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ABSTRACT

Compaleo, Joshua David. M.S.E.E., Department of Electrical Engineering, Wright State
University, 2015. Split Ring Resonator Design for Agricultural Based Applications.

Recent advances with manufactured electromagnetic materials known as metamaterials are paving

the way to use microwave technology in agricultural development and harvesting. It has been

proposed that split ring resonators could be placed on the surface of fruit or vegetables such that

the resonant behavior may be monitored and used to estimate the ripeness level. The method is

non-destructive and could enable monitoring of large quantities of produce or even be tailored to

hand-held devices for consumers.

However, the understanding of corresponding changes in the proposed device’s resonant behaviors

and ripeness levels are limited. In addition, fruit and vegetables are highly lossy at microwave

frequencies making it difficult to establish resonant behavior. Here, the split ring resonator design

is studied to determine which design parameters are most influential on maintaining a resonant

behavior in the presence of highly lossy media. The results show that for small array sizes, the

radial spacing between the rings and the radial widths of the microstrip rings have the most

significant influence. However, resonance is only achievable in the presence of low to moderate loss

levels. The results also suggest that a large array of resonators may be sufficient to maintain

resonance at the loss levels of certain fruit.
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1 Introduction

1.1 Motivation

Recent advances with electromagnetic materials are paving the way to use

microwave technology to assist in agricultural development and harvesting [1]. For

example, natural silk substrates with edible gold imprints have been proposed as

bio-degradable radio frequency identification (RFID) tags. The bio-degradable

nature allows the tags to be placed directly on produce (e.g. eggs, tomatoes, etc.).

In this application, one could interrogate the RFID tag during different stages of the

growing season and determine when the produce is ideal for harvesting.

In this work, it is proposed that the same technology could be used as a

non-destructive method to determine if fruit or vegetables are at a specific level of

ripeness. Clearly, such a technology would be an aide to the consumer where the

consumer would place the RFID tag on the produce and then use a smart device to

interrogate the RFID tag to determine the level of ripeness.

The underlying approach is based on the interaction of electromagnetic properties of

the produce with the RFID tag. Figure 1 illustrates the concept where the tag is

placed on the surface of a watermelon. The tag is designed to resonate at a specific

frequency and when placed on the watermelon, the resonant frequency shifts

according to the level of ripeness.
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Figure 1: Conceptual RFID design

Figure 2 shows a notional curve that is an example of ripeness level versus resonant

frequency. The consumer can place the metamaterial RFID tag on different

watermelons until one is found that is at the desired level of ripeness. However,

there are some significant challenges to designing the RFID tag for this application.

As produce contains a significant amount of water and sugars, the produce presents

a lossy substrate that inhibits the resonant nature of the RFID tag. Hence, this

thesis investigates methods to design a split-ring resonator for use as an RFID tag

on a lossy substrate.
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Figure 2: Notional Resonant Curve

The sensitive interaction between organic materials and customized electromagnetic

devices is not well understood. Building upon recently reported work using organic

split-ring resonators (SRRs), this work proposes an empirical method using

full-wave modeling and simulation to study the frequency response of the loaded

SRR. The method is put forward by modeling microwave scattering of different

SRRs attached to common fruit such as apples and characterizing the resonant

frequency shift caused by changing properties of the fruit.

1.2 Challenges

As of now, there is no report on how to use RFID tags to specifically monitor

changes in organic materials. One possible concept would be to use RFID

transmitters to excite the RFID tag and sense the resonant frequency. As the

ripeness and electromagnetic material properties change, the resonant frequency

would change as well. There are three main challenges that much be addressed in

3



order to complete this work. The first challenge is to determine how sensitive the

RFID technology is to changes in the resonant frequency. The frequency at which

the SRR resonates is based upon the geometry of the device itself. There are five

parameters that can be altered within the SRR, each believed to have a unique

effect on the resonant frequency. The five parameters are ring width, internal

radius, external radius, inner ring spacing, and distance of the splits. SRR

alteration options must be well understood in order to develop a sophisticated RFID

design to monitor organic material changes.

The second challenge to overcome is the characterization of the material property at

different stages of organic growth and decay. The change in the electromagnetic

properties of the SRR has a considerable impact on the structures resonant

frequency, just as the SRR geometry does. An understanding of how increased

dielectric constant and loss affects the resonant frequency will provide insight into

how the resonant frequency of an organic substrate changes as it grows and decays.

The knowledge of how the structures resonant frequency is affected by modifying the

SRR geometry while also altering the substrates electromagnetic properties is crucial

to the research challenge.The overall research challenge is to modify the SRR design

to maintain a desired resonant frequency range regardless of the electromagnetic

properties of the test subject. With this new technology, one could begin

characterizing various organic materials. In the case of produce, the characterization

would occur during different stages of growth, harvesting, and ripening.

1.3 Research Hypothesis

The aim of this research is to understand how the SRR can be modified or

augmented to build an RFID tag for lossy substrates. The lossy substrate is

intended to replicate the properties of common fruits and vegetables. With this

4



resonant design capability understood, the ability to monitor the changes in selected

produce through the cultivation process would then become a possibility.

