, travel demand is often unknown at worst and noisy at best.

Therefore, modeling such demand is necessary based upon data sources deemed relevant

to trip demand. Travel surveys, socioeconomic data, traffic counts, junction turning ratios,

CDRs (call detail records) and GPS traces are the most commonly employed data sources

for demand estimation. Travel surveys and censuses represent data sources that are derived

from population samples and are typically used to estimate travel demand through regres-

sion analysis [206]. Traffic counts and junction turning ratios are aggregate measures of

trip demand. Traffic count data is the most prevalent and is often used to generate a set of

trips which will mirror the traffic counts observed [75]. CDRs and GPS traces are disaggre-

gate sources that provide low-level mobility pattern information that is lacking in aggregate

sources. To use disaggregate sources for modeling, the data is often aggregated as merely
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replicating a trajectory dataset does not attempt to infer transferable characteristics of mo-

bility.

Despite the various sources of data, the ultimate goal of all such data sources is to es-

timate (sometimes using multiple sources) the travel demand between locations. This data

is typically depicted as a matrix where the rows and columns represent locations and the

cell values indicate the quantity of trips between two such locations. This representation is

commonly referred to as an origin destination (OD) matrix. An OD matrix is a general and

extremely simple construct (in theory, not always to acquire) and is the standardized way of

conveying demand information in traffic planning contexts. OD matrices are often an inter-

mediary output produced at the end of the trip distribution phase of the UTP procedure and

the locations are typically aggregated to zonal regions but in theory, such locations could

be at any arbitrary resolution. OD matrices can also represent time dependent demand by

associating a unique time period with each OD matrix.

The concept of an OD matrix, as presented above, is inherently aggregate in nature

and therefore limited in its expressiveness. Using such a matrix format within the libsumor

component would limit how easily low-level information could be associated with partic-

ular trips comprising the demand. Therefore, in order to provide greater flexibility when

defining demand, the libsumor component uses a slightly different approach and repre-

sents demand as a collection of trip specifications where each trip minimally details a (i)

trip id, (ii) departure time, (iii) onset edge, (iv) terminus edge, and (iv) vehicle type for

each trip. Such a representation allows the framework to work in aggregate contexts where

the time and edges might be drawn according to a priori distributions or in disaggregate

situations where low-level information concerning departure time and edges are available.

Additionally, because we only specify the minimum trip specification requirements, further

information may be detailed for each trip if desired.

Due to the prevalence of OD matrices in traffic planning contexts, algorithm 3 details

a process for converting an arbitrary, potentially time-dependent OD matrix to to the format
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input : OD matrix (od)
output: a collection of trips (libsumor::Trips)

1 id← 1
2 trip specs← a data frame storing properly formatted trips
3 for i← 1 to nrow(od) do
4 for j ← 1 to ncol(od) do
5 n← od[i, j]
6 for k ← 1 to n do
7 depart← draw departure time for row-col block
8 onset← draw onset edge from row TAZ
9 terminus← draw terminus edge from col TAZ

10 type← draw vehicle type for row-col block
11 append(trip specs, id, depart, from, to, type)
12 id← id+ 1

13 end
14 end
15 end

Algorithm 3: Converting an OD matrix to the required trips format

used by libsumor. Through the utilization of such an algorithm, any general OD matrix can

be arranged in a format usable by the libsumor component. As not all traffic simulations

have the same requirements, the ability for the libsumor component to handle any arbitrary

OD matrix greatly extends the applicability of the libsumor component.

The conversion procedure specified in algorithm 3 is not complicated and begins by

instantiating a trip identifier and a storage container for the trip specifications. After this,

for each cell in the original OD matrix, we obtain the specified number of trips to gener-

ate n and create individual trips by drawing the required information and appending the

trips to the collection of trip specifications. Because not all data sources provide the same

amount of information, certain pieces of required information may be unavailable. Obvi-

ously, obtaining the required information in a data-driven manner is preferable, but if such

information is unavailable, the missing quantities may be chosen using prior knowledge (no

matter how limited it might be) through the use of a priori distributions. If the OD matrix

is time dependent, the above process can be repeated for each matrix and the resulting trip
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specifications merged into a single collection of trips.

At first glance, it may seem that the minimum required trip information requires the

fabrication of data which would be unnecessary if a different set of minimum trip features

was used but in fact, if synthetic trips are to be generated, such required information con-

stitutes the minimum required information as the simulator must know the departure time

for the trip (i.e., when to insert the vehicle into the simulation) as well as the onset and

terminus destinations, even if such quantities are chosen randomly4.

4.1.3 Future Work

While we have demonstrated that the utility of the libsumor component (section 4.1.1)

and its ability to simulate arbitrary OD matrices (section 4.1.2), it is equally important to

highlight the framework’s critical assumptions and areas of weakness.

One such assumption is the fact that the libsumor component assumes activity at

the trip level and makes no attempt to chain trips or to model trip producing activities as

is done in activity-based models. Obviously, ignoring such factors results in an abstraction

of reality as common sense and research shows that such factors do influence trips [36],

however, consideration of such factors may bring no appreciable benefit to the modeling

at hand. For instance, when evaluating spatiotemporal algorithms (e.g. map matching

or trajectory compression), a model of the trip producing activity or the chaining of trips

is unlikely to have any meaningful affect on the evaluation. Instead, what is needed to

evaluate such algorithms are tracks which faithfully mirror what we expect to observe and

the exact modeling approach for obtaining such tracks is likely irrelevant.

Furthermore, trajectory data often does not come with any additional information

which could be used to derive the information necessary for an activity model. Thus, while

activity-based techniques for modeling mobility are certainly more prevalent than in times

4The specification of a vehicle type adds no further constraint and can be set to a default value if no
information is available.
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past, trip-based models are still the predominant model type in use today by transportation

practitioners [38] [206]. Indeed, trip-based models have been used for many years now in

a variety of contexts [206]. The desire to use trajectories and maintain a data-driven frame-

work with minimal assumptions leads us to utilize the trip-based modeling approach5.

Switching to an implementation standpoint, one drawback of the libsumor compo-

nent is the fact that, with the exception of the wrapper mode, it requires that many of the

simulation files be written to disk. This limits the performance of some aspects of the com-

ponent to that of I/O speeds as well as requiring enough disk space for the task at hand.

As physical storage has reduced in cost substantially and performance has improved, such

concerns are not as relevant as they were in years past, but their relevance should not be

overlooked either.

Additionally, at the time of writing, coverage of the wrapper mode was not complete

and was limited to those functions necessary to confirm validity of the approach. As such,

before the wrapper mode module of the libsumor component can be extensively used it

will need to be extended in order to support the larger collection of options available in

SUMO.

Finally, while a reasonable level of filtering is available when operating in the syn-

thetics mode, a more robust and analyst extensible filtering module would be desirable so

that the analyst can perform custom filtering and avoid having to post-process the resulting

synthetics.

4.2 Quantitative

To quantitatively evaluate the proposed framework, we focus on demonstrating the ability

to calibrate simulation demand from inferred demand quantities. The premise of this argu-

ment is that if the simulation used to produce the synthetics can be calibrated from quanti-

5See section 3.2.1 for our argument in favor of using a trip-based approach.
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ties inferred from the reference trajectories, the resulting synthetics will be more reflective

of reality. As demand calibration procedures are extremely varied, a worthwhile rank com-

parison would be extremely difficult as each calibration method may try to optimize various

elements. On something as complex as a traffic simulation, extracting meaningful results

would be extremely hard if not impossible.

