
Display and Analysis of Tomographic
Reconstructions of Multiple Synthetic Aperture

LADAR (SAL) Images

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Electrical Engineering

by

Bassirou Seck
B.S.E.E., Wright State University, 2016

2018
Wright State University



Wright State University
GRADUATE SCHOOL

July 26, 2018

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPER-
VISION BY Bassirou Seck ENTITLED Display and Analysis of Tomographic Reconstructions
of Multiple Synthetic Aperture LADAR (SAL) Images BE ACCEPTED IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science
in Electrical Engineering.

Arnab Shaw, Ph.D.
Thesis Director

Brian D. Rigling, Ph.D.
Chair, Department of Electrical Engineering

Committee on
Final Examination

Arnab Shaw, Ph.D.

Joshua Ash, Ph.D.

Lawrence Barnes, M.S.

Barry Milligan., Ph.D.
Interim Dean of the Graduate School



ABSTRACT

Seck, Bassirou. M.S.E.E., Department of Electrical Engineering, Wright State University, 2018.
Display and Analysis of Tomographic Reconstructions of Multiple Synthetic Aperture LADAR
(SAL) Images.

Synthetic aperture ladar (SAL) is similar to synthetic aperture radar (SAR) in that it can

create range/cross-range slant plane images of the illuminated scatters; however, SAL has

wavelengths 10,000x smaller than SAR enabling a relatively narrow real aperture, diffrac-

tion limited beam widths. The relatively narrow real aperture resolutions allow for multiple

slant planes to be created for a single target with reasonable range/aperture combinations.

These multiple slant planes can be projected into a single slant plane projections (as in

SAR). It can also be displayed as a 3-D image with asymmetric resolutions, diffraction

limited in the dimension orthogonal to the SAL baseline. Multiple images with diversity in

angle orthogonal to SAL baselines can be used to synthesize resolution with tomographic

techniques and enhance the diffraction limited resolution. The goal of this research is to

explore methods to enhance the diffraction limited resolutions with multiple observations

and/or multiple slant plane imaging with SAL systems. Specifically, metrics associated

with the information content of the tomographic based 3 dimensional reconstructions of

SAL intensity imagery will be investigated to see how it changes as a function of number

of slant planes in the SAL images and number of elevation observations are varied.

Approved for public release, distribution unlimited (APRS-RY-18-0785)
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Chapter 1

Introduction

Synthetic Aperture Ladar (SAL) is a coherent imaging technique that exploits angular di-

versity between aperture position and target position to synthesize an aperture much larger

than the physical antenna aperture along the baseline created by the angular diversity. It

can provide image resolutions beyond the diffraction limit of the real optical aperture up

to the diffraction limit of the synthetic aperture for the dimension along the baseline. The

dimension orthogonal to the range vector and baseline of the synthetic aperture remains

diffraction limited at the physical aperture limit. Baselines can be created through rela-

tive motion between the target and aperture or through multiple distributed apertures. The

former is a temporal variant of SAL and the latter is the spatial variant. This thesis will

address resolution enhancement of temporal SAL’s diffraction limited dimension through

incoherent tomographic reconstruction.

SAL is the extension of Synthetic Aperture RADAR (SAR) to optical wavelengths. It

differs from SAR in scattering phenomenology and changes in wavelength scale the diffrac-

tion limits for real and synthetic apertures. As such, it requires much less relative aperture

motion (baseline length) due to the scaling of wavelengths. It can support more band-

width for improved range resolution, and provides more readily interpretable images [1].

In part, the interest in SAL is driven by innovations in high bandwidth modulation of co-
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herent Ladar sources and systems including chirped frequency-modulated continuous wave

(FMCW) Ladar, coherent pulsed sources, and digital-signal modulation coupled with ad-

vanced processing methods that support multiple centimeter to submillimeter- scale-range

resolutions [16].

Recent SAL work focuses on reconstructing 3-D images of objects [19]. SAR and

temporal SAL produce a slant plane image as a fundamental data product. A range/cross

range slant plane image is the projection of the 3-D object into the plane defined by the

range vector and baseline. An issue is that the resolution on the cross-tract-cross-range

dimension remains diffraction limited. Diffraction limit is the minimum angular subtense

of two sources that can be distinguished by the sensor and depends on the wavelength of

the signal and the spatial sampling of the aperture in the pupil plane of the imaging system

[13]. This thesis will measure the information content of a single slant plane image and

enhance resolution through multiple diffraction limited slant planes and/or tomographic

reconstructions from multiple observations with angular diversity.

In this work, we present methods for enhancing geometric images developed by a

SAL imaging system with tomographic synthesis. Point clouds of a facet model are ren-

dered at different collection geometries. The SAL image is generated for each of these

point clouds derived from of the 3-D facet model, and a 3-D tomographic reconstruction

from a series of SAL images with elevation diversity is generated for both the single, and

multiple slant plane SAL images to enhance the resolution in the diffraction limited (cross-

track-cross-range) dimension. To quantify the information content of the 3-D reconstructed

SAL images, we utilize mutual information and joint information density as a basis for a

metric. Mutual information is a technique for measuring the similarity between two ran-

dom variables, in this case two images. Joint information density measures the amount of

useful information in the image. The similarity based on the mutual information between a

reference image and the reconstructed images is measured, and analyzed to determine the

efficacy of the reconstructed image.
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1.1 Motivation

Slant plane images suffer from the compression of cross track cross range scatterers into

the image plane. This may limit the performance of 3-D automatic target recognition algo-

rithms for identification and classification of targets. This work seeks to exploit the angular

diversity through multiple observations of the target and number of slant planes through

the range to the target to optimize collection against a target area.

SAL systems are typically designed to have a matched diffraction limited field of view

for transmit and receive fields of view (FOV) to achieve maximum performance at range. At

long range this diffraction limited FOV may fully illuminate a desired target area enabling

image formation with a single coherent processing interval. The image formed would be

a single slant plane image. As the range decreases the beam is required to be scanned to

fully image the desired target area. This requires multiple coherent processing intervals and

image stitching to image the desired target area which lowers the area coverage rate, defined

as the amount of time necessary to image an area of the target. Each coherent processing

interval forms a SAL slant plane image. An approach to increase the area coverage rate is

to shape the illumination beam and populate additional detectors. These detectors may be

arranged to increase the receiver FOV matched to the shaped transmitter FOV in a single

dimension. These detectors may also have overlapping FOVs if they are smaller than the

diffraction limited spot size.

We focus on improving the resolution in the real aperture diffraction limited dimension

of SAL images. One solution to this problem that is presented in this work, is to divide the

point cloud onto multiple slant planes as shown in table 3.4. At each look angles, instead of

using one detector to compress the point cloud onto a single slant plane, multiple detectors

are used to resolve the point cloud onto multiple slant planes. The detectors are aligned in

the diffraction limited dimension, and are equally spaced. The detectors can have overlap

between them if the pixel spacing is sub-diffraction limited. Each of these detectors will

receive part of the target data and collapse them into slant planes. Descriptions of this
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method is presented in detail in Chapter 3.

Previous work in 3-D image reconstruction has made use of the projection slice theo-

rem, which is the backbone of medical imaging x-ray computer aided tomography (CAT)

[11]. Radar experts took the idea of CAT to reconstruct 3-D SAR images, as Charles

Jakowatz presented in his publication ”Spotligh-Mode Synthetic aperture Radar: A signal

Processing Approach”. In his work, he was able to achieve fine resolution on the diffrac-

tion limited dimension (cross-track-cross-range dimension) by increasing the number of

observation angles. This approach is effective; however the data collection time is very

expensive for SAL. One of the goals of this thesis is to diminish the number of look angles,

while improving the resolution of the SAL image in the diffracted limited dimension.

1.2 Contributions

This work simulates SAL imagery and incoherently combines multiple SAL images with

tomographic reconstructions to measure benefits of angular diversity and multiple slant

planes for performing 3D reconstructions of a target. In this work we develop metrics

to measure the efficacy of the 3D reconstructions. A similarity metric based on mutual

information to calculate the similarity between two images. While developing the similar-

ity function, we developed an entropy function that measures the amount of information

content in an image. From the similarity metric, we derived the joint information density

metric. Since some of the information in the image is noise, the joint information density

metric will track the amount of useful information in the volume as the CNR is being varied.

In this work we investigated the way the information content of the reconstructed image,

and the similarity between the truth image and the reconstructed image are affected; as we

vary certain parameters such as: noise level, sensor position and number of observation

angle. The Kullback-Leibler divergence was also compared to the similarity metric.

After reviewing the Tomographic Formulation of Spotlight-Mode SAR [11] and [14],
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we implement an algorithm to reconstruct 3-D images of targets using tomographic recon-

struction for SAL slant plane imagery and develop techniques for evaluating the efficacy

of the reconstructions based upon the mutual information metric. The proposed methods

enhance the resolution in the cross-track-cross-range diffraction limited dimension for both

the single and multiple slant plane imaging SAL systems. At each observation angle the

backscattered signals are compressed into SAL slant plane images consisting of range and

along track cross range coordinates prior to projecting it into the tomographic synthesized

plane of the 3-D grid in model frame coordinates.