An electromagnetics modeling and simulation software model is specified with the

proper quantities to model an SRR structure attached to a substrate with

modifiable electromagnetic properties. The model represents a scattering boundary

problem in the far-field domain. This model enables design variation of the SRR

geometry and simulation of far-field scattering by the SRR tag.

The primary contribution of this study is a better understanding of how increasing

the gap between the rings of a split-ring resonator and increasing the array size

improves the resonant response of an SRR when it is placed on a substrate with a

small amount of loss (loss factor less than 3). The secondary contribution is the

derived resonant frequency equation for an SRR with two rings and four capacitive

slits.

Chapter II presents a literature review based on published work related to the SRR

and dielectric properties of agriculture. The information is presented in such a way

that a general knowledge of electromagnetics is assumed to be possessed by the

reader. Chapter III describes the research methodology used for this work and

develops an electromagnetic model which is used for the investigation of SRR

interaction with high permittivity and lossy substrates. This model is used to

provide insight into how to properly alter the SRR geometry based on the

permittivity of its substrate. Results are presented in chapter IV and the utility of

the results, along with the recommendation for follow up work is discussed in

chapter V.
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2 Literature Review

2.1 Chapter Overview

This section reviews material regarding current methods for monitoring produce

growth, SRR design, electromagnetic properties of common fruits and vegetables,

and electromagnetic modeling and simulation of complex objects in lossy media.

The current and emerging methods for monitoring and researching produce growth

can be found in [1]. Literature on resonant structures can be found in [3],[4],[5].

These articles provide insight as to which structure is most appropriate to the

proposed application. Data regarding the dielectric constant and loss factor of the

fruit test subjects used in this work can be found in [6]. This information is required

to properly model the interaction between the selected test subject and a resonant

structure across a range of frequencies. Literature regarding mathematically

modeling electromagnetic interactions and simulating these models can be found in

[7]. These engineering techniques provide insight into how to properly create the

model and observe the desired scattering phenomena.

2.2 Silk-Based Sensing

An application that is currently in the research phase is fabrication of sub-micron

thick gold nano particles and silk substrates to develop a conformable, edible,

6



ripeness monitoring device [1]. The device acts as a wireless passive antenna that

operates over multiple regions of the electromagnetic spectrum [1]. The antenna was

tested for functionality by monitoring the resonant responses continuously during

the spoilage process to observe the potential changes in food quality. The passive

devices can generally be modeled as an LC resonant circuit whose behavior is

dependent on both the dielectric properties and geometry of the substrate material.

The resonant frequency can be modeled as,

f0 =
1

2π
√
LC

(1)

L is influenced by the geometry of the antenna and C is directly related to the

substrate material and surrounding environment. The research hypothesis is similar

to that of this work, that the resonant response will be affected by the shift in

dielectric constant of the test subject (produce).

2.3 Split-Ring Resonator Design

The enabling technology for monitoring reltaed changes in material properties is the

split ring resonator (SRR). The SRR is a device, when measured on a very small

scale, appears to have electromagnetic properties that do not occur in nature. The

SRR is a composite material that has received growing interest in recent years for

its use to construct metamaterials [3]. The size of the SRR’s is much less than the

wavelength of an incident electromagnetic wave. As a result, the Effective Medium

Principle is applicable while working with split ring resonators. The capacitance

values and resonant frequencies of multiple SRR designs are calculated using

analytical models and numerical simulations in [3]. The SRR’s are constructed

using non-magnetic concentric copper rings with splits oriented at opposing sides of

one another. The planar SRR array is fabricated on FR4 printed circuit boards and

units of SRR’s are extracted from the array. To observe capacitance, surface mount

capacitors are placed at three different capacitive regions of the SRR. These regions

include:

7



1) gap region between inner and outer rings

2) outer ring split region

3) inner ring split region

SSR’s are constructed in such a way that they consist of two concentric rings

separated by a gap, both having splits oriented on opposite sides. The SRR

operates because while current cannot flow around any one ring due to the split

separation, the capacitance between the two rings allow the flow of displacement

current [8]. SRR’s can be modeled as LC circuits in the areas where the inductance

arises from the rings. The total capacitance of the system has two main

contributions. The first being the capacitance at the split regions and the second

from the gap between the two concentric rings. The authors in [3] conducted their

experiments in a similar manner as the research effort at hand. The resonant

frequencies of the structures were determined by including a layer of SRR structures

along the direction of incident plane wave propagation. Open boundary conditions

were employed along the propagation direction in the simulation setup. Periodic

boundary conditions were used along directions other than that of the incident

excitation. Therefore, the structure was assumed to be infinitely periodic along the

directions that are perpendicular to the propagation direction. The electric field

amplitudes were observed at a distant point from the resonant structure. This point

was chosen such that it was far enough away to be affected from arbitrary structural

scattering or unwanted attenuation. The choice in point placement was made with

the concept in mind that the near field effects should be excluded due to the effects

of the structure’s highly resonant nature. The theoretical resonant frequency could

then be calculated as

ωn =
1√

Lav(
2πC
4

+ Cg11 + Cg12 + Cg21 + Cg22)
(2)

where

LAV = average inductance of the two rings

8



C = capacitance due to the spacing between the two rings

Cg11 + Cg12 + Cg21 + Cg22 = capacitances due to the gaps of the inner and outer

rings respectively

Figure 3: Split-ring resonator electrical parameters.