Instead, because the geoaware component is meant to be general to a variety of sim-

ulation situations, we believe a much more informative discussion centers around demon-

strating the ability to capture various desirable demand quantities for calibration and il-

lustrating how such a capability compares to the literature and commonly employed tech-

niques. As such, we do not seek to produce quantifiable metrics but instead wish to quan-

tifiably justify the ability of the framework to infer various demand quantities from the

reference trajectories. We present our evaluation as a series of propositions and (i) demon-

strate the ability to calibrate the quantity, (ii) explore how other approaches in literature

and practice calibrate such a quantity, and (iii) compare our approach to the reviewed ap-

proaches.

In synthetics production, commonly used techniques (particularly MOGs) overlook

the importance of seasonality in the modeling process. As argued earlier in this work, hu-

man mobility exhibits strong seasonal patterns and therefore, being able to capture such

seasonality is important and marks an improvement over those techniques which are un-

able to do so. The proposed framework explicitly incorporates seasonality when construct-

ing the the macro-level demand, micro-level departure time profiles and micro-level edge

weights for each block.

The geoaware component of the proposed framework makes contributions to three

calibration metrics when calibrating the demand of a traffic simulation. The first contribu-

tion focuses on demonstrating the ability to incorporate seasonal trends into the macro-level

movement between TAZs. The second contribution extends such seasonality to departure

time and edge weight selection. The third and final contribution demonstrates the ability to
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replicate paths from the reference trajectories. We begin by demonstrating the incorpora-

tion of macro-level seasonality.

4.2.1 Replication of Macro-level Demand

Rational, Macro-level Simulation Demand

Proposition 1

The proposed demand model produces statistically rational, macro-level simulation

demand

As has been cited previously, the aim of the GeoAware framework is not to repli-

cate the collection of reference trajectories (provided to the framework as input) but rather

to infer transferable characteristics from such trajectories which can be used to produce

synthetic traffic incorporating such properties. Inferring the requisite macro-level demand

information from trajectories is straightforward as they can be aggregated to any spatial and

temporal resolution and the quantity of departing trips between each block6 can be easily

extracted. If the proposed model were to stop here, the results would merely be a historical

time series of departures not a model of agent demand.

Instead, the proposed approach models demand by fitting a seasonally-aware model

to each block. Seasonally modeling demand (i) enables the incorporation of historical de-

mand, (ii) allows the model to be used in situations which are yet to be observed, and

(iii) captures typical demand behavior. The geoaware component utilizes the SDSBM

presented in [184] and outlined in section 3.2.3 as it provides a solid, statistically-backed

model for incorporating the affects of seasonality. Much literature has demonstrated the

influence of seasonal cycles (such as a week) on mobility patterns [199] [142] [87] [184]

[157] and the SDSBM has been shown to better model seasonal phenomena when com-

pared to models which lack explicit consideration of seasonality [184]. Furthermore, be-
6Recall, that a block is a directed pair of TAZs. In a network with n TAZs, n2 blocks exist.
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cause the signal and noise terms of the SDSBM are assumed to be Gaussian distributed in

our framework, the model is the minimum mean square error (MMSE) estimator of the de-

mand7 [117]. For the evaluation of the SDSBM, the reader is encouraged to consult [184]

or [183].

Seasonal Simulation Demand

Proposition 2

Calibrating macro-level simulation demand using the proposed demand model cap-

tures seasonal demand patterns

To demonstrate that the geoaware component is capable of replicating demand which

exhibits seasonality, a 40 element synthetic demand signal is produced that follows a si-

nusoidal pattern and has a periodicity of length four (4). Without loss of generality, each

element of the signal is assumed to represent the demand over a period of one day. Additive

white Gaussian noise (σ = 1000) is added to perturb the signal. Synthetic trips are gen-

erated according to the quantity specified by the demand signal and were simulated using

the synthetics mode of the libsumor component with only the onset and terminus location

of each trip retained. Once the synthetic trips are produced, the records were fed into the

geoaware component and the the block demands generated.

A comparison between the original demand signal and the inferred demand signal

is presented in figure 4.1. As is clearly evident by the figure, the seasonal demand used

in generating the trajectories is captured by the geoaware component, demonstrating its

ability to capture seasonal patterns exhibited in the reference demand8.

Current Approaches

Traffic planners are often concerned with confirming that a traffic model can successfully

approximate field data, particularly that of local traffic counts and travel surveys [206].
7The interested reader is encouraged to consult Chapter 13 of [117] for the derivation.
8Those interested in a quantitative comparison between the SDSBM and other block models concerning

the ability to recover seasonal phenomena are encouraged to consult [184] or [183].
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84



To aid in this process, many traffic simulators and literature pieces provide algorithms for

tuning the path choices of the agents such that the simulated edge counts approximate

those observed in the field [21]. Typically, when one refers to “demand calibration” in

a traffic planning context, such a path-level algorithm is envisioned9. In the proposed

framework, path-level calibration is not of primary interest10 but instead capturing patterns

of mobility that reflect what is typically observed. The word “calibration” is not typically

used to describe this procedure and instead such a process may be referred to as “demand

generation”. Despite the naming semantics, such a process is a calibration procedure as it

makes the simulation more reflective of reality.

The UTP procedure (see section 3.2) on which our work is based, generates demand

during the first two steps of the procedure, namely the trip generation and distribution steps

(see section 3.2.3 for details). Recall, that the trip generation step focuses on creating

a pair of trip productions and trip attractions for each TAZ while the trip distribution step

allocates trips between directed TAZ pairs known as blocks. Trip productions are calculated

per TAZ and typically use a cross-classification technique that tabulates rate parameters for

certain household categories and applies those rates to the projected number of trips in that

category for some target interval [206] [226] [48]. Natural sources for the household-level

socio-economic data are census data and travel surveys [48] [226]. Trip attractions are

also calculated per TAZ but are often harder to estimate accurately due to a general lack of

survey data quantifying the effects of different establishment types on attracting trips [206].

This lack of detailed information typically leads to the use of a linear regression model

on socioeconomic factors indicative of activity, such as employment or school enrollment

[206]. Temporal affects can be incorporated at the trip generation step by constructing

separate trip generation models for each time period [188] [33].

Even though cross-classification [206] [129] [5] and linear regression [206] [188]

9The calibration process need not be restricted to calibrating path selection using edge counts. The Dyna-
MIT simulator presents a general approach for calibrating demand and supply quantities [28].

10Although, a path-level calibration technique could certainly be coupled with such a macro-level tech-
nique.
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[129] [5] are the typically employed methodologies, other techniques include11: (i) us-

ing a Tobit model to handle negative trip rates (caused by negative regression factors) [59]

[207], (ii) defining trip generation using logistic regression [107], (iii) capturing the dis-

crete nature of trip rates using Poisson [22] or negative binomial regression [209], (iv)

using a multiple classification technique that attempts to eliminate drawbacks of classical

cross-classification [202], (v) a neural network approach [113], and (vi) using cell phone

data [43].

