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ABSTRACT 

 

 

Ottonello, Dominique Marchelle. M.S. Department of Neuroscience, Cell Biology and 

Physiology, Wright State University, 2020. Impact of Passive Range of Motion Exercises 

and Stretching in Knee Osteoarthritis Pain during Walking.  

 

 

Knee osteoarthritis (KOA), is globally prevalent source of disability for the 

elderly. This degenerative malady progresses with age and has no cure. It manifests in 

gait changes and affects overall quality of life. Exercise therapy has been shown to 

improve knee joint range of motion, stiffness and pain due to KOA. This improvement is 

due in part to the direct relationship between muscle strength and joint stability. The 

purpose of this study is to examine how a passive range of motion (ROM) exercises and 

stretching regimens affect gait-alterations and associated pain from KOA experienced 

during walking. 

 Nine KOA subjects were recruited from a local orthopedic clinic and the Fel’s 

longitudinal study, with a final sample size of 7 subjects completing the trial.  Subjects 

performed self-paced walking trials before and after a 4-week long, bi-weekly set of 

passive ROM and stretching exercises. A trained pre-physical therapy student 

administered the therapy. Data necessary to assess gait before and after the intervention 

was acquired via standard gait analysis. Participants rated their pain before the 

intervention, at the fifth trial and after the intervention ended. 
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Subjects experienced significant changes in walking speed, stride-length, cadence, 

peak knee flexion in stance, peak knee flexion in swing and knee flexion/extension (KFE) 

ROM in swing. Pain did not significantly decrease, remaining largely unchanged. These 

data supported our hypothesis that a combination of passive ROM and stretching would 

result in increased ROM and improved patient gait. Our hypothesis that pain would be 

significantly decreased was not supported. To improve effectiveness of rehabilitation, 

further research is needed to elucidate the effects of exercise therapy on osteoarthritis-

based pain during ambulation. 
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I. INTRODUCTION 

Globally, osteoarthritis (OA) affects 303 million individuals (Vos et al 2016), and 14 

million people nationally (Losina et al 2019).  OA is a progressive disease compounded by 

factors such as gait, gravity, load bearing and improper joint-alignment (Sharma et al 2001). Of 

the load-bearing joints, the knee is the most commonly affected (Favre & Jolles, 2016). Knee 

osteoarthritis (KOA)-related disability is the leading medical condition affecting the elderly. 

There currently exists no drug to stop osteoarthritis progression (D’Ambrosia 2005), with total 

knee arthroplasty (TKA) being the intervention of choice for late-stage KOA patients (Beal et al 

2016). The TKA procedure is costly, making it less accessible to patients. It is also a treatment 

reserved for late-stage osteoarthritis cases, meaning those that are not yet surgical candidates 

require other means of pain-relief.  Existing pain-relievers such as NSAIDs have the potential to 

cause gastrointestinal side-effects, and acetaminophen has been shown to not significantly 

impact osteoarthritis pain (Deyle et al 2005). Increasingly, opioids are being prescribed to treat 

non-cancer pain. They carry a significant risk of addiction and death, however, with one study 

finding opioid analgesics being the cause of sixty-percent of overdose fatalities, eclipsing 

overdose deaths caused by any other drug class (Palouzzi et al 2011).  

Due to a disparity in safe and effective treatment for non-surgical candidates with OA, 

physical therapy and intervention studies such as ours are needed. Exercised-based physical 

therapy or exercise therapy, is a system of movements or physical activities that when combined 

under consistent repetition, encourage patient recovery. It can be tailored to improving specific 

musculature or broadened to a goal of increased overall physical performance. The aim of 

exercise therapy is to increase normal range of motion (ROM), performance of daily activities, 

strengthen muscles, improve balance, and motor function (Hall & Brody, 2005). Studies 
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involving exercise therapy in treating KOA have shown improved effects on knee ROM, pain, 

coordination, muscle strength, gait speed and overall functionality (Bennell et al 2010; 

Chamberlain et al 1982; Deyle et al 2005; Fisher et al 1991; Fisher et al 1993; Lun et al 2015). 

Where our study differs from past work is that ours has a simplified design executed over a 

shorter time-span. Simplicity allows the exercise regimen to be applied in a variation of settings 

which means it will be accessible and more affordable to patients. The shorter duration of our 

program is beneficial in that patients may be more likely to comply with the therapy and 

increases accessibility as it is easier to schedule shorter treatments into daily life. These are 

short-term benefits. It is not known what long-term benefits our study may provide. 

In KOA-affected knees, growing biomechanical forces caused by joint malalignment put 

pressure on lateral, medial and patellofemoral compartments. As such, KOA causes many 

changes in the biomechanics of walking (Salzman 2010). The combination of these factors 

results in deconditioning not only at the gait-level but as comorbidities that affect multiple bodily 

systems (Studenski et al 2011). This results in compromised range of motion (ROM) and excess 

energy expenditure, eventually causing disability (Magee et al 2009).  Exercise-based 

rehabilitation has shown promising results in past studies by increasing ROM in KOA patients, 

with the hope that increased ROM may circumvent the cycle of disability (Baker et al 2001; 

Ettinger et al 1997; Fransen, McConnell, & Bell, 2002;).  However, more information on how 

KOA affects gait and what exercises are the most beneficial for KOA subjects needs to be 

discerned (Walsh et al 2009), which makes our rehabilitation-based intervention pertinent. 

Our research focused on non-pharmacological, rehabilitation-based interventions. 

Therapy included passive ROM exercises and active stretching of the muscles around the knee 

with the hypothesis being that they may aid in pain-management and improve ROM in KOA-
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affected subjects. A rehabilitation-based therapy is especially applicable to patients in early 

stages of OA who do not qualify for surgical intervention, but seek an improvement in mobility 

and pain-relief. Biomechanical changes in gait such as knee and hip ROM and hip abduction will 

be examined through gait-analysis as they are important components of gait and commonly 

altered by KOA and are also related to knee ROM and pain. Given past evidence of improved 

functionality, pain-relief, and healthy gait-changes observed in KOA patients who have 

undergone similar combinations of guided stretching and passive ROM, we predict that our 

exercise therapy program of combined stretching and passive ROM will improve knee ROM and 

decrease knee-pain levels in ambulatory KOA patients. Background detail will be provided in the 

following sections including knee anatomy, biomechanics of a normal gait cycle, OA and KOA, 

and how KOA causes gait pathology. 

 

Knee anatomy 

 OA affects all components of the knee.  To appreciate the pathological changes that take 

place due to OA in the knee, it is necessary to have a complete picture of healthy knee 

musculoskeletal and synovial joint anatomy that will be affected by the disease.  The knee joint 

is located at the intersection of the femur and tibia (Perry, 1995). This joint is synovial, meaning 

its articular surfaces are encapsulated outwardly by fibrous sheaths. The synovial membrane, a 

serous membrane that lines the inner part of the capsule, produces synovial fluid and surrounds 

the joint cavity (Moore et al 2014). In surrounding the synovial cavity and fluid, the membrane 

provides a selective environment isolated from other tissues. It also surrounds fat pads, bursae 

and lines tendons. In synergy with subchondral bone, the synovial membrane nourishes 

chondrocytes, the cells that produce the founding elements of cartilage. The joint cavity of the 
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knee houses a potential space. The articulating surfaces of bones are covered with a layer of 

articular cartilage within the capsule (Moore et al 2014).  

Articular cartilage functions with two critical mechanical purposes: to provide a smooth 

floor for load-bearing and to decrease the risk of fracture by distributing stress across load-

bearing bones. The major load acting on articular cartilage originates from the contraction of 

periarticular muscles as they stabilize the joint. In a loading state, cartilage deforms to produce a 

hydrostatic, self-pressurized lubrication necessary for motion (Brandt, 2001).  

The knee is subcategorized as a bicondylar joint, meaning that it moves unidirectionally, 

but allows for minimal rotation (Komdeur et al 2002). There are three interactions between the 

femur, the tibia and the patella. Two corresponding femorotibial articulations are formed 

proximally by the lateral and medial femoral condyles, and distally by the lateral and medial 

tibial condyles (Moore et al 2014). The plateau-like surfaces of the tibia that articulate with the 

femoral condyles are what make up the lateral and medial compartments of the knee (Neumann, 

2010). In KOA, the medial compartment is also the most commonly affected compartment 

(Jones et al 2013), hence it was the focus of this study. The area between the tibial condyles, 

known as the intercondylar space, is divided anteriorly and posteriorly by the presence of two 

bony eminences, the intercondylar tubercles (Moore et al 2014).  

The anterior and posterior regions of the intercondylar space houses ligaments that 

prevent knee hyperflexion or hyperextension (Moore et al 2014). The intercondylar space forms 

a valley, with a lateral facet which is steeper than its medial facet. The lateral facet extends 

proximally and anteriorly and its slope allows it to stabilize the patella during knee motion 

(Neumann, 2010). Each femoral condyle has bony prominences called epicondyles that serve as 

ligamentous attachment sites. The third articulation lies between the femur and the patella. 
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(Moore et al 2014). The patellofemoral joint moves in a gliding fashion. The posterior face of the 

patella articulates with the femur’s medial and lateral surfaces from full extension to 140 degrees 

of flexion. The patella lowers into the intercondylar space at full flexion (Hehne, 1990).  

Epiphyseal trabecular bone absorbs loading in the knee and acts as another shock-

absorber in addition to cartilage, which is approximately 1-2 mm thick. After cartilage has 

deformed to its maximum potential during loading, the corresponding bone beneath it will 

deform to optimize the contact of opposing joint surfaces which reduces stress. Under high loads, 

the bone’s absorption of force and stress-minimization is crucial compared to that of cartilage. 

