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ABSTRACT

Xie, Ning. Ph.D., Department of Computer Science and Engineering, Wright State University,
2020. Towards Interpretable And Reliable Deep Neural Networks for Visual Intelligence.

Deep Neural Networks (DNNs) are powerful tools blossomed in a variety of success-

ful real-life applications. While the performance of DNNs is outstanding, their opaque

nature raises a growing concern in the community, causing suspicions on the reliability

and trustworthiness of decisions made by DNNs. In order to release such concerns and

towards building reliable deep learning systems, research efforts are actively made in di-

verse aspects such as model interpretation, model fairness and bias, adversarial attacks and

defenses, and so on.

In this dissertation, we focus on the research topic of DNN interpretations for visual in-

telligence, aiming to unfold the black-box and provide explanations for visual intelligence

tasks in a human-understandable way. We first conduct a categorized literature review,

systematically introducing the realm of explainable deep learning. Following the review,

two specific problems are tackled, explanations of Convolutions Neural Networks (CNNs),

which relates the CNN decisions with input concepts, and interpretability of multi-model

interactions, where an explainable model is built to solve a visual inference task. Visu-

alization techniques are leveraged to depict the intermediate hidden states of CNNs and

attention mechanisms are utilized to build an instinct explainable model. Towards increas-

ing the trustworthiness of DNNs, a certainty measurement for decisions is also proposed as

an extensive exploration of this study. To show how the introduced techniques holistically

realize a contribution to interpretable and reliable deep neural networks for visual intelli-

gence, further experiments and analyses are conducted for visual entailment task at the end

of this dissertation.
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Introduction

1.1 Motivation

1.1.1 The Power and Limits of DNNs

Artificial Intelligence powered by deep learning is thriving in a wide range of real-life ap-

plications. Recently a variety of DNN usage scenarios are actively being developed, ben-

efiting our daily life in diverse aspects. Deep Neural Networks (DNNs) are successfully

utilized for mobile payment systems [Raut et al., 2018], screen unlocking [Chu and Feng,

2018], driving assistant [Olabiyi et al., 2017], cancer diagnostics [Munir et al., 2019], voice

assistant [Coucke et al., 2018], automatic machine translation [Srivastava et al., 2018], rec-

ommendation systems [Zhang et al., 2019b], predicting earthquakes [DeVries et al., 2018],

analyzing trading strategies [Lv et al., 2019], etc. Besides, novel techniques and applica-

tions on deep learning are being rapidly explored, leading to a group of very promising

research topics and potential industrial attempts.

Along with the success of DNNs, there raises an increasing concern on the reliability

of DNNs and the trustworthiness of their model predictions [Jiang et al., 2018a, Heo et al.,

2018, Cortes Ciriano and Bender, 2019]. Such concern seems more urgent for some sce-

narios, where improper model predictions would result in undesirable severe consequences.

For those scenarios, users tend to seek explanations w.r.t. DNN decisions, in order to de-

cide whether or not to accept such decisions generated by the model. For instance, for a

1



model utilized in financial area that predicts to deny a load request, bankers want to know

how this decision is made (is it made based on a comprehensive consideration or just based

on some biased input features such as the applicant’s gender or race?), and how reliable

this decision is (bankers tend to minimize the risk thus won’t take unreliable decisions

into consideration). In medical applications such as cancer prediction, model decisions

should be carefully audited before releasing to the patients, and the decision explanations

are important to serve doctors as references. The demanding of model explanations are also

defined in legal terms [Goodman and Flaxman, 2017]. According to the European Unionś

new General Data Protection Regulation (GDPR), users own the “right to explanation”,

which means a machine learning model should not only generate decisions, but also needs

to provide evidence correspondingly.

The opaque nature of DNNs is becoming an obstacle towards its potential future pros-

perity on real-life applications, especially for critical scenarios where decision justifications

are urgently required, which attracts increasing attention in the community. A variety of

studies on DNN interpretability and reliability are being actively explored [Xie et al., 2020,

Ras et al., 2018, Montavon et al., 2018, Zhang and Zhu, 2018, Samek et al., 2017, Erhan

et al., 2010], which will be introduced in detail in Part I. We notice that besides DNN inter-

pretability, there exists a large group of interpretability research studies for other black-box

machine learning models [Miller, 2018, Samek et al., 2017, Guidotti et al., 2018, Lipton,

2018, Liu et al., 2017, Došilović et al., 2018]. Such studies are out of the main scope of this

dissertation, however may also be covered when the techniques or discussions are general

enough to be applied to the realm of interpretable and reliable DNNs.

2



1.1.2 The Traits of an Explanation

A central tenet in explainable machine learning is that the algorithm must emit information

allowing a user to relate characteristics of input features with its output1. It is thus worth

noting that DNNs are not inherently “explainable”. The limited information captured in

a DNN’s parameters associated with input features becomes entangled and compressed

into a single value via a non-linear transform of a weighted sum of feature values. This

compression occurs multiple times with different weight vectors depending on the number

of activations in the first hidden layer. Subsequent layers then output non-linear transforms

of weighted sums of these compressions, and so forth, until a decision is made based on

the output of the DNN. Hence, it is exceedingly difficult to trace how particular stimulus

properties drive this decision.

The unexplainable nature of DNNs is a significant impediment2 to the wide-spread

adoption of DNNs we are beginning to see in society. DNN-powered facial recognition

systems, for example, are now associating people with locations and activities under wide-

spread surveillance activities with opaque intent [Masi et al., 2018]. People analytics and

human resource platforms now tout the ability to predict employee performance and time

to resignation, and to automatically scan the CV of job applicants [Zhao et al., 2018, Qin

et al., 2018]. These examples foretell a future where DNN technology will make countless

recommendations and decisions that more directly, and perhaps more significantly, impact

people and their well-being in society.

1Portions of this section have been published [Xie et al., 2020] and is currently under review at Journal of
Artificial Intelligence Research.

2There are common counter-arguments to call this limitation “significant”. Some argue that many success-
ful applications of DNNs do not require explanations [LeCun et al., 2017], and in these instances, enforcing
constraints that provide explainability may hamper performance. Others claim that, because DNNs are inher-
ently not explainable, an ascribed explanation is at best a plausible story about how the network processes an
input that cannot be proven [Rudin, 2019].
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External Traits 
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Safety Ethics
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Figure 1.1: Necessary external traits of an explanation.

The present art develops ways to promote traits that are associated with explainability.

A trait represents a property of a DNN necessary for a user to evaluate its output [Lipton,

2018]. Traits, therefore, represent a particular objective or an evaluation criterion for ex-

plainable deep learning systems. We can say that a DNN promotes explainability if the

system exhibits any trait that is justifiably related to explainability. This exhibition may

be self-evident (e.g., in an NLP task, visualizations highlighting keywords or phrases that

suggest a reasonable classification of a sentence), measurable (based on a trait-specific “er-

ror” metric), or evaluated through system usability studies. We discuss the four traits in

Figure 1.1 that are the theme of much of the explainable deep learning literature.

• Confidence. Confidence grows when the “rationale” of a DNN’s decision is con-

gruent with the thought process of a user. Of course, a DNN’s output is based on

a deterministic computation, rather than a logical rationale. But by associating the

internal actions of a DNN with features of its input or with the environment it is

operating in, and by observing decisions that match what a rational human decision-

maker would decide, a user can begin to align a DNN’s processing with her own

thought process to engender confidence.

For example, saliency maps of attention mechanisms on image [Park et al., 2018,

Hudson and Manning, 2018] or text [Vaswani et al., 2017, Luong et al., 2015, Letarte

et al., 2018, He et al., 2018] inputs reassure a user that the same semantically mean-

ingful parts of the input she would focus on to make a classification decision are

4



being used. Observing how the actions of a trained agent in a physical environment

mimic the actions a human would give some confidence that its action choice calcu-

lus is aligned with a rational human. The saliency maps and the observation of the

agents in these examples may constitute a suitable “form of explanation”.

Confidence must be developed by observing a DNN when its decisions are both

correct and incorrect. Eschewing observations of incorrect decisions means a user

will never be able to identify when she should not be confident, and hence not rely

on a DNN. Users must be able to use their confidence to measure the operational

boundaries of a DNN to be able to intuitively answer the question: When does this

DNN work or not work?

• Trust. DNNs whose decision-making process need not be validated are trustworthy.

Recent research [Jiang et al., 2018a, Baum et al., 2017, Varshney and Alemzadeh,

2017, Amodei et al., 2016, Pieters, 2011, Lee and See, 2004] explores the model

trustworthiness problem, which studies whether or not a model prediction is safe to

be adopted. Note that a prediction with high probability does not guarantee its trust-

worthiness, as shown in recent adversarial studies [Goodfellow et al., 2014, Nguyen

et al., 2015, Moosavi-Dezfooli et al., 2016, Yuan et al., 2019]. Trust in a DNN is

best developed in two ways: (i) Satisfactory testing. Under ideal conditions, the

network’s performance on test data should well approximate their performance in

practice. The test accuracy of a model can thus be thought of as a direct measure

of trust: a model with a perfect performance during the testing phase may be fully

trusted to make decisions; lower performance degrades trust proportionally. (ii) Ex-

perience. A user does not need to inspect or validate the actions of a DNN as long

as the network’s input/output behavior matches expectations. For example, a DNN’s

ability to predict handwritten digits from MNIST is beyond question [LeCun et al.,

1995, 1998], and may thus be regarded as a trustworthy system to sort postal mail by

location code. A system that consistently performs poorly in practice may even be

5



“un-trusted” indicating that the DNN should not be used.

Trust is a difficult trait to evaluate. Most deep learning studies include some evalu-

ation component over test data, but it is seldom the case that the evaluation is ideal.

Without careful sampling procedures, test data can be biased towards a particular

class or have feature distributions that do not match the general case [Tommasi et al.,

2017]. It may also be the case that a model can perform poorly in practice over time

as characteristics of the data evolve or drift. Therefore, the best way to evaluate trust

is with system observations (spanning both output and internal processing) over time.

Explainability research allowing users to evaluate these observations (through an in-

terpretation of activations during a DNN’s forward pass, for example) is one avenue

for enhancing trust.

• Safety. DNNs whose decisions (in)directly lead to an event impacting human life,

wealth, or societal policy should be safe. The definition of safety is multi-faceted. A

safe DNN should: (i) consistently operate as expected; (ii) given cues from its input,

guard against choices that can negatively impact the user or society; (iii) exhibit high

reliability under both standard and exceptional operating conditions; (iv) provide

feedback to a user about how operating conditions influence its decisions. The first

aspect of safety aligns this trait with trust since trust in a system is a prerequisite to

consider it safe to use. The second and third aspects imply that safe systems possess

mechanisms that augment its decision-making process to steer away from decisions

with negative impact, or consider its operating environment as part of its decision-

making process. The fourth aspect gives necessary feedback to the user to assess

safety. The feedback may include an evaluation of its environment, the decision

reached, and how the environment and the input data influence the decision made.

This allows the user to verify the rationality of the decision making process with

respect to the environment that the system is operating in.

6



• Ethics. A DNN behaves ethically if its decisions and decision-making process does

not violate a code of moral principles defined by the user. The right way to evaluate

if a DNN is acting ethically is a topic of debate. For example, different users assume

their own unique code of ethics, ethical decisions in one culture may be unethical in

another, and there may be instances where no possible decision is consistent with a

set of moral principles. Thus, rather than making DNNs inherently ethical, this trait

can be expressed by some notion of an “ethics code” that the system’s decisions are

formed under. This allows users to individually assess if the reasoning of a DNN

is compatible with the moral principles it should operate over. The field of ethical

decision making in AI is growing as a field in and of itself (see Section 3.4).

1.2 Dissertation Summary

This dissertation is about the interpretability3 and reliability of model decisions for visual

intelligence tasks, where interpretability is our main focus and reliability is an extensive

exploration of our studies. In this dissertation, visual intelligence is referred to as the abil-

ity of a model to take visual related data as input, and generate reasonable model output

that is competitive to human comprehensions. Such types of data include but are not lim-

ited to images, videos, or data that contains visual elements such as (image, text) pairs.

Specifically, in this dissertation, we explore the model interpretability and reliability for

two types of visual intelligence tasks, image classification (Chapter 4 and 6) and visual

inference (Chapter 5).

The summary of this dissertation is as follows. A categorized literature review is pro-

vided in Part I, in order to offer the readers a comprehensive and clear overview of our

research topic. The review is presented in two folds, methods for explaining DNNs (Chap-

ter 2) and topics closely associated with interpretable and reliable DNNs (Chapter 3). For

3In the dissertation, we use explainability and interpretability interchangeably.
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methods on explaining DNNs (Chapter 2), we illustrate methods that provide explanations

for given model predictions in mainly three aspects, i) visualization (Section 2.1), where

explanations are provided by visualizing DNN hidden states, ii) model distillation (Sec-

tion 2.2), where distillation techniques are leverages either locally (for instance, learning a

simple linear classifier using data around a given decision for local explanation) or glob-

ally (translating the whole black-box model into a transparent one, or extracting semantic

concepts for the whole model for sake of human understanding), and iii) intrinsic methods

(Section 2.3), where the DNNs are intrinsically explainable by design.

Besides the aforementioned methods to explain DNN decisions, there exist other

closely associated topics (Chapter 3). Learning mechanism (Section 3.1) includes methods

that explore the learning mechanisms of DNNs, and the main difference between learn-

ing mechanisms and our focus is the former targets on the general learning strategies of

DNNs while the latter focus on specific model decisions that are given. Model debugging

(Section 3.2) is to probe and revise the model and its related procedures such as the train-

ing process, towards a more desirable model performance. We consider that the study of

our research focus (interpretable and reliable DNNs) would shed light on potential model

debugging solutions, and some techniques on model debugging may also introduce novel

strategies for our studies. Towards building a more robust and reliable DNNs, adversarial

techniques, both adversarial attack and defense (Sections 3.3) are covered in our literature

review, indicating current threatens on DNN applications and the appealing on building

transparent and reliable DNN solutions. Last but not least, fairness and bias (Section 3.4)

introduces that some DNN decisions may be affected by undesirable input features causing

unfairness to some groups. For instance, a DNN may deny a load request just based on

the applicant’s race or gender. Such cases should be avoided and we believe our study, on

DNN interpretability and reliability, could play an important role in proposing promising

future solutions to reduce such model biases.

Having the landscape of current related research in mind, we further introduce our so-
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lutions towards the goal of interpretable and reliable DNNs for visual intelligence in Part II.

For DNN interpretability, we propose two types of methods that generate explanations for

model decisions, through hidden state visualization (Chapter 4) and by leveraging attention

to make a DNN intrinsically interpretable (Chapter 5). In Chapter 4, relating input con-

cepts to CNN decisions, a Convolutional Neural Network (CNN) is utilized as an image

scene classifier, and our goal is to explain why the CNN classifier predicts an image as, for

instance, a bedroom scene [Xie et al., 2017b]. Deconvolution [Zeiler and Fergus, 2014a], a

visualization technique, is used to find evidence (concepts) in the given input image, and a

greedy algorithm is designed to associate the evidence with model predictions. Chapter 5,

attention mechanism for intrinsic DNN explanations, achieves the goal of interpretability

from an intrinsic perspective. A DNN is designed to solve visual entailment [Xie et al.,

2019], which is a novel visual inference task we proposed that involves the interaction be-

tween computer vision and natural language processing. In order to depict how the input

image interacts with the input natural sentence, attention mechanism is leveraged, showing

that given the input sentence, which image areas are critical towards generating the model

decision. The image attention heatmaps are visualized for a clear illustration.

For an extension of the main focus of this dissertation and towards DNN reliability, an

intrinsic measurement, called “certainty score”, for DNN decisions is designed (Chapter 6),

based on which the users could decide whether or not to adopt the given DNN decision. We

call the certainty score intrinsic in the sense that it considers the collection of activations of

each intermediate layer in the deep neural network. The certainty score measures the class

similarity on the prediction for a given input against labels of examples in the training set

whose layer-wise activation patterns are close to the activations of the given input. Details

on how the certainty score is defined and its usability will be discussed in Chapter 6.

In order to show how the introduced techniques (Chapter 4, 5, and 6) holistically

realize a contribution to explainable deep learning, further experiments and analyses are

conducted for visual entailment task in Chapter 7.
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Part I

A Categorized Literature Review
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Methods for Explaining DNNs

A detailed description of methods that relate to the topic of “decision explanation” is dis-

cussed in this chapter1. The methods are categorized and defined in three types: visualiza-

tion, model distillation, and intrinsic methods, as shown below,

• Visualization methods: Methods that leverage visualization techniques to associate

model decisions to input characteristics.

• Model distillation: Methods that use an auxiliary model to create explanation.

• Intrinsic methods: Methods architected and/or trained to produce “natural” expla-

nations.

2.1 Visualization Methods

Visualization methods associate the degree to which a DNN considers input features to a

decision. A common explanatory form of visualization methods is saliency maps. These

maps identify input features that are most salient, in the sense that they cause a maximum

response or stimulation influencing the model’s output [Yosinski et al., 2015, Ozbulak,

2019, Olah et al., 2017, 2018, Carter et al., 2019]. We break down visualization methods
1Portions of this chapter have been published [Xie et al., 2020] and is currently under review at Journal

of Artificial Intelligence Research.
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Explaining
DNNs
Methods

Visualization

Back-Propagation

Activation Maximization
Erhan et al. [2009]

Deconvolution
Zeiler et al. [2011];Zeiler and Fergus [2014a]

CAM and Grad-CAM
Zhou et al. [2016a];Selvaraju et al. [2017]

LRP
Bach et al. [2015];Lapuschkin et al. [2016];Arras et al. [2016]
Arras et al. [2017];Ding et al. [2017];Montavon et al. [2017]

DeepLIFT
Shrikumar et al. [2017]

Integrated Gradients
Sundararajan et al. [2016, 2017]

Perturbation

Occlusion Sensitivity
Zeiler and Fergus [2014a]; Zhou et al. [2014]

Representation Erasure
Li et al. [2016]

Meaningful Perturbation
Fong and Vedaldi [2017]

Prediction Difference Analysis
Zintgraf et al. [2017]
Robnik-Šikonja and Kononenko [2008]

Distillation

Local Approximation

LIME
Ribeiro et al. [2016c,a]

Anchor-LIME
Ribeiro et al. [2016b]

Anchors
Ribeiro et al. [2018]

STREAK
Elenberg et al. [2017]

Model Translation

Tree Based
Frosst and Hinton [2017]
Tan et al. [2018];Zhang et al. [2019a]

FSA Based
Hou and Zhou [2020]

Graph Based
Zhang et al. [2017, 2018]

Rule Based
Murdoch and Szlam [2017];Harradon et al. [2018]

Intrinsic

Attention Mechanisms

Single-Modal Weighting
Bahdanau et al. [2014];Luong et al. [2015]
Wang et al. [2016];Vaswani et al. [2017]
Letarte et al. [2018];He et al. [2018]
Devlin et al. [2019]

Multi-Modal Interaction
Vinyals et al. [2015];Xu et al. [2015]
Antol et al. [2015];Park et al. [2016]
Goyal et al. [2017];Teney et al. [2018]
Mascharka et al. [2018];Anderson et al. [2018]
Xie et al. [2019]

Joint Training

Text Explanation
Hendricks et al. [2016];Camburu et al. [2018]
Park et al. [2018];Kim et al. [2018c]
Zellers et al. [2019];Liu et al. [2019];Hind et al. [2019]

Explanation Association
Lei et al. [2016];Dong et al. [2017]
Melis and Jaakkola [2018]; Iyer et al. [2018]

Model Prototype
Li et al. [2018a]; Chen et al. [2019a]

Figure 2.1: Methods for explaining DNNs.
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Visualization Methods Summary References
Backpropagation-based Visualize feature relevance based

on volume of gradient passed
through network layers during net-
work training.