In the typical UTP framework, once trip productions and trip attractions have been

generated, a trip distribution procedure optimally allocates trips between TAZs subject to

a cost function on attributes involving attractiveness, cost and perception [44]. Examples

of such factors include employment, number of households, travel time, walk time after

arrival, monetary cost, destination parking rates, toll roads, income level and area safety

[44]. Gravity models [206] [58] [44] are typically employed for the assignment procedure

although random utility models [27] [206], intervening opportunities methodologies [203]

[58], hybrid gravity-opportunity mixtures [223] [9], state space models [12] [55], Bayesian-

based approaches [75] [134], and activity-based12 techniques [36] [24] [149] are also valid

options13.

Many studies have extended the traditionally static trip distribution step to model the

affects of time on trip distribution. The most common approach is to segment the generated

(pre-distribution) or distributed (post-distribution) trips according to departure percentages

[206] [191]; however, other approaches present a completely overhauled model that explic-

itly considers time dependence [12] [55] [75] [36] [24].

While the above discussion covers the wide gamut of demand generation procedures

explored in the literature, the procedures employed for demand calibration by modern traf-

11The interested reader is encouraged to consult [48] for a detailed comparison of some of these method-
ologies.

12Activity-based approaches actually model in terms of tours which are a sequence of activities that begin
and end at home [36] and can be translated into TAZ pairings by formatting as origin-destination matrices
[185].

13An excellent review of trip distribution models is provided in [44].
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fic simulators14 is typically much more restricted. Most modern traffic simulators either

assume that demand already exists in some usable format or implements a demand gener-

ation procedure using the traditional cross-classification, regression and gravity models of

the UTP procedure. Such an approach is not surprising, as the four-step UTP procedure

is the most common traffic planning framework, making any tool that implements models

for such a framework immediately more useful. Even the fact that many traffic simulators

assume demand information is not unwarranted as there is a clear distinction between the

modeling of demand and the routing of such demand through a network in terms of both

the models and software required.

In our review of related MOGs (moving object generators; see chapter 2), we were

unable to find any work that explicitly incorporated seasonality when generating synthet-

ics. While [102] and [170] do not explicitly mention seasonality, because they construct

synthetics from patterns, a seasonal pattern could be established and used to generate repre-

sentative trajectories. Additionally, [108] does not model seasonal effects but it does infer

a collection of distributions from field data in order to model “typical” behavior.

Comparison Against Current Approaches

Having presented a review of the current approaches to macro-level demand, both in the

literature and in practice, we contrast the GeoAware framework with the current. The

GeoAware framework differs from the current in three significant areas, namely, (i) its

source of calibration data, (ii) its effectiveness of calibration, and (iii) its focus on transfer-

ability.

Data Source. UTP-based models rely on various socioeconomic variables to indicate the

quantity and distribution of trips throughout the network. The use of socioeconomic vari-

ables for establishing demand is well studied and is a widely employed technique that

exhibits a great deal of rationalism. Variables such as car availability, population levels,

14The list of reviewed simulators was: Aimsun, Cube Voyager, DRACULA, DynaMIT, MatSIM, MITSIM-
Lab, Paramics, SUMO, and TSIS-CORSIM. These traffic simulators where chosen due to their prevalence in
the literature and where information could not be found publicly, user documentation was consulted.
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employment levels and other such factors can be easily seen to affect the quantity and

distribution of trips [44].

Just like any model, however, such models have their drawbacks. In the context of

travel demand, the reliance on socioeconomic variables (or any indicator variable) requires

that the analyst (i) know the set of variables affecting demand, (ii) be able to capture such

variables in the field, and (iii) construct a proper model incorporating such variables. Cer-

tainly, models have been constructed for such socioeconomic indicators that have proved

useful in practice, but a fundamental question always remains concerning how reflective

the model is of reality.

In contrast, the geoaware component constructs a predictive model based on direct ob-

servations captured through trajectories thereby avoiding the cumbersome process of iden-

tifying relevant socioeconomic variables and establishing a model from such data. When

one is merely trying to obtain the quantity and distribution of trips and is not attempting

to understand the reasoning for such such demand, trajectory data proves a far superior

choice over that of indicator variables due to its correspondence with a real-world actor.

With trajectory data, any model of demand can be compared with the original trajectories.

In models based on socioeconomic variables, no direct link exists to a real-world actor due

to the aggregation of the statistics and thus the demand model cannot be compared with

actual observations.

Some MOGs do support the use of trajectory data (for instance [102] or [170]) for

inferring patterns but the ease of incorporating information from such trajectories depends

on the framework. In general, the process is not straightforward and often requires an

analyst to define an inference procedure to obtain the relevant information. Such a task

places an extra burden on analyst.

Given the prevalence of location acquisition systems nowadays [143], calibration of

macro-level demand from trajectories is much more realistic than in times past, however,

we do not wish to imply that the aforementioned approaches are obsolete. As noted previ-
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ously, the regression and gravity models of the trip generation and trip distribution steps,

respectively, are quite common in practice. Such techniques are vital when trying to model

how changes in scenario characteristics, such as land use changes, population adjustments,

or demographic shifts, change the resulting demand. In such situations, trajectories can-

not be directly utilized as they often lack the meta-information necessary to ascertain such

information.

Calibration. The second area of difference between the reviewed approaches and the

GeoAware framework is the focus the GeoAware framework places on producing and uti-

lizing calibrated, macro-level demand. In many works, demand calibration is rightfully

cited as a necessary step in simulation calibration but as noted in our review of relevant

traffic simulators, many modern simulation frameworks do not have a mechanism to gen-

erate calibrated demand. Separating the calibration from the actual simulation of demand

makes sense as the two processes are mostly independent, however, it is valid to question

how relevant the results of a traffic simulation are if they are not reflective of reality. While

the simulator must be based on a sound traffic model in order to be useful when analyzing

real-world situations, it is equally important to have demand that reflects reality. The lack

of a technique for natively generating demand in many traffic simulators means that addi-

tional work is put on the analyst to derive calibrated, macro-level demand; an effort which

might be tangential to the task at hand.

In those traffic simulators which do provide a process for generating trip-based traffic,

the approach typically relies on the aforementioned procedures of the trip generation and

distributions steps. As noted previously, because of the historical and continued dominance

of the UTP procedure, many modern traffic simulators, particularly those aimed at commer-

cial applications, support the UTP procedure for generating traffic demand. Built-in UTP

support allows an analyst to quickly generate demand but requires that socioeconomic data

exist. In situations where all an analyst wishes to do is to generate traffic that reflects what

is typically observed, the collection of various (and relevant) socioeconomic data presents
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a hurdle which the analyst must overcome in order to utilize the UTP procedure.

Often, if MOGs support the creation of calibrated synthetics, the quantities and distri-

butions driving such a procedure are assumed to be exogenously defined. Very few specif-

ically detail procedures for producing the necessary quantities and distributions from field

data [108] [84].

In contrast, the GeoAware framework is designed for comparatively rapid15 genera-

tion of calibrated trip demand. In the proposed framework, rather than use socioeconomic

variables which must be researched, gathered and integrated into a model, trajectory data

is used to infer the macro-level mobility patterns and requires little processing once cap-

tured by a location acquisition device. Because trajectory data implicitly carries onset and

terminus information (as well as a host of other information), aggregate socioeconomic

variables are not needed to try and predict such quantities. Additionally, the geoaware

component outlines a complete procedure for inferring relevant quantities from the trajec-

tory data. By lessening the hassle of synthetics production, an analyst can focus on the

task for which he/she needs the synthetics rather than focus on obtaining inputs which will

produce sufficiently realistic results.

