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ABSTRACT

Sridharan, Vaikunth. M.S., Department of Computer Science and Engineering, Wright State Uni-
versity, 2018. Sensor Data Streams Correlation Platform for Asthma Management.

Asthma is a high-burden chronic inflammatory disease with prevalence in children with

twice the rate compared to adults. It can be improved by continuously monitoring patients

and their environment using the Internet of Things (IoT) based devices. These sensor data

streams so obtained are essential to comprehend multiple factors triggering asthma symp-

toms. In order to support physicians in exploring causal associations and finding actionable

insights, a visualization system with a scalable cloud infrastructure that can process multi-

modal sensor data and Patient Generated Health Data (PGHD) is necessary.

In this thesis, we describe a cloud-based asthma management and visualization plat-

form that integrates personalized PGHD from kHealth1 kit and outdoor environmental ob-

servations from web services2. When applied to data from an individual, the tool assists

in analyzing and explaining symptoms using ”personalized” causes, monitor disease pro-

gression, and improve asthma management. The front-end visualization was built with

Bootstrap Framework and Highcharts. Google’s Firebase and Elasticsearch engine were

used as back-end storage to aggregate data from various sources. Further, Node.js and

Express Framework were used to develop several Representational State Transfer services

useful for the visualization.

1http://wiki.knoesis.org/index.php/Asthma
2https://en.wikipedia.org/wiki/Web service
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Introduction

Internet of things (IoT) is gaining momentum and it has extensive applications in differ-

ent sectors and industries [7]. Healthcare is one of the sectors that could benefit both

patients, caregivers and physicians by tracking real-time patient relevant data. IoT-based

health monitoring devices and sensors are widely used in various healthcare applications

[4, 15], such as those involving identifying anomalies in heart functioning [23], fall detec-

tion [13], and monitoring sleep. Smartphone devices and wireless sensors captures valuable

data which were previously unavailable to traditional healthcare, allowing doctors to use

unprecedented amount of data to improve disease diagnosis and management.

Figure 1.1: Health monitoring devices and sensors in healthcare paradigm
https://bit.ly/2GSd18a

Asthma is a high-burden chronic inflammatory disease with prevalence in children
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and adolescent population with twice the rate compared to adults [19]. Being one of the

poorly controlled diseases in the U.S. and a major cause of hospitalizations [17], asthma

control and management is challenging. Asthma symptoms are triggered by environmental

changes and pollutants [32] which are difficult to identify with periodic clinical visits, as

each patient react differently to these triggers. For example, some patients might be sensi-

tive to poor air quality and others might be sensitive to pollen. Highly varying environmen-

tal conditions, patient symptoms, medication usage and other patient-relevant data can be

monitored continuously to understand personalized triggers that are immensely valuable to

clinicians and caregivers. The data can be captured using multiple sensors which can then

be integrated to reveal the underlying causes of asthma symptoms.

Figure 1.2: Asthma symptoms caused by triggers
https://bit.ly/2KV7Mao

Knowledge-enabled Health (kHealth) [30, 1] for Asthma is a multisensory approach
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for better asthma management in children. kHealth-Asthma kit includes Patient Generated

Health Data (PGHD) such as (1) symptoms, medication usage and activity limitation cap-

tured through contextual questionnaire using a smartphone application; (2) activity, and

sleep tracking device (Fitbit) and; (3) an indoor air quality sensor (Foobot) monitoring pol-

lutants indoors. In collaboration with Dayton Childrens Hospital (DCH), kHealth-Asthma

kit is deployed to consented asthma patients in the age group of 5-17 as approved by Insti-

tute Review Board (IRB). As part of the anticipated cohort of 150 patients with completed

evaluations, we have completed 73 patient evaluations at the time of this writing. Each

evaluation lasts for one month. The kHealth kit used in this study has generated nearly 2.5

million data points for 50 completed patient evaluation (each one-month period) and still

collecting with ongoing trials. On the whole about 1852 data points per patient per day are

collected using the kHealth kit.

1.1 Challenges

• The kHealth kit collects 29 parameters per patient (example, symptoms, medication

usage, activity, sleep stages, etc.) on regular basis due to the multifactorial nature of

asthma [11]. These diverse set of parameters captured by sensors which are included

in the kit have to be combined and analyzed for studying the causes impacting asthma

symptoms.

• Indoor and outdoor environmental sensor data streams occur at much higher rate

compared patient recorded readings using the kHealth kit and is difficult to analyze

with human efforts.

To address the challenges mentioned above, a cloud-based asthma management plat-

form kHealthDash was developed to perform personalized integration of data from the

kHealth kit and outdoor environmental data from web services. It converts the massive
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amount of data generated by the kHealth kit into meaningful information, useful for doc-

tors to determine the causes of asthma symptoms, to help in disease management through

strategies devised by Augmented Personalized Health (APH) [31]. The stages in health

management strategies are (i) self-monitoring, (ii) self-appraisal, (iii) self-management,

(iv) intervention, and (v) disease progression tracking and prediction. kHealthDash is a

preliminary step in reaching toward visionary strategies of APH transforming the tradi-

tional healthcare.

1.2 Contribution

While previous approaches also integrate data from sensors, the primary focus was towards

providing alerts about unhealthy environmental conditions and feedback about asthma con-

trol levels for patients [9, 16, 2]. In this work, in addition to integrating and visualizing

multimodal data–PGHD from kHealth smartphone application, activity and sleep levels,

indoor air quality, and outdoor environmental data, the personalized causes that precede

the symptoms are also identified using the current system. The system assists in identify-

ing anecdotal evidence from integrated data, and derive personalized causal associations

between multimodal ”trigger” data and asthma-related symptoms with validation from a

clinical collaborator.