Erhan et al. [2009], Zeiler et al. [2011], Zeiler
and Fergus [2014a], Zhou et al. [2016a], Sel-
varaju et al. [2017], Bach et al. [2015], La-
puschkin et al. [2016], Arras et al. [2016, 2017],
Ding et al. [2017], Montavon et al. [2017],
Shrikumar et al. [2017], Sundararajan et al.
[2017, 2016]

Perturbation-based Visualize feature relevance by com-
paring network output between an
input and a modified copy of the in-
put.

Zeiler and Fergus [2014a], Zhou et al. [2014],
Li et al. [2016], Fong and Vedaldi [2017],
Robnik-Šikonja and Kononenko [2008], Zint-
graf et al. [2017]

Table 2.1: Visualization methods.

into two types, namely back-propagation and perturbation-based visualization. The types

are summarized in Table 2.1 and will be discussed further below.

DNN Visualization w.r.t. Model Prediction 

Opaque DNN

Hidden 
Output 

Input 

... ......

...

...

...

Calculate
"Saliency"

Score 

Visualize Interested Areas

Input 
（Depict which part of input is

relevant w.r.t. given model prediction.）

Hidden 
（Depict what kind of features are
captured by these hidden states.）

...

Figure 2.2: Visualization methods. The to-be-visualized element E can be either the model

input X or hidden states H . Visualization is based on the calculated saliency score S(E),

which varies along with different visualization methods.

Backpropagation-based methods

Backpropagation-based methods identify the saliency of input features based on some eval-

uation of gradient signals passed from output to input during network training. A baseline

gradient-based approach visualizes the partial derivative of the network output with respect

to each input feature scaled by its value [Simonyan et al., 2013, Springenberg et al., 2014],

thus quantifying the “sensitivity” of the network’s output with respect to input features. In a

scene recognition task, for example, a high relevance score for pixels representing a bed in
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a CNN that decides the image is of class “bedroom” may suggest that the decision made by

the CNN is highly sensitive to the presence of the bed in the image. Other gradient-based

methods may evaluate this sensitivity with respect to the output, but from different collec-

tions of feature maps at intermediate CNN network layers [Zeiler and Fergus, 2014a, Bach

et al., 2015, Montavon et al., 2017, Shrikumar et al., 2017]. We describe some foundational

gradient-based methods below.

Activation maximization. One of the earliest works on visualization in deep architec-

tures is proposed by Erhan et al. [2009]. This seminal study introduces the activation

maximization method to visualize important features in any layer of a deep architecture

by optimizing the input X such that the activation a of the chosen unit i in a layer j is

maximized. Parameters θ of a trained network are kept fixed during activation maximiza-

tion. The optimal X is found by computing the gradient of aij(X,θ) and updating X in

the direction of the gradient. The practitioner decides the values of the hyperparameters

for this procedure, i.e., the learning rate and how many iterations to run. The optimized

X will be a representation, in the input space, of the features that maximize the activation

of a specific unit, or if the practitioner chooses so, multiple units in a specific network layer.

Deconvolution. Deconvolution was originally introduced as an algorithm to learn image

features in an unsupervised manner [Zeiler et al., 2011]. However, the method gained popu-

larity because of its applications in visualizing higher layer features in the input space [Zeiler

and Fergus, 2014a], i.e., visualizing higher layer features in terms of the input. Deconvo-

lution assumes that the model being explained is a neural network consisting of multiple

convolutional layers. We will refer to this model as CNN. The consecutive layers of this

network consist of a convolution of the previous layer’s output (or the input image in the

case of the first convolutional layer) with a set of learned convolutional filters, followed

by the application of the rectified linear function (ReLU) ReLU(A) = max(A, 0) on the
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output of the aforementioned convolution

A`, s` = maxpool(ReLU(A`−1 ∗K` + b`)) (2.1)

where ` indicates the respective layer, A` is the output of the previous layer, K is the

learned filter, and b is the bias. If the outputs from the ReLU are passed through a lo-

cal max-pooling function, it additionally stores the output s` containing the indices of the

maximum values for a later unpooling operation. In the original paper, the set of s`’s are

referred to as switches. A deconvolutional neural network, referred to as DeCNN, consists

of the inverse operations of the original convolutional network CNN. DeCNN takes the out-

put of CNN as its input. In other words, DeCNN runs the CNN in reverse, from top-down.

This is why the deconvolution method is classified as a back-propagation method. The

convolutional layers in CNN are replaced with deconvolutions and the max-pooling layers

are replaced with unpooling layers. A deconvolution is also called a transposed convolu-

tion, meaning that the values of K` are transposed and then copied to the deconvolution

filters K`T . If CNN included max-pooling layers, they are replaced with unpooling layers

which approximately upscales the feature map, retaining only the maximum values. This is

done by retrieving the indices stored in s` at which the maximum values were located when

the max-pooling was originally applied in CNN. As an example let us see the calculations

involved in deconvolving Equation 2.1:

A`−1 = unpool(ReLU((A` − b`) ∗K`T ), s`) (2.2)

Using Equation 2.2 one or multiple learned filters K in any layer of the network can be

visualized by reverse propagating the values of K all the way back to the input space. Fi-

nally, this study also describes how the visualizations can be used for architecture selection.
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CAM and Grad-CAM. Zhou et al. [2016a] describes a visualization method for creating

class activation maps (CAM) using global average pooling (GAP) in CNNs. Lin et al.

[2013] proposes the idea to apply a global average pooling on the activation maps of the

last convolutional layer, right before the fully connected (FC) output layer. This results in

the following configuration at the end of the CNN: GAP(Conv) → FC → softmax.

The FC layer has C nodes, one for each class. The CAM method combines the activations

A from Conv, containing K convolutional filters, and weights wk,c from FC, where the

(k, c) pair indicates the specific weighted connection from Conv to FC, to create relevance

score map:

mapc =
K∑
k

wk,cAk (2.3)

The map is then upsampled to the size of the input image and overlaid on the input image,

very similar to a heat map, resulting in the class activation map. Each class has its own

unique CAM, indicating the image regions that were important to the network prediction

for that class. CAM can only be applied on CNNs that employ the GAP(Conv)→ FC→

softmax configuration.

Gradient-weighted Class Activation Map (Grad-CAM) [Selvaraju et al., 2017] is a

generalization of the CAM method that uses the gradients of the network output with re-

spect to the last convolutional layer to achieve the class activation map. This allows Grad-

CAM to be applicable to a broader range of CNNs compared to CAM, only requiring that

the final activation function used for network prediction to be a differentiable function, e.g.,

softmax. Recall that the final convolutional layer has an output ofK feature maps. For each

feature map Ak in the final convolutional layer of the network, a gradient of the score yc

(the value before softmax, also known as logit) of class c with respect to every node in Ak
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is computed and averaged to get an importance score αk,c for feature mapAk:

αk,c =
1

m · n

m∑
i=1

n∑
j=1

∂yc
∂Ak,i,j

(2.4)

where Ak,i,j is a neuron positioned at (i, j) in the m × n feature map Ak. Grad-CAM

linearly combines the importance scores of each feature map and passes them through a

ReLU to obtain an m× n-dimensional relevance score map

mapc = ReLU
( K∑

k

αk,cAk

)
(2.5)

The relevance score map is then upsampled via bilinear interpolation to be of the same

dimension as the input image to produce the class activation map.

Layer-Wise Relevance Propagation. LRP methods create a saliency map that, rather than

measuring sensitivity, represents the relevance of each input feature to the output of the

network [Bach et al., 2015, Lapuschkin et al., 2016, Arras et al., 2016, 2017, Ding et al.,

2017, Montavon et al., 2017]. While sensitivity measures the change in response in the

network’s output as a result of changing attributes in the input [Kindermans et al., 2019],

relevance measures the strength of the connection between the input or pixel to the specific

network output (without making any changes to the input or the components of the net-

work). LRP methods decompose the output value f(x) of a deep network f across input

features x = (x1, x2, . . . , xN), such that f(x) =
∑

i ri where ri is the relevance score

of feature xi. Perhaps the most generic type of LRP is called Deep Taylor Decomposi-

tion [Montavon et al., 2017]. The method is based on the fact that f is differentiable and
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hence can be approximated by a Taylor expansion of f at some root x̂ for which f(x̂) = 0

f(x) = f(x̂) +∇x̂f · (x− x̂) + ε

=
N∑
i

∂f

∂xi
(x̂i) · (xi − x̂i) + ε

(2.6)

where ε encapsulates all second order and higher terms in the Taylor expansion. A good

root point is one that is as minimally different from x and that causes the function f(x) to

output a different prediction. The relevance score for inputs can then be seen as the terms

inside of the summation:

ri =
∂f

∂xi
(x̂i) · (xi − x̂i) (2.7)

To extend this idea to a deep network, the deep Taylor decomposition algorithm considers a

conservative decomposition of relevance scores across layers of the network, starting from

the output, through each hidden layer, back to the input. Thus, the method requires that the

relevance score of a node i at layer l, denoted rli be decomposable into

r`i =
M∑
j

r`i,j (2.8)

where the summation is taken over all M nodes in layer ` + 1 that node i in layer ` con-

nects or contributes to. This indicates that the relevance score of the later layers can be

back-propagated to generate the relevance score of former layers. The relevance score with

respect to the input space can thus be calculated by conducting this decomposition rule

layer by layer. Further details can be found in the original paper [Montavon et al., 2017].

DeepLIFT. Deep Learning Important FeaTures (DeepLIFT) is another important back-

propagation based approach, proposed by Shrikumar et al. [2017]. It assigns relevance

scores to input features based on the difference between an input x and a “reference” input
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x′. The reference should be chosen according to the problem at hand and can be found by

answering the question “What am I interested in measuring differences against?”. In an

example using MNIST the reference chosen is an input of all zeros as this is the background

value in the images. Define ∆t = f(x) − f(x′) as the difference-from-reference of an

interested neuron output of the network between x and reference x′, and ∆x = x − x′

as the difference between x and x′. DeepLIFT assigns a relevance score R∆xi∆t for input

feature xi:

∆t =
N∑
i=1

R∆xi∆t (2.9)

where N is the number of input neurons that are necessary to compute t. In this formu-

lation, R∆xi∆t can be thought of as a weight denoting how much influence ∆xi had on

∆t. According to Equation 2.9 the sum of the all weights is equal to the difference-from-

reference output ∆t. The relevance score can be calculated via the Linear rule, Rescale

rule, or RevealCancel rule, as elaborated in their study. A multiplier m∆x∆t is defined as

m∆x∆t =
R∆x∆t

∆x
(2.10)

indicating the relevance of ∆x with respect to ∆t, averaged by ∆x. Given a hidden

layer ` of nodes a` = (a`1, a
`
2, . . . a

`
K), whose upstream connections are the input nodes

x = (x1, x2, . . . xN), and a downstream target node is t, the DeepLIFT paper proves the

effectiveness of the “chain rule” as illustrated below:

m∆xi∆t =
K∑
j=1

m∆xi∆a`j
m∆a`j∆t (2.11)

This “chain rule” allows for layer-by-layer computation of the relevance scores of each hid-

den layer node via backpropagation. The DeepLIFT paper and appendix specify particular

rules for computing m∆xi∆a`j
based on the architecture of the hidden layer a`.
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Integrated Gradients. Integrated gradients [Sundararajan et al., 2017] is an “axiomatic

attribution” map that satisfies two axioms for input feature relevance scoring on a network

f . The first axiom is sensitivity: compared to some baseline input x′, when input x differs

from x′ along feature xi and f(x) 6= f(x′), then xi should have a non-zero relevance score.

The second axiom is implementation invariance: for two networks f1 and f2 whose outputs

are equal for all possible inputs, the relevance score for every input feature xi should be

identical over f1 and f2. The break of the second axiom may potentially result in the

sensitivity of relevance scores on irrelevant aspects of a model.

Given a deep network f whose codomain is [0, 1], an input x, and a baseline input x′,

the relevance of feature xi of input x over f is taken as the integral of the gradients of f

along the straight line path from x′ to x:

IGi(x) = (xi − x′i)
∫ 1

0

∂f(x′ + α(x− x′))
∂xi

dα (2.12)

where α is associated with the path from x′ to x′, and is smoothly distributed in range

[0, 1]. An interpretation of IGi is the cumulative sensitivity of f to changes in feature i

in all inputs on a straight line between x′ to x going in direction i. Intuitively, xi should

have increasing relevance if gradients are large between a “neutral” baseline point x′ and x

along the direction of xi. IG can be approximated by a Riemann summation of the integral:

IGi(x) u (xi − x′i)
M∑
k=1

∂F (x′ + k
M

(x− x′))
∂xi

1

M
(2.13)

where M is the number of steps in the Riemman approximation of this integral. In the

original paper the authors propose setting M somewhere between between 20 and 300

steps.
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Perturbation-based Methods

Perturbation-based methods compute input feature relevance by altering or removing the

input feature and comparing the difference in network output between the original and al-

tered one. Perturbation methods can compute the marginal relevance of each feature with

respect to how a network responds to a particular input. Below are some visualization

methods based on perturbation.

Occlusion Sensitivity. The approach proposed by Zeiler and Fergus [2014a] sweeps a grey

patch that occludes pixels over the image and sees how the model prediction varies as the

patch covering different positions: when the patch covers a critical area, such as a dog’s

face for the class Pomeranian, or a car’s wheel for the class Car Wheel, the prediction

performance drops significantly. The visualization depicts the area sensitivity of an image

with respect to its classification label. A variant of this method is implemented in [Zhou

et al., 2014], where small gray squares are used to occlude image patches in a dense grid.

Representation Erasure. Li et al. [2016] focuses on providing explanations for natural

language-related tasks. To measure the effectiveness of each input word or each dimension

of intermediate hidden activations, the method erases the information by deleting a word or

setting a dimension to zeros and observes the influences on model predictions correspond-

ingly. Reinforcement learning is adopted to evaluate the influence of multiple words or

phrases combined by finding the minimum changes in the text that causes a flipping of a

neural network’s decision.

Meaningful Perturbation. Fong and Vedaldi [2017] formally defines an explanation as a

meta-predictor, which is a rule that predicts the output of a black box f to certain inputs.

For example, the explanation for a classifier that identifies a bird in an image can be defined
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as

B(x; f) = {x ∈Xc ⇔ f(x) = +1} (2.14)

where f(x) = +1 means a bird is present and Xc is the set of all images that the DNN

predicts a bird exists. Given a specific image x0 and a DNN f , the visualization is gen-

erated via perturbation to identify sensitive areas of x0 with respect to the output f(x0)

formulated as a local explanation (“local” to x0) by the author. The author defines three

kinds perturbations to delete information from image, i) constant, replacing region with a

constant value ii) noise, adding noise to the region, and iii) blur, blurring the region area,

and generating explainable visualization respectively.

Prediction Difference Analysis. Zintgraf et al. [2017] proposes a rigorous approach to

delete information from an input and measure its influence accordingly. The method is

based on [Robnik-Šikonja and Kononenko, 2008], which evaluates the effect of feature

xi with respect to class c by calculating the prediction difference between p(c | x−i) and

p(c | x) using the marginal probability

p(c | x−i) =
∑
xi

p(xi | x−i)p(c | x−i, xi) (2.15)

where x denotes all input features, x−i denotes all features except xi, and the sum iterates

over all possible values of xi. The prediction difference, also called relevance value in the

paper, is then calculated by

Diffi(c | x) = log2(odds(c | x))− log2(odds(c | x−i)) (2.16)

where odds(c | x) = p(c|x)
1−p(c|x)

. The magnitude of Diffi(c | x) measures the importance of

feature xi. Diffi(c | x) measures the influence direction of feature xi, where a positive value

means for decision c and a negative value means against decision c. Compared to Robnik-
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Model Distillation Comments References
Local Approximation Learns a simple model whose in-

put/output behavior mimics that of
a DNN for a small subset of input
data.

Ribeiro et al. [2016c,a,b, 2018], Elenberg et al.
[2017]

Model Translation Train an alternative smaller model
that mimics the input/output behav-
ior of a DNN.

Frosst and Hinton [2017], Tan et al. [2018],
Zhang et al. [2019a], Hou and Zhou [2020],
Zhang et al. [2017, 2018], Harradon et al.
[2018], Murdoch and Szlam [2017]

Table 2.2: Model distillation.

Šikonja and Kononenko [2008], Zintgraf et al. improves prediction difference analysis in

three ways: by i) sampling patches instead of pixels given the high pixel dependency nature

of images; ii) removing patches instead of individual pixels to measure the prediction influ-

ence given the robustness nature of neutral networks on individual pixels; iii) adapting the

method to measure the effect of intermediate layers by changing the activations of a given

intermediate layer and evaluate the influence on down-streaming layers.

2.2 Model Distillation

In this review we use the term model distillation to refer to a class of post-training ex-

planation methods where the knowledge encoded within a trained DNN is distilled into a

representation amenable for explanation by a user. The reader should be aware that Hinton

et al. [2015] outlines a method, with the same name, that implements a specific form of

model distillation, namely distilling the knowledge learned by an ensemble of DNNs into a

single DNN. An entire class of explainable deep learning techniques have emerged which

are based on the notion of model distillation. In this setting, as illustrated in Figure 2.3,

an inherently transparent or white box machine learning model g is trained to mimic the

input/output behavior of a trained opaque deep neural network f so that g(y) ≈ f(x). Sub-

sequent explanation of how g maps inputs to outputs may serve as a surrogate explanation

of f ’s mapping.
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f
Input x Output f(x)

Trained DNN

{xi, f(xi)}
DNN input/output 

behavior

g
Input y Output g(y)

Interpretable 
distillation of f

Train g to mimic 
behavior of f

Figure 2.3: Model distillation. The behavior of a trained deep learning model f used as
training data for an explainable model g.

A distilled model in general learns to imitate the actions or qualities of an opaque DNN

on the same data used to train the opaque DNN. Distilled models, even if they are simpler,

smaller, and possibly explainable, can still achieve reasonable performance while offering

an explanation. There are two conceptual reasons for this. First, a distilled model has

access to information from the trained DNN, including the input features it found to be most

discriminatory and feature or output correlations relevant for classification. The distilled

model can use this information directly during training, thus reducing the needed capacity

of the distilled model. Second, the distilled model still takes the original data as input,

and if explainable, thus develops a transparent model of how input features become related

to the actions of the DNN. Interpreting the distilled model may thus not give very deep

insights into the internal representation of the data a DNN learns, or say anything about

the DNN’s learning process, but can at least provide insight into the features, correlations,

and relational rules that explain how the DNN operates. Put another way, we can imagine

that the explanation of a distilled model can be seen as a hypothesis as to why a DNN has

assigned some class label to an input.

We organize model distillation techniques for explainable deep learning into the fol-

lowing two categories:

• Local Approximation. A local approximation method learns a simple model whose

24



input/output behavior mimics that of a DNN for a small subset of the input data. This

method is motivated by the idea that the model a DNN uses to discriminate within

a local area of the data manifold is simpler than the discriminatory model over the

entire surface. Given a sufficiently high local density of input data to approximate

the local manifold with piecewise linear functions, the DNN’s behavior in this local

area may be distilled into a set of explainable linear discriminators.

• Model Translation. Model translations train an alternative smaller model that mim-

ics the input/output behavior of a DNN. They contrast local approximation methods

in replicating the behavior of a DNN across an entire dataset rather than small sub-

sets. The smaller models may be directly explainable, may be smaller and easier to

deploy, or could be further analyzed to gain insights into the causes of the input/out-

put behavior that the translated model replicates.

Local Approximation

A local approximation method learns a distilled model that mimics DNN decisions on

inputs within a small subset of the input examples. Local approximations are made for

data subsets where feature values are very similar, so that a simple and explainable model

can make decisions within a small area of the data manifold. While the inability to explain

every decision of a DNN may seem unappealing, it is often the case that an analyst or

practitioner is most interested in interpreting DNN actions under a particular subspace (for

example, the space of gene data related to a particular cancer or the space of employee

performance indicators associated with those fired for poor performance).