Transferable Patterns. The geoaware component also focuses on ensuring the patterns

inferred are transferable. Often, traffic studies argue that a traffic model is valid by demon-

strating that it is able to recreate known traffic conditions (with a certain degree of accuracy)

of some base year [206]. In studies attempting to address how environmental and societal

changes affect demand, establishing the ability to recreate base-year conditions is critical

to the argument of the researchers as it legitimizes the conclusion that changes in environ-

mental and societal characteristics produced the changes in travel demand. But as [172]

argue, the preoccupation with recreating base-year conditions may limit the utility of the

simulation in situations which do not resemble such base-year conditions. If the model is

only capable of accurately recreating base-year conditions, such a model will be of limited

15By “rapid” we do not necessarily mean fast but instead are highlighting how little overhead is required
to generate synthetic demand using the GeoAware framework.
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utility.

Furthermore, the reliance of many modern traffic simulators on socioeconomic vari-

ables when calibrating macro-level demand may also limit how applicable the simulation

is in other situations. Because such models are constructed from a finite collection of so-

cioeconomic variables, the relevance of the variables and the accuracy of the model in

non base-year conditions determines how applicable the simulation is in such situations.

If the socioeconomic data, traffic counts, speed or any other field-data source are specific

to certain conditions, it is senseless to try and make such data representative of “typical”

data. Indeed, even when data is supposedly representative of “average” conditions, one

must investigate the generation procedure for such data. For instance, path-level demand

calibration often relies on traffic counts but traffic counts are often communicated as aver-

ages and may have been expanded from counts taken over a shorter duration [118]. How

accurate the process is at expanding short-duration counts to annual averages will dictate

how faithful such data is to reality. As [21] points out, mismatches between “average” and

“observed” demand will likely result in flow that is unrepresentative of reality.

Instead of focusing on base-year recreation, the GeoAware framework focuses on cali-

brating behavioral properties which are applicable in non base-year conditions. The macro-

level demand calibration component of the GeoAware framework seeks to extract mobility

patterns by observing historical trends in pickup and dropoff locations of the trajectories.

By incorporating seasonal patterns, the resulting simulation is calibrated based upon the

trends observed over multiple time periods rather than from a single snapshot or “average”

conditions. The incorporation of such seasonal patterns constitutes a major advantage of

the GeoAware framework over other MOGs which do not explicitly consider seasonality

when producing synthetics.

Because the demand model is produced directly from the observed trajectories, the

analyst need not be concerned with ensuring that the produced model is representative. Of

course, the analyst must ensure that the trajectories represent the conditions he/she wishes
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to recreate but unlike the typically heuristic MOGs or traffic simulators which calibrate

using socioeconomic variables, one does not have to check that the resulting demand model

accurately represents real world demand. In the GeoAware framework, the data-driven

approach ensures that the resulting model is reflective of the underlying data source by

capturing trends rather than focusing on base-year recreation. This results in a simulation

that is transferable to other situations which meet the modeling assumptions.

4.2.2 Replication of Departure Times

Proposition 3

Calibrating simulation demand using the proposed demand model captures seasonal,

micro-level departure time patterns

To demonstrate that the GeoAware framework is capable of capturing seasonal depar-

ture time patterns, we construct a simulation scenario similar to that presented in section

4.2.1. Recapping the experimental setup presented there, a 40 element synthetic demand

signal is produced by adding white Gaussian noise (σ = 1000) to a sinusoidal signal hav-

ing a periodicity of length four (4). Without loss of generality, each element of the demand

signal is assumed to represent the demand for an entire day.

Once the demand has been constructed, we define a departure time profile for each

time period in the seasonal interval (i.e. each element of the demand is seasonally related

to other other demand elements and all related elements share the same time profile). Be-

cause the periodicity of the demand signal is of length four, four departure time profiles

are defined. We split each profile into 96 data points (i.e. 15 minute intervals) and con-

struct departure time profiles for the period according to (i) uniform, (ii) Gaussian, (iii)

sinusoidal, and (iv) composite distributions. Synthetic trips are then produced according to

the quantity specified by the demand signal with the departure times for the demand dis-

tributed according to the departure time profiles associated with each demand element. For
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example, the thirteenth element of the demand signal (day thirteen) would belong to the

second time period in the seasonal cycle (13 mod 4 = 1, where the index is zero-based).

The synthetic trips are simulated using the synthetics mode of the libsumor component.

Once the synthetic trips are simulated, the mobility records produced are fed into the

geoaware component with the seasonality and simulation granularity parameters coming

from those used when generating the truth demand. Once the block-level demand is in-

ferred, the departure time profiles are inferred. A comparison between the departure time

profiles used when generating the truth demand and those inferred from the generated tra-

jectories is presented in figure 4.2. As one can see, the empirically derived departure time

profiles captured the seasonality present in the original truth data. Because we simulate

multiple days and each day is seasonally related with nine other days, we effectively per-

form four Monte-Carlo simulations where the time departures in each period of the seasonal

cycle is simulated ten times.

Current Approaches

A survey of transportation planning literature reveals that the models which consider depar-

ture time are often activity-based. The association of departure time selection with activity-

based models makes sense as the commonly used, trip-based traffic planning models tend

to be more macro-focused whereas activity-based models are micro-level and seek to jus-

tify the observed travel patterns based on behavioral attributes [206]. [217], [197], and [2]

present early approaches to departure time modeling from an activity-based perspective.

Typically, in transportation planning contexts, departure time models are constructed

as a discrete choice model from cross-sectional data deemed relevant to departure time

choice [50] [2] [14] [232]. In the literature, factors such as travel time, travel cost, trans-

portation mode, arrival flexibility, gender, age, family status and occupation have all been

used when fitting a model of departure time. As some of these factors are subject to the

affects of congestion, some traffic assignment works use such models to assign departure

times based upon the prevailing traffic conditions within the simulation [71] [28].
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Figure 4.2: Comparison between the truth departure time signals and the inferred departure
time signals. The x-axis indicates the simulation interval within the period. In the experi-
ment, a seasonality length of four was used. The initial values of the observation noise and
transition noises for the MLE procedure were naı̈vely set to 1 as no prior information con-
cerning these quantities is known [183]. To perform MLE, the Nelder-Mead optimization
algorithm was used with the maximum number of iterations set to 500. See the References
section of R’s optim function (?optim) for the algorithm details. Data Source: synthetic
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Although utilizing a discrete choice framework on cross-sectional data is the most

prevalent technique, other approaches to modeling departure time profiles do exist in the

literature. Examples include constructing an input-output N-curve from flow data [103],

reverse engineering departure times from a calibrated OD matrix [125], and using GPS

data to estimate door-to-door travel time and its affect on departure time choice [168].

With the exception of the DynaMIT traffic simulator, the reviewed traffic simulators16

do not focus on calibrating micro-level departure trends. The DynaMIT traffic simulator

calibrates driver responses (such as departure time) through behavioral models based on

historical patterns and incoming surveillance data [28]. While not many traffic simulators

support calibration of trip departures, some traffic simulators, such as AIMSUN [4] or

DRACULA [139], allow an analyst to specify a distribution to use for departure times.

