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ABSTRACT

Buchenroth, Anthony H. M.S. Egr., Department of Electrical Engineering,
2015. Ambiguity-Based Classification of Phase Modulated Waveforms.

Accurate classification or recognition of phase modulated radar waveforms, typ-

ically accomplished via the combination of pulse parameter estimates and matched

filtering, poses a simple problem in ideal conditions. Recognition of these waveforms

aids in various spectrum management, surveillance, and electronic warfare (EW) ap-

plications. In less than ideal conditions, carrier frequency, time offset, pulse ampli-

tude, initial phase, and bandwidth are unknown to the EW receiver rendering the

application of a matched filter futile. This effort investigates the use of features ex-

tracted from the ambiguity function of an intercepted pulse. Specifically, this effort

will expand upon the methodology of previous work done which uses the autocorre-

lation as a basis for extracting features. To test the efficacy of this work, extensive

Monte Carlo testing employed. Simulation results prove that the methodology im-

plemented herein achieves an overall correct classification rate of about 90% at a

signal-to-noise ratio (SNR) of -2 dB on data similar to the training data.
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CHAPTER 1

INTRODUCTION

Over time, radar waveforms have become more elaborate. Two of the main causes

behind the increasing complexity of modern radar waveforms are the increasing num-

ber of radio frequency (RF) spectrum users and the capability of conventional inter-

cept receivers. As the number of RF spectrum users has increased, the amount of

available contiguous bandwidth has significantly decreased. This decrease in avail-

able spectrum has forced radars to become more efficient at using their available

frequencies. To this end, the conventional intercept receivers that once worked ex-

tremely well in less dense RF, have become somewhat antiquated against complex

radar waveforms operating in dense RF environments. Additionally, the employment

of low probability of intercept (LPI) waveforms which operate at a low signal-to-noise

ratio (SNR), have further degraded the performance of these electronic support (ES)

systems.

Operating in these challenging conditions must be expected of all ES systems,

making the need for additional degrees of freedom in all facets of the intercept receiver

crucial. The intercept receiver plays an important role in the modern battlefield.

Information gained from these receivers aids in mission planning, surveillance, and

electronic warfare. The ES system of these receivers must be able to quickly detect and

identify adversary waveforms which operate using a wide array of modulations. Many

methods have been introduced to aid in the identification of radar waveforms. These

methods commonly employ the use of statistical features to describe the waveform.

The use of a feature set that best describes the waveform is often coupled with a

1



2

trade-off of computational complexity. With computational complexity in mind, an

ES system should use a feature set that describes the waveform well and can be

computed quickly.

1.1 Previous Work

Maintaining the ability to accurately interpret the RF environment has been a fo-

cus of research for decades. Within this broad research area, a niche community has

focused on methods with which radar emitters, modes, and waveforms can be identi-

fied. It is important to note that the methods for classifying emitters and modes differ

vastly from classifying waveforms. Additionally, in much of the available open litera-

ture, the phrases “radar signal classification” and “radar waveform classification” are

often used interchangeably. In an effort to provide clarity, radar signal classification

is often times intended to identify emitters and modes. Radar waveform classification

and radar modulation classification are phrases used when classifying the modulation

on a radar pulse. In this work, it is important to note that classifying modulated

radar waveforms such as the length-L Barker codes relies on information contained

within a pulse, or intra-pulse information. Conversely, classifying particular emitters

such as air traffic control radar or an air defense radar; and particular modes such as

acquisition or tracking; rely on intra- and inter-pulse information. Inter-pulse infor-

mation is comprised of signal parameters including frequency, time-of-arrival (TOA),

pulse width, PRI, pulse amplitude, and angle-of-arrival (AOA) [1]. Most conven-

tional ES systems rely on this inter-pulse information, known as a pulse descriptor

word (PDW), to sort and classify signals and emitters.
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1.1.1 Pulse Descriptor Word (PDW)-Based Classification

In less dense RF environments, the conventional emitter and signal identification

method uses PDWs to capture information about intercepted signals. This method of

classification works by tuning an intercept receiver to a frequency band of interest and

sampling all intercepted pulses within that frequency range. The onboard electronic

intelligence (ELINT) system obtains measures frequency, pulse amplitude, time-of-

arrival (TOA), angle-of-arrival (AOA), and pulse width. This vector of measurements

is sent to a clustering block. The clustering, or sorting block, similar to the example

in Figure 1.1, keys on certain PDW parameters to group like pulses [1], [2], and [3].

The result of successful pulse sorting allows the pulse repetition interval (PRI) to be

computed from TOA measurements. The information from sorted PDWs is compared

against a look-up table, often called a mission data file (MDF), made up of a priori

knowledge about a given RF environment.

Figure 1.1: PDW Clustering Illustration

The MDF is comprised of a list of all known threat emitters that could potentially
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exist in a given scenario. Each emitter in the MDF contains information about all

known signals or modes an emitter can achieve. Pulse train information from one or

multiple signals, believed to originate from the same source, allow for emitter identi-

fication. A block diagram of a typical ELINT system using PDW-based classification

method is shown in Figure 1.2.

Figure 1.2: Typical ELINT System

The ability to correctly identify signals and emitters using a system similar to

that shown in Figure 1.2 hinges upon the quality of information contained within the

MDF and the congestion of the RF system in which the system is deployed. In ideal

scenarios, emitters and signals are well separated in time, frequency, and space, al-

lowing PDW-based classification to work well. In congested scenarios, many emitters

and signals exist, and the classification accuracy is highly dependent on the process-

ing power of the onboard ELINT system. The congested scenario, further degraded
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by noise and interference, may render the typical ELINT system inoperable. The

system’s inability to operate in harsh conditions detracts from mission planning and

electronic warfare efforts. To regain EW capabilities, many researchers have consid-

ered the use of intra-pulse features. These intra-pulse features are used to represent

the intercepted radar signal in a concise way to minimize processing requirements.

1.1.2 Feature-Based Waveform Classification

Modern signal processing provides many methods with which one can analyze or

interpret signals. Many of these methods are implemented as some sort of transform

or statistical manipulation. The goal of choosing a manipulation that best represents

a waveform becomes foremost. The feature set chosen to represent the waveform must

be strict enough that it cannot be confused with the feature set of a different wave-

form but lenient enough to account for variations caused by changing environmental

conditions or signal parameters.