Figure 4. below shows the resonant structures with electric field excitation

Figure 4: SRR array excited with an 8 GHz plane wave.

Research from [4] found that the majority of the electric field is concentrated at the

split region of the outer ring. The other split in the resonant structure contains a

small amount of electric field concentration but not nearly to the extent of the outer

split region. The paper concludes that when one is concerned with the tune ability

or non-linearity of an SRR structure the split region should be considered more

importantly than the gap. As the split-width is increased the capacitance decreases

9



which in turn increases the resonant frequency. While as the gap between the rings

is increased the resonant frequency increases due to the reduction of mutual

capacitance. Also, as the metal width increases there is a decrease in the mutual

inductance and capacitance. Therefore, SRR’s with thinner rings have lower

resonant frequencies. As a whole, when more capacitance is added to the system the

resonant frequency of the system decreases. This relationship is verified in figure 5,

where the reflection curves are shown for different ring widths.
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Figure 5: Normalized reflection coefficient vs. frequency for varying gap widths w

2.4 Resonance

A resonator is a device that naturally oscillates at a set of frequencies known as its

resonant frequencies. The energy at these frequencies is greater than at other

frequencies. In the case of the split-ring resonator, the device stores electromagnetic

energy at a specific set of frequencies. The RLC circuit is a classic example of a

resonant circuit and the SRR is often modeled with an RLC circuit [5].
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Figure 6: Series RLC circuit from [5]

Following the presentation in [5], the input impedance for a series RLC circuit is

Zin = R + jωL− j 1

ωC
(3)

The complex power provided to the circuit is

Pin =
1

2
|I|2(R + jωL− j 1

ωC
) (4)

A certain amount of power is dissipated by the resistor R,

Pl =
1

2
|I|2R (5)

However, there is an average amount of magnetic energy stored by the inductor L,

Wm =
1

4
|I|2L (6)

and an average amount of electric energy stored by the capacitor C,

We =
1

4
|I|2 1

ω2C
(7)

The input impedance can be rewritten as

Zin =
Pl + 2jω(Wm −We)

1
2
|I|2

(8)

From simple circuit theory it is known that stored energy is reactive energy, which

11



causes resonant behavior. Resonance occurs when the average stored magnetic and

electric energies are equal, Wm = We. When resonance occurs the input impedance

is equal to

Zin =
Pl

1
2
|I|2

= R (9)

which is a purely real value. The resonant frequency is therefore defined as,

ω0 =
1√
LC

(10)

A crucial parameter used to define the resonant frequency is the quality factor Q,

which is defined as,

Q = ω
average energy stored

energy loss/second
(11)

Q = ω
Wm +We

Pl
(12)

Q is therefore a measure of the loss in a resonant circuit. Thus, a higher loss implies

a lower Q-factor. For the series RLC circuit the Q can be defined as,

Q =
1

ω0RC
(13)

ant the quality factor decreases as the resistance increases.

The bandwidth can also be defined as a function of the quality factor as

BW =
1

Q
(14)

12



Figure 7: Input impedance magnitude vs. frequency from [5]

2.5 Dielectric Resonant Antenna

The dielectric resonant antenna (DRA) is a microwave component that was first

used as a high frequency filter and oscillator. DRA’s work well as waveguide cavities

due to their small size, high Q factor, temperature control capability, low cost, and

flexibility to resonate in different geometries. DRA’s operate as antennas and

radiate energy most effectively when mounted on top of flat metallic ground planes.

The most effective form of excitation to a DRA is by either aperture, microstrip

line, or probe coupling. The DRA’s performance is a function of feed mechanism,

size and shape of the structure, and its material properties [6].

DRA’s can take on many different geometries. This study lends attention to the

cylindrical DRA due to its structural compatibility with the topic of interest. The

resonant frequency of the DRA can be determined at the structures dominant

mode, TM110.

The dominant frequency mode is

fTM110 =
1

2πa
√
µε

√
(x

′2
11) + (

πa

2d
)2 (15)

where for this particular mode,
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a = 5.96 mm (radius of the DRA)

µ is the magnetic permeability of the DRA

ε is the electric permittivity of the DRA

x
′
11 = 1.841 (mode constant)

d = 8 mm (length of the DRA)

Some ways to improve the prominence of resonance of a DRA include: adding an

extra dielectric coating to the exterior to improve impedance bandwidth and

radiation. Increasing perforations and air gaps will reduce the Q-factor but increase

band width. Increasing air gaps has also been shown to increase antenna gain.

Adjusting the circular section of the cylinder will increase the Q-factor, decrease the

bandwidth, and create a greater sensitivity to a particular resonance. Knowledge of

low-profile and compact attributes give a sense of intuition for an optimal design.