The softness and high elasticity of subchondral bone allows it to absorb energy during loading 

which protects the cartilage above (Brandt, 2001).  While the osteology of the knee can provide 

stabilization to the joint, it is the soft-tissues such as ligaments and muscles are the primary 

providers of structure to the joint (Neumann, 2010). 

Connective tissue in the form of ligaments and menisci act to stabilize the knee. The 

major stability of the knee joint in anterior and posterior translation, varus (knee adduction) and 

valgus (knee abduction) angulation and external and internal rotation of the knee is derived from 

ligaments (Nordin & Frankel, 2001). Classification of ligaments is divided into extra and 

intracapsular. Extracapsular ligaments are the lateral and medial collateral ligaments, and the 

oblique and arcuate popliteal ligaments (Moore et al 2014).  

The lateral collateral ligament reaches from the femoral lateral epicondyle to the fibular 

head’s lateral surface. It opposes varus, extension and excess external rotation of the knee. The 

medial collateral ligament originates at the femoral medial epicondyle and inserts on the medial 

surface of the tibia. It counteracts valgus, extension, and excess internal rotation. Excess knee 

motion in the frontal plane is regulated by both collateral ligaments (Neumann, 2010). The 
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oblique popliteal ligament extends posterior to the medial tibial condyle and crosses the posterior 

intercondylar space toward the lateral femoral condyle where it meshes with the joint capsule 

(Moore et al 2014).  

The intracapsular ligaments include the anterior and posterior cruciate ligaments. The 

anterior cruciate ligament (ACL), extends from the tibia’s posterior intercondylar surface to the 

posteromedial part of the femoral lateral condyle (Moore et al 2014). The ACL limits the knee’s 

hyper-extension either by the resisting the femur’s posterior translation across the tibia, or the 

tibia’s anterior translation beneath the femur. It does this by progressively tensing during 

extension, peaking during full knee extension (Neumann, 2010). The ACL also opposes 

excessive varus, valgus and axial rotation (Neumann, 2010). The posterior cruciate ligament 

(PCL), reaches from the tibia’s posterior intercondylar region to the anterior part of the medial 

femoral condyle (Moore et al 2014). The primary limiter of posterior tibial translation is the 

PCL. Varus, valgus and axial rotation are also resisted by the PCL, but unlike the ACL, it 

opposes knee flexion (Neumann, 2010). 

The lateral and medial menisci are half-moon-shaped fibrocartilaginous plates on the 

tibia’s articular surfaces. They attach at the tibia’s intercondylar region and blend externally at 

the knee-joint capsule. These provide stability during motion, proprioception, decrease 

compressive stress (Neumann, 2010), and exhibit migratory movement against the tibial plateau 

as contact-points between the femur and the tibia vary during motion (Moore et al 2014). 

 Muscles actively stabilize the knee by doing negative work. Upon joint-movement, for 

example, if the quadriceps contract to extend the knee, a partially stretched muscle or muscle 

group can become greatly stretched which can allow it to absorb a lot of energy (Brandt, 2001). 

The anterior compartment of the thigh contains the primary knee extensors, which are the 
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quadriceps femoris group. This is comprised by rectus femoris, vastus lateralis, intermedius and 

lateralis. Rectus femoris originates at the anterior superior iliac spine, vastus lateralis does so at 

the femur’s greater trochanter and lateral linea aspera, vastus intermedius has a proximal 

attachment at the anterolateral femoral shaft, and vastus medialis originates at the femur’s 

intertrochanteric line and medial edge of the linea aspera. All muscles of quadriceps femoris 

unite to form the quadriceps tendon, and indirectly share a common insertion point on the tibial 

tuberosity by way of the patellar ligament. Fibers of the quadriceps tendon envelope the patella 

(Moore et al 2014).  

 The posterior compartment of the thigh involves the hamstring group which flex the 

knee. These include semimembranosus, semitendinosus and biceps femoris. Each muscle shares 

a common origin at the ischial tuberosity, except the long head of biceps femoris, which 

originates at the femur’s linea aspera and lateral supracondylar line. Semimembranosus inserts 

on the posterior region of the tibial medial condyle. Semitendinosus distally attaches to the 

medial surface of the superior tibia and biceps femoris inserts in the lateral head of the fibula. 

Secondary muscles that aid in knee-flexion include sartorius, gracilis and gastrocnemius (Moore 

et al 2014).  

Sartorius, located in the anterior thigh, synergistically acts to flex the knee. It originates 

at the anterior superior iliac spine and inserts on the superior part of the medial tibia. Gracilis is a 

member of the adductor compartment. It minorly flexes and rotates the flexed knee. Originating 

at the pubic body and inferior ramus, gracilis distally attaches to the superior region of the 

medial tibia (Moore et al 2014). 
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Biomechanics of a normal gait cycle 

To comprehend the pathology of a KOA-affected gait, one must understand the 

composition of a normal gait cycle. A cycle lasts from the time a heel touches the ground, known 

as heel-strike, to the consecutive heel-strike of the same foot. The amount of distance covered in 

one gait cycle is known as a stride (Delisa et al., 2007). The duration of a gait-cycle is known as 

the cycle time. Stance-phase and swing-phase are the two subdivisions of a cycle (Umberger 

2010).  

Stance phase, when a leg is loading or weight-bearing, represents 60 percent of the cycle 

(Umberger 2010). Depending on the moment in stance, an individual may be in double or single-

limb support. Per cycle, there are two periods of double limb support and two of single limb 

support. During double-limb support, both feet are on the ground as the body begins to shift its 

weight to take a forward step. The forward foot has just landed in heel-strike. The other foot in 

preparation to be airborne, has its heel raised so that only the toes contact the ground in a stage 

called toe-off (Whittle, 2008). It is in double-limb support that weight is transferred from lagging 

to leading leg, so that the leading leg assumes the responsibility of load-bearing. Weight is 

released from lagging leg that started the transfer, so that it may leave the ground in a forward 

step. During this period from midstance to terminal stance, the knee requires a stabilizer under 

loading. The quadriceps resist knee flexion collapse beneath weight during single limb support 

(Nordin & Frankel, 2001). In addition to the quadriceps, hip abductors, erector spinae, gluteus 

maximus, anterior tibialis and the hamstrings act to brace the supporting (leading) leg and trunk. 

Muscles balance deceleration and acceleration to defy gravity, which produces ground-clearance 

and forward motion (Delisa, 1998). 
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Deceleration occurs in stance by concurrent interactions of the hip, knee and ankle 

(Delisa, 1998). The hip is flexed at 40 degrees when heel-strike occurs, and the ankle is 

dorsiflexed. For the foot to completely contact the ground in the foot-flat stage, anterior tibialis 

and smaller dorsiflexors must undergo quick eccentric contractions. The quadriceps will also 

eccentrically contract at the same time to minimize knee flexion. The trunk is at its lowest point 

at this moment of the cycle. The hip extends toward the pelvis, which gives the trunk forward 

momentum. Extensors that act on the hip such as gluteus maximus and the hamstring group, 

regulate the trunk’s forward momentum. Toe off occurs to prime the foot to be lifted from its 

contact point. Stance phase ends in single-limb support (Delisa et al 2007).  

The other 40 percent of the gait cycle is non-weight-bearing. Complimentary to the 

deceleration of a leg in stance phase, the opposite leg is in the process of releasing weight or 

commencing swing phase. It is divided into three stages, acceleration, mid-swing and 

deceleration. Forward motion of the swing limb is characteristic of the acceleration period and 

the leading foot exhibits clearance, that is, it does not touch the ground. Plantar flexion of the 

ankle results due to concentric contractions of posterior tibialis, soleus, gastrocnemius and 

plantar flexors such as flexor hallucis longus, flexor digitorum longus and fibularis longus and 

brevis (Malanga & Delisa, 1998). The hip and knee are also flexed, with knee flexion being 

influential to toe clearance. The knee reaches its peak flexion during the beginning of swing 

phase (Whittle, 2008). For a successful clearance, the knee must be flexed to 60 degrees (Piazza 

& Delp, 1996). Towards the end of the phase, the leg in swing decelerates through contraction of 

the hamstrings to begin the gait-cycle anew with another heel strike (Delisa et al 2007).  

Other variables relevant to this study are step-length, stride-length, cadence, speed and 

moments. Step-length is the distance one foot moves forward in front of the other during swing 
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phase. A stride-length consists of two step-lengths by the same foot. The number of steps taken 

per minute is the cadence. Walking speed is the distance the body travels per time. Speed directly 

correlates with two step-lengths, which are based on the duration of swing-phase. If the foot 

doesn’t clear the ground, swing-phase is halted, resulting in a limited step-length that slows 

walking speed (Whittle, 2008).  

 

Osteoarthritis 

 Clinical presentation and classifications 

 Altman et al 1986 defined osteoarthritis (OA) as an amalgam of conditions that result in 

joint signs and symptoms indicative of damaged articular cartilage and alterations in joint-

margins and subsequent bone culminating in pain and disability. Research of progressed OA 

suggests that the already constrained ability for cartilage to self-heal fails due to structure-

mechanical factors, and the work of degradative enzymes that exacerbate cartilaginous 

disintegration, (Myers, 2004) fibrillation—the formation of vertical clefts and loss of surface 

integrity in cartilage (Brandt, 2001) and ulceration that is irreparable (Myers, 2004).  