Figure 1.3 shows the architecture of kHealthDash platform which collects PGHD from

kHealth kit, indoor air quality, outdoor environmental observations and enables exploration

through visualization to assist clinicians to explore causal relationships. This work com-

prises of three major components, i.e., multimodal data sources (Chapter 4.1); cloud in-

frastructure (Chapter 4.2) that is robust and secure to aggregate different data streams; and

cloud-based intuitive web interface kHealthDash (Chapter 4.3) that allows clinicians to

monitor patients and explore for evidence to asthma outcomes.

4



Figure 1.3: (Component-A) kHealth-Asthma kit provided to asthma participants to record
readings; (Component-B) pooling sensor data from authentication-enabled third-party
APIs; (Component-C) Outdoor environmental observations retrieved based on monitor-
ing stations; (Component-D) Scalable infrastructureweb services, REST APIs, cloud stor-
age platforms; (Component-E) kHealthDash interface provides synthesised visualization
of multimodal data with clinical knowledge.
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Related Work

The exponential growth of Medical IoT and wearables with health applications have re-

sulted in the extensive adoption of these devices to monitor individuals health. Asthma is

one such domain with numerous active research studies for better management and control.

Table 2.1 shows prior studies overall, main objectives, sensors/parameters with no patient

trials or evaluation performed.

Table 2.1: Represents prior studies, main objectives, sensors/parameters used with no pa-
tient trial/evaluation performed.

Studies Main Objectives Sensor/Parameters

Ho-Kyeong Ra et al., (2016)
Sensor based monitoring,
Collection and detection of wheeze sounds

Spirometer, Electronic Stethoscope,
Sensordrone, Oximeter and Smartphone

Ryokai et al. (2015)
Visualization with Health coaches,
5 participants included Biking, Hiking, Walking; Sleep duration

Chu et al. (2006) Ubiquitous Warning System, Patient location Outdoor Environmental data

LinkMedica., (Ret. 2018) Serves as an electronic-diary
Medication usage, Peak Flow readings,
Symptoms

Propeller Health., (Ret. 2018) Tracks medication usage: Time, Location Inhaler Sensor

2.1 Generic Studies

Personal Environmental Impact Report [18] estimates the environmental exposure based

on sensors within smart phones geolocation and history. These are further fed to parallel

cloud-based handlers followed by a machine learning method to perform activity classi-

fication such as whether the user is walking, being idle, or driving a vehicle. The study

also measures the level of influence between users and the environment, based on exposure

and impact, using existing selected metrics such as Smog Exposure, Fast Food Exposure,

6



Sensitive Site Impact and Carbon Impact scores, along with an ecosystem that allows users

to share and analyze their scores on social media platforms such as Facebook. The study

is focused on Global Positioning of their users and how best the system can be compatible

with regards to users even if the location is disabled.

Doukas et al. [8] have developed a cloud platform to efficiently process, manage and

visualize sensor data. The work delivers a preliminary demonstration of the way cloud

computing is used in the IoT realm, consisting of Arduino board equipped with Wi-Fi

adapter, accelerometer, and a couple of air quality sensors, textile sensors recording elec-

trocardiography, body temperature and oxygen saturation and location, activity and ambi-

ent temperature using a motion sensor. Although a variety of modalities are used, no form

of significant evaluation is performed or findings reported to support the claim.

Ryokai et al. [27] have built a data visualization tool with health coaches aimed at

reducing the information-seeking time during a patient-clinician interaction with only 5

participants. It collects data from wearable technologies capturing activities such as bik-

ing, hiking or walking, sleep positions, and different stages of sleep such as rapid eye

movement, light, and deep sleep duration.

Adopting to existing generic studies for a scalable platform which integrates sensor

data and delivers processed results for providing actionable insights to clinical experts,

an extensive and scalable infrastructure is developed in this thesis. Asthma management

specific studies are reviewed in the upcoming section.

2.2 Asthma Management Specific Studies

Asthma Guide [25], aimed at home care management, is a system which provides a kit

consisting of pulse oximeter (SpO2), electronic stethoscope for heart rate, spirometer mea-

suring peak flow reading, sensordrone for indoor air quality and smartphone device that

prompts medication usage, activity related and other information. The work uses wheeze
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sounds recorded by asthma patients through the smartphone device to classify wheezing

as asthma symptom or not. The system sends alerts when pollen and air quality devi-

ates from the healthy range. It also provides doctors and patients to view the summary

of patients health and correlation measure between symptoms and patients indoor data,

providing insights about the triggers. Similarly, the kHealth system is empirically evalu-

ated over usability with regards to asthma management to make the claims stronger and

to avoid spurious correlations, we also determine cause-effect relationships with clinical

knowledge.

Propeller Health, a popular digital platform, provides personalized warnings based on

medication usage and location of the individual [22]. They provide remote warning-based

assistance to patients with respiratory diseases both in personal and population levels. The

primary focus is on reducing medication usage and improving asthma management. They

report about 79% reduction in rescue inhaler medication over the period of one year from

the day of initiation. However, individuals activity, sleep duration, severity level, patient

history, etc., which are valuable are not yet considered in decision making and are not pro-

cessed within the context of the patient. Finkelstein et al. [10] have assembled a web-based

approach to send alerts to hospitals when there is a deviation in Forced Vital Capacity as-

sessment and symptom scores computed as the patients records into the system. LinkMed-

ica [16] is a shared open tool for doctors and patients, which collects patients medication

usage, Peak Flow Meter readings and symptoms reported, serving as an electronic diary to

keep track of the patients health. Additionally, it provides feedback about current control

level of asthma.

