
Slim Embedding Layers for Recurrent Neural
Language Models

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

by

Zhongliang Li
B.A., Peking University, 2011

2018
Wright State University

Wright State University
Graduate School

July 24, 2018

I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER MY
SUPERVISION BY Zhongliang Li ENTITLED Slim Embedding Layers for Recurrent
Neural Language Models BE ACCEPTED IN PARTIAL FULFILLMENT OF THE RE-
QUIREMENTS FOR THE DEGREE OF Doctor of Philosophy.

Michael Raymer, Ph.D.
Advisor

Shaojun Wang, Ph.D.
Co-advisor

Michael Raymer, Ph.D.
Director, Computer Science and Engineering

Ph.D. Program

Barry Milligan, Ph.D.
Interim Dean of the Graduate School

Committee on
Final Examination

Jack Jean, Ph.D.

Xinhui Zhang, Ph.D.

Krishnaprasad Thirunarayan, Ph.D.

ABSTRACT

Li, Zhongliang. Ph.D., Department of Computer Science and Engineering, Wright State University,
2018. Slim Embedding Layers for Recurrent Neural Language Models.

Recurrent neural language (RNN) models are the state-of-the-art method for language

modeling. When the vocabulary size is large, the space taken to store the model parameters

becomes the bottleneck for the use of these type of models. We introduce a simple space

compression method that stochastically shares the structured parameters at both the input

and output embedding layers of RNN models to significantly reduce the size of model pa-

rameters, but still compactly represents the original input and the output embedding layers.

The method is easy to implement and tune. Experiments on several data sets show that the

new method achieves perplexity and BLEU score results comparable to the best existing

methods, while only using a tiny fraction of the parameters required by other approaches.

iii

Contents

1 Introduction to Statistical Language Modeling 1
1.1 Evaluation of Language Models . 3
1.2 N -gram Language Model . 5
1.3 Benchmark Datasets . 6

2 Recurrent Neural Language Models 8
2.1 Simple Recurrent Neural Network . 8
2.2 Training of Simple Recurrent Neural Network 10
2.3 Long Short-Term Memory . 13
2.4 Stacking Recurrent Neural Networks . 15
2.5 Regularization of Recurrent Neural Network 15
2.6 Noise Contrastive Estimation . 18
2.7 Importance Sampling . 21
2.8 Class-based Softmax Layer . 22
2.9 Training Best Practices . 24

2.9.1 Adding Dropout . 24
2.9.2 Mini-batch Training . 24
2.9.3 Fix Upper Bound of Gradient . 25
2.9.4 Use Adagrad . 25
2.9.5 Sharing Noise Samples Across Mini-batch 25
2.9.6 Tuning Learning Rate . 26

2.10 Parameter Sharing . 26
2.11 HashNet . 28
2.12 Space Complexity Analysis of RNN Model 28
2.13 Related Work . 30
2.14 Problem Statement . 31
2.15 Major Contributions . 32

2.15.1 Space Complexity Reduction . 32
2.15.2 Inference Time Complexity Reduction 33

iv

3 Slim Embedding Layers for Recurrent Neural Language Models 34
3.1 Random Parameter Sharing at Input and Output Embedding Layers 34

3.1.1 Compressing Input Embedding Layer 35
3.1.2 Compressing Output Embedding Layer 37

3.2 Connection to HashNet, LightRNN and Character Aware Language Model . 39
3.3 Experiments . 40

3.3.1 Experiments on Slim Embedding for Input Layer 42
3.3.2 Experiments on Slim Embedding for Both Input and Output Layers 45
3.3.3 Machine Translation Reranking Experiment 47
3.3.4 Closest Word . 50
3.3.5 Computational Efficiency . 51

4 Clustering Based Assignment of Sub-vectors 53
4.1 Related Work . 54
4.2 Clustering of Sub-vectors . 54
4.3 Experiment Results . 55
4.4 Discussion . 56

5 Conclusion and Future Work 57

Bibliography 58

v

List of Figures

2.1 Simple Recurrent Neural Language Model 8
2.2 Deep recurrent neural network architecture. The circles represent network

layers, the solid lines represent weighted connections. 16

3.1 Toy example of the original embedding layer and new embedding layer.
In this dissertation, the concatenated word vector has the same size as the
original one. The assignment of sub-vectors to each word are randomly
selected and fixed before the training process. 36

3.2 Test perplexities on 44M with 512 hidden nodes and each 512-dimensional
input embedding vector was divided into eight parts. Only input word em-
bedding layer was compressed. 43

3.3 Test perplexities on 44M with 512 hidden nodes with 1/8 original Size.
Only input word embedding layer is compressed. 44

3.4 Test perplexities on 44M with 512 hidden nodes and each 512-dimensional
vector divided into eight parts. Both input and output embedding layers
were compressed. 45

3.5 Test perplexities on 44M with 512 hidden nodes when embedding com-
pressed to 1/8. The whole model size is less than 20% of the baseline. . . . 46

vi

List of Tables

3.1 Corpus Statistics . 41
3.2 Validation and test perplexities on PTB with 300 hidden nodes, K=10, K

is the number of sub vectors each word has, and M is the total number of
unique sub vectors. 42

3.3 Validation and test perplexities on PTB with 650 hidden nodes, K=10, K
is the number of sub vectors each word has, and M is the total number of
unique sub vectors. 42

3.4 PPL results in test set for various linguistic datasets on ACLW datasets.
Note that all the SE models only use 300 hidden states. 48

3.5 Perplexity results for single models on BillionW. Bold numbers denote us-
ing single GPU. 49

3.6 Reranking Experiment . 50
3.7 Nearest neighbor of word embeddings . 51
3.8 Time Usage Comparison . 52

4.1 Clustering sub-vector assignment on the input layer 55
4.2 Clustering sub-vector assignment on the output layer 55
4.3 Clustering sub-vector assignment on both input and output layers 56

vii

Acknowledgment
First, I would like to extend my thanks to my advisor Dr. Shaojun Wang. Through our dis-

cussion, I realized the essential nature of critical thinking is necessary to have independent

opinions of our own and not to merely follow the herd.

Second, I want to thank Dr. Michael Raymer. During the last few years of my study

while on Dr. Raymer’s team, his support helped me find the confidence to finish my re-

search. I want to thank Dr. Yunxin Zhao for guiding me to investigate the clustering based

assignment of sub-vectors. Finally I would like to give my gratitude to Dr. Jack Jean, Dr.

Krishnaprasad Thirunarayan, and Dr. Xinhui Zhang for their advice and for serving on my

committee.

During my graduate study, I have made many friends. I want to thank my coworkers

from the same lab, Tian Xia, Shaodan Zhai, Raymond Kulhanek, Ming Tan, etc. During

this graduate study, they were helpful with my study and research, and also with advice for

my life.

viii

Dedicated to my parents

ix

Introduction to Statistical Language

Modeling

Statistical language modeling research has been actively studied since 1980, and it is useful

for a variety of applications, including speech recognition, machine translation, document

classification, optical character recognition, information retrieval, handwriting recognition,

and many more. A statistical language model (SLM) is a probability distribution over se-

quences of words that yields the relative probability of any given finite sequence. Assuming

the word sequence is W = w1, w2, ..., wN , the salient question for efficient language mod-

eling is how to estimate p(W). We could decompose p(W) using the chain rule:

p(W) = p(w1, w2..., wn) = p(w1)p(w2|w1)p(w3|w1, w2)...p(wn|w1, w2, ...wn−1)

Then, the modeling task could be formulated as predicting the next word given the history

of words, which is to estimate the conditional probability.

p(wt|w1, w2, ..., wt−1)

The model then provides a probability distribution over all possible next words. The prob-

lem is often simplified by limiting the operating vocabulary to a fixed-size set of the most

1

frequently-used words. Words that are not in the vocabulary are replaced by a special word

“<unk>”.

Depending on the dataset, the vocabulary size can vary significantly. In real-world data

sets, the vocabulary size is often multiplied due to spelling errors, alternate capitalization,

and other variations. Language models are trained using representative corpora for the

domain in questions. A corpus of, for example, bio-medical research literature will vary

significantly in word content and frequency from a corpus obtained from legal texts or

social media postings. Language models have been reported to be based upon corpora as

large as 100 billion words [Shazeer et al., 2017].

Recurrent neural language (RNN) models (described in detail in Chapter 2) have been

very effective and remained the state-of-the-art model in recent years. However, several

challenges remain in constructing and training such models. Chief among these challenges

is the computational complexity of model training as the number of parameters increases.

Currently, the best performing recurrent neural models are those with the most parameters.

On Google’s one-billion-word corpus, the best model [Shazeer et al., 2017] has more than

4 billion parameters and is trained on 32 Tesla K40 GPUs. Thus, the best performing model

for this corpus has more parameters than there are words in the training set. The demanding

number of parameters for effective modeling makes it impossible to train on a single GPU

to achieve the state-of-the-art performance. Assuming 32-bit values for each parameter,

current state-of-the-art models require almost 15GB of memory just for parameter storage,

and other 15GB to store parameter gradients during he training process. Given that the

largest amount of storage currently available for off-the-shelf GPUs is 16GB, it would

clearly be beneficial to reduce the parameter space if possible.

In addition to the extensive space complexity, training RNN language models is also

quite time consuming, mainly because it requires estimating the softmax function at ev-

ery time step. Many approaches have been proposed to reduce the time complexity of

the training algorithm, such as hierarchical softmax [Goodman, 2001, Kim et al., 2016],

2

importance sampling (IS) [Bengio and Senécal, 2008, Jozefowicz et al., 2016], and noise

contrastive estimation (NCE) [Mnih and Teh, 2012, Zoph et al., 2016]. However, it remains

a significant challenge to efficiently train models as the number of parameters grows.

The development of more compact, more effective language models will allow for

easier deployment in the real world, will reduce the communication overhead for training

distributed models, and may even facilitate model use on mobile devices and other plat-

forms with limited computational, power, and storage resources.

1.1 Evaluation of Language Models

Perplexity

A number of metrics are commonly employed to evaluate the performance of language

modeling techniques. Among the simplest and most commonly reported is the perplexity

(PPL). Given a sequence of words, W, the perplexity of the sequence relative to a given

language model is defined as:

PPL = n

√√√√ n∏
i=1

1

P (wi|w1...i−1)
(1.1)

Perplexity can be understood as on average how many words with the same probability

can appear given any context. With lower perplexity, the model has fewer words to choose

from, so that it is more confident in its predictions, and the model is better. A closely related

metric to PPL is cross entropy, which is simply the log of the perplexity.

BLEU Score

An important application of language modeling is machine translation. Unfortunately, per-

plexity is not a direct indicator of the performance of a trained model to machine trans-

3

lation. A common measure employed for this task is the BLEU score [Papineni et al.,

2002]. BLEU score against a common corpus is typically used to measure the comparative

performance of machine translation systems.

The machine translation system normally uses data comprising source language sen-

tences, and their corresponding translated target language sentences. For each source lan-

guage sentence, it can have more than one reference translated sentence. The BLEU score

is defined as:

BLEU = min(1, exp(1− reference-length
output-length

))(
4∏
i=1

precisioni)
1
4

Precisioni =
clipped correct candidate i-gram
total number of candidate i-gram

Here the clipped correct candidate i-gram means the maximum times the i-gram occurs in

any single reference translation. The reference length considers the closest reference length

for each translation. BLEU score is typically computed over the entire corpus, and is not

defined on single sentences.

As a simple example, we have a simple test set that have one source sentence and two

reference translated target sentences.

Candidate translation: Two dogs in the the apartment.

Reference 1: There are two dogs in the house.

Reference 2: Two dogs are in the room.