Time-Frequency Features

Features extracted from various time-frequency distributions are an attractive op-

tion for many researchers. Under the umbrella of time-frequency analysis, [4] incorpo-

rates features extracted from the Wigner distribution, the Choi-Williams distribution

(CWD), and Quadrature Mirror Filter Bank (QMFB) implemented on a field pro-

grammable gate array (FPGA). While multiple frequency and phase modulations are

tested, the authors do not present the results of the classification; only the accuracy

of extracting PDW-like parameters from time-frequency features.

Wavelet-based features have been used for waveform classification with generally

good results [5], [6], [7], [8]. While [6] lays a framework for using wavelet decomposi-

tion to analyze radar waveforms, test waveforms are limited and classification is not

performed. Later research conducted in [5], [7], and [8] use wavelet-based features
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with fuzzy clustering [5],[8] and fuzzy SVM [7] classification algorithms. Among these,

[5] and [8] are very similar and use energy entropy from wavelet-based transforms,

specifically, wavelet packet decomposition combined with principal component anal-

ysis (PCA) [5] and direct computation of the wavelet transform. The wavelet-based

features perform very well for SNR above 0 dB but are limited to M-ary PSK, FSK,

CW, and various instantiations of LFM.

Statistical Features

Within the category of statistical features, many possibilities exist for formulating

feature sets. These feature sets can be comprised of a single statistical feature vector

[9] or a combination of multiple feature vectors [10]. The methodology used in [10]

is attractive because it has the ability to use any combination of second-order or

higher-order features as well as instantaneously measured features to achieve good

performance. This system works by computing all possible features and pruning

the overall feature set by using an information theoretic selection algorithm. The

classification algorithm incorporates two independently operating parallel multilayer

perceptron networks (MLP). This system was tested with eight waveform classes,

using frequency modulations and phase modulations, achieving very good results.

The author, however, does mention that the performance of the system is dependent

upon the quality of the carrier frequency estimate. Further, the majority of the results

are based on perfect knowledge of the intercepted signal’s carrier frequency. In test

cases where the carrier frequency is estimated, accomplished by computing the mean

of the power spectral density (PSD), the performance suffers when attempting to

classify polyphase waveforms whose power spectrum is non-symmetric.

Alternatively, [9] uses one statistical feature, the autocorrelation function (ACF),

of the intercepted pulse as a basis for classification. While this work does not incorpo-

rate frequency modulated radar waveforms, it is successful in its ability to distinguish



7

between 23 phase modulated radar waveforms. Additionally, the performance of the

autocorrelation-based classifier is near perfect at SNR above 4 dB. Furthermore, the

system is able to increase its performance at low SNR by computing the ensemble av-

erage of the autocorrelation over multiple pulses. The result of this effectively reduces

noise variance, achieving near perfection at SNR above -6 dB when computing the

ensemble average of 20 autocorrelation sequences. This methodology seems attractive

due to its success with such a broad range of waveforms. Additionally, the system’s

only dependency is on the autocorrelation function, making the ability to average

multiple autocorrelation sequences together to increase performance noteworthy.

With regard to the work done in [9], a natural extension would be to consider

the ambiguity function as a possible feature set. Naturally, if the ACF is a unique

feature set invariant to nuisance parameters, so too is the ambiguity function of an

intercepted waveform. Further, because the ambiguity function contains all of the

information of the ACF, the proposed performance of such a system should at least

achieve results similar to [9]. The next chapter will discuss the implementation of the

proposed system whose methodology will mirror that of [9] with the exception of the

ambiguity function substituted for the autocorrelation function.

1.2 Contribution

It is imperative that an ES system be able to accurately identify adversary wave-

forms. To date, there is no consensus method with which this task is accomplished.

Because of the wide array of radar waveforms in existence, the selection of a wor-

thy feature set paired with a robust classification algorithm must be considered. In

this thesis, we begin by investigating promising feature sets used in open literature.

These algorithms are assessed by a number of factors. An ideal feature set should

have a limited number of dependencies, have the ability to operate on a wide array of

waveforms (i.e., uniqueness), maintain invariance to nuisance parameters (e.g., car-
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rier frequency, time offset, amplitude, initial phase, bandwidth, etc.), and should be

robust to low SNR [10],[9].

From these candidate feature sets, the autocorrelation function is chosen, which

we conclude best represents the waveform while satisfying our assessment criteria. In

this work, we incorporate a feature set modified from the autocorrelation function

used in [9]. We follow a similar methodology, operate on the same waveforms, and

perform the same evaluation methods. This work, which parallels the work in [9],

can be compared fairly, in a head-to-head manner. Furthermore, we provide standard

metrics from the machine learning community to evaluate our classifier [11],[12],[13].

1.3 Outline

The remainder of this thesis will be organized as follows. Chapter 2 will pro-

vide a mathematical basis of our feature set, the ambiguity function, and discuss its

traditional interpretation and application. In chapter 3, we will develop our imple-

mentation methodology, and the testing strategy. Chapter 4 will provide an analysis

of our results, significant findings, and comparison to the work of [9]. Finally, Chap-

ter 5 will provide concluding remarks followed by the account of open problems for

future research.

In this thesis, we will use the following notation. Bold capital letters (e.g., X)

represent matrices. Overlined lowercase letters (e.g., x) indicate vectors, and lower

and upper case letters (e.g., x and X) represent scalars. Also, (·)T represents the

transpose operator, and (·)H represents the complex transpose operator.



CHAPTER 2

AMBIGUITY FUNCTION

Given that radar signals are designed in such a fashion to meet both hardware

constraints and a tactical goal within an acceptable margin of error, some method

must be used to evaluate the performance of such signals. The ambiguity function

is the traditional method by which both waveforms and signals are evaluated. Using

the ambiguity function, radar waveform designers can gain insight into a particular

waveform in the form of resolution, side-lobe level, ambiguity spacing, and range-

Doppler coupling. These measures help to determine if a given waveform is suitable for

a given radar application [14]. The subject of this work, however, pertains the use of

the ambiguity function with respect to radar waveform classification. The remainder

of this chapter will focus on the mathematical development of the ambiguity function

and its properties with respect to its traditional use in signal analysis.