Other existing alert systems include ENVIROFI [9] and azma.com [2] , aims to fore-

cast unhealthy environmental conditions, weather and asthma-related news enabling pa-

tients and public to be informed of the disease. However, this disregards other factors that

may affect the patients such as medical history, genetic factors, activity, etc. In addition,

these efforts consider asthma patients in population level but do not yield personalized
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asthma management. Chu et al. [6] developed a system which collects outdoor data based

on patients location and displays it to healthcare workers to monitor and locate the patients

before the occurrence of asthma-related attacks. Nevertheless, patient-relevant information

such as the triggers, symptoms and medication usage has not been considered, thus only

serving as a ubiquitous warning system.

While medical experts were consulted in gathering requirements in most of the ap-

proaches, unlike our approach direct clinical collaboration and patient trial such as one

performed under an Institute Review Board (IRB) were not involved in these studies. We

have gone beyond just aggregation, processing and visualization of multimodal data as time

series but have analyzed, with a clinical collaborator, instances that indicate potential envi-

ronmental triggers or medication inhaler usage impacting symptoms. This study discusses,

real asthma patients’ data represented in kHealthDash and how contextually relevant rela-

tionships can be explored, interpreted and clinically validated.
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Technologies

kHealthDash uses a number of extensive state-of-the-art technologies to assist healthcare

providers. A robust, and efficient cloud-based system infrastructure with a web interface is

engineered for handling multiple and complex queries for facilitating the end-user experi-

ence (clinical experts). These are discussed briefly in this chapter.

3.1 Programming Language

A heterogeneous, scalable and data-intensive application like kHealthDash would require

a lightweight programming platform like Node.js1. Node.js follows a non-blocking I/O

model which never rejects a client such as the current system web applications data re-

quest and is completely event-driven (example event, mouseover, key press, click, etc).

kHealthDash web application, when made available to the public will allow several clients

to log in and access the interface, which requires a handler capable of managing a con-

siderable number of requests. Node.js, being single threaded, has the capacity to handle

such amount of user requests in its event-loop. It also encapsulates within itself the worlds

largest package management registry called Node Package Manager (NPM2) which allows

developers to install a variety of useful libraries needed for the application(s) or building

upon kHealthDash platform.

1https://nodejs.org/en/
2https://www.npmjs.com/
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Figure 3.1: Node.js event loop work flow and handling intensive operations.
https://bit.ly/2GxaWiR and https://bit.ly/2s6Tyw2

3.1.1 Microservices

Useful services were developed in Node.js that are scheduled to be executed periodically

using PM23, a process management tool, which keeps the scripts alive forever and reloads

them avoiding downtime.

3.2 Framework

In order to connect and retrieve from the database containing multi-modal data, a frame-

work capable of interfacing with the database is required and provide processed results to

the end-user interface. This work uses Express, a conservative, efficacious Model-View-

Controller (MVC4) structured framework based on Node.js. It is capable of handling multi-

ple interface routes, strong middle-ware to connect with databases, and a convenient mech-

3http://pm2.keymetrics.io
4https://en.wikipedia.org/wiki/Model view controller
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anism for error handling. kHealthDash was developed using Express which handles differ-

Figure 3.2: Typical Express work flow showing front-end (view), database (model) and
middle-ware services, and APIs (controller)

http://bit.ly/2I5GVb5

ent RESTful5 Web Application Programming Interfaces (APIs6). The RESTful APIs are

designed to perform complex queries to Elasticsearch7 database which has collected vari-

ous sensor data and PGHD from kHealth kit. These responses are processed and formatted

into JavaScript Object Notation (JSON8) message that satisfies visualization requirements.

3.3 Back-end Database

Elasticsearch, a scalable search engine and data-store based on Apache Lucene9 which

stores and assigns identifiers to every JavaScript Object Notation (JSON) document within

itself. Thereby making it easier for flexible aggregations (sum, max, min, etc.), geo-

distance computations and temporal filtering. Elasticsearch storage has a flexible schema
5https://en.wikipedia.org/wiki/Representational state transfer
6https://en.wikipedia.org/wiki/Application programming interface
7https://www.elastic.co
8https://www.json.org
9https://lucene.apache.org
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Figure 3.3: Elasticsearch indices (similar to MySQL tables), documents (records or rows),
offering storage, aggregations, and filtering.

for indexing numeric-, datetime-, and geopoint-types. The strength of Elasticsearch is

harnessed by efficiently storing and performing aggregations of data from all the sources

discussed in this thesis.

3.4 Front-end Visualization

In this thesis, apart from the back-end framework and database selected to store and handle

intermediate operations, there is a need for an user interface capable of representing differ-

ent multimodal data intuitive for clinicians, such that correlations between environmental

factors and asthma outcomes could be explored and identified. kHealthDash front-end vi-

sualization was developed using Hyper Text Markup Language (HTML10), Cascading Style

Sheets (CSS11), and JavaScript (JS12) with supportive libraries such as Twitters Bootstrap13,

10https://en.wikipedia.org/wiki/HTML
11https://en.wikipedia.org/wiki/Cascading Style Sheets
12https://en.wikipedia.org/wiki/JavaScript
13http://getbootstrap.com
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jQuery14, HighStocks15, and MomentJS16.

Figure 3.4: Shows the front-end interface with supporting technologies

3.4.1 jQuery

To maneuver the Document Object Model (DOM) of the front-end we use a simplistic,

and powerful library, jQuery and its conventions for selecting the DOM. jQuery allows

to subscribe and handle DOM events (example, hover, click, etc.), animations, and many

other dynamic components within a web page.