For unigram (1-gram), all the words occur in the reference sentences except ”apartment”,

and ”the” occurs at most once. So clipped correct candidate 1-gram is 4. The total number

of unigram in the candidate translation is 6. For bigram (2-gram), the clipped correct

candidate 2-gram is 3 and the total number of bigram in the candidate translation is 5. For

4

trigram (3-gram), the clipped correct candidate 3-gram is 2. For 4-gram, the clipped correct

candidate 4-gram is 1. The length of candidate translation is 6. And the closest reference

length is 6. Thus, the BLEU score for this example is:

min(1, exp(1− 6

6
))((4/6) ∗ (3/5) ∗ (2/4) ∗ (1/3))0.25 = 0.508

We can see that the model with a higher BLEU score is better.

1.2 N -gram Language Model

The most successful language model in the first two decades of language modeling re-

search was the n-gram language model [Rosenfeld, 2000]. The model is simple and works

well when there is enough data. A major advantage of the n-gram language model is its

interpretability.

The probability P (wt|w1,...,i−1) depends on the entire word history, and we can esti-

mate it based on the counts that the word sequence occurs.

P (wt|w1,...,i−1) =
Count(w1, ..., wt)

Count(w1, ..., wt−1)

However, this is not computationally feasible. Almost all word sequences occur only

a limited number of times, and it is impossible to record all the sequences. For example,

if the vocabulary size is 10,000, and the total number of unique sequences with length 30

will be 10120, it is larger than the number of atoms in the universe. Therefore, we need to

make the Markov assumption that

P (wt|w1,...,t−1) ≈ P (wt|wt−1, wt−n+1) =
Count(wt−n+1, ..., wt)

Count(wt−n+1, ..., wt−1)

5

where the value n is a fixed number. This is the well-known n-gram e language model.

In order to overcome the data sparseness problem, various smoothing techniques

[Chen and Goodman, 1999] have been proposed. The n-gram language model, which

simply estimates the probability of occurrence of each word based on its relative frequency

given previous n words in the training corpus, is very effective in practice when a larger n

is used. In particular, 1) The model can be trained in a short time. It is easy to do distributed

training using map/reduce techniques. 2) The model can be explained. If the model gives

a bad prediction, we can find the reason. 3) It’s fast and efficient at the decoding stage in

speech recognition and machine translation, where only a look-up table is maintained. For

these reasons, n-gram models are still widely used in the industry, despite its disability to

take into account of long range dependency and the emergence of more accurate models

over the past decade.

1.3 Benchmark Datasets

Several datasets have been used extensively in language modeling research. The most pop-

ular benchmark dataset is the Penn Treebank Corpus (PTB) [Marcus et al., 1993]. PTB

consists of 929k training words, 73k validation words, and 82k test words. It has 10k

words in its vocabulary. This data set is available for public download at the Linguistic Data

Consortium website, and the processed data can be obtained from http://www.fit.

vutbr.cz/˜imikolov/rnnlm/simple-examples.tgz. It has been found that

when training RNN language models, overfitting occurs easily. Many regularization meth-

ods are tested in PTB dataset [Zaremba et al., 2014, Graves, 2013, Gal and Ghahramani,

2016].

Often, it has been found in practice that models that perform well on smaller datasets

do not generalize well on larger ones. In 2013, Google released a public dataset [Chelba

et al., 2014], that has almost one billion words. In addition to the large overall size of

6

http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz

this corpus, it is also distinguished by its sizable vocabulary, comprising 793471 words

including start of sentence token “<s>” and end of sentence token “</s>”. At the time of

its release, state-of-the-art models were able to yield perplexity scores around 43.8 for this

data. At the time of the writing of this dissertation, the best single-model perplexity that

has been achieved for the Google data set is 28.0 [Shazeer et al., 2017].

7

Recurrent Neural Language Models

2.1 Simple Recurrent Neural Network

The state-of-the-art language model is currently Recurrent Neural Network (RNN) lan-

guage models.

U

W

V

x

w

s

z

ŷ

L

y

softmax
Unfold

U

V

U

V

U

V
W W W Ws... s...

xt−1

st−1

zt−1

ŷt−1

Lt−1

yt−1

wt−1

xt

st

zt

ŷt

Lt

yt

wt

xt+1

st+1

zt+1

ŷt+1

Lt+1

yt+1

wt+1

Figure 2.1: Simple Recurrent Neural Language Model

The left in Fig 2.1 is an RNN and its loss drawn with recurrent connections. The RNN

has input to hidden connections parametrized by a weight matrix U , hidden-to-hidden re-

current connections parametrized by a weight matrix W , and hidden-to-output connections

8

parametrized by a weight matrix V . A loss L measures how far each ŷ is from the corre-

sponding training target y. The right in Fig 2.1 is the unfolded computational graph for a

word sequence with length of T , w1, . . . , wT , where each node is now associated with one

particular time instance. The computational graph is used to compute the training loss of a

recurrent network that maps an input sequence of x values to a corresponding sequence of

output ŷ values.

At each time stamp, the current word is encoded as one-hot vector. In most cases,

the vocabulary of the language model is fixed and we assume the vocabulary size is V .

Then each word’s one-hot vector will have the size of V . For example, if the vocabulary

size is 3, then the one-hot vector could be [1, 0, 0]T , [0, 1, 0]T , [0, 0, 1]T . xt is the current

word wt’s one hot vector, and st = f(Uxt +Wst−1). The matrix U is usually called word

embeddings, because the matrix multiplication of the one hot vector with U is equivalent

to just finding the row in which the one hot vector’s location is also one. To compute the

current timestep’s hidden states st, the previous timestep’s hidden state st−1 is also used. f

is a non-linear function, which usually is the sigmoid function

f(x) =
1

1 + exp(−x)
.

The hidden state st is also called context vector. With st, it is projected to a vector of the

same size as the vocabulary size using matrix V, zt = Vst and then is fed into the softmax

function to get a normalized output vector ŷt. So in the output matrix V , each word w

also has one corresponding row vector vw, called word embeddings , zwt = vwst, then the

element in ŷt corresponding to word w is

ŷwt = p(w|st) =
exp(zwt)

Σw′exp(zw
′

t)
.

In language modeling, the lossL between each ŷt and the corresponding training target

9

yt is the cross-entropy,

L(ŷt, yt) = −
V∑
i=1

yti log(ŷti)

In the equation, and yti is ith value of the one hot vector for target word wt, so that

V∑
i=1

yti log(ŷti) = log(p(wt|st))

Thus the total loss of generating the whole sequence w = w1, · · · , wT could be com-

puted by the forward propagation described above as

Loss(w) = − log(w)) = −
T∑
t=1

log(w1, · · · , wT) = −
T∑
t=1

V∑
i=1

yti log(ŷti) = −
T∑
t=1

log(p(wt|st))

So the loss is also called negative log-likelihood loss. It can be proved that minimizing this

loss is equivalent to minimizing the KL-divergence between the data distribution and the

model distribution.

2.2 Training of Simple Recurrent Neural Network

The dominate approach to train neural networks is the minibatch stochastic gradient de-

scent (SGD) method [Goodfellow et al., 2016]. Instead of using the entire training set or

only a single example at a time, minibatch is a good trade-off among several factors such

as accuracy, efficiency, regularizing effect etc. In each round, we sample a minibatch of

M examples from the training set, compute gradient estimate of loss function over these

M examples, then apply gradient update for the model parameters. Repeat this procedure

until convergence.

In language modeling, we keep the word order, and first concatenate all of the words

of the entire corpus as one word sequence, we partition this sequence into M parts, where

10

M is the minibatch size and could be set to 64 for example and each part is treated as a

word sequence, each part is independent with other parts, and then stack them together. So

the total loss becomes

1

M

M∑
m=1

Loss(wm) = − 1

M

M∑
m=1

log(wm)

Each wm,m = 1, · · · ,M is still a long sequence, again we partition each sequence into L

subsequences, each with a length ofN , the lth subsequence of wm iswm(l∗N)+1, · · · , wm(l+1)∗N

whose dependence with previous subsequence is only through the hidden state sm(l∗N). The

loss could be rewritten as

1

M

M∑
m=1

Loss(wm) = − 1

M

M∑
m=1

log(wm) = − 1

M

M∑
m=1

L∑
l=0

log(wm(l∗N)+1, · · · , wm(l+1)∗N |sm(l∗N))

and the loss for the subsequence of wm is wm(l∗N)+1, · · · , wm(l+1)∗N can be computed by the

forward propagation on the unrolled computational graph starting from the hidden state

sm(l∗N).

Computing the gradient of the loss for the subsequence of wm iswm(l∗N)+1, · · · , wm(l+1)∗N

is straightforward too. One simply applies the generalized back-propagation algorithm to

the unrolled computational graph. No specialized algorithms are necessary. This is what is

most commonly called truncated back propagation through time (TBPTT) [Mikolov et al.,

2011b, Jozefowicz et al., 2016, Werbos, 1990]. During back-propagation, we need to know

the derivative of the loss function respect to the weights. Because of the chain rule, we

will need to use the derivative of the activation functions. The derivative of the sigmoid

function is:

∂f(x)

∂x
=

1

1 + exp(−x)
(1− 1

1 + exp(−x)
) = f(x)(1− f(x))

11

For softmax function, the derivative is:

∂p(w|st)
∂zw

=
exp(zw)∑
w′ exp(zw′)

− (
exp(zw)∑
w′ exp(zw′)

)2

=
exp(zw)∑
w′ exp(zw′)

(1− exp(zw)∑
w′ exp(zw′)

)

= p(w|st)(1− p(w|st))

For zw′ , w′ 6= w,

∂p(w|st)
∂zw′

= − exp(zw)∑
w′ exp(zw′)

exp(z′w)∑
w′ exp(zw′)

= −p(w|st)p(w′|st)

We can see that for sigmoid and softmax function, their derivative can be computed using

the activation values, so that we do not need to evaluate the time consuming exponential

function during back propagation.

As we know,

log(wm(l∗N)+1, · · · , wm(l+1)∗N |sm(l∗N)) =
N∑
i=1

log p(wm(l∗N)+i|sm(l∗N)+i)

Let

Qi(w) = − log(p(wi|si))

so that

∂(Qi(θ))

∂zw
=
∂(Qi(θ))

∂p(w|st)
∂p(w|st)
∂zw

= − 1

p(w|st)
p(w|st)(1− p(w|st))

= p(w|st)− 1.

12

∂(Qi(θ))

∂zw′
=
∂(Qi(θ))

∂p(w|st)
∂p(w|st)
∂zw′

= (− 1

p(w|st)
)(−p(w|st)p(w′|st))

= p(w′|st)

Once the gradient of the loss of the minibatch of subsequences are obtained, we update

the parameters by gradient descent, then we move to the next minibatch of subsequences.

When we reach the end of the sequences, we rotate back to the beginning of the M se-

quences. We repeated this procedure until convergence. Of course many variants of SGD

exist, and Ruder [Ruder, 2016] gives a good survey.

2.3 Long Short-Term Memory

There are many different recurrent neural network architectures, but Long Short-Term

Memory (LSTM) is the most commonly used. In sentences, long term dependencies exist.

The next word we want to predict could be highly related to several words we mentioned

many words away from the current position. For example, consider the following sentence:

“SpaceX on Thursday launched and landed a first-stage rocket booster that had previ-

ously flown — a milestone that could signal a new era of low-cost space transportation”.

In this sentence, the word “space” is highly related to the word “rocket” and “SpaceX”.

It is impossible to do this in normal n-gram language models, as the largest n-gram order I

have found is 9-gram, and the n-gram baseline model for Google’s one-billion-word dataset

is 5-gram [Chelba et al., 2014]. However, it is possible to do this with the simple RNN lan-

guage model. The key advantage of the recurrent neural network model is that each hidden

state depends on all the words in the current history. While this enables modeling long-term

dependencies, it also results in a network that is very difficult to train, due to the exploding

13

gradient or vanishing gradient problem [Bengio et al., 1994].