The single slant plane method uses a monostatic setup, with a single transmitter and

a single detector sharing the same antenna. The transmitter LADAR illuminates the entire

target. The detector receives the backscatterers signal and generates a single slant plane

image for the entire scene with a single coherent processing interval (baseline). For this

method, the diffraction limited resolution is enhanced as the angular diversity in the number

of projection angle is increased. For the multiple slant plane method, multiple transmitters

and detectors are used. Each transmitter illuminates part of the target and it’s collocated

detector receives the backscattered signals which are compressed into slant planes. For

this method, the diffraction limited resolution is enhanced as the number of detectors/slant

planes are increased, or the number of observation angle is increased.

We model shot noise that we add to the SAL images. At each observation angle, and

for each detector a new instance of noise is generated, therefore the random instance of

noise is averaged each time a new projection is made to the synthesized plane. As a result,

the methods presented in this work are useful in reconstructing 3-D images of targets,

because it improves the resolution in the diffraction limited dimension. By enhancing the

diffraction limited resolution, the similarity and the amount of useful information between

the truth and the reconstructed image is increased.
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1.3 Thesis Outline

The remainder of the thesis is set as follows. In Chapter 2 we discuss some of the history

of SAL and describe SAL theory. The implementations of single and multiple slant plane

methods are discussed. Furthermore, we explain in detail the geometry used to render the

targets, and the model coordinate geometry used to perform the tomographic reconstruc-

tions. In addition, we discuss the penalties of using multiple slant planes and multiple

observation angles to define that trade space. In Chapter 3 we describe the targets, and

the methodology used to generate the point clouds of the targets. We discuss the SAL

simulation of the data and presented exemplary images for the SAL simulation. Chapter 4

explores the application of backprojection, and explains in detail how the incoherent 3-D

tomographic reconstruction was performed. Chapter 4 also presents the investigation into

the impacts of speckle noise, shot noise, angular diversity and angular sampling on the

3-D reconstructed image. Chapter 5, discusses the metrics for measuring the efficacy of

reconstructions, entropy, joint entropy, mutual information, useful information. Finally, we

present the results, conclusion and future work in Chapter 6.
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CHAPTER 2

SAL THEORY

In this chapter, we begin by giving a brief history and background about SAL system in

Section 2.1. In Section 2.2, we describe SAL theory and provide the equations fundamen-

tal to SAL theory. We described in detail the definition of carrier to noise ratio CNR, and

the implementation of single, multiple, and overlapping multiple slant plane SAL systems.

Formulas for range\cross range diffraction limited, area coverage rate (ACR) for both sin-

gle and multiple slant plane are provided. We describe the noise model and discussed its

effect on the SAL image. Finally, we discussed about the trade-off and the penalties of

multiple slant planes and multiple observation angles.

2.1 History\Background

Radio detection and ranging (RADAR) is a system for detecting the range, direction and

speed of objects. It transmits pulses of high frequency electro-magnetic waves that are

reflected from a target back to the receiver. Those reflected signal is denoted as backscat-

ters. The backscatter signals are then processed by computers to obtain useful informa-

tion about the target. The idea of RADAR was introduced in the late 1880, by German

physicist Heinrich Hertz [18]. Hertz did an experiment that proved that radio waves are
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reflected by metallic object and refracted by a dielectric medium, just as light waves can.

However, RADAR was not implemented practically until the early 1930’s when systems

become more advanced, and caught the interest of the military. In the article Radar Skol-

nik states, ”There was simply no economic, societal, or military need for radar until the

early 1930s, when long-range military bombers capable of carrying large payloads were

developed. ”During this period, researchers became more interested in RADAR systems

and developed it into a more sophisticated device. At the start of WWII several countries

had some form of RADAR equipment for military applications [18].

In the mid-1900s, a technological breakthrough came with the invention of the MASER

(microwave amplification by stimulated emission of radiation [17]. Charles Townes in-

vented MASER in 1951, and later demonstrated the first MASER in 1954 at Columbia

University [17]. In 1958, Charles Townes and lab partner Arthur Schawlow published a

paper in Physical Review Letters to show the MASERS could be implemented in the op-

tical and infrared domain [17]. They also proposed how it could be accomplished in the

optical spectrum, this is known as LASER (light amplification by stimulated emission of

radiation) [17]. The acronym LASER was coined by an American physicist Gordon Gauld;

in his famous note book he describes the procedure of building a LASER [17]. Since the

invention of LASER many applications that positively impact the communities have been

developed. One such application is combining LASERs with RADAR and this is known

as laser radar (LADAR) [2]. LADAR and RADAR are fundamentally similar however,

they operate at vastly different wavelengths. LADAR operates in the optical region, and

has very short wavelengths. These short wavelengths allow LADAR to produce higher

image resolution than RADAR with similar aperture. These innovations have been further

advanced to achieve a much finer resolution images by using aperture synthesis technique.

Aperture Synthesis is the technique of using the changes in the target platform ge-

ometry, and coherently collecting and processing data to increase the effective size of the

resolution limiting aperture in one-dimension defined by the change in the geometry. Typ-
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ically, this technique utilizes the path of the platform to create an effective aperture much

larger than the physical aperture of the sensor in the direction of the motion. This is known

as Synthetic Aperture Ladar (SAL). The range resolution of a SAL image is limited by

the bandwidth of the waveforms processed, and the cross-range resolution is limited by

the aperture synthesized. The dimension orthogonal to the platform motion remains real

aperture diffraction limited.

Mathematically, SAL and SAR are identical. However, SAL operates in the microm-

eter (um) wavelength, which is 104−5 shorter than SAR wavelengths which are 100s of

millimeter (mm) wavelength [12]. The difference in wavelengths is approximately 5 or-

ders of magnitude, and causes differing phenomenology in the electromagnetic radiation

properties of the atmosphere transmission and scattering. Transmit beam width and resolu-

tion are dependent on the aperture and wavelength, thus SAL has the potential to produce

higher resolution real aperture diffraction limited images than SAR and requires shorter

synthetic aperture\aperture synthesis baselines for similar resolutions. For SAR imagery,

the real aperture diffraction limited transmit beamwidth is on the order of km and for SAL

it is on the order of m’s for typical apertures [3]. Due to the real aperture resolution of SAL,

it has the ability to create multiple diffraction limited slant planes for multiple detectors for

a single target. These multiple slant planes can be projected into a single ground plane

projection, and can also be displayed as a 3-D image with asymmetric resolution. Dividing

a target into multiple slant planes will help resolve the data by increasing the real aperture

diffraction limited resolution.

2.2 Theory

Figure 2.1 shows a simple geometry where the aircraft is illuminating a target on the ground

plane. The sensor is mounted to the side of the aircraft, where the ray of the sensor is

illuminating the target in the direction orthonormal to the flight path of the aircraft and
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closest approach to the target; that direction is referred to as the target range. The direction

parallel to the flight path of the aircraft is referred to as the along-track-cross-range and is

parallel to the SAL baseline for aperture synthesis. The direction normal to both the range

and along-track-cross-range in this case out of the screen is referred to as the cross-track-

cross-range. Two common data collection modes for radar imaging are strip-map mode,

and spotlight-mode.

In strip-map mode, the sensor is fixed at the direction perpendicular to the flight path

of the aircraft. The aircraft transmits and receives pulses periodically as it goes across

the flight path [11]. The longer the length of the region of integration is, the narrower the

synthesize beam will became which yield to higher resolution on the cross-track dimension.

Strip-map mode requires a long synthetic aperture (SA) time to produce a high-resolution

image [11]. Figure 2.1 represents the basic geometry collection for strip-map aperture

synthesis.

Figure 2.1: Example of a strip-map mode data collection
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In contrast to the spotlight mode it turns out they are very different. However, in

some situations spotlight mode algorithms are used to form images from data collected in

a strip-map mode [11]. In spotlight mode, the beam of the sensor is steered to keep the

target illuminated for a longer period of time. By doing so, longer SA will be achieved

increasing the number of pulses transmitted by the sensor will also increase the resolution

in the along-track-cross-range direction. In this research, we consider spotlight mode SAL

as shown in Figure 2.2 to collect data and generate high resolution SAL images.

Figure 2.2: Example of a strip-map mode data collection

A general spotlight temporal SAL collection is illustrated Figure 2.3 [3], where the

illuminating spot size Dspot is determined by the diffraction limit of the transceiver optic,

corresponding to the resolution of a conventional imager with the same aperture. The

resolution in the direction of travel (azimuthal\along-track-cross-range, δx) is determined

by the wavelength and synthetic aperture length. The resolution in the orthogonal direction

(range, δy) is determined by the transmit waveform bandwidth, B.
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Figure 2.3: The SAL concept - This figure was taken from [3]

Figure 2.3 illustrate the SAL concept. The illuminating spot size Dspot is determined

by the diffraction limit of the transceiver optic, corresponding to the resolution of a conven-

tional imager with the same aperture. The resolution in the direction of travel (azimuthal,

δx) is determined by the wavelength and synthetic aperture length. The resolution in the

orthogonal direction (range, δy) is determined by the transmit waveform bandwidth, B.