The disease presents with clinical signs such as a principle symptom of joint pain, 

inflammation and deformity, stiffness of varying severity and muscle weakness. Joint 

inflammation signs involve local erythema, heat, swelling, and diffuse tenderness to palpation 

(Brandt, 2001). OA can be classified clinically, pathologically or radiographically. The reference 

standard has been radiographic (Zhang & Jordan, 2008), with the Kellgren Lawrence scale (KL) 

remaining the accepted model for osteoarthritic radiographic diagnosis and severity grading 

(Braun & Gold, 2012; Kohn et al 2016). The scale consists of 5 radiographic levels: KL grade 0, 

“absent,” in which there are no radiographic features of OA present, KL grade 1, “doubtful,” 
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during which a radiograph shows doubtful joint space narrowing with possible osteophyte 

formation, grade 2, “minimal,” a radiograph that shows possible narrowing of the joint space 

with definite osteophyte formation, grade 3, “moderate,” where a radiograph demonstrates 

definite joint space narrowing, moderate osteophyte formation, some sclerosis, and possible 

deformity of boney ends, and grade 4, “severe,” where severe narrowing of the joint space can be 

appreciated, large osteophytic formation, marked sclerosis and gross deformity of boney ends 

(Brandt, 2001; Kohn et al 2016). 

There are two subdivisions of OA, primary and secondary OA. Subjects from our study 

have primary OA. Primary OA is idiopathic, the etiology of which remains unclear, but is tied to 

genetic factors, ethnicity, biomechanical wear, and age-based physiological changes (Johnson & 

Hunter, 2014). Clinicians recognize three subsets of primary OA presentation: generalized OA, 

primary generalized or nodal OA, and erosive OA (Myers, 2004).  

 

 

Epidemiology and Risk factors 

More than 80% of individuals over 55 years old bear radiographic hallmarks of OA. Of 

that grouping, some will be asymptomatic, with 10-20 percent who present with some level of 

disability (Brandt, 2001). Prevalence estimates are conflicting due to inconsistent diagnoses 

however, several recent epidemiologic studies have provided a window of the frequency of this 

disease. The Framingham study found the prevalence of radiographic KOA in adults ˃45 years 

of age to be 19.2%, while the Johnston County Osteoarthritis Project yielded a prevalence of 

27.8% of participants. Of subjects ˃60 years old, the Third National Health and Nutrition 
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Examination Survey (NHANES) found 37% had KOA (Zhang & Jordan, 2008). What is known 

is that at every joint, OA prevalence rises with age. The strongest risk factor for OA is age.  

Gender is a major risk factor for OA and bears correlations with age and race. Women 

are twice as likely to be affected by OA than men, according to Brandt, 2001. The Fifth Korean 

National Health and Nutrition Examination Survey, which involved 9,512 subjects ≥50 years of 

age, with radiographic KOA defined as KL grade ≥2, found men to have a radiographic KOA 

prevalence of 21.1% (95% CI: 19.6–22.8%), compared to 43.8% in women. Women ˃75 years 

of age are also 30% more likely to have KOA compared to men in the same age range (Brandt, 

2001).  

Obesity is a known risk factor for OA, and particularly KOA. The correlation between 

disease progression and weight was demonstrated by a study that found that women who lost 5 

kg, decreased their risk of new symptomatic KOA development by 50%. Decreased weight-loss 

in the same study, also corresponded with decreased risk of radiographic KOA (Felson et al 

2000).  

 

 

Pathology and Pathogenesis 

It is inaccurate to describe OA as a degenerative disease or progressive wear and tear, 

though it bears degenerative features. An encompassing depiction of OA is as a disease of the 

entire joint, meaning, periarticular musculature, neuromuscular apparatus, synovium, articular 

cartilage, ligaments and subchondral bone with pathologies in each that contribute to 

pathomechanics that result in disability. If one views the synovial joint as an organ, OA is organ 

failure on multiple levels (Brandt, 2001).  
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Though the etiology of OA is thought to be multifactorial, the primary changes of OA 

commence in cartilage (Brandt, 2005). Current findings suggest that the synovial membrane is 

not passive in OA development, but when inflamed, produces a host of proinflammatory 

mediators that contribute to cartilage break-down (Sellam & Berenbaum, 2010). These mediators 

are crucial to the development and progression of OA as they influence signal transduction 

pathways and pathologically alter cell-behavior (Wojdasiewicz et al 2014).  

Synovitis is the inflammation of the synovial membrane seen on ultrasound as membrane 

thickening and / or joint effusion (Pisetsky & McCleane, 2009). Researchers examined a sample 

of 535 patients for a link between KOA-associated knee pain and synovial thickening using MRI 

with contrast. They found that in afflicted knees of moderate pain levels, 80% of patients had 

synovitis (Baker et al 2010).  

To date, OA is not classified as an inflammatory disease due to a presentation with mild 

leukocytosis (<2,000 WBC/microliter) upon synovial fluid examination (Brandt, 2005). 

However, research suggests a strong relationship between inflammatory pathways and altered 

cartilagenous synthesis and catabolism. Ayral and colleagues extrapolated that medial synovitis 

could be predictive of escalated medial cartilage breakdown in KOA. OA affected cartilage 

exhibits highly metabolically active chondrocytes that may contribute to a phase of cartilaginous 

thickening and homeostasis known as Compensated OA. This stage may provide functionality 

for decades, but the cartilage produced in this stasis lacks the structural integrity needed to 

withstand repetitive mechanical forces and will ultimately give under pressure without 

regenerating. What causes the structural aberrations in cartilage is believed to also contribute to a 

decreased synthesis of proteoglycans. The sudden lack of proteoglycan production results in a 
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full-thickness loss of cartilage, or bone on bone, which is a hallmark of end-stage OA (Brandt, 

2005). 

KOA manifests with periarticular muscle dysfunction in the form of weakness, as well as 

decreased strength in other muscle groups of the lower limb (Tan et al 1995), (Hinman et al 

2010). The source of muscle weakness from OA is not fully understood. It is thought that muscle 

disuse atrophy occurs secondary to pain, where KOA indirectly induces atrophy (Slemenda et al 

1997), but research suggests that inability to activate muscles voluntarily, arthrogenic muscular 

inhibition (AMI), may be a direct effect of KOA (Liikavainio et al 2006), (Young, 1993).  

 

 

How KOA causes gait pathology 

Pain due to joint degeneration is one cause of gait pathology due to disability and from 

the compensatory measures it causes (Myers, 2004). Patients with joint pain develop an antalgic 

gait with a limited ROM, slowed stride speed, short steps, and may limp or be unable to bear 

weight. Even in the instance that weight-bearing is tolerated by the patient, joint buckling due to 

pain can alter gait (Salzman, 2010). Patients with KOA have increased stride frequency per 

distance travelled (Mills et al 2013), and deviations in stance-phase knee-flexion (Mandeville et 

al 2009). Other gait changes in KOA patients include a smaller stride and longer lasting stance 

than healthy samples (Baliunas et al 2002); (Kubota et al 2007); (Teixeira & Olney, 1996). 

The importance of gait speed in geriatric assessment, adaptation of rehabilitation goals 

and life-span estimation has garnered it the label, “the 6th vital sign” (Studenski et al 2011). Life-

expectancy and gait speed are linked, with faster gait being indicative of a longer life-span 

(Studenski et al 2011). KOA patients are known to have a diminished gait speed, with speed 
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having a relationship inverse to disease severity (Astephen et al 2008). For KOA subjects, slower 

walking has been implicated to be an accommodation to reduce medial compartment loading and 

its accompanying pain (Robon et al 2000). That pain significantly correlates with increased KL 

scores (Sanghi et al 2011), also supports compensation as a reason for decreased gait speed in 

KOA patients.  

Mündermann et al 2004 found that KOA patients with a KL grade ≤2 exhibited decreased 

maximum knee adduction moments compared to asymptomatic controls or severe KOA KL 

grade ≥3 patients of similar age and sex distributions. A KOA subject’s slow gait may be the 

product of compensation through a need to reduce adduction moments during walking, to 

accommodate for painful load-bearing. Low adduction moments may result in slower disease 

progression (Miyazaki et al 2002). 

KOA modifies gait by causing changes in moments and ROM during dynamic motion 

(Perry, 1995). In KOA, knee ROM deviates during dynamic movements (Perry, 1995). Kaufman 

et al. 2001, found significant compensatory reductions of internal knee extensor moments in 

KOA subjects. Female subjects had significantly larger knee extensor moments and greater knee 

flexion. Non-KOA subjects did not exhibit these osteokinematic changes in ROM. 

Joint alignment is another component of gait altered by KOA involvement. In stance, 

medial compartment-based KOA causes the knee to lean medially and displaces the foot, which 

results in increased load on the medial tibial plateau (Perry, 1995). Increased load on the medial 

side of the tibia corresponds with a decrease in medial compartment space (Gudbergsen et al 

2013). To accommodate for the deviated foot, the hip abducts, which moves the trunk laterally. 

Eventually, the knee adducts in excess, into varus (Perry, 1995). An alignment more than 5-

degrees valgus or varus is associated with greater loss of function (Sharma et al 2001). In stance, 
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varus becomes more pronounced and in swing phase it is less severe (Chang et al 2004). Varus 

and valgus deviations are known factors contributing to compressive load, with varus affecting 

particularly the medial compartment (Sharma et al 2001).  