The idea of applying local approximations may have originated from Baehrens et al.

[2010]. These researchers presented the notion of an “explainability vector”, defined by

the derivative of the conditional probability a datum is of a class given some evidence x0

by a Bayes classifier. The direction and magnitude of the derivatives at various points x0

along the data space define a vector field that characterizes flow away from a corresponding

25



class. The work imitates an opaque classifier in a local area by learning a Parzen window

classifier that has the same form as a Bayes estimator for which the explanation vectors can

be estimated.

Perhaps the most popular local approximation method is LIME (Local Interpretable

Model-agnostic Explanations) developed by Ribeiro et al. [2016c]. From a global, unex-

plainable model f and a datum of interest x ∈ Rd, LIME defines an interpretable model

gx from a class of inherently interpretable models gx ∈ G with different domain Rd′ that

approximates f well in the local area around x. Examples of models in G may be decision

trees or regression models whose weights explain the relevance of an input feature to a

decision. Note that the domain of gx is different from that of f . gx operates over some in-

terpretable representation of the input data presented to the unexplainable model f , which

could for example be a binary vector denoting the presence or absence of words in text

input, or a binary vector denoting if a certain pixel or color pattern exists in an image input.

Noting that gx could be a decision tree with very high depth, or a regression model with

many co-variate weights, an interpretable model that is overly complex may still not be

useful or usable to a human. Thus, LIME also defines a measure of complexity Ω(gx) on

gx. Ω(gx) could measure the depth of a decision tree or the number of higher order terms in

a regression model, for example, or it could be coded as if to check that a hard constraint is

satisfied (e.g., Ω(gx) =∞ if gx is a tree and its depth exceeds some threshold). Let Πx(z)

be a similarity kernel between some data point z and a reference data point x ∈ Rd and a

loss L(f, gx,Πx) defined to measure how poorly gx approximates f on data in the area Πx

around the data point x. To interpret f(x), LIME identifies the model gx satisfying:

arg min
gx∈G
L(f, gx,Πx) + Ω(gx) (2.17)

Ω(gx) thus serves as a type of complexity regularization, or as a guarantee that the returned

model will not be too complex when Ω(gx) codes a hard constraint. So that LIME remains
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model agnostic, L is approximated by uniform sampling over the non-empty space of Rd′ .

For each sampled data point y′ ∈ Rd′ , LIME recovers the x ∈ Rd corresponding to y′,

computes f(x), and compares this to gx(y′) using L. To make sure that the gx minimizing

Equation 2.17 fits well in the area local to a reference point x, the comparison of f(y)

to gx(y′) in L is weighted by Πx(y) such that sampled data farther from x has lower

contribution to loss.

We mention LIME in detail because other popular local approximation models [Ribeiro

et al., 2016a,b, 2018, Elenberg et al., 2017] follow LIME’s template and make their ex-

tensions or revisions. One drawback of LIME, which uses a linear combination of input

features to provide local explanations, is the precision and coverage of such explanations

are not guaranteed. Since the explanations are generated in a locally linear fashion, for an

unseen instance, which might lie outside of the region where a linear combination of input

features could represent, it is unclear if an explanation generated linearly and locally still

applies. To address this issue, anchor methods [Ribeiro et al., 2016b, 2018] extend LIME

to produce local explanations based on if-then rules, such that the explanations are locally

anchored upon limited yet sufficiently stable input features for the given instance and the

changes to the rest of input features won’t make an influence. Another drawback of LIME

is, the interpretable linear model is trained based on a large set of randomly perturbed in-

stances and the class label of each perturbed instance is assigned by inevitably calling the

complex opaque model, which is computationally costly. To reduce the time complexity,

Elenberg et al. [2017] introduces STREAK, which is similar to LIME but limits the time

of calling complex models, and thus runs much faster. Instead of randomly generating

instances and training an interpretable linear model, STREAK directly selects critical in-

put components (for example, superpixels of images) by greedily solving a combinatorial

maximization problem. Taking the image classification task as an example, an input im-

age which is predicted as a class by the opaque model, is first segmented into superpixels

via image segmentation algorithm [Achanta et al., 2012]. In every greedy step, a new su-
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perpixel is added to the superpixels set if by containing it in the image will maximize the

probability of the opaque model on predicting the given class. The set of superpixels indi-

cating the most important image regions of the given input image for the opaque model to

make its decision. Despite the technical details, some common characteristics are shared

among all aforementioned local approximation methods, i) input instance is segmented into

semantic meaningful parts for selection, ii) function calls of the original opaque model is

inevitable iii) the explanations and model behavior are explored in a local fashion.

Model Translation

Compared to local approximation methods, model translation replicates the behavior of a

DNN across an entire dataset rather than small subsets, through a smaller model that is

easier for explanation. The smaller model could be easier to deploy [Hinton et al., 2015],

faster to converge [Yim et al., 2017], or even be easily explainable, such as a decision

tree [Frosst and Hinton, 2017, Bastani et al., 2017, Tan et al., 2018], Finite State Automaton

(FSA) [Hou and Zhou, 2020], graphs [Zhang et al., 2017, 2018], or causal and rule-based

classifier [Harradon et al., 2018, Murdoch and Szlam, 2017]. We highlight the diversity of

model types DNNs have been distilled into below.

Distillation to Decision Trees. Recent work has been inspired by the idea of tree-based

methods for DNNs. Frosst and Hinton [2017] proposes “soft decision trees” which use

stochastic gradient descent for training based on the predictions and learned filters of a

given neural network. The performance of the soft decision trees is better than normal trees

trained directly on the given dataset, but is worse compared to the given pre-trained neural

networks. Another recent work is proposed by Tan et al. [2018] which generates global

additive explanations for fully connected neural networks trained on tabular data through

model distillation. Global additive explanations [Sobol, 2001, Hooker, 2004, Hoos and

Leyton-Brown, 2014] have been leveraged to study complex models, including analyzing
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how model parameters influence model performance and decomposing black box models

into lower-dimensional components. In this work, the global additive explanations are con-

structed by following previous work Hooker [2007] to decompose the black-box model into

an additive model such as spline or bagged tree. Then follow Craven and Shavlik [1996] to

train the additive explainable model. Zhang et al. [2019a] trains a decision tree to depict the

reasoning logic of a pretrained DNN with respect to given model predictions. The authors

first mine semantic patterns, such as objects, parts, and “decision modes” as fundamental

blocks to build the decision tree. The tree is then trained to quantitatively explain which

fundamental components are used for a prediction and the percentage of contribution re-

spectively. The decision tree is organized in a hierarchical coarse-to-fine way, thus nodes

close to the tree top correspond to common modes shared by multiple examples, while

nodes at the bottom represent fine-grained modes with respect to specific examples.

Distillation to Finite State Automata. Hou and Zhou [2020] introduces a new distillation

of RNNs to explainable Finite State Automata (FSA). An FSA consists of finite states and

transitions between the states, and the transition from one state to another is a result of

external input influence. FSA is formally defined as a 5-tuple (E,S, s0, δ,F), where E is a

finite non-empty set of elements existing in input sequences, S is a finite non-empty set of

states, s0 ∈ S is an initial state, δ : S× E→ S defines the state transmission function, and

F ⊆ S is the set of final states. The transition process of FSA is similar to RNNs in the

sense that both methods accept items from some sequence one by one and transit between

(hidden) states accordingly. The idea to distillate an RNN to FSA is based on the fact that

the hidden states of an RNN tend to form clusters, which can be leveraged to build FSA.

Two clustering methods, k-means++ and k-means-x are adopted to cluster the hidden states

of RNN towards constructing the explainable FSA model. The authors follow the structure

learning technique and translate an RNN into an FSA, which is easier to interpret in two

aspects, i) FSA can be simulated by humans; ii) the transitions between states in FSA have
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real physical meanings. Such a model translation helps to understand the inner mechanism

of the given RNN model.

Distillation into Graphs. Both Zhang et al. [2017] and Zhang et al. [2018] build an object

parts graph for a pre-trained CNN to provide model explanations. Similar to Zhang et al.

[2019a], the authors first extract semantic patterns in the input and then gradually construct

the graph for explanation. Each node in the graph represents a part pattern, while each edge

represents co-activation or spatial adjacent between part patterns. The explanatory graph

explains the knowledge hierarchy inside of the model, which can depict which nodes/part

patterns are activated as well as the location of the parts in the corresponding feature maps.

Distillation into Causal and Rule-based Models. We also note work on distilling a DNN

into symbolic rules and causal models. Harradon et al. [2018] constructs causal models

based on concepts in a DNN. The semantics are defined over an arbitrary set of “concepts”,

that could range from recognition of groups of neuron activations up to labeled semantic

concepts. To construct the causal model, concepts of intermediate representations are ex-

tracted via an autoencoder. Based on the extracted concepts, a graphical Bayesian causal

model is constructed to build association for the models’ inputs to concepts, and concepts

to outputs. The causal model is finally leveraged to identify the input features of significant

causal relevance with respect to a given classification result.

In another example, Murdoch and Szlam [2017] leverages a simple rule-based clas-

sifier to mimic the performance of an LSTM model. This study runs experiments on two

natural language processing tasks, sentiment analysis, and question answering. The rule-

based model is constructed via the following steps: i) decompose the outputs of an LSTM

model, and generate important scores for each word; ii) based on the word level important

score, important simple phrases are selected according to which jointly have high impor-

tant scores; iii) The extracted phrase patterns are then used in the rule-based classifier,
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Intrinsic Methods Comments References
Attention Mechanisms Leverage attention mechanisms

to learn conditional distribution
over given input units, composing
a weighted contextual vector for
downstream processing. The atten-
tion visualization reveals inherent
explainability.

Bahdanau et al. [2014], Luong et al. [2015],
Vaswani et al. [2017], Wang et al. [2016],
Letarte et al. [2018], He et al. [2018], Devlin
et al. [2019], Vinyals et al. [2015], Xu et al.
[2015], Antol et al. [2015], Goyal et al. [2017],
Teney et al. [2018], Mascharka et al. [2018],
Anderson et al. [2018], Xie et al. [2019], Park
et al. [2016]

Joint Training Add additional explanation “task”
to the original model task, and
jointly train the explanation task
along with the original task.

Zellers et al. [2019], Liu et al. [2019], Park
et al. [2018], Kim et al. [2018c], Hendricks
et al. [2016], Camburu et al. [2018], Hind et al.
[2019], Melis and Jaakkola [2018], Iyer et al.
[2018], Lei et al. [2016], Dong et al. [2017], Li
et al. [2018a], Chen et al. [2019a]

Table 2.3: Intrinsic methods.

approximating the output of the LSTM model.

2.3 Intrinsic Methods

Ideally, we would like to have models that provide explanations for their decisions as part

of the model output, or that the explanation can easily be derived from the model archi-

tecture. In other words, explanations should be intrinsic to the process of designing model

architectures and during training. The ability for a network to intrinsically express an ex-

planation may be more desirable compared to post-hoc methods that seek explanations of

models that were never designed to be explainable in the first place. This is because an

intrinsic model has the capacity to learn not only accurate outputs per input but also out-

puts expressing an explanation of the network’s action that is optimal with respect to some

notion of explanatory fidelity. Ras et al. [2018] previously defined a category related to

this approach as intrinsic methods and identified various methods that offer explainable

extensions of the model architecture or the training scheme. In this section, we extend the

notion of intrinsic explainability with models that actually provide an explanation for their

decision even as they are being trained.

We observe methods in the literature on intrinsically explainable DNNs to follow two
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trends: (i) they introduce attention mechanisms to a DNN, and the attention visualization

reveals inherent explainability; (ii) they add additional explanation “task” to the original

model task, and jointly train the explanation task along with the original task. We explain

the trends and highlight the representative methods below.

Attention Mechanisms

DNNs can be endowed with attention mechanisms that simultaneously preserve or even

improve their performance and have explainable outputs expressing their operations. An

attention mechanism [Vaswani et al., 2017, Devlin et al., 2019, Teney et al., 2018, Xie

et al., 2019] learns conditional distribution over given input units, composing a weighted

contextual vector for downstream processing. The attention weights can be generated in

multiple ways, such as by calculating cosine similarity [Graves et al., 2014], adding addi-

tive model structure, such as several fully connected layers, to explicitly generate attention

weights [Bahdanau et al., 2014], leveraging the matrix dot-product [Luong et al., 2015] or

scaled dot-product [Vaswani et al., 2017], and so on. Attention mechanisms have shown

to improve DNN performance for particular types of tasks, including tasks on ordered in-

puts as seen in natural language processing [Vaswani et al., 2017, Devlin et al., 2019] and

multi-modal fusion such as visual question answering [Anderson et al., 2018]. It is worth

noting that recently there appear some interesting discussions on whether or not attention

can be counted as an explanation tool [Jain and Wallace, 2019, Wiegreffe and Pinter, 2019],

however we would like to leave such discussions to the readers for further exploration.

Single-Modal Weighting. The output of attention mechanisms during a forward pass can

inform a user about how strongly weighted that different input features are considered at

different phases of model inference. In pure text processing tasks such as language trans-

lation [Bahdanau et al., 2014, Luong et al., 2015, Vaswani et al., 2017] or sentiment anal-

ysis [Wang et al., 2016, Letarte et al., 2018, He et al., 2018], attention mechanism allows
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the downstream modules, a decoder for language translation or fully connected layers for

classification tasks, to concentrate on different words in the input sentence by assigning

learned weights to them [Vaswani et al., 2017, Wang et al., 2016]. To provide straight-

forward explanations, the attention weights can be visualized as heatmaps, depicting the

magnitude and the sign (positive or negative) of each weight value, showing how input ele-

ments weighted combined to influence the model latter processing and the final decisions.

Multi-Modal Interaction. In multi-modal interaction tasks, such as image captioning

[Vinyals et al., 2015, Xu et al., 2015], visual question answering [Antol et al., 2015, Goyal

et al., 2017, Johnson et al., 2017a, Teney et al., 2018] or visual entailment [Xie et al., 2019],

attention mechanisms play an important role in feature alignment and fusion across differ-

ent feature spaces (for instance, between text and images). For example, Park et al. pro-

pose the Pointing and Justification model (PJ-X) that uses multiple attention mechanisms

to explain the answer of a VQA task with natural language explanations and image region

alignments [Park et al., 2016]. Xie et al. use attention mechanisms to recover semantically

meaningful areas of an image that correspond to the reason a statement is, is not, or could

be entailed by the image’s conveyance [Xie et al., 2019]. Mascharka et al. [2018] aims to

close the gap between performance and explainability in visual reasoning by introducing a

neural module network that explicitly models an attention mechanism in image space. By

passing attention masks between modules it becomes explainable by being able to directly

visualize the masks. This shows how the attention of the model shifts as it considers the

different components of the input.

Joint Training

This type of intrinsic method is to introduce an additional “task” besides the original model

task, and jointly train the additional task together with the original one. Here we generalize

the meaning of a “task” by including preprocessing or other steps involved in the model op-
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timization process. The additional task is designed to provide model explanations directly

or indirectly. Such additional task can be in the form of i) text explanation, which is a task

that directly provides explanations in natural language format; ii) explanation association,

which is a step that associates input elements or latent features with human-understandable

concepts or objects, or even directly with model explanations; iii) model prototype, which

is to learn a prototype that has clear semantic meanings as a preprocessing step, and the

model explanation is generated based on the comparison between the model behavior and

the prototype.

Text Explanation. A group of recent work [Zellers et al., 2019, Liu et al., 2019, Park et al.,

2018, Kim et al., 2018c, Hendricks et al., 2016, Camburu et al., 2018, Hind et al., 2019]

achieve the explainable goal via augmenting the original DNN architecture with an ex-

planation generation component and conducting joint training to provide natural language

explanations along with the model decisions. Such explainable methods are quite straight-

forward and layman-friendly since the explanations are presented directly using natural

language sentences, instead of figures or statistical data that usually require professional

knowledge to digest. The explanation could be either generated word by word similar to a

sequence generation task [Hendricks et al., 2016, Park et al., 2018, Camburu et al., 2018,

Kim et al., 2018c, Liu et al., 2019], or be predicted from multiple candidate choices [Zellers

et al., 2019]. Despite how explanations are provided, there exist two facts that may poten-

tially limit the usage of such intrinsic methods. First, these explainable methods require

supervision on explanations during training, thus the dataset should have corresponding

explanation annotations. However, such a dataset is relatively rare in real life and extra

efforts should be paid to generate annotations. Second, a recent work [Oana-Maria et al.,

2019] discovers there exists inconsistency in generated explanations, which undermines the

trust in the explanations provided by the model. Keeping both the merits and limitations in

mind, we now introduce some related work below.
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Hendricks et al. [2016] is an early work that provides text justifications along with

its image classification results. The approach combines image captioning, sampling, and

deep reinforcement learning to generate textual explanations. The class information is

incorporated into the text explanations, which makes this method distinct from normal

image captioning models that only consider visual information, via i) include class as an

additional input for text generation and ii) adopt a reinforcement learning based loss that

encourages generated sentences to include class discriminative information.

Liu et al. [2019] proposes a Generative Explanation Framework (GEF) for text classi-

fications. The framework is designed to generate fine-grained explanations such as text jus-

tifications. During training, both the class labels and fine-grained explanations are provided

for supervision, and the overall loss of GEF contains two major parts, classification loss and

explanation generation loss. To make the generated explanations class-specific, “explana-

tion factor” is designed in the model structure to associate explanations with classifications.

The “explanation factor” is intuitively based on directly taking the explanations as input

for classification and adding constraints on the classification softmax outputs. Specifically,

“explanation factor” is formulated to minimize the pairwise discrepancy in softmax out-

puts for different input pairs, i) generated explanations and ground-truth explanations, and

ii) generated explanations and original input text.

Unlike aforementioned methods which generate text explanations, Zellers et al. [2019]

provides explanations in a multichoice fashion. They propose a visual reasoning task named

Visual Commonsense Reasoning (VCR), which is to answer text questions based on given

visual information (image), and provide reasons (explanations) accordingly. Both the an-

swers and reasons are provided in a multichoice format. Due to the multichoice nature,

reasonable explanations should be provided during testing, in contrast to other works which

could generate explanations along with model decisions. Thus VCR is more suitable to be

applied for prototype model debugging to audit model reasoning process, instead of real-

life applications where explanations are usually lacking and remain to be generated.
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Explanation Association. This type of joint training method associates input elements

or latent features with human-understandable concepts or objects, or even directly with

model explanations, which helps to provide model explanations intrinsically [Melis and

Jaakkola, 2018, Iyer et al., 2018, Lei et al., 2016, Dong et al., 2017]. Such methods usually

achieve explanations by adding regularization term [Melis and Jaakkola, 2018, Lei et al.,

2016, Dong et al., 2017] and/or revising model architecture [Melis and Jaakkola, 2018, Iyer

et al., 2018, Lei et al., 2016]. The explanations are provided in the form of i) associating

input features or latent activations with semantic concepts [Melis and Jaakkola, 2018, Dong

et al., 2017]; ii) associating model prediction with a set of input elements [Lei et al., 2016];

iii) associating explanations with object saliency maps in a computer vision task [Iyer et al.,

2018]. Regardless of the format of explanations and the technical details, methods belong-

ing to this type commonly share the characteristics of associating hard-to-interpret elements

to human-understandable atoms in an intrinsic joint training fashion.

Melis and Jaakkola [2018] proposes an intrinsic method which associates input fea-

tures with semantically meaningful concepts and regards the coefficient as the importance

of such concepts during inference. A regularization based general framework for creat-

ing self-explaining neural networks (SENNs) is introduced. Given raw input, the network

jointly learns to generate the class prediction and to generate explanations in terms of an

input feature-to-concept mapping. The framework is based on the notion that linear regres-

sion models are explainable and generalizes the respective model definition to encompass

complex classification functions, such as a DNN. A SENN consists of three components:

i) A “concept encoder” that transforms the raw input into a set of explainable concepts. Es-

sentially this encoder can be understood as a function that transforms low-level input into

high-level meaningful structure, which predictions and explanations can be built upon. ii)

An “input-dependent parametrizer”, which is a procedure to get the coefficient of explain-

able concepts, learns the relevance of the explainable concepts for the class predictions.
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The values of the relevance scores quantify the positive or negative contribution of the con-

cept to the prediction. iii) Some “aggregation function” (e.g. a sum) that combines the

output of the concept encoder and the parametrizer to produce a class prediction.