The ambiguity function is defined as the time response of a filter matched to a

given waveform when the waveform is received with time delay, τ , and Doppler shift,

ν, relative to the nominal values expected by the filter [15]. Consider a radar system

to employ a prototype pulse given by

sb(t) = u(t)ejθ(t) (2.1)

where u(t) is the signal’s complex envelope and θ(t) is the phase modulation. To

9
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transmit, sb(t) is mixed to some RF carrier given by

s(t) = u(t)ej(Ωt+θ(t)) (2.2)

where Ω is the carrier frequency. Upon reception of the reflected signal, s(t) is mixed

back to baseband. If we consider a matched filter for the waveform sb(t) when the

input is a Doppler-shifted version, sr(t), the filter output will be given by

h(τ, ν) =

∫ ∞
−∞

sb(t)s
∗
r(t− τ)ej2πνtdt ≡ Φ(τ, ν). (2.3)

According to Parseval’s theorem, the complex ambiguity or time-frequency autocor-

relation function (TFACF), Φ(τ, ν), can equivalently be expressed in the frequency

domain by applying a Fourier transform to the signal

Φ(τ, ν) =

∫ ∞
−∞

Sb(f)S∗r (f − ν)ej2πftdf. (2.4)

At this point, it is appropriate to note that some authors define the ambiguity func-

tion in slightly different ways. In this work, we define the ambiguity function to be

consistent with [16] as the magnitude of the complex ambiguity function given by

χ(τ, ν) =

∣∣∣∣Φ(τ, ν)

∣∣∣∣ =

∣∣∣∣∫ ∞
−∞

sb(t)s
∗
r(t− τ)ej2πνtdt

∣∣∣∣ (2.5)

For clarity, we denote the difference between the ambiguity function and its complex

variant, the time-frequency autocorrelation (TFACF) as

χ(τ, ν) =

∣∣∣∣Φ(τ, ν)

∣∣∣∣. (2.6)
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2.1 Properties

There are five main properties of the ambiguity function, χ(τ, ν), that not only

aid our conceptual understanding, but also provide insight to its use as a source of

features, described in the next chapter.

1. The maximum value of χ(τ, ν) is χ(0, 0) and is given by

χ(τ, ν) ≤ χ(0, 0) =

∣∣∣∣∫ ∞
−∞

sb(t)s
∗
r(t)dt

∣∣∣∣ = A (2.7)

2. The volume under χ(τ, ν) is constant

∫ ∞
−∞

∫ ∞
−∞

χ(τ, ν)2dτdν = A (2.8)

3. χ(τ, ν) is symmetric with respect to the origin

χ(τ, ν) = χ(−τ,−ν) (2.9)

4. The zero-Doppler cut (τ -axis) is the autocorrelation function

χ(τ, 0) =

∣∣∣∣∫ ∞
−∞

sb(t)s
∗
r(t− τ)dt

∣∣∣∣ =

∣∣∣∣R(τ)

∣∣∣∣ (2.10)

5. The zero-Delay cut (ν-axis) is the Fourier Transform of the magnitude squared

of the complex envelope sr(t)

χ(0, ν) =

∣∣∣∣∫ ∞
−∞

s2
r(t)e

j2πνtdt

∣∣∣∣ (2.11)
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2.2 Traditional Interpretation

The premise of analyzing the waveform in terms of its ambiguity function evokes

the notion of an optimal or ideal ambiguity function. Depending on the intent of

the waveform, the term ideal can vary. For instance, an ambiguity function can

be ideal in terms of resolution or tolerance, but not both. For this reason, we can

qualitatively analyze waveforms in terms of ideal resolution or ideal tolerance, making

note of ambiguity side-lobe level. For the first extrema, an ambiguity function ideal

in resolution would exhibit a peak at the origin of infinitesimally narrow width and

zero elsewhere. Known as the “thumbtack” ambiguity function, resolution in both

range and Doppler would be highly accurate. The lack of secondary peaks would also

imply that no range or Doppler ambiguities exist. A radar waveform that exhibits

these qualities would be beneficial for a system requiring fine measurements such as a

tracking or imaging radar. Conversely, some waveforms may be intended to be more

tolerant of Doppler mismatch. Such a waveform may exhibit a peak at the origin

of considerable width in Doppler in order to be responsive to this broad range of

Doppler frequencies. The Doppler tolerance for this type of waveform can be ideal

for a system attempting to detect targets whose velocity is not known. Since a target

of unknown velocity is likely to be detected with these Doppler tolerant waveforms,

a system employing this waveform would be ideal for surveillance applications.

With this template for comparison, we can qualitatively analyze the ambiguity

function of the simple unmodulated pulse. With regard to the ideal thumbtack am-

biguity function, it is apparent that this waveform has limited resolution capabilities

in both delay and Doppler. Figures 2.1 - 2.3 show the ambiguity of an unmodulated

pulse normalized in both delay by sampling interval, tb, and Doppler by waveform

length, Mtb. From the ambiguity contour, it is apparent that this waveform would

not be ideal for applications requiring fine resolution. But, for a given Doppler mis-
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match, the overall shape of the ambiguity function remains consistent with a peak

at the correct time delay, this waveform is able to detect a broader range of target

velocities. With this qualitative analysis, the unmodulated pulse may be suitable for

some target detection applications due to its rank as a relatively Doppler tolerant

waveform.

Figure 2.1: Ambiguity Surface
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Figure 2.2: Ambiguity Contour

Figure 2.3: Zero-Doppler Cut (top) and Zero-Delay Cut (bottom)



CHAPTER 3

SYSTEM DESIGN

While the ambiguity function, developed in the previous chapter, models a matched

filter based on a template of the transmitted waveform matched to a waveform re-

ceived via target reflection as expressed in (2.3), the ambiguity function used for

waveform classification is quite different. Additionally, the way the ambiguity func-

tion is perceived by the system differs from its traditional interpretation. While this

chapter discusses aspects of signal interception and deinterleaving processes, no such

algorithms are implemented. The focus of this thesis is on the feature extraction and

classification of an intercepted radar waveform. Note, that for the following devel-

opment, many of the equations are transcribed from [9]. This is done to maintain

consistency in the mathematical development and testing in order to fairly compare

the two feature sets.