14https://jquery.com
15https://www.highcharts.com/products/highstock
16https://momentjs.com
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3.4.2 CSS Framework

Apart from the custom styling features we added to personalize our web pages we used

Twitters Bootstrap Cascading Style Sheets framework components to add to the aesthetics,

responsiveness, and user-friendliness of the interface. Badges, dropdowns, buttons, cards,

navigation bar, labels, checkboxes, etc. are some of the components featured by Bootstrap

and are leveraged by kHealthDash visualization platform.

Figure 3.5: Shows Twitter’s Bootstrap CSS Framework
http://getbootstrap.com

3.4.3 Chart Libraries

Chart library such as Highstocks, a product of Highcharts, that provides a platform to feed

an enormous number of configurations necessary for fitting visualizations. We mainly use

Highstocks to leverage the time-frame navigator which allows temporal exploration of the

15
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patient data. kHealthDash web interface uses Highstocks extensively to better visualize

data from different sources that are easily understood by the user (clinicians) and with less

cluttering. To provide visualizations such as patient compliance, comparative trends, etc. in

the form of quickly accessible panels, we harness visualizations from a small but simplistic

library called Chart.js17.

3.4.4 Date-time Serialization, and Management

IoT-based devices record time-stamp in varying formats, which causes databases, program-

ming interfaces and middle-ware code snippets hard to interpret. The most common format

is the ISO string or the Epoch Unix18 represents the entire date, and time. A valuable date-

time serializing library MomentJS that parses and validates any incoming format, allows

to apply formatting operations (ISO, Locale, Unix, etc.), time zone detection, and also en-

ables time manipulation such as adding or subtracting days, hours, months, etc., that would

benefit while filtering the data. This dependency is beneficial to a system like kHealthDash,

where time-series exploration, and analysis are performed.

3.4.5 Utility Library

Performing functional and data intensive operations to satisfy the requirements of charts

with regards to data formats was challenging. A modular utility JavaScript library Lodash19

allowed to perform a variety of data manipulative operations.

Table 3.1: Shows the utility functions provided by Lodash
Function Description
Map Collection of data points are iterated and processed individually
Reduce Processed data points can be merged and transformed to produce results
Partition Input collection can be partitioned into sub-collections based on custom condition. Example even and odd numbers

17http://www.chartjs.org
18https://en.wikipedia.org/wiki/Unix time
19https://lodash.com
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We use functions like MapReduce, and partition in our web services for processing the

data points from different sources. We host an instance of Elasticsearch cluster, web ser-

vices, express middle-ware (RESTful APIs, and routing), and kHealthDash web interface

on an OpenStack20 cloud platform secured by firewall security rules. These technologies

and their use are discussed in chapter 4 and also briefed on how efficacious these were in

this thesis effort.

20https://www.openstack.org
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Approach

Figure 4.1: System methods showing data sources, aggregation, integration and visualiza-
tion

The implementation of this work was based on how (i) aggregation, (ii) secure, pro-

cessing and computation of fundamental statistical operations, and (iii) performing exten-

sive data visualization rendering of multimodal sensor data and patient record readings.

These are done to deliver a usable system which could potentially be the foundation for

clinical experts for exploring factors affecting asthma outcomes.

4.1 Data Sources and Collection

18



kHealth-Asthma 1 is a knowledge-enabled semantic platform which uses smart mobile ap-

plication with low-cost sensors for continuous monitoring of asthma patients. kHealth-

Asthma kit consists of a mobile application with contextual questions to capture prevalence

of symptoms, activity limitations, and medication usage. IoT-based sensors such as Fitbit2

Charge 2™ , Foobot3 indoor air quality monitoring sensor and Microlife® digital peak flow

meter4 [28] captures required parameters that are beneficial for assessing asthma symptoms

and are included in the kHealth kit. The method to obtain data from these devices is dis-

cussed in the next sections.

4.1.1 kHealth-Asthma Android Application

kHealth-Asthma Android application has been designed to record responses to contextu-

ally relevant questions from patients involved in our study. These questions are improved

iteratively with feedback from clinical experts, nurse coordinators, patients and researchers

and reviewed by IRB. Patients are provided with a Samsung Tablet device with kHealth-

Asthma Android application setup by the nurse coordinator. We set up the application for

near real-time data push to the cloud storage. We developed the Android application to al-

low patients who experience Wi-Fi connectivity issues or low internet bandwidth (at home)

to save responses locally. Later, locally stored responses are uploaded to the cloud storage

when the connectivity is live. Some of the major components of the Android application

are:

Questionnaire

We perform personalized analysis by devising contextual questions shown in Table. These

questions are prompted twice daily as recommended by the clinical collaborator and cap-

1http://wiki.knoesis.org/index.php/Asthma
2https://www.fitbit.com
3http://foobot.io
4https://www.microlife.com/consumer-products/respiratory-care/asthma-monitor/pf-100
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Figure 4.2: The kHealth-Asthma Android App and the readings recorded by patients on a
daily basis

ture patient outcomes, medication usage, and activity limitation of asthmatic children in

the 5 - 17 age group. In this thesis, symptom relevant responses provided by patients are

used to explore triggers which impact them.

Patient Profile Management

Clinicians prefer less effort and time in pre-deployment phase, setting up a patient profiles

would be a tedious if mishandled in application level. For this reason, the application has

a component for patient management which are beneficial for the nurse coordinator or the

clinician to manage created patients, their compliance, and summarized trends.