Many MOGs support the use of statistical distributions to specify various temporal

properties, however, only a few specifically detail methodologies for inferring temporal

properties from field data. Because [102] and [170] generate by example and construct

their synthetics from mobility patterns, such works are capable of modeling departure times

pattern in data. Despite this, however, neither work outlines an algorithm for creating such

patterns from data and therefore an analyst must construct such mobility patterns. [108]

and [84] use field data for calibrating temporal properties and provide methodologies for

incorporating this information into the framework. [108] uses such field data to produce

synthetic CDRs while [84] uses the data to construct a synthetic population which is sim-

ulated to produce symbolic trajectories. [200] present a technique that uses regression on

trajectory data to produce synthetic demand that is then routed by SUMO.

Comparison Against Current Approaches

The geoaware component is easily distinguishable from the approaches in the literature and

practice for three reasons. First, of the widely utilized traffic simulators, only one supports

16The same collection of reviewed simulators presented earlier. For reference, the list of reviewed simu-
lators was: Aimsun, Cube Voyager, DRACULA, DynaMIT, MatSIM, MITSIMLab, Paramics, SUMO, and
TSIS-CORSIM.
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any form of calibration of departure time based upon data. While it is likely that such

an absence is a result of the typically macro-level analysis in which traffic simulators are

employed, it is important to note that microscopic traffic simulators are applicable to a wide

variety of scenarios which extend beyond supplying data for macroscopic analysis. Thus,

the inability of most traffic simulators to utilize calibration data to make the departure trends

more reflective of reality is discouraging. The geoaware component stands in complete

contrast to such an approach as it explicitly constructs its model of demand by inferring

micro-level departure patterns from the collection of reference trajectories.

Second, in contrast to the approaches outlined above, the geoaware component does

not rely on cross-sectional data. One common source of cross-sectional data are travel sur-

veys or census products. Unfortunately, surveys are (i) not routinely performed, (ii) feature

a limited sample size [50] [17], and (iii) have noisy responses [17]. Additionally, as such

data may not explicitly provide information on trip departures, a model must be constructed

from such factors. In contrast, modeling departure times in the geoaware component uses

trajectory data that is ubiquitous nowadays, can often be captured passively17, and provides

micro-level information — including departure time.

Third, in contrast to available MOGs, the GeoAware framework not only allows de-

parture time to be specified by a statistical distribution, it provides a method for inferring

such a distribution from trajectory data. As we showed in our review, such an approach

is not common. Additionally, the empirical PMFs constructed by the proposed framework

heuristically incorporate seasonality, ensuring that the PMF constructed is representative

of “average” or typical conditions.

4.2.3 Replication of Incident Edge Weights

17We do not wish to construe the idea that such data should be collected without a user’s permission
but instead simply note that often capturing trajectory data does not require the user to do anything (e.g. a
camera-based vehicle tracking system).

96



Proposition 4

Calibrating simulation demand using the proposed demand model captures micro-

level, onset and terminus edge selection weights

Similar to the previous experiments, to demonstrate that the geoaware framework is

capable of capturing seasonal edge weights associated with the onset and terminus locations

of a trip, a 40 element, sinusoidal demand signal with additive white Gaussian noise (σ =

1000) is constructed. Once again, the periodicity of the signal is of length four (4) and each

demand element is assumed (without loss of generality) to represent the demand over an

entire day.

Now, however, instead of defining departure time profiles for each period in the sea-

sonal cycle, edge weight profiles are defined for the onset and terminus edges. Because an

edge weight profile had to be constructed for both the onset and terminus edges of each

period in the seasonal cycle, a total of eight edge weight profiles are defined and consist

of uniform, Gaussian, composite and sinusoidal distributions. The number of bins in each

distribution is dependent upon the number of edges which belong to the onset and terminus

TAZs, respectively. Synthetic trips adhering to edge weight distributions are produced and

simulated using the synthetics mode of the libsumor component.

Once the truth trajectories are generated, they are fed into the geoaware component

with seasonality and simulation granularity parameters matching those used when creat-

ing the synthetic trajectories. Once the block-level demand is inferred, the edge selection

weights were inferred. Figures 4.3 and 4.4 present the empirically inferred quantities along-

side the truth distributions used when generating the synthetic trajectories. Once again, as

in the demand and departure time experiments, the inferred demand accurately captures

seasonally distributed edge weights. Because we simulate multiple days and each day is

seasonally related with nine other days, we effectively perform four Monte-Carlo simula-
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Figure 4.3: Comparison between the truth edge weights and the inferred departure edge
weights for the onset TAZ. The x-axis indicates the index into the list of edges associated
with the onset TAZ. Uniform RMSE: 0.0004531695. Composite 1 RMSE: 0.0004189938.
Composite 2 RMSE: 0.000384571. Sine RMSE: 0.0004959786. Total of N = 103391 trip
records. The initial values of the observation noise and transition noises for the MLE pro-
cedure were naı̈vely set to 1 as no prior information concerning these quantities is known
[183]. To perform MLE, the Nelder-Mead optimization algorithm was used with the max-
imum number of iterations set to 500. See the References section of R’s optim function
(?optim) for the algorithm details. Data Source: synthetic
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Figure 4.4: Comparison between the truth edge weights and the inferred arrival edge
weights for the terminus TAZ. The x-axis indicates the index into the list of edges as-
sociated with the terminus TAZ. Gaussian RMSE: 0.0004317771. Composite 1 RMSE:
0.0003508453. Composite 2 RMSE: 0.0003736785. Composite 3 RMSE: 0.0004666017.
Total of N = 103391 trip records. The initial values of the observation noise and transi-
tion noises for the MLE procedure were naı̈vely set to 1 as no prior information concerning
these quantities is known [183]. To perform MLE, the Nelder-Mead optimization algorithm
was used with the maximum number of iterations set to 500. See the References section of
R’s optim function (?optim) for the algorithm details. Data Source: synthetic
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tions where the selection of edges in each of the days is simulated ten times.

Current Approaches

The most common techniques employed in the literature for estimating the locations asso-

ciated with a trip tend to be associated with that of activity-based, discrete choice frame-

works. Similar to the activity-based, discrete choice frameworks reviewed in our discussion

of departure time, such models are often based on behavioral data. [29] [131] [232] typify

the approaches which are prevalent in the literature. Often, the destination choice is the

quantity of interest while the onset location is assumed exogenously.

As most metropolitan planning tools represent traffic at the TAZ-level (a geospatial

polygon), agents are typically inserted and received at a single centroid location [206] or

at several locations throughout the zone [91]. The nodes are assumed to be connected to a

roadway within the TAZ. Thus, in these models, when one discusses an onset and terminus

location, one does so at the zonal level.

Some approaches break from convention and model travel at a sub-TAZ level but

such approaches are rare in the literature. [109] and [145] perform sub-TAZ modeling by

dividing the TAZ into subareas which can be chosen evenly or based upon socioeconomic

variables. [218] takes a different approach and performs sub-TAZ modeling by using a

discrete choice model to model the route selection process from home to the access points

of the transportation network.

Upon review of a representative collection of modern traffic simulators18, none were

found to specifically incorporate the modeling of onset or destination edges from calibra-

tion data. Modern traffic simulators often support macro-level TAZs but the exact method-

ology by which such simulators select individual edges is certainly not standardized. Mi-

croscopic traffic simulators such as VISSIM [175], AIMSUN [4] and SUMO [140] allow

an analyst to specify the quantity of trips at particular edges but such quantity information

18The same collection of reviewed simulators considered throughout this section. For reference, the list of
reviewed simulators was: Aimsun, Cube Voyager, DRACULA, DynaMIT, MatSIM, MITSIMLab, Paramics,
SUMO, and TSIS-CORSIM.
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must be externally defined.