Muscle fatigue causes changes in proprioception at the level of the joint, compounding 

balance impairments and increasing chance of injury (Miller & Bird, 1976). A statistically 

significant correlation between muscle fatigue and pain was shown in KOA patients, with 

subjects that had higher pain scores having lower voluntary quadriceps strength (Orielly et al 

1998). Given that KOA causes gait changes in balance, energy metabolism and joint 

somatosensation, successful KOA intervention therapy must include strengthening of affected 

muscle groups (Minor, 1994). 

 

 

Therapy 

Because there is no cure for OA, comprehension of available therapeutics is necessary. 

Treatments span a range from mild to invasive, including patient education and psychologic 

support via regular phone-calls from nursing staff, to exercise and stretching regimens, a cane or 

other means of ambulatory support, resting-splints, non-narcotics, analgesics, anti-inflammatory 

agents, intra-articular corticosteroid injections, biologics, joint-aspiration for pressure relief and 

in severe cases, joint arthroplasty (Myers, 2016; Mathiessen & Conaghan, 2017). 

Clinicians aim to control OA symptoms, the cardinal symptom being pain, through 

pharmacological intervention. The depth of medicinal and invasive treatments applicable to OA 

symptom-management is beyond the scope of this paper. Occasionally, exercise therapy is 

prescribed to help manage pain from OA (Brandt, 2001), (Hunter et al 2008). Our research 
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involving stretching and passive ROM falls into the category of non-medicinal or exercise 

therapy for KOA.  

There are many randomized controlled trials that lend support to exercise being a 

beneficial therapy for KOA, with results ranging from increases in muscle strength, to pain 

diminishment, increased ROM, balance and decreased disability (Bennell et al 2010; 

Chamberlain et al 1982; Deyle et al 2005; Fisher et al 1991; Fisher et al 1993; Lun et al 2015; 

Minor, 1994; Penninx et al 2001; Røgind et al 1998). Minor, 1994 recommends that the 

outcomes of an exercise program targeted to an OA patient should include impairment reduction 

such as a decrease in joint-pain and improved joint ROM and strength, as well as enhanced 

functionality in the form of gait normalization and normal activities. Any prescribed exercise 

program should protect the affected joint from further breakdown through attenuation of joint 

forces, limited joint stress and corrected biomechanics. Therapy should be structured so that the 

general conditioning can be maintained by patients throughout daily life as a protection against 

secondary illness and worsening KOA progression due to sedentary life-style. A common 

finding in KOA patients is that the disease affects motion in all joints of the lower limb, so that 

the hip, knee and ankle experience a decrease in ROM. Because of this, an exercise approach 

that addresses ROM, such as the protocol our study was based on, is often indicated for 

individuals with KOA. 

Evidence exists that exercise may improve KOA patient inflammatory cytokine levels. 

Zhang et al 2013 performed a 4-week intervention with a frequency of 4 days a week, twice-

daily. The post-therapy synovial fluid analysis yielded significantly lower TNFα and CRP levels 

in both groups compared to baseline results, suggesting that lower inflammatory mediator levels 

were not simply due to the administration of diclofenac. The therapy group had significantly 
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lower TNFα and CRP values compared to those of the control group, indicating that exercise 

may have a positive therapeutic effect on inflammation mediation.  

Exercise has other benefits for KOA patient health. Penninx et al 2001 provided data that 

support that aerobic or resistance exercise can protect functionality and decrease pain during 

activities of daily living in elderly populations. Daily life activities were defined as independent 

bed to chair transfers, eating, dressing, using the toilet, or bathing. Patients were ≥60 years of age 

with radiographic KOA, KL-grade unspecified, who reported knee pain most days of the month 

and did not exercise more than once a week for greater than twenty minutes. Participants from 

either program had a 0.57 times decreased risk of developing disability and had a significantly 

higher probability of remaining disability-free for 18 months compared to controls. In separate 

analyses on disability incidence in individual items of daily activity, exercise was a significant 

protection against acquiring disability in 4 out of 5 of the defined activities. Both exercise groups 

also reported decreased knee pain. In other studies, exercise has shown to not only to maintain, 

but increase functionality.  

Common areas of improved functionality among KOA patients who participate in 

exercise programs are in muscle strengthening, enhanced endurance, increased gait-speed and 

pain diminishment (Jansen et al 2011). An intervention done by Røgind et al 1998, showed 

functional improvement in KOA-based pain and gait-speed. Bilateral KOA patients who had a 

KL grade of 2-3 underwent biweekly training for 3 months. The intervention consisted of 

mobility training, venous therapy, lower extremity and truncal muscle strengthening, and 

flexibility and coordination conditioning. Therapy included physical therapist-guided repetitive 

exercises for quadriceps, hip adductors, hip abductors, hamstrings, gluteus maximus muscles, 

erector spinae muscles, and abdominal muscles. Flexibility was addressed through stretching of 
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the calf muscles, quadriceps, hamstrings, gluteus maximus, lower back muscles and pectoralis 

major, with a focus on hip adductors. The combination of exercise and stretching improved 

isokinetic and isometric muscle strength, with a 20% increase in quadriceps strength. The 

intervention also increased walking speed by 13%, decreased overall pain, weight-bearing pain, 

and pain at rest scores, and decreased crepitus frequency on the least effected side (Røgind et al 

1998).  

Exercise has benefits in addition to improved functional capacity in KOA patients. 

Research consistently shows that physical fitness training also can reduce KOA-associated knee 

pain (Baker et al 2001; Bautch et al 1997; Ettinger et al 1997; Fransen et al 2001; Hopman-rock 

&Westhoff, 2000; Kovar et al 1992; O’Reilly et al 1999; Penninx et al 2001; Petrella & Bartha, 

2000; Quilty et al 2003; Røgind et al 1998; Schilke et al 1996; van Baar et al 1998). A study 

comparing two groups of KOA subjects who underwent a hip or knee muscle strengthening 

regimen showed decreased WOMAC and KOOS pain scores of statistic and clinical significance 

after finishing their exercise therapy (Lun et al 2015). A trial that examined the correlation 

between hip abduction strengthening exercises and pain, implemented six side-lying and 

standing standardized exercises to strengthen hip abductors and adductors in three sets of 10 

repetitions, supplemented with ankle weights or therapy-bands. With increased hip abduction 

strength, pain and functionality were significantly improved. Eighty percent of the strengthening 

group had more functionality during walking and less pain compared to sixteen percent of the 

control group (Bennell et al 2010). Though exercise alone increases functionality, exercise 

combined with passive ROM manipulation appears to best benefit patient pain levels (Jansen et 

al 2011).  
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A review of 12 trials compared the results of strength training alone, exercise therapy 

alone (meaning a combination of aerobics, strength training and active ROM), and exercise with 

passive ROM to non-active controls and found the greatest sized effect for pain-relief was 

through programs that combined exercise with passive ROM. Trials that used this combination 

yielded an effect size of 0.69 (95% CI 0.42 to 0.96) on pain, compared to exercise alone which 

had an effect size of 0.49 (95% CI 0.19 to 0.49) and strength training that gave an effect size of 

0.38 (95% CI 0.23 to 0.54) (Jansen, 2011). A combination approach is further supported by 

results from the Osteoarthritis Research Society International (OARSI). OARSI reviewed a 

series of expert guidelines based on evidence and found that 21/21 published guidelines 

recommended that KOA patients maintain a combined exercise program of aerobic walking, 

quadriceps strengthening and passive ROM, with pooled effect sizes for pain relief in the 

moderate range (Zhang et al 2008).  

In further support for combined modalities, Falconer et al 1992 ran a study that compared 

a control group who received sham ultrasound treatments and exercise therapy with a group of 

KOA patients treated with ultrasound and underwent exercise intervention. Patient inclusion 

criteria was a KOA diagnosis with the presence of knee pain, crepitus, a limitation of at least 

10˚passive flexion and extension, boney enlargement and chronic knee motion limitation for at 

least 6 months. Radiography in most cases documented joint-space narrowing and osteophyte 

presence, indicative of moderate levels of KOA for the majority. TKA subjects were included 

provided they were 6-months post-operation. Exercise was performed in a physical therapy clinic 

and consisted of 30 minutes of passive stretching, broken into 5-15-minute bouts of stretching 

and cool-down periods, along with anterior-posterior and posterior-anterior grade 3 and 4 manual 

mobilization tibiofemoral glides. Passive ROM exercises of knee flexion and extension, and 
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isometric strengthening followed glides. Other full ROM performed included quad sets, knee to 

chest, straight-leg raises and bridging. Exercises were done in repetitions of 10, with 5-second 

holds per repetition and 5-second rests between. The frequency of the intervention was 12 

treatments, 2-3 times per week, for a duration of 4-6 weeks. Seventy seven percent of subjects 

increased their active knee ROM, 71% had decreased knee pain and 72% showed a rise in gait 

velocity. Ultrasound was found to have no impact on mobility enhancement, which bolstered 

support for stretching and ROM as effective treatment for increasing functionality in KOA 

patients.  

Our intervention protocol was based off work by Deyle et al 2005. They compared the 

effects of passive ROM, active ROM, stretching and strengthening exercises on a clinic 

treatment group of KOA patients and a home treatment group of KOA patients. The results of 

their study support a combination of ROM and stretching as a beneficial treatment for KOA pain, 

stiffness and overall functionality. Subjects had varying levels of disease with 3% KL=0, 24% 

KL=1, 41% KL=2, 19% KL=3 and 12% KL=4.  

Participants in the clinic group attended 8 sessions at the physical therapy clinic where 

they received passive joint mobilization in addition to, and sometimes during their passive ROM 

exercises (Deyle et al 2005). Passive joint mobilization was performed in the Maitland 

mobilization technique, a treatment that is based on oscillation intensity (Moon et al 2015). 