To resolve the difficulty in training simple RNNs due to vanishing gradients, LSTM

introduces memory cells and does not use activation functions on the memory cells. The

stored value in the cells could be kept for many timesteps. In the Wikipedia experiments of

Graves [2013], the LSTM model trained was able to correctly model opening and closing

quotation marks and parentheses, which is a clear indicator of the language model’s mem-

ory. Since any sequence of words, including very long sequences, can be found between

quotes or parentheses, it is impossible to correctly model them using only short-range con-

text.

LSTM models have more parameters than simple RNN models with the same number

of hidden states because of the gates. However, the work of Jozefowicz et al. [2016] shows

that even with the same number of parameters, LSTM models perform better than the

simple RNN models. LSTM has also been widely used in industry, for example it is used

to generate email replies for Gmail [Google, 2015] and Apple also has its own version

called “QuickType” [Wired, 2016].

In the experiments described here, we used LSTM as our basic building blocks of large

language models. The internal dynamics of LSTM are shown in the following equations,

in each timestep t, the word vector xt is used as the input, then ht is used to predict the next

word yt.



i

f

o

g


=



sigm

sigm

sigm

tanh


T2n,4n

 xt

ht−1

 (2.1)

ct = f � ct−1 + i� g (2.2)

ht = o� tanh(ct) (2.3)

14

In the formula, � is element-wise multiplication, and Tn,m : Rn → Rm is an affine trans-

form, i is the input gate, f is the forget gate, o is the output gate, and g is the non-linearity

for generating output of the current timestep. c is the memory cells. The gated design is

very successful and is used to develop many new architectures, such as the Highway net-

works [Srivastava et al., 2015] and the gated convolutional language models [Miyamoto

and Cho, 2016].

2.4 Stacking Recurrent Neural Networks

For language modeling, there is a large amount of training data. In the field of deep learn-

ing, models with larger numbers of parameters are trained more easily and generalize better

[Jozefowicz et al., 2016]. One method to increase the number of parameters in the recurrent

neural network is to increase the number of hidden states. The time complexity of LSTM

layers is O(4N2), when the dimension of the input vector xt and the hidden state vector

ht are both N . But if we feed the output of the first LSTM layer to another layer and by

stacking L layers of LSTM, the time complexity is O(4LN2). And during training, the

output layer is the most time consuming, so uses the most time. Therefore, by stacking

more layers of LSTM [Graves, 2013], we can increase the number of parameters without

significantly increasing the time complexity.

2.5 Regularization of Recurrent Neural Network

RNN language models contain a huge number of parameters, which makes it very easy to

overfit. On Google’s one-billion-word dataset [Chelba et al., 2014], overfitting has been

observed even when training a LSTM model with 2048 hidden states. There are several

methods that are used in recent published works to avoid overfitting in these models, such

15

h1
t−1

h2
t−1

h3
t−1

h1
···

h2
···

h3
···

h1
···

h2
···

h3
···

h1
t

h2
t

h3
t

h1
t+1

h2
t+1

h3
t+1

xt−1 xt xt+1

wt−1 wt wt+1

Inputs

Hidden Layers

Outputs ŷt−1 ŷt ŷt+1

Lt−1 Lt Lt+1

yt−1 yt yt+1

Figure 2.2: Deep recurrent neural network architecture. The circles represent network
layers, the solid lines represent weighted connections.

as L2 regularization [Mikolov et al., 2010, Joulin et al., 2017], adding weight noise [Graves,

2013] and dropout[Zaremba et al., 2014].

Dropout

Dropout was the first highly successful method applied to regularize feed forward neural

networks, and it remains widely popular today. It works by randomly dropping units and

connections (setting hidden states to zero) from the neural network during training [Srivas-

tava et al., 2014]. For recurrent neural networks, Zaremba et al. [Zaremba et al., 2014]

found applying dropout to the non-recurrent layers is a very effective way to regularize

the RNN model. For multiple layers of LSTM, the dropout works in the following way

16

Zaremba et al. [2014],



i

f

o

g


=



sigm

sigm

sigm

tanh


T2n,4n

 D(hl−1
t)

hlt−1



clt = f � clt−1 + i� g

hlt = o� tanh(clt)

In the formula, D is the dropout operator that sets a random subset of its argument to

zero.

L2 Regularization

L2 Regularization works by adding a penalty term to the loss function, it penalizes the large

values. L2 regularization is very easy to implement and doesn’t use extra space.

LL2(W) = L(W) + λW 2

The gradient is the following,

∂LL2(W)

∂W
=
∂L(W)

∂W
+ 2λW

The way to implement L2 regularization is to subtract a small, constant fraction of the

current weight value at each training step.

17

Adding Noise

Dropout could be treated as a special case of adding activation noise to the network [Sri-

vastava et al., 2014]. In the experiments of Graves [2013], two kinds of regularization were

tested, one is adding noise with standard deviation of 0.075 to the network weights at the

beginning of each sequence, and the other is adding adaptive noise. For the word level ex-

periments, weight noise was used because computation of the adaptive noise was too slow.

For the PTB dataset, the word level model trained with weight noise yielded the best PPL.

2.6 Noise Contrastive Estimation

Recall that language models attempt to predict the probability of the next word in a se-

quence, given the current word history. Since this probability distribution must be calcu-

lated over (and normalized by) all words in a language, the normalization step can be com-

putationally prohibitive. Several sampling based approaches to speeding up this step have

been proposed, including noise contrastive estimation and importance sampling (NCE)

[Gutmann and Hyvärinen, 2010, Zoph et al., 2016, Dyer, 2014]. NCE reduces the language

model estimation problem to a binary classification problem, the problem of estimating the

classifier that uses the same parameters to distinguish samples from the empirical distri-

bution from samples generated by the noise distribution. For language modeling, the data

distribution phd(w) depends on the context, which is the last hidden state vector in the cur-

rent timestep. The noise distribution pn(w) is known and fixed. For language modeling,

the noise distributions usually used are the uniform distribution, the unigram distribution

or flattened unigram distribution (unigram distribution power raised to some value and then

normalized). And it is also possible to use context-dependent distributions. NCE makes

the normalization term as an additional parameter.

The training data set D is generated with the following method, for each context h,

we first sample one “true” sample for the empirical distribution, and use an auxiliary label

18

d = 1 to indicate this data point is drawn from the true distribution. Then we sample k

“noise” samples from pn(w), with auxiliary label d = 0 indicating these data points are

noise. Therefore the joint distribution of label and data is

p(d, w|h) =

{ k
k+1
× pn(w) if d = 0

1
k+1
× phd(w) if d = 1

Using the formula of conditional probability, we can find the probability of the label

d given the context h and observed word w:

p(d = 0|h,w) =
k
k+1
× pn(w)

1
1+k
× p(w|h,w) + k

1+k
× pn(w)

=
k × pn(w)

p(w|h) + k × pn(w)

p(d = 1|h,w) =
1

k+1
× p(w|h)

1
1+k
× p(w|h,w) + k

1+k
× pn(w)

=
p(w|h)

p(w|h) + k × pn(w)

In the above formulas, the probability P (w|h) still needs to be normalized. Let

u(w|h) = exp(zw). NCE makes two further assumptions. First, the partition function

Z(h) =
∑

w exp(zw) could be estimated as parameters, which means for every history,

NCE introduces one parameter. Second, for neural networks with numerous parameters,

fixing Z(h) = 1 for all h is effective [Mnih and Teh, 2012].

p(d = 0|h,w) =
k × pn(w)

u(w|h) + k × pn(w)

19

p(d = 1|h,w) =
u(w|h)

u(w|h) + k × pn(w)

Now the problem is changed to be a binary classification problem that can be trained

to maximize conditional log-likelihood of d, with k negative samples chosen:

LNCEk
= −

∑
(w,h)∈D

(log p(d = 1|h,w) + kEŵ∼pn(w) log p(d = 0|h, ŵ))

The second term of the above function is still a summation over the whole vocabulary, thus

it is still too expensive to calculate. The final step is to replace the expectation with a Monte

Carlo approximation:

LMC
NCEk

= −
∑

(w,h)∈D

(log p(d = 1|c, h) + k ×
k∑

i=1,ŵ∼pn(w)

1

k
× log p(d = 0|h, ŵ))

= −
∑

(w,h)∈D

(log p(d = 1|h,w) +
k∑

i=1,ŵ∼pn(w)

log p(d = 0|h, ŵ))

There are several requirements for the noise distribution to become a good candidate.

1) The analytical expression for pn(w) is known. 2) A noise distribution must be sampled

easily. 3) A noise distribution that in some aspect, for example with respect to covariance

structure, is similar to the data must be chosen. 4) The number of noise samples needs to be

as large as possible. These requirements could be useful when improving the performance

of the models.

20

2.7 Importance Sampling

In the softmax layer, the context vector st needs to be projected to a vector with the same

size of the vocabulary size. If the dimension of the hidden vector is H , then the complexity

of the softmax layer will be V H . When the vocabulary of the dataset is large, this matrix

multiplication is very time consuming. Another approach to solve this problem is to use

importance sampling (IS) [Bengio and Senécal, 2008, Jozefowicz et al., 2016]. For the full

softmax function and its derivative:

p(w|st) =
exp(zw)∑
w′ exp(zw′)

∂(− log(p(w|st)))
∂θ

= −∂zw
∂θ

+
∑
w′

(
exp(zw′)∑
w′ exp(zw′)

∂zw′

∂θ
)

= −∂zw
∂θ

+
∑
w′

p(w′)
∂zw′

∂θ

= −∂zw
∂θ

+ EP [
∂zw′

∂θ
]

Importance sampling is very straightforward. In order to approximate the averageEP [
∂zw′
∂θ

],

we can use a proposal distribution Q(w).

∑
w′

p(w′|st)
∂zw′

∂θ
=
∑
w′

Q(w′)
p(w′)

Q(w′)

∂zw′

∂θ

Then, we apply classic Monte-Carlo to estimate the gradient. We take m independent

samples y1, ..., ym from Q(w′), then the estimator is:

1

m

m∑
i=1

p(yi|st)
Q(yi)

∂zyi
∂θ

.

21

As explained in Bengio and Senécal [2008], in order to compute p(yi|st), the par-

tition function
∑

w′ exp(zw′) still needs to be computed. It was suggested that when we

approximate the expectation, we use

p(w|st) ≈ p′(w|st) =

exp(zw)
Q(w)∑

w′∈[y1,y2,...,ym]
exp(zw′)
Q(w′)

=
exp(zw − logQ(w))∑

w′∈[y1,y2,...,ym] exp(zw′ − logQ(w′))
when w ∈ [y1, ..., yn]

∂(− log(p(w|st)))
∂θ

= −∂zw
∂θ

+ EP [
∂zw′

∂θ
]

≈− ∂zw
∂θ

+
∑

w′∈[y1,y2,...,yn]

p′(w′|st)
∂zw′

∂θ

=− ∂(zw −Q(w))

∂θ
+

∑
w′∈[y1,y2,...,yn]

p′(w′|st)
∂(zw′ − logQ(w′)

∂θ

=
∂(− log(p′(w|st)))

∂θ

This also makes the implementation very straightforward, we simply subtract the

logQ(w) from each sampled zw, and then pass them to the softmax layer (already im-

plemented in many frameworks), then to the loss which predicts the target, and after the

backward pass, we get the gradient with respect to zw.

The time complexity of IS ismH , because in each time stamp, we just need to evaluate

m samples’ terms. The approximate gradient could be used to train the language model.