Email Notifications

Several patients do not take the readings regularly and eventually have less compliance.

As a result, the application is equipped with a background service which asynchronously

verifies the patient answered questionnaire and triggers an email message to the clinician

or the nurse coordinator if not answered for the given day. After incorporating this feature,
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we noticed a substantial increase in patient compliance which is expected to be valuable

for collecting continuous data points.

Over the period of one year, patient compliance towards logging readings using the

kit gradually increased with improved user interface design and features. Currently, the

application is re-engineered based on an advanced user interface principle Material De-

sign 5 which has proved to be efficient in delivering smooth and elegant user interface and

relevant components.

4.1.2 Wearable Sensor: Activity and Sleep

Figure 4.3: Fitbit Charge 2™ that tracks activity (steps, active minutes), sleep and heart
rate.

https://www.fitbit.com/charge2

Existing published validated studies has proved Fitbit to be appropriate for monitoring

patient well-being. Fitbit Charge 2™ is included, cost-efficient wearable with essential in-

built sensorstri-axis accelerometer, optical LED monitor, altimeter and vibration motor.

The device tracks activity (steps taken, calories burned, distance covered in miles, active

5https://material.io/guidelines
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minutes, lightly active minutes, and sedentary minutes), and duration in different stages of

sleep along with sleep awakenings (minutes in REM, light, deep and asleep). Its ability to

monitor individuals comprehensively allows researchers to derive valuable insights from

individuals physical data. Activity limitation, disturbed sleep, and outdoor activity are

essential information for analyzing asthmatic outcomes of patients hence it is included in

the kHealth kit.

Every device provided is associated with an account for it to continuously synchro-

nize patient recorded activity and sleep data to the tablet device and forwarded to Fit-

bits cloud which is later retrieved to cloud infrastructure built in this work. This requires

authentication-enabled APIs and data retrieval and handling discussed in the upcoming

chapter.

4.1.3 Indoor Environmental Data

Foobot is an indoor monitoring WiFi-enabled device with inbuilt sensorsmetal oxide semi-

conductor, optical and temperature sensors combined with computing techniques to track

indoor air quality pollutants. The device indicates good or poor air quality information, us-

ing LED light patterns. Foobot measures essential parameters such as carbon dioxide (ppb),

volatile components (ppm), particulate matter (µ/m3), global index (constructed unit), in-

door temperature (◦F) and indoor humidity (%) in real-time and stores it in cloud. The

device turns blue when air quality is good and orange when air quality is poor, other pat-

terns6 are assigned for notifications, starting up/shutting down the device, and connectivity

with vendors android application. Foobot offers cloud-to-cloud integration which allows

it to activate purifiers and other similar systems whenever the air pollution gets high for

example, NEST thermostat.

Monitoring the patient indoor environment could be highly beneficial to understand

the factors triggering patients asthma symptoms. As a result, we included Foobot as part of

6https://bit.ly/2kq1ZhD
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Figure 4.4: Foobot - Air quality monitoring sensor placed on a table indoors, showing the
two important LED patterns when air quality is good or poor.

http://foobot.io

kHealth kit for asthma, provided to each of the patients and recommended to be placed in

a most common place at home. Foobot is associated with an account for it to continuously

synchronize patients home air quality data to table device and forwarded to the Foobots

cloud and later to cloud infrastructure built in this work. Detailed approach on sensor data

retrieval from authentication-enabled third-party APIs and Web services are discussed in

section 4.2.

4.1.4 Outdoor Environmental Observations

Outdoor environmental observations are valuable since patients exposed to unhealthy en-

vironment, experience asthmatic outcomes. Varying factors such as air quality, pollen,

and weather conditions, if collected are convenient for healthcare providers for exploring

the deviations, to corroborate their impact on patients asthma outcomes. Outdoor condi-

tions are reported by physically installed samplers [14] that are installed and monitored

by several station towers which are spread across the state. We collected environment ob-
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Figure 4.5: Data collected from outdoor monitoring stations for each observation for every
hour of the day.

servations such as ozone (air quality index), particulate matter (air quality index), pollen

count (pollen allergy index), temperature (degree Fahrenheit), and humidity (percentage)

periodically for every hour of the day from EPA’s AirNow7, Pollen.com8, and WeatherUn-

derground9 for Ohio, United States of America.

4.1.5 Digital Peak Flow Meter

Digital peak flow meter PF100 by Microlife is a device for adults and pediatric patients

for monitoring their lung capacity that are indicators for asthma outcomes. This device

measures Peak Expiratory Flow (PEF) and Forced Expiratory Volume per second (FEV1).

As recommended by our clinical collaborator we include Peak Flow Meter in the kHealth

kit and allow patients to record and report the readings to the Tablet device. Currently we

are attempting to integrate the device with kHealth-Asthma android app for automatically

capturing the measurement. 2214 data points were collected from Peak Flow Meter for 40

7https://airnow.gov
8https://pollen.com
9https://wunderground.com
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Figure 4.6: Digital Peak Flow Meter which measures peak expiratory flow, and forced
expiratory volume per sec.

patients each of one-month trial period.

4.2 Data Aggregation

Our scalable cloud infrastructure, shown in Figure 1.3D queries and aggregates (i) multi-

modal data from kHealth kit readings, (ii) sensor data from the third-party cloud (Figure

1.3B), and (iii) outdoor environmental observations (Figure 1.3C) into Elasticsearch (ES)

cloud storage which provides fast and efficient indexing mechanism for easy querying.