As shown in Figure 2.3 the SAL sensor is mounted on to an airborne platform moving

with velocity v. Transmitting signals with wavelength λ and bandwidth B that illuminate

a target and receiving the backscattered signals. The image resolution in the along-track-

cross-range dimension is given by:

δx =
λ

2 ∗∆θaz
(2.1)

where, ∆θaz is the azimuth step-size as observed at the sensor view from range R, and it is
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denoted as:

∆θaz =
DSA

R
(2.2)

The synthetic aperture length covered in the flight time T is denoted as:

DSA = v ∗ T (2.3)

The longer the DSA the finer the resolution azimuth resolution [3]. The range resolution

for SAL is defined as:

δy =
c

2 ∗B
(2.4)

where c = 3 ∗ 108 is the speed of light and B is the bandwidth of the system.

Temporal SAL processes the returned signal from the illuminated target throughout

the synthetic aperture baseline to form images. SAL mixes backscattered signals with a

stable local oscillator (LO) and implements coherent (heterodyne) detection [3]. While

detecting these signals, noise will be introduced to the SAL signals. [3] In limit of hetero-

dyne detection, shot noise of the local oscillator will dominate and the signal is said to be

shot noise limited (SNL). Shot noise is an additive noise it can be modeled as a Gaussian

distribution [10]. The variance of the noise is inversely proportional to the CNR as defined

in equation 3.14.

CNR =
Ps
Pn

(2.5)

Ps and Pn are the signal power and the noise power, respectively. In this research, the

signal power is defined as the mean of intensity of the SAL simulated image, and the noise

power is defined as the additive mean Gaussian distributed intensity noise.

The short wavelength of SAL enables relatively narrow real aperture diffraction lim-

ited beam width. The relatively narrow real aperture resolutions allow for multiple slant

planes to be created for a single target with reasonable range.
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CHAPTER 3

SAL Simulation

In this chapter, we describe the method used to simulate SAL imagery with speckle from

3-D facet model. This method is tested by developing a simulation of slant plane SAL

imagery in MATLAB, which will be given in Section 3.4. In Section 3.5, we discuss side-

lobes suppression on the slant plane SAL imagery. Finally, in Section 3.6, we introduce

and develop the shot noise model that will be applied to the SAL imagery.
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Figure 3.1: SAL Simulation Flow Diagram

3.1 Point Cloud

A point cloud is an set of information data in a orthogonal coordinate system. They often

represent the outer surface of a target that a device, or a sensor has measured. Point clouds

are used to study different features of a target, or reconstruct images of a target. In this

research two targets were investigated, a non-structural target and a structural target. The

point cloud of the non-structural target was generated by creating a grid with 6 m field of
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view (FOV) and 6 m of range depth. We populate the grid with random points as shown

in Figure 3.2. The point cloud is then observed at different elevation angles. At each

elevation angle we compress the point cloud into slant plane and simulate the SAL image.

This process is discussed in detail in Chapter 3.

Figure 3.2: Model Coordinate of the Non-structural point Target

The second target that was used in this study is the backhoe data. This target has

structured features, and its facet model is shown in Figure 3.3. Facet model composes the

target with many small triangular facets, where each of these facet surface approximates

the real target with fidelity proportional to the number of facets [6].
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Figure 3.3: Facet Model of the backhoe target

The point cloud object of the facet model was generated using a point cloud generator

tool, where the range, field of view (FOV), azimuth, elevation, tilt, the sensor resolution in

the x-y direction and the facet model are defined by the user. The render tool outputs the

bi-directional reflectivity distribution function (BRDF), surface normal, and X, Y, Z data

that can be used to display the 3-D spatial representation of the model as shown in Figure

3.4. The BRDF outputs the Lambertian BRDF if the rays traced contact a facet, and outputs

a ”-1” if the ray traced doesn’t contact a facet. From there we can filter out and simplify

the data by only focusing on the rays traced that contact the target.
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Figure 3.4: Point cloud of the backhoe facet model data

Sensor Parameters

Parameters name Symbol Values Units

Azimuth angle θaz -75 ◦

Elevation angle θel 20 ◦

Range R 20000 m

Field of View FOV 20 m

Azimuth step size ∆θaz 1 cm

Tilt ξ 0 ◦

Table 3.1: Sensor parameters used to generate the point cloud of the backhoe data. The

point cloud of the backhoe is generated at different elevation angles.
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Table 3.1 represents the parameters used to generate the point cloud shown in Figure

3.4. This parameter can be varied to obtain the desired point cloud.

3.2 Geometry

3.2.1 Single Slant Plane Geometry

As mentioned earlier, we use spotlight mode for data collection for both single slant plane

and multiple slant planes. The terminology single slant plane (SSP) refers to mounting

a single detector on an airborne platform where the detector receives the backscattered

signal from the target in the range dimension. This beam of rays was transmitted by a

single transmitter, and will pass through a lens as shown in Figure 3.5. The lens aperture

determines the diffraction limited spot size (DLSS) to illuminate the entire target in the

range and cross-track-cross-range dimension. The DLSS is inversely proportional to the

size of the lens defined as:

DLSS = 2.44 ∗ R ∗ λ
Dlens

(3.1)

where, R is the range from the sensor to the target, λ is the wavelength of the signal, and

Dlens is the diameter of the lens. For this geometry, we use a circular aperture, the area

coverage rate (ACR) is defined as:

ACR =
π ∗ r2

τ
(3.2)

Where r is the radius of the pupil and τ is the SAL resolution time. We synthesized on the

along-track-cross-range to resolve that dimension. Figure 3.5 shows the geometry for the

SSP on the range vs. cross-track-cross-range view.
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Figure 3.5: SSP geometry Range vs. Cross-Track-Cross-Range coordinates.

The point cloud of the facet model is rendered at different elevation angles, where at

each look angle a unique point cloud is produced. Each point cloud is then compressed into

a slant plane by accumulating the values on the cross-tract-cross-range as shown in table

3.2 and 3.3. The compressed point clouds will be used for the SAL simulation data. The

SAL simulation method is described in detail in Chapter 3.
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Table 3.2: Point cloud compressed at single slant plane. This point cloud was rendered at

10◦ elevation angle.

The plot on the top is the sensor perspective of the point cloud for the backhoe data

rendered at 10◦ elevation angle. The bottom left plot is the Range vs. Along track cross

range view. On the bottom right plot is the compressed point cloud shown in the cross-

track-cross range vs. along track cross range view.
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Table 3.3: Point cloud compressed at single slant plane. This point cloud was rendered at

50◦ elevation angle.

The plot on the top is the sensor perspective of point cloud for the backhoe data ren-

dered at 50◦ elevation angle. The bottom left plot is the Range vs. Along track cross range

view. On the bottom right plot is the compressed point cloud shown in the Cross-track-cross

range vs. Along track cross range view.

3.2.2 Multiple Slant Plane Geometry

For the multiple slant planes (MSP) geometry, multiple detectors are mounted in the SAL

receiver on the airborne platform. These detectors are set parallel to the cross-tract-cross-
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range dimension, equally spaced and they can overlap. They are set in such a way that

each detector FOV sees only part of the target, and as a whole, they see the whole target

dimension in cross-track-cross-range. Unlike the SSP where the transmitted diffraction

spot size is circular at the target, for the MSP the SAL transceiver FOV is elliptical at the

target as shown in Figure 3.7. The ACR for each detector is defined as:

ACR =
π ∗ a

2
∗ b

2

τ
(3.3)

Where, a is the length of the elliptical transceiver FOV, b is the width of the elliptical

transceiver FOV, and τ is the SAL resolution time. The spacing and height of the detectors

are determined respectively as:

SPspacing =
a

(NumD − 1) ∗ (1− SPoverlap) + 1
(3.4)

SPHeight =
SPspacing

1− SPoverlap
(3.5)

Where, NumD is the number of detectors desired for MSP, and SPoverlap is the fractional

percentage overlap between the detectors. Assuming that these detectors are diffraction

limited in the along-track dimension, and sub-diffracted limited in the cross-track dimen-

sion we can say that b = SPspacing. Figure 3.6 gives a visual representation on how the

MSP geometry works. Unlike the SSP, where there is a single detector illuminating the

whole target, in this setup shown in figure 3.6 we have three detectors, equally spaced,

and have 50% overlap between them. Each detector receives signal that passes through the

pupil. Each detector illuminates part of the target, and collapses it into slant plane. Since

in this setup we have 50% overlap between the detectors, certain parts of the target will

be illuminated at least twice. These will allow us to have more information about the tar-

23



get, leading to better resolution on the cross-track-cross-range, as we will discuss in later

sections. The transmit beam show in Figure 3.6 could be shaped by aperture to achieve

diffraction pattern shown in Figure 3.7.