Additionally, it is also worth noting that since microscopic simulators often rely on

OD matrices for demand generation, one way to model individual location demand would

be to use individual locations rather than aggregate zones when crafting the OD matrices.

Of course, such a procedure is only applicable if the data provided supports such a fine-

grained representation.

Many MOGs support the ability to specify a distribution that governs the selection of

onset and terminus edges. Nevertheless, only a few specifically detail a procedure for set-

ting such weights from relevant field data. [108] uses real CDRs or other relevant field data

to construct distributions governing the selection of various location information, namely

home, commute distance, work, and hourly population density distributions. [64] uses sta-

tistical data to set the home and work regions in the BerlinMOD framework. The ST-ACTS

framework uses field data to construct a synthetic population which is then simulated to

produce symbolic trajectories [84]. [102] and [170] are also able to recreate edge patterns

if the general mobility patterns on which the synthetics are based captures such informa-

tion.

Comparison Against Current Approaches

As noted above, the predominant technique for modeling onset and terminus choice is using

discrete choice models. While insight can gathered from understanding what behavioral

attributes drive the selection of incident locations, such behavioral data is often difficult to

obtain as many factors are unseen and requires specifying or identifying a model of mobility

using such behavioral data [50] [192]. In contrast, the GeoAware framework enables a user

to quickly infer incident location weights through the construction of an empirical PMF,

eliminating the need to find and model socioeconomic data. Of course, the drawback to

such an approach is that the model is not explanatory but the benefit of such an approach is

the fact that there is no concern over ensuring that the model is representative of the data.

Additionally, the macro-level zonal approach of modern traffic simulators poses se-
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rious problems when trying to perform low-level simulation or when trying to accurately

represent demand [91]. Despite the power of microscopic traffic simulators, modern traf-

fic simulators often rely on macroscopic routing principles. The reliance on macroscopic

principles is likely due to the focus of travel practitioners on macro-level analysis and the

fact that, in the past, commonly available data sources tended to be aggregate in nature. In

contrast, the geoaware component extracts micro-level patterns from the reference trajec-

tories and uses the extracted patterns to perform sub-zonal edge selection based upon the

inferred patterns.

While many MOGs support the ability to calibrate edge selection from field data, the

source of information is typically aggregate in nature and therefore, often does not provide

the necessary, low-level details. In contrast, when trace-level trajectories are provided to

the GeoAware framework, seasonally-aware PMFs can be constructed for choosing various

edges based upon the block to which an agent belongs. Such a PMF enables the weights to

be time dependent and makes the selection of onset and terminus locations dependent on

each other. Not many MOGs support the ability to make the selection of onset and terminus

edges dependent on each other.

4.2.4 Replication of Paths

Proposition 5

Calibrating simulation demand using the proposed demand model permits a certain

percentage of trips to duplicate the paths observed in the reference trajectories

Another technique an analyst can use on trace-level trajectory data is the path repli-

cation algorithm provided by the geoaware component. The goal of the path replication

algorithm is to increase the realism of the demand obtained by requiring that a certain per-

centage of the generated demand follow the paths observed in the reference trajectories

rather than being routed by the simulator. By replicating a certain percentage of the paths
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Quarter Truth Inferred
Quarter 1 0.25 0.28
Quarter 2 0.50 0.52
Quarter 3 0.75 0.76
Quarter 4 1 1

Table 4.2: Results of path replication experiment.

in the reference trajectories, an analyst can control how much of the routing in a simulation

is performed by the routing algorithm versus duplicating paths in the reference trajectories.

Clearly, if the simulated vehicles are routed according to the paths from the reference tra-

jectories, that percentage of trajectories is guaranteed to follow the paths observed in the

real world (as captured by the trajectories).

To quantitatively demonstrate that the simulated trips produced by the geoaware com-

ponent can clone a certain percentage of the reference trajectories, we construct a simple

simulation scenario and demonstrate the ability to create demand where a certain percent-

age of the trips have paths which mirror those observed in the reference trajectories.

The experiment begins by creating a collection of synthetic trips. Once the synthetic

trajectories are created, a geoaware object is instantiated using the synthetic trajectories

as the reference trajectories. Prior to running the trip generation procedure, we set the

percentage of trips which should have paths mimicking those in the reference trajectories

for each period in the seasonal cycle.

Next, the trip generation procedure is called. The reader may recall from the method-

ology section (see section 3.2.5) that it is within this procedure that a certain percentage

of the trips are assigned paths from the reference trajectories while the remaining trips are

distributed according to the relevant departure time and edge weight distributions. The re-

sults of the path replication procedure is demonstrated in table 4.2. The table shows the

ability of the geoaware component to replicate paths from the reference trajectories. As

the framework code takes the ceiling when obtaining the quantity of trips to generate, it is

reasonable to expect the inferred quantities to be slightly higher than truth.
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As noted in 3.2.5, this technique assumes two things. First, in order to replicate path-

level details of a trajectory, the reference trajectories must be at such a resolution. Check

in/out trajectories will not work because they lack the low-level information necessary

to identify the path taken between two points. Second, this process assumes that a map

matching procedure of sufficient quality exists to take the raw GPS locations and convert

them into the series of edges within a network. How well the map matching algorithm

performs this task directly translates into how usable the resulting trajectories are. As map

matching is obviously beyond the scope of this work, for this evaluation we rely on the

open source Fast Map Matching algorithm [231].

Current Approaches

In modern traffic simulations, the ability to infer the paths taken by real-world actors from

calibration data is not present. To be sure, many support the ability to detail predefined

routes but such procedures require that the paths be defined exogenous to the framework

[140] [4] [175]. The inability of modern traffic simulators to infer the paths taken by agents

via calibration data is likely due to the fact that modern traffic simulators typically perform

such calibration with aggregate statistics (such as traffic counts or speed-flow diagrams)

which do not contain the information necessary for path-level inference.

While no reviewed MOG specifically attempts to replicate path-level details, the [102]

and [170] frameworks are able to perform path replication if the mobility patterns used for

synthetics generation are properly configured.

Comparison Against Current Approaches

As noted previously, the geoaware component is primarily focused on inferring transfer-

able demand patterns. This results in a process that is focused on reproducing mobility

patterns not recreating base conditions. Nevertheless, at times it can be helpful to inject

known demand conditions into an otherwise pattern-calibrated simulation. The ability to

recreate paths from the reference trajectories is beneficial in situations where an analyst

wishes to ensure that a certain percentage of simulated vehicles follow the routing captured
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by the reference trajectories but does not need (or does not wish) to construct a behavioral

model of such route choice characteristics. Thus, path replication can be thought of as an

aid for avoiding a much lengthier modeling process. Modern traffic simulators typically

support the specification of demand through external procedures [140] [4] [175] but, to the

best of the author’s knowledge, none support such a procedure natively from a calibration

source. Additionally, no reviewed MOG presents a method for calibrating such information

directly from data.

4.3 Chicago Use Case

With the qualitative and quantitative evaluation now complete, we conclude the evalua-

tion chapter by presenting a tutorial that details how to create synthetic trajectories from

publicly available taxicab pickup/dropoff data for the city of Chicago, Illinois.

