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ABSTRACT

Morgan, Jameson D. M.S.C.E., Department of Computer Science and Engineering, Wright State
University, 2020. GeoAware - A Simulation-based Framework for Synthetic Trajectory Generation
from Mobility Patterns.

Recent advances in location acquisition services have resulted in vast amounts of tra-
jectory data; providing valuable insight into human mobility. The field of trajectory data
mining has exploded as a result, with literature detailing algorithms for (pre)processing,
map matching, pattern mining, and the like. Unfortunately, obtaining trajectory data for
the design and evaluation of such algorithms is problematic due to privacy, ethical, dataset
size, researcher access, and sampling frequency concerns. Synthetic trajectories provide
a solution to such a problem as they are cheap to produce and are derived from a fully
controllable generation procedure. Citing deficiencies in modern synthetic trajectory pro-
cedures, we propose a data-driven, seasonally-aware and simulation-based procedure that
incorporates macro- and micro-level patterns from reference trajectories. The procedure is
implemented as an alpha-release package; allowing an analyst to produce synthetic trajec-

tories via the use of a modular coding framework and analysis tools.
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Chapter 1 — Introduction

Understanding human mobility is vital for a variety of undertakings in urban planning.
Models of human mobility have been applied in traffic planning contexts [206] [54] [19]
[166] [24], evacuation planning [233] [110] [138], and even for privacy protection [94]
[126]. As with any model, the inner-workings of human mobility models must be tested and
their ability to model reality demonstrated [171]. Often, such verification and validation
relies on external data.

As location acquisition services and mobile technology continue to improve and be-
come more widespread, vast amounts of trace-level data detailing the path followed by
an individual agent are being produced [143]. Such trajectories, as they are called, are
of immense value when trying to understand mobility and facilitate fine-grained analysis
that was not possible using the historically prevalent aggregate data sources (e.g. roadway
counts) [237] [119]. This ever growing collection of trajectories has sparked new mobility
models specifically designed to take advantage of the low-level information provided by
such a data source [237]. As such, the field of trajectory data mining [237] has exploded
with literature detailing trajectory (pre)processing [51], map matching [231], access and
storage [49], pattern mining [83] and the like.

Ideally, because trace-level mobility algorithms are used in the real world, the verifi-
cation and validation of such algorithms would be performed with real world trajectories
[64]. Obtaining such data, however, is problematic. Although recent improvements in

technology and penetration have substantially reduced the cost of obtaining real trajectory



datasets [50], other considerations, such as user privacy, ethical concerns, dataset size, re-
searcher access, and sampling frequency still make acquiring a suitably large and detailed
dataset of trajectory data challenging [171] [143] [119] [174]. While the collection of such
information is often passively performed by many companies for internal purposes (such
as service delivery, quality of service or analytics), any publicly available data is typically
aggregated to protect user privacy!. Moreover, even if a dataset of suitable detail and scale
could be found, various aspects of the dataset, such as the roadway network and/or the de-
mand generation process, would be beyond the control of the analyst, thereby limiting the
analysis that could be performed.

Such a situation makes it difficult to test new (or old) models of human mobility
which rely on low-level trajectories. In essence, a dichotomy exists between the suitability
of trajectory data for understanding human mobility and the availability of such data for
verifying and validating models. An answer to this dilemma is the generation of synthetic

trajectories (synthetics).

1.1 Synthetic Trajectories

Synthetic trajectories are valuable for a number of reasons. First, the production of syn-
thetic trajectories is controllable. In real-world scenarios, it is impossible to have access
to the underlying process generating the observed trajectories but in the production of syn-
thetic trajectories, the analyst has full control over the generation process. Quantities such
as the level of detail, the vehicle classes involved, the roadway network, the output pro-
duced and even the situations induced (e.g. traffic accidents, anomalies or congestion) are
fully controllable based upon the application and desires of the analyst. Because of this,
synthetic data or examples are quite common in transportation modeling literature during

the discussion of results [119] [64], as a comparison point [80] [57] [75] [174] [40] or for

ISee https://movement.uber.com for instance.
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numerical analysis [132] [179].

Another motivating aspect of synthetic trajectories is that data generation is cheap
and trajectories can be produced for any geographic region at any scale and level of detail.
As such, access, use restrictions, and privacy concerns become irrelevant, enabling greater
flexibility in usage.

Synthetic trajectories also facilitate reproducible experimentation. As noted in [121],
scientific computing — the use of a computer to perform scientific experimentation — has
become pervasive in the scientific community but unfortunately how to perform proper re-
search and experimentation has not. In their book, [121] argue that reproducibility is critical
to effective research and experimentation and the greater goal of open science. Of course,
research on both real-world and synthetic trajectories can benefit from proper methods but
synthetic trajectories provide an unrivaled testbed for research, experimentation, and anal-
ysis. For instance, if pseudo-random number generators (RNGs) with known seed values
are used when generating synthetic trajectories, probabilistic procedures can be recreated
so that experiments can be compared without wondering whether the variation between the
experiments is attributable to probabilistic differences.

Before leaving this section, it is important to note that despite the advantages of syn-
thetics, real world trajectories are not without merit. It must be understood that while use-
ful, synthetic trajectories are merely a model of the real-world. Because various assump-
tions must be made during the modeling process, the output is necessarily a “reflection”
of reality and will never replicate the real world exactly. On the other hand, real-world
trajectories capture a myriad of subtleties, such as noise, agent-to-agent interactions or
network-demand interactions, which synthetic trajectories are unable to fully replicate. A
second advantage of real-world data is that various situations are captured without thought
by the analyst. In contrast, when generating synthetic trajectories the analyst must con-
sider what types of situations are likely to occur and make sure the produced synthetics

contain such events. Indeed, the overlooking of situations is a major challenge which must



be mitigated when using synthetic trajectories.

1.2 Synthetics Production via Traffic Simulator

One approach to creating such synthetics is to use a traffic simulator. Simulation-based
techniques to transportation modeling, despite their mathematical intractability (due to the
inherently ill-behaved nature of traffic) [169], have enjoyed much success because of their
ability to capture complex interactions, particularly that of congestion, which cannot be
effectively defined mathematically [195] [191] [115] [169] [70] [20] [238]. Microscopic
traffic simulators are a specific type of traffic simulator designed to operate at the individual
agent level [20] and have become particularly prevalent in recent years due to increases in
computer hardware speed [76]. Yet, despite the success of microscopic models in simulat-
ing roadway conditions (see examples such as [165] [229] [236]), a largely neglected topic
is the use and appropriateness of microscopic traffic simulators for generating synthetic tra-
jectories. This omission is likely due to the fact that in most microscopic traffic simulators
the trajectories produced are merely treated as intermediaries whose purpose is to induce
various macro-level demand-supply interactions (such as link counts or queuing) [64] [15].
In other words, the low-level routing of agents is assumed to only be of use for bringing
about certain phenomenon which an analyst wishes to evaluate. Because the production
of trace-level output is not the main purpose of microscopic simulators, a procedure must
exist or be created in order to efficiently extract such information from the simulation.
Utilizing microscopic traffic simulators for synthetics production also requires that
the simulation be calibrated if the synthetics are to be used in real-world situations. Merely
running a microscopic simulation and collecting the traces produced will result in traces
that are reflective of simulation parameter defaults not real-world conditions. Despite the
prevalence of calibration techniques for microscopic traffic simulations in the literature (see

[101], [210], [16], or [120] for typical approaches and [23], [235], [211] for case studies),



such procedures often (i) utilize aggregate [101] or behavioral [206] data sources for cali-
bration, (ii) focus on recreating a set of observed conditions (termed base-year conditions)
[172], and (iii) are often applied as a post-fact corrective measure to fix simulation out-
put. Each of these points presents issues when trying to obtain accurate synthetics from a
microscopic simulation.

First, by utilizing aggregate data, the low-level aspects of a simulation cannot be cal-
ibrated against real-world data. When microscopic traffic simulators are used for planning
purposes at a macroscopic scale, it may be possible to ignore such inconsistencies but
when one wishes to utilize a microscopic traffic simulator for producing synthetics, such
low-level accuracy is required. Second, as [172] notes, focusing only on replicating a set
of conditions makes the simulation applicable only in such conditions. Indeed, as they
argue, any simulation can be made to conform to a set of conditions but this does not
mean it captures the average or general conditions present [172]. If the variables used to
calibrate the simulation are not transferable to other situations, neither will the resulting
simulation. Third, often calibration, particularly that of demand calibration, is performed
after the initial demand has been generated and its only purpose is to try and correct the
generated demand to fit with observed values. While such processes are needed, its need
arises from the fact that the underlying demand models are not generating demand in line

with real-world observations.

1.3 The Proposed Framework

Motivated by the appropriateness of microscopic traffic simulators for producing realis-
tic synthetics that mirror real life, we present a framework for producing such synthetics
via a microscopic traffic simulation calibrated from transferable seasonal demand patterns
extracted from reference vehicle traces. As presented earlier, trajectories provide rich in-

formation about mobility patterns and therefore, we seek to push the state of practice in



synthetics generation by utilizing such trajectories to calibrate the demand model of a mi-
croscopic simulation so that the synthetics produced reflect real-world demand patterns.
The framework is called GeoAware as it presents a geographically-aware framework for
producing synthetic trajectories at a desired scale and detail.

The framework’s demand model is calibrated from the reference traces using a data-
driven process which incorporates the seasonality present in mobility data [199] [142] [87]
[184] [157]. The demand model captures mobility at both macro- and micro-level scales.
Macro-level demand between regions in the network is captured using a seasonally dy-
namic stochastic block model (SDSBM). Micro-level demand patterns capture the seasonal
patterns of departure times and incident weights. Path-level demand patterns? are replicated
through the incorporation of a map-matching algorithm which allows the simulation to re-
produce routes exhibited in the reference trajectories.

A motivating example for such a framework can be found in the taxicab dataset made
publicly available by the city of Chicago® [156]. For privacy reasons, this dataset only
provides the pickup and dropoff regions of agents, excluding any of the route details. Thus,
if one where interested in studying mobility patterns in the Chicago area, such a dataset
would necessarily limit analysis to high-level pickup and dropoff statistics. However, if
one where able to infer mobility pattern statistics from this more limited data source, a
calibrated microscopic simulation could be used to generate synthetic trajectories whose
behavior is based upon such pickup and dropoff trends but at a scale and detail not available
in the original dataset [119].

We implement this framework in an alpha-release package* aimed at enabling fully
reproducible, data-driven vehicle simulations. Using this package, an analyst is able to go
from ingesting reference trajectories to generating synthetic trajectory data via the use of

a modular coding framework and analysis tools. The package components are designed

2As will be presented subsequently, path-level demand pattern inference requires that the trajectories
provided are full vehicle traces.

3The latest collection of records can accessed at: https://data.cityofchicago.org/Transportation/Taxi- Trips/wrvz-psew

“Due to sponsor requirements, the source code cannot be made publicly available.
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to be deployable and extensible. Due to the author’s strong belief in reproducible and
self-documenting research, the high-level framework modules are implemented in the R
programming language [178] in order to take advantage of the data analysis, documenta-
tion and reproducibility tools available in R. Low-level, memory and computation intensive
modules are written in C++ and are exposed to the R programming environment. The pack-
age modules are designed to interconnect, allowing an analyst to define vehicle simulations
rapidly and efficiently. The package interfaces with SUMO (Simulation of Urban MObil-
ity) [140], an open-source package for microscopic road simulation, allowing us to take
advantage of the rich feature set provided by SUMO when performing the microscopic

roadway simulations necessary for generating synthetic mobility-records.

1.4 Contributions

The goal of the GeoAware framework is to use a demand-calibrated microscopic traffic
simulator to produce synthetics that (i) behave realistically, (ii) can be generated at any
scale, and (ii1) are not subject to privacy concerns. Such a goal took inspiration from a prior
research effort that inferred geospatial mobility patterns and anomalies from trajectory data
[153] and results in contributions to the current state-of-practice in synthetics generation in

the following areas:

(i) The development of a data-driven, seasonally-aware, and simulation-based synthetics
generation procedure incorporating transferable macro- and micro-level trend infor-

mation;
(i1) The use of trajectory data for generator calibration; and

(ii1)) The incorporation of this generation procedure into an extensible, application fo-
cused, alpha-release software package for generating fully reproducible vehicle sim-

ulations within the R programming environment.



The focus of this work is on presenting a solution to a common research problem
and is therefore application focused. As such, we do not seek to show that the proposed
framework is suited for generating synthetics in a specific scenario but instead, aim to
convey the general principles of the framework which may be used by an analyst to generate
synthetics in a variety of contexts. Rather than establishing new theory, we focus on the
integration of (mostly) pre-established tools and algorithms into a software pipeline capable
of achieving the aforementioned goal. It is our hope that the resulting framework will be

of immediate utility and pushes the state of practice.

1.5 Organization

We now detail the organization of this work. We begin with a literature review in chapter
2. Here, we focus on approaches to generating synthetic vehicle traces and motivate the
modern approach presented in the current work. Next, the methodology chapter (chapter
3) defines the GeoAware framework. The chapter begins by detailing the framework data
requirements in section 3.1, proceeds to describe the demand model in section 3.2, outlines
the creation of a simulation scenario in section 3.2.6, and concludes by describing the
simulation process in section 3.3. Following the methodology chapter, the framework is
evaluated in chapter 4. We evaluate the framework both qualitatively (section 4.1) and
quantitatively (section 4.2). Finally, we present our concluding remarks, discuss areas of
improvement and hint at future work in chapter 5.

This work is primarily an applied project, focused on incorporating available tools
and techniques in order to solve a real-world problem. At times, this incorporation requires
some preliminary knowledge about a tool or technique. Rather than present all of these
preliminaries up front in a separate section, we have opted to introduce any required pre-
liminaries “just-in-time”. We believe that introducing the applicable content when required

aids reader understanding and focuses our writing on explaining and justifying the use of



such preliminaries in our project.

Finally, as an applied research work, an emphasis has been placed on reproducibil-
ity. To assist in this endeavor, the methodology and evaluation chapters (chapters 3 and
4, respectively) are presented in a vignette-style, providing a step-wise description of the
framework which is easy to understand and evaluate. As our purpose is to present a general
framework, we refrain from specifying an exact scenario during these discussions. Nev-
ertheless, to demonstrate the overall utility, we do present an example in the concluding

section of the evaluation chapter.



Chapter 2 — Related Works

The goal of synthetic trajectory generation is to create a set of artificial trajectories from
a collection of a priori and/or empirically derived distributions as real world trajectories
are often unavailable or of limited size due to factors such as user privacy and ethics [119],
collection or storage limitations [64] [119], and/or researcher access. A major application
of synthetic trajectories is in the design and evaluation of spatiotemporal algorithms [171]
[237] [49] [106] [6]. Synthetic trajectories are also valuable for privacy protection [94]
[126] and testing the performance of spatial database operations [171] [64] [40] [56] [159].

A review of the related literature indicates that there are three commonly used ap-
proaches for constructing human related, synthetic trajectories, namely (i) moving object
generators, (i1) human mobility models, and (ii1) machine learning techniques. We review
the literature pertaining to each approach in the subsequent sections. We conclude this
chapter by comparing and contrasting the reviewed works with the proposed framework. It

is our intention that such a discussion will motivate the proposed work.

2.1 Moving Object Generators

A spatiotemporal moving object generator (MOG) is a configurable algorithm for produc-
ing high resolution spatiotemporal traces of moving objects. The earliest spatiotemporal
MOG is [208]. Its construction was motivated by the need to evaluate the performance of

spatiotemporal database systems that were, at that time, being developed [40] [208]. At
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that time, what was needed was an algorithm that could produce artificial traces that in-
corporated spatiotemporal properties. Despite the original purpose of MOGs, the ability
to construct trace-level data given a set of configurable parameters makes them useful for
tasks beyond performance evaluation; such as the evaluation of spatiotemporal algorithms
and data structures [171].

The related literature concerning moving object generators is not vast and can be
grouped into two categories'. The first category generates trajectories in unconstrained
free space. The second, generates trajectories that are network constrained. We begin by

reviewing the free space approaches.

2.1.1 Generation in Free Space

As noted earlier, the earliest MOG was detailed in [208]. The generator was presented
alongside design and evaluation considerations for spatiotemporal databases and is called
GSTD (Generate Spatial Temporal Data). The framework operates in free space and gen-
erates timestamped location tuples. The framework supports point and rectangular data.
The algorithm allows users to specify distributions (from a set of supported distributions)
controlling the jump between subsequent timestamps (called the duration), the shift of an
object and the resizing of an object (non-point data only). A later extension [173] enables
directed movement by adding an additional parameter and supports the creation of rectan-
gular infrastructure objects to simulate movement in obstructed free space.

A central issue with the original GSTD algorithm presented above is that the move-
ment is not necessarily as smooth as might be expected in the real world. While [173]
later addresses this through the introduction of a direction interval (holds the direction for
a certain period of time), [187] also addresses this issue in an earlier work. Their work is

inspired by a fishing scenario where trawlers go out in search of fish while avoiding stormy

"Moving object generators for indoor environments also exist but are of limited relevance to the current
work as vehicle traces are external events. See [104] and [135] for two approaches.
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areas. This work uses object avoidance as ships use a repulsion vector to avoid stormy
areas and an attraction vector to navigate towards shoals of fish. While motivated by a
very specific scenario, the general principles can be used to create moving objects for any
scenario where attractive and repulsive forces are present.

While the GSTD and Oporto algorithms allow for the generation of moving objects
which change their size, the shapes are limited to rectangles. While it is true that complex
shapes are often represented by bounding rectangles [187], at times it is necessary to fully
represent the complex shape. Examples include tracking storms or the evaluation of pattern
mining algorithms [13]. [215] presents the G-TERD (generator of time-evolving regional
data) framework which supports arbitrary 2D shapes that change their spatial location, size
and/or shape according to speed, zoom and rotation angle parameters. The framework
also hints at object interaction, something that will become more readily implemented in
network-constrained MOGs, by allowing regions to avoid each other and pass over others
(e.g. a cloud passing over an island). The framework produces a sequence of multicolored
images.

The ERMO-DG framework also generates moving object regions of arbitrary size but
does so with a focus on incorporating spatiotemporal patterns so that the produced tra-
jectories can be used in evaluating spatiotemporal pattern mining algorithms [13]. The
framework operates by constructing randomly generated (but configurable) feature types
that control the shape, area, lifetime, velocity and acceleration attributes of the generated
objects. Next, a collection of core and overlap patterns are produced by randomly combin-
ing feature types. Those patterns are assigned to spatial neighborhoods which will generate
instances that follow the patterns specified. The framework is highly parameterized, allow-
ing an analyst to construct datasets that meet certain pattern criteria.

Moving object generators have also been proposed for creating call detail record
(CDR) data. The CENTRE (CEllular Network Trajectory Reconstruction Environment)

framework extends the GSTD algorithm and features many notable improvements [82].
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First, through the use of a GIS program, obstacles of arbitrary shape can be constructed.
Second, group behavior, where objects share similar attributes, can be achieved in a sin-
gle simulation run and objects can shift between groups. The synthetic CDR data can
be transformed into trace-level trajectories through a naive trajectory reconstruction algo-
rithm. The WHERE framework provides another approach to generating synthetic CDR
data but unlike CENTRE, WHERE incorporates empirically derived distributions control-
ling home and work locations, commute distance, spatial call patterns and temporal call
patterns [108]. While the framework does not claim to be a MOG, the synthetically pro-
duced CDRs implicitly provide a description of movement, even if it is at a course level.
The GAMMA (Generating Artificial Modeless Movement by genetic-Algorithm) frame-

work presents the earliest attempt at tuning a MOG from field data” [102]. The framework
views trajectory generation as an optimization problem and uses the genetic algorithm to
select valid trajectories according to a fitness score while permuting others to obtain new
(hopefully more representative) solutions. The generator requires a collection of reference
trajectories from which to infer the fitness score and thereby incorporate real-world behav-

ior. Applications are presented for generating CDRs and semantic trajectories.

2.1.2 Network Constrained Generation

In contrast to the previous set of MOGs which generate objects in an unconstrained (or
minimally constrained) environment, network constrained MOGs generate objects which
are confined to a network topology. Obviously, in some situations such a constraint makes
sense. For instance, motorists must travel from their onset location to their destination
according to the roadway network available to them.

The work presented in [40] is widely cited as the first attempt to constrain the move-

ment of generated objects in a realistic way (even though SUMO [140] technically appeared

>The SUMO framework presented later [140] does feature some native calibration tools for configuring
demand but such tools are not requirements in the simulation pipeline and therefore a default SUMO config-
uration is unlikely to produce accurate synthetics.
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earlier) . Motivated by the field of traffic telemetrics, the author details a generator capable
of producing network constrained objects on any arbitrary network. The framework se-
lects an onset and terminus node (through user controlled procedures) and routes an agent
along the network according to fastest path principles. Interaction between other objects in
the network is limited to the induced characteristics on edge speed and the resulting route
chosen. The framework is often referred to as Brinkhoff after the author’s name.

The BerlinMOD generator is similar in spirit to the generator presented in [40] but
focuses on the production of long-term observations (e.g. a month) [64]. The framework
focuses primarily on trips between home and work with additional trips being modeled in
the evenings or weekends. The trips are generated in a heuristic fashion and objects do
not interact with each other on the roadway (i.e. it is as if they are the only object on the
network). The framework features a number of native data export options and the default
map of Berlin that is used for generation can be substituted for another location.

Microscopic traffic simulators may also be used to generate network constrained mov-
ing objects if the simulator supports the exporting of vehicle positions. Microscopic traf-
fic simulators increase the fidelity of the generated output by incorporating car following,
lane-changing and gap acceptance theories; ensuring that interactions between objects are
modeled according to established traffic theory [70]. A prominent example of a traffic sim-
ulator supporting the generation of moving object data is the Simulation of Urban MObility
(SUMO) framework [140]. SUMO is highly configurable and allows an analyst to specify,
amongst other quantities: traffic control structures (e.g. stop signs or traffic lights), lane-
level details, vehicle types, traffic assignment approaches and intermodal routing. (Indeed,
SUMO'’s rich feature set provided strong motivation for its incorporation into the present
work.) The enhanced realism of microscopic traffic simulators does come at a cost and
therefore, distributed architectures have also been proposed [228] [234].