The DRA has negligible metallic loss and as a result it operates at a high efficiency

at millimeter wave frequencies. DRA’s are made of high permittivity materials with

a dielectric constant (εr>20). The unloaded Q-factor tends to be between 50 and

500 but can be as high as 10,000. Devices with Q-factors significantly higher than

500 store energy instead of radiating it. The only loss factor for a DRA is due to

imperfect material properties, in practice these losses tend to be very small. While

adjusting a resonant device to observe produce ripeness is a promising approach, it

is worth while to take notice of technologies that are in development to serve the

same purpose.

2.6 Utilizing Parallel Plate Capacitance to Determine Banana Ripeness

A method for non-invasively determining the ripeness level of bananas in lieu of

direct measurement of its dielectric constant is hown using parallel plate capacitors

in [11]. According to Maxwell’s equations, the dielectric constant of a material is a

key factor in determining the velocity in which an electromagnetic wave propagates.

Prior to this work, the current methods for measuring fruit ripeness included

firmness teasing using penetrometer or impact force, measuring pH levels and
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measuring parameters such as sugar and ethanol. While these parameters provide

insight into ripeness levels to an extent, these methods all require destruction of the

test subject and complex analytical techniques. Some complex non-destructive

methods include nuclear and proton magnetic resonance detection. These

experiments are conducted by placing ripened and unripened bananas between

capacitive plates with fixed geometries and applied peak-to-peak voltages. The

results found in [11] are such that an increased plate separation will decrease the

capacitance of both ripe and unripe bananas at different rates until they are at an

equal 10-cm separation. The authors in [12] found that green-ripe bananas have a

higher permittivity than the fully ripened ones. Through experimentation it was

found that a quadratic regression had a higher prediction power than a linear

regression. It was also found that the best frequency to observe permittivity

fluctuations was at 1 MHz. The green ripe bananas dielectric constant equal to

1.7433 dropped to 1.6931 during a five day ripening process. The experiment used

the same approach as [11]. Using parallel plate capacitances and a banana test

subject, the non-linear regression plot created from the research found that the

permittivity decreased as the frequency increased. There are reports that the sugar

content was up twenty percent by day six of ripening. It was found that there is a

high correlation between the banana permittivity and quality. The sensing system

of [11] was developed at 1 MHz because there is a visible correlation between

firmness and sugar content with relative permittivity at this frequency.

2.7 Dielectric Properties of Fruit

Several studies regarding dielectric characterization were carried out in the past

forty years with two of the leading contributors being Nelson and Venkatesh. These

studies investigated fruit, vegetables, grain, and seed. Nelson investigated the

dependence between dielectric properties and temperature, moisture content, and

frequency. The feasibility of using dielectric properties to sense the quality of these

products.[13],[14] and [15]. Nelson studied dielectric properties of watermelon and

found correlations between soluble solid content as a factor of fruit [15] and [17].
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Ragni employed dielectric properties of egg to predict quality parameters in [18] and

Sirikulrat demonstrated that the relative permittivity of the fresh soybean decreases

as the bean matures [19]. All of these research efforts were fundamental approaches

and a necessity for future understanding but were not anywhere near becoming a

practical application.

The research by Nelson [20] found that a parameter to test for honey dew melon

quality is solubility, which is due mostly to sugars and is a measure of how sweet a

melon is. For this work, honey dew melons were grown and harvested with a range

of maturities and soluble solid contents with the intention to learn whether

differentiating dielectric property values could be correlated with quality or

“ripeness”. Testing was performed using dielectric spectroscopy measurements. The

experimentation was done by extracting tissue samples from the melons and

measuring its soluble solid content (SSC) with an SSC calibrated refractometer.

Experiments were conducted in the frequency range of 100 MHz to 1.8 GHz and all

measurement samples were taken by making a 3-cm thick equilateral slice on the

melons. There were 6 samples total, half for moisture content measurement and the

other half for measuring the dielectric content. Results were found by studying the

correlation between dielectric properties and SSC’s of the thirty eight melons tested

and eight frequencies within the predetermined range were selected for observation.

Nelson investigated the ripening effects over a ten week period with respect to the

dielectric properties. It was found that over the ten-week storage process the apple’s

dielectric properties stayed relatively constant even though the firmness of the

apple’s decreased significantly. When SSC was used as the quality factor in

correlation with permittivity it was found that the dielectric constant and loss factor

correlations were low. There was a high correlation between SSC and permittivity

found from a complex plane analysis of the dielectric constant and loss factor each

divided by SSC, however, quality prediction from the relationship was not very high.
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Table 1: Dielectric fruit properties from [9], real(εr)

Material Moisture Content % 0.2 GHz 0.5 GHz 1.3 GHz 3.2 GHz 8 GHz 20 GHz

GD (apple) 86.5 63.4 61.9 60.2 57.0 46.1 28.4
GS (apple) 88.4 58.3 57.8 56.3 53.3 43.5 26.9
RD (apple) 87.3 58.1 57.3 55.6 52.8 42.9 24.8

Banana 78.1 0.94 66.3 63.0 57.5 43.7 24.9
Grapefruit 91.5 0.83 76.6 73.9 72.3 57.9 33.8

Lemon 91.2 0.88 74.5 71.7 70.3 57.8 34.3
Orange 87.5 0.92 74.8 71.2 68.0 51.7 29.2