3.1 Signal Interception

As defined in [9], a threat radar is assumed to employ a continuous-time prototype

pulse

xc(t) =


exp{jφc(t)}, t∈ [−τ/2, τ/2]

0, otherwise

(3.1)

15
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where φc(t) is a phase modulation belonging to one of C classes. The threat radar

transmits a chain of P pulses with pulse repetition interval (PRI), T . The intercept

receiver observes the signal

x(t) =
P−1∑
p=0

Apxc(t/α− pT )ejω0t + v(t) (3.2)

corrupted by white Gaussian noise v(t) with variance σ2
v and potentially degraded by

model mismatch in the receiver. Further, the observed pulses are altered by jitter

in complex amplitude Ap, time scaled by α to achieve the designed pulse width,

and modulated to carrier frequency, ω0; all of which are unknown to the intercept

receiver. From the received signal, envelope detection is performed to identify leading

and falling edges of each pulse in order to create a bank of stacked pulses

yp(t) = Apxc(t/α− tp)ejω0t + vp(t), p = 0 . . . P − 1, (3.3)

where vp(t) represents noise samples from v(t). Additionally, each pulse from the

threat radar is contained within a window slightly larger than the pulse width to

allow for errors in edge detection. The offset within the window, tp, is assumed to be

unknown. This ensemble of radar pulse observations are then input into the phase

modulated waveform classifier in digitized form, yp[n] = yp(nTs), n = 0 . . . N − 1,

where Ts is the sampling interval assumed to satisfy the Nyquist requirement.

3.2 Feature Extraction

In order to identify the phase modulation of the waveform, [9] uses a variation of

the waveform’s autocorrelation function that is invariant to unknown signal param-

eters, including complex amplitude (Ap), frequency offset (ω0), time offset (tp), and

time scaling (α). At this point, we choose to substitute the autocorrelation-based
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feature for the ambiguity-based feature. This seems to be a natural extension to the

work done in [9] given that the autocorrelation sequence is contained within the am-

biguity function according to Property 2.10. While each phase modulated waveform

yields a unique ambiguity function, the ambiguity-based feature set is also lenient

enough to account for variation in the waveform (e.g., pulse width). The waveform

classification system begins with the feature extraction process by computing the

discretized complex ambiguity function, or time-frequency autocorrelation function

(TFACF) of each intercepted pulse. The model for the discrete TFACF is given by

Φ(τ, ν) =

∫ ∞
−∞

s(t)s∗(t− τ)ej2πνtdt (3.4)

≈
N−1∑
n=0

Tss(nTs)s
∗(nTs − τ)ej2πνnTs ≡ Φ̂(τ, ν)

where we incorporate the total number of samples, N , and the sampling interval, Ts.

Using modified code from [16], yp is substituted for s and vectors for discrete τ and

ν are computed. The computed TFACF of each pulse will be of the form

Φ̂p[m, k] =
N−1∑
n=0

Tsyp[nTs]y
∗
p[nTs −m∆t]ej2πk∆fnTs (3.5)

= |Ap|2Φ̂c(m∆t, k∆f)ejω0nTs + wp[m∆t, k∆f ],

m = −M + 1 . . .M − 1, ∆t =
N

αM
,

k = −K + 1 . . . K − 1, ∆f = F/K/N,

where Ts is the sampling interval of the input pulse, N is the total number of samples,

m∆t is the discrete sample delay, k∆f is the discrete Doppler shift, and noise terms

are grouped into wp[m∆t, k∆f ]. The ambiguity’s invariance to time offset is used to

neglect tp and the time scaling term, α, is dropped in the delay resolution normal-

ization, ∆t = N/αM . It is important to note that while the length of the signal can

change, the size of the TFACF is constant due to hard-coded parameters for number
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of delay and Doppler shifts, M and K, respectively. Also, the maximum normalized

Doppler shift, F , is hard-coded. The effect of hard-coding these parameters results in

variable delay and Doppler resolution dependent on the length of the waveform, N .

Because the ambiguity function is symmetric, this algorithm computes the first

two quadrants (i.e., positive and negative delay for positive Doppler shifts) efficiently

using a sparse matrix representation of the waveform correlation. Again, note that

for the computation of the complex ambiguity, parameters for maximal delay and

Doppler shift as well as the number of grid points for each is hard-coded. Although the

choice for these parameters is largely arbitrary, the values were chosen to capture the

entire behavior of the waveform with qualitatively good resolution while also adhering

to the recommended parameters given by [16]. For clarity, images of the feature

extraction process are included throughout this chapter using a Barker-7 waveform

as a model. To begin, Figure 3.1 displays two quadrants of the ambiguity function of

the Barker 7 waveform at the chosen grid size of 101 Doppler samples by 201 delay

samples. Accordingly, these values allowed for variable levels of resolution depending

on sampling frequency and pulse width of the waveform.

The prototype signal TFACF for the cth waveform is expressed as Φ̂c(τ, ν). A noise

suppression technique is then employed to compute the ensemble average TFACF

given by

Φ̂(m, k) =
1

P

P−1∑
p=0

Φ̂p[m, k] (3.6)

≡ |A|2Φ̂c[m∆t, k∆f ]ejω0m∆t + w[m, k],

m = −M + 1 . . .M − 1,

k = −K + 1 . . . K − 1,

where the variance of w[m, k] has been reduced by a factor of P relative to the variance

of wp[m, k] and the average waveform intensity is |A|2 = P−1
∑

p |Ap|2. Computing
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Figure 3.1: Sample of the ambiguity function of a Barker 7 coded pulse given by
(3.6). Grid Size: 201 Delay Samples by 101 Doppler Samples

the log-magnitude of the ensemble average TFACF produces a unity peak normaliza-

tion with enhanced sidelobe structure, shown in Figure 3.2, given by

lΦ̂[m, k] = log

∣∣∣∣Φ̂c[m∆t, k∆f ]

∣∣∣∣+ log
|A|2

Φ̂c[0, 0]
+ z[m, k] (3.7)

m = −M + 1 . . .M − 1,

k = −K + 1 . . . K − 1,

where z[m, k] is introduced as an additive term accounting for corruption due to noise

and model mismatch. As stated in [9] and assumed here, the statistics of the noise

are difficult to track but are treated as zero-mean.
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Figure 3.2: Log-scaled ambiguity function of a Barker 7 coded pulse given by (3.7)

By computing the two-dimensional discrete Fourier transform of (3.7) we obtain

a compact set of Fourier coefficients given by

LΦ̂[u, v] =
1

MK

2M−1∑
m=0

2K−1∑
k=0

[
log

∣∣∣∣Φ̂c[m∆t, k∆f ]

∣∣∣∣
+ log

|A|2

Φ̂c[0, 0]
+ z[m, k]

]
e−j2π(

u
2M−1

m+ v
2K−1

k),

u ∈
[
−1

2∆t
,

1

2∆t

]
, v ∈

[
−1

2∆f
,

1

2∆f

]
.