Intermodal routing is not a common feature in MOGs, prompting the creation of MW-

Gen (mini world generator), a MOG specifically designed to handle intermodal routes
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[230]. The simulation space is constructed from five infrastructure representations that
detail the roadway network, outdoor environment, bus network, metro network and indoor
floor plans. A global space is constructed on top of the infrastructure to facilitate infras-
tructure interaction. Synthetic trips between any two arbitrary points are constructed using
intermodal routes, if necessary.

A drawback in many of the reviewed MOGs thus far is that, with few exceptions,
no formal method is given to calibrate the various framework parameters so that the pro-
duced trajectories reflect reality. Indeed, merely moving objects along network edges only
partially increases the reality of the trajectories produced. To obtain more representative
parameter settings, information must be inferred from representative data. A handful of
literature pieces address this concern and present various solutions to the problem.

The ST-ACTS (Spatio-Temporal ACTivity Simulator) framework uses “various geo-
statistical data sources and intuitive principles” when constructing synthetics; features, the
authors claim, were neglected in earlier MOGs [84]. The simulator relies on real-world
data sources detailing (i) demographics, (ii) business/facility information, and (iii) con-
sumer surveys. Synthetics are constructed by creating a synthetic population according to
the distributions present in the real-world data and then performing a discrete event simu-
lation using the generated population. The trajectories produced are symbolic. A potential
drawback of this approach is the large amount of data required.

Recent examples of MOGs continue to incorporate field data when producing synthet-
ics. Hermoupolis produces annotated, network constrained, pattern incorporating trajecto-
ries by using generalized mobility patterns (GMPs) extracted from reference trajectories
[170]. [200] presents a SUMO-based framework which generates traffic demand using L2

logistic regression and routes the resulting demand through SUMO.
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2.2 Human Mobility Models

Moving object generators are not the only technique available for obtaining synthetic trajec-
tories. As research continues to explore and demonstrate the predictability of human mobil-
ity [199] [60], increasingly better models of human mobility are being proposed which can
be used to generate synthetics at the scale of the individual®. In contrast to moving object
generators which are typically based on simplified models of mobility (notable exceptions
being SUMO [140], Hermoupolis [170] and GAMMA [102]), human mobility models are
concerned with accurately capturing a characteristic (or characteristics) of human mobility.

The ability to generate trajectories from such a model is merely a side effect.

2.2.1 Random Walk Models

Random walk models are an easy and often used, albeit not particularly accurate, ap-
proach for modeling human mobility [86]. In a random walk model, the position (any
arbitrary number of dimensions) of an agent after NV steps is given by the random variable*
Xy = sz\il AX;, where the displacement AX; is a random variable extracted from the
distribution f(Ax) with statistically independent draws. Each draw is referred to as a jump
as it represents a movement of the agent to a new position.

There are three techniques derived from the random walk model which are particu-
larly common in human mobility modeling [17]. The first is Brownian motion® (also used
for modeling particles suspended in fluids [221]) which stipulates that the displacement
AX, be drawn from a Gaussian distribution with a mean of zero and a variance propor-

tional to time ¢. The second commonly utilized technique is known as the Lévy flight®

3While models of human mobility exist at both the individual- and population-level, we restrict our liter-
ature review to those of individual movement since they are capable of producing trace-level trajectories and
are therefore most relevant to the proposed work. For an excellent and current review of human mobility at
both the individual and population level, the reader is encouraged to consult [17].

4We borrow the notation of [17] for all equations in this section.

>Named after the botanist Robert Brown who first described it.

®Named after the French mathematician Paul Lévy.
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model and can be constructed by requiring that the displacement AX; follow a heavy-
tailed distribution. The last random walk derivative commonly used for modeling human
mobility is the continuous time random walk (CTRW) model’ which extends the basic
random walk by also modeling the time between jumps according to the random variable
Ty = Zfil AT;. [41] argues that human mobility is characterized as a CTRW Lévy flight
model with heavy-tailed jump and time distributions but evidence suggests that such results
are not representative in general [86].

Instead, [86] argues that human mobility exhibits strong spatial and temporal regu-
larity as individuals regularly frequent a few select locations. [198] proposes a solution to
account for this trait by introducing two extensions to the traditional CTRW model. The
first is termed exploration as it models the probability that an agent will visit a new location
and is given by P,., = pS~7, where S is the number of previously visited locations. The
second is termed preferential return as it models the probability that an agent will return to
a previously visited location and is given by the complimentary probability P,..; = 1— P, ¢-
When returning, a location is chosen with a probability proportional to the number of visits
IT; = f; and the model parameters p and o are empirically derived from data. Collectively,
the exploration and preferential return steps are collectively referred to as the EPR model.

Despite the improvement of the EPR model, it is not without its faults. As noted
in [18], by only considering the frequency of visitation when returning to a location, the
preferential return extension will cause earlier visited locations to receive more visits and
prevents an individual from changing his/her preferences. To address this issue, the authors
present a model where with probability 1 — « an individual chooses to return to previously
visited location and each location’s selection probability is proportional to its recency rank
K.

Social interactions, such as family and friends, have also been shown to influence

mobility patterns. As [17] points out in its review of state-of-the-art mobility models (see

"Introduced in [152].
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section 4.1), the social network of an individual reflects the geography of their life. One
example further extends the EPR model for short-term social contexts by making a propor-
tion of the locations selected in the exploration and return stages dependent upon locations

visited by a similar social contact [214].

2.2.2 Markov-based Models

A commonly held assumption in many of the models discussed thus far is that human
mobility is Markovian [127]. This Markov assumption implies that agents are memoryless
and therefore the next state of an agent is only based upon its current state (or a limited
number of previous states k). Of course, such an assumption is not entirely true [127]
[73] but Markov processes do have their place and are often advantageous due to their low
computational complexity [127], their inherently generative nature (generating a trajectory
for each step conditioned on the previous £ states [94]), and the ability to define transition
probabilities between locations based on past trajectories [77] [73].

The Markov property is commonly applied to the task of location prediction [142]
[221] [11] [78] [180] [94] [162] [136] and such algorithms can be used to sequentially
construct trajectories (with known issues; see [56]) by taking advantage of the inherently
generative nature of Markov processes [56]. Probably the earliest work to use a Markovian
model for location prediction is [136] which presents a Gauss-Markov model for predicting
the future location of a mobile device in a cellular network. As with any location-based
model, the resolution of the generated trajectories when using such models is dependent
upon the level of discretization used in the spatial domain [116].

Because Markov-based models are naturally generative, some works do not detail a
formal generation procedure for producing synthetics. Others, however, explicitly incorpo-
rate the mobility model into a process for generating synthetic trajectories. For instance,
[94] presents a framework capable of generating trace-level synthetic trajectories with e-

differential privacy. The notable contributions of this work include the use of a hierarchical
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reference system (HRS) to decompose the spatial domain so as to capture variances in agent
speed and the inclusion of differential privacy.

[111] defines a generative process for constructing location-level trajectories between
three location types (home, work and other) as inferred from suitable data (GPS or CDRs).
The workplace is assumed to have fixed location, start time and duration. The remaining
temporal aspects are modeled at the individual level by a time-inhomogeneous Markov
chain with three parameters capturing (i) the weekly home-based tour number (to other
locations), (ii) the dwell rate, and (iii) the burst rate. Spatial choices, excluding work-
place selection, are modeled using a rank-based exploration and preferential return (r-EPR)
model. [162] proposes a framework which similarly separates the temporal and spatial as-
pects for modeling purposes. The process begins by learning time dependent trip diaries
which specify abstract locations (e.g. home, workplace, shopping mall). Then, the d-EPR
algorithm [164] [161] is used to to assign physical locations to the abstract ones in a data-

driven manner. Once again, the trajectories produced are location-level, not trace-level.

2.3 Machine Learning Techniques

One drawback with the approaches presented thus far is that each assumes a model of
human mobility can be defined and the required parameters estimated [74]. Given the
complexity of human mobility [74] [128], defining a model that strikes the right balance
between expressiveness and simplicity can be challenging. Motivated by the complexity of
such a situation, researchers began applying parameter-free (or non-parametric) machine
learning techniques to synthetics generation. The earliest attempt is claimed by [201] in
which the authors proposes a four-layer, “multi-task deep LSTM learning architecture” for
learning (predictive) models of movement and transportation mode from GPS traces [201].

In a more recent (2019) [105], the authors note that often the datasets used when

training a neural network are of limited size due to privacy and access constraints and
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propose the use of a variational autoencoder to construct a hidden space which captures
characteristics of the input and can be used to construct synthetic trajectories. Results
indicate the potential of the solution but the error may be too high for some applications.
[159] presents a state-of-the-art, GAN-based (generative adversarial network) tech-
nique for trajectory generation that utilizes trains a neural network (called the generator) to
produce trajectories which are indistinguishable from truth. The resolution of the trajecto-
ries is dependent upon the network grid discretization used. Other GAN-based techniques

for generating synthetic trajectories include [74], [128], and [56].

2.4 Comparison to GeoAware

Given the brief introduction of the framework in chapter 1 and the just presented litera-
ture review, one can see that there are similarities and differences between the proposed
approach and the relevant literature. Probably the most important similarity is that the
GeoAware framework appears to span all three categories. While the framework appears
to most closely fit within the network constrained MOG category, it also has features that
fall into the other two categories as well. Specifically, the the GeoAware framework and
the reviewed MOGs share the same purpose, namely, producing trace-level trajectories of
moving objects.

Nevertheless, unlike many MOGs, the GeoAware framework does not resort to purely
heuristic models but instead produces synthetics that are backed by a rational, seasonally-
aware process. The incorporation of a model that is not merely heuristic resembles the
approach taken by the reviewed human mobility models (see section 2.2). The GeoAware
framework is also similar to the reviewed machine learning approaches as it also posits that
mobility models are complex and subject to definition errors and expressiveness issues. As
such, the models used in GeoAware do not attempt to reason about the observed patterns

but instead only aim to accurately capture such patterns.
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Just like other MOGs, the GeoAware framework also focuses on providing an analyst
accessible framework for producing synthetics. In contrast, the mobility models and ma-
chine learning approaches are typically not designed with such a goal in mind and therefore
typically require much more analyst involvement in order to obtain usable trajectories. The
focus on producing a framework means that the goal is not merely to present a method by
which synthetics may be produced but is instead motivated by the need to make synthetics
generation available in many contexts where analyst knowledge of human mobility is lim-
ited. In GeoAware, accessibility is achieved by making the entire framework controllable
from the R programming environment. The MNTG framework shares this philosophy and
presents a web-based portal for producing synthetics using the reviewed, Brinkhoff [40]
and BerlinMOD [64] generators [151]. [163] presents a similar framework focused on hu-
man mobility models. The framework allows an analyst to load, represent, clean, analyze,
generate and assess the privacy risk of mobility data.

Probably the chief difference between the proposed work and the reviewed literature
is the focus the GeoAware framework places on using field data to configure the MOG so
that it produces synthetics which are realistic. To be sure, recent MOGs increasingly in-
corporate field data for calibrating generator parameters [84] [170] [200] [108] [102], but
the integrated approach and the data source used by GeoAware is uncommon in the liter-
ature. Of the reviewed MOGs, only a few specifically use trajectories when constructing
their models for synthetics generation [170] [102] [200]. Of these, none present a modular
and reusable component aimed at producing calibrated settings from such data. Instead,
because of the extremely general nature or a highly specific application, an analyst would
have to properly ingest the trajectory data in order to utilize the framework. In contrast, the
GeoAware framework presents an approach which only requires an analyst to point to the
proper source files. In many modules, if an analyst wishes to provide a custom algorithm it
can be done but he/she need not do this in order for the framework to function.

Furthermore, in many of the reviewed MOGs the calibration of generator settings is
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limited to minor parameter settings or specifying the infrastructure. While such settings
are important, they are not sufficient for producing realistic trajectories. Of course, the
GeoAware framework does not calibrate all possible settings but by using low-level tra-
jectories, the GeoAware framework calibrates the demand used to generate the synthetic
trajectories. The idea is that if realistic demand can be provided to a microscopic traffic
simulator, the simulator’s car following, lane changing and gap acceptance models can be

used to produce realistic synthetics.
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Chapter 3 — Methodology

The GeoAware framework for producing intelligently-calibrated synthetics is illustrated
in figure 3.1 and can be divided into two main components. The geoaware component
calibrates the demand component of a vehicle simulation scenario using inferred mobil-
ity patterns from the supplied trajectory data while the libsumor component generates the
desired synthetic vehicle trajectories by building a simulation from the produced scenario
and running it. Splitting the framework in this manner highlights the distinction between
building a scenario to represent a real-world environment and the actual running of that
scenario to produce the desired synthetic trajectories. This partitioning also enhances code
reusability, as the base-level simulation engine becomes a reusable module that performs
simulations according to a given scenario. The inputs to the framework are (i) trajectory
data, (ii) a roadway network, (iii)) community definitions, (iv) timing parameters, and (v)
a configuration file. Before proceeding to detail the framework and its use of such in-
formation, we start with a high-level sketch that illuminates the interaction of the various
components.

To obtain the synthetic vehicle trajectories we seek, it is necessary to build a simula-
tion scenario for the transportation system under study. A simulation scenario is a repre-
sentation of a real-world system that is described by a fitted model. A simulation scenario
is a powerful data structure as it allows an analyst to adjust properties of the model in order

to analyze various situations. For instance, one scenario might represent the current-state
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Mode: XML
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Mode: Wrapper

Figure 3.1: High level component decomposition of the GeoAware framework

whereas under a different parameter set a future-state scenario may be represented.

The construction of a calibrated simulation scenario is handled by the geoaware com-
ponent and is represented by the green block in figure 3.1. The first step towards creating
such a scenario is specifying the location of the required inputs. Section 3.1 presents this
discussion, detailing the relevance and formatting requirements of the (i) trajectory data,
(i1) roadway network, (iii) community definitions, (iv) timing parameters, and (v) configu-
ration file. This step is represented by the blue data block in figure 3.1.

Next, in section 3.2 we construct a model of agent demand from the reference trajecto-
ries. We align our work with the state of practice in urban demand modeling and present an
approach based on the traditional, four-step transportation model [3]. This fact is noted by
the black block shown within the geoaware component of figure 3.1. Section 3.2.2 opens
with a historical preliminary that justifies the use of the four-step model in the current work.
Afterwards, we construct the various pieces of the four-step model by inferring quantities
from the reference trajectories. Specifically, this means (i) inferring demand through sea-
sonal, macro- and micro-level procedures as detailed in section 3.2.3; (ii) specifying the
mode of travel as detailed in section 3.2.4; (iii) generating stochastic trips and (iv) assign-
ing paths to the trips using the procedures presented in section 3.2.5. In figure 3.1, these

steps are represented by the green sub-blocks of the geoaware component and the Path
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Assignment sub-block of the libsumor component (path assignment relies on SUMO).

The demand model fitted, the last step of the geoaware component is to build a sim-
ulation scenario. In our discussion of the framework so far, we have specified the required
inputs and outlined how to fit a demand model using inferred mobility patterns but we
have not used this data to obtain a more realistic simulation environment. Section 3.2.6
addresses this topic by detailing the components of a scenario. This process is shown as
the pink ellipse in figure 3.1.

At the conclusion of the geoaware component, a scenario calibrated according to
the observed mobility patterns now exists. The next step is to evaluate this scenario in
order to obtain synthetic vehicle trajectories. Due to the complex (and often unobservable)
set of interactions in transportation models, realistic evaluation becomes intractable using
analytic approaches [70] [169]. Instead, simulation must be used to evaluate the scenario
in order to capture the rich set of intricacies that analytic approaches fail to recover [70].

In the GeoAware framework, we have chosen to use the SUMO microscopic traffic
simulator due to its open-source nature, its extensive suite of features and its ability to
be extended [123]. We implement our extension for scenario evaluation in the libsumor
component as detailed in section 3.3. The libsumor component is shown as the orange
block in figure 3.1. The black box within the libsumor component notes that we rely on
SUMO to perform the microscopic simulation.

The libsumor component takes the specified scenario and evaluates it via a custom-
built interface with the SUMO engine. The network provided at scenario definition details
the roadway on which to route the simulated agents and details supply constraints such as
the number of lanes, junction locations, speed limits, traffic lights, and many other such
features. The trips specified in the scenario guide the onset and destination selection of
the simulation routing procedure such that the generated vehicle paths reflect the patterns
inferred from the reference trajectories. The synthetic mobility records are then extracted

by retaining the relevant statistics from each of the simulated agents injected into the sim-
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ulation. In addition to producing synthetics, the libsumor component also provides XML-
based simulation support for SUMO as well as a prototype wrapper class that provides
enhanced control of the SUMO simulation engine from within the R programming envi-
ronment. The various operation modes are shown as the orange sub-blocks of the libsumor

component in figure 3.1.

3.1 Data Preprocessing

In order to obtain a simulation scenario that is calibrated from micro- and macro-level mo-
bility trends, the GeoAware package requires data inputs detailing the (i) trajectory data,
(i1) roadway network, (ii1) community definitions, (iv) timing parameters, and (v) a con-
figuration file. Where necessary, these inputs must undergo a preprocessing step to ready
them for use by the framework. In this section, we detail the relevance of such inputs and

the formatting requirements for each. We begin by considering the reference trajectories.

3.1.1 Reference Trajectory Data

A trajectory (also known as a mobility-record) represents a geospatial trace of agent move-
ment across time. The detail level of the trace may vary from being minimalist, only
including details such as the onset and terminus [156], to exhaustive, specifying the entire
path traveled [190]. To a large extent, the level of detail dictates the applicability of the
trajectories for certain applications.

The positions of agents are captured through a location acquisition system such as GPS
(global positioning system), GSM (global system for mobile communications) or WAMI
(wide area motion imagery) [174]. As noted earlier, mobility-records are capable of pro-
viding powerful insights which aid in knowledge discovery of environment dynamics. In

the present work, we are interested in inferring and replicating certain macro-level mobility
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trends as well as, to the degree supported by data, micro-level trends present within such
trajectories since such trends are indicative of the dynamics driving a geospatial environ-
ment.

The macro-level inference performed within the GeoAware framework requires that
the trajectories minimally detail a starting and ending region with associated timestamps
whereas micro-level inference requires the specification of a starting and ending location.
Minimally then, we require that the trajectory data CSV provided to the GeoAware cali-
bration procedure detail at least the onset and terminus locations with rows consisting of
the four-tuple of attributes (<id>, <timestamp>, <x>, <y>) for the onset and
terminus locations of each agent (when no precise location data is available, the x and y

locations are set to the centroid of the region).

3.1.2 Roadway Network

The layout of roadways and intersections within a geographic environment may be natu-
rally modeled as a directed graph G = {V, E'} where the vertices V' represent intersections
and the edges F represent directed roadways between vertices [81]. To make the graph
more realistic, one often ascribes various features to its components, such as the intersec-
tion type (traffic light, all-way stop, 2-way stop, etc.), intersection location, speed limit,
shape of the roadway, or number lanes. We refer to such a graph and its collection of fea-
tures as a roadway network map. A map is foundational when generating synthetic traces
as it specifies the physical constraints of a roadway environment as well as, when loaded
into a simulation, the temporal aspects of the environment (e.g. speed of link under de-
mand). The accuracy and detail of the map directly affect the accuracy and detail of the
generated mobility-record traces.

Given the importance of obtaining an accurate roadway network map, a logical next
question concerns how to obtain such a map. Unfortunately, no single answer exists as

each situation requires a different level of accuracy and may mandate a particular data
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source. Typical free sources for roadway maps include OpenStreetMap', the Census Bu-
reau’s TIGER/Line Shapefiles> or governmental authorities. In situations where a high
degree of accuracy is required such sources may not be enough and therefore obtaining
a roadway network may become a more manual process, requiring the fusion of multiple
resources. In projects with more moderate accuracy requirements, minor adjustments to
such sources may be all that is necessary. Such maps may be stored in a variety of file
types, with the most popular being shapefiles, GeoJSON (JSON with geometry support),
GML (Geography Markup Language), OSM (open street map XML), and KML (Google
Keyhole Markup Language).

The SUMO traffic engine used by GeoAware details its own XML-based format for
defining roadway networks®, making the conversion of a source map to the SUMO format
an almost certainty. The SUMO specification splits the network into five (5) different XML
files that detail the nodes, edges, edge types, connections and traffic light logic associated
with the network. Once the files are specified, the SUMO netconvert command must
be issued to generate a single network file (x . net . xm1) from the component files.

Thankfully, SUMO natively supports conversion from a handful of sources, including
shapefiles and the OpenStreetMap XML format (OSM), avoiding the need to hand-define
the component files. Nevertheless, despite the native support, this does not mean that every-
thing will be converted as expected or without any analyst input. At a minimum, a review
of the converted network is necessary but more often parameter tweaking is required in or-
der to obtain a network of the desired quality. The GeoAware framework expects the paths

to the various network component files.

! https://www.openstreetmap.org
thtps://WWW.census.gov/geographies/mapping—ﬁles/timef series/geo/tiger-line-file.2019.html
3https://sumo.dlr.de/docs/Networks/PluinXML.html
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3.1.3 Community Definitions

The ability to infer mobility patterns assumes that the roadway network may be decom-
posed into a collection of known and disjoint, geographically-defined communities. Such
community definitions provide a level of aggregation, allowing for the recovery of trends
that may not be noticeable (or accurate) when only observing individual tracks.