Figure 3.6: Example of MSP geometry with 3 detectors and 50% overlap between them.

Range vs. Cross-Track-Cross-range coordinate.
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Figure 3.7: MSP diffraction limited transmit beam and receiver FOVs at target plan.
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Table 3.4: Point cloud compressed at multiple slant plane. This point cloud was rendered

at 10◦ elevation angle.

In table 3.4 the plot on the top is the sensor perspective of point cloud for the backhoe

data rendered at 10◦ elevation angle. The bottom left is the Range vs. Along track cross

range view. On the bottom right, the compressed point cloud is shown in the Cross-track-

cross range vs. Along track cross range view. In this setup we have 50% overlap, and a

spacing of 1 m between the detectors
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Table 3.5: Point cloud compressed at multiple slant plane. This point cloud was rendered

at 50◦ elevation angle.

Table 3.4 and 3.5 show how the point cloud was divided into multiple slant planes. The

plot on the top on table 3.4 and 3.5 are the point clouds of the backhoe rendered at 10◦ and

50◦ elevation angle, respectively. The plots on the bottom left and right on tables 3.4 and

3.5 show the point cloud of the backhoe divided into multiple slant planes. Four monostatic

setups were requires to the airborne platform to illuminate and receive data of the target as

a whole. Note that the point cloud rendered at 50◦ elevation angle is compressed into 2

slant planes instead of 4 slant planes. This is because at that observation angle, the height

of the target observed by the sensor diminishes. Therefore, less transmitter is needed to
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illuminate the whole target.

3.3 Trade-off between single Slant plane method and mul-

tiple slant plane method

Table 3.6: Trade-Off between single slant plane method and multiple slant method.

As mentioned earlier in Section 1.1, at long range image formation of the target can be done

with a single coherent processing interval given sufficient illumination power due to the

receiver field of view. However, as range decreases to fully reconstruct the target multiple

coherent processing intervals and image stitching are required to image the desired target
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area. Each coherent processing interval forms a SAL slant plane image. Table 3.6 shows

an example of the trade-off that will be made when using the single slant plane method

or multiple slant plane method with 10 overlapping detector fileds of view for the same

system Field of View in the diffraction limited cross range dimension. In this example we

set the received power (Rx), the diameter of the lens (Dlens) and the field of view (FOV)

and minimum scattering area for resolution to be constant for both methods. Equation 3.1

was modified to solve for the range (R). As you can see from Table 3.6 for the single slant

plane method, if we want to receive 1 nW of power for a return area 0.01m2 with a 2.5 cm

lens, we will require to transmit 1.5 kW of power at a range of 68.3 km away from the

target. As for the multiple slant plane method, if we want to receive the same amount of

power using the same lens, it requires transmit power of 49.3 W of power at a range of

12.4 km. From this example, we can see there is a trade-off between the range and the

transmit power that we need to put into consideration when using these methods.

3.4 Slant Plane SAL Imagery

For simulation of the slant plane SAL imagery, the 3-D point cloud is compressed into slant

plane, where the values on the cross-track-cross-range dimension are summed into a single

value. As mentioned in Chapter 2 the point cloud of the backhoe data was generated in

such a way that the along-track and cross-tract dimension are discretely sampled with 1 cm

resolution. However, the range dimension is continuous. We interpolated the range dimen-

sion to a uniformly sample grid with 10 cm resolution to match the along-track-cross-range

SAL resolution. The slant plane data is then multiplied by a uniform distribution of ran-

dom phase to create random amplitudes (speckle) on the image. The uniform distribution

random phase is defined as:

ψ = e−j∗φ (3.6)
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where φ = 2 ∗ π ∗ rand(length(Z), 1). We accumulate the complex return signals into

a single complex value. Since, we are interested in the backscattered signals from the

transmitted beam that hits the target, we multiply the slant plane data by the Bidirectional

Reflectivity Distribution Function (BRDF) for the respective points with the normal of the

facet vector to yield the Lambertian reflectivity for the points. The BRDF will index in to

the return signals that only hit the target. We then accumulate the range values with a sinc

function and map the data to the uniformly sampled grid of 10 cm resolution grid as shown

in Figure 3.8. The signal modeling for the SAL simulation imagery is defined in equation

3.7.

Figure 3.8: Example of mapping a continuous machine precision range value onto the

uniformly sampled grid of 10 cm resolution. -3 to 3 pixels

S = BRDF ∗ ψ ∗ A ∗ sinc(z − zi) (3.7)
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IMG =
n∑
i=1

IMG(:, n) + S (3.8)

Where A = 1.22/δr is the 3-dB full width half max of the sinc function, δr is the

range resolution, z is the original continuous range values and zi is the new discrete range

values and IMG is the image after blurring the range dimension with the sinc function to

achieve the desired resolution of 10 cm. To complete the simulation of the slant plant SAL

image, we took the Fourier transform of the image and apply a rectangular 1-D lowpass

filter to the along-track dimension in the frequency domain to add a random amplitude or

speckle to the data. We then inverse Fourier transform the image back to the spatial domain

to create the slant plant SAL image of proper resolution as show on table 3.7, where the

mean of the speckle is equal to the standard deviation of the intensity image [8].

Hr(f) =


1, if |x| ≤ M−1

2
.

0, otherwise.
(3.9)

I = F(IMG ∗Hr) (3.10)

SALsim = F−1(I) (3.11)

Hr is the rectangular window lowpass filter kernel, it is a vector with length equal

to the length of the along-track dimension M . Hr is equal to ”1” at the bins we want to

keep and ”0” everywhere else. SALsim is the simulated slant plane SAL imagery. It is a

2-D image with size N-by-M. F and F−1 are the symbols used for the Fourier transform,

and inverse Fourier transform, respectively. The lowpass filtering process was performed

in the frequency domain instead of the spatial domain; because instead of having to deal

with complex convolution problems, we can transform the image and the kernel filter to
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the frequency domain and multiply them together. Furthermore, it is computational faster

in MATLAB to perform a multiplication in the Fourier transform instead of convolution in

the spatial domain.

3.5 Taylor Window

To reduce the side lobes of the slant plane SAL imagery Taylor windowing was used.

Taylor window is frequently used in SAR and SAL imaging systems, because it offers

strong sidelobe reduction with minimal broadening on the mainlobe [15]. Additionally, the

sidelobe reduction is selectable via the window parameters. For this experiment, the peak

sidelobe level was set to -35 dB and the number of nearly constant level sidelobes adjacent

to the mainlobe was chosen as 5, these are typical SAR and SAL parameters [5]. The filter

kernel was chosen to equal the size of the SALsim imageM . The Taylor window weighting

function is expressed as:

Tay(n) = 1 +
n̄−1∑
m=1

Fm cos(
2πmn

M − 1
), |n| ≤ M − 1

2
(3.12)

In equation 3.12, Fm = F (m, n̄, η) is the Taylor coefficients of the mth order. n̄

is the number of constant level sidelobes adjacent to the mainlobe, η is the ratio of the

mainlobe over sidelobes and M is the length of the window. The Taylor window equation

was obtained from [7], and it’s very similar to the MATLAB definition of Taylor window.
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Figure 3.9: Taylor Window suppressing n̄ = 5 to -35 dB

Figure 3.9 is a representation of the Taylor window function used to reduce the side-

lobes of the SAL simulation image. The parameters of this function are set to reduce the

first 5 sidelobes of the SAL image. When performing Taylor windowing there will be a

trade-off between the mainlobe and the sidelobes. As the sidelobes are being reduce the

mainlobe of the signal will be broaden, and that will cause a blur on the image resolution.

However, this blur is minimal, less than 20% for the Taylor window used and the sidelobes

are suppressed significantly as shown in table 3.7. The Taylor windowing process was

done before performing the tomographic reconstruction to make sure that the sidelobes

won’t correlate and cause some artifacts on 3-D image.

33



3.6 Shot Noise

In this section, we discuss the shot noise modeling for SAL imagery. Shot noise is present

on SAL imagery due to noise in the detection process. Coherent detection through het-

erodyne mixing can nearly achieve shot noise limited detection with sufficient heterodyne

local oscillator (LO) levels. As Gaussian jitter is always present in LADAR, the noise

model presented here is based on a Gaussian distribution as shown in equation 3.13

Wn ∼ N (0, σ2) (3.13)

σ2 =

√
mean(I)

2 ∗ CNR
(3.14)

The noise distribution has a 0 mean (µ), and the variance of the noise σ2 is equal to the

square root of the ratio of the mean intensity (I) of the SAL simulated image and twice the

CNR. The size of the SAL simulation images is all the same. At each observation angle a

random draw of the shot noise is generated. Therefore, when performing the tomographic

reconstruction as described in Chapter 4 the variance of the noise is reduced by the square

root of the number of observation angle.
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3.7 Single Slant Plane SAL simulation Image

Table 3.7: SAL simulation images of the backhoe rendered at 10◦ elevation angle using

single slant plane method
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Table 3.8: SAL simulation images of the backhoe rendered at 50◦ elevation angle using

single slant plane method

These figures are the SAL simulation images of the backhoe data rendered at 10◦ elevation

angle on table 3.7, and 50◦ elevation angle on table 3.8 using single slant plane method.