Table 2: Dielectric Fruit properties from [9], imag(εr)

Material Moisture Content % 0.2 GHz 0.5 GHz 1.3 GHz 3.2 GHz 8 GHz 20 GHz

GD (apple) 86.5 16.0 9.8 8.3 13.2 21.8 26.0
GS (apple) 88.4 17.2 9.8 8.0 12.3 20.4 24.7
RD (apple) 87.3 16.7 9.7 7.9 12.2 20.6 25.4

Banana 78.1 56.92 27.8 17.6 19.0 25.9 23.1
Grapefruit 91.5 38.0 18.6 12.3 16.4 27.8 30

Lemon 91.2 44.9 21.2 12.9 15.1 27.3 29.6
Orange 87.5 33.5 17.7 13.2 17.7 28.4 27.8
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Figure 8: Dielectric constant as a function of frequency from [9].
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Figure 9: Dielectric loss factor as a function of frequency from [9].

2.8 Electromagnetic Modeling and Simulation

Electromagnetic modeling and simulation enables the study of a wide variety of

issues ranging from microwave scattering to antenna design. Topics of interest also

include radio wave propagation, wireless communication, radar surveillance systems

and more. Devices have sizes ranging from small scale (nano meters) to large scale

(kilometers wide) and operate from the direct current range all the way up to the

terahertz range. A majority of these devices are broadband digital and operate

within close proximity of one another which as a result is a catalyst for a whole host

of electromagnetic interference issues.

The proposed engineering analysis is largely done with electromagnetic modeling

and simulation software that solves Maxwells equations for a specified set of

boundary conditions. Commercial products such as FEKO and Comsol are used in

each stage of development from design, analysis, implementation, and testing.

Electromagnetic simulation requires high powered computational hardware and

software that is capable of solving applied mathematics and physics problems in the

form of complex electromagnetic boundary problems that cannot be solved by
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means of analytical methods. When using modeling and simulation tools, users face

the challenge of assigning correct parameters such as certain assumptions, frequency

bandwidth, material properties, geometry details, the amplitude of excitation

signals and so on.

Once the model’s geometrical and physical properties are properly defined, further

decision is required pertaining to the electromagnetic solver method utilized in the

problem. The decision as to what solver method to use is crucial to the solution. As

the solver method’s computation time and accuracy, and depend on the geometries

size and complexity, some problems can not be solved at all. Some commonly used

solver methods include Method of Moments (MoM), Finite Difference Time Domain

(FDTD), Physical-Optics (PO), Uniform Theory of Diffraction (UTD),

Ray-Launching (RL), and the Finite Element Method (FEM) [23].

MoM is a numerical approximation technique used to solve electric and magnetic

field integral equations. Basis functions for the unknown quantity change the

integral equation into a matrix equation which can be solved. Alternatively, FDTD

discretizes Maxwell’ s equations by replacing derivatives with their finite difference

approximations directly in the time domain. Due to computer memory limitations,

the near field is typically found and the far fields are extrapolated from the near

fields. PO is an approximation that uses ray optics to estimate specular reflections

that include diffraction effects. UTD is used for high frequency scattering problems.

It approximates the near field and uses ray diffraction to determine coefficients for

each diffraction object-source combination. RL is similar to PO and is used for high

frequency scattering problems. It approximates the far-field and uses ray tracing to

approximate multiple arbitrary numbers over singular and multiple reflectors.

2.9 Finite Element Method in Comsol Multiphysics R©

The Finite Element Method (FEM) is most appropriate to the problem in this

study. Like the other methods, FEM is a numerical technique used for finding
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approximate solutions to boundary problems for partial differential equations. It

divides the problem into smaller subsets and as a result more simplified portions

referred to as finite elements. FEM uses methods that connect many simple element

equations over discretized finite elements, to approximate a more complex equation

over an entire domain [24].

It is advantageous to use FEM due to its accurate representation of complex

geometry, its inclusion of dissimilar material properties and its capture of local

effects. Some difficulties of using FEM as a solver include the large matrix and need

to transform near field solutions to far field solutions. FEM for electromagnetics

involves specifying Maxwell’s equations and boundary conditions for the entire

problem domain. Given the different material properties, the problems divided into

sub-domains. The FEM formulation simultaneously solves Maxwell’s equations in

all of its sub-domains. The process involves constructing a weighted integral and

minimizing the residual. The process is essentially a procedure that minimizes the

error caused by basis approximation of the unknown in the PDE. The FEM is well

documented for arbitrary electromagnetics problems [24].

2.10 Comsol Multiphysics R©

Comsol Multiphysics uses FEM to solve for electromagnetic fields within the

modeling domain under the assumption that the fields are time harmonic at a

known angular frequency, ω = 2πf , and that all material properties are linear with

respect to field strength. The source free wave equation is

∇× (µ−1r ∇× ~E)− ω2

c2
(εr −

iσ

ωε0
) ~E = 0 (16)

where,

µr = relative permeability

εr = relative permittivity

σ = electric conductivity
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c = the speed of light in a vacuum

ω = 2πf where f is the operating frequency

The above equation is solved for the electric field ~E = ~E(x, y, z) throughout the

modeling domain where ~E is a vector component with ~E = x̂Ex + ŷEy + ẑEz The

magnetic field can be derived from the electric field [23].