The communities are merely a polygon (or a collection of polygons) that is associated
with a unique identifier. Typical examples include census tracts or communities within a
city, although, grouping by different metrics, such as income, is also possible. The frame-
work expects the community polygons to be defined in a single CSV file with a row per
polygon point that details the following attributes:
<region-label>, <community-label>, <x>, <y>.The<region-label>
field must be unique to each polygon, however, the <community-1label> may be reused,
allowing communities to consist of multiple regions.

The traffic analysis zones are built from the community definitions provided and there-
fore it is assumed that TAZs are known prior to utilizing the GeoAware framework. In the
GeoAware framework, traffic analysis zones (TAZs) are a geographic discretization of a
roadway network into delineations of edges that share common properties. A TAZ may be
any size depending upon the needs of the analyst. The GeoAware framework represents
TAZs as objects which associate the edges belonging to TAZ with a label. The TAZ may
have any number of fields, allowing for storage by other components in the framework and
extensions. TAZs are used to define the blocks used by the SDSBM-based trip demand
procedure and for inferring micro-level inference at a per-TAZ level.

It is known that arbitrary delineations can skew the statistics obtained [158], therefore,
care should be taken when constructing the community delineations. In traditional trans-
portation modeling, zones are typically coordinated with census data in order to determine

demographic properties.
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3.1.4 Timing Parameters

The timing parameters control the aggregation used when inferring patterns and the res-
olution of the produced synthetics. There are three parameters that must be specified.
The SDSBM fit intervals control the level aggregation used when inferring macro-level
demands. Coarse resolutions result in more data aggregation. The fit intervals must be
provided to the framework as a two column CSV file with headers <onset-time> and
<terminus-time> where each row is assumed to represent a sequential interval (a, b].

The seasonal periodicity parameter details the length of the seasonal cycle. This value
is set based upon analyst intuition and/or exploratory data analysis. For instance, to model
mobility with weekly seasonality, the analyst would set the periodicity parameter to a week.
The periodicity is used by both the macro- and micro-level inference procedures.

The simulation granularity controls the resolution of the produced synthetics by sub-
dividing the SDSBM fit intervals according to the granularity specified. This parameter is
necessary to translate the macro-level demands into a finer resolution as the macro-level
procedure scales with the sample size and it is therefore often impractical to set the fit

intervals to the resolution that is ultimately desired.

3.1.5 Configuration File

The configuration file controls various parameters pertaining to the libsumor component.
The file serves three (3) main functions, namely, (i) configuring the simulation engine, (ii)
configuring the libsumor mode, and (iii) detailing the locations of required files. The file
is YAML-based* and hence, encodes the settings and corresponding values as a series of
<key>: <value> pairs. A table summarizing the available keys is presented in table

3.1. Keys requiring additional detail are discussed below.

4https://yaml.org
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Key

Description

Required

sumocfqg

string — Where to write the SUMO con-

figuration file (. sumocfg) to.

v

input.net—-file

string — Location of the network that

should be used during simulation.

input.route-files

string — Where to write the constructed

trips to.

input.additional-files

string — Where to write the additionals
(#.additionals.xml) file to. Stores

vehicle type information here.

If
vIype

is set.

<configType>.<setting>

string — General format for specifying ar-

bitrary SUMO parameters.

vType

collection — Specifies custom vehicle

types. See body text for formatting.

geo

bool — Store trajectory positions in Carte-
sian (FALSE) or latitude/longitude format
(TRUE). Requires synthetics mode to be

effective.

Csv

string — Where to write trajectories CSV.
Need not be supplied if all records are to
be stored in memory. Requires synthetics

mode to be effective.

csv_detail

collection — Bitmask indicating CSV
level of detail. See body text for format-
ting details. Requires synthetics mode to

be effective.

If csv

1s set.
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Key

Description

Required

csv_precision

integer — Precision when writing out
floating point values. Requires synthetics

mode to be effective.

If csv

1s set.

Ccsv_sep

string — The CSV separator character.

Requires synthetics mode to be effective.

If csv

18 set.

depart

bool — Filter synthetics by departure time
field. Requires synthetics mode to be ef-

fective.

edges

collection — Filters the synthetic vehicles
produced by the edges in the provided list.
See body text for formatting details. Re-

quires synthetics mode to be effective.

intervals

collection — Filters the synthetic vehicles
produced by the supplied time intervals.
See body text for formatting details. Re-

quires synthetics mode to be effective.

Table 3.1: Configuration file parameters

The keys used to configure the SUMO simulation engine come from the XML-based

SUMO configuration schema® and provide an analyst with fine-grained control over such

quantities as the time settings, processing parameters, routing algorithm and output. The

keys are constructed by preprending the configuration type of the setting (a type of parent

class denoted in the schema as configurationType) to the setting name with a dot

5https://sumo.dlr.dc/xsd/sumoConﬁguration.xsd
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(“>”) between the quantities. For instance, the key for configuring the file path to the
roadway network is input .net-file since the net-file setting is a member of the
input configuration type.

The keys used to configure the operating mode allow an analyst to control the detail of
the produced synthetics, specify edge- and time-based filtering, and specify vehicle types.
The csv_detail key takes a bitmask value that allows an analyst to control the amount
of data written out to the produced CSV file. An example bitmask with the associated fields
is presented in table 3.2. In this example, the <id>, <x>, <y> and t ime are saved only

for the bounds of the trip, namely the onset and terminus locations.

7] (0]

2 q) 0B || 2o
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Table 3.2: CSV output bitmask

The libsumor component also supports multiple vehicle types and is further detailed
in section 3.2.7. The vehicle types are defined through the vType key which takes a
YAML-encoded collection of dictionaries: [{id: <typel>, ...},

{id: <type2>, ...}, ..., {id: typen, ...}1. For example, an ana-
lyst could define a taxicab type through the following statement: vType: [{id:
taxicab, accel: 5, maxSpeed: 70, vClass: taxi}].TheSUMO sim-
ulation engine supports many vehicle type attributes® controlling the maximum speed, ac-
celeration, car following model, vehicle class, vehicle capacity, and GUI parameters.

The depart, edges and intervals keys define the filtering that is performed on
the produced synthetics. For the edges key, if depart: TRUE, the synthetic vehicle
must depart from an edge in the provided list in order to be retained, otherwise, only the
portions of the trajectories that coincide with the edges in the provided list are retained

from each of the produced vehicles. In the intervals key, if depart: TRUE, the

6https://sumo.dlr.de/docs/Deﬁnition,of,Vehicles, _Vehicle_Types, _and_Routes.html]
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Figure 3.2: Breakdown of the geoaware component

synthetic vehicle must depart during a valid interval, otherwise, only the portions of the
trajectories that coincide with valid intervals are retained from each of the produced vehi-
cles. The intervals are supplied as consecutive intervals in ascending order. For example,

intervals: [a, b, c¢, d] corresponds to the intervals [a,b) and [c, d).

3.2 The geocaware Component

The data preprocessing steps complete, we now define the geoaware component. The job
of the geocaware component is to produce a demand-calibrated simulation scenario. The
geoaware component achieves this goal in two steps. First, the supplied data is ingested
and a model of the agent demand produced. Next, the demand model is stochastically
queried to produce a simulation scenario with calibrated demand.

The organization of this section is centered around these two steps. Sections 3.2.1
— 3.2.5 detail the production of the demand model while sections 3.2.6 and 3.2.7 discuss
the production of a demand-calibrated simulation scenario. A graphical overview of these
sections is shown in figure 3.2. Throughout the discussion, we provide updated graphics

which indicate our current position within this figure.
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3.2.1 The Demand Model

The Demand Model

We begin by detailing the model we will use for constructing demand. Vehicle mo-
bility models fall into either trip- or activity-based approaches, with the former being far
more prevalent [38] [206] [192] [8]. Trip demand modeling is the process by which statis-
tical properties of trips are inferred from data and used to forecast (predict) the amount of
trips that should be generated (demanded). In the context of our current application, a trip
demand model is necessary for two reasons. First, we desire to extract patterns of mobility
exhibited in the trajectories. We are not merely interested in replicating the trajectories
but instead seek to discover patterns that are characteristic of the data. The second reason
why a demand model is necessary is so that it can be queried during the production of the
synthetic vehicle traces. Having a model makes the querying process trivial.

Arguably, the most famous (and infamous) demand model is the Urban Transportation
Planning (UTP) procedure which presents a trip-centric, four-step process for modeling
trip demand [192] [147]. Such an approach is contrasted with the activity-centric view of
activity-based approaches. Activity-based approaches argue that travel (i.e. trips) is the
consequence of actors who need/want to engage in certain geospatially located activities
and therefore emphasis is placed on modeling the behavior that produces travel demand’
[206] [8]. Regardless of the approach taken, its important to understand that demand mod-
eling is not purely scientific as it involves irrational humans and therefore, since all models
will by their nature be “metaphors” of reality, the best one can hope for is a model that

provides the necessary level of detail and approaches the true state while being fully aware

"For a thorough discussion of activity-based demand models, please see the book-length treatment pub-
lished by the Transportation Research Board (TRB) [45] or the academic paper by Algers, Eliasson and
Mattsson [8].
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that such a model is not the true state [192].

Given our deliberate desire to remain as data-driven as possible and avoid placing
any unnecessary assumptions on the data, we have chosen to utilize UTP-based procedure
for modeling demand in the GeoAware framework due to the lack of behavioral data in
trajectories (as well as the general lack of behavioral data [192]). In aligning our work
with the UTP procedure, we do not intend to present a framework for traffic planning (al-
though it could certainly be used for it) nor are we unaware of drawbacks associated with
the UTP procedure. Instead, despite the drawbacks, we utilize the UTP procedure as it
presents an established, logical, and extendable procedure for constructing a trip demand
model capable of producing the synthetics we seek. Additionally, due the prevalence of
the UTP procedure in Metropolitan Planning Organizations (MPOs are the federally rec-
ognized organizations responsible for transportation planning within an urban area) [206]
[192], aligning our approach with such a procedure supports the immediate utility of the
work.

The UTP procedure is an iterative approach to travel demand modeling that is com-
monly employed by traffic forecasters to assess future travel demand in response to land
usage, population demographics and/or infrastructure [25]. Using forecasts of land use,
population, employment and infrastructure, future estimates of travel demand and the in-
duced supply-demand interactions can be obtained using the UTP procedure [25].

The procedure is divided into four sequential steps and is really an abstraction of a
traveler’s decision making process. As noted in [206], the itemization of four steps is not
meant to imply that travelers go through these exact four steps in the order specified but
is instead a model of traveler behavior which produces suitable results in traffic research
[38] [206]. The model’s fundamental unit is a trip which represents the movement of some
quantity of people (e.g. a single individual or a vehicle with riders) between an onset and

terminus location without any intermediate stops [206].
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The initial step® in the UTP procedure is the trip generation step. This step seeks to
detail how much traffic should be attracted to and departing from an aggregate geographic
region known as a TAZ based upon the land use and demographic indicators associated
with the TAZ [206]. Trips are segmented by purpose under the assumption that different
trip purposes give rise to different behavioral characteristics [206]. The three classic trip
purposes are "home-based work™, “home-based nonwork™ and non home-based” each of
which illustratively detail the general goal of the trip [206].

The next step is trip distribution and it is concerned with disaggregating the trip pro-
ductions and attractions produced for each TAZ during the trip generation step into macro-
level flows between TAZs in an attempt to satisfy the demanded flow properties (incoming
and outgoing) for each TAZ. A gravity model is typically employed for the decomposition
[206].

The next step is known as mode assignment and it further decomposes the trip dis-
tributions by travel mode based upon a variety of factors [90] [206]. Two popular mode
choices are the private vehicle and public transit.

The final step, and arguably the most involved step, is called route assignment. Route
assignment is concerned with assigning routes through the network to the trips demanded
by the trip distribution step according to the chosen modalities [206]. This step is done
so as to obtain the induced affects of supply-demand interactions, such as edge flow and
congestion, on travel times through the network [54] [206].

In sections 3.2.2 — 3.2.5, we detail each of these steps and indicate how the model is
constructed from the supplied data. Specifically, we begin with a brief history of the UTP
procedure in section 3.2.2 which establishes the prevalence and extensibility of the UTP
procedure. Then, in section 3.2.3 we detail the trip generation and distribution steps via the
use of macro- and micro-level inference procedures. Specifically, we (i) infer macro level

travel patterns between TAZs using an SDSBM, (ii) capture the temporal distribution of

8We present the four steps in the traditional order but alternative orderings do exist. See [38] for a discus-
sion.
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trips within each block, and, when available, (iii) capture the edge selection choices. Next,
section 3.2.4 details the mode assignment step by specifying how the GeoAware framework
supports multiple modalities. Last, in section 3.2.5 we detail how routes are assigned to

each of the trips demanded.

3.2.2 A Review of Urban Transportation Planning

geoaware

e e an Mode) |

A Review of Urban Transportation Planning

In this section we present a brief history of the UTP procedure. This presentation is
meant to be more than merely informative and seeks to establish a context for the proposed
modeling approach and demonstrate the prevalence of the UTP procedure throughout the
history of urban transportation planning. For a more thorough treatment, the interested
reader is encouraged to consult the works of Shuldiner and Shuldiner [192], Boyce and
Williams [38] and Jones [112].

Urban transportation planning originated in the United States and arose out of a cul-
mination of advances in the 20th century. The dominance of the United States’ economy,
widespread automobile ownership, urbanization (both urban and suburban) and an array of
infrastructure projects (most notably the Federal Aid Highway Act of 1956) resulted in an
ever-increasing number of vehicles on the roadway and its inevitable side-effect: conges-
tion [192] [30] [112]. Obviously an annoyance when traveling, early traffic planning (prior
to the 1960s) focused predominantly on measuring traffic and “fixing” congestion through
infrastructure capacity additions [192]. Congestion still remains a central motivation for
traffic planning today.

By the mid 1950s, because of the large-scale highway infrastructure contemplated

with the passage of the 1956 Federal Aid Highway Act, a paradigm shift was needed in
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order to appropriately model the contemplated situations. Two foundational transportation
studies of Chicago, Illinois (1955-1959) and Detroit, Michigan (1955-1956) during this
era led the way in what would become the current, decades old practice of using land-use
characteristics to forecast travel demand [192] [206]. The Chicago-based study was the
first transportation study to use a process resembling the current four-step UTP procedure
[38].

The 1960s saw the solidification of the land use-based, four-step UTP procedure and
its prevalence in traffic planning due to the passage of the 1962 Federal Aid Act which
hinged the expenditure of Federal funds in urban areas of more than 50,000 in population
on some form of transportation planning [192].

The 1970s brought many lasting changes to transportation modeling. Various disag-
gregate improvements to the UTP procedure based upon microeconomic consumer demand
theory were proposed [227] [177] [224] [10] [37] [38], some of which have become stan-
dard practice [206]. Dynamic traffic assignment (DTA) materialized as researchers sought
to model variations in traffic flows and conditions which were, up to that point, assumed
to remain static (time invariant) throughout the forecasting period [169] [54]. The use of
simulation became widespread during this era (with an “explosion” during the 80s and 90s)
and as a result, the mainframe-based modeling programs were replaced by private-sector
(or academic), personal computer-based applications [137] [35].

Activity-based approaches also began to appear in the 1970s, bringing activity-based
travel theory to transportation modeling in order to rectify certain inadequacies of the UTP
procedure [37] [92]. Such approaches were fundamentally different than those previously
proposed as they saw travel as merely demand derived from individuals who need/desire to
engage in certain geospatially located activities [37]. Notable examples of activity-based
frameworks include [186], [37] [89], [182], [181] and [216]. Activity-based approaches
have been applied in cities such as San Francisco, California; New York, New York; and

Columbus, Ohio [206].
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As we advance to the current era in transportation modeling, despite an ever growing
collection of traffic planning related literature, the theoretical popularity of activity-based
approaches (particularly in academia), and the overwhelming amount of data available (or
capable of being captured) regarding an individual, the state of practice in travel planning
has not changed substantially since the introduction of the four-step UTP procedure back in
the 1950s [35] [38] [206]. The push for deployable solutions by traffic planning practition-
ers has resulted in a rift between the practical and the theoretical which every so often is
theoretically challenged but more often is bridged by various theoretical extensions which
aim to solidify the predominantly pragmatic underpinnings of practical approaches. [38]
hints at this notion in their review of travel forecasting when they say that “the remarkable
longevity of those models of the ‘traditional form [such as the UTP procedure],” however,
is due to their capacity to absorb innovations” and “in spite of known deficiencies, pro-
fessionals trained in the use of these methods are, on the whole, comfortable with their
results.” It is within this historical context that we introduce the geoaware component; an-

other extension to the UTP procedure which increases the realism of the demand produced.

3.2.3 Trip Generation and Distribution

geoaware

The first step in our model towards generating calibrated trip demand is to generate

trips. In the UTP procedure, this step is separated into trip generation and trip distribution
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steps’ [206]. The goal of the trip generation step is to generate a pair of trip productions
and trip attractions per TAZ over the analysis interval [226]. The idea is that features of the
TAZs induce a certain production and attraction of trips. For instance, a central business
district in a city is likely to attract many more trips than it produces in the morning hours
due to the high number of businesses within the area.

The trip distribution step of the UTP procedure disaggregates the trip productions and
attractions into macro-level flows between pairs of TAZs [226]. The output is typically
represented in an origin-destination matrix (O-D matrix); so called because the form suc-
cinctly codifies the distribution of the trips between the origin and destination TAZ pairs
as a matrix where the rows and columns represent the TAZs. This step can be thought
of as attempting to satisfy the flow constraints specified by the production and attraction
pairs articulated during the trip generation step'®. As there are a myriad of onset-terminus
pairs that satisfy the flow demanded, a model must be used to select the relative frequency
of each pair. For instance, consider a three TAZ network where the TAZs are categorized
according to whether the land is predominantly used for residential dwellings, commercial
establishments or dining/recreation. In this environment, the trip generation step might say
that for the time period under study the residential TAZ should produce 1000 trips. The
choice in model dictates how the required trips should be distributed between the TAZs.

As one may have noticed in the above discussion, the trip generation and trip distribu-
tion steps of the UTP procedure are merely a procedural decomposition of the original trip
creation objective. While such a decomposition may be necessary in methodologies that
rely on aggregate statistics which contain no information regarding the distribution of trips,

the use of disaggregate statistics may make this decomposition unnecessary if the higher

9Strictly speaking, the UTP procedure segments by trip purpose before generating trips, however, in the
GeoAware framework we do not consider trip purpose as the SDSBM natively supports such demarcations
through its block structure if desired.

10We note that a drawback of estimating productions and attractions separately is that while the total
number of productions and attractions across the network are equal in theory, the separate estimation of these
quantities during the trip generation step may produce unbalanced productions and attractions in practice
[206].
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fidelity data implicitly includes such trip distribution information. The reference trajecto-
ries used by GeoAware are such a source and for this reason, we merge the trip generation
and distribution steps into one simultaneous step'!.

In the geoaware component, the creation and distribution of trip demand begins by
using a SDSBM to infer macro-level, seasonal patterns between TAZs in the reference
trajectories. Many authors have cited the seasonal (or regular) nature of mobility patterns
[199][142] [87] [184] [157], making a process capable of inferring seasonal trends valuable
for accurately modeling mobility. Next, the temporal distribution of the trips is captured
through a micro-level inference procedure that constructs seasonal time profiles of trip
departures for each of the SDSBM blocks. Finally, to disaggregate the distribution of
trips to the edge level (i.e. roadway), an edge-weight inference engine captures the edge
selection behavior of agents at a per-block level by producing a seasonally-aware edge
selection distribution for the onset and terminus TAZs of each block.

SDSBM Fitting

To accurately capture the quantity and macro-level distribution of trips from reference tra-
jectories, we utilize a dynamic stochastic block model (DSBM) that is specifically designed
to capture the seasonality exhibited in mobility patterns. The model is known as a seasonal
DSBM (SDSBM) and has been shown to accurately model regular, time dependent sea-
sonal processes'? [183].

The SDSBM, like all stochastic block models (SBMs), requires that the data to be
modeled is formatted as a graph G consisting of a set of vertices ) that represent communi-
ties and a set of edges £ that represent movement between communities [85]. To construct
such vertices V = {1,...,n} from the reference trajectories, we associate the onset and
terminus locations of the trips with the TAZ (defined from the supplied community defi-

nitions; see section 3.1.3) that encompasses each location. In this way, the multitudinous

"Various steps have been merged in earlier literature [47] [212] [225].
12As an applied work, we present only a review of the SDSBM. The interested reader is encouraged to
consult [183] and [184] for a more thorough and theoretically focused discussion.
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node locations associated with trip onset and termination (i.e. residences, marketplaces,
coffee shops, workplaces, etc.) are made structurally equivalent to a set of super-nodes
representing communities of interest [85]. Edge formation in the graph is assumed to be
dependent upon the (i) communities to which the incident nodes belong and (i1) time [183].
The time interval of study 7T is discretized into 7" intervals 7 = [1, 2,3, ..., 7| and edges are
only drawn between vertices if a trip (now represented by an onset TAZ, terminus TAZ and
trip duration) is active during the considered time interval. This produces a time-ordered
series of static graphs D = {G;, Gs, ..., Gr} which we call a dynamic network since the
edges appear and disappear (i.e. are dynamic) with time. The time interval information is
supplied via the SDSBM fit intervals presented in section 3.1.4.