2.8 Class-based Softmax Layer

The computation bottleneck of neural language model is in the output layer, where there

is a dense matrix multiplication with the complexity that depends on the vocabulary size

22

of the corpus. Aside from the above two sampling based methods, a simple and popular

technique to reduce the complexity is to use a class based output layer [Mikolov et al.,

2011a]. In this approach, we assign each word a fixed class id. For example if we have C

classes in total, any word in the vocabulary has one unique class id.

p(w|h) = p(c(w)|h)p(w|c(w), h)

When we try to compute the probability of a word, first we compute the probability of the

class, then compute the probability of the word within the class. In this way we no longer

need to compute the softmax over the full vocabulary. If we assume the number of words

in each class is almost equal, then the time complexity of the model is

HC +
HV

C

It is easy to see that when C =
√
V , then time complexity is the smallest 2H

√
V .

There are many ways to assign the class ids to the words. The simplest method is to

simply randomly partition the words into C sets [Kim et al., 2016]. Another way is to do

the assignment according to the frequency of the words. If the class set size is not restricted

to be equal, then we see that we can assign the most frequent words in a smaller set, which

also helps to reduce the time complexity.

Another way to look at this model is that we can treat it as a two-level hierarchical

softmax approximation [Morin and Bengio, 2005]. In hierarchical softmax approximation,

each word is a leaf node, and the probability of the word is the probability of the path from

the root node to the corresponding leaf node. If we assume all the words are in the leaves

and the tree is a complete tree, then the depth of the tree is log(V), and the complexity for

computing the probability of a word is also O(log(V)).

It is clear to see that the training complexity is decreased to O(log(N)). But for

23

inference, if we want to find the word with the exact largest probability, the complexity is

still O(N), because we need to compute the probability of all the words. One way to speed

this up is to use some way to shortlist the possible words and only score the most probable

list of words. This kind of model is used in Google’s chatting app Allo [Google, 2016].

An interesting observation for class-based softmax and hierarchical softmax is that

they all increase the space complexity of the model when the same dimension of hidden

states is used.

2.9 Training Best Practices

The following section summarizes current best practices in training neural network based

language models.

2.9.1 Adding Dropout

As previously noted, deep learning models have a large number of parameters to train,

in some cases even exceeding the size of the data set used for training. The most com-

monly employed and successful technique to mitigate overfitting of parameters is to em-

ploy dropout. In some cases, the number of parameters is even larger than the size of the

dataset [Jozefowicz et al., 2016]. For LSTM language models, dropout can only be used in

the non-recurrent connections. On one-billion-word dataset, a language model with 2048

hidden states still has overfitting.

2.9.2 Mini-batch Training

The use of graphics processing units (GPUs), which are optimized for large matrix multipli-

cation operations, has facilitated the training of much larger networks than were previously

feasible. Mini-batch training, where the size of the batch is optimized to efficiently use the

24

GPU resources, results in significant performance increases.

2.9.3 Fix Upper Bound of Gradient

Recurrent neural networks are known to suffer from gradient decay or gradient exploding.

Experiments show that fixing the upper bound of the gradient helps to solve the gradient

exploding problem [Pascanu et al., 2013]. Normally the upper bound of the gradient is set

to be 0.5 to 10 times the average gradient norm.

2.9.4 Use Adagrad

The Adagrad algorithm [Duchi et al., 2011] is easy to implement and is found to be very

successful when training on the one-billion-word dataset. The update rule for SGD algo-

rithm is:

Wt+1,i = Wt,i − ηgt,i

The update rule for Adagrad algorithm is:

Wt+1,i = Wt,i −
η√

Gt,ii + ε
gt,i

where Gt is a diagonal matrix where each diagonal element is the sum of the squares of the

gradients w.r.t. Wi up to time step t.

2.9.5 Sharing Noise Samples Across Mini-batch

In noise contrastive estimation and importance sampling training processes, it is necessary

to have noise samples for every training example. If we share the noise samples for each

mini-batch, the noise samples’ embedding could be multiplied with all the hidden states

in the mini-batch together, which also improves the training speed. Also, experiments

25

show that this does not negatively affect the performance of the result [Zoph et al., 2016,

Jozefowicz et al., 2016].

2.9.6 Tuning Learning Rate

Although the Adagrad algorithm makes it easier to tune the learning rate, we have found

that the learning rate still affects the convergence speed. It is helpful to first tune the learn-

ing rate using a smaller model, and then use the same learning rate for the larger models.

2.10 Parameter Sharing

If we have a model F = f(W1X1 +W2X2), a simple way to understand parameter sharing

is to let W1 = W2, and make the model be F = f(WX1 +WX2). The gradient respect to

W is the sum of the gradient respect to W1 and W2. It is easy to prove this.

∂F

∂W
=

∂F

∂W
(X1 +X2)

∂F

∂W1

=
∂F

∂W1

(X1)

∂F

∂W2

=
∂F

∂W2

(X2)

If we let W1 = W2 = W , then

∂F

∂W
=

∂F

∂W1

+
∂F

W2

Parameter sharing is widely used to reduce the number of parameters in neural net-

work models. The most widely used model is convolutional neural network (CNN) [LeCun

et al., 1998]. In CNN, the core building block is the convolutional layer, which uses a num-

26

ber of filters to apply convolution operation. For the forward computation, each filter is

convoluted across the height and width of the image, and the activation is the dot product

between the weights of the filter and the specific region of the image. The exact output of

the layer can be described as:

outputijk = biask +
∑
l

kW∑
s=1

kH∑
t=1

weights,t,l,k ∗ inputdW (i−1)+s,dH∗(j−1)+t,l

If the input image is a 3D tensor nInputPlane× height× width, the output image size will

be nOutputPlane× oheight× width where

owidth = floor((width + 2 ∗ padW− kW)/dW + 1)

oheight = floor((height + 2 ∗ padH− kH)/dH + 1)

And kW is the filter width, kH is the filter height, dW is the step of the convolution in the

width dimension, dH is the step of convolution in the height dimension. padW is additional

zeros added to the input plane data on both sides of width axis. padH is additional zeros

added to the input plane data on both sides of height axis.

The total number of parameters is nOutputPlane× nInputPlane× kH × kW . We can

see that the number of parameters in this layer doesn’t depend on the width or height of the

image. For different regions, the weights of the filter are shared. Otherwise, when dealing

with large images, the model size could be too large to be handled.

For language modeling, Press and Wolf [2017] proposes to make the input layer and

output layer share the same word embedding parameters, which helps improves the state-

of-the-art language model performance. In a normal neural language model, each word has

one input layer word embedding and one output layer word embedding. The method is to

let them share the embedding.

27

2.11 HashNet

In machine learning, when dealing with a large number of features, the feature hashing is a

common technique. If the features are sparse and the number is too large, it is not possible

to give each feature one weight parameter. Feature hashing involves using some hashing

function to hash the features into a fixed size buckets, the features that fall into the same

bucket share the same weight.

One example of using the hashing trick in a neural language model can be seen in the

work done by Mikolov et al. 2011b. In the proposed RNNME model, it hashes context

n-gram input into the buckets, and uses the bucket weight as additional input to the model.

The number n-gram’s in a corpus could be huge, and it is impossible to assign one weight

to each n-gram.

Chen et al. 2016 proposes to compress neural network models with the hashing trick.

They propose using a low-cost hash function to hash the weight matrix positions into differ-

ent positions in a fixed bucket array. It randomly group the weights of the neural network

into different buckets, and the weights in the same bucket share the same weight. Another

way to understand HashNet is that it is doing random parameter sharing.

2.12 Space Complexity Analysis of RNN Model

GPU memory usage during neural network training mainly has two parts: 1) Memory used

to store the hidden states. 2) Memory used to store the parameters and their gradients;

The space required by the parameters is normally equivalent to that needed to store the

gradients. For a normal language model using the same dimension of embedding and

hidden states H , with vocabulary size of V , the space needed to store the hidden states

depend on the batch sizeB and BPTT length L. The bottleneck for storing the hidden states

is on the output layer, because for each predicted word on current batch, it is necessary to

28

store a V size vector, taking B ∗ L ∗ V space. In the example listed in the blog, just the

output layer takes up to 20 Gb of memory! For the parameters and their gradients, the

space bottleneck is on the embedding layers (including the input embedding layer and the

output embedding layer). The embedding layer’s size depends on the vocabulary size, and

the space taken by the embedding layers is V H . The space usage of the parameters does

not depend on the batch size or BPTT length, because the parameters are shared across

different timesteps, and the gradients in the mini-batch are accumulated in the same place.

Sampling based softmax and hierarchical softmax layer help reduce the memory usage

of storing the hidden states. Parameter sharing methods and adding projection layers help

reduce the memory usage of parameters and their gradients. The simplest method is to

make the input layer and output layer share the same word embedding [Press and Wolf,

2017], which cuts the space usage of parameters in half. Using a smaller dimension size of

embedding is another simple way to reduce the memory usage of parameters.

HashNet [Chen et al., 2016] uses random parameter sharing to reduce memory usage.

However, because the memory access pattern of GPU, it is necessary to construct the full

parameter matrix before the computation. In the same mini-batch, we only construct the

parameter matrix once.

The workload of inference is very different from training. During inference, it is not

necessary to store all the hidden states intended for BPTT. During training, sampling based

softmax doesn’t evaluate the probability for all the vocabulary. However, for inference, if

we want to get the exact prediction probability, we need to evaluate the full softmax. For

rescoring, the dot product between the hidden states and the output layer embedding can

be used as the score instead of the exact probability [Williams et al., 2015]. This not only

reduces the memory usage during inference, but also make inference even faster than class

based softmax or hierarchical softmax.

It has been demonstrated that 32 bits float computation is not needed for inference.

Fixed point quantization can be used to transform the floating number computation into 8

29

bits integer computation. This technique is usable in all neural network models, and can be

combined with the above mentioned methods. The usage of trained neural network models

is limited to inference, so improving the inference efficiency is very important for large

scale services. Google has even developed specialized hardware to improve the inference

efficiency.

2.13 Related Work

There are many efforts to improve the space efficiency of neural language models. Kim

et al. [2016] works with character level input and combines convolution neural networks

(CNN) with highway networks to reduce the number of parameters. Later Jozefowicz et al.

[2016] extends the CNN embedding idea to the output layer, comes up with a new CNN

softmax layer, and scales the method to a one-billion-word corpus [Chelba et al., 2014].

Ling et al. [2015] introduces a model for constructing vector representations of words by

composing characters using bidirectional LSTMs.

Although the above models use the character level information to reduce the model

size of embedding layers, there have been many approaches that try to reduce the parame-

ters without using this additional information. Mikolov et al. [2011a] introduces the com-

pression layer between the recurrent layer and the output layer. This method not only

reduces the number of parameters in the output layer, but also reduces the time complexity

of training and inference. Joulin et al. [2017] improves the hierarchical softmax by assign-

ing word clusters with different sizes of embeddings, it tries to utilize the power of GPU

computation more efficiently, but also reduces the number of parameters significantly.

Chen et al. [2016] proposes to represent rare words by sparse linear combinations of

common already learned word embeddings. The sparse code and embedding for each word

are precomputed and fixed during the language model training process. The method we

propose here differs in that the codes for each word are selected randomly and the embed-

30

dings are learned in the process of model training, and the sub-vectors are concatenated

together to form the final word embedding.

Li et al. [2016] uses 2-component shared embedding as the word representation in

LightRNN. It uses parameter sharing to reduce the model size. This is similar to our

method. However, the two components for a word are fed into RNN in two different

timesteps in LightRNN. The method proposed here is most similar to the model used in

Suzuki and Nagata [2016], but the work is not about language modeling.

The model proposed here introduces random weight sharing into the embedding layers

for language models similar to HashNet [Chen et al., 2015], but uses a different sharing

scheme.