The plot on the top in both table 3.7 and 3.8 is the noise-less SAL simulated image. We

can see the side-lobes on both the range and cross-range dimension. Taylor window was

applied the image to suppress the side-lobes as shown on the bottom left. The plot on the

bottom right is the SAL simulated image after the additive Gaussian noise is added for a

CNR of 10 dB
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3.8 Multiple Slant Plane SAL simulation Image

Figure 3.10: Compresses point cloud into 4 slant planes
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Table 3.9: SAL sim images of the backhoe rendered at 10◦

elevation angle using multiple slant plane method
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Figure 3.11: Compresses point cloud into 2 slant planes

Table 3.10: SAL simulation images of the backhoe rendered

at 10◦ elevation angle using multiple slant plane method
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These figures are the SAL simulation images of the backhoe data rendered at 10◦ ele-

vation angle on table 3.9, and 50◦ elevation angle on table 3.10 using multiple slant plane

method. The plots in the left columns in both table 3.9 and 3.10 is the noise-less SAL simu-

lated image. We can see the side-lobes on both the range and cross-range dimension. Taylor

window was applied the image to suppress the side-lobes as shown on the right columns.

The plot on the bottom right is the SAL simulated image after the additive Gaussian noise

is added for a CNR of 10 dB
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CHAPTER 4

3-D Image Reconstruction

In this chapter, we discuss the incoherent tomographic techniques and the backprojection

algorithm which used to reconstruct 3-D images of targets. We also discuss the effect of

angular diversity and number of observations on the reconstructed image. Furthermore,

we investigate the way the speckle noise and the shot noise are affected as the number

of detectors, angular diversity and number of observation angles are varied. Finally, we

provide sample images for the 3-D reconstructed image for both the single and multiple

slant plane reconstructions with and without slant plane overlap.

4.1 Tomographic Reconstruction

Computer-aided tomography (CAT) is a well-established technique for reconstructing high

resolution images by processing data obtained from multiple observation angles of an ob-

ject area [14]. The CAT scan is an x-ray technique allowing the imaging of 2-D cross-

sectional view of a 3-D targets via digital processing of many 1-D projection views taken

with different look angles [14]. The data collection geometry for the x-ray data, allowing

the CAT reconstruction technique is shown in Figure 4.1
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Figure 4.1: Procedure of x-ray CAT imaging.source: Author

It is shown [11] [14] that spotlight-mode SAR/SAL can be interpreted as a tomo-

graphic reconstruction problem, and the signal processing theory can be characterized in

terms of the projection-slice theorem. The projection slice theorem states that the Fourier

transform of the projection at angle θ is a ”slice” of the 2-D transform G(X, Y ) taken at an

angle θ with respect to the x-axis [14].

Assume g(x, y) is the unknown signal that is to be reconstructed from its projections.

The Fourier transform of g is defined as:

G(X, Y ) =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)e−j(xX+yY )dxdy (4.1)

The result of the transmitter and receiver translation is to take out a single projection,

Pθ(u). The (x, y) coordinate is related to the (u, v) coordinate by rotating the x-axis coun-
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terclockwise with respect to angle θ [11]. This orthonormal linear transformation is given

as:

x = ucosθ − vsinθ (4.2)

y = usinθ + vcosθ (4.3)

This transformation is shown in Figure 4.1

Figure 4.2: Line of integration for determining the projection. source: [14]

Using this geometry, the line of integration to find the projection pθ(u) of the signal g

at angle θ is given as:
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pθ(u) =

∫ ∞
−∞

g(ucosθ − vsinθ, usinθ + vcosθ)dv (4.4)

pθ(u) is series of line integrals at each values of angle θ. The Fourier transform of

pθ(u) is given as:

Pθ(U) =

∫ ∞
−∞

pθ(u)e−juUdv (4.5)

From this equation, we can see that the projection-slice theorem is simply:

Pθ(U) = G(Ucosθ, Usinθ) (4.6)

4.1.1 Backprojection Image Formation

There are several image formation techniques, however the most common ones are the

back-projection algorithm and the direct Fourier algorithm also known as the polar for-

mat algorithm. The trade-off between these two algorithms is in the image quality and

the computation complexity [9]. Both backprojection and polar format algorithm are com-

putationally complex. However, the backprojection algorithm is more straight forward to

implement [9]. Polar format algorithm is computationally less expensive due to its ex-

ploitation of the fast Fourier transform (FFT). Its computational complexity is in the order

of O(N2log2N). In the other hand, the back-projection algorithm is computationally more

complex O(N3) [9]. However, it gives us the ability to add or subtract pulses in the image

process [9]. Usually in the LADAR community, back-projection algorithm is used for im-

age formation. Therefore, in this work we focused on backprojection algorithm instead of

polar format algorithm to form images. The backprojection algorithm is defined in equation

g(ρcosφ, ρsinφ) =
1

4π2

∫ θ

0

dθ

∫ ∞
−∞

G(rcosθ, rsinθ)|r| ejrρcos(φ−θ)dr (4.7)
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Equation 4.6 stated that the Fourier transform of the projection at angle θ is a slice the

of the 2-D transform G(X, Y ) taken at an angle θ with respect to the x-axis. Therefore,

equation 4.7 can be rewritten as:

g(ρcosφ, ρsinφ) =
1

4π2

∫ θ

0

dθ

∫ ∞
−∞

Pθ(r)|r| ejrρcos(φ−θ)dr (4.8)

It has been proven [9] that equation 4.8 can be expressed in term of MATLAB’s ifft as:

s(m, τn) = K ∗ fftshift[ifft(S(fk, τn))] ∗ exp(j2πf1(m− 1)

k∆f
) (4.9)

where s(m, τn) is the reconstructed signal given the phase history S(fk, τn), collected by

Np pulses. K is the frequencies sample for each pulse, f1 is the minimum frequency for

every pulse, ∆f is the frequency step size of the sensor, m is the range bin and τ is the

slow time sample.

When the SAL slant plane images are incoherently combined for tomographic recon-

struction, the speckle noise and the shot noise of the slant plane images gets beat down

by
√
n for each projection, n is the number of projection. This is because at each look

angle the signal is correlated, while the noise is uncorrelated and this uncorrelated noise

will average out as the number of realizations are increased.
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4.2 Exemplary results for 3-D Reconstructed Image

Figure 4.3: Color coded ”Super Point cloud”.

In order to measure the efficacy of the 3-D reconstructed image we need to compare it

to the truth data. Image 4.3 is the accumulation of all the data points that was used for

the tomographic reconstruction in the model coordinate frame. This point cloud was color

coded to show the observation angles used to generate these points, because some points

are only visible at some observation angles. This point cloud is termed as the ”super point

cloud”, because it contains all the points that will be used to generate the tomographic

reconstruction of the backhoe data. This super point cloud is Taylor window filtered to a

10 cm resolution grid and down sampled, and it will be used as the truth data as shown on

table 4.4. The truth data is an intensity image with neither speckle nor shot noise.
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Figure 4.4: 2-D representative of the 3-D tomographic reconstruction of the backhoe shown

in each plane in the model coordinate frame.
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Figure 4.5: 2-D representative of the 3-D tomographic reconstruction of the Point Target

shown in each plane in the model coordinate frame.

In Figures 4.4 and 4.5 we are showing a 2-D representation of the 3-D tomographic

reconstruction image of the backhoe and point target data at each plane, respectively. The

2-D images were generated by summing along one-dimension of the 3-D reconstructed

images. Five observation angles with 40◦ angular diversity from 10◦ to 50◦ elevation angles

were used to form these images. The images on the left are the resultant image when using

the single slant plane method. The images in the middle are the resultant image when using
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multiple slant plant image with 1 m slant plane spacing and 50% overlap. There was 50%

overlap between the detectors. The images on the right are the truth intensity images after

filtering and down-sampling the 1 cm super point cloud into the 10 cm 3-D grid.

In Figures 4.4 and 4.5, we observe that the 2-D rendering of the 3-D reconstructed im-

age of the backhoe is qualitatively better resolved using the multiple slant planes compared

to the single slant method. A quantitative metric will be used to evaluate these images in

Section 6.1
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CHAPTER 5

Metric of goodness

In this chapter, we explore the metrics for measuring the efficacy of the 3D tomographic

reconstructions. The metrics that will be covered in this section are: the similarity metric

and the joint information density metric. The similarity metric and the joint information

density metric will be use as metric of goodness. Furthermore, we explored the Kullback-

Leibler divergence and compared it to similarity metric.