Figure 10: Geometry for boundary conditions and wave equations for each material.

Figure 10 is a side view representation of the boundaries implemented in Comsol.

Wave equations in Fig 10. are solved simultaneously. Using a modeling and

simulation tool (Comsol) is essential to solving such a large set of differential

equations.

The four key steps of modeling and simulation include the model setup which

involves defining the equations that need to be solved, creating the model geometry,

defining the material properties, and setting up the boundary conditions. The

meshing step requires discretizing the model space using FEM. The software then

solves a set of linear equations that describe the electric field. The final step, post

processing is where the user extracts the needed information from the electric field

solutions.
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3 Methodology

3.1 Chapter Overview

The question of “How can an SRR operate on a lossy substrate?” is presented to

help define the problem of this thesis. Based on this inquiry, the research hypothesis

is postulated because it is necessary to declare not only a motivation for why to

collect data but also an organizational structure.

Research Hypothesis

An SRR system in this work is defined as an SRR structure attached to a substrate

with a specific thickness and material property. When loss is introduced to the

system, the resonant behavior cannot be sustained without modification to the

system. It is possible to mitigate the loss in resonant frequency by adjusting the

SRR’s geometric parameters.

3.2 Analysis Method

This research hypothesis can be tested by experimentation. The most time efficient

and cost effective analysis method in this case is modeling and simulation. The

electromagnetic modeling and simulation will be done in Comsol Multiphysics. The

electromagnetic material properties of the test subject will be utilized from the open

literature. The SRR design will be constructed based on the frequency of interest
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and will be modeled after SRR designs found in the open literature.

A deterministic model will be created in the modeling and simulation environment

to accurately verify the resonant frequency shift of the system as a function of each

SRR parameter as it corresponds to the open literature. Once verification has been

achieved the model will then be analyzed and a relationship will be drawn for the

resonant frequency shift as a function of the systems loss. Experimentation will take

place once the device’s properties are understood with respect to resonant frequency

and resonant frequency as a function of substrate loss has been verified. The

experimentation will observe how SRR parameters can be altered to maintain a

resonant frequency within a lossy system.

SRR parameters for this work include: the parameter split width d, the gap

distance g, metal width w, radius outer ring r1 and radius inner ring r2 as

illustrated in Fig 11.

Figure 11: Split-ring resonator parameters.

The SRR structure consists of two concentric circular rings made of a perfect

electric conductor (PEC). In the experiment the structure is excited by a time

varying electric field that is incident perpendicularly to the plane of the SRR. When
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excited, a current flow is induced along the rings. This current flow is solenoidal

(meaning that the divergence of the current is zero everywhere), therefore the SRR

can be considered as a resonant magnetic dipole. The SRR stores energy by

concentrating the incident electric field within the gap between its rings. The

structures will be simulated in a 3x3 array which can be considered a reflectarray.

The incident wave in the simulation is a plane wave with unit amplitude 1 V/m

3.3 Split-Ring Resonator Equivalent Circuit Model

An equivalent circuit model for an SRR with two rings and a single gap per ring

was created by [26].

Figure 12: SRR equivalent circuit model from [26].

While this is an accurate representation of this particular design, the SRR structure

used in this work not only contains gaps at ϕ = π
2

and ϕ = −π
2

but also at ϕ = 0

and ϕ = π

A closed form equation for the lowest resonant frequency is derived in [26]. In the

discussion below, this derivation will be modified to include the additional gaps.

Applying Kirchoff’s current law to a dϕ current element the differential equations

− ∂y
∂ϕ

= I1jω(L1 − L12)− I2jω(L2 − L12) +G2 −G1 (17)
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∂I1
∂ϕ

= −jωCV (18)

∂I2
∂ϕ

= jωCV (19)

where ω is the angular frequency, V1 is the inner ring, I1 and I2 are the currents on

the inner and outer rings, C is the inner ring capacitance, G1 and G2 are the

induced voltages, L1 and L2 are the inductances of rings 1 and 2, and L12 is the

mutual inductance between them.

The angular variable ϕ extends from −π to π. The four gap capacitances Cg11, Cg12,

Cg21 and Cg22 are located at ϕ = π
2
, ϕ = −π

2
, ϕ = 0 and π respectively, which

divides the SRR into four separate regions. The differential equations must be

written to individually represent each region. There are six boundary conditions

that are then applied. After much reduction that can be found in [25], the resonant

frequencies can then be obtained by the following characteristic equation

(20)κ[sin(κπ[4πκ2 − πγ1γ2γ3γ4 − 2(γ1 + γ2)V2 − 2(γ3 + γ4)V1])

+ cosκπ[γ1γ2γ3γ4(V1 + V2)− 2πκ2(γ1 + γ2 + γ3 + γ4)]] = −2γ1γ2γ3γ4
√

(V1V2)

where,

κ2 = ω2LeqC

γ1 = C
Cg11

γ2 = C
Cg12

γ3 = C
Cg12

γ4 = C
Cg22

V1 = L1−L12

D

2

V2 = L2−L12

D

Leq = L1 + L2 − 2L12

and

D =
√
L1L2 − L2

12

Assuming that κ is much smaller than unity and the trigonometric functions can be
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expanded, the term L12 drops out from the lowest resonant frequency

ω1 =

√
1

Lav(
2πC
4

+ Cg11 + Cg12 + Cg21 + Cg22)
(21)

where

Lav = L1+L2

2

3.4 Wave Equation in a Lossy Medium

The primary source for this derivation is [8].