The geoaware component represents the dynamic trajectory data network D as a time-
ordered set of adjacency matrices A = {A;, Ay, ..., Ar}. Each adjacency matrix A; is a
n X n matrix where the rows and columns represent the vertices and the value in cell [A;];
indicates the number of active trips in the current time interval ¢ between communities (ver-
tices) 7 and j'°. In SBMs, each directional pairing of vertices (i, j) is known as a block and
each block’s observations y(t](; j) are assumed to be characterized by a latent (unobserved)
random variable x[t] ) [148]. The relationship between a block’s edge counts in the ad-
jacency matrices y[t](; ;) and its latent random variable x[t]; ;) is given by a state space
model'* (SSM) [93]. Specifically, for each block (1, 7) the edge counts y|t] (i,j) are related

to the p x 1 latent signal vector X[t; ; according to the Bayesian linear model

yltl i) = hx[t]5) + w (3.1)

where h is a 1 X p observation vector that transforms the latent signal state into the obser-

3For efficiency purposes, the GeoAware framework actually linearizes the collection of adjacency matrices
to form a single 7' x N matrix where each cell represents the quantity of trips for a block (pair of vertices)
during a specific time interval.

4“The power of state space model representations lies in their ability to relate observations to unobserved
latent states through an observation equation. For an excellent treatment on SSMs, the reader is encouraged
to consult chapter 3 of [93].
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vations and w is Gaussian-distributed observation noise with probability density function
(PDF) w ~ N(0,02,). The p x 1 latent signal vector X[t]; ;) evolves with time according

obs

to the Gauss-Markov model

x[t](i,j) = AX[t — 1] ;) + Bu (3.2)

where A is a p X p transition matrix, u is a r X 1 transition noise vector distributed according
tou ~ N(0,Q) and B is a p x r matrix that applies the noise to the correct terms of the
signal state X[t](; ;). The transition noise u of the signal model serves to propagate the signal
vector X[t](; ; through time whereas the observation noise w represents the uncertainty in
the observations. The a priori parameters of the model are § = {A, B, h, 0%, Q}.

With the structure of the block model defined, we now identify the elements of 6. To
capture the seasonality exhibited within the edge counts of each (i, j) block, [184] proposes

the use of a basic structural model (BSM) [93]

Y[tlag) = bltlag) + sltleg) + €6 (3.3)

consisting of a bias term b[t]; ;) that establishes the general signal trend, a seasonal term
s[t](i ;) that shifts the bias according to the current seasonality position and a noise term e.
The bias term b[t]" is computed by adding transition noise u, ~ N(0, 07) to the previous

bias state

blt] = bt — 1] + (3.4)

The seasonal term is calculated based upon the length of the seasonal period p according to

the following zero-sum'¢ formula

15As each (i, j) block is modeled using its own BSM, hereafter, we drop the explicit reference to the block
for notational simplicity.

16The enforcement of the zero-sum criterion ensures that the seasonal components sum to zero over the
seasonal period. The notion behind the zero-sum constraint is that the average of p seasonal components
should be 0.
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s[t] = =) s[t —i] + us (3.5)
i=1

where u, is transition noise distributed according to the PDF u, ~ N(0,02) and p is a
hyperparameter set by the analyst that controls the seasonality length while the inclusion
of the stochastic noise term u allows the seasonal effects to change with time [93].
Transforming the BSM presented in equation 3.3 into the SSM representation of equa-
tions 3.1 and 3.2 is trivial as all linear univariate structural models have a state space repre-
sentation [93]. The bias terms b[t](; ;) and seasonal terms s[t]; ;) presented in equation 3.3
represent the latent state x[¢] as we observe the affects of these variables (edge counts) but
not the variables themselves. To represent these latent terms according to equation 3.2 we

define the latent signal x[t] as a p x 1 state vector'’

T
X[t] = |o[t] s[t] s[t—1] ... sft—p+2] (3.6)
the p X p transition matrix A as
1 0 O 0 0
0 -1 -1 -1 -1
o 1 0 ... 0 O
A= (3.7)
0 0 1 0 0
o 0 o0 ... 1 O

17We note that the pth seasonal term is not included in the signal state (keeping the signal state of dimension
p) since the zero sum constraint ensures that the pth term can always be recovered using the other p — 1
seasonal terms.
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the p X 2 noise assignment matrix B as

T
1000 ... 0
B = (3.8)
01 00 ...0
and the covariance matrix Q of the transition noise u as
02 0
Q= (3.9)
0 o?

The system transitions from state x[t] to X[t — 1] according to the transition matrix A.
Multiplying the first row of A by the signal vector x|t — 1] computes the bias term b[t] of
equation 3.4 without noise. Similarly, multiplying the second row of A by the signal vector
x[t — 1] produces the seasonal term s[t] of equation 3.5 without noise. The remaining p — 2
rows serve to permute the location of the seasonal terms so each seasonal term is updated
after p time steps. The B matrix identifies the terms in the signal state to which noise is
added.

To translate the latent signal into the observed edge counts, we utilize the observation
model specified in equation 3.1. In the BSM presented in equation 3.3, the edge counts
y[t] are related to the latent space through a simple summation of the bias term b[¢], the

seasonality term s[t]'® and some noise . Thus, the 1 X p observation vector h is simply

h=[1 1 0 ... 0] (3.10)

It is easily seen that multiplying h times the the latent signal state x[¢| results in equation

3.3 without the noise term. The noise term is handled by letting ¢ = w and drawing the

18We always reference the seasonal term in the second position of the signal state vector z[t] because the
transition matrix A (see equation 3.7) permutes the seasonal terms such that the seasonal term s[t] for the
current time interval ¢ is always in the same location.

46



observation noise according to the PDF of w (defined above).

With the state space model defined, we now proceed to estimate the latent signal states
X = {x[t]u ;4,7 € V} so that an edge count model can be constructed for each block
(1, 7). Estimating the latent signal state for a particular (4, j) block amounts to finding the
posterior PDF Pr(x[t] | y[t]; 0) for all ¢ using the edge count data observed for that block
y[t] and the a priori parameter set § [117]. One extremely common approach to finding the
posterior is to estimate it using a Kalman filter'® [114] which sequentially estimates a sig-
nal embedded in noise using observation data [117]. Before proceeding to use the Kalman
filter however, we must first estimate the unknown parameters in 6, namely §' = {03, Q}.
To estimate these quantities, we perform numerical maximum likelihood estimation (MLE)
which seeks to find the values of o2, and Q that maximizes the likelihood of the observa-
tions y[t] according to the state space model detailed in equations 3.1 and 3.2. A detailed
treatment of the MLE procedure can be found in Chapter 7 of [117].

Once the missing a priori parameters have been estimated, the latent signal states
X = {x[t]u ;4,7 € V} governing the edge counts of each block can be estimated using
using the aforementioned Kalman filter algorithm. The Kalman filter oscillates between
prediction and update steps® for each time ¢. The goal of the prediction step is to compute
a “best-guess” estimate of the current signal state x[t|t — 1] given the immediately previous
signal state x[t — 1]. The update step refines this prediction (i.e. the prior) through a
weighted difference of the observation y/[t] and its prediction x[t|t — 1]. The weighting used
is called the Kalman gain and can be scaled depending upon our trust in the observations.
We assume that the latent signal (comprised of the bias b[t](; ;) and seasonal s[t]; ;) terms)
is Gaussian distributed as are the observation noise w(; ;) and the transition noise u; ;),
resulting in a minimum mean square error (MMSE) estimator®!' [117].

When the full set of observations is known in advance, as in the present case, a smooth-

19 A process which estimates a signal z[t] using data {c[0], ¢[1], ..., c[t]} as ¢ continues to increase is called
a filter.

20Please consult Chapter 13 of [117] for details on each step.

2I'The interested reader is encouraged to consult Chapter 13 of [117] for the derivation.
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ing technique can be applied to obtain better posterior state estimates by considering all the
available data [184]. The GeoAware package uses the KFAS?? package for performing the
Kalman filtering as well as the Kalman smoothing. The smoothing procedure implemented
in the KFAS package is based on the work of [66]. The central idea of the algorithm is to
update the state predictions through a backwards recursive procedure that indirectly allows
each state prediction to take advantage of the observations that comes after. For a detailed
discussion of the smoothing procedure, the reader is encouraged to consult Appendix A of
[98].

Upon termination, the SDSBM fitting procedure outlined above produces edge count
fits for each block {(i,7);7,7 € V} by estimating the expected value of the posteriors
E(x[t],5)

particular block over a specified time interval and are called trip demands. The resolution of

y[1 : T)i,j)). The edge count fits detail the number of trips to generate for a

the supplied SDSBM fit intervals directly controls the detail level of the demands obtained.

Block-based Departure Time Profile

The demands produced via the SDSBM fitting procedure are at the detail level specified
in the provided SDSBM fit intervals (see section 3.1.4). Unfortunately, due to practical
efficiency constraints, the time intervals used in fitting the SDSBM (the provided SDSBM
fit intervals) are unlikely to be at the resolution desired for the produced synthetics. Such
constraints arise because the MLE procedure and the Kalman filtering procedure scale with
the size of the data. Thus, as the data increases in size so too does the processing time. For
instance, if the SDSBM procedure detailed above is used to infer mobility patterns over a
month of data at a resolution of a day, the resulting process is based on 31 data samples. If
however, the same time period is modeled at a resolution of fifteen minutes, the process is
now based on 2,976 data samples.

To address this lack of precision in a data-driven manner, we define an empirical

inference procedure which constructs a departure time profile for each block based upon

22https://cran.r— project.org/web/packages/KFAS/
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the departure times exhibited within the reference trajectories. Constructing a separate time
profile for each block enables the geoaware component to capture block-level travel pattern
differences and incorporate such information when generating synthetics. The resolution
of the resulting time profile is controllable by a simulation granularity parameter which
is one of the required data inputs (see section 3.1.4). By appropriately setting the simu-
lation granularity, macro-level trends can be captured by the SDSBM and further refined
according to the empirically modeled departure times.

The geoaware component allows an analyst to define a custom profiling procedure
that is applied to each block’s set of trajectory records or use the built-in method which
constructs these time profiles by identifying the departure times associated with a particular
block and then constructing empirical PMFs of the departure times for each period in the
defined seasonal cycle (set in section 3.1.4). The built-in procedure also supports block-
level additive smoothing [155] and Bayesian updating [97] for each period in the seasonal
cycle; giving additional control to the analyst and preventing undesired ”zeros” when no
empirical data exists.

Block-based Edge Weights

Up to this point, the outlined trip creation procedure has inferred (i) macro-level trip de-
mand between TAZs and (ii) micro-level departure time profiles for each block. A facet that
is lacking from our model is the selection of a specific onset and terminus location. While
TAZ-level aggregation may be useful for inferring patterns across structurally similar nodes
(i.e. belonging to the same TAZ), it does not provide any information specifically detailing
the onset and terminus locations that should be chosen for trips. To address this need, we
present an empirical inference procedure for determining the selection weights of the edges
associated with the onset and terminus TAZs of each block. The procedure jointly models
the onset and terminus location selection associated with each block and is therefore able
to capture the joint affect of the onset and terminus TAZs on onset and terminus location

selection. In keeping with the rest of the framework, we assume that the macro-level trip
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demand is not at the resolution desired and therefore a simulation granularity parameter
has been specified indicating the desired resolution. Additionally, because we are seek-
ing edge-level details, the reference trajectories provided to the framework must be trace
level. If trace-level reference trajectories are not supplied, edge-level inference cannot be
performed.

To model the edge selection probabilities for the onset TAZ of a block at the resolu-
tion specified, the nearest edge associated with the onset location of each trajectory in the
block is found. Then, for each seasonally related set of onset records, an empirical PMF is
constructed detailing the probability of starting from each of the edges in the onset TAZ.
The seasonally related set of records is constructed by subdividing the SDSBM fit intervals
into smaller intervals according to the specified simulation granularity and then grouping
the records according to an augmented seasonality length?}. For instance, if the SDSBM
fits were at a daily resolution, the desired simulation granularity set to fifteen minutes, and
the seasonality length set to seven days, because of the simulation granularity, every 96th
interval would be seasonally related.

To provide greater flexibility and to avoid “zeros” when assigning the edge weights,
the procedure supports block-level additive smoothing [155] and Bayesian updating [97]
for each simulation interval in the seasonal cycle. The terminus weights are computed using
the above process but now only considering the seasonally related terminus records. The
output of this procedure is a pair of multidimensional arrays for each block that details the
edge selection weights of the onset and terminus TAZs. The dimensions for these arrays
are ec X s X p, where ec is the number of edges in TAZ (), s is the number of simulation
bins each fit interval needs to be divided into in order to achieve the desired simulation
granularity and p is the number of periods (fit intervals) in a seasonal cycle.

Unfortunately, despite the usefulness of detailed trajectory data for mirroring reality,

not all trajectory datasets provide information at a such a fine-grained level (see chapter 1).

ZDue to the subdivision of the fit interval into simulation time intervals, the originally provided seasonal
period is no longer valid and must be augmented to take into account the subdivision.
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Therefore, in an effort to avoid making the GeoAware framework overly specific to a partic-
ular trajectory dataset, we have also made the edge weight inference procedure extensible

to allow different analyst-defined functions to be used when inferring edge weights.

3.2.4 Travel Mode Choice

geoaware

[ e Demand Modsl |
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The travel mode choice step of the UTP procedure is where a mode of travel is as-
signed to the trip demands identified in the preceding steps [206]. Examples of travel modes
include walking, cycling, using a private vehicle, or using public transportation. The typi-
cal approach taken to assign travel modes employs some statistical regression model [53].
As presented in [31], the mode choice can affect not only on the quantity of demand but
also the temporal distribution of that demand. According to [90], the key factors influ-
encing travel mode choice are individual/household demographics, the built environment,
individual preferences and trip-level specifics [193] [189] [32] [213] [63] [26] [204] [144]
[219]. Imagining the influence of these decision factors in choosing a travel mode is not
difficult as it is a process familiar to most.

The geoaware component does not explicitly model travel mode choice as such infor-
mation is not relevant to the macro- and micro-level inference procedures used to construct
trip demand from reference data. Nevertheless, multiple, time-dependent travel modes
may be indirectly modeled using the built-in mobility-record type support provided by the
framework (see section 3.2.7).

In this approach, a trip demand model for each mode is constructed from reference
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trajectories. Next, trip realizations are drawn from each trip demand model (see section
3.2.6) and then merged together using the built-in mobility-record type support provided
by the framework (see section 3.2.7). The result is a multimodal realization that not only
models the relative frequency of each travel mode but also preserves the temporal mobility
patterns (as inferred from the trajectory data) associated with each modality. This ap-
proach is advantageous as the underlying macro- and micro-level procedures used to infer
trip demands are agnostic to the data generating procedure, imposing minimal modeling
assumptions and lessening the traditional subjectivity induced on the travel mode model
by omitted explanatory variables (see [46] for a discussion of this in relation to the built
environment) [53].

Despite the power of this approach, it is important to recall that a core assumption of
the framework is that the provided trajectories must be considered representative. Certainly,
trying to infer patterns of a population from an unrepresentative sample is inexpedient.
Also, it should be noted that the GeoAware package exclusively focuses on vehicular travel

modes as we rely on SUMO for synthetics generation.

3.2.5 Route Assignment

geoaware

Once the generated trip demands have been assigned to a transportation mode (if nec-
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essary), the next step is to disaggregate the demands into actual trips which can be indi-
vidually routed through the network. The route taken is known as a path and is simply a
navigable sequence of edges through the network that fulfills the onset and terminus speci-
fications of the trip. The process by which such paths are determined and assigned is known
as route assignment and constitutes the final step of the traditional UTP procedure.

In traditional transportation forecasting models, this step is done so as to obtain the
induced effects of supply-demand interactions, such as edge flow and congestion, on travel
times through the network [54] [206]. In the present work, we seek the simulated vehicles
which induce such network properties rather than just the effects themselves®*.

In the geoaware component, route assignment occurs in two steps. In the first step, the
block-level trip demands are converted into edge-level trip specifications by assimilating
the inferred demands, departure time profiles and edge weights into a collection of trip
specifications that minimally detail the origin edge, destination edge, and the departure
time. Then, a route assignment procedure is specified which finds a navigable path through
the network to fulfill each of the specified trips. We begin by looking at the specification of
edge-level trips.

Edge-level Trip Specification

Before synthetic vehicles can be simulated by the libsumor component, it is necessary to
translate the inferred macro- and micro-level quantities into edge-level trip specifications.
This process can be thought of as constructing a vectored event signal where each event
indicates the arrival of an agent into the simulation and is minimally detailed as <id>,
<depart.time>, <from>, <to>. The <depart.time> details when the agent
should depart from the edge specified in <from>. The edge specified in <t o> indicates
the edge an agent should end at. The actual path taken between the <from> and <to>
locations is handled by a route assignment procedure which we detail shortly. Constructing

such a signal from the inferred quantities is trivial but before we detail such a procedure we

24As we will explain in the forthcoming libsumor section (section 3.3), this necessarily requires that we
utilize a microscopic traffic simulation but we leave the formal justification for that section.
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review the creation of simulation intervals as the edge-level trip specifications are generated
with respect to such intervals.

Recall from the trip generation and distribution steps (see section 3.2.3) that each
block contains a demand signal which details the number of agents to generate over each
fit interval. As was noted earlier, often the fit intervals used when fitting the SDSBM are
not at the resolution desired for simulation and therefore the fit interval may be subdivided
according to a simulation granularity parameter. Such subdivisions of the original fit inter-
val are referred to as simulation intervals. Just as the SDSBM fit intervals were seasonally
related so are the simulation intervals. This means that each trip belongs to (i) a particular
seasonal period and (ii) a particular simulation interval within that period. For instance,
given a month of data fit using a SDSBM with daily counts, weekly seasonality and hence
a seasonal period of a day, each record would fall into one of the seven days of the week
(e.g. Sunday, Monday, Tuesday, etc.) and thereby influence the resulting SDSBM fit based
upon which day (seasonal period) a record belonged to. Now, if in order to achieve the
desired simulation granularity, we discretize each day into 24 bins of one hour each, then,
when presented with a month of data, each record would fall into a seasonal period — the
day of the week — and a simulation bin — the hour of the day.

We now define an iterative procedure for constructing such edge-level trip specifi-
cations. For each block?®, the quantity of trips for each simulation interval is obtained by
multiplying the quantity of trips demanded over each fit interval by the inferred time profile
that the fit interval belongs to. The affect of this is a set of pairings detailing the simula-
tion interval and the quantity of trips to generate over the finer simulation interval. Trip
departure times (the time when an agent enters the simulation and departs from its onset
location) are then drawn for each simulation interval. The trip departure procedure natively
supports uniform, random and exponentially distributed departures but can be extended to

support other distributions. Next, onset and terminus edges are drawn for each of the depar-

ZSWhile the procedure is presented in a nested structure for readability, a linear algorithm is actually im-
plemented based upon some indexing niceties.
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ture times from the inferred edge weights based upon the seasonal period and simulation
interval each departure time belongs to. Lastly, once the trips have been generated for each
block, all the records are organized by departure time.

It is important to understand what is being done through this trip generation procedure.
By constructing the trips in this manner, we are calibrating the route assignment step of the
UTP procedure by intelligently influencing the quantity of agents we expect to see within
each block for a given time period and selecting the specific edges according to the edge
popularity weights. Another benefit of generating the trips in this manner is that it allows
us to re-generate trips according to the same demand model without having to re-perform
the inference procedures. This allows us to experiment with different time and edge draws
as well as change the parameters of the simulation.

Trip Path Selection

At this point, the trip specifications are not considered a complete assignment as there is no
path (a listing of edges from the onset to terminus) detailed for each of the trips. In order
to route agents through a network and collect the resulting location trace, a path must be
assigned to each of the specified trips. We present such a path assignment procedure next.

The goal of route assignment is to choose an optimal®® path through the network that
satisfies the onset and terminus requirements of the trip subject to the network supply con-
straints and supply-demand interactions [15]. The premise behind route assignment lies in
the assumption that path selection is influenced by various costs which a traveler wishes to
minimize [54]. Arguably, one of the most influential costs is that of travel time, but other
costs such as transportation cost (fare), parking fees and toll roads may also contribute to
the route chosen®’ [54].

Unfortunately, finding such optimal paths is non-trivial as many costs, such as travel

time, are dependent upon how many other individuals are traveling; making it is neces-

26We emphasize that the definition of optimal can take on different meanings.

?"Indeed, as there are many such costs and each individual likely weights such costs somewhat differently,
the selection of a finite set of factors is necessarily an approximation of the real. Please see [1] for an analysis
of commuters’ route choice behavior.
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sary to consider dependence between trips [54]. This necessarily induces a time depen-
dency on optimality which is easily substantiated through experience. For instance, com-
muters choosing their preferred route through a roadway network consider a variety of
time-varying properties that influence optimal path selection, such as path travel time vari-
ability [1], variable speed limits [88], or time-of-day based tolls [52].

A myriad of analytical and simulation-based approaches exist for route assignment but
all can be generally categorized as either static or dynamic depending upon how the time
dependency of network supply-demand interactions is modeled within the approach. Due
to the significant influence of congestion on travel times which is, as noted above, often
the primary source of cost information when performing route assignment [1] [206], much
of the distinction between static and dynamic approaches centers around the handling of
congestion [54].

Static assignment approaches assume that time has no influence over the network
supply-demand quantities for the period under study (hence the name static). As such, the
quantities of interest governing network supply-demand interactions are time invariant and
represent average behavior [54]. For instance, congestion in traditional static approaches
is described by a volume-to-capacity ratio where the edges of the network and the paths
assigned are assumed to be time independent [146] [54]. While historically prevalent [206]
[39], applicable in large-scale situations [54], and able to converge to a single equilibrium
[196] [54], static approaches suffer from a lack of accurate congestion modeling as the
volume-to-capacity ratio used neglects queuing effects [146]. Rather than queuing agents
behind the bottleneck and reducing the rate to that of the bottleneck capacity, no queuing
occurs and the rate simply continues to grow [146]. Obviously, such a situation does not
reflect reality and leads to misrepresenting congestion which results in inaccurate travel
time estimates [80] [146].