INPUT

Creating a collection of synthetic trajectories using the GeoAware framework begins by

defining the necessary inputs. We specify these inputs below.

Reference Trajectories. The reference trajectories come from the publically available col-

lection of taxicab pickup and dropoffs made available by the city of Chicago19. We specif-

ically retain the pickup and drop-off community areas along with the the timestamps as-

sociated with each of these events. The data is cleaned to remove entries for which we do

not have both a pickup and drop-off area and entries with erroneous timestamps. We use a

month of trajectories from January 2016.

Roadway Network. The roadway network is derived from TIGER/Line shapefiles for the

Chicago area20. We specifically retain only the records with MTFCC code “S1400” which

corresponds to local neighborhood, rural and city roadways. To aid in computational fea-

19The latest collection of records can accessed at: https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
20TIGER/Line shapefiles are made publicly available by the United States Census Bureau at: https://www.

census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
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sibility, we geo-fence the network to a few community areas. Because TIGER/Line shape-

files are commonly used in transportation studies, the conversion procedure was provided

as a utility in the geoaware component.

Community Definitions. The reference trajectories are aggregated at two levels. One of

the aggregation levels is that of a community area. The geospatial boundaries for these

areas are provided by the city of Chicago21. We extract the bounding polygons for each

area and format them for use by the geoaware component.

Timing Parameters. The SDSBM fit intervals are constructed at daily intervals beginning

on January 1, 2016 and extending to February 1, 2016. We set the seasonal periodicity

to be seven in order to model weekly cycles. The city of Chicago aggregates the pickup

and drop-off times to the nearest fifteen minutes and therefore, in order to capture sub-day

departure time profiles, the simulation granularity parameter is set to 900 seconds.

Configuration File. A configuration file is specified according to the format specified in

section 3.1.5. The configuration file details (i) various SUMO parameters, (ii) libsumor

settings, and (iii) the location of required files.

CALIBRATING DEMAND

The calibration of demand is handled by the geoaware component. An algorithmic

outline of this component is presented in algorithm 4. The process begins by initializing a

geoaware object with the reference trajectories, roadway network, community definitions,

and timing parameters22. This step is shown in line 2 of algorithm 4. Next, TAZs are

constructed detailing the edges which belong to each TAZ and the region that each edge

falls into23. This step is shown is line 4 of algorithm 4.

After the TAZs have been initialized, one can now infer the macro-level demand pat-

terns exhibited in the reference trajectories. As presented in section 3.2.3, the SDSBM is

21The current listing of community areas in Chicago is publicly available here: https://data.cityofchicago.org/
Facilities-Geographic-Boundaries/Boundaries-Community-Areas-current-/cauq-8yn6

22The configuration file is not needed until the libsumor component.
23Recall that a TAZ may be comprised of multiple regions. See section 3.1.3 for additional details.
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input : (i) trajectory data, (ii) roadway network, (iii) community
definitions, (iv) timing parameters, and (v) a config file

output: a model of trip demand

1 # instantiate the geoaware component
2 geoaware← geoaware$new(trajectories, roadway, communities,

timing)

3 # generate TAZs
4 geoaware$generateTazs()

5 # generate macro-level block demands using SDSBM
6 geoaware$generateBlockDemands(initial mle guesses)

7 # extract micro-level heuristics
8 geoaware$generateTimeProfiles()
9 geoaware$generateEdgeWeights()

10 # generate trips from inferred quantities
11 geoaware$generateTrips()

12 # generate scenario
13 geoaware$generateScenario(config)

Algorithm 4: Modeling trip demands using the geoaware component

used for this process. The SDSBM requires the reference trajectories, the fit intervals and

the seasonality length in order to produce a demand signal for each block (a directional

pairing of TAZs). This process is handled by line 6 of algorithm 4.

With the macro-level demand now inferred, the calibration turns to extracting micro-

level details. The first micro-level detail we seek is a model of departure times. To obtain

this model, the reference trajectories are grouped into a bin based upon which seasonal

period the record belongs to. The width of each bin is dependent upon the size of the fit

intervals used with the SDSBM. For this tutorial, as presented earlier, the fit intervals have a

width of one day (86,400 seconds) and the seasonal periodicity is set to seven. This means

that each record in the reference trajectories is grouped into one of seven bins based upon

what day of the week it occurred on. Once grouped, an empirical PMF of the departure

times is constructed for each day at the resolution specified by the simulation granularity

parameter. In this tutorial, this results in a 96-bin histogram as we model each day with

fifteen-minute resolution (900 seconds). This step in the procedure is shown on line 8 of
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algorithm 4.

The next step of the geoaware component is to construct the edge weight profiles.

Unfortunately, due to privacy restrictions, the taxicab data used does not include such low-

level information. Therefore, rather than construct an empirical PMF of such edge weights,

we simply set the edge weights associated with each TAZ uniformly. We provide a custom

function to uniformly set these weights given the number of edges belonging to a TAZ.

This step is shown on line 9 in algorithm 4.

Once the macro- and micro-level details have been inferred, the final step is to specify

trips using the inferred information. As the reference trajectories do not include path-level

information, we are unable to replicate path-level details and therefore rely exclusively

on the assignment algorithms supplied by SUMO. During trip specification, trip departure

times and onset and terminus edges are drawn for the number of trips required in each

simulation interval. The specification of trips is line 11 of algorithm 4.

The trips specified, the last step of the geoaware component is to create a scenario

that incorporates the specified trips, the roadway network and configuration file. This task

is handled by the method specified on line 13 of algorithm 4.

PRODUCING SYNTHETICS

Once a scenario has been constructed, the libsumor component is used to create syn-

thetics with mobility patterns captured from the reference trajectories. Algorithm 5 details

this process.

input : a simulation scenario
output: a CSV file containing synthetic trajectories

1 # the inputs
2 scenario← a properly constructed simulation scenario

3 # instantiate synthetics mode
4 simulation← libsumor(scenario, ”synthetics”)
5 # generate synthetics
6 csv synthetics← simulation::run(end time)

Algorithm 5: Producing synthetic trajectories
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As shown on line 4, the process begins by instantiating a libsumor object in synthet-

ics mode. During instantiation, files detailing the (i) configuration of SUMO, (ii) vehicle

types, and (iii) the trips are written out. Afterwards, the synthetics mode is instantiated by

inferring the relevant details from the specified configuration file. Once instantiated, the

process of generating synthetic trajectories is quite simple and only requires a single call

as shown on line 6 of algorithm 5. Once the synthetics have been produced, the CSV file

can be used for whatever purposes require synthetic trajectories.
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Chapter 5 — Conclusion

Synthetic trajectories are useful for many situations and have been used for privacy pro-

tection [94] [126], controlled evaluation of spatiotemporal algorithms (e.g. clustering or

map-matching algorithms) [171] [237] [49] [106] [6], and spatial database evaluation [171]

[64] [40] [56] [159]. Synthetic trajectories are often used in such situations because finding

suitable, real-world trajectories is difficult due to privacy issues, ethical concerns, dataset

size, researcher access and sampling frequency [171] [143] [119] [174].

Because synthetic trajectories are used as substitutes for real world data, it is important

that the synthetics accurately reflect properties found in the real world. Such calibration is

essential if the trajectories are to be reflective of reality. However, as the related litera-

ture review showed (chapter 2), often MOGs (moving object generators) resort to heuristic

models for obtaining synthetics, resulting in synthetic trajectories that do not contain key

characteristics found in real world datasets. The review also noted that while many human

mobility models provide improved models of mobility, they are typically not structured for

producing synthetics and involve the specification of a model which may leave out relevant

factors.