(3.8)

At this point, we now have an expression that is invariant to unknown time shifts and

frequency offsets. Also, the unknown complex-valued amplitude has been relegated

into a DC offset. By considering the complex ambiguity function as a log-scaled,

two-dimensional discrete Fourier transform, as shown in Figure 3.3, we now have a

feature set that is not only content-rich, but is invariant to the nuisance parameters

introduced at the beginning of this chapter.
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Figure 3.3: Fourier coefficients of the log-scaled ambiguity function of a Barker 7
coded pulse given by (3.8)

Now, because we have a feature matrix that exists in a two-dimensional frequency

space, u and v, we want to capture a subset of the information that will fully de-

scribe a waveform while keeping the size of the subset manageable to maintain the

robustness of the algorithm, shown in Figure 3.4. It is noted in [9] that low-frequency

information is generally sufficient for classification purposes. With this in mind, we

can sample a small number of terms in both dimensions to capture the principal

sidelobe structure of the log-TFACF while omitting the DC coefficient that remains

ambiguous. Specifically, we choose the block of samples that consist of all of the 20

ACF coefficients from [9] along with the 20 coefficients from each of the 5 Doppler

lag rows above and below, shown in Figure 3.4. Choosing samples at p = 1 . . . P with
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P << 2M − 1 and q = −Q . . . Q with |Q| << 2K − 1, we can rewrite (3.8) as

LΦ̂[p, q] =
1

MK

2M−1∑
m=0

2K−1∑
k=0

[
log

∣∣∣∣Φ̂c[m∆t, k∆f ]

∣∣∣∣
+ log

|A|2

Φ̂c[0, 0]
+ z[m, k]

]
e−j2π(

p
2M−1

m+ q
2K−1

k),

p = 1 . . . P, q = −Q . . . Q.

(3.9)

Finally, we normalize, then manipulate LΦ̂[p, q] by concatenating its column vectors

to create a PQ-dimensional feature vector, shown in Figure 3.5, given by

x[k] = vec(LΦ̂[p, q]) =


LΦ̂[1, 1]

...

LΦ̂[p, q]

 (3.10)

to be input into a linear classifier.
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Figure 3.4: Selected Fourier coefficients corresponding to 20 delay lags for each of
the 11 Doppler lags given by (3.9)
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Figure 3.5: Fourier coefficients represented as a column vector concatenation of
(3.9) given by (3.10)

3.3 Waveform Classification

We now have a PQ-dimensional feature vector belonging to class c, to which

one must apply some classification method to discriminate between classes. For fair

comparison, we align our classification method with that of [9], the Fisher Linear

Discriminant (FLD) [17]. Since we are interested in a c-class problem, we must de-

cide between two classification methodologies, one-versus-one (OVO) or one-versus-all

(OVA). In the OVO or two-class methodology, we can apply the FLD directly. Apply-

ing the OVO to the c-class problem would in turn yield c(c− 1)/2 binary classifiers.

Thus, for a classification problem with many classes, the number of classifiers grows

quickly. Instead, we use the OVA methodology where we employ c − 1 classifiers to

the multiclass problem. This also allows for simple analysis of each class as shown in

the next chapter.

For the multiclass problem, we use a generalized variant of the FLD in the OVA

paradigm. This classifier seeks to project feature vectors onto a weighting vector
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that will provide the maximal separation between the one within-class subset and

the out-of-class subset samples. Suppose we have a set of n PQ-dimensional samples

x1, . . . , xn, belonging to the within-class subset, D1, and the out-of-class subset, D0.

We can then express the projection of PQ-dimensional samples onto the weighting

vector as

yi = wTi x, (3.11)

where wi is the weighting vector of the ith class, i = 1, . . . , c − 1. Because ||wi||

simply scales the data, the magnitude of wi is of no consequence. The direction of wi

is significant however, and must be chosen in a way to best separate the within-class

and out-of-class samples. In order to find the best weighting vector, the FLD begins

by computing the PQ-dimensional sample means of the within-class and out-of-class

data, respectively, given by

µ1 =
1

n1

∑
x∈D1

x, (3.12)

µ0 =
1

n0

∑
x∈D0

x, (3.13)

where x ∈ D1 represents the samples from one class, denoted D1, and x ∈ D0

represents the samples from the remaining c − 1 classes, denoted D0. To obtain the

best separation, the maximum difference between the sample means is expressed in

terms of standard deviations for each class. We then define the total within-class

scatter matrix as

SW = S1 + S0, (3.14)

where S1 and S0 are the scatter matrices of each subset, D1 and D0, respectively,
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given by

Si =
∑
x∈Di

(x− µi)(x− µi)T (3.15)

Similarly, the variance of the projected samples are expressed as

s2
i =

∑
x∈Di

(wTi x− wTi µi)2 ≡
∑
x∈Di

wTi (x− µi)(x− µi)Twi ≡ wTi Siwi. (3.16)

Therefore, the sum of the projected scatters becomes

s2
1 + s2

0 = wTi (S1 + S0)wi ≡ wTi SWwi. (3.17)

Next, in order to find the between-class scatter or difference between projected mean

vectors, SB, we define the separation as

(µ1 − µ0)2 = (wTi µ1 − wTi µ0)2 (3.18)

= wTi (µ1 − µ0)(µ1 − µ0)Twi

= wTi SBwi

Given that we now have expressions for both within-class scatter, SW, and between-

class scatter, SB, we seek the criterion that maximizes the ratio of between-class

scatter to within-class scatter, given by

J(wi) =
wTi SBwi
wTi SWwi

. (3.19)

The maximization of the criterion function, J(·), is a traditional optimization problem
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solved by evaluating the derivative of the criterion function at zero, given by

∇J(w) = ∇ wTSBw

wTSWw
≡ 0 (3.20)

= (wTSWw)
δwTSBw

δw
− (wTSBw)

δwTSWw

δw
= 0

= (wTSWw)2SWw2SBw − (wTSBw)2SWw = 0.

If we then divide (3.20) by 2wTSWw, we see that SW and SB are in the same direction

and now have

wTSWw

wTSWw
wSBw −

wTSBw

wTSWw
wSWw = 0, (3.21)

which reduces to

SBw − JSWw = 0. (3.22)

Observe that (3.22) is the generalized eigenvalue problem

SW
−1SBw = J(w)w, (3.23)

and the optimal w is found via

argmax
w

J(w) = SW
−1SB = SW

−1(µ1 − µ0). (3.24)

Now that we have found the optimal weighting vector, w, the determination threshold,

T , can be defined as the midpoint between the projected mean vectors given by

T = wT
µ1 − µ0

2
, (3.25)
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and the linear decision function is thus given by

d(x) =


1, wTx > T

0, wTx < T

(3.26)



CHAPTER 4

EXPERIMENTATION AND RESULTS

In Section 4.1, the methodology in which we train and test the classification system

is discussed. In Section 4.2, we present the results of our testing by means of confusion

matrices. Using these confusion matrices, in Section 4.3, we compare our ambiguity-

based classification system with the autocorrelation-based classification system in [9].