Passive ROM included knee extension alone, knee extension with varus and knee extension with 

valgus, and knee flexion alone and knee flexion with internal rotation. Manual stretching of 

quadriceps femoris, the hamstrings, gastrocnemius, knee adductors, iliopsoas, tensor fasciae latae 

and the iliotibial band were completed to muscle end-length. They also performed a series of 

strengthening exercises and active ROM. Strengthening exercises included daily statis quad sets 
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in knee extension, standing terminal knee extension performed 3 times a week, closed chain 

progression from least to most difficult performed 3 times a week, seated leg presses weight-

lessened partial squats, and step ups. Stretching exercises included the standing calf stretch, 

supine hamstring stretch, and prone quadriceps femoris stretch. Active ROM exercises involved 

positioning the knee in mid-flexion to full-extension and placing the knee in mid-flexion to full-

flexion. Subjects were advised to continue riding a stationary bike if it was part of their routine 

prior to the study. The clinic group’s exercise supervision consisted of 1 exercise instruction 

lesson and 7 supervised exercise appointments (Deyle et al 2005). 

The home exercise group did not receive passive ROM or Maitland mobilization. They 

completed the same series of stretches, strengthening exercises, and active ROM exercises and 

were also encouraged to maintain riding a stationary bike if it was part of their own exercise 

routine prior to participation in the study. Two instruction sessions were provided for them and 

they had no exercise supervision (Deyle et al 2005).  

Both groups exhibited 6-minute-walk test distance improvements averaging 10% at 4-

weeks, without major changes between 4-8 weeks. In comparison, though both groups had 

improved baseline and 4-week-mark average WOMAC scores, the clinic treatment benefited 

twice the amount that the home exercise group did. The clinic group’s average WOMAC score 

improved by 52% compared to the home exercise group who yielded an average improvement of 

26 percent. Between 4-8 weeks, neither group experienced a significant change in WOMAC 

scores. Both 6-minute walk test distances and WOMAC scores remained significantly improved 

at the 1-year follow-up for both groups. The clinic group’s average 1-year WOMAC scores were 

32% improved versus a 28% improvement in the WOMAC scores of the home exercise group. 

Also at the 1-year-mark, patients were queried about whether they were medicating their KOA. 
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Forty-eight percent of the participants from the clinic group were taking medicine for their KOA 

compared to 68% of the home exercise group. Questionnaire results showed that the clinic group 

was more satisfied with overall results of the intervention (Deyle et al 2005).  

A key difference between the therapies trialed by both groups is that the home exercise 

program did not include passive ROM, passive manual stretching or Maitland mobilization. That 

both groups positively responded to either exercise therapy program in improved WOMAC 

values and walking trials, strengthens the existing trend that exercise is beneficial to KOA pain, 

stiffness and functionality. The study also provided data that suggest that at least a year-long 

lasting improvement in symptoms may be another benefit of exercise therapy. That the clinic 

group’s WOMAC values and 6-minute walking trial distance measurements showed greater 

improvement compared to those from the home exercise group, supports the argument that an 

intervention involving supervised passive ROM, stretching and mobilization is more efficient 

than a home exercise program of 8-weeks duration. 
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II. MATERIALS AND METHODS 

Subjects 

Nine subjects were recruited from the Fels Longitudinal Study (Sherwood & Duran, 

2014) and a nearby orthopedic surgery clinic. All reviewed experimental protocol prior to 

consent and provided informed consent prior to participation. Prior to signing consent forms, two 

subjects declined to participate in the study, leaving 7 subjects who completed the intervention. 

Subjects were included if they were diagnosed with unilateral radiographic KOA, staged 

mid/early with a KL grade of 2-3, ≥45 years of age and ineligible for TKA intervention. 

Exclusion criteria included: diagnosis of OA in the spine, hip, foot or ankle, previous lower 

extremity joint surgical replacement or intervention less than 6 months prior to testing, skeletal 

or soft-tissue damage to the trunk, pelvis, spine or lower extremity, inserts, orthotics or gait-

associated diseases. The Wright State University Institutional Review Board approved this study 

prior to subject recruitment or data collection.  

 

Data collection and Instrumentation 

 Per Lohmann et al 1988, anthropometric data were gathered, including: weight to the 

nearest 0.1 kg using a digital scale, height to 0.1 cm via stadiometer and sitting height to the 

nearest 0.1 cm via stadiometer and chair. Sitting height values subtracted from height were used 

to define subischial limb length. Biomechanical data were gathered in the Wright State 

University three-dimensional motion analysis lab located at the Lifespan Health and Research 

Center (LHRC), and in the Wright State University department of Kinesiology and Health. The 

3-D motion analysis system involves 6 high-speed Osprey cameras (Motion Analysis Corp., 
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Santa Rosa, CA), which record data across a 15-meter walkway. To visualize sample data that 

were obtained from a gait analysis trial, please refer to figure 1. 

 The Helen Hayes set of retroreflective markers (Kadaba et al 1990), were used. Twenty-

five retroreflective markers were placed on major joints and body segments by the same 

investigator bilaterally including: the mid-acromion process, the lateral epicondyles of the 

humerus, the middle of the wrist, left anterior superior iliac spine (ASIS) and right ASIS, lateral 

and medial femoral epicondyles, mid-shaft of the tibia, lateral and medial malleoli, heel, the head 

of the second metatarsal, and unilaterally on the sacrum (at the level of S1 on the sagittal 

midline). A static body position capture determined joint center location. All markers were used 

during static trials, while the medial femoral epicondyle and medial malleolus markers were 

removed before commencing dynamic walking trials. Data were discarded in the event of poor 

marker recognition. Kinematic data were obtained by Cortex 7.0 software’s 3-dimensional 

system (Motion analysis Corp., Santa Rosa, CA), and processed by MacGait 1.0 (Motion 

analysis Corp., Santa Rosa, CA). Kinematic conventional directions were designated as the 

following: flexion was positive, extension past neutral was expressed as negative, adduction was 

positive and abduction was negative. 
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Figure 1. 

 

The Helen Hayes set of retroreflective markers (Kadaba et al 1990) are visible in this image. The 

arrows represent GRF vectors. The subject is in double-limbed support in stance phase. Weight 

is being transferred from the lagging limb that is in toe-off to the leading limb as the forward 

step is imminent. Stance phase tends to last longer in KOA patients (Baliunas et al 2002); 

(Kubota et al 2007); (Teixeira & Olney, 1996), with knee flexion in this phase commonly being 

altered (Mandeville et al 2009). 
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Procedure 

Intervention 

 Exercises were done twice a week for four weeks consistent with previously established 

frequency from protocol by Deyle et al 2005. Each session was an hour long. To ensure a 

consistent and complete stretch of anterior and posterior thigh muscles, Ely’s test, Ober’s test 

and SRL were administered to measure baseline muscle length. This baseline was used to 

confirm the patient is accessing the full stretch available (Gajdosik et al 1993).  

Passive ROM exercises and active stretching were performed by a trained pre-physical 

therapy student on the affected and unaffected knee. To address muscle tightness, the prone 

quadriceps stretch and supine hamstring stretch were performed for a 30-second duration and 

frequency of 3 repetitions. The standing calf stretch also had a 30-second duration but was 

repeated 6 times. Passive ROM exercises included 6 repetitions of knee-extension with varus, 6 

of knee-extension with valgus, and 6 flexions of the knee, each in 30-second durations.  

An EZ Read Jamar® goniometer was used to gather flexion and extension ROM data. 

The goniometer’s pivot was held at the lateral epicondyle of the femur with its proximal arm at 

the midline of the femur. The greater trochanter was used for orientation to approximate this 

midline. The distal arm was placed along the fibular midline, with the fibular head and lateral 

malleolus acting as reference points. The student applied the goniometer and read measurements, 

while Dr. Froehle recorded goniometer values and positioned limb segments appropriately. 

Flexion and extension measurements were taken with the subject prone, on both affected and 

unaffected knees, with patellas at the edge of the treatment table. 
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Walking Trials 

Subjects initially rated their pain at rest using the Wong-Baker scale (“Wong Baker 

FACES foundation,” n.d.)., then completed five walking trials. During walking trials, they were 

instructed to walk across a 15-meter walkway. They rated their pain after the fifth trial and again 

after the final appointment. Walking trials were self-paced to the speed most comfortable for the 

subject. To protect against falls, subjects were provided access to a harness and advised that they 

could stop walking trials at any time. Standard gait analysis was used to gather data of gait 

alterations before and after intervention. 

 

Statistical analysis 

 The statistical analysis tests used to compare baseline (BL) variables to follow up (FU) 

values included one-tailed paired t-tests, Hedge’s g, and common language effect size (CLES). 

Hedge’s g also known as the corrected effect size, uses pooled weighted standard deviations to 

measure effect size and correct for bias in small sample populations. It is an appropriate indicator 

of effect-size for sample sizes less than 20, such as our cohort of seven subjects (Lakens, 2013). 

Statistical significance was set at α=0.10 because of the limited statistical power of this small 

sample. For the same reason, we did not correct the p-value threshold for multiple comparisons. 
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III. RESULTS 

Participant anthropometric measures (height and weight), BMI, KL grades, OA affected knee 

and sex are listed in table 1. Statistical analysis was done for the affected knee only. Of the 21 

variables tested, the 6 highlighted in green in table 2 were effects of interest and changed 

significantly: walking speed, stride-length, cadence, peak knee flexion in stance, peak knee 

flexion in swing and knee flexion/extension (KFE) ROM in swing. Effects of interest are 

summarized in figures 2-7. The other variables did not change. Results for all the variables are 

summarized in table 2.  