Dynamic traffic assignment (DTA) approaches are based on the exact opposite as-

sumption of static approaches by arguing that traffic networks are rarely in a steady-state
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for the entire modeling duration and therefore insist that time should influence network
supply-demand quantities [54]. To capture the temporal aspect, DTA departs from the
volume-to-capacity ratio of static approaches and models edges dynamically using a math-
ematical function known as the fundamental diagram (FD) of traffic flow [54]. Each edge
is associated with a FD (possibly unique [54]) that relates changes in edge density & to
edge velocity v, thereby allowing varying velocity estimates for an edge as the density of
that edge changes with time [54]. So long as the inflow is less than or equal to the out-
flow ¢;n < @out, congestion does not occur. But when the inflow becomes greater than
the outflow ¢;, > q.us, congestion occurs, bringing a reduction in edge velocity and the
queuing of vehicles since there are more vehicles entering than can be released. When the
queue reaches the edge entrance, the inflow can no longer be greater than the outflow since
the edge is at capacity and therefore must be immediately reduced to that of the outflow
[54] [194]. When this happens, the congestion now spills-back onto the incoming edges, at
which point the above process repeats itself on those edges.

Introducing the ability for the velocity of an edge to change with time results in two
notable improvements over static approaches. First, the travel time estimates can now be
more accurately estimated as the velocity estimates upon which travel times are based are
dependent upon the density of the edge when traveled (i.e. dynamic) not some average
value. Second, unlike the volume-to-capacity ratios used in static approaches, the velocity-
vs-density curve of the FD has a physical meaning that enables its utility in real-world
scenarios.

The goal of the geoaware component is to create the necessary demand model for
generating realistic synthetic vehicles not to define a new route assignment methodology.
For this reason, the exact route assignment approach chosen is irrelevant so long as the
approach is able to assign paths through the network to each of the previously generated
stochastic trips. Nevertheless, simulation-based DTA approaches are recommended due to:

(1) the enhanced traffic realism brought by simulation; (ii) the native support for dynamic
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modeling of network supply-demand quantities; (iii) the ability to handle the commonly
occurring, non-FIFO (First In, First Out) behavior of vehicle overtaking?® [54]; (iv) the
ability to handle non analytical behavior [169]; (v) the ability to use the simulation frame-
work itself for computing paths between points thereby avoiding the additional overhead of
an independent traffic router [169], and (vi) the focus on deployable solutions [169]. The
SUMO framework provides a number of route assignment algorithms which can be used
to assign paths to the specified trips. We review two of the most prominent examples.

SUMO implements the stochastic user-equilibrium (SUE) approach given in [79]
where each driver is assigned an origin, destination and departure time and chooses a path
through the network from a restricted path set according to a probability distribution [123].
Initially, the path set contains only the shortest path through the empty network, but as net-
work conditions change (through the iterative assignment procedure), new shortest paths
through the network are computed and added [123]. Each driver is assigned to one of the
paths in its path set according to the route selection probabilities which are continually up-
dated to favor lower cost paths [79]. The procedure can be configured to terminate after a
fixed number of iterations or based upon convergence to a desired average travel time*. As
the approach is simulation-based, a microscopic simulation is used to calculate the travel
times for each of the driver’s chosen routes.

SUMO also supports an alternative approach to SUE, termed one-shot assignment
[124]. One-shot assignment is advantageous when an analyst wishes to model trip behav-
ior based upon instantaneous travel times (at the instant of departure) or when the time
required to converge to an approximate equilibrium solution is not available; a situation
which can readily occur in networks of reasonable size [124]. There are three variations to
this approach which vary in the amount of feedback utilized during assignment [124]. The

first approach, incorporates no feedback of network conditions and simply assigns paths to

Z80vertaking allows a vehicle that enters an edge after another vehicle to be able to overtake the earlier
vehicle by passing it and therefore exit the edge before the earlier vehicle. While not all DTA approaches
support overtaking, such a concept is completely foreign to FIFO enforcing static approaches [54].

29hllps://sumo.dlr.de/docs/Dcmand/Dynumic,User,Assignmenl‘hlm]
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origin-destination pairs from an appropriate set of fixed paths [54]. The second approach
regularly updates a set of shortest routes between the origin-destination pairs and assigns
the current shortest (or minimum cost) route between the origin-destination pair to the trip
at the time of departure [54]. The last approach incorporates the most feedback and in
addition to regularly updating and assigning the shortest route to new trips, also period-
ically updates the routes of en-route vehicles based upon the current network conditions
[54]. In SUMO, edge weights are updated every so often (a configurable parameter) based
upon current network conditions. Rather than being simply the travel time of the edge in
the last simulation period, the edge weights are instead smoothed using either a moving or
exponential average™.

In addition to the SUMO route assignment algorithms, if the reference trajectories are
at trace-level, the geoaware component also supports the ability to replicate routes taken
by agents in the reference trajectories. This process works by running a map matching
algorithm on the reference trajectories and associating the path taken with the departure
time of the trip. Then, when the trips are being specified, a certain percentage of trips in
each simulation interval are generated which have identical paths to those in the reference
trajectories during the same time frame. The percentage of trips is controllable by an
analyst and allows a user to specify the percentage of trips for each simulation interval in
each period of a seasonal cycle. For these trips, the route is already specified and does not
need to be further computed. We use the Fast Map Matching algorithm proposed by [231]

but any map matching algorithm should be compatible with proper extension.

3.2.6 Specifying a Scenario

The trips specified within the route assignment step (see section 3.2.5) are a stochastically

generated realization drawn from the constructed demand model. When the realizations

30Pplease see the help documentation at https://sumo.dlr.de/docs/Demand/Automatic_Routing.html and [123] for addi-
tional details regarding the edge weighting algorithms.
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are coupled with a network and simulation settings we refer to the collection as a scenario
since it represents a configuration of a particular model instance. The scenario is detailed
using the 1ibsumor: : Scenario construct from the libsumor component and requires
specifying the (i) roadway network, (ii) trip specifications, and (iii) configuration file.

The roadway network specifies the SUMO-compatible map that establishes the infras-
tructure of the environment. This map is one of the assumed inputs (see section 3.1.2). The
trip specifications intelligently calibrate the simulation demand by specifying the onset and
terminus locations according to the inferred mobility patterns. As previously detailed, such
trips are specified through the macro- and micro-level procedure detailed in sections 3.2.3
— 3.2.5. The YAML-based configuration file allows an analyst to configure the behav-
ior of the libsumor component. Just like the map, the configuration file and associated
parameters are assumed as a priori input.

Containerizing the model realization and simulation settings in this way supports mod-
ularity and reusability, enabling the exchange of scenario components as application or
experimentation dictates. For instance, under this methodology, one can easily perform

Monte-Carlo style simulations by simply re-drawing the trips component of the scenario.

3.2.7 Handling Multiple Record Types

At times, it is useful to differentiate mobility-records according to some type identifier so

that properties can be set independent of other mobility-record types. One instance of this
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was presented when discussing travel mode choice. Supporting various travel modes how-
ever, is not the only use of type identifiers. Consider, for example, being able to adjust the
vehicle model used within the simulation based upon the time of day or coloring GUI vi-
sualizations based upon destination type. In the GeoAware framework, the trip realizations
produced during the route assignment step are assumed to belong to a single type; thus, it
is necessary to define an assimilation procedure to support multiple type identifiers.

The assimilation procedure requires that the mobility-records have been split by type
and a trip demand model for each type has been fit using the relevant data (see sections 3.2.3
— 3.2.5 for details on this procedure). Next, trip realizations must be drawn from each trip
demand model. This step ensures that the mobility patterns captured for a particular type
are preserved. The trips are then merged together and organized by departure time. This
produces a collection of trips with type identifiers where the relative frequency of each trip
type comes from the frequency of that trip type in the original mobility-records. The final
step is to produce a multi-typed scenario by combining the merged trips with a roadway

network model and a configuration file that supports multiple vehicle types.
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3.3 The libsumor Component

The concluding step in our goal to obtain synthetic vehicle traces is to capture the move-
ment of the agents specified in the generated scenario (see section 3.2.6). The scenario
specified during the last step of the gecaware component is a realization that links the
supply constraints of the roadway network (e.g. lane counts, junction locations, traffic light
timing, maximum speeds, etc.) with the trips generated from the macro- and micro-level
inference procedures.

The desire to obtain the traces of vehicles as they propagate through the network
subject to the supply-demand interactions necessitates the use of microscopic simulation
[70] [140]. Transportation simulation is a broad field that has proved useful for modeling
traffic environments because of its ability to capture the rich set of interactions between
agents which is not possible in analytical formulations [70] [169] [42] [99] [167] [20]
[140] [133] [61] [72] [21] [191] [154].

Computer simulation is an alternative to analytic evaluation that imitates a system
through an algorithmic process on a system model [19] [95] [65] [70]. Microscopic sim-
ulations [72] [140] [205] [96] differentiate themselves from other types of transportation
simulations by modeling agent movement at the individual level rather than at an aggregate
level, as in macroscopic simulations [160] [100] [96], or a hybrid level, as in mesoscopic
simulations [220] [191] [62] [133] [61] [130].

In microscopic simulations, the individual agents are simulated using car-following,
lane-changing and gap-acceptance theories; fundamental quantities in traffic theory [7]
[70]. Modeling traffic in this individual manner means that important travel quantities, such
as vehicle velocity, are tied to specific agents not the result of some aggregate computation
[42]. Of course, the additional detail level comes at a cost, often resulting in longer run-
ning times and increased storage requirements for microscopic-based transportation studies
[7][124].

Having justified the need for a microscopic simulator when producing the desired syn-
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thetics, the next step is to define a microscopic simulation framework capable of producing
the synthetics we seek. Certainly, one approach would be to create a custom simulator,
however, such a framework would likely be highly specific to a particular situation and
would necessarily require redoing basic simulation components that have already been de-
signed by others [123]. Indeed, as [123] points out in his work, often the defining of a traffic
simulation is tangential to the objective of the work. As our goal is not to construct a new
traffic simulator, we integrate our work with the SUMO microscopic traffic simulator [140]
due to its extensive suite of features, its open-source nature, and its ability to be extended
[123]. In addition to preventing re-implementations of core simulation components, this
modularity also helps to divorce the objective of the work from the actual implementation,
thereby increasing the utility of the proposed work.

With the simulation framework chosen, the next step is to “wrangle” the simulation
scenario produced by the geoaware component into a format suitable for simulation by
the SUMO framework so that synthetics may be produced. While an ad-hoc procedure
could be defined to create the desired synthetics, such a procedure would share many tasks
which are foundational to any traffic simulation irrespective of the modeling approach cho-
sen. Therefore, rather than produce a highly specific procedure that will only work with
demand produced by the geoaware component, we create a general, accessible and exten-
sible framework that allows an analyst to craft and run arbitrary traffic simulations.

Due to the widespread applicability of synthetic trajectory generators (see chapter 2
for a discussion), it is important that such generators are analyst accessible. While our
use of a microscopic simulator enables us to produce realistic synthetics, it also poses a
challenge to accessibility. Each microscopic traffic simulator is unique and has a myriad
of configurable options. Expecting that a user knows or wants to calibrate such parameters
when his/her primary goal is just to obtain synthetics is questionable. Instead, it would
be preferable if a user could utilize such a generator through a common research platform

with which he/she is already familiar. Such an approach would directly increase accessibil-

63



ity, prevent re-implementations and reduce educational overhead. One commonly?! used
research platform is the R programming environment [178].

R provides a feature-rich ecosystem for data analysis, statistical modeling, machine
learning, visualization, and communication of results [222]. The R programming environ-
ment is particularly well suited for data wrangling and provides an excellent platform for
rapid development due to its functional (interpreted) nature. R also supports reproducible
research through a variety of constructs (such as R notebooks*?, R markdown??, or shiny**).
Many features of R are considered invaluable to the future of transportation modeling and
smart cities [150] [176] [122].

Despite the prevalence of R for spatial data analysis [141] [34] and R packages for
various steps in transportation modeling®®, a formal package enabling native microscopic
traffic simulation from within the R programming environemnt does not exist**. The lib-
sumor component of the GeoAware framework is our endeavor to provide a data-driven,
analyst friendly contribution to this lacking area of the R programming ecosystem. Using R
and the proposed libsumor component, a transportation professional can easily visualize,

model and experiment with transportation data; something not as easily accomplished in

3'While quantifying the exact popularity of a language is difficult, recent language rankings, articles,
and conferences hint at usage statistics. The TIOBE Index (https:/www.tiobe.com/tiobe-index, accessed 10/8/20)
places R at 9th place for October 2020. The 2020 IEEE Spectrum language ranking (https:/spectrum.ieee.org/
static/interactive-the-top-programming-languages-2020, accessed 8/7/20) places R as the sixth most popular language.
The PYPL Index (based upon language tutorial searches) indicates a somewhat steady share of users in re-
cent years (http://pypl.github.io/PYPL.html, accessed 10/8/20). Several recent articles share a similar view (see
Programming language rankings: R makes a comeback but there’s debate about its rise, https://www.zdnet.
com/article/programming-language-rankings-r-makes-a-comeback- but- theres-debate-about-its-rise by Liam Tung, accessed
10/8/20 or Python, R, Other Programming Languages Thriving Long-Term, htips://insights.dice.com/2020/08/04/
python-r-programming-languages- thriving-long-term/ by Nick Kolakowski, accessed 10/8/20). R also features an ac-
tive development community including local groups (https://www.meetup.com/topics/r-project-for-statistical-computing/,
accessed 10/8/20) and conferences (useR conference: https://user2020.r-project.org, accessed 10/8/20; rstu-
dio::conf: https://rstudio.com/conference/, accessed 10/8/20).

32https://rmarkdown.rstudio.com/lesson— 10.html.

33https://rmarkdown.rstudio.com/lesson— 1.html

34https://shiny.rstudio.com

35Examples include: osrm: https:/github.com/rCarto/osrm, Stplanr:  https:/github.com/ropensci/stplanr,
leaflet: httpsi//rstudio.github.io/leaflet, 1 graph: http://igraph.org, and t rave 1R: http://travelr.r-forge.r-project.org

36To be sure, simulations can be constructed in R and some simulation packages exist for R. Prominent
examples include simmer (https:/r-simmer.org) and simulator (http:/github.com/jacobbien/simulator). The CUBE
Voyager traffic simulator even facilitates analysis in R. Nevertheless, none are specifically structured for
microscopic traffic simulation.
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languages such as C, C++, or Java.

As the GeoAware framework relies on the SUMO traffic simulator to perform the low-
level simulation, the design of the libsumor component was largely an architectural effort
focused on the construction of a generic, analyst accessible framework for microscopic
transportation simulations within the R programming environment [178]. Guided by the
general requirements of a simulation scenario, we present a modular framework which is
able to handle general simulation scenarios and efficiently produce synthetic vehicle traces.
The modular decomposition of the libsumor component resulted in three complimentary
approaches to simulation which differ in the degree of control granted to the analyst. In
all approaches, the SUMO microscopic simulation engine is used but each varies in its

intended use and thus the features that are exposed to the analyst for control.

3.3.1 Mode: XML Intermediaries

One approach an analyst can take to perform microscopic traffic simulations from within R
is to utilize the XML Intermediaries mode of the libsumor component. This approach con-
figures the simulation using a collection of XML files (hence the name) natively supported
by SUMO and allows the simulation to be ran using the traditional sumo or sumo-gui
utilities. The XML files (i) configure SUMO, (ii) detail the trips to simulate, and (iii) iden-
tify vehicle types (if applicable). R-based wrapper functions pass the SUMO configuration
file to the sumo and sumo-gui utilities, allowing a user to run a simulation from within
the R environment.

The configuration file is built according to the SUMO configuration file definition®’
using the relevant portions of the YAML-based configuration file provided at input. The
trip definitions are derived from the trip portion of the scenario and are specified ac-

cording to the SUMO trip and vehicle definitions*®. The libsumor::Trips mod-

3SUMO Conﬁguration File Definition: https:/sumo.dlr.de/docs/Basics/Using_the_Command_Line_Applications.html#
configuration_files

38R0utes/Trips Definitions: https://sumo.dir.de/docs/Definition_of_Vehicles,_Vehicle_Types, _and_Routes.html

65


https://sumo.dlr.de/docs/Basics/Using_the_Command_Line_Applications.html#configuration_files
https://sumo.dlr.de/docs/Basics/Using_the_Command_Line_Applications.html#configuration_files
https://sumo.dlr.de/docs/Definition_of_Vehicles,_Vehicle_Types,_and_Routes.html

ule provides a method for producing such a file from a collection of trip specifications.
The trip specifications produced by the geoaware component are already formatted as a
libsumor: : Trips object, however, any arbitrary demand can be appropriately format-
ted (see section 4.1.2 for an algorithm). The vehicle types file is only necessary if vehicle
types are supplied (see section 3.2.7) and is written out using a SUMO additional file**.

The benefits of the XML Intermediaries approach include its simplicity, ease-of-use
and low educational requirements. The approach is also the only approach provided by the
libsumor component that supports visualization. Additionally, because it uses the sumo
and sumo-gui executables, the XML Intermediaries approach does not require a source
distribution of SUMO.

As with any approach though, there are some drawbacks. The most limiting drawback
of the XML Intermediaries approach is that the configuration of SUMO is limited. While
SUMO provides a fairly expressive set of configuration options, the basic structure of the
simulation cannot be changed when using the sumo or sumo-gu1i utilities. Additionally,
if the production of synthetics is the ultimate goal, the resulting output will have to be
further processed. In a large simulation, such processing may require substantial effort.
Finally, the XML Intermediaries approach does not provide in-memory access to the gen-
erated traces. This means that such information is not queryable from the R environment.

Such a hurdle prevents an analyst from being able to quickly use the synthetics produced.

3.3.2 Mode: Synthetics Generation

The second approach provided by the libsumor component for performing microscopic
simulations focuses exclusively on generating a portable collection of synthetic vehicle

traces and is referred to as the synthetics mode of the libsumor component. The pro-

¥SUMO Additional File Definition: https://sumo.dir.de/docs/Simulation/Basic_Definition.html#additional files (ac-
cessed10/9/20); Type Definition: https://sumo.dir.de/docs/Definition_of_Vehicles, Vehicle_Types, and_Routes.html (accessed
10/9/20)
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cedure is C++-based and makes use of SUMO’s Libsumo*’ package for controlling the
SUMO simulation and collecting the traces. The Libsumo component is provided with
the source distribution of SUMO and provides low-level access to a running SUMO simula-
tion (similar to the TraCl interface but without the networking overhead) via a C++ library.
The C++-based synthetics module is made accessible to the R programming environment
through the Rcpp package; an extension to R that allows it exchange data with dynamically
loaded C++ modules [69] [67] [68].

Just like the XML intermediaries approach, the process begins by constructing XML
files detailing the scenario configuration, trip specifications and vehicle types (if needed).
Then, the configuration file is provided to a custom procedure which uses the Libsumo
package to query the various files. The custom procedure tracks the positions of all the
vehicles in the simulation and logs important metrics, such as the speed, angle or total
distance. As detailed in section 3.1.5, the synthetics mode can be configured to filter the
records retained by both edge and time. Additionally, the analyst can store the coordinates
in longitude/latitude mode as well. The records can be stored in memory for easy access
from R or dumped to a CSV file with variable levels of output and floating-point precision.

The most notable benefit of the synthetics approach is that it is specifically designed
for producing synthetics. As a result, the instantiation of various modules, their intercon-
nection and the parsing of data is internally handled so that a user need only focus on
generating synthetic trajectories. Just like the XML Intermediaries approach, the synthet-
ics approach relies on a (i) SUMO configuration file, (ii) trip specifications, and (iii) type
specifications (if applicable). (Once again, the geoaware component produces properly for-
matted trip specifications but any demand can be properly formatted — see section 4.1.2
for an algorithm.) Additionally, due to the use of C++, the approach benefits from the
efficiency of a compiled language. Another key benefit of the synthetics approach is that

it provides in-memory access to the produced synthetics; making further computation and

40Documentation: https://sumo.dlr.de/docs/Libsumo.html
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analysis much more efficient. Such in-memory access allows an analyst to easily run a
traffic simulation and interactively investigate the resulting traces without having to store
the information in an intermediary format.

Just like the XML Intermediaries approach, the most limiting drawback is that config-
uration is limited. The approach supports any SUMO configuration parameter in addition
to a set of parameters controlling the filtering and output of the approach, but once again,
fine-grained control over the underlying simulation is not possible. It should also be noted
that the ability to store traces in memory is dependent upon the amount of available mem-
ory. For very large simulations, dumping the records to a CSV is preferable due to memory

limitations.

3.3.3 Mode: Wrapper

The final approach provided by the libsumor component provides an analyst with the most
flexible and low-level approach to performing traffic simulations from within the R pro-
gramming environment. The approach is referred to as the wrapper mode of the libsumor
component since it provides a set of wrapper functions around the Libsumo package. Us-
ing the Libsumo library for facilitating the communication between R and SUMO, the
wrapper mode supports access to and modification of (where available) a myriad of set-
tings associated with the simulation, edges, junctions, induction loops, vehicles and other
such aspects.

The wrapper mode organizes the function calls of the Libsumo package to follow
the nomenclature of the R ecosystem and uses R6*' classes and the Rcpp package to gen-
erate wrapper functions around their Libsumo counterparts. The wrapper mode extends
access to the SUMO framework to the R platform and is similar in premise to that of the
Python and Java counterparts provided with the source distribution of SUMO. As this is an

academic work, coverage of the Libsumo component is incomplete and instead our work

41R6 GitHub Page: hitps://github.com/r-1ib/R6
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focuses on establishing the necessary communication between R and Libsumo so as to
support our forthcoming evaluation.

The most notable benefit of the wrapper mode is that it provides fine-grained, pro-
grammatic control over the simulation steps. This increase in control allows an analyst to
construct and query simulations as needed without having to post-process results. Because
the approach is R-based, the result is the ability to interactively configure, run and and
query a traffic simulation.