2.14 Problem Statement

Neural language models have been the state-of-the-art model for language modeling. These

models encode words as vectors (word embeddings) and then feed them into the neural

network [Bengio et al., 2003, Mikolov et al., 2010]. The word vectors are normally trained

together with the model training process. In the output layer, the hidden states are projected

to a vector with the same size as the vocabulary; Then a softmax function translates the

vector into probabilities.

Training neural language models is time consuming, mainly because it requires esti-

mating the softmax function at every time stamp. There have been many efforts that try to

reduce the time complexity of the training algorithm, such as hierarchical softmax [Good-

man, 2001, Kim et al., 2016], importance sampling (IS) [Bengio and Senécal, 2008, Joze-

fowicz et al., 2016], and noise contrastive estimation (NCE) [Mnih and Teh, 2012, Zoph

et al., 2016]. It is also desirable to train very compact language models for several reasons:

1) Smaller models are easier to use and deploy in real world systems. If the model is too

large, it is possible that it will need multiple server nodes. 2) Mobile devices have limited

31

memory and space, which makes it impossible to use large models without server access.

3) Smaller models also decrease the communication overhead of distributed training of the

models.

There is significant redundancy in the parametrization of deep learning models [Denil

et al., 2013]. Various pruning and parameter reduction methods are proposed. In general,

there are two types of neural network compression techniques. The first type involves

retraining. First a full-size model needs to be trained and its weights are pruned. Then the

model is retrained [Han et al., 2016, See et al., 2016]. The second type involves encoding

parameter sharing into the model and directly train the compressed model, such as HashNet

[Chen et al., 2015]. The approach proposed here is the second type.

The input layer and output layer contain the largest portion of parameters in neural

language models since the number is dependent on the vocabulary size. We mainly focus

on reducing the number of parameters in the embedding layers. The main contribution

is introducing a simple space efficient model compression method that randomly shares

structured parameters, and can be used in both the input layer and the output layer. The

method is easy to implement and tune. It can also be viewed as a regularization that leads

to improved performance on perplexity and BLEU scores in certain cases.

2.15 Major Contributions

2.15.1 Space Complexity Reduction

We proposed a novel sub-vector based random parameter sharing method that can signifi-

cantly reduce the space usage of language model.

We obtained good perplexity on datasets from small, medium to large (1 Billion) while

using only a small fraction of the parameters required by other comparable approaches..

32

2.15.2 Inference Time Complexity Reduction

Based on dynamic programming, the time complexity of evaluating output layer is reduced,

which provides faster inference speed than the full softmax layer both on CPU and GPU.

Our proposed method also has much better cache locality than HashNet, which helps

our method achieve better inference speed.

The proposed methods help decrease the number of GPUs needed to train language

models when the vocabulary size is large.

33

Slim Embedding Layers for Recurrent

Neural Language Models

3.1 Random Parameter Sharing at Input and Output Em-

bedding Layers

We used deep Long Short-Term Memory (LSTM) as our neural language model. In each

time stamp t, the word vector h0
t is used as the input. We use subscripts to denote time

stamps and superscripts to denote layers. Assume L is the number of layers in the deep

LSTM neural language model, then hLt is used to predict the next word yt. The dynamics

of an LSTM cell, following Zaremba et al. [2014], are implemented as shown in equations

2.2 - 2.4.

Assuming the vocabulary size is V , and both the word vector size and the number of

hidden nodes in the recurrent hidden states are N , then the total number of parameters in

the embedding layer is N ∗V . The embedding layers of character level models [Kim et al.,

2016, Miyamoto and Cho, 2016, Ling et al., 2015] are related in that the word embeddings

between different words are dependent on each other. Updating the word embedding for

each word will affect the embeddings for other words. Dependent word embedding helps

reduce the number of parameters tremendously. We designed a simple model compression

34

method that allows the input word embedding layer and softmax output layer to share

weights randomly to effectively reduce the model size and yet maintain the performance.

3.1.1 Compressing Input Embedding Layer

Assume we divided the input word embedding vector xt ∈ RN into K even parts, such

that the input representation of the current word is the concatenation of the K parts xt =

[a1, ..., aK], and each part is a sub-vector with N
K

parameters. For a vocabulary of V words,

the input word embedding matrix thus is divided into V ∗K sub-vectors, and we map these

sub-vectors into M sub-vectors randomly but as uniformly as possible in the following

manner: we initialize a list L with K ∗ V elements, which contains K∗V
M

copies of the

sequence [1...M]. Then the list is shuffled with the Fisher-Yates shuffle algorithm [Fisher

et al., 1957] and the ith word’s vector is formed with [aLK∗(i−1)+1
...aLK∗i]. This helps to

make sure that the number of times each sub-vector is used is nearly equal.

In this way, the total number of parameters in the input embedding layer is M ∗ N
K

instead of V ∗ N , which makes the number of parameters independent from the size of

vocabulary. The K sub-vectors for each word are drawn randomly from the set of M

sub-vectors.

For example, as shown in Fig 3.1, if there are four words total in the corpus (V =4),

each word vector is formed by two sub-vectors (K=2), and there are in total eight sub-

vectors in the input embedding matrix, assume that these eight sub-vectors are mapped

into three sub-vectors (M=3), which are indexed as ai, i ∈ (1, 2, 3). Then the word vectors

can be assigned like this: [a1, a2], [a1, a3], [a2, a3], [a3, a1]. In this example, the compression

ratio is 3/8, and the number of parameters in the new embedding layer size is only 37.5%

of the original one.

If the number of sub-vectors is large enough and none of the word vectors share sub-

vectors, then the input embeddings will become equivalent to normal word embeddings.

35

w1

w2

w3

w4

a1

a2

a3
w4

w3

w2

w1

a3

a2

a1

a1

a1

a3

a3

a2

New embedding

Original embedding

Figure 3.1: Toy example of the original embedding layer and new embedding layer. In
this dissertation, the concatenated word vector has the same size as the original one. The
assignment of sub-vectors to each word are randomly selected and fixed before the training
process.

36

We used stochastic gradient descent with backpropagation through time [Werbos,

1990] to train our compressed neural language model. During each iteration of the training

process, all words that shared the same sub-vectors with the current word were affected.

If we assume that the number of words that share sub-vectors is small, then only a small

number of word embedding vectors will be affected.

3.1.2 Compressing Output Embedding Layer

The output matrix can be compressed in a similar way. In the output layer, the context

vector h is projected to a vector with the same size as the vocabulary, such that for each

word w, we compute zw = hT ew, which is then normalized by a softmax non-linearity:

p(w) = exp(zw)
Σw′∈V exp(zw′)

. If we treat each ew as a word embedding, we can then use a similar

parameter sharing technique to the one used in the input layer, and let ew = [aw1, ..., awK]

where ai are sub-vectors.

The structured shared parameters in the output layer make it possible to speed up

the computation during both training and inference. Let S be K sets of sub-vectors,

S1, S2, ..., SK , such that Si ∩ Sj = ∅,∀i 6= j. The first sub-vector in each word’s em-

bedding will be selected from S1, the second from S2, and so on. If we also divide the

context vector as K even parts h = [h1, ..., hK], then zw = Σi=K
i=1 h

T
i awi. We can see that

hi will only be multiplied by the sub-vectors in Si. Because many words share the same

sub-vectors, for each unique hiawi, we only need to compute the partial dot product once.

In order to evaluate all zw, we need two steps with dynamic programming:

1) We first compute all the unique hiawi values. It is easy to see that the total number

of unique dot product expressions will be the same as the total number of sub-vectors. The

complexity of this step is O(MH
K

), where M is the total number of sub-vectors. This step

can be done with K dense matrix multiplications.

2) Each zw is the sum of K partial dot products. Because the dot product results are

already known from the first step, all we need to do is find the sum of the K values for each

37

word. The complexity of this step is O(V K).

In summary, the complexity of evaluating the new softmax layer will beO(MH
K

+V K),

instead of O(V H) for the original softmax layer. The inference algorithm is listed in

Algorithm 1.

1 Divide the hidden vector h into K even parts;
2 Evaluate the partial dot products for each (hidden state sub-vector, embedding) pair

and cache the results;
3 Add the result for each word together according to the sub-vector mapping table;

Algorithm 1: Inference Algorithm

A simpler way to understand this algorithm is through an example. Assume we have

four words, and four unique sub-vectors. The sub-vector assignment is like below,

W1 = [a1, a3]

W2 = [a2, a4]

W3 = [a1, a4]

W4 = [a2, a3]

Then to compute the softmax we need to compute

Z1 = a1h1 + a3h2

Z2 = a2h1 + a4h2

Z3 = a1h1 + a4h2

Z4 = a2h1 + a3h2

For the same color partial dot product, we only need to compute once and then cache the

38

result.

3.2 Connection to HashNet, LightRNN and Character Aware

Language Model

The most similar work to our method is the HashNet described in Chen et al. [2015]. In

HashNet, all elements in a parameter matrix are mapped into a vector through a hash func-

tion. However, in our approach, we randomly share sub-vectors instead of single elements.

There are three advantages in our approach, 1) Our method is more cache friendly: since the

elements of the sub-vectors are adjacent, it is very likely that they will be in the same cache

line, thus it accesses the memory more efficiently than HashNet. Although the sub-vectors

are randomly selected, the sub-vectors help improve the memory locality, thus speeding

up the training and inference of the model. 2) Our method actually decreases the memory

usage during training. When training Hashnet on GPU, the parameter mapping is usually

cached, thus actually saving no space. 3) As shown in the previous section, it is possible to

use dynamic programming to reduce the time complexity of the output layer with a simple

modification. And if the sub-vector’s size is equal to 1, the method proposed becomes one

kind of HashNet, that uses a different hash function.

Our approach differs from LightRNN [Li et al., 2016] in that our approach is able

to control the compression ratio to any arbitrary value. LightRNN can only compress at

the rate of square or cube root of vocabulary size, which could be too harsh in practical

applications.

The character-aware language model can be explained as a parameter sharing word-

level language model. Each word shares the same character embedding vectors and a

convolutional neural network (CNN). This model can also be explained as a simplified

character-aware language model from Kim et al. [2016], Jozefowicz et al. [2016]. In the

39

character-aware language model, each character in a word is first encoded as a character

embedding. It then uses a CNN to extract character n-gram features. These features are

then concatenated and fed through several layers of highway network to form the final word

embedding. In this model, if we treat the sequence of sub-vector ids (virtual characters) as

each word’s representation, the word embedding can be treated as concatenated unigram

character feature vectors. The advantage of using the real character representation is that it

can deal with out-of-vocabulary words nicely. However, the cost is that the model is more

complicated and it needs to precompute the word embeddings for the words to speed up

inference, so it couldn’t stay in its compact form during inference. The model proposed

here is much simpler, and easier to tune. During inference, it uses much less space and

could even decrease the complexity of inference. With the same space constraint, this will

enable us to train language models with even larger number of hidden states.

3.3 Experiments

We tested our method of compressing the embedding layers on various publicly available

standard language model data sets ranging from the smallest corpus, PTB [Marcus et al.,

1993], to Google’s BillionW [Chelba et al., 2014] corpus. 44M is the 44 million word

subset of the English Gigaword corpus [Graff and Cieri, 2003] used in Tan et al. [2012].

The descriptions of the datasets are listed in Table 3.1.

The weights are initialized with uniform random values between -0.05 and 0.05. Mini-

batch stochastic gradient decent (SGD) is used to train the models. For all the datasets

except the 44M corpus, all the non-recurrent layers except the word embedding layer to

the LSTM layer use dropout. Adding dropout did not improve the results for 44M and

BillionW, so the no-dropout results are shown. We used Torch [Collobert et al., 2011] to

implement the models, and the code is based on the code open sourced from Kim et al.