 

Sagittal plane kinematics  

The baseline mean peak knee flexion in stance was 45.5° ± 6.4. The follow up mean peak 

knee flexion in stance was 50.0° ± 5.7. The p-value was 0.08. The Hedge’s g value was 0.69. 

The CLES value was 0.73. 

The baseline mean peak knee extension in swing was 5.5° ± 5.0. The follow up mean 

peak knee extension in swing was 6.6° ± 3.1. The p-value was 0.73. The Hedge’s g value was 

0.25. The CLES value was 0.60. 

The baseline mean peak knee flexion in swing was 60.5° ± 4.5. The follow up mean peak 

knee flexion in swing was 63.7° ± 6.3. The p-value was 0.06. The Hedge’s g value was 0.55. The 

CLES value was 0.76. 
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The baseline mean KFE ROM in stance was 37.5° ± 7.2. The follow up mean KFE ROM 

in stance was 40.0° ± 3.8. The p-value was 0.13. The Hedge’s g value was 0.44. The CLES value 

was 0.68. 

The baseline mean KFE ROM in swing was 55.1° ± 6.0. The follow up mean KFE ROM 

in swing was 57.1° ± 5.6. The p-value was 0.03. The Hedge’s g value was 0.32. The CLES value 

was 0.80.  

 

 

 

Frontal plane knee and hip kinematics  

The baseline mean peak knee abduction in stance was -0.3° ± 4.1. The follow up mean 

peak knee abduction in stance was 0.9° ± 3.8. The p-value was 0.15. The Hedge’s g value was 

0.28. The CLES value was 0.58.  

The baseline mean peak knee adduction in stance was 8.4° ± 5.7. The follow up mean 

peak knee adduction in stance was 8.3° ± 5.7. The p-value was 0.48. The Hedge’s g value was 

0.02. The Hedge’s g value was 0.02. The CLES value was 0.51.  

The baseline mean knee abduction and adduction ROM in stance was 8.7° ± 3.7. The 

follow up mean knee abduction and adduction ROM in stance was 7.4° ± 6.2. The p-value was 

0.30. The Hedge’s g value was 0.23. The CLES value was 0.58.  

The baseline mean peak knee abduction in swing was 0.8° ± 3.2. The follow up mean 

peak knee abduction in swing was 1.0° ± 3.7. The p-value was 0.41. The Hedge’s g value was 

0.05. The CLES value was 0.52.  
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The baseline mean peak knee adduction in swing was 9.5° ± 7.1. The follow up mean 

peak knee adduction in swing was 8.7° ± 4.7. The p-value was 0.40. The Hedge’s g value was 

0.12. The CLES value was 0.54.  

The baseline mean knee abduction and adduction ROM in swing was 8.7° ± 4.6. The 

follow up mean knee abduction and adduction ROM in swing was 7.7° ± 4.8. The p-value was 

0.36. The Hedge’s g value was 0.20. The CLES value was 0.57. 

The baseline mean peak hip abduction in stance was -5.3° ± 6.0. The follow up mean 

peak hip abduction in stance was -5.6° ± 4.8. The p-value was 0.57. The Hedge’s g value was 

0.05. The CLES value was 0.53. 

The baseline mean peak hip abduction in swing was -7.2° ± 5.0. The follow up mean 

peak hip abduction in swing was -6.6° ± 5.4. The p-value was 0.38. The Hedge’s g value was 

0.11. The CLES value was 0.55.  

The baseline mean peak knee varus ω was 43.0°/s ± 24.6. The follow up mean peak knee 

varus ω was 49.5°/s ± 32.5. The p-value was 0.59. The Hedge’s g value was 0.21. The CLES 

value was 0.61. 

 

Spatiotemporal variables  

Subjects had a baseline mean walking speed of 91.3 cm/s ± 20.8, and a follow up mean of 

107.4 cm/s ± 11.4. The p-value was 0.07. The Hedge’s g value was 0.89 and the CLES value was 

0.76.  

The baseline stride length mean was 114.7 cm ± 16.5. The follow up stride length mean 

was 120.4 cm ± 12.8. The p-value was 0.08. The Hedge’s g value was 0.36. The CLES value 

was 0.76.  
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The baseline mean cadence of 96.0 steps/min., ± 17.7. Their follow up mean cadence was 

107.5 steps/min ± 8.0. The p-value for cadence was 0.09. The Hedge’s g value was 0.77. The 

CLES value was 0.73.  

The baseline mean step width was 10.8 cm ± 3.0. The follow up mean step width 

measured 11.3 cm ± 3.9. The p-value was 0.63. The Hedge’s g value was 0.13. The CLES value 

was 0.54.  

The baseline single support duration mean was 36.4 %GC ± 2.6. The follow up single 

support duration mean was 36.4 %GC ± 3.5. The p-value was 0.4. The Hedge’s g value was 

0.00. The CLES value was 0.50. 

The baseline stance phase duration mean was 63.3 %GC ± 3.4. The follow up stance 

phase duration mean was 61.2 %GC ± 7.9. The p-value was 0.28. The Hedge’s g value was 0.31. 

The CLES value was 0.60.  

 

Pain scores 

With a p-value of 0.31, pain scores did not change significantly.  Six out of seven 

subjects reported unchanged or lower pain at follow up. One subject reported higher pain at 

follow up compared to baseline. The median 5th trial pain score at baseline was 1, while the 

median 5th trial pain score at follow up was 0. Results for pain scores are summarized in table 3. 

Table 1. 

ID 
Affected Side Left 

(L), Right (R) 

KL 

Grade 
Sex 

Height 

(cm) 

Weight 

(Kg) 

BMI 

(kg/m2) 

CLN00001 L 2 F 162.4 97.0 36.8 

CLN00003 R 3 F 165.6 109.7 40.0 

CLN00004 L 2 F 173.2 80.8 26.9 

CLN00005 R 2 M 163.5 79.3 29.7 



33 
 

CLN00006 L 2 F 152.0 71.8 31.1 

CLN00007 L 3 F 168.0 90.7 32.1 

CLN00009 L 2 F 164.0 90.0 33.5 

Table 1. Participant anthropometric data, BMI, KL grades, OA affected knee and sex. 

Table 2. 

AFFECTED KNEE ONLY 

Variable 
BL FU T-test 

hypothesis 
P** g*** CLES**** 

mean ± sd mean ± sd 

Walking speed (cm/s) 91.3 ± 20.8 107.4 ± 11.4 FU > BL 0.07 0.89 0.76 

Stride length (cm) 114.7 ± 16.5 120.4 ± 12.8 FU > BL 0.08 0.36 0.73 

Cadence (steps/min) 96.0 ± 17.7 107.5 ± 8.0 FU > BL 0.09 0.77 0.73 

Step width (cm) 10.8 ± 3.0 11.3 ± 3.9 FU < BL 0.63 0.13 0.54 

Single support duration (%GC) 36.4 ± 2.6 36.4 ± 3.5 FU < BL 0.49 0.00 0.50 

Stance phase duration (%GC) 63.3 ± 3.4 61.2 ± 7.9 FU < BL 0.28 0.31 0.60 

Peak knee extension in stance (°)* 8.1 ± 4.2 9.9 ± 3.9 FU < BL 0.85 0.42 0.66 

Peak knee flexion in stance (°) 45.5 ± 6.4 50.0 ± 5.7 FU > BL 0.08 0.69 0.73 

KFE ROM in stance (°) 37.4 ± 7.2 40.0 ± 3.8 FU > BL 0.13 0.44 0.68 

Peak knee extension in swing (°) 5.5 ± 5.0 6.6 ± 3.1 FU < BL 0.73 0.25 0.60 

Peak knee flexion in swing (°) 60.5 ± 4.5 63.7 ± 6.3 FU > BL 0.06 0.55 0.76 

KFE ROM in swing (°) 55.1 ± 6.0 57.1 ± 5.6 FU > BL 0.03 0.32 0.80 

Peak knee abduction in stance (°) -0.3 ± 4.1 0.9 ± 3.8 FU > BL 0.15 0.28 0.68 

Peak knee adduction in stance (°) 8.4 ± 5.7 8.3 ± 5.7 FU < BL 0.48 0.02 0.51 

KAbAd ROM in stance (°) 8.7 ± 3.7 7.4 ± 6.2 FU < BL 0.30 0.23 0.58 

Peak knee abduction in swing (°) 0.8 ± 3.2 1.0 ± 3.7 FU > BL 0.41 0.05 0.52 

Peak knee adduction in swing (°) 9.5 ± 7.1 8.7 ± 4.7 FU < BL 0.40 0.12 0.54 

KAbAd ROM in swing (°) 8.7 ± 4.6 7.7 ± 4.8 FU < BL 0.36 0.20 0.57 

Peak hip abduction in stance (°) -5.3 ± 6.0 -5.6 ± 4.8 FU > BL 0.57 0.05 0.53 

Peak hip abduction in swing (°) -7.2 ± 5.0 -6.6 ± 5.4 FU > BL 0.38 0.11 0.55 

Peak knee varus ω (°/s) 43.0 ± 24.6 49.5 ± 32.5 FU < BL 0.59 0.21 0.61 

*Kinematic directional conventions are as follows: flexion: +; extension: −; adduction: +; abduction: −. 

**One-tailed paired t-tests. 

***Hedge's g, a measure of effect size for paired samples of continuous data. 
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****Common language effect size (probability of superiority/inferiority). 