Obviously, the increased control results in a greater educational burden for the user.
The instantiation, running and output of a simulation is no longer automatically handled and
must be explicitly configured by the user. This requires the user to have knowledge about
traffic simulations and how to interconnect the various components. Additionally, while
the ability to perform vehicle simulations from within the R environment greatly increases
accessibility, the accessibility comes at a cost to performance. Because R is interpreted, its
performance is not that of a compiled language. Nevertheless, while there is a performance
hit for using R, we believe its interactive and self-documenting nature are benefits which

are well worth the performance hit.
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Chapter 4 — Evaluation

The goal of the proceeding methodology chapter was to present a pipeline by which a traf-
fic simulation may be constructed and certain simulation demand metrics calibrated. In this
chapter, our aim is to validate the various components of the pipeline by demonstrating that
they achieve their respective design goals. In contrast to an application specific work, evalu-
ating a general purpose framework such as the one proposed is tricky as it requires carefully
enumerating goals common to many situations rather than merely evaluating performance
within a specific scenario. To complicate analysis further, general purpose frameworks of-
ten proport many intangible benefits, such as ease of use, modularity or extensibility, which
are hard to evaluate in any measurable sense. Therefore, in light of this, we seek to validate
generic functionality of the pipeline that is relevant across situations instead of crafting and
analyzing performance on, what would be, an application specific analysis. Because our
framework features both tangible and intangible benefits, we evaluate the framework from
both qualitative and quantitative viewpoints.

In the qualitative evaluation, we focus on evaluating the utility of the proposed frame-
work for creating data-driven vehicular traffic simulations. The evaluation is a pragmatic
one and is focused on assessing the framework’s suite of complexity managing, general
purpose tools for constructing simulations. Such tools are provided through the libsumor
component and our evaluation of that component allows us to assess our goal of providing
an accessible software package for data-driven traffic simulations. Because the libsumor

component of the GeoAware framework is designed as a general purpose software package
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for traffic simulations, the analysis presented in 4.1 focuses exclusively on the procedure
required to turn traffic demand, whatever form it may take, into a simulation. Our evalu-
ation demonstrates the ability to incorporate archetypical demand sources represented as
origin/destination (OD) matrices. Such a qualitative evaluation is well suited for this type
of component as a user of a software package is often less concerned about understanding
the mundane inner-workings of the library and is more concerned with understanding how
to use the package in their particular situation.

In contrast to the qualitative evaluation which focused on analyzing the capability
of the framework for generating traffic simulations, the quantitative evaluation seeks to
demonstrate that simulation demand calibrated using the geoaware component captures
behavioral patterns in the reference trajectories. Whereas the general purpose nature of
the libsumor component warranted a qualitative discussion, the geoaware component is
specifically crafted to assist in calibrating the demand of a simulation and therefore necessi-
tates a quantitative evaluation to demonstrate results. The traditional approach would be to
compare the proposed calibration procedure to other techniques but we believe such a rank-
comparison is ill-advised. As calibration procedures are extremely varied, a worthwhile
rank comparison would be extremely difficult to articulate as each calibration approach
may optimize different elements. Additionally, as the use of trajectory data in calibrating
traffic simulations is not commonplace in practice or the literature, evaluating the proposed
framework against typically employed calibration techniques would result in an “apples to
oranges”-like comparison with results which should never be considered similar in the first
place.

Instead, in a vein similar to that of [40], we believe a much more informative eval-
uation centers around demonstrating the ability of the geoaware component to calibrate
several simulation demand quantities. We present four different quantities of simulation
demand which the geoaware component calibrates. For each metric, we demonstrate how

the framework is able to infer such quantities through simulation experiments. Then, we
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provide a brief review of other literature pieces or simulation frameworks which also cal-
ibrate the same (or similar) quantity. Finally, for each quantity, we present a comparison
of our approach to the previously reviewed techniques. By focusing on the individual de-
mand quantities rather than on the final, resulting simulation we are able to compare our
approach to any calibration procedure by examining how each approach calibrates (or does
not calibrate) that quantity. Such a quantitative evaluation is presented in section 4.2.
Lastly, in an effort to be complete and demonstrate how the complete framework can
be used to generate synthetic trajectories from reference data, we present a use case involv-
ing the taxicab data from the city of Chicago, Illinois. In this use case, we demonstrate how
to turn publicly available taxicab data that logs the spatiotemporal pickup and dropoff re-
gions of taxi trips into a collection of synthetic trajectories using the GeoAware framework

proposed. This use case is presented in section 4.3.

4.1 Qualitative

In our discussion of related works (see chapter 2), we motivated the need for traffic sim-
ulations by citing their applicability in a myriad of applications, including the design and
evaluation of spatiotemporal algorithms [171] [237] [49] [106] [6], privacy protection [94]
[126], and testing the performance of spatial database operations [171] [64] [40] [56] [159].
As many of these applications are heavily reliant on data, in the methodology chapter (see
chapter 3) we argued for a data-driven simulation framework that was readily accessible
from a commonly used research platform and set about creating a first of its kind frame-
work for the R programming environment. The libsumor component is the result and it
allows an analyst to communicate with the popular and open source SUMO traffic frame-
work.

In the forthcoming sections, we evaluate the benefits of the libsumor component and

discuss future work that needs to be performed on the component. In section 4.1.1, we
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begin by introducing the libsumor API and explaining the general purpose functionality
provided to users of the package. Next, in section 4.1.2 we highlight how commonly used
sources of trip demand data can be preprocessed (or used directly) when performing a
simulation with the libsumor component. Finally, in the last section (section 4.1.3), we
note areas of the libsumor component which need improvement and discuss the trip-based

approach to simulation.

4.1.1 The libsumor API

The libsumor data model is structured around the concept of a simulation scenario which
details the components of a simulation by specifying the (i) trip demand, (ii) roadway
network, and (iii) configuration file for a particular situation. Constructing such scenarios
is an inherently data-driven task and therefore the data-science friendly R programming
language was chosen since it provides a rich suite of tools for efficient data manipulation
and management (for a more thorough justification behind the use of the R programming
environment, please refer to section 3.3). The general approach to constructing such a

scenario is outlined in algorithm' 1.

input : (i) trip demand, (ii) a roadway network, and (iii) a configuration file
output: a simulation scenario (1ibsumor: : Scenario)

# the inputs

demand < a properly formatted trip demand
network <— a SUMO-compatible roadway network
config < a configuration file (YML)

W N =

(9]

# generate scenario
6 scenario <— generate.scenario (demand, network, config)

Algorithm 1: Constructing a simulation scenario

It is assumed that the network and configuration settings are known to the analyst.

"While the discussion and code examples are presented in an R-like nomenclature, no knowledge of R is
assumed.
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Generating or obtaining such network and configuration data is presented in the methodol-
ogy chapter in sections 3.1.2 and 3.1.5, respectively. The traffic demand can be obtained
from a number of sources and is typically the most involved step in constructing a sim-
ulation scenario. Because of this, we outline a general algorithm for producing properly
formatted traffic demand in the forthcoming section (section 4.1.2). In the context of the
GeoAware framework, such traffic demand is constructed using the geoaware compo-
nent.

Once a scenario has been constructed, it is passed to the 1ibsumor component for
simulation along with a character string indicating the operation mode. As outlined in sec-
tion 3.3, the libsumor component may be operated in one of three different modes. Each
mode is designed for a particular use case in order to give the analyst a fair amount of
control when performing traffic simulations. The three operation modes are: (i) XML In-
termediaries, (ii) synthetics, and (iii) wrapper. For details regarding each approach, please
see section 3.3. Regardless of the operation mode chosen, an R-based connection to the

SUMO traffic simulator can be obtained using the procedure detailed in algorithm 2.

input : (i) a simulation scenario and (ii) a string indicating the simulation
mode
output: a connection to the SUMO traffic simulator

1 # the inputs
2 scenario <— a properly constructed simulation scenario (see algo. 1)
3 mode < a string indicating the simulation mode

4 # generate scenario
5 simulation < libsumor (scenario, mode)

Algorithm 2: Performing a simulation

The XML Intermediaries mode operates using SUMQ’s native XML support and can
be configured as detailed in section 3.1.5.
The synthetics mode is specifically designed for producing synthetic agents from a

traffic simulation and is therefore the ideal operating mode when performing synthetics
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Method

Arguments

Description

reload

Reloads the connection to the SUMO traffic sim-
ulator thereby resetting the simulation

Runs the simulation and produces synthetics up
to time end

end

A numeric indicating the endpoint of the simula-
tion

status_freq

An integer indicating how often progress updates
should be printed out

getAgentRecord

Returns the filtered record for the agent specified
by id

ud

A string indicating the agent id to obtain the
record for

getAgentRecords

Returns the filtered records for all the agents who
have completed their trips

writeCSV

Writes the filtered record for agent ¢d out to the
file path detailed by fp

id

A string indicating the agent record to write out

Ip

A string indicating where the CSV file should be
written

mode

A binary vector codifying the properties of the
agent to write out

precision

An integer detailing the precision of the doubles
written out

Table 4.1: Available methods of the libsumor component while configured in synthetics

mode

generation. The API available while configured in synthetics mode is detailed in table 4.1

along with the method objective.

Configuring the libsumor component in the wrapper mode enables an analyst to com-
pletely? configure, run and query a simulation entirely from R and, unlike the previous two
approaches, does not require that a simulation scenario be defined. The wrapper mode

enables low-level use of the SUMO traffic simulator in R and allows an analyst to query a

running traffic simulation in an interactive, REPL>-like fashion.

As traffic simulations are naturally data-driven, often deriving demand from in-field

ZRecall, as this is an academic work, coverage of SUMO is not complete.

3read-eval-print-loop
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measurements, an approach which fuses R’s data-driven workflow with a fast, C++-based
traffic simulator permits rapid construction of traffic simulations, data analysis and proto-
typing capabilities. The 1ibsumor component provides an API for simple, programmatic
control of traffic simulations and reduces the amount of knowledge an analyst must know
about the used traffic simulator when performing a traffic simulation or generating synthet-
ics. The two main steps of this API are demonstrated in algorithms 1 and 2. Thus, as one
can see, the provided API benefits traffic analysts by providing a suite of analyst accessible
tools that help manage the construction and running of a simulation from a an easy to use

programming environment.

4.1.2 Sources of Trip Demand

At its most fundamental level, travel is the movement from one location to another. When
such travel is associated with a unique identifier, we call such movement a trip. A collection
of such trips within a region is referred to as demand and such demand is often specific to
a certain time interval. Obtaining accurate travel demand is critical to ensure that any
conclusions drawn from an urban study are based on realistic conditions.

Despite its importance, travel demand is often unknown at worst and noisy at best.
Therefore, modeling such demand is necessary based upon data sources deemed relevant
to trip demand. Travel surveys, socioeconomic data, traffic counts, junction turning ratios,
CDRs (call detail records) and GPS traces are the most commonly employed data sources
for demand estimation. Travel surveys and censuses represent data sources that are derived
from population samples and are typically used to estimate travel demand through regres-
sion analysis [206]. Traffic counts and junction turning ratios are aggregate measures of
trip demand. Traffic count data is the most prevalent and is often used to generate a set of
trips which will mirror the traffic counts observed [75]. CDRs and GPS traces are disaggre-
gate sources that provide low-level mobility pattern information that is lacking in aggregate

sources. To use disaggregate sources for modeling, the data is often aggregated as merely
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replicating a trajectory dataset does not attempt to infer transferable characteristics of mo-
bility.

Despite the various sources of data, the ultimate goal of all such data sources is to es-
timate (sometimes using multiple sources) the travel demand between locations. This data
is typically depicted as a matrix where the rows and columns represent locations and the
cell values indicate the quantity of trips between two such locations. This representation is
commonly referred to as an origin destination (OD) matrix. An OD matrix is a general and
extremely simple construct (in theory, not always to acquire) and is the standardized way of
conveying demand information in traffic planning contexts. OD matrices are often an inter-
mediary output produced at the end of the trip distribution phase of the UTP procedure and
the locations are typically aggregated to zonal regions but in theory, such locations could
be at any arbitrary resolution. OD matrices can also represent time dependent demand by
associating a unique time period with each OD matrix.

The concept of an OD matrix, as presented above, is inherently aggregate in nature
and therefore limited in its expressiveness. Using such a matrix format within the libsumor
component would limit how easily low-level information could be associated with partic-
ular trips comprising the demand. Therefore, in order to provide greater flexibility when
defining demand, the libsumor component uses a slightly different approach and repre-
sents demand as a collection of trip specifications where each trip minimally details a (i)
trip id, (ii) departure time, (iii) onset edge, (iv) terminus edge, and (iv) vehicle type for
each trip. Such a representation allows the framework to work in aggregate contexts where
the time and edges might be drawn according to a priori distributions or in disaggregate
situations where low-level information concerning departure time and edges are available.
Additionally, because we only specify the minimum trip specification requirements, further
information may be detailed for each trip if desired.

Due to the prevalence of OD matrices in traffic planning contexts, algorithm 3 details

a process for converting an arbitrary, potentially time-dependent OD matrix to to the format

77



input : OD matrix (od)
output: a collection of trips (Libsumor: : Trips)

11d <1

2 trip_specs <— a data frame storing properly formatted trips
3 fori <+~ 1tonrow (od) do

for j « 1toncol (od) do

n < odli, j

for k <+ 1tondo

depart <— draw departure time for row-col block
onset <— draw onset edge from row TAZ
terminus <— draw terminus edge from col TAZ
10 type <— draw vehicle type for row-col block

11 append (trip_specs, id, depart, from, to, type)
12 1d < 1d+1

13 end

14 end

15 end

e e N A e

Algorithm 3: Converting an OD matrix to the required trips format

used by libsumor. Through the utilization of such an algorithm, any general OD matrix can
be arranged in a format usable by the libsumor component. As not all traffic simulations
have the same requirements, the ability for the libsumor component to handle any arbitrary
OD matrix greatly extends the applicability of the libsumor component.

The conversion procedure specified in algorithm 3 is not complicated and begins by
instantiating a trip identifier and a storage container for the trip specifications. After this,
for each cell in the original OD matrix, we obtain the specified number of trips to gener-
ate n and create individual trips by drawing the required information and appending the
trips to the collection of trip specifications. Because not all data sources provide the same
amount of information, certain pieces of required information may be unavailable. Obvi-
ously, obtaining the required information in a data-driven manner is preferable, but if such
information is unavailable, the missing quantities may be chosen using prior knowledge (no
matter how limited it might be) through the use of a priori distributions. If the OD matrix

is time dependent, the above process can be repeated for each matrix and the resulting trip
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specifications merged into a single collection of trips.

At first glance, it may seem that the minimum required trip information requires the
fabrication of data which would be unnecessary if a different set of minimum trip features
was used but in fact, if synthetic trips are to be generated, such required information con-
stitutes the minimum required information as the simulator must know the departure time
for the trip (i.e., when to insert the vehicle into the simulation) as well as the onset and

terminus destinations, even if such quantities are chosen randomly*.

4.1.3 Future Work

While we have demonstrated that the utility of the 1ibsumor component (section 4.1.1)
and its ability to simulate arbitrary OD matrices (section 4.1.2), it is equally important to
highlight the framework’s critical assumptions and areas of weakness.

One such assumption is the fact that the 1ibsumor component assumes activity at
the trip level and makes no attempt to chain trips or to model trip producing activities as
is done in activity-based models. Obviously, ignoring such factors results in an abstraction
of reality as common sense and research shows that such factors do influence trips [36],
however, consideration of such factors may bring no appreciable benefit to the modeling
at hand. For instance, when evaluating spatiotemporal algorithms (e.g. map matching
or trajectory compression), a model of the trip producing activity or the chaining of trips
is unlikely to have any meaningful affect on the evaluation. Instead, what is needed to
evaluate such algorithms are tracks which faithfully mirror what we expect to observe and
the exact modeling approach for obtaining such tracks is likely irrelevant.

Furthermore, trajectory data often does not come with any additional information
which could be used to derive the information necessary for an activity model. Thus, while

activity-based techniques for modeling mobility are certainly more prevalent than in times

4The specification of a vehicle type adds no further constraint and can be set to a default value if no
information is available.

79



past, trip-based models are still the predominant model type in use today by transportation
practitioners [38] [206]. Indeed, trip-based models have been used for many years now in
a variety of contexts [206]. The desire to use trajectories and maintain a data-driven frame-
work with minimal assumptions leads us to utilize the trip-based modeling approach’.

Switching to an implementation standpoint, one drawback of the libsumor compo-
nent is the fact that, with the exception of the wrapper mode, it requires that many of the
simulation files be written to disk. This limits the performance of some aspects of the com-
ponent to that of I/O speeds as well as requiring enough disk space for the task at hand.
As physical storage has reduced in cost substantially and performance has improved, such
concerns are not as relevant as they were in years past, but their relevance should not be
overlooked either.

Additionally, at the time of writing, coverage of the wrapper mode was not complete
and was limited to those functions necessary to confirm validity of the approach. As such,
before the wrapper mode module of the libsumor component can be extensively used it
will need to be extended in order to support the larger collection of options available in
SUMO.

Finally, while a reasonable level of filtering is available when operating in the syn-
thetics mode, a more robust and analyst extensible filtering module would be desirable so
that the analyst can perform custom filtering and avoid having to post-process the resulting

synthetics.

4.2 Quantitative

To quantitatively evaluate the proposed framework, we focus on demonstrating the ability
to calibrate simulation demand from inferred demand quantities. The premise of this argu-

ment is that if the simulation used to produce the synthetics can be calibrated from quanti-

3See section 3.2.1 for our argument in favor of using a trip-based approach.
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ties inferred from the reference trajectories, the resulting synthetics will be more reflective
of reality. As demand calibration procedures are extremely varied, a worthwhile rank com-
parison would be extremely difficult as each calibration method may try to optimize various
elements. On something as complex as a traffic simulation, extracting meaningful results
would be extremely hard if not impossible.

Instead, because the geoaware component is meant to be general to a variety of sim-
ulation situations, we believe a much more informative discussion centers around demon-
strating the ability to capture various desirable demand quantities for calibration and il-
lustrating how such a capability compares to the literature and commonly employed tech-
niques. As such, we do not seek to produce quantifiable metrics but instead wish to quan-
tifiably justify the ability of the framework to infer various demand quantities from the
reference trajectories. We present our evaluation as a series of propositions and (i) demon-
strate the ability to calibrate the quantity, (ii) explore how other approaches in literature
and practice calibrate such a quantity, and (iii) compare our approach to the reviewed ap-
proaches.

In synthetics production, commonly used techniques (particularly MOGs) overlook
the importance of seasonality in the modeling process. As argued earlier in this work, hu-
man mobility exhibits strong seasonal patterns and therefore, being able to capture such
seasonality is important and marks an improvement over those techniques which are un-
able to do so. The proposed framework explicitly incorporates seasonality when construct-
ing the the macro-level demand, micro-level departure time profiles and micro-level edge
weights for each block.

The geoaware component of the proposed framework makes contributions to three
calibration metrics when calibrating the demand of a traffic simulation. The first contribu-
tion focuses on demonstrating the ability to incorporate seasonal trends into the macro-level
movement between TAZs. The second contribution extends such seasonality to departure

time and edge weight selection. The third and final contribution demonstrates the ability to

81



replicate paths from the reference trajectories. We begin by demonstrating the incorpora-

tion of macro-level seasonality.

4.2.1 Replication of Macro-level Demand

Rational, Macro-level Simulation Demand

Proposition 1

The proposed demand model produces statistically rational, macro-level simulation

demand

As has been cited previously, the aim of the GeoAware framework is not to repli-
cate the collection of reference trajectories (provided to the framework as input) but rather
to infer transferable characteristics from such trajectories which can be used to produce
synthetic traffic incorporating such properties. Inferring the requisite macro-level demand
information from trajectories is straightforward as they can be aggregated to any spatial and
temporal resolution and the quantity of departing trips between each block® can be easily
extracted. If the proposed model were to stop here, the results would merely be a historical
time series of departures not a model of agent demand.

Instead, the proposed approach models demand by fitting a seasonally-aware model
to each block. Seasonally modeling demand (i) enables the incorporation of historical de-
mand, (ii) allows the model to be used in situations which are yet to be observed, and
(1i1) captures typical demand behavior. The geoaware component utilizes the SDSBM
presented in [184] and outlined in section 3.2.3 as it provides a solid, statistically-backed
model for incorporating the affects of seasonality. Much literature has demonstrated the
influence of seasonal cycles (such as a week) on mobility patterns [199] [142] [87] [184]
[157] and the SDSBM has been shown to better model seasonal phenomena when com-

pared to models which lack explicit consideration of seasonality [184]. Furthermore, be-

6Recall, that a block is a directed pair of TAZs. In a network with n TAZs, n? blocks exist.
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cause the signal and noise terms of the SDSBM are assumed to be Gaussian distributed in
our framework, the model is the minimum mean square error (MMSE) estimator of the de-
mand’ [117]. For the evaluation of the SDSBM, the reader is encouraged to consult [184]
or [183].

Seasonal Simulation Demand

Proposition 2

Calibrating macro-level simulation demand using the proposed demand model cap-

tures seasonal demand patterns

To demonstrate that the geoaware component is capable of replicating demand which
exhibits seasonality, a 40 element synthetic demand signal is produced that follows a si-
nusoidal pattern and has a periodicity of length four (4). Without loss of generality, each
element of the signal is assumed to represent the demand over a period of one day. Additive
white Gaussian noise (o = 1000) is added to perturb the signal. Synthetic trips are gen-
erated according to the quantity specified by the demand signal and were simulated using
the synthetics mode of the libsumor component with only the onset and terminus location
of each trip retained. Once the synthetic trips are produced, the records were fed into the
geoaware component and the the block demands generated.

A comparison between the original demand signal and the inferred demand signal
is presented in figure 4.1. As is clearly evident by the figure, the seasonal demand used
in generating the trajectories is captured by the geoaware component, demonstrating its
ability to capture seasonal patterns exhibited in the reference demand®.