4.2.1 Patient recorded readings

Patient recorded readings such as responses to the questionnaire, peak flow meter, and

Fitbit observations are monitored on a continuous basis requires real-time database tech-

nology. This is accomplished by using Googles Firebase10, a cloud-based, real-time, data

10https://firebase.google.com
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storage service which allows secure, and persistent (cache storage) real-time data push

from android-device clients used by patients. Although Firebase provides a level of data

security11, de-identified patient-relevant data in a third party cloud storage is subject to

privacy-risks [29]. For this reason, data collected on Firebase is transferred to Kno.e.sis12

private cloud instance.

4.2.2 Mapping Inventory and third-party APIs

Figure 4.7: Mapping inventory schema from Elasticsearch cloud storage

A pre-deployment step is performed wherein a kHealth asthma kit is labelled and

synced with third-party clouds such as Fitbit and Foobot. In specific, we maintain a kit

mapping inventory with a schema (shown in Figure 4.7) referring to smart tablet device,

activity-tracker, and indoor air quality sensor respectively which is later used to retrieve

data from individual third-party APIs (as shown in Figure 1.3B). Relevant data from third-

party APIs are retrieved using mapping inventory identifiers using Open Authentication

11https://firebase.google.com/docs/auth/web/password-auth
12http://knoesis.org
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(OAuth2.013) workflow shown in Figure 4.8. OAuth2.0 workflow requires third-party (ex-

ample, Fitbit) to request users (Fitbit tracker assigned with fitbit id) on behalf of consumers

(Kno.e.sis Research Center - Wright State University) for a consent to access corresponding

device id’s Fitbit data. After successful consent, third-party vendor provides a temporary

access token and a one-time usable refresh token, a separate timer based token inventory is

maintained to refresh access tokens once they expire. This allows our inventory to preserve

active anytime useable tokens for accessing third-party APIs for streaming data access.

Figure 4.8: Represents the Open Authentication-enabled workflow between a user and
resource servers such as Fitbit or Foobot.

http://bit.ly/2Fimp9l

Individual patient’s sensor readings such as indoor air quality data, activity, sleep and

heart rate data are then retrieved using RESTful Web Application Programming Interfaces

provided by Fitbit and Foobot cloud services respectively and are constantly fed to Elastic-

search storage for analysing.

4.2.3 Outdoor Environmental Web-services

13https://oauth.net
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Services present collects environmental observations based on individual monitoring sta-

tions geographical location provided by respective sources and inserts the environmental

observations (example, Ozone 55, Sinclair Dayton) with geographical location and time-

stamp into the cloud storage (Elasticsearch) as shown in Figure 1.3C. This procedure al-

lows our consumers to query for any patients region, which is Geo-coded to approximate

Geo-coordinates and then query Elasticsearch to perform Geo-distance sorting (minimum)

with temporal filtering. This fetches accurate environmental value observed by monitoring

stations. If no value is present, the next nearest value reported by a monitoring station is

obtained.

4.3 Data Modelling and Processing

We developed REpresentational State Transfer (REST) services to achieve critical process-

ing tasks. Major steps involved in querying patient-reported data from kHealth kit and

asthma triggers, how these are merged to fit the visualization are discussed here.

4.3.1 Outdoor environmental data and Geo-spatial Modelling

Given the aggregated environmental data associated with Geo-locations of the monitoring

stations, following steps are performed:

• Given that patients zip code, we find approximate Geo-coordinates by third-party

tools14 (Geo-coding)

• Geo-distance querying which fundamentally uses Haversine15 method is performed,

which considers two points in a spherical surface such as the earth [26]. This is

followed by finding the nearest located monitoring station (point) with the environ-

14https://www.mapbox.com/geocoding
15https://en.wikipedia.org/wiki/Haversine formula
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mental observation. Monitoring station within the shortest distance d has observed

outdoor value, the task is to find d from the equation below:

H(d/r) = H(θ2− 1) + cos(θ1)cos(θ2)H(λ2− λ1)

H Haversine function

r Radius of the sphere

d
The distance between two points

θ
Latitudes of the two points

λ
Longitudes of the two points

In any case, if there are no values observed by monitoring station (due to accidental

events, technical difficulties, etc.,) succeeding nearest station with outdoor value is utilized

for visualization and analysis.

4.3.2 Indoor Environmental data and Wearable data

Our web services pool indoor air quality sensor data from Foobot, and activity and sleep

data from Fitbit servers using the OAuth-enabled REST APIs provided and are fed to Elas-

ticsearch cloud storage (shown in Figure 1.3B). Visualization interface query Elasticsearch

through web-services designed to retrieve indoor environmental observations based on de-

vice identifier associated with the respective Foobot device provided as part of the kHealth

kit, mechanism is discussed in section 4.2.

4.3.3 Patient Generated Health Data (kHealth-Asthma App)

Patient recorded readings from tablet device with kHealth-Asthma app are uploaded in

near real-time to the Elasticsearch cloud storage. Readings such as symptom occurrence,

symptom categories and medication intake retrieved from the Elasticsearch.
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Once all the observations from each type are retrieved, they are filtered based on de-

ployment dates (period) of the patient trial and segregated into buckets based on given

interval such as day, hour, 12 hours, etc., allowing end-users to explore data comprehen-

sively. Fundamental statistical operations are performed over the items in each bucket

which assist in making observations from data with different units, and modalities which

might deviate to impact the patient and result in asthmatic symptoms. Several, scalable pro-

cessing schemes such as mapping, reducing, etc., are performed over the data to provide

satisfactory response (parsed) needed for the visualization.