[2016]. The models are trained on a single GPU. In the experiments, the dimension of the

40

Table 3.1: Corpus Statistics

Dataset #Token Vocabulary Size
PTB 1M 10K
44M 44M 60K
WMT12 58M 35K
ACLW-Spanish 56M 152K
ACLW-French 57M 137K
ACLW-English 20M 60K
ACLW-Czech 17M 206K
ACLW-German 51M 339K
ACLW-Russian 25M 497K
BillionW 799M 793K

embeddings is the same as the number of hidden states in the LSTM model. Perplexity

(PPL) is used to evaluate the model performance. Perplexity over the test set with length

of T is given by

PPL = exp(− 1

T

T∑
i=1

log(p(wi|w1, · · · , wi−1)).

When counting the number of parameters, for convenience, we did not include the mapping

table that maps each word to its sub-vector ids. In all the experiments, the mapping table

is fixed before the training process. For particularly large values of K, the mapping table’s

size could be larger than the size of the parameters in its embedding layer. It is possible to

replace the mapping table with hash functions that are done in HashNet [Chen et al., 2015].

We added end of sentence tokens to all the datasets with the exception of the experiments

in Table 3.4. Those experiments omit the end of sentence token for comparison with other

baselines.

Similar to the work in [Jozefowicz et al., 2016], compressing the output layers turned

out to be more challenging. We first reported the results when just compressing the input

layer, and then reported the results when both the input layers and the output layers were

compressed. In the end, we did the reranking experiments.

41

Table 3.2: Validation and test perplexities on PTB with 300 hidden nodes, K=10, K is the
number of sub vectors each word has, and M is the total number of unique sub vectors.

Model Dropout Test Size
NE 0 89.54 1
NE 0.1 88.56 1
NE 0.2 88.33 1
NE 0.5 91.10 1
SE (M=20K) 0 89.34 20%
SE (M=20K) 0.1 88.19 20%
SE (M=10K) 0 89.06 10%
SE (M=10K) 0.1 88.37 10%
SE (M=6.25K) 0 89.00 6.25%
SE (M=5K) 0 89.54 5%

Table 3.3: Validation and test perplexities on PTB with 650 hidden nodes, K=10, K is the
number of sub vectors each word has, and M is the total number of unique sub vectors.

Model Dropout Test Size
NE 0 85.33 1
NE 0.1 82.59 1
NE 0.2 83.51 1
NE 0.5 82.91 1
SE (M=1K) 0 82.62 1%
SE (M=5K) 0 82.41 5%
SE (M=5K) 0.1 81.14 5%
SE (M=10K) 0 82.14 10%

3.3.1 Experiments on Slim Embedding for Input Layer

For the input layer, we compared two cases. The first case used the original word embed-

ding (NE), and the second case compressed the input embedding layer with different ratio

(SE). The first case was very strong baseline, used the same number of hidden states, used

the same full softmax layer and had many more parameters. We first reported the results on

the Penn Treebank (PTB) dataset. For PTB, the vocabulary size is 10k, and has 1 million

words.

42

Tables 3.2 and 3.3 show the experimental results on PTB corpus when using 350 and

650 hidden nodes respectively. In both tables, the column Dropout denotes the dropout

probability that is used from the input embedding layer to the hidden layer. Size is the

number of parameters in the compressed input word embedding layer relative to the original

input word embedding. The experiment on the input layer shows the compression of the

input layer has almost no influence on the performance of the model. The SE model with

650 hidden states managed to keep the PPL performance almost unchanged even when the

input layer only used 1% of trainable parameters. When the input layer was trained using

dropout, it gave better results than the baseline, while using less parameters.

0 100 200 300 400 500
90

100

110

120

Baseline

Reciprocal of Compression Rate

Te
st

PP
L

Figure 3.2: Test perplexities on 44M with 512 hidden nodes and each 512-dimensional
input embedding vector was divided into eight parts. Only input word embedding layer
was compressed.

Fig 3.2 and Fig 3.3 show the results on 44M Giga world sub-corpus where 512 hidden

notes were used in the two-layer LSTM model. Baseline denotes the result using the origi-

nal LSTM model. Fig 3.2 shows the perplexity results on both validation and test data sets,

where we divided each word input embedding vector into eight sub-vectors (K = 8), and

varied the number of new embedding sub-vectors, M , thus varying the compressed model

size, i.e., compression ratio, from 1 to 1/512.

43

0 100 200 300 400 500
90

100

110

120

130

140

Baseline

K

Te
st

PP
L

Figure 3.3: Test perplexities on 44M with 512 hidden nodes with 1/8 original Size. Only
input word embedding layer is compressed.

The perplexity results remained almost the same and were quite robust and insensitive

to the compression ratio: they decreased slightly to a minimum of 96.30 when the compres-

sion ratio changed from 1 to 1/8, but increased slightly to 103.61 when the compression

ratio reached 1/512. Fig 3.3 shows the perplexity results on both validation and test data

sets, where we divided each word input embedding vector into different numbers of sub-

vectors from 1 to 512, and at the same time varied the size of new embedding vectors,

M , so as to keep the compression ratio constant, 1/8 in this case. The perplexity results

remained almost the same, and reached the minimum when k = 8, and were quite robust

and insensitive to the size of the sub-vector except in the case where each word contained

only one sub-vector but we still compressed the model into a 1/8 size of original matrix,

i.e. k = 1. In this case, multiple words shared identical input embeddings, which led to

worse perplexity results as we expected.

44

0 50 100 150 200 250

100

120

140

160

180

200

220

Baseline

Reciprocal of Compression Rate

Te
st

PP
L

Figure 3.4: Test perplexities on 44M with 512 hidden nodes and each 512-dimensional
vector divided into eight parts. Both input and output embedding layers were compressed.

3.3.2 Experiments on Slim Embedding for Both Input and Output

Layers

In this section we report experimental results when both input and output layers are com-

pressed using our proposed approach.

Fig 3.4 and Fig 3.5 show the results on the 44M corpus where 512 hidden nodes are

used in the two layers of the LSTM model. Baseline denotes the result using the original

LSTM model. Similarly Fig 3.4 shows the perplexity results on both validation and test data

sets, where we divided each word input embedding vector into eight sub-vectors (K = 8),

and varied the size of new embedding vectors, M , thus varying the compressed model size,

i.e., compression ratio, from 1 to 1/256.

Unlike the case when only the input embedding layer was compressed, the perplexity

results become monotonically worse when the compression ratio was changed from 1 to

1/512. Similarly to the case of only compressing the input embedding layer, Figure 3.5

shows the perplexity results on both validation and test data sets, where we divided each

word input embedding vector into different sub-vectors from 1 to 512, and at the same time

45

0 100 200 300 400 500

100

120

140

160

180

200

220

Baseline

HashNet

K

Te
st

PP
L

Figure 3.5: Test perplexities on 44M with 512 hidden nodes when embedding compressed
to 1/8. The whole model size is less than 20% of the baseline.

varying the size of new embedding vectors, i.e., varying M , thus keeping compressing

ratio to be constant, 1/8 in this case. The perplexity results almost remained the same,

and reached to a minimum when k = 4, and were quite robust and insensitive to the size

of the sub-vector except in the case where each word contained only one sub-vector, but

we still compressed the model into a 1/8 size of original matrix, i.e. k = 1. In this case,

multiple words shared identical input embeddings, which led to worse perplexity results,

as we expected.

Good perplexity results on PTB corpus were reported when parameter tying was used

at both input and output embedding layers [Inan et al., 2016, Press and Wolf, 2017, Zilly

et al., 2017, Zoph and Le, 2017]. However, we didn’t observe further perplexity improve-

ment when both parameter sharing and tying were used at both input and output embedding

layers.

We next compared our model with LightRNN [Li et al., 2016], which also focuses

on training very compact language models and reports the best result we got on the one-

billion-word dataset. SE denotes the results using compressed input and output embedding

layers. Table 3.4 shows the results of our model. Because these datasets have very different

46

vocabulary sizes, we used different compression rates for the models in order to make the

model smaller than LightRNN, yet still have better performance. In these experiments,

we changed to NCE training and tuned the parameters with the Adagrad [Duchi et al.,

2011] algorithm. NCE helps reduce the memory usage during the training process and

also speeds up the training process. In the one-billion-word experiments, the total memory

used on the GPU was about 7Gb, and was smaller if a larger compression rate was used.

We used a fixed, smoothed unigram distribution (unigram distribution raised to 0.75) as

the noise distribution. Table 3.5 shows our results on the one-billion-word dataset. For

the two-layer model, the compression rate for the input layer was 1/32 and the output

layer was 1/8, and the total number of parameters was 322 million. For the three-layer

model, the compression rates for the input and the output layer were 1/32 and 1/16, and the

total number of parameters was 254 million. Both experiments took about seven days of

training on a GTX 1080 GPU. Jozefowicz et al. [2016] suggests importance sampling could

perform better than the NCE model, for the IS experiment we used 4000 noise samples for

each mini-batch, and the PPL decreased to 38.3 after training for 8 days. As far as we

know, the 3-layer model is the most compact RNN language model that has a perplexity

below 40 on this dataset.

3.3.3 Machine Translation Reranking Experiment

We wanted to see whether the compressed language model would affect the performance

of machine translation reranking. In this experiment, we used the Moses toolkit [Koehn

et al., 2007] to generate a 200-best list of candidate translations. Moses was configured to

use the default features, with a 5-gram language model. Both the language and translation

models were trained using the WMT12 data [Callison-Burch et al., 2012], with the Europarl

v7 corpus for training and newstest2010 for validation, both lowercased. The scores used

47

M
et

ho
d

E
ng

lis
h/

#P
R

us
si

an
/#

P
Sp

an
is

h/
#P

Fr
en

ch
/#

P
C

ze
ch

/#
P

G
er

m
an

/#
P

H
SM

[K
im

et
al

.,
20

16
]

23
6/

25
M

35
3/

20
0M

18
6/

61
M

20
2/

56
M

70
1/

83
M

34
7/

13
7M

C
-H

SM
[K

im
et

al
.,

20
16

]
21

6/
20

M
31

3/
15

2M
16

9/
48

M
19

0/
44

M
57

8/
64

M
30

5/
10

4M
L

ig
ht

R
N

N
[L

ie
ta

l.,
20

16
]

19
1/

17
M

28
8/

19
M

15
7/

18
M

17
6/

17
M

55
8/

18
M

28
1/

18
M

SE
18

7/
7M

27
4/

19
M

14
9/

8M
16

2/
12

M
52

8/
17

M
26

1/
17

M

Ta
bl

e
3.

4:
PP

L
re

su
lts

in
te

st
se

tf
or

va
ri

ou
s

lin
gu

is
tic

da
ta

se
ts

on
A

C
LW

da
ta

se
ts

.
N

ot
e

th
at

al
lt

he
SE

m
od

el
s

on
ly

us
e

30
0

hi
dd

en
st

at
es

.

48

M
od

el
Pe

rp
le

xi
ty

#P
[B

ill
io

ns
]

In
te

rp
ol

at
ed

K
ne

se
r-

N
ey

5-
gr

am
[C

he
lb

a
et

al
.,

20
14

]
67

.6
1.

76
4-

la
ye

rI
R

N
N

-5
12

[L
e

et
al

.,
20

15
]

69
.4

R
N

N
-2

04
8

+
B

la
ck

O
ut

sa
m

pl
in

g
[J

ie
ta

l.,
20

16
]

68
.3

Sp
ar

se
N

on
-n

eg
at

iv
e

M
at

ri
x

L
an

gu
ag

e
M

od
el

[P
el

em
an

s
et

al
.,

20
16

]
52

.9
33

R
N

N
-1

02
4

+
M

ax
E

nt
9-

gr
am

[C
he

lb
a

et
al

.,
20

14
]

51
.3

20
L

ST
M

-2
04

8-
51

2
[J

ou
lin

et
al

.,
20

17
]

43
.7

0.
83

L
ig

ht
R

N
N

[L
ie

ta
l.,

20
16

]
66

.0
0.