~D = ε ~E (22)

The electric flux ~D is polarized with the electric field ~E for isotropic medium, where

the permittivity ε is complex valued. The time harmonic version of Maxwell’s

equation is

∇× ~H = ~J + jω ~D (23)

where ~J is the electric current density and is made up of two parts. ~Ji which is the

impressed current (an excitation by an outside source) and the conduction electric

current ~Jc (caused by the application of an external electric field), such that

∇× ~H = ~Ji + ~Jc + jω ~D (24)

However, ~Jc = σs ~E where σs is the conductivity of the background medium; and

∇× ~H = ~Ji + σs ~E + jω ~D (25)

When an external electric field is applied, the dipoles align in the material with the

field, causing a term to be added to the electric flux density that has the same

vector direction as the applied field.

~D = ε0 ~E + ε0χe ~E (26)
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χe is the electric susceptibility which serves as a scalar constant between the applied

electric field and the portion of the electric flux density caused by the presence of

the dielectric.

~D = ε0(1 + χe) ~E (27)

or ~D = ε0εr ~E

where εr is the relative permittivity of the medium

In most cases εr is a complex quantity and the conduction current is combined with

the displacement current. therefore,

∇× ~H = ~Ji + σs ~E + jω(ε0εr) ~E = ~Ji + jω(ε
′ − jε′′) ~E (28)

Then

∇× ~H = ~Ji + (σs + jωε0εr) ~E = ~Ji + jω(ε
′ − jε′′) ~E (29)

and

σs + jωε0εr = jωε0εr(1− j
σs

ωε0εr
) = jωε

′
(1− j ε

′

ε′′
) (30)

where

ε
′
= ε0εr (31)

and
ε
′′

ε′
= tanδe (32)

therefore the imaginary part of relative permittivity is directly related to the system

loss. The total permittivity can be modeled as

ε0εr = ε
′ − jε′′ (33)

and the loss tangent can be defined as

tanδe =
σe
ωε′

(34)

therefore

∇× ~H = ~Ji + jωε
′
(1− jtanδe) ~E (35)
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The loss tangent describes how much energy supplied by an external electric field is

dissipated by internal dipole rotation.

For a metal such as the PEC material used for the SRR structure, the effective loss

is almost entirely due to the collision of electrons. Therefore, the second term is

dropped

∇× ~H = ~Ji + (jωε0εr + σs) ~E (36)

The substrate material attached to the SRR is a dielectric. The effective loss for a

dielectric is due almost entirely to polarization loss, which is caused by dipole

motion and can be represented as

∇× ~H = ~Ji + jωε
′
(1− ε

′′

ε′
) ~E (37)

Now, the wave equation for a plane wave traveling in a medium that is conductive,

source free, weakly dispersive (the permittivity varies slowly with frequency),

isotropic, and homogeneous, is

∇2 ~E + ω2µε
′
(1− jtanδe) ~E = 0 (38)

3.5 Model Validation

In order to verify the validity of the SRR model created in Comsol it must be tested

against other collected simulation data sets. For this purpose the results from [25]

shown in Figure 13 will be reproduced. The starting SRR parameters for this

verification are d = g = 0.2 mm, w = 0.9 mm and r = 3.6 mm. The split width d

will then vary from d = 0.2 mm to d = 0.5 mm in a 0.1 mm step size.
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Figure 13: Split width d vs. normalized frequency with simulated data and data from [25].

Notice that the normalized frequencies are much lower in the model results than in

[25] , this behavior is due to the geometry and permittivity of the substrate being

different in each case. Since the substrate parameters are not listed in [25], the

design for the model’s substrate is created with εr = 1− 0j and a square plate that

is 8 mm in length, 8 mm in width, and 0.5 mm in thickness. The verification is valid

because each case observes an increase in resonant frequency as the parameter split

width d increases.

Figure 14: SRR model created in Comsol Multiphysics R©.

Figure 15 shows the model created for this experiment. Each layer of the sphere

encasing the SRR array serves a specific purpose. The inner most layer is free space,
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then as the domain expands outward there is a far field boundary layer and a

perfectly matched layer defined to attenuate unwanted reflected signals resulting

from the finite computational domain.
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4 Results

4.1 Results

In order to confirm that the model is in fact resonating at the frequency to which it

is tuned, the SRR array is attached to a substrate with the permittivity of free

space εr = (1− 0j). The reflected electric field strength is normalized to that

reflected from a flat plate of |Es|2A2

λ2
. The substrate for this model is an 8 mm by 8

mm square. What will be referred to as the standard SRR design for this thesis is

g = d = 0.2 mm , r2 = 2.5 mm, r1 = 3.6 mm and w = 0.9 mm. The standard

configuration is displayed in Figure 15. The reflected and transmitted signals for the

standard SRR design placed on a free space substrate is compared with substrates of

increasing permittivity. The reflected signal is observed directly above and centered

on the SRR structure and the transmitted signal is observed directly below and

centered. An outline of chapter 4’s many sections and subsections is listed below.