Iyer et al. [2018] introduces Object-sensitive Deep Reinforcement Learning (O-DRL),

which is an explanation framework for reinforcement learning tasks that takes videos as

input. O-DRL adds a pre-processing step (template matching) to recognize and locate

specific objects in the input frame. For each detected object, an extra channel is added to

the input frame’s RGB channels. Each object channel is a binary map that has the same

height and width as the original input frame, 1’s encoding for the location of the detected

object. The binary maps are later used to generate object saliency maps (as opposed to

pixel saliency maps) that indicate the relevance of the object to action generation. It is

argued that object saliency maps are more meaningful and explainable than pixel saliency

maps since the objects encapsulate a higher-level visual concept.

Lei et al. [2016] integrates explainability in their neural networks for sentiment anal-

ysis by learning rationale extraction during the training phase in an unsupervised manner.

Rationale extraction is done by allowing the network to learn to identify a small subset of

words that all lead to the same class prediction as the entire text. They achieve this by

adding mechanisms that use a combination of a generator and an encoder. The genera-

tor learns which text fragments could be candidate rationales and the encoder uses these

candidates for prediction. Both the generator and the encoder are jointly trained during the

optimization phase. The model explanation is provided by associating the model prediction

with a set of critical input words.

Dong et al. [2017] focuses on providing intrinsic explanations for models on video

captioning tasks. An interpretive loss function is defined to increase the visual fidelity of

the learned features. This method is based on the nature of the used dataset, which con-

tains rich human descriptions along with each video, and the rich text information can be

leveraged to add constraint towards explainability. To produce an explanation, semantically
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meaningful concepts are first pre-extracted from human descriptions via Latent Dirichlet

Allocation (LDA), which covers a variety of visual concepts such as objects, actions, rela-

tionships, etc. Based on the pre-extracted semantic topic, an interpretive loss is added to

the original video captioning DNN model, for jointly training to generate video captions

along with forcing the hidden neurons to be associated with semantic concepts.

Model Prototype. This type of intrinsic method is specifically for classification tasks, and

is derived from a classical form of case-based reasoning [Kolodner, 1992] called proto-

type classification [Marchette and Socolinsky, 2003, Bien and Tibshirani, 2011, Kim et al.,

2014]. A prototype classifier generates classifications based on the similarity between the

given input and each prototype observation in the dataset. In prototype classification ap-

plications, the word “prototype” is not limited to an observation in the dataset, but can be

generalized to a combination of several observations or a latent representation learned in

the feature space. To provide intrinsic explanations, the model architecture is designed to

enable joint training the prototypes along with the original task. The model explainability

is achieved by tracing the reasoning path for the given prediction back to each prototype

learned by the model.

Li et al. [2018a] proposes an explainable prototype-based image classifier that can

trace the model classification path to enable reasoning transparency. The model contains

two major components; an autoencoder and a prototype classifier. The autoencoder, con-

taining an encode and a decoder, is to transform raw input into a latent feature space, and

the latent feature is later used by the prototype classifier for classification. The prototype

classifier, one the other hand, is to generate classification via i) first calculating the dis-

tances in the latent space between a given input image and each prototype, ii) then passing

through a fully-connected layer to compute the weighted sum of the distances, and iii) fi-

nally normalizing the weighted sums by the softmax layer to generate the classification

result. Because the network learns prototypes during the training phase, each prediction
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always has an explanation that is faithful to what the network actually computes. Each pro-

totype can be visualized by the decoder, and the reasoning path of the prototype classifier

can be partially traced given the fully-connected layer weights and the comparison between

input and each visualized prototype, providing intrinsic model explanations.

Chen et al. [2019a] introduces an explainable DNN architecture called Prototypical

Part Network (ProtoPNet) for image classification tasks. Similar to Li et al. [2018a], Pro-

toPNet also contains two components; a regular convolutional neural network and a proto-

type classifier. The regular convolutional neural network projects the raw image into hidden

feature space, where prototypes are learned. The prototype classifier is to generate model

predictions based on the weighted sum of each similarity score between an image patch and

a learned prototype. Unlike Li et al. [2018a] where learned prototypes are corresponding

to the entire image, the prototypes in [Chen et al., 2019a] are more fine-grained and are

latent representations of parts/patches of the image. To provide a model explanation, the

latent representation of each prototype is associated with an image patch in the training set,

shedding light on the reasoning clue of ProtoPNet.
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Topics Associated with Interpretable

and Reliable DNNs

We next review research topics closely aligned with interpretable deep learning1. A sur-

vey, visualized in Figure 3.1, identifies four broad related classes of research. Work on

learning mechanism (Section 3.1) investigates the backpropagation process to establish

a theory around weight training. These studies, in some respects, try to establish a the-

ory to explain how and why DNNs converge to some decision-making process. Research

on model debugging (Section 3.2) develops tools to recognize and understand the fail-

ure modes of a DNN. It emphasizes the discovery of problems that limit the training and

inference process of a DNN (e.g., dead ReLUs, mode collapse, etc.). Techniques for ad-

versarial attack and defense (Section 3.3) search for differences between regular and

unexpected activation patterns. This line of work promotes deep learning systems that are

robust and trustworthy; traits that also apply to explainability. Research on fairness and

bias in DNNs (Section 3.4) is related to the ethics trait discussed above, but more narrowly

concentrates on ensuring DNN decisions do not over-emphasize undesirable input data fea-

tures. We elaborate on the connection between these research areas and explainable DNNs

next.
1Portions of this chapter have been published [Xie et al., 2020] and is currently under review at Journal

of Artificial Intelligence Research.
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Figure 3.1: Topics associated with explainability.

3.1 Learning Mechanism

The investigation of the learning mechanism tries to derive principles explaining the evolu-

tion of a model’s parameters during training. Many existing approaches can be categorized

as being semantics-related, in that the analysis tries to associate a model’s learning pro-

cess with concepts that have a concrete semantic meaning. They generally assign semantic
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concepts to a DNNs’ internal filters (weights) or representations (activations), in order to

uncover a human-interpretable explanation of the learning mechanism. Semantically in-

terpretable descriptions are rooted in the field of neuro-symbolic computing [Garcez et al.,

2012]. An early work is Zhou et al. [2014] which assigns semantic concepts, such as ob-

jects, object parts, etc, to the internal filters of a convolutional neural network (CNN) image

scene classifier. Those semantic concepts are generated based on the visualization of re-

ceptive fields of each internal unit in the given layers. The authors also discovered that

object detectors are embedded in a scene classifier without explicit object-level supervision

for model training. Gonzalez-Garcia et al. [2018] further explores this problem in a quan-

titative fashion. Two quantitative evaluations are conducted to study whether the internal

representations of CNNs really capture semantic concepts. Interestingly, the authors’ ex-

perimental results show that the association between internal filters and semantic concepts

is modest and weak. But this association improves for deeper layers of the network, match-

ing the conclusion of Zhou et al. [2014]. Kim et al. [2018a] quantifies the importance of

a given semantic concept with respect to a classification result via Testing with Concept

Activation Vector (TCAV), which is based on multiple linear classifiers built with internal

activations on prepared examples. The prepared examples contain both positive examples

representing a semantic concept and randomly sampled negative examples that do not rep-

resent the concept. Directional derivatives are used to calculate TCAV, which measures the

proportion of examples that belong to a given class that are positively influenced by a given

concept.

Other methods to interpret the learning process of a DNN searches for statistical pat-

terns indicative of convergence to a learned state. Those learning patterns include but are

not limited to: i) how layers evolve along with the training process [Raghu et al., 2017];

ii) the convergence of different layers [Raghu et al., 2017]; and iii) the generalization and

memorization properties of DNNs [Zhang et al., 2016, Arpit et al., 2017]. In studying the

learning dynamics during training, Raghu et al. [2017] makes a comparison between two
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different layers or networks via Singular Vector Canonical Correlation Analysis (SVCCA).

For a neuron in a selected layer of a DNN, the neuron’s vector representation is generated

in a “global fashion”, i.e. all examples from a given finite dataset are used, and each el-

ement in the neuron’s vector representation is an activation for an example. The vector

representations for all neurons in a selected layer form a vector set, representing this layer.

To compare two layers, SVCCA takes the vector set of each layer as input and calculates

a canonical correlation similarity to make the alignment. The nature of SVCCA makes

it a useful tool to monitor how layer activations evolve along with the training process.

The authors further discover that earlier layers converge faster than later layers. Thus, the

weights for earlier layers can be frozen earlier to reduce computational cost during train-

ing. Layer-wise convergence is also studied in work such as Zhang et al. [2016] using

systematic experimentation. Keeping the model structure and hyper-parameters fixed, the

authors’ experiments are conducted only with different input modification settings, either

on input labels or image pixels. The experimental results indicate that DNNs can perfectly

fit training data with both random feature values and labels, while the degree of gener-

alization on testing data reduces as randomness increases. The authors also hypothesize

that explicit regularization (such as dropout, weight decay, data augmentation, etc.) may

improve generalization and stochastic gradient descent could act as an implicit regularizer

for linear models. In a similar study, Arpit et al. [2017] examines memorization by DNNs

via quantitative experiments with real and random data. The study finds that DNNs do not

simply memorize all real data; instead, patterns that are commonly shared among the data

are leveraged for memorization. Interestingly, the authors claim that explicit regularization

does make a difference in the speed of memorization for random data, which is different

from the conclusions in Zhang et al. [2016]. Besides the aforementioned research work,

we would like to refer readers to a recent review paper Bahri et al. [2020], which covers

the intersection between statistical mechanics and deep learning, and derives the success of

deep learning from a theoretical perspective.
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3.2 Model Debugging

Similar to the concept of software debugging, the concept of model debugging applies

techniques from traditional programming to find out when and where model-architecture,

data processing, and training related errors occur. A “probe” is leveraged to analyze the

internal pattern of a DNN, to provide further hints towards performance improvement. A

probe is usually an auxiliary model or a structure such as a linear classifier, a parallel branch

of the model pipeline, etc. The training process of the probe is usually independent of the

training process of the master model (a DNN) that the probe serves for. Regardless of the

form of the probe, the ultimate goal is model improvement.

Kang et al. [2018] uses model assertions, or Boolean functions, to verify the state of

the model during training and run time. The assertions can be used to ensure the model

output is consistent with meta observations about the input. For example, if a model is

detecting cars in a video, the cars should not disappear and reappear in successive frames

of the video. Model debugging is thus implemented as a verification system surround-

ing the model and is implicitly model-agnostic. The model assertions are implemented

as user-defined functions that operate on a recent history of the model input and output.

The authors explore several ways that model assertions can be used during both run-time

and training time, in correcting wrong outputs and in collecting more samples to perform

active learning. Amershi et al. [2015] proposes ModelTracker, a debugging framework re-

volving around an interactive visual interface. This visual interface summarizes traditional

summary statistics, such as AUC and confusion matrices, and presents this summary to the

user together with a visualization of how close data samples are to each other in the feature

space. The interface also has an option to directly inspect prediction outliers in the form of

the raw data with its respective label, giving users the ability to directly correct mislabeled

samples. The goal of this framework is to provide a unified, model-agnostic, inspection

tool that supports debugging of three specific types of errors: mislabeled data, inadequate

features to distinguish between concepts and insufficient data for generalizing from exist-
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ing examples. Alain and Bengio [2016] uses linear classifiers to understand the predictive

power of representations learned by intermediate layers of a DNN. The features extracted

by an intermediate layer of a deep classifier are fed as input to the linear classifier. The

linear classifier has to predict which class the given input belongs to. The experimental re-

sults show that the performance of the linear classifier improves when making predictions

using features from deeper layers, i.e., layers close to the final layer. This suggests that

task-specific representations are encoded in the deeper layers. Fuchs et al. [2018] proposes

the idea of neural stethoscopes, which is a general-purpose framework used to analyze

the DNN learning process by quantifying the importance of specific influential factors in

the DNN and influence the DNN learning process by actively promoting and suppressing

information. Neural stethoscopes extend a DNN’s architecture with a parallel branch con-

taining a two-layer perceptron. It is important to note that the main network branch does

not need to be changed to be able to use the neural stethoscope. This parallel branch takes

the feature representation from an arbitrary layer from the main network as input and is

trained on a supplemental task given known complementary information about the dataset.

Specifically, in this study the experiments are conducted on the ShapeStacks dataset [Groth

et al., 2018], which introduces a vision-based stability prediction task for block towers.

The dataset provides information on both the local and global stability of a stack of blocks.

In this specific study the stethoscope was used to investigate the internal representations

contained in the network layers that lead to the prediction of the global stability of a stack

of blocks, with local stability as complementary information. The stethoscope can be tuned

to three different modes of operation: analytic, auxiliary, and adversarial. Each mode de-

termines how the stethoscope loss LS is propagated, e.g., in the analytical mode, LS is

not propagated through the main network. The auxiliary and adversarial modes are used

to promote and suppress information respectively. The paper shows that the method was

successful in improving network performance and mitigating biases that are present in the

dataset.
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3.3 Adversarial Attack and Defense

An adversarial example is an artificial input engineered to intentionally disturb the judg-

ment of a DNN [Goodfellow et al., 2014]. Developing defenses to adversarial examples

requires a basic understanding of the space that inputs are taken from and the shape and

form of boundaries between classes. Interpretations of this space inform the construction

of defenses to better discriminate between classes and forms the basis of explaining in-

put/output behavior. Moreover, an “explanation” from a model that is not reasonable given

its input and output may be indicative of an adversarial example.

The study of adversarial examples [Yuan et al., 2019, Zhang et al., 2019c] are from

the perspective of attack and defense. Adversarial attack is about generating adversarial

examples, which can fool a DNN. From the model access perspective, there are two main

types of adversarial attack: black-box [Chen et al., 2017b, Zhao et al., 2017, Papernot

et al., 2017, Brendel et al., 2017, Dong et al., 2018, Su et al., 2019] and white-box [Szegedy

et al., 2013, Goodfellow et al., 2014, Sabour et al., 2015, Nguyen et al., 2015, Kurakin et al.,

2016, Rozsa et al., 2016, Papernot et al., 2016a, Moosavi-Dezfooli et al., 2016, Tabacof and

Valle, 2016, Kurakin et al., 2016, Carlini and Wagner, 2017, Moosavi-Dezfooli et al., 2017,

Carlini et al., 2018, Eykholt et al., 2018] attacks. In the black-box setting the attacker has

no access to the model parameters or intermediate gradients whereas these are available for

the white-box settings. Adversarial defense [Madry et al., 2017, Papernot et al., 2016b,

Meng and Chen, 2017, Xie et al., 2017a, Samangouei et al., 2018, Li et al., 2018b, Liu

et al., 2018], on the other hand, is to come up with solutions to make a DNN robust against

generated adversarial examples.

Recent work on adversarial attack reveals vulnerabilities by perturbing input data with

imperceptible noise [Goodfellow et al., 2014, Carlini and Wagner, 2017, Madry et al., 2017]

or by adding “physical perturbations” to objects under analysis (i.e. black and white stick-

ers on objects captured by computer vision systems) [Eykholt et al., 2018]. Among nu-

merous adversarial attack methods, the C&W attack [Carlini and Wagner, 2017] and PGD
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attack [Madry et al., 2017] are frequently used to evaluate the robustness of DNNs. C&W

attack [Carlini and Wagner, 2017] casts the adversarial attack task as an optimization prob-

lem and is originally proposed to challenge an adversarial defense method called defensive

distillation [Papernot et al., 2016b]. Variants of C&W attacks are based on the distance

metrics (`0, `2, or `∞). Carlini and Wagner [2017], for example, can successfully defeat de-

fensive distillation with high-confidence adversarial examples generated via C&W attack.

Projected Gradient Descent (PGD) attack [Madry et al., 2017] in brief is an iterative version

of an early stage adversarial attack called Fast Gradient Sign Method (FGSM) [Goodfellow

et al., 2014]. As indicated in its name, PGD attack generates adversarial examples based

on the gradients of the loss with respect to the input. PGD attack is more favorable than

C&W attack when direct control of input distortion is needed [Liu et al., 2018].

Adversarial defense is challenging due to the diversity of the adversarial example

crafting processes and a DNN’s high-dimensional feature space. There exist two typical

groups of adversarial defense methods, i) adversarial training [Madry et al., 2017, Good-

fellow et al., 2014, Szegedy et al., 2013], which is to augment the training dataset with

generated adversarial examples such that the trained model is more robust against adversar-

ial attack, and ii) removal perturbations [Samangouei et al., 2018, Meng and Chen, 2017],

which dismisses adversarial perturbations from input data. Madry et al. [2017] integrates

the PGD attack into the model training process, such that the model is optimized on both

benign examples and challenging adversarial examples. The optimization is conducted in

a min-max fashion, where the loss for adversarial attack process is maximized in order to

generate strong adversarial examples, while the loss for the classification process is mini-

mized, in order to get a robust and well-performed model. Samangouei et al. [2018], on the

other hand, tackles the adversarial defense problem by filtering out adversarial perturba-

tions. Generative Adversarial Networks (GANs) are leveraged to project a given input im-

age, potentially polluted by adversarial perturbations, into a pseudo original image, where

adversarial artifacts are diminished. The model decision is made based on the GAN gener-
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ated “original” image, and experiments indicate this defense technique is effective against

both black-box and white-box attacks.

3.4 Fairness and Bias

Model fairness aims to build DNN models that objectively consider each input feature and

is not unduly biased against a particular subset of the input data. Although a firm definition

of what it means for a DNN to be “fair” is evolving, common themes are emerging in the

literature [Heidari et al., 2018]. Group fairness [Calders et al., 2009], also called demo-

graphic parity or statistical parity, focuses on fairness with respect to a group (based on

race, gender, etc.). The goal of group fairness is to ensure each group receives equalized

percentage of benefit. Consider a loan application as an example. Suppose we are moni-

toring the loan approval situation of two cities, city A and city B. The population of city A

is twice as much as that of city B. Based on the definition of group fairness, twice as many

loan applications should be approved in A compared to city B. Individual fairness [Dwork

et al., 2012] aims to treat similar inputs similarly based on a metric to measure the closeness

of their features. To compare group fairness and individual fairness, let’s return to the loan

request example. Under the restriction of group fairness, an individual from city A may not

be approved for a loan request just because of the group percentage limitation, even though

this individual is more qualified based on economic metrics than other approved ones from

city B. However, individual fairness requires that individuals with similar characteristics

should have the same chance to be approved for a loan request, regardless of which city

individuals come from. This is in antithesis with group fairness. Further notions of fair-

ness, such as equalized odds and equal opportunity [Hardt et al., 2016], avoiding disparate

mistreatment [Zafar et al., 2017a], and others [Heidari et al., 2018, Woodworth et al., 2017]

are also documented in the literature.

The fairness problem is currently addressed by three types of methods [Calmon et al.,
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2017]: (i) pre-processing methods revise input data to remove information correlated to

sensitive attributes; (ii) in-process methods add fairness constraints into the model learning

process; and (iii) post-process methods adjust model predictions after the model is trained.