Lastly, in Section 4.4, we assess our classification system using the standard metrics

used in the machine learning community [11],[12],[13].

4.1 Experimentation Methodology

To fairly compare the two feature sets, classifier training and testing is conducted

to mirror the methodology of [9]. Today’s EW receivers operate at a frequency band

of interest, down convert the instantaneous bandwidth to an intermediate frequency

(IF), and digitize. The digitized samples are input into an energy detection subsystem

to determine the presence of a signal. A PDW encoder then estimates signal pulse

parameters. In our simulation, we assume a single signal detection occurred within an

AWGN channel, the signal has been time gated, initially identified as a phase mod-

ulated waveform, and mixed to baseband. Additionally, our only other assumptions

are that the input waveform is one of the 23 different modulation classes shown in

Table 4.1 and that the feature vectors corresponding to the 23 different modulation

classes are linearly separable.

28
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Table 4.1: Phase modulation types addressed in [9]

c Modulation Type Code Length Training τ (µsec) Testing τ (µsec)
1 Barker 7 1.75 7.0
2 Barker 11 2.75 11.0
3 Barker 13 3.25 13.0
4 Combined Barker 16 2.0 8.0
5 Combined Barker 49 6.13 2.11
6 Combined Barker 169 22.1 84.6
7 Maximum Length Pseudo Random 16 1.5 4.5
8 Maximum Length Pseudo Random 64 3.5 10.5
9 Maximum Length Pseudo Random 256 6.3 18.9
10 Minimum Peak Sidelobe 10 1.4 4.2
11 Minimum Peak Sidelobe 25 2.5 10.0
12 Minimum Peak Sidelobe 48 4.8 19.2
13 T1 NA 4.0 16.0
14 T2 NA 3.0 12.0
15 T3 NA 8.0 2.0
16 Polyphase Barker 7 1.75 7.0
17 Polyphase Barker 20 2.0 8.0
18 Polyphase Barker 40 4.0 16.0
19 P1 NA 10.0 20.0
20 P2 NA 6.4 25.6
21 P3 NA 6.4 25.6
22 P4 NA 10.0 29.0
23 Minimum Shift Key 64 18.9 8.0

4.1.1 Offline Training

The FLD classifier is trained with the 23 phase modulations displayed in Table

4.1. As noted in [9], the modulation classes are chosen to represent the majority of

phase modulated radar waveforms an EW receiver is likely to encounter. To train the

classifier, we perform a 1000 iteration Monte Carlo simulation at 10 dB SNR. In each

iteration, pseudo-random noise and initial phase realizations are generated for each

waveform and training pulse width pair. Additionally, several different sampling rates

are used to safeguard against bias being introduced into the training coefficients.

It is important to note the Monte Carlo training methodology. Because the FLD

is a deterministic system whose performance is tied to computing the best weight-

ing vector, w, and corresponding thresholds, T , the manner in which we train our

classifiers is correlated to our expected performance. Variance in the input feature
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vectors, caused mainly by the noise component within the signal, creates some un-

known probability distribution in the PQ-dimensional feature space. Since the FLD

is nonparametric in nature, obtaining a closed form expression for the distribution

of each class’s features is unnecessary. Instead, by training our classifier with many

instantiations of each feature vector, we need only to account for the probability dis-

tributions in terms of sample mean and sample covariance, as shown in (3.24) and

(3.25). To obtain the projection that best separates classes of waveforms, leading to

optimal FLD performance, training in a Monte Carlo fashion, where the most accu-

rate sample means and sample covariances are computed using many instantiations

of each feature vector, will generally increase expected performance.

4.1.2 Online Testing

To test our classification algorithm, we perform simulations using the 23 phase

modulations found in Table 4.1 with different pulse widths (τ) than we used in our

offline training phase. The effect of changing the pulse width of the input waveform

under test from the training set, which alters the time bandwidth product of the pulse,

allows us to gauge the performance of the algorithm independent of any specific pulse

parameters. Good performance under this independence criterion suggests algorithm

flexibility and feature set leniency. To this end, a random initial phase is imparted on

the waveform to account for fluctuations in pulse transmissions and a random time

shift is applied to simulate imperfect TOA and time-of-departure (TOD) estimates.

Additionally, because this algorithm is assumed to operate as a back-end process to

some antenna hardware and front-end signal processing, a fixed test sampling rate

of 105 MHz is used. To gauge overall performance, a 1000 iteration Monte Carlo

simulation is employed with different noise realizations.
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4.2 Classification Results

Figure 4.1 displays the confusion matrix, also known as a contingency table, for

the 23 class problem at 10 dB SNR with only 1 AF realization. For all of the fol-

lowing confusion matrices, the X-axis represents actual class membership while the

Y-axis represents the class membership decided by the classifier. As shown, with one

realization of the ambiguity-based features, our classifier performs perfectly at 10 dB

SNR. The perfect classification rate in Figure 4.1 is noteworthy because the varying

nuisance parameters do not affect classification rate when the SNR of the training

and testing features are equivalent.

Figure 4.1: Confusion matrix at 10 dB SNR with only 1 AF realization. Note:
X-axis represents actual class membership, Y-axis represents decided class

membership

Again, aligning our display of results to that of [9], below in Figures 4.2-4.5 shows

the confusion matrix with 1, 5, 10, and 20 AF features averaged together at -6 dB

SNR. As shown, averaging just 5 received AF sequences boosts classifier accuracy
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from 11% to 81%. What’s more, averaging all 20 AF sequences achieves 96% correct

classification.