Current Approaches

Traffic planners are often concerned with confirming that a traffic model can successfully

approximate field data, particularly that of local traffic counts and travel surveys [206].

"The interested reader is encouraged to consult Chapter 13 of [117] for the derivation.
8Those interested in a quantitative comparison between the SDSBM and other block models concerning
the ability to recover seasonal phenomena are encouraged to consult [184] or [183].
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Figure 4.1: Comparison between the truth demand signal and the inferred, macro-level
(block) demand signal. The initial values of the observation noise and transition noises
for the MLE procedure were naively set to 1 as no prior information concerning these
quantities is known [183]. To perform MLE, the Nelder-Mead optimization algorithm was
used with the maximum number of iterations set to 500. See the References section of R’s
optim function (?opt im) for the algorithm details. Data Source: synthetic
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To aid in this process, many traffic simulators and literature pieces provide algorithms for
tuning the path choices of the agents such that the simulated edge counts approximate
those observed in the field [21]. Typically, when one refers to “demand calibration” in
a traffic planning context, such a path-level algorithm is envisioned®. In the proposed
framework, path-level calibration is not of primary interest'” but instead capturing patterns
of mobility that reflect what is typically observed. The word “calibration” is not typically
used to describe this procedure and instead such a process may be referred to as “demand
generation”. Despite the naming semantics, such a process is a calibration procedure as it
makes the simulation more reflective of reality.

The UTP procedure (see section 3.2) on which our work is based, generates demand
during the first two steps of the procedure, namely the trip generation and distribution steps
(see section 3.2.3 for details). Recall, that the trip generation step focuses on creating
a pair of trip productions and trip attractions for each TAZ while the trip distribution step
allocates trips between directed TAZ pairs known as blocks. Trip productions are calculated
per TAZ and typically use a cross-classification technique that tabulates rate parameters for
certain household categories and applies those rates to the projected number of trips in that
category for some target interval [206] [226] [48]. Natural sources for the household-level
socio-economic data are census data and travel surveys [48] [226]. Trip attractions are
also calculated per TAZ but are often harder to estimate accurately due to a general lack of
survey data quantifying the effects of different establishment types on attracting trips [206].
This lack of detailed information typically leads to the use of a linear regression model
on socioeconomic factors indicative of activity, such as employment or school enrollment
[206]. Temporal affects can be incorporated at the trip generation step by constructing
separate trip generation models for each time period [188] [33].

Even though cross-classification [206] [129] [5] and linear regression [206] [188]

The calibration process need not be restricted to calibrating path selection using edge counts. The Dyna-
MIT simulator presents a general approach for calibrating demand and supply quantities [28].

10 Although, a path-level calibration technique could certainly be coupled with such a macro-level tech-
nique.

85



[129] [5] are the typically employed methodologies, other techniques include!': (i) us-
ing a Tobit model to handle negative trip rates (caused by negative regression factors) [59]
[207], (i1) defining trip generation using logistic regression [107], (iii) capturing the dis-
crete nature of trip rates using Poisson [22] or negative binomial regression [209], (iv)
using a multiple classification technique that attempts to eliminate drawbacks of classical
cross-classification [202], (v) a neural network approach [113], and (vi) using cell phone
data [43].

In the typical UTP framework, once trip productions and trip attractions have been
generated, a trip distribution procedure optimally allocates trips between TAZs subject to
a cost function on attributes involving attractiveness, cost and perception [44]. Examples
of such factors include employment, number of households, travel time, walk time after
arrival, monetary cost, destination parking rates, toll roads, income level and area safety
[44]. Gravity models [206] [58] [44] are typically employed for the assignment procedure
although random utility models [27] [206], intervening opportunities methodologies [203]
[58], hybrid gravity-opportunity mixtures [223] [9], state space models [12] [55], Bayesian-
based approaches [75] [134], and activity-based'? techniques [36] [24] [149] are also valid
options'?.

Many studies have extended the traditionally static trip distribution step to model the
affects of time on trip distribution. The most common approach is to segment the generated
(pre-distribution) or distributed (post-distribution) trips according to departure percentages
[206] [191]; however, other approaches present a completely overhauled model that explic-
itly considers time dependence [12] [55] [75] [36] [24].

While the above discussion covers the wide gamut of demand generation procedures

explored in the literature, the procedures employed for demand calibration by modern traf-

"'The interested reader is encouraged to consult [48] for a detailed comparison of some of these method-
ologies.

12 Activity-based approaches actually model in terms of tours which are a sequence of activities that begin
and end at home [36] and can be translated into TAZ pairings by formatting as origin-destination matrices
[185].

13 An excellent review of trip distribution models is provided in [44].
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fic simulators'* is typically much more restricted. Most modern traffic simulators either
assume that demand already exists in some usable format or implements a demand gener-
ation procedure using the traditional cross-classification, regression and gravity models of
the UTP procedure. Such an approach is not surprising, as the four-step UTP procedure
is the most common traffic planning framework, making any tool that implements models
for such a framework immediately more useful. Even the fact that many traffic simulators
assume demand information is not unwarranted as there is a clear distinction between the
modeling of demand and the routing of such demand through a network in terms of both
the models and software required.

In our review of related MOGs (moving object generators; see chapter 2), we were
unable to find any work that explicitly incorporated seasonality when generating synthet-
ics. While [102] and [170] do not explicitly mention seasonality, because they construct
synthetics from patterns, a seasonal pattern could be established and used to generate repre-
sentative trajectories. Additionally, [108] does not model seasonal effects but it does infer
a collection of distributions from field data in order to model “typical” behavior.

Comparison Against Current Approaches

Having presented a review of the current approaches to macro-level demand, both in the
literature and in practice, we contrast the GeoAware framework with the current. The
GeoAware framework differs from the current in three significant areas, namely, (i) its
source of calibration data, (i1) its effectiveness of calibration, and (iii) its focus on transfer-
ability.

Data Source. UTP-based models rely on various socioeconomic variables to indicate the
quantity and distribution of trips throughout the network. The use of socioeconomic vari-
ables for establishing demand is well studied and is a widely employed technique that

exhibits a great deal of rationalism. Variables such as car availability, population levels,

14The list of reviewed simulators was: Aimsun, Cube Voyager, DRACULA, DynaMIT, MatSIM, MITSIM-
Lab, Paramics, SUMO, and TSIS-CORSIM. These traffic simulators where chosen due to their prevalence in
the literature and where information could not be found publicly, user documentation was consulted.
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employment levels and other such factors can be easily seen to affect the quantity and
distribution of trips [44].

Just like any model, however, such models have their drawbacks. In the context of
travel demand, the reliance on socioeconomic variables (or any indicator variable) requires
that the analyst (i) know the set of variables affecting demand, (ii) be able to capture such
variables in the field, and (iii) construct a proper model incorporating such variables. Cer-
tainly, models have been constructed for such socioeconomic indicators that have proved
useful in practice, but a fundamental question always remains concerning how reflective
the model is of reality.

In contrast, the geoaware component constructs a predictive model based on direct ob-
servations captured through trajectories thereby avoiding the cumbersome process of iden-
tifying relevant socioeconomic variables and establishing a model from such data. When
one is merely trying to obtain the quantity and distribution of trips and is not attempting
to understand the reasoning for such such demand, trajectory data proves a far superior
choice over that of indicator variables due to its correspondence with a real-world actor.
With trajectory data, any model of demand can be compared with the original trajectories.
In models based on socioeconomic variables, no direct link exists to a real-world actor due
to the aggregation of the statistics and thus the demand model cannot be compared with
actual observations.

Some MOGs do support the use of trajectory data (for instance [102] or [170]) for
inferring patterns but the ease of incorporating information from such trajectories depends
on the framework. In general, the process is not straightforward and often requires an
analyst to define an inference procedure to obtain the relevant information. Such a task
places an extra burden on analyst.

Given the prevalence of location acquisition systems nowadays [143], calibration of
macro-level demand from trajectories is much more realistic than in times past, however,

we do not wish to imply that the aforementioned approaches are obsolete. As noted previ-
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ously, the regression and gravity models of the trip generation and trip distribution steps,
respectively, are quite common in practice. Such techniques are vital when trying to model
how changes in scenario characteristics, such as land use changes, population adjustments,
or demographic shifts, change the resulting demand. In such situations, trajectories can-
not be directly utilized as they often lack the meta-information necessary to ascertain such
information.

Calibration. The second area of difference between the reviewed approaches and the
GeoAware framework is the focus the GeoAware framework places on producing and uti-
lizing calibrated, macro-level demand. In many works, demand calibration is rightfully
cited as a necessary step in simulation calibration but as noted in our review of relevant
traffic simulators, many modern simulation frameworks do not have a mechanism to gen-
erate calibrated demand. Separating the calibration from the actual simulation of demand
makes sense as the two processes are mostly independent, however, it is valid to question
how relevant the results of a traffic simulation are if they are not reflective of reality. While
the simulator must be based on a sound traffic model in order to be useful when analyzing
real-world situations, it is equally important to have demand that reflects reality. The lack
of a technique for natively generating demand in many traffic simulators means that addi-
tional work is put on the analyst to derive calibrated, macro-level demand; an effort which
might be tangential to the task at hand.

In those traffic simulators which do provide a process for generating trip-based traffic,
the approach typically relies on the aforementioned procedures of the trip generation and
distributions steps. As noted previously, because of the historical and continued dominance
of the UTP procedure, many modern traffic simulators, particularly those aimed at commer-
cial applications, support the UTP procedure for generating traffic demand. Built-in UTP
support allows an analyst to quickly generate demand but requires that socioeconomic data
exist. In situations where all an analyst wishes to do is to generate traffic that reflects what

is typically observed, the collection of various (and relevant) socioeconomic data presents
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a hurdle which the analyst must overcome in order to utilize the UTP procedure.

Often, if MOGs support the creation of calibrated synthetics, the quantities and distri-
butions driving such a procedure are assumed to be exogenously defined. Very few specif-
ically detail procedures for producing the necessary quantities and distributions from field
data [108] [84].

In contrast, the GeoAware framework is designed for comparatively rapid!®> genera-
tion of calibrated trip demand. In the proposed framework, rather than use socioeconomic
variables which must be researched, gathered and integrated into a model, trajectory data
is used to infer the macro-level mobility patterns and requires little processing once cap-
tured by a location acquisition device. Because trajectory data implicitly carries onset and
terminus information (as well as a host of other information), aggregate socioeconomic
variables are not needed to try and predict such quantities. Additionally, the geoaware
component outlines a complete procedure for inferring relevant quantities from the trajec-
tory data. By lessening the hassle of synthetics production, an analyst can focus on the
task for which he/she needs the synthetics rather than focus on obtaining inputs which will
produce sufficiently realistic results.

Transferable Patterns. The geoaware component also focuses on ensuring the patterns

inferred are transferable. Often, traffic studies argue that a traffic model is valid by demon-
strating that it is able to recreate known traffic conditions (with a certain degree of accuracy)
of some base year [206]. In studies attempting to address how environmental and societal
changes affect demand, establishing the ability to recreate base-year conditions is critical
to the argument of the researchers as it legitimizes the conclusion that changes in environ-
mental and societal characteristics produced the changes in travel demand. But as [172]
argue, the preoccupation with recreating base-year conditions may limit the utility of the
simulation in situations which do not resemble such base-year conditions. If the model is

only capable of accurately recreating base-year conditions, such a model will be of limited

5By “rapid” we do not necessarily mean fast but instead are highlighting how little overhead is required
to generate synthetic demand using the GeoAware framework.
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utility.

Furthermore, the reliance of many modern traffic simulators on socioeconomic vari-
ables when calibrating macro-level demand may also limit how applicable the simulation
is in other situations. Because such models are constructed from a finite collection of so-
cioeconomic variables, the relevance of the variables and the accuracy of the model in
non base-year conditions determines how applicable the simulation is in such situations.
If the socioeconomic data, traffic counts, speed or any other field-data source are specific
to certain conditions, it is senseless to try and make such data representative of “typical”
data. Indeed, even when data is supposedly representative of “average” conditions, one
must investigate the generation procedure for such data. For instance, path-level demand
calibration often relies on traffic counts but traffic counts are often communicated as aver-
ages and may have been expanded from counts taken over a shorter duration [118]. How
accurate the process is at expanding short-duration counts to annual averages will dictate
how faithful such data is to reality. As [21] points out, mismatches between “average” and
“observed” demand will likely result in flow that is unrepresentative of reality.

Instead of focusing on base-year recreation, the GeoAware framework focuses on cali-
brating behavioral properties which are applicable in non base-year conditions. The macro-
level demand calibration component of the GeoAware framework seeks to extract mobility
patterns by observing historical trends in pickup and dropoff locations of the trajectories.
By incorporating seasonal patterns, the resulting simulation is calibrated based upon the
trends observed over multiple time periods rather than from a single snapshot or “average”
conditions. The incorporation of such seasonal patterns constitutes a major advantage of
the GeoAware framework over other MOGs which do not explicitly consider seasonality
when producing synthetics.

Because the demand model is produced directly from the observed trajectories, the
analyst need not be concerned with ensuring that the produced model is representative. Of

course, the analyst must ensure that the trajectories represent the conditions he/she wishes
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to recreate but unlike the typically heuristic MOGs or traffic simulators which calibrate
using socioeconomic variables, one does not have to check that the resulting demand model
accurately represents real world demand. In the GeoAware framework, the data-driven
approach ensures that the resulting model is reflective of the underlying data source by
capturing trends rather than focusing on base-year recreation. This results in a simulation

that is transferable to other situations which meet the modeling assumptions.

4.2.2 Replication of Departure Times

Proposition 3

Calibrating simulation demand using the proposed demand model captures seasonal,

micro-level departure time patterns

To demonstrate that the GeoAware framework is capable of capturing seasonal depar-
ture time patterns, we construct a simulation scenario similar to that presented in section
4.2.1. Recapping the experimental setup presented there, a 40 element synthetic demand
signal is produced by adding white Gaussian noise (o = 1000) to a sinusoidal signal hav-
ing a periodicity of length four (4). Without loss of generality, each element of the demand
signal is assumed to represent the demand for an entire day.

Once the demand has been constructed, we define a departure time profile for each
time period in the seasonal interval (i.e. each element of the demand is seasonally related
to other other demand elements and all related elements share the same time profile). Be-
cause the periodicity of the demand signal is of length four, four departure time profiles
are defined. We split each profile into 96 data points (i.e. 15 minute intervals) and con-
struct departure time profiles for the period according to (i) uniform, (ii) Gaussian, (iii)
sinusoidal, and (iv) composite distributions. Synthetic trips are then produced according to
the quantity specified by the demand signal with the departure times for the demand dis-

tributed according to the departure time profiles associated with each demand element. For
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example, the thirteenth element of the demand signal (day thirteen) would belong to the
second time period in the seasonal cycle (13 mod 4 = 1, where the index is zero-based).
The synthetic trips are simulated using the synthetics mode of the libsumor component.

Once the synthetic trips are simulated, the mobility records produced are fed into the
geoaware component with the seasonality and simulation granularity parameters coming
from those used when generating the truth demand. Once the block-level demand is in-
ferred, the departure time profiles are inferred. A comparison between the departure time
profiles used when generating the truth demand and those inferred from the generated tra-
jectories is presented in figure 4.2. As one can see, the empirically derived departure time
profiles captured the seasonality present in the original truth data. Because we simulate
multiple days and each day is seasonally related with nine other days, we effectively per-
form four Monte-Carlo simulations where the time departures in each period of the seasonal
cycle is simulated ten times.

Current Approaches

A survey of transportation planning literature reveals that the models which consider depar-
ture time are often activity-based. The association of departure time selection with activity-
based models makes sense as the commonly used, trip-based traffic planning models tend
to be more macro-focused whereas activity-based models are micro-level and seek to jus-
tify the observed travel patterns based on behavioral attributes [206]. [217], [197], and [2]
present early approaches to departure time modeling from an activity-based perspective.
Typically, in transportation planning contexts, departure time models are constructed
as a discrete choice model from cross-sectional data deemed relevant to departure time
choice [50] [2] [14] [232]. In the literature, factors such as travel time, travel cost, trans-
portation mode, arrival flexibility, gender, age, family status and occupation have all been
used when fitting a model of departure time. As some of these factors are subject to the
affects of congestion, some traffic assignment works use such models to assign departure

times based upon the prevailing traffic conditions within the simulation [71] [28].
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Figure 4.2: Comparison between the truth departure time signals and the inferred departure
time signals. The x-axis indicates the simulation interval within the period. In the experi-
ment, a seasonality length of four was used. The initial values of the observation noise and
transition noises for the MLE procedure were naively set to 1 as no prior information con-
cerning these quantities is known [183]. To perform MLE, the Nelder-Mead optimization
algorithm was used with the maximum number of iterations set to 500. See the References
section of R’s opt im function (?optim) for the algorithm details. Data Source: synthetic
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Although utilizing a discrete choice framework on cross-sectional data is the most
prevalent technique, other approaches to modeling departure time profiles do exist in the
literature. Examples include constructing an input-output N-curve from flow data [103],
reverse engineering departure times from a calibrated OD matrix [125], and using GPS
data to estimate door-to-door travel time and its affect on departure time choice [168].

With the exception of the DynaMIT traffic simulator, the reviewed traffic simulators'®
do not focus on calibrating micro-level departure trends. The DynaMIT traffic simulator
calibrates driver responses (such as departure time) through behavioral models based on
historical patterns and incoming surveillance data [28]. While not many traffic simulators
support calibration of trip departures, some traffic simulators, such as AIMSUN [4] or
DRACULA [139], allow an analyst to specify a distribution to use for departure times.

Many MOGs support the use of statistical distributions to specify various temporal
properties, however, only a few specifically detail methodologies for inferring temporal
properties from field data. Because [102] and [170] generate by example and construct
their synthetics from mobility patterns, such works are capable of modeling departure times
pattern in data. Despite this, however, neither work outlines an algorithm for creating such
patterns from data and therefore an analyst must construct such mobility patterns. [108]
and [84] use field data for calibrating temporal properties and provide methodologies for
incorporating this information into the framework. [108] uses such field data to produce
synthetic CDRs while [84] uses the data to construct a synthetic population which is sim-
ulated to produce symbolic trajectories. [200] present a technique that uses regression on
trajectory data to produce synthetic demand that is then routed by SUMO.

Comparison Against Current Approaches

The geoaware component is easily distinguishable from the approaches in the literature and

practice for three reasons. First, of the widely utilized traffic simulators, only one supports

16The same collection of reviewed simulators presented earlier. For reference, the list of reviewed simu-
lators was: Aimsun, Cube Voyager, DRACULA, DynaMIT, MatSIM, MITSIMLab, Paramics, SUMO, and
TSIS-CORSIM.
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any form of calibration of departure time based upon data. While it is likely that such
an absence is a result of the typically macro-level analysis in which traffic simulators are
employed, it is important to note that microscopic traffic simulators are applicable to a wide
variety of scenarios which extend beyond supplying data for macroscopic analysis. Thus,
the inability of most traffic simulators to utilize calibration data to make the departure trends
more reflective of reality is discouraging. The geoaware component stands in complete
contrast to such an approach as it explicitly constructs its model of demand by inferring
micro-level departure patterns from the collection of reference trajectories.

Second, in contrast to the approaches outlined above, the geoaware component does
not rely on cross-sectional data. One common source of cross-sectional data are travel sur-
veys or census products. Unfortunately, surveys are (1) not routinely performed, (ii) feature
a limited sample size [50] [17], and (iii) have noisy responses [17]. Additionally, as such
data may not explicitly provide information on trip departures, a model must be constructed
from such factors. In contrast, modeling departure times in the geoaware component uses
trajectory data that is ubiquitous nowadays, can often be captured passively'’, and provides
micro-level information — including departure time.

Third, in contrast to available MOGs, the GeoAware framework not only allows de-
parture time to be specified by a statistical distribution, it provides a method for inferring
such a distribution from trajectory data. As we showed in our review, such an approach
is not common. Additionally, the empirical PMFs constructed by the proposed framework
heuristically incorporate seasonality, ensuring that the PMF constructed is representative

of “average” or typical conditions.

4.2.3 Replication of Incident Edge Weights

7"We do not wish to construe the idea that such data should be collected without a user’s permission
but instead simply note that often capturing trajectory data does not require the user to do anything (e.g. a
camera-based vehicle tracking system).
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Proposition 4

Calibrating simulation demand using the proposed demand model captures micro-

level, onset and terminus edge selection weights

Similar to the previous experiments, to demonstrate that the geoaware framework is
capable of capturing seasonal edge weights associated with the onset and terminus locations
of a trip, a 40 element, sinusoidal demand signal with additive white Gaussian noise (o =
1000) is constructed. Once again, the periodicity of the signal is of length four (4) and each
demand element is assumed (without loss of generality) to represent the demand over an
entire day.

Now, however, instead of defining departure time profiles for each period in the sea-
sonal cycle, edge weight profiles are defined for the onset and terminus edges. Because an
edge weight profile had to be constructed for both the onset and terminus edges of each
period in the seasonal cycle, a total of eight edge weight profiles are defined and consist
of uniform, Gaussian, composite and sinusoidal distributions. The number of bins in each
distribution is dependent upon the number of edges which belong to the onset and terminus
TAZs, respectively. Synthetic trips adhering to edge weight distributions are produced and
simulated using the synthetics mode of the libsumor component.