Pre-processing methods [Kamiran and Calders, 2010, 2012, Zemel et al., 2013, Louizos

et al., 2015, Adebayo and Kagal, 2016, Calmon et al., 2017, Gordaliza et al., 2019] learn

an alternative representation of the input data that removes information correlated to the

sensitive attributes (such as race or gender) while maintaining the model performance as

much as possible. For example, Calmon et al. [2017] proposes a probabilistic framework

to transform input data to prevent unfairness in the scope of supervised learning. The input

transformation is conducted as an optimization problem, aiming to balance discrimination

control (group fairness), individual distortion (individual fairness), and data utility. In-

process methods [Calders et al., 2009, Kamishima et al., 2011, Zafar et al., 2017a, Wood-

worth et al., 2017, Zafar et al., 2017b, Bechavod and Ligett, 2017, Kearns et al., 2018,

Pérez-Suay et al., 2017, Berk et al., 2017, Olfat and Aswani, 2018, Agarwal et al., 2018,

Menon and Williamson, 2018, Donini et al., 2018, Dwork et al., 2018] directly introduce

fairness learning constraints to the model in order to punish unfair decisions during train-

ing. Kamishima et al. [2011] achieves the fairness goal by adding a fairness regularizer, for

example, such that the influence of sensitive information on model decisions is reduced.

Post-process methods [Feldman et al., 2015, Hardt et al., 2016, Pleiss et al., 2017, Beutel

et al., 2017] are characterized by adding ad-hoc fairness procedures to a trained model.

One example is Hardt et al. [2016] which constructs non-discriminating predictors as a

post-processing step to achieve equalized odds and equal opportunity (two fairness notions

proposed in their study). They introduce the procedure to construct non-discriminating pre-

dictors for two scenarios of the original model, binary predictor and score function, where

in the latter scenario the original model generates real score values in range [0, 1]. For the

latter scenario, a non-discriminating predictor is constructed for each protected group, and

a threshold is chosen to achieve a defined fairness goal.
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Part II

Model Interpretability and Reliability
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Towards DNN interpretability for visual intelligence, we propose two types of meth-

ods, relating input concepts to DNN decisions (Chapter 4), and designing an intrinsic in-

terpretable DNN model via attention (Chapter 5). In order to achieve DNN reliability for

visual intelligence, an intrinsic measurement on DNN decisions is defined in Chapter 6. To

show how the aforementioned techniques holistically realize a contribution to interpretable

and reliable deep learning for visual intelligence, further experiments and analyses are con-

ducted for visual entailment task in Chapter 7. We now discuss the contributions of each

of our works below.

Our method in Chapter 4 is built upon DNN visualization techniques for computer

vision tasks, which could reveal concepts (parts, objects, etc, that exist in the input image)

captured by the hidden states of the DNN. Most existing visualization methods hypothesize

that the recognition of these concepts are instrumental in the decision a CNN reaches,

however the nature of this relationship has not been well explored. The contribution of our

work in Chapter 4 is to address this gap, by examining the quality of a concept’s recognition

by a CNN and the degree to which the recognitions are associated with CNN decisions.

In Chapter 5, we first propose a novel visual inference task called visual entailment,

and a corresponding dataset, which requires real-life fine-grained scene reasoning com-

pared to previous visual reasoning tasks such as VQA [Antol et al., 2015, Goyal et al.,

2017] and CLEVR [Johnson et al., 2017a]. For this task, we aim to construct a transpar-

ent model, which is achieved by leveraging the attention mechanism, that generates model

explanations along with the model prediction without explicit post processing. Our con-

tributions in this work are, i) we propose a novel inference task, Visual Entailment, which

requires a systematic cross-modal understanding between vision and natural languages, and

ii) an intrinsic interpretable DNN model is proposed, which provides a transparent solution

to tackle our visual entailment task.

In Chapter 6, we introduce a quantitative intrinsic notion of the certainty of DNN

decisions as an extension of this dissertation study. The measure is based on an evaluation
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of whether the internal activations at each layer of a deep neural network of input are

“close" to the activations produced by training examples that have the same class label

as the prediction for the input. Such measurement can be used to assess the confidence or

trustworthiness a user should have in the decisions made by a deep neural network, towards

achieving the goal of DNN reliability.

In Chapter 7, we first discuss the demand for an integrated solution for interpretable

and reliable DNNs, where three aspects are proposed for an ideal integrated solution. An

integrated solution for interpretable and reliable DNNs for visual entailment task is intro-

duced, which offers both technically useful and layman-friendly explanations, and poten-

tially leverages the proposed certainty measurement to quantify the level of trustworthiness

for visual entailment model decisions.
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Relating Input Concepts to CNN

Decisions

In this chapter, we will introduce a method we propose [Xie et al., 2017b] to explain de-

cisions made by a CNN on a scene classification task1. The background information is

covered in the background (Section 4.1), including the scene classification task and the

interpretability target we want to achieve. Detailed methodologies are included in Sec-

tion 4.2 where a greedy algorithm is designed to associate input concepts (generated via

a visualization method) to CNN decisions. Related discussions and analysis are covered

in Section 4.3, explaining the influences of input concepts, could be positive or negative

influences, that result in the model behaviors.

4.1 Background

Many current methods to interpret CNNs use visualization techniques to highlight con-

cepts, defined as semantically meaningful image areas, of the input seemingly relevant to

a CNN’s decision. The methods hypothesize that the recognition of these concepts are in-

strumental in the decision a CNN reaches, however the nature of this relationship has not

been well explored. To address this gap, we examine the quality of a concept’s recognition

1Portions of this chapter have been published [Xie et al., 2020] and is accepted by NIPS IEVDL 2017.
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by a CNN and the degree to which the recognitions are associated with CNN decisions.

We specifically consider input concepts and decisions under a scene recognition task

over the ADE20k dataset [Zhou et al., 2017]. The study is powered by a novel algorithm

to compute how well any concept is recognized across the feature maps of a convolutional

layer. Analysis along with concept types, including those that appear often within a scene,

often across multiple scenes, and those unique to a scene reveal a weak relationship be-

tween correct decision making and concept recognition. Our study finds that the relation-

ship is dampened by the recognition of ‘sparse’ concepts that seldom appear in the images

of a scene and by ‘misleading’ concepts that appear often across the images of many differ-

ent scenes. However, the recognition of concepts that are unique to the images of specific

scenes promotes correct CNN decisions.

4.2 Concept Recognition

Studying the relationship between input concepts and CNN decisions requires a measure

of how well such concepts are recognized by a CNN. We define a concept as being ‘rec-

ognized’ if there are a set of late stage convolutional layer nodes that only activate over

the input because of the concept’s presence. Whereas much of the research assumes that

these nodes must lie within the same CNN feature map [Bau et al., 2017, Zintgraf et al.,

2017], we assert that concept recognition could occur in a distributed way, across many

feature maps at a convolutional layer. Past studies have suggested and demonstrated that

neural networks learn a representation of input features in a distributed fashion [Carpen-

ter and Grossberg, 1988, Bengio et al., 2003, Hinton, 1986]; thus, we do not consider the

possibility that input concepts can only be recognized within a single feature map.

In the context of scene classification, the recognition of a concept (e.g. an annotated

object) would be manifested by a set of (distributed) nodes (across multiple feature maps)

that collectively respond to the input pixels representing the concept. If the set of nodes is a
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“good” recognizer of the concept, they should collectively respond to all pixels representing

the concept, and over no pixels not representing the concept. We call a node activated if it

takes on a non-zero value under a sigmoid or tanh non-linearity, or is > 0 under a ReLU

non-linearity.

The deconvolution of a feature map recovers the pixels of an input image causing

its nodes to activate [Zeiler and Fergus, 2014b, Zeiler et al., 2011, Yosinski et al., 2015].

Deconvolutions thus seem like a natural way to identify if input concepts in scenes are rep-

resented by a feature map: if the deconvolution of the feature map covers most pixels of a

concept, we may consider it as ‘recognized’ by the feature map. However, patterns activat-

ing nodes in a feature map are not always consistent from image to image. We illustrate this

point in Figure 4.1 where a feature map, taken from the last convolutional layer of AlexNet

trained for object recognition, has its deconvolution computed for different input images.

The deconvolution over the first cat image suggests that the feature map recognizes the

facial features of a cat, or the texture of a cat’s fur. The deconvolution over the second im-

age, however, recognizes nothing about the cat, and it is unclear if any concept in the third

image is recognized by the feature map. Recent approaches for concept recognition find

that only a limited number of feature maps consistently recognize a specific concept [Bau

et al., 2017].

Instead of focusing on concept recognitions localized to a single feature map, Fig-

ure 4.2 summarizes our approach to find and evaluate concepts recognized across multiple

feature maps in a convolutional layer. Given a binary segmentation mask of the concept

and the deconvolutions of feature maps in the latest stage convolutional layer, a greedy

algorithm selects the subset of feature maps that collectively “best" recognize the given

concept according to a scoring function. The selected feature maps and a recognition qual-

ity score is then returned to the user. The specifics of the recognition scoring and the greedy

algorithm are discussed next.
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Figure 4.1: Deconvolutions of differ-
ent cat images over the same feature
map

Figure 4.2: Concept recognition across feature
maps

4.2.1 Recognition scoring

Ideally, the pixel area for a given concept should be covered by the deconvolutions of the

selected feature maps as precisely as possible. The score should thus consider the com-

bined coverage of the deconvolutions of the chosen feature maps over and not over the

pixels of a concept. Based on this idea, we evaluate how well a set of feature maps Gc

recognizes a concept c in an image ξ using a binary segmentation mask Mc(ξ) that denotes

the pixel positions of c in ξ. We assume that Mc(ξ) is available in a dataset or can be gener-

ated via object segmentation methods [Chen et al., 2016]. From the set of deconvolutions

Dc(ξ) = {Di(ξ)} of Gc with respect to ξ and their combined sum Dsum
c (ξ) =

∑
Dc(ξ), we

define Dc(ξ) as the set of the positions of the pixels of Dsum
c (ξ) representing node activa-

tions across Gc. Then a concept recognition score Sc(Gc, ξ) is defined with a Jaccard like

similarity measure similar to Bau et al. [2017]:

Sc(Gc, ξ) =
|Mc(ξ) ∩ Dc(ξ)|
|Mc(ξ) ∪ Dc(ξ)|
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Table 4.1: Scene classes considered
Label Class Name Num. images Label Class Name Num. images

0 bathroom 671 8 mountain snowy 132
1 street 2038 9 conference room 168
2 office 112 10 skyscraper 320
3 building facade 228 11 corridor 110
4 airport terminal 107 12 bedroom 1389
5 game room 99 13 dining room 412
6 living room 697 14 highway 295
7 hotel room 160 15 kitchen 652

4.2.2 Recognition algorithm

We devise a greedy algorithm to identify theGc that best recognizes c listed as Algorithm 1.

The intuition behind the greedy approach is to find a set of feature maps that recognizes c

well, is as small as possible, and is composed of feature maps that minimally ‘overlap’, e.g.

recognizes the same parts or qualities of a concept. The latter two criteria capture the idea

that a good distributed representation is one where the nodes of each feature map in the set

activate over different and significant parts of the concept. Thus, in each greedy iteration,

the algorithm searches for the feature map whose addition to Gc would yield the largest

improvement in recognition score Sc(Gc, ξ). Large improvements would only be possible

if the newly added feature map activates over pixels representing c that no other feature

map in Gc activates over. Moreover, this feature map cannot have significant activations

over pixels that do not represent c without reducing Sc. Greedy iterations continue until

there is no feature map whose inclusion would yield an improvement in score greater than

∆. ∆ = 0.01 is used in the experiments below.

4.3 Recognition analysis

We use Algorithm 1 to recognize each concept in each given input image, and study

the relationship between its recognition quality and a CNN’s scene classification accu-
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Algorithm 1 Concept Localization
1: procedure GREEDY_SELECTION(G, D, Mc(ξ), ∆)
2: Sc ← 0 . Score of the selected set of feature maps
3: Gc ← {} . Set of selected feature maps
4: while True do
5: tmps ← 0
6: g ← null
7: for k = 1 to |G| do
8: K = Gc ∪Gk . Add candidate feature map Gk ∈ G to the selected set
9: DK(ξ) =

∑
k∈K D

k(ξ) . Sum the deconvolutions Dk of the feature maps
in K

10: Sc(K, ξ) = |Mc(ξ)∩DK(ξ)|
|Mc(ξ)∪DK(ξ)| . Find the new recognition score after adding Gk

11: if Sc(K, ξ) > tmps then . Is Gk better than the best candidate found so
far?

12: tmps ← Sc(K, ξ)
13: g ← Gk

14: G.remove(g) . Remove the selected feature map from G
15: if tmps − Sc > ∆ then . Does adding g improve the score by more than ∆?
16: Sc ← tmps
17: Gc.append(g) . Add g to the feature map set and repeat
18: else
19: return Sc, Gc
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racy. We consider an AlexNet [Krizhevsky et al., 2012] CNN model trained over the

Places365 [Zhou et al., 2016b] scene dataset and fine-tune network weights using ADE20k

[Zhou et al., 2017]. We only consider the subset of scenes in ADE20k having at least

99 example images. We choose this subset to ensure a sufficient number of examples are

available for CNN training and to be able to take representative measurements of the CNN’s

ability to classifying a scene correctly. The 16 (out of the 1000+) scenes in ADE20k having

at least 99 example images and are listed in Table 4.12. 60% of the images from each class

are randomly sampled as training data during fine-tuning and 40% for testing. The fine-

tuned CNN achieves a 74.9% top-1 classification accuracy over the testing images after 30

training epochs, which is higher than the performance of other CNN scene classifiers [Zhou

et al., 2016b], but we note that we only test over scenes that have an abundance of images

in the ADE20K’s training data.

Figure 4.3: Concept recognition results for a given image

2We also omit the ‘misc’ class of ADE20k as it is a catch-all for hard to describe scenes, even though it
has over 99 images.
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We then randomly choose 50 images from each class and compute how well their con-

cepts are recognized by the 256 feature maps in the last convolutional layer of the CNN.

This sample of 50 × 16 = 800 images feature 370 distinct concepts. To get a sense of

whether a recognition score is relatively “low" or “high", we plot the score distribution

across all concepts in the sampled images in Figure 4.4. We note that the mean recognition

score is 0.315 with a median 0.284, and the lower and upper quartiles are 0.174 and 0.429

respectively. Figure 4.3 illustrates the output of Algorithm 1 in a sampled bedroom scene.

For the eight concepts annotated in this image, the binary segmentation mask, its label, a

visualization of the sum of deconvolutions chosen by our greedy algorithm, and the recog-

nition score are presented. The highest quality recognition is of the bed concept, with a

score (0.802) well above the upper quartile of the recognition score distribution across all

concepts, a summed deconvolution that captures texture information about the bed and the

shape and patterning of the bed frame, and activates over few pixels that do not represent

the bed concept. The chair concept has a lower recognition score (0.287) that happens

to be close to the median of the concept recognition score distribution. In this case, the

selected feature maps are able to recognize most parts of the chair, including its legs and

back, but also happens to activate over some of the straight line and texture patterns of the

wall and floor surrounding the chair. The stairs concept has the lowest score (0.225),

caused by the feature maps’ inability to activate over all pixels of the concept and also

activate across pixels representing the nearby concepts (wall and door).

4.3.1 Recognition versus performance

We now explore the relationship between concept recognition and CNN performance. For

each scene and its sampled images, we compare the average recognition score of concepts

within a scene’s images against the CNN’s average classification accuracy of the scene.

Figure 4.5 shows only a weak linear relationship (Pearson’s correlation ρ = 0.187), al-
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Figure 4.4: Recognition score distribution
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Figure 4.5: Recognition quality vs CNN’s
accuracy

though there are interesting observations for some scenes. The two scenes with the best

classification and recognition scores are skyscraper and mountain_snowy, which

are scenes whose images include concepts that are especially emblematic. For example, the

mountain concept is captured well across mountain_snowy scenes (S̄mountain_snowy
mountain =

0.562 where S̄s
c denotes the average recognition of concept c across the sampled scenes of s)

and concepts like skyscraper, sky, and building are identified well in skyscraper

scenes (S̄skyscraper
sky = 0.532, S̄skyscraper

building = 0.362, S̄skyscraper
skyscraper = 0.407). airport_terminal

is a challenging scene for the CNN to identify despite achieving high average concept

recognition. This may be due to strong recognitions for concepts like floor and ceiling

(S̄airport_terminal
floor = 0.585, S̄airport_terminal

ceiling = 0.559) that appear in at least 45 of the

50 sampled airport_terminal images, but these concepts are generic and could ap-

ply to any kind of indoor scene. Concepts better capturing the notion of an airport ter-

minal are also recognized, e.g., armchair (S̄airport_terminal
armchair = 0.555) and shops

(S̄airport_terminal
shops = 0.548), but they emerge in only one of the sampled images.

4.3.2 Sparse concepts

The airport_terminal example suggests that there may be particular types of con-

cepts that have stronger or weaker relationships to a CNN’s decisions. We first consider

‘sparse’ concepts, which are concepts appearing in a small number of images within a
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scene (we quantify this notion with a popularity score in the sequel). Sparse concepts may

not appear often enough during training for a CNN to learn to recognize well or to relate

with a particular scene. For example, while the CNN is able to recognize the armchair

and shops concepts in an airport_terminal well, their infrequency could mean the

CNN does not have enough observations to establish a relationship between these concepts

and the scene label.

Figure 4.6 explores the prevalence of concepts and how well they are recognized

across each of the 16 scene classes. It illustrates that, for every class, there are a majority of

concepts that emerge in less than 10 of the 50 images sampled from each scene. Scenes that

are relatively uniform in the way they look, for instance skyscraper, mountain_snowy,

and street scene, have fewer sparse concepts. Moreover, such scenes tend to have their

non-sparse concepts recognized strongly by the CNN (reflected by the steeper slopes of the

linear fits in their scatter plots). Scenes that are non-uniform in what they could look like,

for example bedroom, hotel_room, and dining_room images that depict different

styles and design, tend to exhibit a larger number of sparse concepts. But some of these

sparse concepts have high recognition scores (resulting in shallower slopes of the linear

fits in their scatter plots), suggesting that the CNN learns to recognize them. This may be

because a sparse concept could be observed across a large number of different scenes. For

example, although not every bedroom has a chair, one can imagine a chair to appear

across a variety of different scenes, giving a CNN enough examples to learn to recognize

this concept.
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Figure 4.6: Average concept recognition (x-axis) vs. number of concept occurrences (y-
axis) per scene
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The figure and discussion suggest the following hypothesis: the fewer the number of

sparse concepts present and the greater the number of well recognized non-sparse concepts

appear across the images of a scene, the higher the chance is that the CNN can correctly

identify the scene. Moreover, scenes whose images are dominated by a variety of sparse

concepts should prove to be more challenging for the CNN to classify. To test this, we plot

the slope of the linear fit of each scatter plot from Figure 4.6 against the CNN’s accuracy for

each scene in Figure 4.7. The moderate linear relationship (Pearson’s ρ = 0.444) suggests

that many non-sparse, well recognized concepts are associated with correct CNN decisions,

lending support for the hypothesis.

4.3.3 Unique and misleading concepts

We now investigate non-sparse concepts further. Intuitively, non-sparse concepts may have

greater benefit to correct CNN decisions if they appear across a smaller number of different

types of scenes. For example, concepts like sand and shell may be present in many

beach scenes, are closely associated with the notion of beach, and are unlikely to appear in

other types of scenes. Thus, high quality recognition of sand and shell concepts would

help a CNN to classify beach scenes correctly. On the other hand, non-sparse concepts

emerging across a variety of scenes may be less helpful. For example, since we expect

most images of indoor scenes to include concepts like wall, floor, or ceiling, their

recognition may not help a CNN differentiate between different indoor scenes. In fact,

these recognitions may be of limited help in the best case and could confuse or mislead a

CNN to make a wrong classification in the worst case.