 

Table 2.  Statistics results for all variables measured. 
 
 

Table 3. 

 

Subject Pre 5th trial Post  Pre 5th trial Post 

CLN00001 0 0 3  0 0 0 

CLN00002        

CLN00003 0 1 1  0 1 2 

CLN00004 3 4 4  2 0 0 

CLN00005 0 0 0  0 0 0 

CLN00006 0 0 0  0 0 0 

CLN00007 4 2 2  0 0 0 

CLN00008        

CLN00009 1 2 2.5  2 3 4 

 

Table 3. Pain scores taken pre-intervention (pre), at the 5th trial, and post-intervention 

 
 

Figure 2. 

  

Each categorical bar represents the mean walking speed at baseline and follow up.  Categories 

are measured in standard error bars. 
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Figure 3. 

 

Each categorical bar represents the mean stride length at baseline and follow up.  Categories 

are measured in standard error bars. 

 

 

Figure 4. 
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Each categorical bar represents the mean cadence at baseline and follow up.  Categories are 

measured in standard error bars. 

 

Figure 5. 

 

Each categorical bar represents the mean peak knee flexion in stance phase during baseline and 

follow up.  Categories are measured in standard error bars. 

 

 

 

Figure 6. 
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Each categorical bar represents the mean peak knee flexion in swing phase.  Categories are 

measured in standard error bars. 

 

 

Figure 7. 

 

Each categorical bar represents the mean KFE ROM in swing phase.  Categories are measured 

in standard error bars. 
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IV. DISCUSSION 

The aim of this study was to examine how passive ROM and stretching affected early to 

mid-staged KOA patient gaits in terms of ROM and pain. Many studies have produced data on 

the advantages of exercise, particularly combined treatment modalities as therapeutic for non-

surgical KOA subjects, with evidence of benefits in gait-speed increases, greater functionality 

and diminished pain. Our data supported the hypothesis that a combination of passive ROM and 

stretching would result in increased ROM and benefit patient gait. The intervention’s pain results 

suggest that it was gentle enough to be tolerated as pain scores did not worsen by follow up, but 

did not support our second hypothesis that pain would be significantly decreased following 

therapy. The results of our research also supported past findings regarding knee ROM and 

improved gait from other exercise-based interventions.  

Through all the spatiotemporal components used to classify gait, walking speed may be 

the strongest assessment of gait capacity (Neumann, 2010). KOA is known to slow gait (Ouellet 

& Moffet, 2002). Slow walking has many adverse general health-effects. While it may be a gait 

accommodation in KOA subjects, decreased walking speed may also act as a feed-back loop to 

complicate the disease by causing further deconditioning. A low gait speed reflects excess 

energy utilization in cardiopulmonary, circulatory and musculoskeletal systems, making it a 

clinical marker of multi-systemic damage. Decreased mobility due to low gait-speed can 

compound this energy loss by deconditioning multiple systems (Studenski et al 2011). Research 

of geriatric patients showed that a walking speed of ≤0.8 m/s doubled the diagnostic likelihood 

of qualifying as frail. Frailty is the collective term for a syndrome involving many adverse 

effects including but not limited to: a destabilized homeostatic reserve, increased vulnerability, 

muscle wasting, fall-risk, and likelihood of death (Castell et al 2013).   
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Studenski et al provided evidence of that a slow gait speed corresponds to diminished 

longevity. Statistical comparisons showed that patients who had a gait of ≥1.0 m/s lived longer 

than expected, compared to predicted longevity based solely on age or sex. C-statistics for gait-

speed, age and sex had a greater five-year survival predictability than those for chronic disease, 

age and sex in 4 out of 9 studies. Cesari et al also produced data supporting a cut-off point gait 

speed of ˂1.0 m/s as an indicator of high-risk health outcomes. Harmful prognostic outcomes 

associated with this gait speed included persistent severe lower extremity limitation, meaning 

two self-reports of difficulty or inability to walk a quarter of a mile or climb 10 steps without 

resting, (rate ratio 2.20, 95% confidence interval), hospitalization (rate ratio 1.48, 95% 

confidence interval), and death (rate ratio 1.64, 95% confidence interval.). The health 

consequences of slow gait may increase morbidity for KOA patients (Felson, 2009).   

A common area of improved functionality among KOA patients who participate in 

exercise programs is increased gait speed (Jansen et al 2011). Our results of improved gait speed 

are consistent with those from other studies. For example, a combination of exercise and 

stretching in a study by Røgind et al 1998, resulted in increased walking speed by 13% in KOA 

subjects, and a program of stretching and passive ROM by Falconer et al 1992 found that 72% of 

KOA patients showed a rise in gait velocity. Subjects from our study started the intervention 

with a baseline mean walking speed of 91.3 ± 20.8 cm/s and at follow up, had a mean walking 

speed of 107.4 ± 11.4 cm/s. The high CLES value (0.76) and the low p-value (p=0.07) associated 

with this change suggest that the intervention had a strong effect on gait speed in subjects. The 

high Hedge’s g value (0.89) is further support of the large effect size.  

Aside from speed deficits, cadence, and stride length deficits are also significantly 

affected in KOA gait pathology (Ouellet & Moffet 2002). These variables should directly affect 
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each-other, i.e. the greater the stride length and cadence, the greater the speed (Whittle, 2008). 

This relationship was consistent with the results of our study, with moderate to large increases in 

stride length and cadence corresponding with increased gait speed. Patient baseline mean stride 

length was 114.7 ± 16.5 cm, and increased to 120.4 ± 12.8 cm. This increase was significant 

(p=0.08), CLES = 0.73, g = 0.36. Their cadence began at a baseline mean of 96.0 ± 17.7 

steps/min and rose to 107.5 ± 8.0 steps/min at follow up, with a significance of (p=0.09), CLES= 

0.73, g=0.77. Gait speed, cadence and stride-length increases all suggest increased knee 

flexibility. 

Other exercise-based interventions have yielded similar results of increased knee 

mobility, decreased stiffness and greater knee ROM. In past exercise-therapy studies, post-

intervention KOA subjects expressed greater knee flexibility in functional improvements such as 

gait-speed increases, increased distance covered during walking trials, and decreased time 

required to ascend stairs (Schilke et al 1996; Røgind et al 1998; Petrella & Bartha, 2000; Deyle 

et al 2005). If knee flexibility increased in our subjects, it should be supported by results of 

greater overall ROM and increased knee flexion during the swing phase and stance phase of the 

gait cycle.  

Our findings are that KFE-ROM during swing and peak knee flexion during swing both 

increased significantly, indicating increased knee flexibility post-intervention. Baseline mean 

KFE-ROM in swing for subjects was 55.1 ± 6.0˚ and increased to a follow up mean of 57.1 ± 

5.6˚, (p=0.03), CLES=0.80, g=0.32. Peak knee flexion during swing changed from a baseline 

mean of 60.5 ± 4.5˚ versus a follow up mean of 63.7 ± 6.3˚, (p=0.06), CLES=0.76, g=0.55. The 

pivotal moment during swing that allows for ambulation and forward motion is ground-

clearance, which in normal motion, relies heavily on knee flexion. An increase in KFE-ROM 
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during swing and a greater peak knee flexion during swing, implies that subjects have improved 

ground clearance. Their flexion and ROM for the swing limb is greater. Improved clearance is 

dependent in part, on greater knee flexibility. Subject mean peak knee flexion in stance was also 

increased, which lends support to increased knee flexibility.  

Subjects began with a baseline mean peak knee flexion in stance of 45.5 ± 6.4˚ compared 

to a follow up mean of 50.0 ± 5.7˚, (p=0.08), CLES=0.73, g=0.69. Knee flexion occurs at the end 

of stance, where the heel is being raised off the ground towards toe-off, in preparation for the 

ground clearance that will happen during swing (Neumann, 2010). A stance-phase increased 

mean peak knee flexion value at follow up suggests that participants have improved their 

capacity to flex their knees prior to clearance.  

While Deyle et al 2005 used different primary outcome measures that did not include gait 

analysis or goniometry, comparisons for their findings can still be made with our study. Both 

exercise groups from the Deyle et al 2005 study experienced a 10% increase in walking distance 

during their 6-minute walking test, from baseline to follow up. They increased the amount of 

distance they were able to cover over time, meaning they increased their gait speed. Our results 

showed an 18% increase in walking speed consistent with their results.  

The KL grade of our patients generally matched that of the Deyle et al 2005 work. The 

majority of their clinic subjects (41%), were KL grade 2. Of our subject population, 71% were 

KL grade 2. Given that disease severity was similar among both populations, it is reasonable to 

extrapolate that exercise therapy would have a similar effect on both cohorts. Their clinic group 

is more comparable to our participants in that the interventions were similar. The duration of 

intervention between Deyle et al 2005 and our study were also the same, 8 sessions over 4 

weeks.  Unlike the clinic group in the 2005 study, our subjects did not receive Maitland 
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Mobilization, perform strengthening exercises or active ROM. Our subjects were also not 

instructed to perform a daily walking regimen.  

KOA subjects have been shown to have hip and leg muscle weakness which may 

contribute to gait changes (Lun et al 2015). Because the Deyle et al 2005 clinic group and the 

home group each performed strengthening exercises, it is possible that their increases in gait 

speed came from increased muscle strength. However, evidence produced by our study suggests 

otherwise, as our subjects did not perform active strengthening exercises and still experienced 

slightly higher increases in gait speed. 