To address the aforementioned modeling concerns when constructing synthetic vehi-

cle trajectories, we presented a data-driven, microscopic traffic simulator-based framework

for producing synthetic vehicle traces (see chapter 3). The use of a microscopic traffic sim-

ulator enabled the proposed framework to model the complex nature of vehicle traffic at

the individual level according to established transportation theory [70]. Being a data-driven
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framework means that the the microscopic traffic simulation demand used to produce the

desired synthetics has been calibrated from real-world patterns according to macro- and

micro-level procedures. As we aim to make our work practical and usable by practitioners,

our framework is implemented in an alpha-release package that enables fully reproducible,

data-driven vehicle simulations from the R programming environment.

As research is an ongoing process, there is always room for improving upon the pro-

posed framework. One area that could easily be extended would be the micro-level infer-

ence procedures. In their current form, the procedures are purely heuristic and incorporate

seasonality by grouping related entries when constructing their respective empirical PMFs.

If an analyst desires that a more robust model be used for constructing such distributions,

such a model can be easily supplied through the framework’s built-in support for custom,

micro-level profiling procedures.

Another notable area of improvement would be to extend the somewhat limited fil-

tering capabilities supplied by the synthetics mode. Obviously, as an academic work, such

filtering was primarily introduced to aid in post-processing efforts and therefore, the capa-

bilities introduced were those deemed necessary for such an effort. Of course, such filtering

capabilities are unlikely to fit the needs of all analysts. Thus, a better approach would be to

allow an analyst to provide a custom filtering procedure (similar to the custom, micro-level

profiling procedures) which would appropriately filter the produced synthetics according

to the analyst’s need.

The path assignment algorithm could also be further improved by taking advantage

of the low-level information provided by the reference trajectories. With the exception of

the path replication piece, the GeoAware framework relies on SUMO for routing vehicles

between onset and terminus locations. Such routing procedures do not make use of the

implicit routing information contained in the reference trajectories, thereby missing an op-

portunity to infer path-level mobility patterns that influence the routing of vehicles. In an

effort to mitigate such effects, the proposed framework provides the ability to replicate a
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certain percentage of tracks but such a solution is not a substitute for actually inferring

transferable, path-level patterns.

While we have noted areas of the framework that could be further improved in later

research, the proposed framework has been shown to provide an analyst with an accessible

approach for generating realistic, synthetic vehicle traces. Our qualitative and quantitative

evaluation (chapter 4) of the framework demonstrated the capabilities of the framework and

presented our contributions to the current state of practice. In particular, the utility of the

proposed framework was evaluated by demonstrating how easy it is for an analyst to use

the created alpha-release package to generate fully reproducible vehicle simulations from

within the R environment. Such an accomplishment is notable as, to the best of the author’s

knowledge, no such traffic simulation package exists for the R programming environment.

The evaluation also demonstrated the ability of the framework to infer seasonal, macro-

and micro-level patterns from the reference trajectories to use when calibrating simulation

demand. A collection of quantifiable demand metrics was presented and it was shown that

the proposed framework calibrated such metrics from inference procedures on the refer-

ence trajectories. Additionally, for each metric, we contrasted the proposed approach with

the current literature and techniques employed in practice. Our evaluation shows that the

GeoAware framework brings many improvements to the field of MOGs.

As an application-orientated work, we concluded the evaluation with a tutorial-like

discussion that demonstrated how to use the GeoAware framework to create synthetics for

the Chicago, Illinois area. This tutorial is meant to demonstrate the entire modeling and

simulation process and serves as a guide for using the framework.

When taken collectively, our various evaluations demonstrate that the GeoAware frame-

work improves upon current MOGs by providing an analyst accessible, statistically-backed

framework for producing the synthetic vehicle traces that are often needed in various re-

search endeavors.
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[133] Ludovic Leclercq, Alméria Sénécat, and Guilhem Mariotte. Dynamic macroscopic

simulation of on-street parking search: A trip-based approach. Transportation Re-

search Part B: Methodological, 101:268–282, 2017.

129



[134] Baibing Li. Bayesian inference for origin-destination matrices of transport networks

using the em algorithm. Technometrics, 47(4):399–408, 2005.

[135] Huan Li, Hua Lu, Xin Chen, Gang Chen, Ke Chen, and Lidan Shou. Vita: A versatile

toolkit for generating indoor mobility data for real-world buildings. Proceedings of

the VLDB Endowment, 9(13):1453–1456, 2016.

[136] Ben Liang and Zygmunt J Haas. Predictive distance-based mobility management for

pcs networks. In IEEE INFOCOM’99. Conference on Computer Communications.

Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Com-

munications Societies. The Future is Now (Cat. No. 99CH36320), volume 3, pages

1377–1384. IEEE, 1999.

[137] Edward B Lieberman. Brief history of traffic simulation. Traffic and Transportation

Simulation, 17, 2014.

[138] Dung-Ying Lin, Naveen Eluru, S Travis Waller, and Chandra R Bhat. Evacuation

planning using the integrated system of activity-based modeling and dynamic traffic

assignment. Transportation research record, 2132(1):69–77, 2009.

[139] Ronghui Liu, Dirck Van Vliet, and David Watling. Microsimulation models incor-

porating both demand and supply dynamics. Transportation Research Part A: Policy

and Practice, 40(2):125–150, 2006.

[140] Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-

Pang Flötteröd, Robert Hilbrich, Leonhard Lücken, Johannes Rummel, Peter Wag-

ner, and Evamarie WieBner. Microscopic traffic simulation using sumo. In 2018

21st International Conference on Intelligent Transportation Systems (ITSC), pages

2575–2582. IEEE, 2018.

[141] Robin Lovelace, Jakub Nowosad, and Jannes Muenchow. Geocomputation with R.

CRC Press, 2019.

130



[142] Xin Lu, Erik Wetter, Nita Bharti, Andrew J Tatem, and Linus Bengtsson. Approach-

ing the limit of predictability in human mobility. Scientific reports, 3:2923, 2013.

[143] Yongmei Lu and Yu Liu. Pervasive location acquisition technologies: Opportunities

and challenges for geospatial studies. Computers, Environment and Urban Systems,

36(2):105–108, 2012.

[144] Eleanor Mann and Charles Abraham. The role of affect in uk commuters’ travel

mode choices: An interpretative phenomenological analysis. British journal of psy-

chology, 97(2):155–176, 2006.

[145] WW Mann. B-node model: New subarea traffic assignment model & application.

In Eighth TRB Conference on the Application of Transportation Planning Meth-

odsTransportation Research Board; Texas Department of Transportation; Corpus

Christi Metropolitan Planning Organization; Federal Highway Administration; and

Federal Transit Administration., 2002.

[146] Norman L Marshall. Forecasting the impossible: The status quo of estimating traffic

flows with static traffic assignment and the future of dynamic traffic assignment.

Research in Transportation Business & Management, 29:85–92, 2018.

[147] Brian V Martin, Frederick W Memmott, and Alexander J Bone. Principles and

techniques of predicting future demand for urban area transportation. Mass Inst

Tech Dept Pub Wks Jt Hwy Res, 1961.
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