To explore these ideas, we compute a uniqueness score of a concept that reflects the

variety of scenes it appears in. The uniqueness U(c) of a concept c is calculated as:

U(c) = 1− # of scene classes c appears
# of scene classes
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Figure 4.7: Slope of sparse concept
recognition (Figure 4.6) vs CNN’s accu-
racy
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Figure 4.8: Uniqueness score distribution

Figure 4.8 gives the distribution of the uniqueness scores of each concept. It is skewed, with

its average uniqueness score at 0.845, and its lower quartile, median, and upper quartile is

0.8125, 0.9375, and 0.9375 respectively. 210 of the 370 concepts appear in only one scene

class, although many of these concepts are likely to be sparse. Following the fact that

many of the scenes used in our analysis (listed in Table 4.1) are indoors, concepts with

the least unique scores pertain to generic aspects of a room. For example, the concepts

having the three lowest uniqueness scores are U(wall) = 0.063, U(floor) = 0.25, and

U(door) = U(plant) = U(window) = U(ceiling) = U(picture) = 0.3125.

We hypothesize that the recognition of unique concepts helps a CNN make correct

classifications, and that concepts with low uniqueness scores may ‘mislead’ a CNN. We

evaluate this hypothesis by comparing the CNN’s classification accuracy to the average

recognition score calculated on “unique" concepts and “misleading” concepts respectively.

A concept c is labeled as “unique" if its uniqueness score U(c) > α for a uniqueness

threshold α. However, we recall from Figure 4.6 that a number of unique concepts are

likely to be ‘sparse’, thus hindering classification accuracy (Figure 4.7). We thus filter

away sparse concepts by defining a popularity score P (c) with respect to some scene by:
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P (c) =
# of images c appears in a scene class

# of images sampled from a scene class

and only consider concepts whose P (c) > β for a popularity threshold β.

Figure 4.9: Heatmap for PCC calculated upon “unique” concept, “misleading” concept,
and “synthesized” of unique and misleading concepts using different thresholds.

We then compute Pearson’s correlation coefficient ρ between the CNN’s accuracy

over each scene class against the average recognition score on “unique” and “misleading”

concepts respectively for various values of α and β. Figure 4.9 presents ρ over a grid of

the two thresholds, varying their values in increments of 0.05 between 0 and 1. The left

heatmap shows ρ when only unique concepts are considered. Most of the area shows a

positive relationship between the unique concepts recognition quality and CNN accuracy.

Larger uniqueness and popularity thresholds α and β, making the set of unique concepts

even smaller, lead to an even stronger relationship. Note that there is no concept having

U(c) ≥ 0.95, causing empty cells in the rightmost two columns. The middle heatmap only

considers misleading concepts. The shaded blue areas indicate a negative relationship be-

tween the misleading concepts recognition quality and the model performance. For most

valid settings of β, when U(c) < 0.7, there exists a moderate strong negative correlation.

This provides some evidence that the recognition of misleading concepts, e.g. those con-

cepts appearing across many different scene types, may be hindering a CNN’s ability to

classify scenes correctly. The right heatmap reports ρ using a “synthesized” average con-
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cept recognition score, which is defined for each scene class by Ssyn = (Sunique+1.0−Smislead)/2

where Sunique is the average concept recognition score over the unique concepts and Smislead

is the same but over misleading concepts. This synthetic score unifies the results from

the unique and misleading heatmaps together in search of threshold settings that max-

imize ρ over unique concepts and minimize ρ over misleading concepts. We find the

highest positive correlation of ρ = 0.521 using the synthetic scores when β = 0.4 and

α = 0.55. At these thresholds, we find ρ = 0.454; (p = 0.078) over the unique con-

cepts and ρ = −0.528; (p = 0.036) on the misleading concepts. The p-values for these

correlation scores, computed over n = 16 classes, indicate a significant negative correla-

tion between misleading concept recognition and CNN’s accuracy, and a moderate positive

correlation between unique concept recognition and CNN’s accuracy.

4.4 Conclusion

We investigated the relationship between CNN’s recognition of input concepts and classi-

fication accuracy. A novel approach was developed to quantify how well a concept (specif-

ically, an object in an image) is recognized across the latest convolutional layer of a CNN.

Analysis using image object annotations in the ADE20k scene dataset revealed a weak re-

lationship between the average recognition of image concepts in a scene and classification

accuracy. We found evidence to suggest that the relationship is hindered by recognized

concepts that are “sparse”, or appear in a small number of images of a scene and by “mis-

leading” concepts that appear in many images across many different scenes. Recognizing

“unique” concepts, which appear often but in a limited set of scenes, is moderately posi-

tively correlated with CNN’s classification accuracy.
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Achieving Intrinsic DNN Explanations

via Attention Mechanism

In this chapter, we propose an intrinsic DNN explanation method via leveraging atten-

tion mechanism1. By intrinsic we mean the model is designed in an intrinsic way such

that it could provide explanations to its decisions naturally without adding extra process.

The interpretable DNN model that we designed solves a novel task called visual entail-

ment, involving both computer vision and natural languages, which will be introduced in

Section 5.1 and 5.2. Details for the interpretable model we propose, Explainable Visual

Entailment (EVE), are covered in Section 5.3. The experiment details and how to generate

explanations via the EVE model are discussed in Section 5.4 and Section 5.5 respectively.

5.1 Introduction

The pursuit of “visual intelligence” is a long lasting theme of the machine learning commu-

nity. While the performance of image classification and object detection has significantly

improved in recent years [Krizhevsky et al., 2012, Simonyan and Zisserman, 2014, Szegedy

et al., 2015, He et al., 2016], progress in higher-level scene reasoning tasks such as scene

understanding is relatively limited [Wu et al., 2017].

1Portions of this chapter have been published [Xie et al., 2018, 2019] and is accepted by NeurIPS ViGIL
2018.
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Recently, several datasets, such as VQA-v1.0 [Antol et al., 2015], VQA-v2.0 [Goyal

et al., 2017], CLEVR [Johnson et al., 2017a], Visual7w [Zhu et al., 2016], Visual Genome [Kr-

ishna et al., 2016], COCO-QA [Ren et al., 2015], and models [Johnson et al., 2017b, San-

toro et al., 2017, Hudson and Manning, 2018, Jiang et al., 2018b, Anderson et al., 2018,

Teney et al., 2017, Fukui et al., 2016, Kim et al., 2018b] have been used to measure the

progress in understanding the interaction between vision and language modalities. How-

ever, the quality of the widely used VQA-v1.0 dataset [Antol et al., 2015] suffers from a

natural bias [Goyal et al., 2017]. Specifically, there is a long tail distribution of answers

and also a question-conditioned bias where, questions may hint at the answers, such that

the correct answer may be inferred without even considering the visual information. Be-

sides, many questions in the VQA-v1.0 dataset are simple and straightforward and do not

require compositional reasoning from the trained model. VQA-v2.0 [Goyal et al., 2017]

has been proposed to reduce the dataset “bias” considerably in VQA-v1.0 by associat-

ing each question with relatively balanced different answers. However, the questions are

rather straight-forward and require limited fine-grained reasoning. CLEVR dataset [John-

son et al., 2017a], is designed for fine-grained reasoning and consists of compositional

questions such as “What size is the cylinder that is left of the brown metal thing that is left

of the big sphere?”. This kind of question requires learning fine-grained reasoning based

on visual information. However, CLEVR is a synthetic dataset, and visual information and

sentence structures are very similar across the dataset. Hence, models that provide good

performance on CLEVR dataset may not generalize to real-world settings.

To address the above limitations, we propose a novel inference task, Visual Entailment

(VE), which requires fine-grained reasoning in real-world settings. The design is derived

from Text Entailment (TE) [Dagan et al., 2006] task. In our VE task, a real world image

premise Pimage and a natural language hypothesis Htext are given, and the goal is to de-

termine if Htext can be concluded given the information provided by Pimage. Three labels

entailment, neutral or contradiction are assigned based on the relationship conveyed by the
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(Pimage, Htext).

• Entailment holds if there is enough evidence in Pimage to conclude that Htext is true.

• Contradiction holds if there is enough evidence in Pimage to conclude that Htext is

false.

• Otherwise, the relationship is neutral, implying the evidence in Pimage is insufficient

to draw a conclusion about Htext.

The main difference between VE and TE task is, the premise in TE in a natural language

sentence Ptext, instead of an image premise Pimage. Note that the existing of “neutral”

makes the VE task more challenging compared to previous “yes-no” VQA tasks, since

“neutral” requires the model to conclude the uncertainty between “entailment (yes)” and

“contradiction (no)”. Figure 5.1 illustrates a VE example, which is from the SNLI-VE

dataset we propose below, that given an image premise, the three different text hypotheses

lead to different labels.

Premise

+

● Two woman are holding 
packages.

● The sisters are hugging 
goodbye while holding to 
go packages after just 
eating lunch.

● The men are fighting 
outside a deli.

=

● Entailment

● Neutral

● Contradiction

Hypothesis Answer

Figure 5.1: An example from SNLI-VE dataset
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5.2 Visual Entailment: A Novel Visual Reasoning Task

5.2.1 Formal Definition

We introduce a dataset D for VE task structured as {(i1, h1, l1), . . . (in, hmn , lmn)}, where

(ik, hs, ls) is an instance from D, with ik, hs, and ls denoting an image premise, a text

hypothesis and a class label, respectively. It is worth noting that each image ik is used

multiple times with different labels given distinct hypotheses {hmk
}.

Three labels e, n, or c are assigned based on the relationship conveyed by (ik, hs).

Specifically, i) e (entailment) is assigned if ik |= hs, ii) n (neutral) is assigned if ik 6|=

hs ∧ ik 6|= ¬hs, iii) c (contradiction) is assigned if ik |= ¬hs.

5.2.2 Visual Entailment Dataset

Dataset criteria

Based on the vision community’s experience with SNLI, VQA-v1.0, VQA-v2.0, and CLEVR,

there are four criteria in developing an effective dataset:

1. Structured set of real-world images. The dataset should be based on real-world im-

ages and the same image can be paired with different hypotheses to form different

labels.

2. Fine-grained. The dataset should enforce fine-grained reasoning about subtle changes

in hypotheses that could lead to distinct labels.

3. Sanitization. No instance overlapping across different dataset partitions. One image

can only exist in a single partition.

4. Account for any bias. Measure the dataset bias and provide baselines to serve as the

performance lower bound for potential future evaluations.
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Premise

+

● The man wearing the black 
shirt plays a game of golf.

● A man plays on a golf course 
to relax.

● The man in the black shirt 
trades Pokemon cards with 
his girlfriend.

=

● Entailment

● Neutral

● Contradiction

Hypothesis Answer

Premise

+

● An Indian woman is doing 
her laundry in a lake.

● An Indian woman is doing 
laundry for her son in the 
lake.

● An Indian woman is 
putting her laundry into 
the machine.

=

● Entailment

● Neutral

● Contradiction

Hypothesis Answer

Premise

+

● An SUV and a man are 
going in opposite 
directions.

● A taxi SUV races to pick 
up some clients while a 
man walks peacefully in 
the other direction. 

● A man is chasing an SUV 
that is going in the same 
direction as him.

=

● Entailment

● Neutral

● Contradiction

Hypothesis Answer

Figure 5.2: More examples from SNLI-VE dataset

SNLI-VE Construction

We now describe how we construct SNLI-VE, which is a dataset for VE tasks. We build the

dataset SNLI-VE based on two existing datasets, Flickr30k [Young et al., 2014] and SNLI
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[Bowman et al., 2015]. Flickr30k is a widely used image captioning dataset containing

31,783 images and 158,915 corresponding captions. The images in Flickr30k consist of

everyday activities, events and scenes [Young et al., 2014], with 5 captions per image

generated via crowdsourcing. SNLI is a large annotated TE dataset built upon Flickr30k

captions. Each image caption in Flickr30k is used as a text premise in SNLI. The authors

of SNLI collect multiple hypotheses in the three classes - entailment, neutral, and contra-

diction - for a given premise via Amazon Mechanical Turk [Turk, 2012], resulting in about

570K (Ptext, Htext) pairs. Data validation is conducted in SNLI to measure the label agree-

ment. Specifically, each (Ptext, Htext) pair is assigned a gold label, indicating the label is

agreed by a majority of crowdsourcing workers (at least 3 out of 5). If such a consensus is

not reached, the gold label is marked as “-”.

Since SNLI was constructed using Flickr30k captions, for each (Ptext, Htext) pair in

SNLI, it is feasible to find the corresponding Flickr30k image through the annotations in

SNLI. This enables us to create a structured VE dataset based on both. Specifically, for

each (Ptext, Htext) pair in SNLI with an agreed gold label, we replace the text premise

with its corresponding Flickr30k image, resulting in a (Pimage, Htext) pair in SNLI-VE.

Figures 5.1 and 5.2 illustrate examples from the SNLI-VE dataset. SNLI-VE naturally

meets the aforementioned criterion 1 and criterion 2. Each image in SNLI-VE are real-

world ones and is associated with distinct labels given different hypotheses. Furthermore,

Flickr30k and SNLI are well-studied datasets, allowing the community to focus on the new

task that our paper introduces, rather than spending time familiarizing oneself with the

idiosyncrasies of a new dataset.

A sanity check is applied to SNLI-VE dataset partitions in order to guarantee the cri-

terion 3. We notice the original SNLI dataset partitions does not consider the arrangement

of the original caption images. If SNLI-VE directly adopts the original partitions from

SNLI, all images in validation or testing partitions exist in the training partitions, violating

criterion 3. To amend this, we disjointedly partition SNLI-VE by images following the
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Training Validation Testing

#Image 29,783 1,000 1,000
#Entailment 176,932 5,959 5,973
#Neutral 176,045 5,960 5,964
#Contradiction 176,550 5,939 5,964
Vocabulary Size 29,550 6,576 6,592

Table 5.1: SNLI-VE dataset

SNLI-VE VQA-v2.0 CLEVR

Partition Size:
Training 529,527 443,757 699,989
Validation 17,858 214,354 149,991
Testing 17,901 555,187 149,988

Question Length:
Mean 7.4 6.1 18.4
Median 7.0 6.0 17.0
Mode 6 5 14
Max 56 23 43

Vocabulary Size 32,191 19,174 87

Table 5.2: Dataset comparison summary

partition in Gong et al. [2014] and make sure instances with different labels are of similar

numbers across training, validation, and testing partitions as shown in Table 5.1.

Regarding criterion 4, since SNLI has already been extensively studied, we are aware

that there exists a hypothesis-conditioned bias in SNLI as recently reported by Gururangan

et al. [Gururangan et al., 2018]. Though the labels in SNLI-VE are distributed evenly across

dataset partitions, SNLI-VE still inevitably suffers from this bias inherently. Therefore, we

provide a hypothesis-only baseline in Section 5.4.1 to serve as a performance lower bound.
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Figure 5.3: Question length distribution

5.2.3 SNLI-VE and VQA Datasets

We further compare our SNLI-VE dataset with the two widely used VQA datasets, VQA-

v2.0 and CLEVR. The comparison focuses on the questions (for SNLI-VE dataset, we

consider a hypothesis as a question). Table 5.2 is a statistical summary about the questions

from three datasets. Before generating Table 5.2, questions are prepossessed by three steps:

i) split into words, ii) lower case all words, iii) removing punctuation symbols {‘’“”,.-?!}.

Figure 5.3 depicts a detailed question length distribution.

According to Table 5.2, among the three datasets, our SNLI-VE dataset, which con-

tains the smallest total number of questions (summing up training, validation and testing

partitions), has the largest vocabulary size. The maximum question length in SNLI-VE is

56, which is the largest among these three datasets, and represents real-world descriptions.

Both the mean and median lengths are larger than VQA-v2.0 dataset. The question length

distribution of SNLI-VE, as shown in Figure 5.3, is quite heavy-tailed in contrast to the

others. These observations indicate that the text in SNLI-VE may be difficult to handle
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compared to VQA-v2.0 for certain models. As for CLEVR dataset, even though most sen-

tences are much longer than SNLI-VE as shown in Figure 5.3, the vocabulary size is only

87. We believe this is due to the synthetic nature of CLEVR, which also indicates mod-

els that achieve high-accuracy on CLEVR may not be able to generalize to our SNLI-VE

dataset.

5.3 EVE: Explainable Visual Entailment System
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"object"
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...

Two woman are holding packages.

Figure 5.4: Our model EVE combines image and ROI information to model fine-grained
cross-modal information

In order to tackle the VE task we propose, we design an intrinsic explainable VE ar-

chitecture, as shown in Figure 5.4, that is based on the Attention Top-Down/Bottom-Up

model [Anderson et al., 2018]. Similar to the Attention Top-Down/Bottom-Up, our EVE

architecture is composed of a text and an image branch. The text branch extracts features

from the input text hypothesis Htext through an RNN. The image branch generates image

features from Pimage. The features produced from the two branches are then fused and

projected through fully-connected (FC) layers towards predicting the final conclusion. The
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image features can be configured to take the feature maps from a pre-trained convolutional

neural network (CNN) or ROI-pooled image regions from a region of interest (ROI) pro-

posal network (RPN).

We build two model variants, EVE-Image and EVE-ROI, for image and ROI features,

respectively. EVE-Image incorporates a pre-trained ResNet101 [He et al., 2016], which

generates k feature maps of size d × d. For each feature map position, the feature vector

across all the k feature maps is considered as an object. As a result, there are a total number

of d×d objects of feature size k for an input image. In contrast, the EVE-ROI variant takes

ROIs as objects extracted from a pre-trained Mask R-CNN [Matterport].

In order to accurately solve this cross-model VE task, we need: both a mechanism

to identify the salient features in images and text inputs and a cross-modal embedding

to effectively learn the image-text interactions, which are addressed by employing self-

attention and text-image attention techniques in the EVE model respectively. We next

describe the design and implementation of the mechanisms in EVE model.

5.3.1 Self-Attention

EVE utilizes self-attention [Vaswani et al., 2017] in both text and image branches as high-

lighted with the dotted blue frame in Figure 5.4. Since the hypothesis in SNLI-VE can

be relatively long and complex, self-attention helps focus on important keywords in a sen-

tence that relate to each other. The text branch applies self-attention to the projected word

embeddings from a multi-layer perceptron (MLP). It is worth noting that although word

embeddings, either from GloVe or other existing models, may be fixed, the MLP transfor-

mation is able to be trained to generate adaptive projected word embeddings. Similarly, the

image branch applies the self-attention to projected image regions either from the afore-

mentioned feature maps or ROIs in expectation of capturing the hidden relations between

elements in the same feature space.

Specifically, we use the scaled dot product (SDP) attention in [Vaswani et al., 2017]
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to capture this hidden information:

Attsdp = softmax(
RQT

√
dk

)) (5.1)

QAtt = AttsdpQ (5.2)

where Q ∈ RM×dk is the query feature matrix and R ∈ RN×dk is the reference feature

matrix. M and N represent the number of features vectors in matrix Q and R respectively,

and dk denotes the dimension of each feature vector. Attsdp ∈ RN×M is the resulting

attention mask for Q given R. Each element aij in Attsdp represents how much weight

(before scaled by 1√
dk

and normalized by softmax) the model should put on each query

feature vector qj∈{1,2,...,M} ∈ Rdk inQw.r.t. each reference feature vector ri∈{1,2,...,N} ∈ Rdk

in R. The attended query feature matrix QAtt ∈ RN×dk is the weighted and fused version

of the original query feature matrix Q, calculated by the matrix dot product between the

attention mask Attsdp and the query feature matrix Q. Note that for the self-attention, the

query matrix Q ∈ RM×dk and the “reference” matrix R ∈ RN×dk are the same matrix.

5.3.2 Text-Image Attention

Multi-modal tasks such as phrase grounding [Chen et al., 2017a] demonstrate that high-

quality cross-modal feature interactions improve the overall performance. The dotted red

frame highlighted area in Figure 5.4 shows that EVE incorporates the text-image attention

to relevant image regions based on the text embedding from the GRU. The feature inter-

action between the text and image regions are computed using the same SDP technique

introduced in Section 5.3.1, serving as the attention weights. The weighted features of im-

age regions are then fused with the text features for further decision making. Specifically,

for the text-image attention, the query matrix Q ∈ RM×dk is the image features while the

“reference” matrix R ∈ RN×dk is the text features. Note that although Q and R are from
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different feature spaces, the dimension of each feature vector is projected to be the same dk

in respective branches for ease of the attention calculation.