5.1 Mutual Information

After the single and multiple slant plane tomographic reconstructions have been developed

and simulated in MATLAB, methods for measuring the information content of this imagery

need to be developed to determine how much valuable information do the SAL images

have about the object in the scene, and how this information will change as the number of

slant planes varied, and other degrees of freedoms such as elevation angle and noise. As

a quantitative metric mutual information (MI) is used in this research. MI calculates the

similarity between two random variables. In this research, MI was used to calculate the
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similarity between two images.

I(X, Y ) = H(X) +H(Y )−H(X, Y ) (5.1)

Where, I(X, Y ) is the mutual information between image X (the truth image) and

image Y (the reconstructed image). H(X) is the entropy of image X , H(Y ) is the entropy

of image Y , and H(X, Y ) is the joint entropy between image X and image Y . Entropy

measures the amount of information in a random variable, in order word it measures the

uncertainty of a random variable. The entropy is expressed in bits when the log is to the

base 2, and in nats when the log is base e. In this work, we take all logarithms to the base

2, and this is known as the Shannon entropy.

H(X) = −
∑
i

Pi ∗ log2 (Pi) (5.2)

H(Y ) = −
∑
j

Pj ∗ log2 (Pj) (5.3)

H(X, Y ) = −
∑
i

∑
j

Pij ∗ log2 (Pij) (5.4)

To aid interpretation we converted the mutual information metric from bits to a sim-

ilarity metric in percentage by taking the ratio of I(X, Y ) and I(X,X) and multiplied it

by 100 as shown in equation 5.5. Where I(X,X) is equal to the Shannon entropy of X

(H(X))

SIP =
I(X, Y )

I(X,X)
∗ 100 (5.5)

SIP is the similarity in percentage between the truth and reconstructed image. This

similarity metric will be used to quantify how good the reconstructed images represent the
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truth image.

Since we are investigating the information content of the image and noise is informa-

tion. This means that not all the information content in the image is useful information.

Therefore, tracking the amount of join information density (JID) in the images will help us

have a better interpretation on how the similarity is affected by noise. JID track the amount

of useful information of the image as the CNR is being varied. In equation 5.6 we define

the JID

JID =
I(X, Y )

I(Y, Y )
∗ 100 (5.6)

where JID is the ratio of the mutual information of the truth and the reconstructed image to

the mutual information of the reconstructed image by itself.

5.2 Entropy Study

In image processing, entropy measures the amount of information or the uncertainty of an

image. In this study we measured the entropy of the 2-D SAL images of the target to be

projected onto the tomographic plane, and observed the way the entropy is changing as the

level of noise, and the location of the sensor is varied. Figure 5.3, and Figure 5.4 show

the trend of the entropy as the level of CNR is being varied. The different colored lines of

these plots represent the 2-D SAL image of the target at different elevation angles. From

these plots we observed that as noise decreases the entropy of the image decreases as well;

this is because noise is information. Furthermore, from these figures, we observed that

the entropy of the 2-D SAL images change at each observation angle for the unstructured

target; this is because at each look angle a random instance of noise is generated for the

SAL image at the observation angle.
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Figure 5.1: Unstructured Target Single Slant Plant: Entropy vs. CNR study.
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Figure 5.2: Unstructured Target Multiple Slant Plant: Entropy vs. CNR study.

For the multiple slant plane, we summed all the slant plane at each observation angle

and calculate the entropy. We notice that the entropy for the multiple slant plane and single

plane reconstruction are similar in this case; this is because for the multiple slant plane

method the SAL images were generated using the 0% overlap method. In this method,

every point in the point cloud is just sampled once. Therefore, when we sum all the slant

planes we should get the same amount of information as the single slant plane method. In

this case there is a little difference, because a new random draw of noise is generated for

each SAL image.
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Figure 5.3: Structured Target Single Slant Plant: Entropy vs. CNR study.
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Figure 5.4: Structured Target Multiple Slant Plant: Entropy vs. CNR study.

5.3 Study on Mutual Information in intensity image vs

speckle vs shot noise image and registration study

As noted in Section 4.2, the truth images for both the point target and the backhoe data are

intensity images without noise. While the reconstructed images have both multiplicative

noise (speckle noise) and additive noise (shot noise). Therefore, in this section we study the

maximum amount of mutual information one can achieve when comparing a pure intensity

image with a speckle image and a shot noise image. In this study, we used the build-in

”cameraman” in MATLAB, which is an intensity image and set it be the truth image (X).
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A speckle image Yspeckle and a shot noise image Yshot of the cameraman are generated as

expressed in equations 5.8 and 5.9, respectively. The CNR is the same as defined equation

2.5, it is the ratio of the signal power to the noise power.

X = cameraman.tif (5.7)

Yspeckle = X ∗ randn(size(X))√
n

(5.8)

Yshot = X + σ2 ∗ randn(size(X))

CNR ∗
√
n

(5.9)

Where, σ2 is tied to the mean of the intensity image X . From Yspeckle, we can see that

the speckle noise gets beat down by square-root of the number of iterations n. The number

of iterations will represent to the number of observation angles or number of projections

when performing tomographic reconstruction. From Yshot, we can see that the noise factor

depends on both the CNR and the number of iterations.
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Table 5.1: Effect of speckle noise when comparing a noiseless intensity image with a

speckle image

To measure the total amount of mutual information achievable between a noiseless in-

tensity image, and a speckle image. We use the built-in MATLAB image ”cameraman.tif”

to be the original image as shown on top of Table 5.1. We then took the original image

and multiply it by a random Gaussian distribution function, we then divided by the square-

root of the number of iterations or observation angles as shown in equation 5.8 to generate

speckle noise to the original image which is a multiplicative noise. The speckle images

are shown on the bottom of table 5.1. The image on the bottom left represents the speckle

image of the cameraman for 1 iteration, and the image on the bottom right represents the

speckle image of the cameraman after 5 iterations. Figure 5.5 shows the maximum sim-
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ilarity in percentage we can achieve when comparing a noiseless intensity image with a

noisy speckle image. From Figure 5.5 we see that as the number of speckle averaging in-

creases the similarity between the truth and the reconstructed image increases as well. This

is because as the number of speckle averaging increases the signal correlates, and the noise

decorrelates and averages out. As we go to infinity the two images become identical and

the similarity approaches 100%. Note this similarity depends on the total information in

the image.

Figure 5.5: Noiseless Intensity image vs. Speckle averaging

Another study was done to measure the total amount of mutual information one can

achieve when comparing a noiseless intensity image with an image corrupted with shot

noise image. Shot noise is additive noise and can be modeled with a Gaussian distribution

function. Sample images are shown in table 5.2. From Figure 5.3, we observed that the
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similarity between the two images increases as the number of averaging increases. For the

shot noise image, the similarity also depends on the level of CNR, in this example we use

CNR of 1 dB on the shot noise image.

Table 5.2: Effect of speckle noise when comparing a noiseless intensity image with a

speckle image
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Figure 5.6: Noiseless Intensity image vs. Shot noise averaging
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5.3.1 Registration Study

Figure 5.7: Effect of mutual information when the two images are not properly registered.

Figure 5.3.1 shows the effect of the mutual information when the images to be compared are

not properly registered. We can see from these results that precise registration is required

in order to calculate the mutual information between the images. We can also observe

from Figure 5.3.1 that the mutual information takes account of the spatial location of the

information. The two images in Figure 5.3.1 have the same amount of entropy. However,

the spatial location of the information are different, we can see that the mutual information

decreases as the spatial location of the information is different. The entropy of the image

does not change. Therefore, the similarity metric has shift dependence and the 2 images

must be accurately registered for the use of the similarity metric.
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5.4 Sample Image

In this section, we show some sample image of the 3-D tomographic reconstruction of the

backhoe data. These images are shown in the Z vs Y dimension at X (along-track-cross-

range) position. To quantify these results, we calculate the mutual information between the

reconstructed image and the truth image as show in Figure 5.8.

Figure 5.8: Mutual Information between truth image and reconstructed image for each slice

of the 3-D backhoe image.