Figure 4.2: Confusion matrix at -6 dB SNR with 1 AF sequence. Note: X-axis
represents actual class membership, Y-axis represents decided class membership

Figure 4.3: Confusion matrix at -6 dB SNR with 5 ensemble average AF sequences.
Note: X-axis represents actual class membership, Y-axis represents decided class

membership
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Figure 4.4: Confusion matrix at -6 dB SNR with 10 ensemble average AF sequences.
Note: X-axis represents actual class membership, Y-axis represents decided class

membership

Figure 4.5: Confusion matrix at -6 dB SNR with 20 ensemble average AF sequences.
Note: X-axis represents actual class membership, Y-axis represents decided class

membership
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It is interesting to note, however, that while the correct classification rate increases

from Figure 4.2 to Figure 4.5, we only observe modest improvement in the classifier’s

ability to correctly identify MSK 64 waveforms. Table 4.2 shows the increase in total

probability of correct classification at a range of different SNRs when averaging 1, 5,

10, and 20 AF features together. As the number of averaging operations increases,

performance reaches a 100% correct classification rate.

Table 4.2: Probability of Correct Classification for 23 Different Modulations Types
Across Multiple SNRs and Increasing Number of AF Averaging

SNR (dB) 1 Chain Pt 5 Chain Pt 10 Chain Pt 20 Chain Pt
-10 .0432 .0525 .1023 .3205
-8 .0467 .2518 .5744 .8068
-6 .1134 .8066 .9268 .9574
-4 .5667 .9488 .9622 .9782
-2 .8929 .9673 .9882 .9987
0 .9484 .9921 .9999 1
2 .9700 .9998 1 1
4 .9925 1 1 1
6 .9993 1 1 1
8 .9999 1 1 1
10 1 1 1 1

4.3 Classification Comparison: Ambiguity-Based

vs Autocorrelation-Based

Until this point, our system design and experimentation methodology has mirrored

that of [9]. Now, we can fairly compare the performance of the two different feature

sets, holding all else constant. By comparing the correct classification rates in Table

4.2 with its counterpart in [9], the ambiguity-based features provide an apparent

increase in correct classification rate. If we consider a “good” classifier as one that

achieves a correct classification rate of 90%, the ambiguity-based classifier has an

effective SNR gain of 2 dB when using one feature set realization. Interestingly,
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when averaging multiple feature set realizations, the ambiguity-based classifier only

has about a 1 dB effective SNR gain over the autocorrelation-based classifier. This

provokes further comparison of total performance with respect to SNR for 1, 5, 10, and

20 AF ensemble averages, as shown in Figures 4.6-4.9. In theory, a perfect classifier

would resemble a step function in shape where the correct classification rate is always

maximum. In reality, such systems are not achievable, so instead we seek a system

in which the area under the curve is greatest. In each of the figures, the AF-based

classifier out-performs the ACF-based classifier in terms of greatest area under the

curve.

Figure 4.6: A comparison of total classification accuracy as a function of SNR with
1 feature set realization. Observe the effective SNR gain of 2 dB at a fixed

classification rate of 90%.
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Figure 4.7: A comparison of total classification accuracy as a function of SNR with
5 feature set realizations averaged. Observe the effective SNR gain of about 1 dB at

a fixed classification rate of 90%.

Figure 4.8: A comparison of total classification accuracy as a function of SNR with
10 feature set realizations averaged. Observe the effective SNR gain of about 1 dB

at a fixed classification rate of 90%.
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Figure 4.9: A comparison of total classification accuracy as a function of SNR with
20 feature set realizations averaged. Observe the effective SNR gain of about 1 dB

at a fixed classification rate of 90%.

Figure 4.10: Relative correct classification rate increase using ambiguity-based
features over autocorrelation-based features as a function of SNR. Observe that

relative classification accuracy is increased by over 5% within a 4 dB dynamic range.
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A more telling curve to consider is the overall performance difference with respect

to SNR. In Figure 4.10, each curve represents a different amount of ensemble averaging

across the SNR range. It is evident that the AF features, which contain all of the

information in the ACF features, perform better in terms of correct classification rate

by about 15% at low SNRs.

4.4 Classifier Performance

4.4.1 Two-Class Classifiers

Apart from determining classifier performance through correct classification rate,

or accuracy, given by a confusion matrix, there exists a standard metric system within

the machine learning community to assess classifier performance [11],[12],[13]. While

most of these metrics have been defined for two-class, or binary, classifiers, [11] has

extended these same metrics to multiclass classifiers. For a standard binary classifier,

a confusion matrix will exhibit the form as shown in Table 4.3.

Table 4.3: Confusion Matrix for a Binary Classifier

Data Class (+) Data (-) Data
(+) Decision True Positive (tp) False Positive (fp)
(-) Decision False Negative (fn) True Negative (tn)

Because accuracy alone does not provide all of the necessary information to deter-

mine how well a classifier performs, metrics including precision, sensitivity (recall),

specificity, and F-score are used to capture more of the information contained within

the confusion matrix. These metrics exists as proportions of confusion matrix data

that aim to answer questions regarding the predictive abilities of a classifier.

For example, it may be important to know the probability that a positive pre-

diction, or decision, is truly positive, defined as precision (positive predictive value).

Precision is computed as the ratio between the true number of positive samples and
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the number of positive predictions made by the classifier, given by

Precision =
tp

tp + fp
. (4.1)

It also may be important to know how well a classifier recognizes positive samples,

defined as sensitivity (recall, true positive rate). Sensitivity is computed as the ratio

between the true positive predictions and the sum of true positive predictions and

false negative predictions, given by

Sensitivity =
tp

tp + fn
. (4.2)

Additionally, we may want to know how well a classifier recognizes negative samples,

defined as specificity (true negative rate). Specificity is computed as the ratio between

true negative predictions and the sum of true negative predictions and false positive

predictions, given by

Specificity =
tn

tn + fp
. (4.3)

Finally, the F-score (F1-score) accounts for the classifier’s accuracy in terms of the

relation between the actual positive labels and those given by the classifier. The

F-score is computed as the harmonic mean of precision and sensitivity, given by

Fscore =
2 ∗ Precision ∗ Sensitivity
Precision+ Sensitivity

. (4.4)

4.4.2 Multi-Class Classifiers

As shown, these standard metrics provide a concise performance analysis tool

for the two-class problem. To account for the multi-class problem, [11] and [13] have

expanded these equations. This expansion is achieved by redefining the test outcomes
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true positive (tp), true negative (tn), false positive (fp), and false negative (fn) with

respect to each of the C classes (i.e. tpi , i = 1 . . . C). As an example, Figure 4.11

displays a three class confusion matrix with these redefined parameters.

While the expressions for the standard metrics remain the same, Figure 4.11

displays how test outcomes change for each of the OVA classifiers. As an example,

the true negatives for class A (tnA
) are defined as samples that do not belong to class

A and are not classified to class A. The cells of the confusion matrix that meet that

criteria exist in the pink shaded region, and thus, the sum of instances found in these

cells produce the number of true negatives for class A.