5.4 Experiment Details

In this section, we evaluate EVE as well as several other baseline models on SNLI-VE.

Most of the baselines are existing or previous well-performed VQA architectures. The

performance results of all models are listed in Table 5.3.

Val Acc Per Class (%) Test Acc
Overall (%)

Test Acc Per Class (%)Model Name Val Acc
Overall (%) C N E C N E

Hypothesis Only 66.68 67.54 66.90 65.60 66.71 67.60 67.71 64.83
Image Captioning 67.83 66.61 69.23 67.65 67.67 66.25 70.69 66.08
Relational Network 67.56 67.86 67.80 67.02 67.55 67.29 68.86 66.50
Attention Top-Down 70.53 70.23 68.66 72.71 70.30 69.72 69.33 71.86
Attention Bottom-Up 69.34 71.26 70.10 66.67 68.90 70.52 70.96 65.23
EVE-Image* 71.56 71.04 70.55 73.10 71.16 71.56 70.52 71.39
EVE-ROI* 70.81 68.55 68.78 75.10 70.47 67.69 69.45 74.25

Table 5.3: Model performance on SNLI-VE dataset

All models are implemented in PyTorch. We use the pre-trained GloVe.6B.300D for

word embedding [Pennington et al., 2014], where 6B is the corpus size and 300D is the

embedding dimension. Input hypotheses are padded to the maximum sentence length in

a batch. Note we do not truncate the sentences because unlike VQA where the beginning

of questions typically indicates what is asked about, labels of VE task may depend on

keywords or small details at the end of sentences. For example, truncating the hypothesis

“The person who is standing next to the tree and wearing a blue shirt is playing _____”

inevitably loses the key detail and changes the conclusion. In addition, the maximum

sentence length in SNLI is 56, which is much larger than 23 in VQA-v2.0 as shown in

Table 5.2. Always padding to the dataset maximum is not necessarily efficient for training.

As a consequence, we opt for padding to the batch-wise maximum sentence length.
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Unless explicitly mentioned, all models are trained using a cross-entropy loss func-

tion optimized by the Adam optimizer with a batch size of 64. We use an adaptive learning

rate scheduler which reduces the learning rate whenever no improvement on the validation

dataset for a period of time. The initial learning rate and weight decay are both set to be

1e−4. The maximum number of training epochs is set to 100. We save a checkpoint when-

ever the model achieves a higher overall validation accuracy. The final model checkpoint

selected for testing is the one with the highest lowest per class accuracy in case the model

performance is biased towards particular classes. The batch size is set as 32 for validation

and testing. In the following, we discuss the details for each baseline.

5.4.1 Hypothesis Only

This baseline verifies the existing data bias in the SNLI dataset, as mentioned by Gururan-

gan et al. [Gururangan et al., 2018] and Vu et al. [Vu et al., 2018], by using hypotheses

only without the image premise information.

The model consists of a text processing component followed by two FC layers. The

text processing component is used to extract the text feature from the given hypothesis. It

first generates a sequence of word-embeddings for the given text hypothesis. The embed-

ding sequence is then fed into a GRU [Chung et al., 2014] to output the text features of

dimension 300. The input and output dimensions of the two FC layers are [300, 300] and

[300, 3] respectively.

Without any premise information, this baseline is supposed to make a random guess

out of the three classes but the resulting accuracy is up to 67%, implying the existence

of a dataset bias. We do not intend to rewrite the hypotheses in SNLI to reduce the bias

but instead, aim at using the premise (image) features to outperform the hypothesis only

baseline.
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5.4.2 Image Captioning

Since the original SNLI premises are image captions, a straightforward idea to address VE

is to first apply an image caption generator to convert image premises to text premises and

then followed by a TE classifier. Particularly, we adopt the PyTorch tutorial implementa-

tion [Choi] as a caption generator. A pre-trained ResNet152 serves as the image encoder

while the caption decoder is a long short-term memory (LSTM) network. Once the image

caption is generated, the image premise is replaced with the caption and the original VE

task is reduced to a TE task. Similar to the Hypothesis-Only baseline, the TE classifier is

composed of two text processing components to extract text features from both the premise

and hypothesis. The text features are fused and go through two FC layers with input and

output dimensions of [600, 300] and [300, 3] for the final prediction.

The resulting performance achieves a slightly higher accuracy of 67.83% and 67.67%

on the validation and testing partitions over the Hypothesis-Only baseline, implying that the

generated image caption premise does not improve much. We suspect that the generated

captions may not cover the necessary information in the image as required by the hypothesis

to make the correct conclusion. This is possible in a complex scene where exhaustive

enumeration of captions may be needed to cover every detail potentially described by the

hypothesis.

5.4.3 Relational Network

The Relational Network (RN) baseline is based on [Santoro et al., 2017] which is proposed

to tackle the CLEVR dataset with high accuracy. There are an image branch and a text

branch in the model. The image branch extracts image features in a similar manner as

EVE, as described in Section 5.3, but without self-attention. The text branch generates the

hypothesis embedding through an RNN. The highlight of RN is to capture pairwise feature

interactions between image regions and the text embedding. Each pair of image region
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feature and question embedding goes through an MLP. The final classification takes the

element-wise sum over the MLP output for each pair as input.

Despite the high accuracy on the synthetic dataset CLEVR, RN only achieves a marginal

improvement on SNLI-VE at the accuracy of 67.56% and 67.55% on the validation and

testing partitions. This may be attributed to the limited representational power of RN that

fails to produce effective cross-modal feature fusion of the natural image premises and the

free-form text hypothesis input from SNLI-VE.

5.4.4 Attention Top-Down and Bottom-Up

We consider the Attention Top-Down and Attention Bottom-Up baselines based on the

winner of VQA challenge 2017 [Anderson et al., 2018]. Similar to the RN baseline, there is

an image branch and a text branch. The difference between the image branches in Attention

Top-Down and Attention Bottom-Up is similar to our EVE. The image features of Attention

Top-Down come from the feature maps generated from a pre-trained CNN. As for Attention

Bottom-Up, the image features are the top 10 ROIs extracted from a pre-trained Mask-

RCNN implementation [He et al., 2017]. No self-attention is applied in both image and text

branches. Moreover, the text-image attention is implemented by feeding the concatenation

of both image and text features into an FC layer to derive the attention weights rather

than using SDP as described in Section 5.3.1. Then the attended image features and text

features are projected separately and fused by dot product. The fused features go through

two different MLPs. The element-wise sum of both MLP output serves as the final features

for classification.

The VQA 2017 winner model, Attention Top-Down, achieves an accuracy of 70.53%

and 70.30% on the validation and testing partitions respectively, implying cross-modal at-

tention is the key to effectively leveraging image premise features. The Attention Bottom-

Up model using ROIs also achieves a good accuracy of 69.34% and 68.90% on the vali-

dation and testing partitions. The reason why Attention Bottom-Up performs worse than
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Attention Top-Down could be possibly due to lack of background information in ROI fea-

tures and ROI feature quality. It is not guaranteed that those top ROIs cover necessary

details described by the hypothesis. However, even with more than 10 ROIs, we observe

no significant improvement in performance.

5.4.5 EVE-Image and EVE-ROI

The details of our EVE architecture have been described in Section 5.3. EVE-Image

achieves the best performance of 71.56% and 71.16% accuracy on the validation and test-

ing partitions respectively. The performance of EVE-ROI is similar, with an accuracy of

70.81% and 70.47%, possibly suffering from similar issues as the Attention Bottom-Up

model. However, the improvement is likely due to the introduction of self-attention and

text-image attention through SDP that potentially captures the hidden relations in the same

feature space and better attended cross-modal feature interaction.

5.5 Model Explanations

Our EVE model achieves the best performance compared to other baselines [Xie et al.,

2019]. The explainability of EVE is attained using attention visualizations in the areas

of interest in the image premise given the hypothesis. It is worth noting that attention is

designed to be naturally embedded as a model component, and is jointly trained with the

model and also directly utilized for generating model decisions, thus is considered as an

intrinsic way to achieve model interpretability. Figure 5.5 and 5.6 illustrate two visual-

ization examples of the text-image attention from EVE-Image and EVE-ROI respectively.

The image premise of the EVE-Image example is shown on the left of Figure 5.5, and the

corresponding hypothesis is “A human playing guitar”. On the right of Figure 5.5, our

EVE-Image model successfully attends to the guitar area, leading to the correct conclu-
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sion: entailment. In Figure 5.6, our EVE-ROI focuses on the children and the sand area in

the image premise, leading to the contradiction conclusion for the given hypothesis “Two

children are swimming in the ocean.”

Figure 5.5: An attention visualization for EVE-Image

Figure 5.6: An attention visualization for EVE-ROI
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An Intrinsic Certainty Measure for Deep

Neural Network Decisions

In this chapter, we introduce a simple but effective measure to quantify the level with which

an analyst can trust the decision of a deep neural network (DNN), as an extension of this

dissertation study. The measure is intrinsic in the sense that it evaluates the characteristics

of internal network activation patterns for an input, across multiple layers, to find anoma-

lous activation patterns conditioned on the output of the network. Background knowledge

and detailed methodology are included in Section 6.1 where the certainty score is designed

upon intermediate activations of the network. Experiment results for MNIST, Fashion-

MNIST, and Tiny-ImageNet across multiple deep learning architectures are discussed in

Section 6.2. It demonstrates that the measure can promote the reliability of deep learning

models by reporting the degree of trustworthiness for an input along with its decision.

6.1 Measuring Model Certainty

The pursuit of building powerful and reliable systems is a long-standing goal in the deep

learning (DL) community. While modern DL systems are achieving impressive perfor-

mance, there is limited work in measuring the reliability of a system’s decision. Such a

measure is increasingly important as vulnerabilities of ML have been demonstrated by re-
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cent work on adversarial attacks [Yuan et al., 2017, Akhtar and Mian, 2018, Athalye et al.,

2018, Su et al., 2017, Chen et al., 2017b, Cisse et al., 2017, Zhao et al., 2017, Dong et al.,

2018, Szegedy et al., 2013, Goodfellow et al., 2015, Kurakin et al., 2016, Papernot et al.,

2016a, Carlini and Wagner, 2017, Moosavi-Dezfooli et al., 2016, 2017, Rozsa et al., 2016,

Liu et al., 2016, Kurakin et al., 2016, Nguyen et al., 2015]. A DL system could also make

mistakes on non-adversarial data, which may due to patterns of input data that occur during

the testing time were seldomly seen in the training process. As DL becomes widely ap-

plied to many real-life applications, particularly those where DL decisions impact humans

on mission critical systems, it is important for system users to know when DL decisions

should or should not be trusted.

We propose an intrinsic model certainty score, which measures the degree to which

a decision made by a DL system should be relied upon or is “trustworthy". The certainty

score is intrinsic in the sense that it considers the collection of activations of each inter-

mediate layer in the network. The certainty score measures the class similarity on the

prediction for a given input against labels of examples in the training set whose layer-wise

activation patterns are close to the activations of the input. In contrast to similar measures

of model certainty Carrara et al. [2017], our measure intelligently combines scores from

multiple layers, automatically infers a threshold to decide if a DL system’s decision is trust-

worthy, and is shown to perform well on both adversarial examples and wrongly classified

non-adversarial data.

Our model certainty score is calculated as a weighted sum of purity scores evaluated

at each layer of a DL system. A purity score is similar to a k nearest neighbor (k-nn) score

designed by Carrara et al. [2017]. Formally, let Fl be a set of activations at the lth layer of

the network, and Dtrain = {(xtrain
i , ctrain

i )} be the training data set where xtrain
i is an input

data, and ctrain
i is a label. Given query data xquery with predicted class cquery, the purity of

(xquery, cquery) at layer l is a function of the k nearest neighbors in the set of all activations

at layer l over the training data. It is given as:
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Pl(x
query, cquery) =

∑
i∈K(xquery,l) w

train
i 1(cquery = ctrain

i )∑
i∈K(xquery,l) w

train
i

(6.1)

where K(xquery, l) is the set of training data whose layer l activations lie in the k

nearest neighbors of the layer l activation of xquery measured by Euclidean distance, wtrain
i

is the weight assigned to each k nearest neighbor, and 1(cquery = ctrain
i ) is the indicator

function. Pl(xquery, cquery) thus measures the difference between the predicted class cquery

with its nearest neighbors’ labels {ctrain
i }. Higher Pl(xquery, cquery) implies that that the

activation of xquery is consistent with activations from the training data whose label is

cquery.

The purity score for each layer is combined to produce a certainty scoreC(xquery, cquery).

A straightforward combination, which is surprisingly effective, is to take a weighted sum

of the layer-wise purity scores:

C(xquery, cquery) =
l∑

i=0

WiPi(x
query, cquery)

where Wi is the fraction of k nearest neighbors in the training data activations of layer l

for xquery whose class label is cquery. The intuition behind this strategy is, if the activations

of xquery are close to many other activations from the training data of the same class, we

should find the activations of xquery at layer l to increase the certainty we have on correctly

generating the output for the given input.

We can compare C(xquery, cquery) against distribution of certainty scores over a refer-

ence dataset to determine if its value suggests that the model prediction should be trusted

or not based on a cut off threshold thresh. The problem is thus turned into a binary classi-

fication problem, and the class label is 1 meaning the model prediction is “untrustworthy”

if C(xquery, cquery) < thresh and “trustworthy” otherwise. Our experiments below show,

intuitively, that the trustworthiness of a model’s decision is quite sensitive to this hyper

parameter thresh. However, by observing the certainty score distributions for all wrongly
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predicted training data Dtrain
wrong and sampled correctly predicted training data Dtrain

correct, the

certainty score corresponding to the intersection of this two distributions is shown to be a

high quality threshold.

6.2 Experiments and Result Analysis

We carry out experiments on MNIST LeCun [1998], Fashion-MNIST Xiao et al. [2017],

and Tiny-ImageNet Hendrycks and Gimpel [2016] using three different neural network

models: a shallow artificial neural network Yegnanarayana [2009], a self defined convolu-

tional neural network Krizhevsky et al. [2012], and a revised ResNet-50 He et al. [2016]

respectively. Each training data set is randomly divided into an 80/20 split for training and

validation data. Test data1 for the models are taken from the published set of test examples

for each dataset. All models are trained under a cross-entropy loss function using the RM-

Sprop Tieleman and Hinton [2012] optimizer. Adaptive training learning rates are used,

starting at 0.001.

A certainty score is calculated as a weighted sum over purity scores across three in-

termediate layers. The dimensionality of activations of an intermediate layer is reduced by

half if the dimension exceeds 300 in order to generate purity scores efficiently. We consider

the k = 30 nearest neighbors of the given example to derive purity scores. Besides eval-

uating certainty over the testing data, we also generated adversarial examples of correctly

predicted testing data using the FGSM Goodfellow et al. [2015] and Carlini & Wagner

Carlini and Wagner [2017] adversarial attack methods. We describe specific experimental

settings for each dataset below:

MNIST. MNIST is an image digit dataset containing 10 class labels. It contains 60,000

training examples and 10,000 testing examples. The shallow artificial neural network ap-

1validation data is used for testing if the test labels are not publicly available
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plied to this dataset contains three Fully Connected (FC) ReLU layers with (input, output)

dimensions of (784, 300), (300, 100), and (100, 10) respectively. After training for 40

epochs, it achieves an accuracy of 97.28% on testing examples. The activations of three FC

layers are used for calculating three purity scores respectively.

Fashion-MNIST. The dimension and size of Fashion-MNIST are identical to MNIST,

except the images are grey-scale clothing pictures instead of digits. The convolutional

neural network applied to this dataset has two convolutional layers with (input_channels,

output_channels, kernel_size, stride) of (1, 16, 5, 1), and (16, 32, 5, 1) respectively, with

ReLU activations and a dropout rate of 0.2. A single FC layer is appended to the two

convolutional layers prior to softmax output. After training for 8 epochs, it achieves an

accuracy of 88.37% on testing examples. The activations of two convolutional layers and

one FC layer are used for calculating three purity scores respectively.

Tiny-ImageNet. Tiny-ImageNet is akin to ImageNet Deng et al. [2009] but with lower

resolution images. It contains 200 classes with nearly 500 training examples and 50 testing

examples per class. We use a ResNet-50 pretrained on full ImageNet and add three FC

layers of dimension (2048, 1024), (1024, 512), and (512, 200) and finetune it for 102

epochs. It achieves an accuracy of 60.33% on testing examples. The activations of three

FC layers are used for calculating three purity scores respectively.

We first evaluate the extent to which the certainty score differentiates different types

of data samples. We show, in Figure 6.1, 6.2, and 6.3 the empirical density of certainty

scores for training, testing, FGSM adversarial, and C&W adversarial examples that are

predicted correctly and wrongly along with a KDE estimate. On MNIST, we find a a

vast majority of correct train and test examples to have certainty at or near 1.0, whereas all

incorrect examples (and even correctly classified adversarial examples) have a near uniform
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Figure 6.1: Certainty score distribution for MNIST dataset

distribution of scores. It is worth noting that wrongly predicted FGSM adversaries (e.g.

successful attacks on the network) have a small mode near 1 as well. This pattern does not

hold for certainty densities along the Fashion-MNIST distributions (Figure 6.2), however:

correct train and test examples remain near 1, while all adversarial examples and incorrectly

classified data have different density shapes. While the distribution of certainty scores for

correct test and training examples have higher variance on the CNN for Tiny-ImageNet

(Figure 6.3), it is encouraging that the certainty score for wrongly predicted adversarial

examples of both times are concentrated between 0 and 0.2. As mentioned in section 6.1,

a model certainty threshold can be inferred by the certainty score distribution over training

examples. Shown in Figure 6.4, 6.5, and 6.6, we assign thresh to be the certainty score at

which the KDE of the two densities intersect.

We evaluate the thresholds using all data in the testing set plus adversarial examples
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Figure 6.2: Certainty score distribution for Fashion-MNIST dataset

generated from each of the correctly classified test data using both FGSM and C&W meth-

ods. We consider the thresholds to be the decision boundary of a binary classifier: we

predict positively if the certainty score of an example is below thresh (hence a positive

prediction means we consider the output of the network to be “untrustworthy") and predict

negatively if the certainty score is above. An untrustworthy decision is correct if the data

is wrongly classified by the original neural network model, and a trustworthy decision is

correct if the data is correctly classified.

Figure 6.7, 6.8, and 6.9 shows the F1 score for the trustworthiness evaluation for

varying threshold values and when defining the certainty score using individual layer purity

scores and when taking the weighted sum over all layer purity scores {Pl(xquery, cquery)}.

For the crossover thresh points identified above, we find encouraging F1 scores nearing

0.8 for MNIST, 0.9 for Fashion-MNIST, and 0.83 on Tiny-ImageNet. It is interesting to
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Figure 6.3: Certainty score distribution for Tiny-ImageNet dataset

note that our approach thus finds it harder to assess its trustworthiness of a decision on

MNIST, the simplest of the three datasets. This may be because of the manifold of MNIST

is (relatively) simplistic; hence there are a more limited number of ways that activation

patterns between examples can vary. We further note that for both Fashion-MNIST and

Tiny-Imagenet, the purity of activations at early layers are nearly as good as using the

certainty score. This suggests that disagreement in the k nearest neighbors of activations

early in the network are more predictive of whether an input will ultimately be classified

correctly or wrongly.
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Figure 6.4: Certainty score distribution for MNIST dataset, training split

Figure 6.5: Certainty score distribution for Fashion-MNIST dataset, training split

92



Figure 6.6: Certainty score distribution for Tiny-ImageNet dataset, training split

Figure 6.7: F1 score for MNIST dataset
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Figure 6.8: F1 score for Fashion-MNIST dataset

Figure 6.9: F1 score for Tiny-ImageNet dataset
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Integrated Solution for Interpretable

And Reliable DNNs

In this chapter, we explore a potential integrated solution for interpretable and reliable deep

neural networks. Experiments and analyses are conducted on visual entailment, which is a

novel visual inference task we propose. Prior to introducing the integrated solution, the de-

mand for such solutions for interpretable and reliable DNNs is first discussed in Section 7.1.