In Figure 5.8, the black line represents the mutual information between the truth and

the reconstructed image using single slant plane method, and the red line represents the

mutual information of the two images using multiple slant plane method. Higher mutual

information gain is obtained on the reconstructed image when using multiple slant plane
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method. Note that this is the mutual information of each slices of the volume, and the

mutual information of the whole 3-D volume is much greater than 0.1 bits

Figure 5.9 we show a slice of the synthesized plane for backhoe data where the mutual

information is high for both tomographic reconstructions, and in Figure 5.10 we show a

slice of the backhoe data where the mutual information is low. For each of the figures 5.9

and 5.10, the plot on the left represents the slice of the resultant image using the single slant

plane method. The middle plot represents a slice of the resultant image using the multiple

slant plane method, and the image on the right is a slice of the truth image of the backhoe

Figure 5.9: A slice of the 3-D tomographic reconstruction of the backhoe at along track

position of 0.564

Figure 5.9 shows a slice of the 3-D reconstruction volume of the backhoe in the synthe-

sized plane of model coordinates (Y,Z). This slice is at along-track-cross-range (X) position
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of 0.564 m, where in this position we have the maximum amount of mutual information

shown in image 5.8. These images are slices of the reconstructed image for single slant

plane method on the left, multiple slant plane method in the middle and truth image on the

right. For better visualization these images were generated without noise. We projected five

angles with 40◦ angular diversity using observations at 10◦, 20◦, 30◦, 40◦ and 50◦ elevation

angle

Figure 5.10: A slice of the 3-D tomographic reconstruction of the backhoe at along track

position of -4.236 m

Figure 5.10 shows a slice of the 3-D reconstruction volume of the backhoe in the

synthesized plane of model coordinates (Y,Z). This slice is at along-track-cross-range (X)

position of -4.236 m, where in this position we have the minimum amount of mutual in-

formation as shown in image 5.8. These images are slices of the reconstructed image for
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single slant plane method on the right, multiple slant plane method in the middle and truth

image on the right using the same data as Figure 5.9.

5.4.1 2-D representation of the 3-D tomographic reconstruction

In this section, we show the 2-D representation of the 3-D reconstructed image of the

backhoe data. From the following images we can qualitatively, and quantitatively compared

the reconstructed images of the different methods.
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Figure 5.11: 2-D representative of the 3-D tomographic reconstruction of the backhoe

shown in each plane.

In Figure 5.11 we are showing a 2-D representation of the 3-D tomographic recon-

struction image of the backhoe data at each plane. The 2-D images were generated by

summing along one dimension of the 3-D reconstruction. Two observation angles with 20◦

angular diversity was used to form these images. The two observation angles were at 10◦

and 30◦ elevation. The images on the left are the resultant image when using the single

slant plane method. The images in the middle are the resultant image when using multiple
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slant plant method. There was no overlap between the detectors, and the slant plane heights

of the detectors are 2 m. The images on the right are the truth intensity image after filtering

and down-sampling the 1 cm super point cloud into the 10 cm 3-D grid.

From Figure 5.11 we observe that the 2-D rendering of the 3-D reconstructed image

of the backhoe is qualitatively better resolved using the multiple slant planes compared to

the single slant method. The similarity (SIM) and the join information density (JID) are

displayed on in Figure 5.11.
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Figure 5.12: 2-D representative of the 3-D tomographic reconstruction of the backhoe using

two projections with 40◦ angular diversity and 1dB CNR.

In Figure 5.12 the angular diversity between the projections is increased from 20◦ to

40◦. It shows that increasing the angular diversity will help increase the similarity.
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Figure 5.13: 2-D representative of the 3-D tomographic reconstruction of the backhoe using

two projections with 40◦ angular diversity and 1dB CNR.

In Figure 5.13 we increased the CNR from 1dB to 10dB. The images on the left are

the resultant image when using the single slant plane method. The images in the middle

are the resultant image when using multiple slant plant method with no overlap between

the detectors and 2m slant plane height. The images on the right are the resultant image

when using multiple slant plant method with 50% overlap between the detectors and 2m

slant plane height. From this figure, we observe that as the noise level in the reconstructed

image decreases, its similarity between the truth image increases.
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Figure 5.14: 2-D representative of the 3-D tomographic reconstruction of the backhoe using

four projections with 40◦ angular diversity and 1dB CNR.

In Figure 5.14 we increased the number of observation angles from two observation

angles to five observation angles, and a CNR of 1dB. When comparing Figure 5.12 and

figure 5.14, we can see that when we increased the number of observation angles the sim-

ilarity increases, but mostly on the multiple slant plane method. However, for the single

slant plane method number observation angles don’t have a big effect on the similarity.
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5.4.2 Kullback-Leibler divergence

To back-up the results obtained with the similarity metric, we introduce the Kullback-

Leibler divergence. Kullback-Leibler divergence also known as relative entropy is a mea-

sure of the distance between two probability mass function [4]. It is call Kullback-Leibler

divergence instead of Kullback-Leibler distance, because it is not symmetric [4]. Since

Kullback-Leibler divergence is not symmetry, therefor it is not a true metric. However, it

has most properties of a metric. It is commonly used to a measure the relation between

two random variables using their probabilities distributions [4]. The Kullback-Leibler di-

vergence between two probability mass functions p(x) and q(x) is defined as

D(p||q) =
∑
x∈X

p(x) ∗ log
p(x)

q(x)
(5.10)

D(p||p) = 0 (5.11)

D(p||q) > 0 (5.12)

Where D(p||q) is the Kullback-Leibler divergence between the two probability mass

functions p and q. In Figure 5.15, 5.16 and 5.17 we are showing a 2-D representation of

the 3-D tomographic reconstruction image of the backhoe data at each plane. The 2-D

images were generated by summing along one dimension of the 3-D reconstructed im-

ages. These images were generated using four projections angle with an angular of 40◦.

For each of these figures, the left columns represent the 3-D reconstructed image using

the single slant plane method, the middle columns represent the 3-D reconstructed image

using the multiple slant plane method without overlap between the detectors, and the right

columns represent the 3-D reconstructed image using the multiple slant plane method with

50% overlap between the detectors. We displayed the similarity and the Kullback-Leibler
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divergence results for each reconstructed image. From these results we can see that the

Kullback-Leibler divergence results agreed with the similarity results. We observed from

these figures that when we increase the CNR, we have a higher similarity and the Kullback-

Leibler divergence deacreases.

Figure 5.15: 2-D representative of the 3-D tomographic reconstruction of the backhoe using

four projections with 40◦ angular diversity and 0.1dB CNR.
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Figure 5.16: 2-D representative of the 3-D tomographic reconstruction of the backhoe using

four projections with 40◦ angular diversity and 1dB CNR.
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Figure 5.17: 2-D representative of the 3-D tomographic reconstruction of the backhoe using

four projections with 40◦ angular diversity and 10dB CNR.
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CHAPTER 6

Results and Conclusion

In this chapter, we discuss the results obtained in this thesis, and give a detailed conclusion

and suggestion for future work.

6.1 Results and Discussion

To quantify observed changes in the reconstruction images, the similarity metric and the

joint information density metric defined in equations 5.5 and 5.6, respectively are used. As

defined earlier the similarity metric calculates the amount of mutual information between

two random variables; and the joint information density calculated the amount of useful

information in the reconstructed volume.

In this results section, we run various experiment to show how each parameter such

as, angular diversity, number of observation, overlap between the detectors, noise level

and slant plane spacing affects the reconstructed image. These experiments were done

for both the unstructured target and structured target shown in Figure 3.2 and 4.3. The

structured target presents structured information preferring certain look angles whereas the

unstructured target does not. For the unstructured target at each observation angles all

points of the point cloud are visible to the sensor receiver. The targets are rendered at five
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observation angles, ranging between 10◦ to 60◦ elevation angle with increment of 10◦.

Similarity vs. angular diversity experiment for the structured target results

In this experiment, we study the way the similarity between the truth and the reconstructed

image is affected as the angular diversity between the observation angles is varied. Two

projections angle was used for each reconstructed image ranging between 10◦ to 60◦. At

each angular diversity, the SAL image of the target is created for all possible combinations

using the single slant plane and multiple slant plane methods with and without overlap. We

then project the data with incoherent tomographic synthesis into image planes to recon-

struct a 3-D image of the target. At each observation angle, we observe different features

of the target that may contain different information. Therefore, the amount of information

in the 3-D synthesized object changes. In this experiment, we average the similarity for all

synthesized 2-D images of the 3-D objects for all possible combinations of angles between

10◦: to 60◦ degrees for the given angular diversity.

Figure 6.1 shows the similarity versus angular diversity plot. The black line repre-

sents similarities at each angular diversity when using the single slant plane method to

reconstruct the data. The solid blue line represents similarities at each angular diversity

when using the multiple slant plane method with 50% overlap and 1m slant plane spac-

ing to reconstruct the data. The dashed blue line represents similarities at each angular

diversity when using the multiple slant plane method with 0% overlap and 1m slant plane

spacing to reconstruct the data. From Figure 6.1, we observe that the similarity between

the truth image, and the reconstructed image increases as the angular diversity is increased.

Furthermore, from Figure 6.1, we can see that higher similarity is obtained when using

the multiple slant plane method. The similarity is even higher when we have 0% overlap

between the detectors.
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Figure 6.1: Backhoe Target: Similarity vs. Angular Diversity ,1dB CNR.

For the following experiment, we investigated the effect of slant plane spacing be-

tween the detectors on the similarity for the multiple slant plane method. Two projections

angle was used for each reconstructed image ranging between 10◦ to 60◦. At each angular

diversity, the SAL image of the target is created for all possible combinations using the

multiple slant plane method. Figure 6.2 shows the effect of the slant plane spacing on the

similarity between the truth image and the reconstructed image. The black line represents

similarities at each angular diversity when using the single slant plane method to recon-

struct the data. It is the same as in Figure 6.1. The green, blue and red lines represent

similarities at each angular diversity when using the multiple slant plane method with 50%
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overlap and 1
2
m, 1m and 2m slant plane spacing, respectively. We observed from Figure

6.2 we observed that the smaller the spacing between the slant planes are the higher the

similarity. This is because the smaller the slant plane spacing, the smaller the slant plane

height and the more transmitters and detectors are required to illuminate the whole target

and receive the return signals.