4.4 Data Visualization

Figure 4.9: kHealthDash login screen, patient overview and quick-access summary dis-
playing anecdotal instance outcomes, patient compliance, and discrepancy analysis

In order to deliver illustrative representations convenient for understanding and ana-
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lyzing the causes of asthma symptoms, we designed a personalized cloud-based interface

kHealthDash (1.3E) shown in Figures 4.9, 4.10 and 4.11, which was enhanced with col-

laborative clinical knowledge. Several components were developed in the user-interface

such as quick-summary side panel, and multi-series plot panels. Clinicians are allowed to

explore data in intervals such as every day, hour, or 12 hours, and normalize the data to

0-100 scale, flexible for exploration and analysis.

Figure 4.10: kHealthDash user-interface visualizing outdoor environmental observation
versus a patient reported symptoms and medications

This panel visualizes various outdoor parameters collected by web services discussed

earlier along with symptoms occurred and medications taken. After receiving feedback

from our clinical collaborator, we separated the y-axis into two and distributed the outdoor

parameters with symptoms. The interface consists of a combined multi-series graph plot

(split axes) for PGHD, outdoor, indoor environmental data and shows a quick summary

for clinicians to perform implications. The graph plots can also be time-frame adjustable

aiding in slicing the entire deployment timeline into smaller chunks easier for gleaning

observations.
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4.4.1 Demonstration

Figure 4.11: kHealthDash user-interface visualizing indoor environmental observation, ac-
tivity and sleep stages versus patient recorded symptoms and medication usage.

Ensuring privacy and security, including Health Insurance Portability and Account-

ability Act (HIPAA) compliance [12], are critical components of any effort involving pa-

tient data. Since kHealthDash Web interface deals with health-related data, Hypertext

Transfer Protocol Secure (HTTPS16) was force enabled through a third-party vendor Cert-

Bot17. This process required us to use and enforce users for a Secure Socket Layer (SSL) 18

certificate that ensures secure transfer of the messages especially health-related data. On-

line link providing documentation and demonstration of respective components in kHealth-

Dash web interface such as landing page, historic exploration of outdoor data, patient dis-

ease progression, and discrepancy analysis are described in the link — https://bit.ly/2Gu6FMN.

16https://en.wikipedia.org/wiki/HTTPS
17https://certbot.eff.org
18http://info.ssl.com/article.aspx?id=10241
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Evaluation

kHealthDash developed for clinicians was evaluated based on the usefulness and overall

usability. That is, how easily clinicians were able to explore patient relevant informa-

tion collected by kHealth kit and usability with respect to obtaining users opinion about

kHealthDash visualization platform. The metrics selected, experiment performed, and the

results obtained are discussed briefly in the upcoming sections.

5.1 Metrics

5.1.1 Usefulness

Patient information such as symptoms reported, medication usage (e.g., rescue inhaler) are

combined with environmental observations to identify correlations using kHealthDash. To

assess ease of use, kHealthDash is evaluated by developing asthma-related questions which

are responded by participants. Table 5.1 shows asthma-related questions that are developed

and reviewed by the clinical collaborator involved in this study. It contains response choices

ranging from 0 to 10 scale were former is least likely and latter being most likely. Each

question captures how likely the participants were able to find answers with kHealthDash

interface and without the interface.
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Table 5.1: Asthma-related questions for measuring the usefulness of the kHealthDash in-
terface

Question Choices (Likert scale)
How likely were you able to identify symptoms for Patient-A? 0 to 10
How likely were you able to find the outdoor parameters contributing for Patient-A
Ozone
Particulate Matter 0 to 10
Pollen
Temperature
Humidity
How likely were you able to find correlation between short-acting medication and symptoms for Patient-A 0 to 10

5.1.2 Usability

Overall usability of the system was captured using System Usability Scale (SUS) criteria

[5]. It is a standard measure which captures the usability with responses from participants

for a set of 10 predefined questions1. Each question has a Likert scale with 1 (strongly

disagree) to 5 (strongly agree) for the users to answer. SUS score is calculated based on

even numbered and odd numbered responses (agreement) provided for each question by

a participant. The resulting SUS score ranges from 0 to 100 for an individual participant.

Previous studies were evaluated with SUS criteria revealed that a score of 68 is the average.

Any score above 68 conforms to the standard web interface criteria and considered as a

good SUS score [3].

5.2 Method

Qualtrics [24], an online survey designing tool was used to create a questionnaire and

receive responses through the web from participants. Domain experts (involved in pedi-

atric pulmonology, and allergy departments) were enrolled from Dayton Childrens Hos-

pital (DCH) with an average healthcare experience of 11 years. We also performed the

experiment with non-clinical students (researchers) to evaluate the usefulness. They were

non-clinical students enrolled from the Kno.e.sis Center2 and were provided with a back-

1https://en.wikipedia.org/wiki/System usability scale
2http://knoesis.org
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ground description about asthma, triggers and resulting symptoms.

We focused on collecting responses from both groups because it provides contrasting

results for understanding the usefulness of kHealthDash from diverse groups. Two asthma

patients data (Patient-A and Patient-B) collected with a trial period of 30-day each were

selected based on higher compliance in using the kHealth kit. The participants were asked

to respond to questions relevant to asthma using the Patient-As data represented in a tab-

ular format. Then, participants were asked to respond to the same set of questions using

kHealthDash web interface. The same procedure was repeated for Patient-B as well. This

is performed to understand how useful the kHealthDash is when compared to existing raw

tabular data representation. Lastly, all participants were asked to take the SUS relevant sur-

vey which contains 10 predefined questions to assess the overall usability from a general

perspective.