What’s more, we assess each of our multi-class classifiers individually, in what is

referred to as micro-level metrics, and our classification system as a whole, or macro-

average metrics [11]. Lastly, because each of our classifiers only output a decided

class label, known as a discrete classifier, we also display the operating points in a

receiver operating characteristics (ROC) graph [12].
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Figure 4.11: All Possible Test Outcomes for the Three-Class Problem Using a
Multi-Class Classifier Approach
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Figure 4.12: Classifier Precision

The precision metric, displayed in Figure 4.12, which denotes the proportion of

positive decisions that belong to the positive class, is viewed in the machine learning

community as a confidence measure. For all of the micro-level metrics, all of the

confusion matrix data from Table 4.2 is used. Micro-level metrics are computed

using the aggregate of test data from all SNR levels. As shown, we see that the

majority of classifiers have a very high degree of precision, meaning that when a

positive decision is made by one of those classifiers, confidence in that decision is

strong. Alternatively, several classifiers (e.g. C Barker 169, T3, P1, and MSK 64)

have relatively poor precision, thus, when a positive decision is made by one of those

classifiers, confidence in that decision is weak. This phenomenon occurs when noise

degrades feature vectors to the point where its projection onto a line converges to a

certain region, or regions, outside the boundaries of its respective class.

Conversely, classifier sensitivity provides a measure of how well it is able to rec-

ognize positive samples. Because the T3 classifier has the worst precision, we expect
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many samples to be classified as T3, both correctly and incorrectly. This is proven

in Figure 4.13 where the T3 classifier is best at recognizing T3 samples.

Figure 4.13: Classifier Sensitivity

Additionally, we notice that sensitivity for MSK 64 is comparatively low. Inter-

estingly, low precision and low sensitivity of MSK 64 decisions are products of our

classification system. Because we only train C − 1, or 22, classifiers, an MSK 64

classification is only made if a positive decision for the other 22 classes cannot be

made, thus, treating the MSK 64 as an else decision. As an inverse metric, specificity

assesses our classifiers in terms of its ability to recognize negative samples. As shown

in Figure 4.14, most of our classifiers are near perfect at recognizing negative samples.

From Figure 4.14, only the T3 classifier has comparatively low specificity, confirm-

ing our conclusion that as noise degrades our test features, the projection of those

feature vectors converge to the T3 region of our one-dimensional decision region.
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Figure 4.14: Classifier Specificity

Lastly, the F-score, or F1-score, is the harmonic mean of precision and sensitivity.

In the machine learning community, it is interpreted as a weighted average where

both precision and sensitivity are equally important, thus, equally weighted. Note,

that depending on the intended application, equal weights may not be appropriate,

therefore F2-score or F0.5-score may be used, which will weigh precision lower or

higher, respectively. However, in this context, it seems appropriate to evaluate each

classifier in terms of requiring that we remain both highly confident in decisions while

also being highly sensitive.

Because precision and sensitivity are equally weighted, a performance lapse in any

of the two metrics will equally degrade of the resulting F-score. As an example, shown

in Figure 4.15, the T3 classifier has such low precision, but high sensitivity, and thus,

the resulting F-score, or harmonic mean, suffers. What’s more, because most of the

classifiers have such a high degree of precision, with varying levels of sensitivity, the

F-score provides us the ability to recognize the strongest classifiers.
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Figure 4.15: Classifier F-score

As shown in Figures 4.12-4.15, most of the individual classifiers perform extremely

well in each of the standard metrics. Accordingly, because our classifiers have such

strong performance on an individual basis, it follows that the average, or macro-level

performance, should also be strong. Below, in Figure 4.16, is the average performance

for the classification system in terms of precision, sensitivity, specificity, and F-score.
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Figure 4.16: Classification System Average Performance

It is important to note that in all of the preceding performance figures, not only

is classification accuracy aided by the ensemble averaging of the AF-based features,

but also each of the performance metrics is benefited. Most notably, we are able

to show how performance is improved. Because precision and specificity are already

strong, ensemble averaging does little to improve these. Alternatively, sensitivity, and

therefore F-score, is improved drastically. The ability of the feature extraction process

to ensemble average multiple ambiguity surfaces allows the system to essentially pull

waveforms from the noise, boosting SNR, increasing the dynamic range of effective

operation. This can be more traditionally displayed in the discrete ROC graph shown

below.
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Figure 4.17: ROC Analysis of Discrete Classifiers with 1 AF Sequence

Figure 4.18: ROC Analysis of Discrete Classifiers with 5 Ensemble Average AF
Sequences
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Figure 4.19: ROC Analysis of Discrete Classifiers with 10 Ensemble Average AF
Sequences

Figure 4.20: ROC Analysis of Discrete Classifiers with 20 Ensemble Average AF
Sequences
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From the ROC figures, we are again able to see the improvement made by averag-

ing multiple AF features. Because the false positive rate is already near zero, much of

the improvement is seen in the true positive rate, or sensitivity. It is evident that we

approach what is termed as a perfect classifier (true positive rate → 1, false positive

rate → 0) as the effective SNR of our feature set approaches that of our training

data.



CHAPTER 5

CONCLUSION

The waveform classification system detailed in this thesis shows promising results

even while compared to the autocorrelation-based classifier in [9]. Our initial hy-

pothesis stated that a waveform classification system using features derived from the

ambiguity function of a radar pulse should at least achieve similar results to that

of a system using the autocorrelation of a radar pulse given that all of the features

of the autocorrelation are contained within the corresponding ambiguity-based fea-

tures. In this work, we test our hypothesis by designing a system which parallels

the design of the autocorrelation-based classification system, found in [9]. Our only

alteration to the system design is in the feature extraction process where we sub-

stitute in ambiguity-based features with the caveat that all of the features of the

autocorrelation are contained within the ambiguity-based features.

From our analysis, we have shown that radar waveform classification is improved

by using the ambiguity-based features. While the main objective of this work was to

provide a fair comparison of two waveform classification systems, we provide further

insight into the robustness of the classifier by evaluating it against standard metrics

used in the machine learning community.

Future work may consist of evaluating the robustness of this algorithm to various

degradations of the pulse profile. These degradations could include unintended modu-

lations induced on the pulse as a result of imperfections in the transmitter and receiver

hardware, imperfections in envelope detection that result in partial pulse testing, and

even the effect of channel conditions including fading, clutter, and multipath.
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