Figure 6.2: Similarity vs. Angular Diversity, 1dB CNR.

Similarity vs. angular diversity experiment for the unstructured target results

The same studies that was done for the backhoe target were done for the random point

target. Figure 6.3 shows the effect of angular diversity on the random point target data.
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Angular diversity doesn’t have much effect on the random point target data, because the

point target used in this research was generated in such a way that at each observation

angles all the points in the data are visible to the sensor. At each angular diversity or

observation angles the sensor sees the same points. Therefore, none new information is

added when we look at the data at different angle. We also observed that the multiple slant

plant method gives as higher similarity.

Figure 6.3: Backhoe Target: Similarity vs. Angular Diversity, 1dB CNR.

In Figure 6.4, we study the effect of the slant plane spacing on the point target as we

did on the backhoe data. The black line represents similarities at each angular diversity

when using the single slant plane method to reconstruct the data. The green, blue and red
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lines represent similarities at each angular diversity when using the multiple slant plane

method with 50% overlap and 1
2
m, 1m and 2m slant plane spacing, respectively. We ob-

served from Figure 6.4 observed that the smaller the spacing between the slant planes are

the higher the similarity. We can see that for the point target, slant plane spacing has more

effect than angular diversity

Figure 6.4: Backhoe Target: Similarity vs. Angular Diversity, 1dB CNR.
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Similarity vs. CNR experiment for the structured target results

In this experiment, we investigate the effect of CNR on the similarity between the truth

image and the reconstructed image. After simulating the 2-D SAL image of the target, a

random additive Gaussian noise was added to the SAL image before projected it into the

synthesized plane of the 3-D grid. The variance of the noise is inversely proportional to

the CNR as show in Equation 3.14. We ran this experiment with various levels of CNR to

observe the way the similarity is affected.

In Figure 6.5 we have the similarity versus angular diversity versus CNR for single

slant plane method on top, multiple slant plane method with 0% overlap in the middle

and multiple slant plane with 50% overlap at the bottom. Each colored line represents a

different angular diversity as shown in the legend. From these results we can see that noises

on the reconstructed image have a big effect on the resolution. We observe that as noise

decreases similarity between truth image and the reconstructed image increases.
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Figure 6.5: Backhoe Target: Similarity vs. CNR vs. Angular Diversity.

We know that all the information in the image is not useful, because it’s a noisy image.

We track the amount of useful information as show in Figure 6.6. From Figure 6.6, we ob-

serve that as we increase the CNR the amount of useful information or the joint information
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density between the two images increases. This is because, when we project energy in the

grid space, the information in the data goes up as a function of angular diversity.

Figure 6.6: Backhoe Target: Joint Information Density vs. CNR vs. Angular Diversity.
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Similarity vs. CNR experiment for the unstructured target results

The same similarity versus CNR study that was done for the backhoe target was done for

the random point target. In Figure 6.7 we have the similarity vs. CNR result for single

slant plane method on top, multiple slant plane method with 0% overlap in the middle

and multiple slant plane with 50% overlap at the bottom. Each colored line represents

a different angular diversity as shown in the legend. From these results we can see that

noises on the reconstructed image have an effect on the similarity, but not as great of an

effect when we compared to the structured target. Furthermore, we can see the angular

diversity slightly helps in the case for the unstructured target.
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Figure 6.7: Point Target: Similarity vs. Angular Diversity vs. CNR.

In Figure 6.8, we tracked the joint information density, and we observed that as we

increase the CNR the joint information density between the two images increases.
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Figure 6.8: Point Target: Joint Information Density vs. Angular Diversity vs. CNR.
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6.1.1 Kullback-Leibler divergence for the structured target

In this section we investigate the Kullback-Leibler divergence, and did similar experiments

that was done for the similarity metric. The main purpose of this section is to show that the

Kullback-Leibler divergence agrees with the similarity metric and track against qualitative

assessments.

Kullback-Leibler divergence vs. CNR experiment for the structured target results
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Figure 6.9: Kullback Leibler divergence vs. CNR.

In Figure 6.9 we have the Kullback-Leibler divergence vs. CNR for single slant plane

method on top, multiple slant plane method with 0% overlap in the middle and multiple

slant plane with 50% overlap at the bottom. Each colored line represents a different angular

diversity as shown in the legend. From these results we can see that as we increase the CNR

the Kullback-Leibler divergence decrease, meaning that we have a better reconstruction.
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The lower the Kullback-Leibler divergence is, the better the reconstruction.

Figure 6.10: Kullback Leibler divergence vs. CNR.

In Figure 6.10, we change the slant plane height from 2m to 1
2
m. We observe that the

Kullback-Leibler divergence decreases. This indicates that when the slant plane height is

decreased, the reconstructed image is better resolve. From Figure 6.9, and Figure 6.10 we

see that the Kullback-Leibler divergence and the Similarity metric agreed.
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Kullback-Leibler divergence vs. CNR experiment for the unstructured target results

The same study was done for the unstructured target, and these results we sees that Kullback-

Leibler divergence agrees with the similarity metric.

Figure 6.11: Kullback Leibler divergence vs. CNR.
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Figure 6.12: Kullback Leibler divergence vs. CNR.

6.2 Conclusion

SAL is a coherent imaging technique that exploits angular diversity between aperture po-

sition and target position to synthesize an aperture much larger than the physical antenna

aperture along the baseline created by the angular diversity. The SAL’s relatively narrow
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real aperture resolution allows for multiple slant planes to be created for a single target

with reasonable range/aperture combinations. It can also be displayed as a 3-D image

with asymmetric resolutions, diffraction limited in the dimension orthogonal to the SAL

baseline. Tomographic reconstruction of slant plane data with multiple observations and

increased angular diversity can be used to better resolve the diffraction limited dimension

of the data.

We use incoherent tomographic reconstruction and develop metrics to measure the

efficacy of the reconstructions. Giving sufficient CNR, slant plane spacing has the greatest

impact on the fidelity of the reconstructions, because it resolves individual SAL images

with better diffraction limited resolution. Angular diversity between the SAL images, has

the next greatest impact in the fidelity of the reconstructions. Number of projections and

slant plane overlap have lesser impacts on the fidelity of the reconstructions.

The metrics that were developed in this work are the similarity metric and the joint

information density metric. The similarity metric measures the similarities between two

random variables. It is the ratio of the mutual information of the truth and the reconstructed

image, and the entropy of the truth. It is also spatially depended, requiring registration

of the images prior to calculating the metric. The joint information density tracks the

amount of useful information in the data when varying the CNR. It is the ratio of the mutual

information of the truth and the reconstructed image, and the entropy of the reconstructed

image. Furthermore, we implemented the Kullback-Leibler divergence and compared it to

the similarity metric. From this work we see that the similarity metric and the Kullback-

Leibler divergence agreed.

The slant plane spacing has the greatest effect on the fidelity of the tomographic re-

construction. As the slant plant spacing is decreased, more slant planes are required to

receive the backscattered signals of the entire target. Because this is a diffraction limit

effect, we would be required to be at a closer range or use a larger receiver aperture. De-

creased slant plane spacing increases the amount of information in the slant plane data for
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a given elevation angle or observation.

Angular diversity between the SAL slant planes, has the next greatest impact in the

fidelity of the reconstructions. When the angular diversity is increased, more unique infor-

mation is being projected into the tomographic synthesize plane, enhancing the resolution

on the diffraction limited dimension. Although, multiple observations within the angular

diversity increases efficacy in tomographic reconstruction, however, the effect is minimal.

Therefore, increasing the angular diversity while decreasing the number of projection an-

gles helps reduce the cost to reconstruct the target.

Incoherent tomographic reconstruction of slant plane data can be used to enhance

resolution on the reconstruct 3-D images of target. Depending on the cost and the resolution

required, parameters such as slant plane spacing, angular diversity, CNR and number of

projections can be defined to achieve the desired results.

6.3 Future Work

Future work on this topic could include extending the tomographic reconstructions to non-

planner reconstructions, evaluating automation target recognition (ATR) algorithms against

the developed metrics, and extending this work with coherent polar format reconstructions.

The tomographic reconstruction can be extended to non-planner collections, by vary-

ing both the elevation and azimuth angles. Also evaluating the similarity metric, joint

information density metric and Kullback-Leibler divergence with ATR algorithms results

for target identification, feature extraction and segmentation could show the benefit of these

metrics. Furthermore, this work can be extended with coherent polar format algorithms to

perform 3-D image reconstructions as mentioned in Jackowatz [11].
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