04
1

2-
la

ye
rL

ST
M

-8
19

2-
10

24
[J

oz
ef

ow
ic

z
et

al
.,

20
16

]
30

.6
1.

8
2-

la
ye

rL
ST

M
-8

19
2-

10
24

+
C

N
N

in
pu

ts
[J

oz
ef

ow
ic

z
et

al
.,

20
16

]
30

.0
1.

04
2-

la
ye

rL
ST

M
-8

19
2-

10
24

+
C

N
N

in
pu

ts
+

C
N

N
so

ft
m

ax
[J

oz
ef

ow
ic

z
et

al
.,

20
16

]
39

.8
0.

29
L

ST
M

-2
04

8
A

da
pt

iv
e

So
ft

m
ax

[J
ou

lin
et

al
.,

20
17

]
43

.9
>

0.
29

2-
la

ye
rL

ST
M

-2
04

8
A

da
pt

iv
e

So
ft

m
ax

[J
ou

lin
et

al
.,

20
17

]
39

.8
G

C
N

N
-1

3
[D

au
ph

in
et

al
.,

20
17

]
38

.1
M

O
E

[S
ha

ze
er

et
al

.,
20

17
]

28
.0

>
4.

37
SE

(2
-l

ay
er

20
48

L
ST

M
N

C
E

)
39

.9
0.

32
SE

(3
-l

ay
er

20
48

L
ST

M
N

C
E

)
39

.5
0.

25
SE

(3
-l

ay
er

20
48

L
ST

M
IS

)
38

.3
0.

25

Ta
bl

e
3.

5:
Pe

rp
le

xi
ty

re
su

lts
fo

rs
in

gl
e

m
od

el
s

on
B

ill
io

nW
.B

ol
d

nu
m

be
rs

de
no

te
us

in
g

si
ng

le
G

PU
.

49

Table 3.6: Reranking Experiment

Baseline NE SE
PPL 251.7 124.1 134.8
BLEU 25.69 26.11 26.25

for reranking were linear combinations of the Moses features and the language models.

ZMERT [Zaidan, 2009] was used to determine the coefficients for the features.

We trained a two-layer LSTM language model with 512 hidden states, and a com-

pressed language model that compressed the input layer to 1/8 and the output layer to

1/4 using NCE. For the baseline, we reranked the n-best list using only the Moses fea-

ture scores that include 5-gram having a perplexity of 251.7 on test data, yielding a BLEU

score of 25.69. When we added the normal LSTM language model having a perplexity of

124 on test data as another feature, the BLEU score changed to 26.11, and for the com-

pressed language model having a perplexity 134 on test data, the BLEU score changed to

26.25, which has a nearly indistinguishable change in performance from the normal LSTM

language model.

3.3.4 Closest Word

Slim embedding layer introduces random parameter sharing into the model. It would be

interesting to see the nearest neighbor of the word embeddings.

Cosine similarity is used as the distance metric. Given two word vectors vi, vj , the

distance is computed as

−
∑

k vik ∗ vjk√∑
k v

2
ik

√∑
k v

2
jk

The method to find the closest word for a word is to compute all the distance between other

words and then find the words with the shortest distance.

Some of the examples are listed in Table 3.7. As expected, the results still make

50

Table 3.7: Nearest neighbor of word embeddings

Word Top 1 Top 2 Top 3 Top 4
While while Although whilst Though
his her their its the
you we You they I
Richard Robert John David Edward
Bob Mike Ed Alan Jonathan
Emily Megan Rachael Baker Keith
hate love hates hated loves
idea notion concept possibility proposal
word phrase words term wish
trading trade traded trades Trading
life lives career death Life
love loves hate loved passion
meaning means mean saying thought
top Top senior prominent supreme
wonderful fantastic lovely great excellent
Google Apple Microsoft Facebook Yahoo
breaking broke break broken smashing
time day moment year years
drawn draw drew draws attracted
happy unhappy pleased glad satisfied
size length age shape sizes
energy electricity power oil fuel

sense. Although quite different words could share sub-vectors, the similarity between sim-

ilar words are still preserved.

3.3.5 Computational Efficiency

In this section, we compared the computational efficiency between the HashNet and SE

models. We compare the time spent on the output layer for each minibatch on Google’s

BillionW corpus during inference. Each minibatch contains 20 words and the number of

hidden nodes in LSTM layer is 2048.

We reported the time used on both CPU and GPU. Table 3.8 shows the inference time

usage. All the computations used 32-bit floating point numbers. On CPU, HashNet is

51

Table 3.8: Time Usage Comparison

Model CPU(seconds) GPU (milliseconds)
Uncompressed Model 2.7 38
HashNet 80.6 -
SE 0.7 25

slower than the normal uncompressed model, mainly due to: 1) the uncompressed model

uses optimized matrix multiplication subroutines, and 2) the hash function used in HashNet

is cheap, but it still has overhead compared with the uncompressed model. The SE model

runs faster mainly because it uses matrix multiplication subroutines and has lower time

complexity with the help of dynamic programming.

On GPU, SE’s time usage is smaller than the uncompressed model when K is small.

SE’s inference has two steps, the first step is K matrix multiplications, and the second step

is adding up the partial dot products. In the benchmark, the implementation uses Torch. A

more optimized implementation is possible.

HashNet’s focus is mainly on reducing the space complexity. If we wanted to make it

faster, we could just cache the full matrix from HashNet, whose speed is the same as the

uncompressed model. There are many techniques that could be used to make the inference

faster, such as using low-precision floating point calculations. Because the model stays

in its compressed form, the memory usage of SE during inference is much lower than the

baseline.

52

Clustering Based Assignment of

Sub-vectors

The word embedding vector is the distributed representation of the word. Experiments

have shown that word vectors have additive compositionality [Mikolov et al., 2013]. The

proposed random parameter sharing seems counter-intuitive. A more reasonable approach

is that we first get all the words’ embedding, which we dive into sub-vectors, and then do

a clustering analysis. Then we could let the sub-vectors in the same cluster share the same

sub-vector.

Then, the problem is whether we can get the word embedding before we train the lan-

guage model. The obvious way to achieve this is simply first train the full language model,

and then the embedding can be used to do the clustering analysis. The major drawback of

this is that the space complexity of training of such a model will be the same as training the

uncompressed language model.

It is very lucky that there are many ways to get good quality word vectors without

training of the full language model [Mikolov et al., 2013]. The most popular method is

to use word2vec. Although it has been shown that word2vec’s loss function is not related

to the perplexity of the model, they are still good tools for representation learning [Dyer,

2014]. There are several efficient implementations of this model. The best toolkit is Fast-

Text [Joulin et al., 2016], which also uses the Hogwild [Recht et al., 2011] algorithm to do

53

lock free parallel training of the model. The implementation is so efficient that the training

could be done within minutes even when using large corpus. This enables training the word

representations on a very much larger corpus. And it is easy to download pretrained word

embeddings online.

4.1 Related Work

There has been many works that uses clustering algorithm to reduce the number of pa-

rameters in neural network models. Han et al. [2016] uses clustering algorithm to enable

parameter sharing as one step of their compression algorithm. Joulin et al. [2016] uses

product quantization to significantly reduce the memory usage of word embeddings. Both

models require training of the full model and then do the clustering analysis. Our approach

is different that we do clustering on the already trained word embeddings and then get the

clustering assignments. We will train the model based on the clustering assignments, and

the parameters in the embedding layers will still be initilized with random values in the

beginning and will be updated during the training process.

4.2 Clustering of Sub-vectors

When using randomly sharing for the input layer, in the previous chapter, we have shown

that the performance of the model is barely effected. Therefore, it is not reasonable to try

clustering-based methods on the input layer. However, it is still interesting to see if we can

get improved performance using clustering algorithm to do the sub-vector assignments.

There are two ways to get word embeddings, 1) Generate word embedding from the

current training dataset, 2) Just download the pre-trained word embeddings trained from

a much larger corpus. Previous work has shown that using pre-trained word embeddings

on large corpus help improve the performance of neural language model. And for small

54

dataset like PTB, the dataset could be too small to achieve good quality word embeddings.

After we get the word embeddings, we split the each word embeddings into K different

part. And then run K-means clustering algorithm on the sub-vectors. The sub-vectors that

are in the same cluster share the same sub-vector.

4.3 Experiment Results

Table 4.1 shows the input layer result when using clustering based assignment. We can see

that both datasets show improvements.

Table 4.1: Clustering sub-vector assignment on the input layer

Dataset Baseline Clustering
PTB 88.93 86.23
44M 98.85 94.51

On PTB dataset, the skipgram embedding trained just on PTB dataset dones’t show

improved perplexity. After switching to the 300D pre-trained common crawl word embed-

ding downloaded from FastText website [Mikolov et al., 2018], the PPL is decreased. On

44M dataset, simply using the word embedding trained on 44M dataset can improve the

PPL.

Table 4.2: Clustering sub-vector assignment on the output layer

Dataset Baseline Clustering
PTB 103.98 99.80
44M 114.39 112.84

Table 4.2 shows the result of using clustering based assignment on the output layer. On

PTB dataset, the word embedding used to do clustering analysis also comes from Mikolov

et al. 2018.

55

Table 4.3: Clustering sub-vector assignment on both input and output layers

Dataset Baseline Clustering
PTB 104.76 98.63
44M 108.89 104.97

Table 4.3 shows the result of using clustering based assignment on both input and

output layers. For the PTB dataset, the word embedding used to do clustering analysis also

comes from Mikolov et al. [2018].

4.4 Discussion

When compared with slim embedding layer with random parameter sharing, experimental

results show that clustering based assignment of sub-vectors on the input and output layers

of neural language model does help to improve model’s performance. This result is ex-

pected from our understanding, where the quality of word embedding is important. For the

PTB data set, many words in the vocabulary are not found in the common craw 2M word

vocabulary. So for the words missing from the 2M words vocabulary, I just used random

assignments, but it still helps to improve the PPLs.

56

Conclusion and Future Work

We came up with a space-efficient, structured parameter sharing method to compress word

embedding layers. Experiments on several datasets showed good PPLs. The model is

easy to implement and tune. On the output layer, we also reduced the time complexity of

inference algorithm.

Embedding layers have been used in many tasks of natural language processing, such

as sequence to sequence models for neural machine translation and dialog systems. It

would be useful to explore the results of using this technique in these models.

There are many output layer optimization techniques, such as hierarchical softmax. It

will be interesting to see the model performance comparison when using random parameter

sharing.

A theoretical investigation is needed to explain why compressing the input embed-

ding layer, but not the output embedding layer, has a minor impact on deteriorating the

performance of the neural language model.

Finally it would be interesting to explore generative adversarial network (GAN) [Good-

fellow et al., 2014] for language modeling.

57

Bibliography

Yoshua Bengio and Jean-Sébastien Senécal. Adaptive importance sampling to accelerate

training of a neural probabilistic language model. IEEE Transactions on Neural Net-

works, 19(4):713–722, 2008.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies

with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–

166, 1994.

Yoshua Bengio, Rejean Ducharme, and Pascal Vincent. A neural probabilistic language

model. Journal of Machine Learning Research, 3:1137–1155, 2003.

Chris Callison-Burch, Philipp Koehn, Christof Monz, Matt Post, Radu Soricut, and Lucia

Specia, editors. WMT ’12: Proceedings of the Seventh Workshop on Statistical Machine

Translation, Stroudsburg, PA, USA, 2012. Association for Computational Linguistics.

http://www.statmt.org/wmt12/translation-task.html.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn,

and Tony Robinson. One billion word benchmark for measuring progress in statistical

language modeling. INTERSPEECH, pages 2635–2639, 2014.