Section 7.2 describes how the proposed techniques (Chapter 4, 5, 6) holistically realize a

contribution to interpretable and reliable deep neural networks for visual entailment. We

now elaborate on each section below in detail.

7.1 The Demand for Integrated Interpretable And Reli-

able Solution

To the best of our knowledge, existing methods on interpretable and reliable DNNs are

mainly singular works that promote explainability and trustworthiness in deep learning out-

of-context from other modes of explanation, and their uses in practice. This has yielded

a body of techniques for deep learning that may be contradictory in intent, incompatible

with each other, and with limited practical utility. We consider a practical interpretable
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and reliable deep learning demands a collection of integrated techniques that include the

following aspects:

1. The capability to represent network mechanisms at a technical level to support model

auditing and debugging. An example of such interpretation could be capturing the

interactions between input features across different modals. This aspect provides

model details in depth for the expert who can audit model quality control, the model’s

perceived biases, opportunities to improve the technical operation of the model, and

to efficiently “debug” a poor performing model.

2. An interpretation of an output that is clear and layman-friendly to the users. An

ideal interpretation needs to be grounded in human understandable semantics asso-

ciated with the domain of the data. This aspect assures the general acceptance of

explanations to generic model users in society, since there is no requirement for user

expertise.

3. The endowment of a measure of confidence, self-assurance, or trust with model de-

cisions. As undesired model decisions may cause a potential catastrophe, trust is an

important criterion to measure to properly accept or reject a model decision. This as-

pect secures the model reliability by providing a confidence score along with model

decisions.

Each of these three aspects is indispensable towards building a transparent and reliable

DNN system for myriad real life applications, and in particular for visual intelligence.

Society’s awareness of the acceleration of computer vision technologies for surveillance,

autonomous self driving, robotics, and medical image analysis puts downward pressure on

researchers to create solutions that are not only performant but also explainable to users

and auditors. Face recognition systems should be audited that they are not biased against

a particular population, for example, and vision algorithms for self driving cars need to be

auditable in the event of an accident or other situation involving liability.
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7.2 An Integrated Solution for Visual Entailment

Our categorized literature review in Part I indicates the lack of systematic interpretable and

reliable DNN solutions. In this dissertation, we make a novel contribution by presenting a

set of solutions that, together, establish an interpretable and reliable deep learning system

satisfying the aspects mentioned in Section 7.1. We demonstrate the utility of the system

for visual entailment, which is a novel visual inference task we propose [Xie et al., 2019],

that offers technically useful and layman-friendly explanations, alongside a discussion of

potentially leveraging the proposed certainty measurement (Chapter 6) to quantify the level

of trust a user could apply to model decisions1.

Our integrated interpretable and reliable DNN solution for visual entailment task in-

clude the following components,

• Technician-Oriented Explanation. We develop a deep learning model that solves

a new, challenging formulation of the visual entailment problem (Chapter 5). The

key architecture ingredient enabling explanations are attention mechanisms, which

highlight the interaction between features from different modals (vision and text),

and could be further useful for a technician on model debugging.

• Layman-Friendly Explanation. We develop a technique to refine the layman-

friendly explanations offered by the attention mechanisms with recognition scores

revised from Chapter 4.

• Model Certainty Measurement. We discuss a potential usage of a novel measure-

ment of the trustworthiness on model decisions (introduced in Chapter 6), providing

human users an indicator to properly accept or reject a model decision for the visual

entailment problem based on quantitative measures.
1Due to the lack of access to our original trained model for visual entailment task (Chapter 5), the experi-

ments and analyses in this section are conducted on a newly trained EVE-Image model based on the original
code. The new EVE-Image model has similar performance as the one reported in Chapter 5, and the overall
accuracy for test split is 71.24%, the test accuracy for contradiction, neutral, and entailment are 71.55%,
67.44%, and 74.72% respectively.
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7.2.1 Technician-Oriented Explanation for Visual Entailment

As presented in Section 5.5, the text-image attention visualization shows based on the input

text, which areas in the input image are highly involved in generating the given model

decision. Such attention visualization offers a “probe” for the model technicians on how

the hidden states of text and image features interact to generate a model output. Different

visualized text-image attention patterns can be leveraged by the technicians for multi-modal

feature interaction studies, model error analysis, and potentially for model improvement.

Figure 7.1: Attention visualization for multi-modal feature interaction studies.

Figure 7.1 is the attention visualization based on given hypothesis “Someone wearing

a costume is standing on the street.”, which is correctly predicted as “entailment” by the

model. Based on the illustrated attention, technicians can observe the model is able to

properly focus on the person and the person’s surroundings in the image with respect to the

text information for the model prediction.

Figure 7.2 is the attention visualization for hypothesis “A man is reading newspaper
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Figure 7.2: Attention visualization for model error analysis.

and drinking soda.”, which is labeled “contradiction” but predicted as “neutral” by the

model. The prediction error can be tracked by technicians as the model’s concentration is

wandering in the image, and mostly on irrelevant image areas.

Figure 7.3: Attention visualization for model improvement.

For potential model improvement, technicians can analyze error cases (as illustrated

in Figure 7.2) for reasons that cause incorrect predictions, and revise the model accord-

ingly. Besides, model improvement may also be derived from correctly predicted cases.

Figure 7.3 shows the attention visualization for two distinct hypotheses. The middle sub-

figure is for hypothesis “One person is sitting on the bench.” and is correctly predicted as

“contradiction” by the model. The right sub-figure is for hypothesis “People are crossing

the road.” and is correctly predicted as “entailment”. Although the two cases are correctly

predicted, the two attention visualizations are almost identical, implying a more effective

way of multi-modal feature interaction is needed for model performance improvement.
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7.2.2 Layman-Friendly Explanation for Visual Entailment

Based on the generated attention visualizations, technicians are looking for insights on

model debugging and potential improvement directions, while non-technical users, on the

other hand, are seeking explanations presented in an easy-understanding way. In order to

provide layman-friendly explanations for visual entailment task, here we extend the con-

cept recognition scoring technique (introduced in Chapter 4) to attention mechanisms. The

revised scoring technique is conducted on the pre-generated attention visualization, identi-

fying how well each semantic concept (which is also referred to as entities below) is rec-

ognized by the model, providing non-technical users a straightforward way to comprehend

model behaviors. We now elaborate on how we extend the scoring technique to attention

visualizations, followed by some generated layman-friendly explanations below.

Applying Recognition Scoring to Attention Visualization

In order to apply the concept recognition scoring technique (Chapter 4) to the attention

visualizations, we leverage Flickr30k Entities [Plummer et al., 2015], which is a dataset

containing image annotations for all entities presented in given Flickr30k [Young et al.,

2014] image captions. For each entity, the corresponding image area is annotated using

a bounding box, as illustrated in Figure 7.4. The bounding box annotation in the image

can be used as the ground truth area for a given entity towards calculating the concept

recognition score.

In contrast to Chapter 4, where multiple model visualizations are generated with re-

spect to a model prediction, here for each model prediction there is only one attention

visualization correspondingly. Thus greedy selection (Algorithm 1) is omitted, and only

the recognition score is leveraged. Based on Chapter 4, the recognition score is defined as

a Jaccard like similarity measure,
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Figure 7.4: An image annotation example from Flickr30k Entities dataset

Se(A, ξ) =
|Me(ξ) ∩ A|
|Me(ξ) ∪ A|

where A is the text-image attention visualization in our case, ξ is the given input

image, e is an entity or concept, Me(ξ) is a binary segmentation mask (can be generated

based on the entity bounding box) corresponding to the entity e. As illustrated in Figure 7.5,

the “people” entity class is annotated using a bounding box in the given image, and the

recognition score of entity “people” can be calculated based on how well the highlighted

attention area matches with the given bounding box.
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Figure 7.5: Applying recognition scoring to attention visualization.

Examples of Layman-Friendly Explanations

Figure 7.6, 7.7, and 7.8 illustrate some examples of the calculated entity recognition score.

As shown in Figure 7.6, the recognition score for “people” is 0.37, indicating to non-

technical users that the “people” area is relatively well-focused by the model. While in Fig-

ure 7.7, and 7.8, the recognition score is relatively low, implying the model is not mainly

focusing on the given entity (“vehicles” and “instruments” respectively). The visualized

attention with entity bounding box annotation also provides non-technical users a straight-

forward way to understand where entities locate and whether or not the model attends to

such entities.
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Figure 7.6: Recognition score for entity “people”, S = 0.37.

Figure 7.7: Recognition score for entity “vehicles”, S = 0.18.

7.2.3 Model Certainty Exploration for Visual Entailment

The intrinsic measurement for DNN decisions introduced in Chapter 6 offers users a po-

tential solution towards building a robust and reliable deep neural network. As model ro-

bustness and reliability is not the main focus of this dissertation study, here we only discuss

the feasibility of leveraging the introduced certainty measurement for the visual entailment

task2.

Based on Chapter 6, the model certainty score for visual entailment task can be calcu-

2For technical details for the introduced model certainty measurement, please refer to Chapter 6.
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Figure 7.8: Recognition score for entity “instruments”, S = 0.21.

lated in the following steps,

1. Activation Extraction. This is a prerequisite step for model certainty generation,

which is to extract and store the hidden states of the well-trained visual entailment

model for all or sampled training examples from selected layers.

2. KNN Purity and Certainty Calculation. For a query example from visual en-

tailment dataset, conduct K nearest neighbor algorithm in a hidden activation space

spanned by all/sampled visual entailment training examples. The purity score mea-

sures the portion of training neighbors that has the same label as the predicted query

class. The weighted sum of purity score across multiple layers is the certainty score

for the query example.

3. Decision Judgement. Based on the calculated certainty score for the query example,

the users decide whether or not to trust this prediction using a pre-defined certainty

threshold.

Towards making our visual entailment model more robust, patterns from generated
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adversarial examples may also be included for the selection of a proper threshold.
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Future Work And Conclusion

8.1 Future Work

In this section, we discuss potential future studies based on the techniques proposed in this

dissertation. The future work is categorized into the following two aspects,

• Methodological Improvements: This introduces ways to improve of our proposed

techniques on interpretable and reliable DNNs.

• New Area Applications: This discusses how we may apply our proposed techniques

to other application areas and research topics.

We now elaborate in detail below.

8.1.1 Methodological Improvements

Here we discuss some future directions for our proposed techniques for potential improve-

ment, towards better solving the problem of interpretable and reliable deep neural networks.

Relating Input Concepts to CNN Decisions (Chapter 4) For this work, the effects of

“unique”, “misleading”, and “sparse” concepts can be explored in more detail in future

studies. In particular, common misclassifications for a given scene class remain to be in-

vestigated and model decision explanations can be concluded in depth using the recog-

nized concepts that are (not) common between those misclassified examples. The effect of
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“sparse” concepts on CNN classification is also left to be explored, and a possible method

for this direction is to occlude the “sparse” concept areas in an image and check its in-

fluence on the CNN’s decision. It is also worth exploring the mechanics of how concept

recognitions impact downstream network activations leading to a decision and to devise a

measure of the importance of concept recognition for CNN decision making.

Achieving Intrinsic DNN Explanations via Attention Mechanism (Chapter 5) In this

work we propose a novel visual reasoning task, Visual Entailment, and design an intrinsic

explainable model, EVE, to solve it. The intrinsic explanation is achieved via the visual-

ization of text-image attention. Based on the error analysis for some wrongly predicted

examples in Chapter 7, the attention module can be further explored in order to align fea-

tures from text and image branches more efficiently. Specifically, the text-image attention

in EVE model is conducted upon the feature representation for the whole text sentence,

instead of the features for every single word. Thus the features for some critical words

may get lost in the whole sentence representation, resulting in inaccurate attention on im-

age areas. A recent follow-up work [Chen et al., 2019b] addresses this issue by propos-

ing a new model, UNiversal Image-TExt Representation (UNITER), which leverages a

quasi-BERT [Devlin et al., 2019] model structure that is built upon Transformers [Vaswani

et al., 2017] to extract representations for each text input, image input and also capture

the fine-grained interaction between text and image. The text-image attention in UNITER

offers attention visualizations for the related image areas with respect to each single word.

UNITER achieves about 79% accuracy for both validation and testing splits of SNLI-VE

dataset, exceeding the EVE performance (about 71% accuracy) by a large margin. How-

ever, error analysis of UNITER for SNLI-VE dataset is not provided, and based on 79%

we believe there still exists a large room for performance improvement. For the next step,

we look forward to more follow-up research on SNLI-VE towards a better performed and

more transparent solution.
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An Intrinsic Certainty Measure for Deep Neural Network Decisions (Chapter 6) In

this work, we introduce a quantitative intrinsic notion of the certainty for DNN decisions.

The certainty measurement is built upon the internal activation patterns in the intermediate

layer of the DNN, and is calculated based on the Euclidean distance between the activation

of a query example and the activation of each training example. For the next step, since

the intermediate activation space is of high dimension, the certainty measurement can be

potentially improved by leveraging more advanced distance metrics. Besides, the manifold

of complex activation space is another interesting direction for further exploration.

8.1.2 New Area Applications

Here we discuss potential applications of our proposed techniques on some real life cases

and other research topics.

Real Life Applications Model interpretability and reliability are important for decision

critical scenarios, where improper model decisions may cause severe consequences. Our

proposed techniques can be applied to such real life scenarios via constructing a more

desirable DNN system. Here we elaborate on one example in medical application where

our proposed techniques can be jointly leveraged.

Imagine a scenario where a doctor uses a DNN system to make diagnostic decisions.

The diagnosis is based on hybrid data from both image, such as CT scan or ultrasound

image, and text, such as anamnesis, symptom description, etc. The decentness of the model

decision is crucial, as it may affect the next medical treatment, and even critical succeed

decisions. In this case, we list three possible questions raised by the doctor and how our

techniques can be leveraged to potentially tackle them below, i) How the model decision

is addressed? This question can potentially be solved by revising the proposed method

in Chapter 4 to relate model decisions with human-understandable medical evidence in

the given input data. ii) How data from different resources (text and image) interact with
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each other during the model decision making process, towards generating the final model

prediction? The text-image attention module from Chapter 5 can be used to capture such

interaction patterns. iii) As a diagnostic decision has critical potential influences, thus

should not be released unless verified. Given the generated model decision, how would a

model user know if the decision is reliable or not, what post-hoc procedures can be taken

for trustworthiness verification? The certainty measurement designed in Chapter 6 can be

applied to generate a certainty score, indicating the reliability of a model decision.

Other Research Topics Our proposed techniques can be leveraged to other existing re-

search topics, enabling their methods with interpretability and reliability characteristics.

Recently, the combination between model explainability and Reinforcement Learning

(RL) has been actively studied [Puiutta and Veith, 2020, Madumal, 2020, Madumal et al.,

2019, Sequeira et al., 2019, Cruz et al., 2019, Shi et al., 2020, Cruz et al., 2020, Akrour

et al., 2020]. According to a recent survey paper on explainable reinforcement learn-

ing [Puiutta and Veith, 2020], most current methods provide explanations for RL systems

in a post-hoc fashion, that is to “mimic” or “simplify” a well-trained RL system for ex-

plainability. The intrinsic design for RL explanations, which is to generate explanations

inherently from the trained RL system remains to be explored. While our intrinsic tech-

nique proposed in Chapter 5 can be potentially leveraged to address this gap, by adding

attention component to the RL system and visualize how intermediate features interact

with each other. Another finding from the survey is most existing explanation solutions for

RL are targeting expert users instead of normal users who are not equipped with machine

learning knowledge. While our proposed technique introduced in Chapter 4 can potentially

be adapted for RL systems to solve this issue by, first extracting human-understandable

semantic concepts from the input or intermediate representations of the RL system, and

then relate those concepts to RL decision. By providing layman-friendly explanations, the

confidence of normal users towards leveraging RL systems to solve their real life problems
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would potentially increase.

Our proposed techniques can also be leveraged to some closely related topics for their

field promotions. One topic that is closely related to interpretable and reliable DNNs is

Model Debugging, as discussed in Section 3.2. According to our systematic literature re-

view, there exists a limited amount of work on solving the model debugging problem for

deep neural networks. However, we consider model debugging is an indispensable compo-

nent for future DNN systems, without which the improvement of model performance would

be limited, thus hinders the prosperity of such DNN systems applications. Our proposed

work can be leveraged for model debugging. Specifically, for Chapter 4, the relationships

between recognized concepts, which could be “misleading”, “unique”, or “sparse” concept,

and DNN decision can be further explored to find strong associations between a group of

concepts and a specific type of model decisions. Those concepts can then serve as a sig-

nature, and if the DNN model is not able to properly capture such “signature concepts”,

further training is required to gain more accuracy. In this way, the DNN model can be fine-

tuned more efficiently towards achieving better performance. Another closely related topic

is Adversarial Defense, as discussed in Section 3.3. Our proposed method in Chapter 6

provides a novel direction towards building a robust DNN system. The manifold of the

model’s intermediate patterns can be further explored, and the certainty measurement can

be improved to not only justify normal examples that are wrongly predicted, but also cap-

ture adversarial examples since their hidden representation could reveal abnormal patterns.

8.2 Conclusion

Building a real life artificial intelligence system that is equipped with human-competitive

performance, robust against abnormal examples, and transparent and reliable for the deci-

sions made is a long term goal existing in the community. In many real life applications,

such as face recognition [Masi et al., 2018], voice assistance [Tulshan and Dhage, 2018],
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machine translation [Yang et al., 2020], etc, the unprecedented representation power of

deep neural networks, although opaque in nature, enables the system to achieve excellent

performance that is competitive to human behaviors. However, in some cases, for instance

the application in driving assistant or disease diagnostics, the consequences of incorrect

model decisions may cause potential catastrophes, raising the demand for the transparency

and reliability characteristics of models applying to those scenarios.

Towards achieving the transparency and reliability goal, this dissertation explores the

topic of interpretability and reliability of deep neural networks, focusing on a specific do-

main, visual intelligence. Two types of visual intelligence tasks, image classification and

visual inference, are explored. Towards interpretable and reliable DNNs for visual intelli-

gence, a categorized literature review is first provided, depicting the field in a systematic

and comprehensive way. Following the literature review, two types of methods are pro-

posed to generate explanations for model decisions, i) through hidden state visualization

and ii) by leveraging attention to make a DNN intrinsically interpretable. In the former

work, a Convolutional Neural Network (CNN) is utilized as an image scene classifier and

our proposed explanation method is to explain why the CNN classifier predicts an image as

a specific scene class by relating the CNN decisions with input concepts via a visualization

technique called deconvolution. In the latter work, our proposed method achieves the goal

of interpretability from an intrinsic perspective. An attention-based DNN is designed to

solve visual entailment, which is a novel visual inference task we proposed that involves

the interaction between computer vision and natural language processing. The attention

heatmap is visualized to depict how the input image interacts with the input natural sen-

tence towards generating the model decision. To achieve DNN reliability, a certainty mea-

surement for DNN decisions is designed, based on which the users could decide whether

or not to adopt the given DNN decision. At the end of this dissertation, further experiments

and analyses are conducted for the visual entailment task to depict how the introduced tech-

niques holistically realize a contribution to interpretable and reliable deep neural networks
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for visual intelligence.

Our proposed methods can be jointly leveraged to offer technician-oriented expla-

nations which potentially for model debugging on performance improvement, generate

layman-friendly explanations for normal users without technical background, and also pro-

vide the system with a reliability measurement such that the system users own the freedom

to properly decline doublable model decisions. The field of interpretable and reliable deep

learning is being vividly explored. For the next step, we look forward to future studies on

extending our methods towards building a more powerful and trustworthy integrated DNN

system for a wide range of real life applications.
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