In our study, hip abduction in stance and swing did not change significantly from 

baseline to follow up. Weakness compromises hip abductors in KOA affected subjects. As hip 

abduction is required for stabilization during gait and for single-limb support, it is often relied 

upon as a form of gait compensation (Bennell et al 2010). Because hip abduction didn’t change 

from baseline, it is likely that patients never compensated through the hip. A change in gait 

probably wasn’t required because of the early-mid KL grade of the subjects. Their compensation 

for pain during gait took the form of slowed gait speed. This is a common walking adaptation 

seen in KOA individuals across KL-grades, with walking speed decreasing as KL-grades 

increase (White et al 2013). 

Step width and single support duration, each of which are required for frontal plane 

stability, did not change. When step width and single support times increase, it is a sign that the 

patient is compensating. Had these values decreased from baseline to follow-up, it would be 

evidence of improved stability (Neumann, 2010). These data did not change which is evidence 

that patients did not yet require a gait change of this nature because of the early grading of their 

KOA. 



43 
 

Another set of variables that did not change were the angular velocities and ROM 

variables in the frontal plane. The intervention focused on motion in the sagittal plane (flexion 

and extension) which are major functional components in gait and components strongly affected 

by KOA. We also did not include correcting mechanisms for malalignment or joint-space-

narrowing which would have likely altered frontal plane motion. The only frontal plane motion 

mildly addressed were the additions of varus and valgus pressure included during passive ROM 

extension and it is not surprising that those minor motions did not affect overall frontal plane 

dynamics.  

It is encouraging that our study yielded similar gait improvement results to the Deyle et 

al 2005 study despite the simplification of our treatment modalities. Our subjects did not 

undergo strength-training, daily walking programs, Maitland mobilization or active ROM, but 

still experienced benefits in gait speed, stride-length, cadence, peak knee flexion in stance and 

greater swing limb reach. An advantage of our method is that a simplified treatment model is 

more likely to be followed by patients than complex protocol (Becker, 1985).  

The protocol of our study paralleled work by Deyle and colleagues in that it involved 

supervision. The guidance of a clinic setting may have contributed to subject improvement in our 

study and the clinic group from theirs. According to research by Jette et al 1982, between 45-

60% of arthritis patients do not adhere to prescribed exercise programs. Under supervision, 

patient compliance is more likely (Becker, 1985). Corrections can be made to exercise 

techniques under supervision ensuring patients can receive the maximum benefit from therapy. 

Supervision is also advantageous because feedback is encouraging to patients, making them less 

likely to drop out of the intervention (Haynes et al 1987). Guidance in a clinic setting also allows 

for patient-education. Management of a chronic illness requires a subject to be informed about 
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what exacerbates or helps disease symptoms. One study found that 90% of KOA patients 

received no education about arthritis management (Shim et al 2018). An advantage of a 

supervised intervention is that patients can be educated about how exercise can improve 

functionality and coached on how to maintain an active lifestyle. 

Another advantage of passive ROM and supervised exercise over home exercise 

programs is that the exercises can be tailored to suit patient requirements and subjects can be 

monitored for adverse effects. In the study by Deyle et al 2005, participants were examined at 

each clinic visit for signs of inflammation (increased pain, effusions or heat over the affected 

joint). Therapy was continued only if those signs diminished. If a subject experienced soreness of 

a duration spanning more than a few hours, therapy was decreased as needed. These kinds of 

modifications are applicable to patients at later stages of OA.  

Passive exercise and stretching is advantageous because it is more accessible to patients 

with increased levels of disability and pain.  Our intervention was well-tolerated based on pain 

reports not having worsened. The results of our pain data were that patient pain was unchanged 

from baseline to follow up. Six out of seven subjects reported unchanged or lower pain at follow 

up. Had the intervention proved detrimental, patients would have reflected that intolerance in 

worsened pain scores.   

Individuals with increased KL grades will not tolerate active exercises such as 

strengthening exercises that would be tolerable for mild to moderate KOA groups. Severe KOA 

patients may exhibit quadriceps weakness, and/or poor quadriceps muscle activation, suffer 

higher pain, joint instability, or knee laxity which have been shown to limit rehabilitation 

responses and compliance in exercise programs, including those that are focused on 

strengthening muscle groups (Fitzgerald, 2005). However, guided therapy such as those used 
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during our intervention may prove accessible to patients with higher KL grades because they are 

supervised and involve a treatment table.  

High surfaces are recommended (chairs on blocks, elevated toilet seats and shower-chairs 

as opposed to bath-tubs), as a form of joint protection in severe KOA (Brandt, 2001). Treatment 

tables, as they are high off the ground, would also be categorized as more accessible for severe 

KOA patients. Low surfaces also pose fall risks with the pain of knee extension upon a sit-to-

stand-transfer or flexion during squatting (Brandt, 2001). Passive ROM and other gentle forms of 

guided physical therapy on treatment tables such as those used in our intervention may protect 

the knee from further damage and decrease energy expenditure and so may prove more tolerable 

for severe KOA patients. There is less pain in a transfer such as moving to and from a treatment 

table as it does not involve heavy knee extension. With knee pain being the strongest 

discouragement to lower extremity functional increase in KOA patients (Jordan et al 1997), 

interventions such as ours that use treatment tables may be more likely to be completed in KOA 

patients who suffer a high amount of pain. The presence of a rehabilitation therapist has the 

added benefit of confidence building, by providing an unsteady KOA patient with assistance 

during transfers, exercise performance and ambulation. As many KOA patients struggle with 

fears of physical activity-induced pain and fear of ability to successfully perform physical 

activities (Fitzgerald, 2005), a confident subject is more likely to comply with and complete 

exercise therapy.   

 

Limitations to the study 

 Our small sample size was a limiting factor. Recruitment issues meant that our subject 

population may not adequately reflect the effect of therapy. Future studies would benefit from an 
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increased sample size to see if gait improvements such as gait-speed and KFE-ROM would 

increase consistently and maintain effect size. Another result of the small sample size was the 

homogenous group of subjects based on sex. Because our subject population was primarily 

female, it is possible that subject sex could have affected our results. Women have more 

accelerated KOA progression than men (Brandt, 2001). The width of the female pelvis can 

predispose her knees to valgus alignment, which may alter gait patterns and their associated data. 

A cohort of subjects that were equally proportioned by sex would provide reliable data that 

would account for this potential difference. It is also possible that subjects in our study 

developed gait improvements unrelated to the applied intervention. Bonds between physical 

therapist and patient over extended treatment periods have been cited as a potential influence for 

subject improvement. This is a limit of supervised exercise, as home exercise groups would not 

have that influence as a confounding variable. It is unlikely that this kind of placebo effect would 

develop and trigger a change in subjects over the span of a month.  

Time was another limiting factor. Exercise-based interventions on KOA trialed for longer 

periods in literature span from 12 weeks to 18 months. Trials with extended time may yield 

different results. Related to time is frequency of interventions. Extended trials have more 

opportunities for implementing exercises more frequently which may affect outcomes. Increased 

frequency would require closer patient-monitoring because longer studies such as the one by 

Røgind et al 1998 that lasted 3 months, bi-weekly in frequency, resulted in palpable effusions. 

Patients from that study were staged as severe KOA, so it is possible that increased exercise 

duration and frequency would be better tolerated by early to mid-KOA subjects.  Despite limited 

time and a less complex procedure, our study is promising in that it yielded functional changes 
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without requiring a duration as extensive as other KOA rehabilitation studies and was simple to 

perform.  

 We did not have access to the WOMAC scale, though it would benefit future research if 

subjects were scored by the standard for pain. With these data scored in a way that is consistent 

with other KOA research, it is easier to notice trends that correlate with other findings. We 

encountered the same dilemma with PQAS. More advanced tests may produce different data. 

 A longer period to gather follow up data after the intervention was complete would 

provide more insight to the impact of treatment and how effects changed over time. While our 

study did collect follow up data after the intervention, time constraints did not allow follow up 

data collection over years, compared to other, larger studies that had the luxury of longevity. 

This is clinically relevant because of the chronic nature of OA. Not only would gathering follow 

up data over a longer time-span post-intervention enhance our understanding of how 

improvements change or remain over time, it would provide an opportunity to monitor subject 

disease progression through other treatments, such as how many of the cohort required invasive 

treatment, surgical intervention or how many subjects experienced delayed TKA, or were able to 

forego intraarticular injections.  

 

Future Studies 

 Data from this research will contribute to the on-going longitudinal project of developing 

an OA pain-index. This intervention has clinical relevance as it is an uncomplicated treatment 

applicable for early stage non-surgical candidates that has shown promising effects on ROM and 

gait-speed. These methods are also gentle enough to be applied to inpatients or outpatients. 

Collected data can be applied to longitudinal current studies of OA or can serve as a foundation 
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for further studies such as those involving KOA and gait-alterations and be compared or 

combined with other pain-relief interventions. Finally, the information gathered is applicable to 

multiple fields, from rheumatology, to pain-management, physiatry, orthopedics and 

biomechanics.  

 

Conclusions 

 The results of our study support our hypothesis that patient ROM would increase and gait 

would improve in response to passive ROM and stretching exercise therapy. Pain scores did not 

decrease significantly in response to therapy, so our hypothesis about pain being significantly 

altered was not supported. Based on our results, the following conclusions can be made: 

• Significant improvement in knee ROM and gait speed is achievable for KOA patients 

even under short-duration exercise interventions. 

• KOA patient knee ROM and gait speed can significantly increase in simplified 

models of exercise therapy. 

• KOA pain is not worsened by a passive ROM and stretch-based therapeutic 

intervention. 
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