Stanley F Chen and Joshua Goodman. An empirical study of smoothing techniques for

language modeling. Computer Speech and Language, 13(4):359–394, 1999.

58

http://www.statmt.org/wmt12/translation-task.html

Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin Chen. Com-

pressing neural networks with the hashing trick. In The 32nd International Conference

on Machine Learning (ICML), pages 2285–2294, 2015.

Yunchuan Chen, Lili Mou, Yan Xu, Ge Li, and Zhi Jin. Compressing neural language

models by sparse word representations. The 54th Annual Meeting of the Association for

Computational Linguistics, (ACL), pages 226–235, 2016.

R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A matlab-like environment for

machine learning. In BigLearn, NIPS Workshop, 2011.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with

gated convolutional networks. In International Conference on Machine Learning, pages

933–941, 2017.

Misha Denil, Babak Shakibi, Laurent Dinh, Nando de Freitas, et al. Predicting parameters

in deep learning. In Advances in Neural Information Processing Systems, pages 2148–

2156, 2013.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online

learning and stochastic optimization. Journal of Machine Learning Research, 12(Jul):

2121–2159, 2011.

Chris Dyer. Notes on noise contrastive estimation and negative sampling. arXiv preprint

arXiv:1410.8251, 2014.

Ronald Aylmer Fisher, Frank Yates, et al. Statistical tables for biological, agricultural and

medical research. Statistical Tables for Biological, Agricultural and Medical Research.,

(5th rev. ed), 1957.

Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in

59

recurrent neural networks. In Advances in Neural Information Processing Systems, pages

1019–1027, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil

Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances

in Neural Information Processing Systems, pages 2672–2680, 2014.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

Joshua Goodman. Classes for fast maximum entropy training. In IEEE International

Conference on Acoustics, Speech, and Signal Processing, (ICASSP), volume 1, pages

561–564. IEEE, 2001.

Google. Computer, respond to this email., 2015. URL https://research.

googleblog.com/2015/11/computer-respond-to-this-email.

html.

Google. Chat smarter with allo, 2016. URL https://ai.googleblog.com/2016/

05/chat-smarter-with-allo.html.

David Graff and Christopher Cieri. English gigaword ldc2003t05. Linguistic Data Con-

sortium, Philadelphia, 2003.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint

arXiv:1308.0850, 2013.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation

principle for unnormalized statistical models. In Thirteenth International Conference on

Artificial Intelligence and Statistics (AISTATS), volume 1, page 6, 2010.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural

60

http://www.deeplearningbook.org
https://research.googleblog.com/2015/11/computer-respond-to-this-email.html
https://research.googleblog.com/2015/11/computer-respond-to-this-email.html
https://research.googleblog.com/2015/11/computer-respond-to-this-email.html
https://ai.googleblog.com/2016/05/chat-smarter-with-allo.html
https://ai.googleblog.com/2016/05/chat-smarter-with-allo.html

networks with pruning, trained quantization and huffman coding. In Proceedings of the

International Conference on Learning Representations (ICLR), 2016.

Hakan Inan, Khashayar Khosravi, and Richard Socher. Tying word vectors and word clas-

sifiers: A loss framework for language modeling. In Proceedings of the International

Conference on Learning Representations (ICLR), 2016.

Shihao Ji, SVN Vishwanathan, Nadathur Satish, Michael J Anderson, and Pradeep Dubey.

Blackout: Speeding up recurrent neural network language models with very large vo-

cabularies. In Proceedings of the International Conference on Learning Representations

(ICLR), 2016.

Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve Jégou, and

Tomas Mikolov. Fasttext.zip: Compressing text classification models. arXiv preprint

arXiv:1612.03651, 2016.

Armand Joulin, Moustapha Cissé, David Grangier, Hervé Jégou, et al. Efficient softmax

approximation for gpus. In International Conference on Machine Learning, pages 1302–

1310, 2017.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. Explor-

ing the limits of language modeling. arXiv preprint arXiv:1602.02410, 2016.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. Character-aware neural

language models. The 30th AAAI Conference on Artificial Intelligence (AAAI), 2016.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico,

Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, et al.

Moses: Open source toolkit for statistical machine translation. In Proceedings of the

45th annual meeting of the ACL on interactive poster and demonstration sessions, pages

177–180. Association for Computational Linguistics, 2007.

61

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple way to initialize recurrent

networks of rectified linear units. arXiv preprint arXiv:1504.00941, 2015.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Xiang Li, Tao Qin, Jian Yang, Xiaolin Hu, and Tieyan Liu. Lightrnn: Memory and

computation-efficient recurrent neural networks. In Advances In Neural Information

Processing Systems, pages 4385–4393, 2016.

Wang Ling, Chris Dyer, Alan W Black, Isabel Trancoso, Ramon Fermandez, Silvio Amir,

Luis Marujo, and Tiago Luis. Finding function in form: Compositional character models

for open vocabulary word representation. In Proceedings of the 2015 Conference on

Empirical Methods in Natural Language Processing, pages 1520–1530, 2015.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large

annotated corpus of English: The Penn Treebank. Computational Linguistics, 19(2):

313–330, 1993.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur.

Recurrent neural network based language model. In Interspeech, volume 2, page 3,

2010.

Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur.

Extensions of recurrent neural network language model. In 2011 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5528–5531.

IEEE, 2011a.

Tomas Mikolov, Stefan Kombrink, Anoop Deoras, Lukar Burget, and Jan Cernocky.

Rnnlm-recurrent neural network language modeling toolkit. In The 2011 IEEE Auto-

matic Speech Recognition and Understanding Workshop (ASRU), pages 196–201, 2011b.

62

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed

representations of words and phrases and their compositionality. In Advances in Neural

Information Processing Systems, pages 3111–3119, 2013.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and Armand Joulin.

Advances in pre-training distributed word representations. In Proceedings of the Inter-

national Conference on Language Resources and Evaluation (LREC 2018), 2018.

Yasumasa Miyamoto and Kyunghyun Cho. Gated word-character recurrent language

model. The 2016 Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 1992–1997, 2016.

Andriy Mnih and Yee W Teh. A fast and simple algorithm for training neural probabilistic

language models. In The 29th International Conference on Machine Learning (ICML),

pages 1751–1758, 2012.

Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network language

model. In Tenth International Conference on Artificial Intelligence and Statistics (AIS-

TATS), volume 5, pages 246–252. Citeseer, 2005.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for

automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting

on Association for Computational Linguistics (ACL), pages 311–318. Association for

Computational Linguistics, 2002.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recur-

rent neural networks. In International Conference on Machine Learning, pages 1310–

1318, 2013.

Joris Pelemans, Noam Shazeer, and Ciprian Chelba. Sparse non-negative matrix lan-

guage modeling. Transactions of the Association for Computational Linguistics,

63

4:329–342, 2016. URL https://transacl.org/ojs/index.php/tacl/

article/view/561.

Ofir Press and Lior Wolf. Using the output embedding to improve language models. In

Proceedings of the 15th Conference of the European Chapter of the Association for Com-

putational Linguistics: Volume 2, Short Papers, pages 157–163, Valencia, Spain, April

2017. Association for Computational Linguistics.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free

approach to parallelizing stochastic gradient descent. In Advances in Neural Information

Processing Systems, pages 693–701, 2011.

Ronald Rosenfeld. Two decades of statistical language modeling: Where do we go from

here? Proceedings of the IEEE, 88(8):1270–1278, 2000.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint

arXiv:1609.04747, 2016. https://arxiv.org/abs/1609.04747.

Abigail See, Minh-Thang Luong, and Christopher D Manning. Compression of neural

machine translation models via pruning. arXiv preprint arXiv:1606.09274, 2016.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey

Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-

of-experts layer. In Proceedings of the International Conference on Learning Represen-

tations (ICLR), 2017. URL https://openreview.net/pdf?id=B1ckMDqlg.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 15(1):1929–1958, 2014.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks.

arXiv preprint arXiv:1505.00387, 2015.

64

https://transacl.org/ojs/index.php/tacl/article/view/561
https://transacl.org/ojs/index.php/tacl/article/view/561
https://arxiv.org/abs/1609.04747
https://openreview.net/pdf?id=B1ckMDqlg

Jun Suzuki and Masaaki Nagata. Learning compact neural word embeddings by parameter

space sharing. In Subbarao Kambhampati, editor, The Twenty-Fifth International Joint

Conference on Artificial Intelligence, (IJCAI), pages 2046–2052. IJCAI/AAAI Press,

2016.

Ming Tan, Wenli Zhou, Lei Zheng, and Shaojun Wang. A scalable distributed syntactic,

semantic, and lexical language model. Computational Linguistics, 38(3):631–671, 2012.

Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings

of the IEEE, 78(10):1550–1560, 1990.

Will Williams, Niranjani Prasad, David Mrva, Tom Ash, and Tony Robinson. Scaling

recurrent neural network language models. In Acoustics, Speech and Signal Processing

(ICASSP), 2015 IEEE International Conference on, pages 5391–5395. IEEE, 2015.

Wired. Apple is bringing the AI revolution to your iPhone, 2016. URL https://www.

wired.com/2016/06/apple-bringing-ai-revolution-iphone/.

Omar F. Zaidan. Z-MERT: A fully configurable open source tool for minimum error rate

training of machine translation systems. The Prague Bulletin of Mathematical Linguis-

tics, 91:79–88, 2009.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regular-

ization. arXiv preprint arXiv:1409.2329, 2014.

Julian Georg Zilly, Rupesh Kumar Srivastava, Jan Koutnık, and Jürgen Schmidhuber. Re-

current highway networks. In International Conference on Machine Learning, pages

4189–4198, 2017.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In

Proceedings of the International Conference on Learning Representations (ICLR), 2017.

65

https://www.wired.com/2016/06/apple-bringing-ai-revolution-iphone/
https://www.wired.com/2016/06/apple-bringing-ai-revolution-iphone/

Barret Zoph, Ashish Vaswani, Jonathan May, and Kevin Knight. Simple, fast noise-

contrastive estimation for large rnn vocabularies. In The 15th Annual Conference of

the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies. NAACL/HLT, 2016.

66

	Abstract
	Introduction to Statistical Language Modeling
	Evaluation of Language Models
	N-gram Language Model
	Benchmark Datasets

	Recurrent Neural Language Models
	Simple Recurrent Neural Network
	Training of Simple Recurrent Neural Network
	Long Short-Term Memory
	Stacking Recurrent Neural Networks
	Regularization of Recurrent Neural Network
	Noise Contrastive Estimation
	Importance Sampling
	Class-based Softmax Layer
	Training Best Practices
	Adding Dropout
	Mini-batch Training
	Fix Upper Bound of Gradient
	Use Adagrad
	Sharing Noise Samples Across Mini-batch
	Tuning Learning Rate

	Parameter Sharing
	HashNet
	Space Complexity Analysis of RNN Model
	Related Work
	Problem Statement
	Major Contributions
	Space Complexity Reduction
	Inference Time Complexity Reduction

	Slim Embedding Layers for Recurrent Neural Language Models
	Random Parameter Sharing at Input and Output Embedding Layers
	Compressing Input Embedding Layer
	Compressing Output Embedding Layer

	Connection to HashNet, LightRNN and Character Aware Language Model
	Experiments
	Experiments on Slim Embedding for Input Layer
	Experiments on Slim Embedding for Both Input and Output Layers
	Machine Translation Reranking Experiment
	Closest Word
	Computational Efficiency

	Clustering Based Assignment of Sub-vectors
	Related Work
	Clustering of Sub-vectors
	Experiment Results
	Discussion

	Conclusion and Future Work
	Bibliography