Once the truth trajectories are generated, they are fed into the geoaware component
with seasonality and simulation granularity parameters matching those used when creat-
ing the synthetic trajectories. Once the block-level demand is inferred, the edge selection
weights were inferred. Figures 4.3 and 4.4 present the empirically inferred quantities along-
side the truth distributions used when generating the synthetic trajectories. Once again, as
in the demand and departure time experiments, the inferred demand accurately captures
seasonally distributed edge weights. Because we simulate multiple days and each day is

seasonally related with nine other days, we effectively perform four Monte-Carlo simula-
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Figure 4.3: Comparison between the truth edge weights and the inferred departure edge
weights for the onset TAZ. The x-axis indicates the index into the list of edges associated
with the onset TAZ. Uniform RMSE: 0.0004531695. Composite 1 RMSE: 0.0004189938.
Composite 2 RMSE: 0.000384571. Sine RMSE: 0.0004959786. Total of N = 103391 trip
records. The initial values of the observation noise and transition noises for the MLE pro-
cedure were naively set to 1 as no prior information concerning these quantities is known
[183]. To perform MLE, the Nelder-Mead optimization algorithm was used with the max-
imum number of iterations set to 500. See the References section of R’s opt im function
(?optim) for the algorithm details. Data Source: synthetic
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Figure 4.4: Comparison between the truth edge weights and the inferred arrival edge
weights for the terminus TAZ. The x-axis indicates the index into the list of edges as-
sociated with the terminus TAZ. Gaussian RMSE: 0.0004317771. Composite 1 RMSE:
0.0003508453. Composite 2 RMSE: 0.0003736785. Composite 3 RMSE: 0.0004666017.
Total of N = 103391 trip records. The initial values of the observation noise and transi-
tion noises for the MLE procedure were naively set to 1 as no prior information concerning
these quantities is known [183]. To perform MLE, the Nelder-Mead optimization algorithm
was used with the maximum number of iterations set to 500. See the References section of
R’s optim function (?optim) for the algorithm details. Data Source: synthetic
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tions where the selection of edges in each of the days is simulated ten times.

Current Approaches

The most common techniques employed in the literature for estimating the locations asso-
ciated with a trip tend to be associated with that of activity-based, discrete choice frame-
works. Similar to the activity-based, discrete choice frameworks reviewed in our discussion
of departure time, such models are often based on behavioral data. [29] [131] [232] typify
the approaches which are prevalent in the literature. Often, the destination choice is the
quantity of interest while the onset location is assumed exogenously.

As most metropolitan planning tools represent traffic at the TAZ-level (a geospatial
polygon), agents are typically inserted and received at a single centroid location [206] or
at several locations throughout the zone [91]. The nodes are assumed to be connected to a
roadway within the TAZ. Thus, in these models, when one discusses an onset and terminus
location, one does so at the zonal level.

Some approaches break from convention and model travel at a sub-TAZ level but
such approaches are rare in the literature. [109] and [145] perform sub-TAZ modeling by
dividing the TAZ into subareas which can be chosen evenly or based upon socioeconomic
variables. [218] takes a different approach and performs sub-TAZ modeling by using a
discrete choice model to model the route selection process from home to the access points
of the transportation network.

Upon review of a representative collection of modern traffic simulators'®, none were
found to specifically incorporate the modeling of onset or destination edges from calibra-
tion data. Modern traffic simulators often support macro-level TAZs but the exact method-
ology by which such simulators select individual edges is certainly not standardized. Mi-
croscopic traffic simulators such as VISSIM [175], AIMSUN [4] and SUMO [140] allow

an analyst to specify the quantity of trips at particular edges but such quantity information

3The same collection of reviewed simulators considered throughout this section. For reference, the list of
reviewed simulators was: Aimsun, Cube Voyager, DRACULA, DynaMIT, MatSIM, MITSIMLab, Paramics,
SUMO, and TSIS-CORSIM.
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must be externally defined.

Additionally, it is also worth noting that since microscopic simulators often rely on
OD matrices for demand generation, one way to model individual location demand would
be to use individual locations rather than aggregate zones when crafting the OD matrices.
Of course, such a procedure is only applicable if the data provided supports such a fine-
grained representation.

Many MOGs support the ability to specify a distribution that governs the selection of
onset and terminus edges. Nevertheless, only a few specifically detail a procedure for set-
ting such weights from relevant field data. [108] uses real CDRs or other relevant field data
to construct distributions governing the selection of various location information, namely
home, commute distance, work, and hourly population density distributions. [64] uses sta-
tistical data to set the home and work regions in the BerlinMOD framework. The ST-ACTS
framework uses field data to construct a synthetic population which is then simulated to
produce symbolic trajectories [84]. [102] and [170] are also able to recreate edge patterns
if the general mobility patterns on which the synthetics are based captures such informa-
tion.

Comparison Against Current Approaches

As noted above, the predominant technique for modeling onset and terminus choice is using
discrete choice models. While insight can gathered from understanding what behavioral
attributes drive the selection of incident locations, such behavioral data is often difficult to
obtain as many factors are unseen and requires specifying or identifying a model of mobility
using such behavioral data [50] [192]. In contrast, the GeoAware framework enables a user
to quickly infer incident location weights through the construction of an empirical PMF,
eliminating the need to find and model socioeconomic data. Of course, the drawback to
such an approach is that the model is not explanatory but the benefit of such an approach is
the fact that there is no concern over ensuring that the model is representative of the data.

Additionally, the macro-level zonal approach of modern traffic simulators poses se-
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rious problems when trying to perform low-level simulation or when trying to accurately
represent demand [91]. Despite the power of microscopic traffic simulators, modern traf-
fic simulators often rely on macroscopic routing principles. The reliance on macroscopic
principles is likely due to the focus of travel practitioners on macro-level analysis and the
fact that, in the past, commonly available data sources tended to be aggregate in nature. In
contrast, the geoaware component extracts micro-level patterns from the reference trajec-
tories and uses the extracted patterns to perform sub-zonal edge selection based upon the
inferred patterns.

While many MOGs support the ability to calibrate edge selection from field data, the
source of information is typically aggregate in nature and therefore, often does not provide
the necessary, low-level details. In contrast, when trace-level trajectories are provided to
the GeoAware framework, seasonally-aware PMFs can be constructed for choosing various
edges based upon the block to which an agent belongs. Such a PMF enables the weights to
be time dependent and makes the selection of onset and terminus locations dependent on
each other. Not many MOGs support the ability to make the selection of onset and terminus

edges dependent on each other.

4.2.4 Replication of Paths

Proposition 5

Calibrating simulation demand using the proposed demand model permits a certain

percentage of trips to duplicate the paths observed in the reference trajectories

Another technique an analyst can use on trace-level trajectory data is the path repli-
cation algorithm provided by the geoaware component. The goal of the path replication
algorithm is to increase the realism of the demand obtained by requiring that a certain per-
centage of the generated demand follow the paths observed in the reference trajectories

rather than being routed by the simulator. By replicating a certain percentage of the paths
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Quarter | Truth | Inferred
Quarter 1 | 0.25 0.28
Quarter 2 | 0.50 0.52
Quarter 3 | 0.75 0.76
Quarter 4 1 1

Table 4.2: Results of path replication experiment.

in the reference trajectories, an analyst can control how much of the routing in a simulation
is performed by the routing algorithm versus duplicating paths in the reference trajectories.
Clearly, if the simulated vehicles are routed according to the paths from the reference tra-
jectories, that percentage of trajectories is guaranteed to follow the paths observed in the
real world (as captured by the trajectories).

To quantitatively demonstrate that the simulated trips produced by the geoaware com-
ponent can clone a certain percentage of the reference trajectories, we construct a simple
simulation scenario and demonstrate the ability to create demand where a certain percent-
age of the trips have paths which mirror those observed in the reference trajectories.

The experiment begins by creating a collection of synthetic trips. Once the synthetic
trajectories are created, a geoaware object is instantiated using the synthetic trajectories
as the reference trajectories. Prior to running the trip generation procedure, we set the
percentage of trips which should have paths mimicking those in the reference trajectories
for each period in the seasonal cycle.

Next, the trip generation procedure is called. The reader may recall from the method-
ology section (see section 3.2.5) that it is within this procedure that a certain percentage
of the trips are assigned paths from the reference trajectories while the remaining trips are
distributed according to the relevant departure time and edge weight distributions. The re-
sults of the path replication procedure is demonstrated in table 4.2. The table shows the
ability of the geoaware component to replicate paths from the reference trajectories. As
the framework code takes the ceiling when obtaining the quantity of trips to generate, it is

reasonable to expect the inferred quantities to be slightly higher than truth.
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As noted in 3.2.5, this technique assumes two things. First, in order to replicate path-
level details of a trajectory, the reference trajectories must be at such a resolution. Check
in/out trajectories will not work because they lack the low-level information necessary
to identify the path taken between two points. Second, this process assumes that a map
matching procedure of sufficient quality exists to take the raw GPS locations and convert
them into the series of edges within a network. How well the map matching algorithm
performs this task directly translates into how usable the resulting trajectories are. As map
matching is obviously beyond the scope of this work, for this evaluation we rely on the
open source Fast Map Matching algorithm [231].

Current Approaches

In modern traffic simulations, the ability to infer the paths taken by real-world actors from
calibration data is not present. To be sure, many support the ability to detail predefined
routes but such procedures require that the paths be defined exogenous to the framework
[140] [4] [175]. The inability of modern traffic simulators to infer the paths taken by agents
via calibration data is likely due to the fact that modern traffic simulators typically perform
such calibration with aggregate statistics (such as traffic counts or speed-flow diagrams)
which do not contain the information necessary for path-level inference.

While no reviewed MOG specifically attempts to replicate path-level details, the [102]
and [170] frameworks are able to perform path replication if the mobility patterns used for
synthetics generation are properly configured.

Comparison Against Current Approaches

As noted previously, the geoaware component is primarily focused on inferring transfer-
able demand patterns. This results in a process that is focused on reproducing mobility
patterns not recreating base conditions. Nevertheless, at times it can be helpful to inject
known demand conditions into an otherwise pattern-calibrated simulation. The ability to
recreate paths from the reference trajectories is beneficial in situations where an analyst

wishes to ensure that a certain percentage of simulated vehicles follow the routing captured
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by the reference trajectories but does not need (or does not wish) to construct a behavioral
model of such route choice characteristics. Thus, path replication can be thought of as an
aid for avoiding a much lengthier modeling process. Modern traffic simulators typically
support the specification of demand through external procedures [140] [4] [175] but, to the
best of the author’s knowledge, none support such a procedure natively from a calibration
source. Additionally, no reviewed MOG presents a method for calibrating such information

directly from data.

4.3 Chicago Use Case

With the qualitative and quantitative evaluation now complete, we conclude the evalua-
tion chapter by presenting a tutorial that details how to create synthetic trajectories from
publicly available taxicab pickup/dropoff data for the city of Chicago, Illinois.

INPUT

Creating a collection of synthetic trajectories using the GeoAware framework begins by
defining the necessary inputs. We specify these inputs below.

Reference Trajectories. The reference trajectories come from the publically available col-

lection of taxicab pickup and dropoffs made available by the city of Chicago!®. We specif-
ically retain the pickup and drop-off community areas along with the the timestamps as-
sociated with each of these events. The data is cleaned to remove entries for which we do
not have both a pickup and drop-off area and entries with erroneous timestamps. We use a
month of trajectories from January 2016.

Roadway Network. The roadway network is derived from TIGER/Line shapefiles for the

Chicago area?®. We specifically retain only the records with MTFCC code “S1400” which

corresponds to local neighborhood, rural and city roadways. To aid in computational fea-

19The latest collection of records can accessed at: https://data.cityofchicago.org/Transportation/Taxi- Trips/wrvz-psew
20TIGER/Line shapefiles are made publicly available by the United States Census Bureau at: hitps:/www.

census.gov/geographies/mapping-files/time- series/geo/tiger-line-file.html
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sibility, we geo-fence the network to a few community areas. Because TIGER/Line shape-
files are commonly used in transportation studies, the conversion procedure was provided
as a utility in the geoaware component.

Community Definitions. The reference trajectories are aggregated at two levels. One of

the aggregation levels is that of a community area. The geospatial boundaries for these
areas are provided by the city of Chicago®'. We extract the bounding polygons for each
area and format them for use by the geoaware component.

Timing Parameters. The SDSBM fit intervals are constructed at daily intervals beginning

on January 1, 2016 and extending to February 1, 2016. We set the seasonal periodicity
to be seven in order to model weekly cycles. The city of Chicago aggregates the pickup
and drop-off times to the nearest fifteen minutes and therefore, in order to capture sub-day
departure time profiles, the simulation granularity parameter is set to 900 seconds.

Configuration File. A configuration file is specified according to the format specified in

section 3.1.5. The configuration file details (i) various SUMO parameters, (ii) libsumor
settings, and (iii) the location of required files.

CALIBRATING DEMAND

The calibration of demand is handled by the geoaware component. An algorithmic
outline of this component is presented in algorithm 4. The process begins by initializing a
geoaware object with the reference trajectories, roadway network, community definitions,
and timing parameters®”. This step is shown in line 2 of algorithm 4. Next, TAZs are
constructed detailing the edges which belong to each TAZ and the region that each edge
falls into®*. This step is shown is line 4 of algorithm 4.

After the TAZs have been initialized, one can now infer the macro-level demand pat-

terns exhibited in the reference trajectories. As presented in section 3.2.3, the SDSBM is

2I'The current listing of community areas in Chicago is publicly available here: hitps:/datacityofchicago.org/
Facilities- Geographic- Boundaries/Boundaries-Community- Areas-current-/cauq-8yn6

22The configuration file is not needed until the libsumor component.

Z3Recall that a TAZ may be comprised of multiple regions. See section 3.1.3 for additional details.

106


https://data.cityofchicago.org/Facilities-Geographic-Boundaries/Boundaries-Community-Areas-current-/cauq-8yn6
https://data.cityofchicago.org/Facilities-Geographic-Boundaries/Boundaries-Community-Areas-current-/cauq-8yn6

input : (i) trajectory data, (ii) roadway network, (iii) community
definitions, (iv) timing parameters, and (v) a config file
output: a model of trip demand

1 # instantiate the geoaware component

2 geoaware < geoaware$new (trajectories, roadway, communities,
timing)

3 # generate TAZs

4 geoaware$generateTazs()

s # generate macro-level block demands using SDSBM
6 geoaware$generateBlockDemands (initial_mle_guesses)

7 # extract micro-level heuristics
8 geoaware$generateTimeProfiles()
9 geoaware$generateEdgeWeights()

10 # generate trips from inferred quantities
1 geoaware$generateTrips()

12 # generate scenario
13 geoaware$generateScenario (config)

Algorithm 4: Modeling trip demands using the geoaware component

used for this process. The SDSBM requires the reference trajectories, the fit intervals and
the seasonality length in order to produce a demand signal for each block (a directional
pairing of TAZs). This process is handled by line 6 of algorithm 4.

With the macro-level demand now inferred, the calibration turns to extracting micro-
level details. The first micro-level detail we seek is a model of departure times. To obtain
this model, the reference trajectories are grouped into a bin based upon which seasonal
period the record belongs to. The width of each bin is dependent upon the size of the fit
intervals used with the SDSBM. For this tutorial, as presented earlier, the fit intervals have a
width of one day (86,400 seconds) and the seasonal periodicity is set to seven. This means
that each record in the reference trajectories is grouped into one of seven bins based upon
what day of the week it occurred on. Once grouped, an empirical PMF of the departure
times is constructed for each day at the resolution specified by the simulation granularity
parameter. In this tutorial, this results in a 96-bin histogram as we model each day with

fifteen-minute resolution (900 seconds). This step in the procedure is shown on line 8 of
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algorithm 4.

The next step of the geoaware component is to construct the edge weight profiles.
Unfortunately, due to privacy restrictions, the taxicab data used does not include such low-
level information. Therefore, rather than construct an empirical PMF of such edge weights,
we simply set the edge weights associated with each TAZ uniformly. We provide a custom
function to uniformly set these weights given the number of edges belonging to a TAZ.
This step is shown on line 9 in algorithm 4.

Once the macro- and micro-level details have been inferred, the final step is to specify
trips using the inferred information. As the reference trajectories do not include path-level
information, we are unable to replicate path-level details and therefore rely exclusively
on the assignment algorithms supplied by SUMO. During trip specification, trip departure
times and onset and terminus edges are drawn for the number of trips required in each
simulation interval. The specification of trips is line 11 of algorithm 4.

The trips specified, the last step of the geoaware component is to create a scenario
that incorporates the specified trips, the roadway network and configuration file. This task
is handled by the method specified on line 13 of algorithm 4.

PRODUCING SYNTHETICS

Once a scenario has been constructed, the libsumor component is used to create syn-
thetics with mobility patterns captured from the reference trajectories. Algorithm 5 details

this process.

input : a simulation scenario
output: a CSV file containing synthetic trajectories

1 # the inputs
2 scenario <— a properly constructed simulation scenario

3 # instantiate synthetics mode

4 simulation <— 1ibsumor (scenario, "synthetics”)
5 # generate synthetics

6 csv_synthetics <— simulation::run (end_time)

Algorithm 5: Producing synthetic trajectories
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As shown on line 4, the process begins by instantiating a libsumor object in synthet-
ics mode. During instantiation, files detailing the (i) configuration of SUMO, (ii) vehicle
types, and (iii) the trips are written out. Afterwards, the synthetics mode is instantiated by
inferring the relevant details from the specified configuration file. Once instantiated, the
process of generating synthetic trajectories is quite simple and only requires a single call
as shown on line 6 of algorithm 5. Once the synthetics have been produced, the CSV file

can be used for whatever purposes require synthetic trajectories.
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Chapter 5 — Conclusion

Synthetic trajectories are useful for many situations and have been used for privacy pro-
tection [94] [126], controlled evaluation of spatiotemporal algorithms (e.g. clustering or
map-matching algorithms) [171] [237] [49] [106] [6], and spatial database evaluation [171]
[64] [40] [56] [159]. Synthetic trajectories are often used in such situations because finding
suitable, real-world trajectories is difficult due to privacy issues, ethical concerns, dataset
size, researcher access and sampling frequency [171] [143] [119] [174].

Because synthetic trajectories are used as substitutes for real world data, it is important
that the synthetics accurately reflect properties found in the real world. Such calibration is
essential if the trajectories are to be reflective of reality. However, as the related litera-
ture review showed (chapter 2), often MOGs (moving object generators) resort to heuristic
models for obtaining synthetics, resulting in synthetic trajectories that do not contain key
characteristics found in real world datasets. The review also noted that while many human
mobility models provide improved models of mobility, they are typically not structured for
producing synthetics and involve the specification of a model which may leave out relevant
factors.

To address the aforementioned modeling concerns when constructing synthetic vehi-
cle trajectories, we presented a data-driven, microscopic traffic simulator-based framework
for producing synthetic vehicle traces (see chapter 3). The use of a microscopic traffic sim-
ulator enabled the proposed framework to model the complex nature of vehicle traffic at

the individual level according to established transportation theory [70]. Being a data-driven
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framework means that the the microscopic traffic simulation demand used to produce the
desired synthetics has been calibrated from real-world patterns according to macro- and
micro-level procedures. As we aim to make our work practical and usable by practitioners,
our framework is implemented in an alpha-release package that enables fully reproducible,
data-driven vehicle simulations from the R programming environment.

As research is an ongoing process, there is always room for improving upon the pro-
posed framework. One area that could easily be extended would be the micro-level infer-
ence procedures. In their current form, the procedures are purely heuristic and incorporate
seasonality by grouping related entries when constructing their respective empirical PMFs.
If an analyst desires that a more robust model be used for constructing such distributions,
such a model can be easily supplied through the framework’s built-in support for custom,
micro-level profiling procedures.

Another notable area of improvement would be to extend the somewhat limited fil-
tering capabilities supplied by the synthetics mode. Obviously, as an academic work, such
filtering was primarily introduced to aid in post-processing efforts and therefore, the capa-
bilities introduced were those deemed necessary for such an effort. Of course, such filtering
capabilities are unlikely to fit the needs of all analysts. Thus, a better approach would be to
allow an analyst to provide a custom filtering procedure (similar to the custom, micro-level
profiling procedures) which would appropriately filter the produced synthetics according
to the analyst’s need.

The path assignment algorithm could also be further improved by taking advantage
of the low-level information provided by the reference trajectories. With the exception of
the path replication piece, the GeoAware framework relies on SUMO for routing vehicles
between onset and terminus locations. Such routing procedures do not make use of the
implicit routing information contained in the reference trajectories, thereby missing an op-
portunity to infer path-level mobility patterns that influence the routing of vehicles. In an

effort to mitigate such effects, the proposed framework provides the ability to replicate a
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certain percentage of tracks but such a solution is not a substitute for actually inferring
transferable, path-level patterns.

While we have noted areas of the framework that could be further improved in later
research, the proposed framework has been shown to provide an analyst with an accessible
approach for generating realistic, synthetic vehicle traces. Our qualitative and quantitative
evaluation (chapter 4) of the framework demonstrated the capabilities of the framework and
presented our contributions to the current state of practice. In particular, the utility of the
proposed framework was evaluated by demonstrating how easy it is for an analyst to use
the created alpha-release package to generate fully reproducible vehicle simulations from
within the R environment. Such an accomplishment is notable as, to the best of the author’s
knowledge, no such traffic simulation package exists for the R programming environment.

The evaluation also demonstrated the ability of the framework to infer seasonal, macro-
and micro-level patterns from the reference trajectories to use when calibrating simulation
demand. A collection of quantifiable demand metrics was presented and it was shown that
the proposed framework calibrated such metrics from inference procedures on the refer-
ence trajectories. Additionally, for each metric, we contrasted the proposed approach with
the current literature and techniques employed in practice. Our evaluation shows that the
GeoAware framework brings many improvements to the field of MOGs.

As an application-orientated work, we concluded the evaluation with a tutorial-like
discussion that demonstrated how to use the GeoAware framework to create synthetics for
the Chicago, Illinois area. This tutorial is meant to demonstrate the entire modeling and
simulation process and serves as a guide for using the framework.

When taken collectively, our various evaluations demonstrate that the GeoAware frame-
work improves upon current MOGs by providing an analyst accessible, statistically-backed
framework for producing the synthetic vehicle traces that are often needed in various re-

search endeavors.
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