Since there were two patient data provided to 5 domain experts and 5 non-domain ex-

perts, we received a total of 20 responses. These responses helped in evaluating the overall

usefulness of kHealthDash web interface. Below present the results obtained in the upcom-

ing section which describes the difference and improvement in usefulness without kHealth-

Dash and with kHealthDash. We also present the SUS Score calculated for kHealthDash

obtained from 5 domain experts and 5 non-domain experts using SUS questionnaire.

5.3 Results

5.3.1 Usefulness

Patient-A and Patient-B responses obtained from each participant were averaged for tab-

ular response and kHealthDash interface respectively. These are further averaged for all

the participants, based on tabular response and kHealthDash interface which is shown in

Figures 5.1 and 5.2. Values obtained from both domain and non-domain participants are an-
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(a)

(b)

Figure 5.1: (a) Shows mean score for domain experts without kHealthDash and with
kHealthDash (b) t-test with p-value for domain experts for comparing the two distributions

alyzed and plotted to present the mean usefulness with and without kHealthDash interface.

We also studied with t-testing (comparing two distributions) to prove that the difference is

significant. We obtained p-values 0.001 and 0.0008 (p-values < 0.05) for domain and non-

domain experts respectively. Distribution for both the groups is provided in the Figures

5.1 and 5.2. Results obtained depict that the web interface is a better and useful means to

explore triggers and asthmatic outcomes.
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(a)

(b)

Figure 5.2: (a) Shows mean score for non-domain experts without kHealthDash and with
kHealthDash (b) t-test with p-value for non-domain experts for comparing the two distri-
butions
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5.3.2 System Usability Scale

SUS questionnaire prompted to 5 domain and 5 non-domain experts resulted in 10 SUS

scores to measure the overall usability. SUS scores obtained were averaged for both field

participants and presented as shown in the Figure 5.3. We obtained a SUS score of 80.5

from domain experts and 75.83 from non-domain experts depicting kHealthDash as a good

web interface.

Figure 5.3: Shows mean SUS score for domain and non-domain participants
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Discussion and Analysis

We studied the data from a recruited asthma patient to demonstrate the need for multimodal

integration, visualization, and analysis with clinical knowledge. From the multimodal data

as discussed in Chapter 4, many causal relationships could be derived. Observing varia-

tion in potential outdoor environmental data (cause) resulting in asthma-related symptoms

(effect), in general, is regarded important by clinicians. To illustrate, we review one of

the deployed kHealth kit from April 27, 2017 - June 3, 2017, for a 12-year old child, di-

agnosed with asthma, to help doctors identify triggers causing the symptoms and develop

trigger avoidance strategies.

Figure 6.1: An instance of asthma patient readings on kHealthDash interface (May 3 to
May 21, 2017)
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Table 6.1: Correlation measure between patient symptoms and outdoor environmental ob-
servations (April 27 - June 3, 2017)

Air Quality Pollen Temperature Humidity Medication Usage
Ozone Particulate Matter Long-term Quick-relief

Correlation ( r ) 0.150702 -0.0959 0.338226 -0.2128 -0.47668 0.02538 0.106024

Table 6.1 shows Pearsons correlation (r) [21] measure which ranges between -1 to +1

and is used to assess the significance of the relationship between outdoor environmental

observations and symptoms. We noticed a positive correlation (0 to +1) for pollen and

negative correlation (-1 to 0) for humidity with respect to symptoms. While an instance

(shown in Figure 6.1) from the deployment obtained using kHealthDash shows that in-

creased pollen count, ozone, particulate matter, and humidity may have resulted in asthma-

related symptoms on May 7 and May 9, 2017, supporting a causal connection. Considering

all the evidence we analyzed for this patients readings, it is likely that ozone, particulate

matter, and pollen are the primary triggers for the symptoms and verified the instances with

the clinician. It can be observed that correlations alone are not strong enough to support

the decision-making and it is important to observe causal relations which could also elim-

inate any weak and spurious correlations. Identifying applicable personalized cause-effect

relationship can reinforce our decision-making process. Reporting that the symptoms are

triggered by pollen count, and air quality, to a personal physician, can enable them to devise

appropriate strategies for avoiding triggers.

In this thesis, we discuss the ability of a cloud infrastructure and kHealthDash web

interface to consolidate and analyze PGHD from different sensors, providing an integrated

method for action recommendation in the context of asthma. We evaluated kHealthDash

for its usefulness and overall usability for domain (clinicians) and non-domain (researchers)

participants. Our project funded by National Institutes of Health (NIH) [20] is expected to

complete a total of 150 patient trials. These patients will be enrolled from Dayton Childrens

Hospital for one or three month period each.

40



Conclusion

IoT-sensors and health monitoring systems are evolving, eventually leading to a paradigm

shift in disease management. Asthma being multifactorial [11], requires exploring mul-

timodal resources to understand the triggers that cause asthma symptoms, to enable pre-

vention. Specifically, a broad and integrated mechanism is necessary to acquire anecdotal

evidence that can eventually help manage asthma and prevent asthma attacks. In this work,

a cloud-based infrastructure capable of integrating multimodal data and an intuitive web

interface was developed. Further, this system allows exploring personalized triggers to cor-

roborate with asthma-relevant information, providing a foundation for compiling anecdotal

evidence, of which 80% of the anecdotes were explained and verified.

Our ongoing work involves using kHealthDash to develop heuristics based rules from

the clinician verified evidence and to use them in predicting the occurrence of symptoms

which would immensely benefit doctors and patients. Such a system conforms to the vi-

sionary health strategies devised by Augmented Personalized Health [31].
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