Subsection 4.1.1 presents results for substrates with an increasing dielectric

constant, subsection 4.1.2 presents results of a substrate with an increasing loss

factor and subsection 4.1.3 presents results for a highly lossy substrate. Section 4.2

presents the SRR parameter changes in this study with 4.2.1 presenting results for a

changing gap distance g, subsection 4.2.2 presenting results for 3 split rings,

subsection 4.2.3 displaying results for a changing split width d, 4.2.4 displaying

results for a changing ring width w, and subsection 4.2.5 summarizing the results.

The focus of section 4.3 is the effect that the SRR array size has on resonance with

4.3.1 being the effects of array size on a standard SRR and section 4.3.2 involves
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increasing the gap width on a 4x4 array.

Figure 15: Standard SRR configuration

4.1.1 Results for a lossless substrate
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Figure 16: Normalized SRR reflection vs. frequency with increasing dielectric constant of substrate.

The standard SRR configuration is first placed on a substrate with dielectric

constant εr = (1− 0j). The results are in agreement with the frequency that the
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SRR is designed to resonate at. The SRR is then placed on a substrate with

dielectric constant εr = (2− 0j). It is observed that there is an increase in the

resonant frequency as the permittivity increases,which is an expected behavior. The

second resonant dip now appears because of the increasing shift as well. The

dielectric constant of the substrate is further increased to εr = (10− 0j). The

resonant frequencies have now shifted higher than 12 GHz and are no longer

observable on the 5-12 GHz axis.
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Figure 17: Normalized SRR transmission vs. frequency with increasing dielectric constant of sub-
strate.

The transmission results agree with the SRR’s resonant behavior at all substrate

dielectric constants that the structure is placed on. The transmission is expected to

be very weak, as all energy incident to the SRR is either reflected or is resonating

within the structure. There is a large spike in the transmission signal for the

substrate εr = (10− 0j) that is assumed to be a solver error at that particular

frequency.
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4.1.2 Results for a lossy free space substrate
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Figure 18: Normalized SRR reflection vs. frequency with increasing substrate loss factor.

The SRR is now observed on a substrate with a small amount of loss introduced to

the system (εr = 1− 0.1j). Resonance is maintained when observing the reflection.

The substrate loss is then increased to εr = (1− 0.2j) There does not seem to be

much of an affect on the resonant frequency other than a slight decrease in the

resonant dip. It is observed from the reflected signal that increasing the substrate

loss to εr = (1− 1j) causes the resonant behavior to dissipate, which motivates the

experiment towards changing SRR parameters with the intent of maintaining

resonance on a substrate with a higher loss factor.
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Figure 19: Normalized SRR transmission vs. frequency with increasing substrate loss factor.

The transmission results agree with the SRR’s resonant behavior at all substrate

loss factors that the structure is placed on. The transmission is expected to be very

weak, as all energy incident to the SRR is either reflected or is resonating within the

structure.

4.1.3 Results for a highly lossy dielectric substrate

While it is crucial to understand how to tune an SRR given a lossless dielectric

substrate, this tuning has already been investigated by papers such as [27] and is

therefore outside the scope of this thesis.

The primary interest for this thesis is to find how to properly tune an SRR design

to maintain a resonant frequency when attached to a lossy substrate. The goal is to

design an SRR that can maintain a resonant frequency in the X-band (between 8 to

12 GHz) while attached to a substrate with loss as high as a golden delicious apple

(ε
′′

= 26). The experiment begins by first placing the SRR on a substrate

simulating free space εr = (1− 0j) and comparing it to an SRR placed on a

substrate with a minimal amount of loss εr = (1− 0.1j).
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It is known that the increased real part (ε
′
) permittivity of a substrate has a direct

correlation with the resonant frequency and field intensity [27]. This concept is

verified for the model by changing the substrate from εr = 1− 0j to εr = 2− 0j.

Frequency (GHz)
5 6 7 8 9 10 11 12

R
e

fl
e

c
ti
o

n
 (

d
B

)

-60

-58

-56

-54

-52

-50

-48

-46
ǫ

r
=(1-0j)

ǫ
r
=(2-0j)

Figure 20: Normalized SRR reflection vs. frequency with increasing substrate real(εr).

and from εr = 10− 0j to εr = 20− 0j
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Figure 21: Normalized SRR reflection vs. frequency with increasing substrate teal(εr)
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Figure 22: Normalized SRR reflection vs. frequency with increasing substrate imag(εr)

It appears that introducing a small amount of loss to the substrate actually

increases the functionality of the SRR structure. This seems reasonable as SRR’s

are typically designed to be placed on imperfect substrates that contain small

amounts of loss such as circuit board silicon material and ceramics. As the loss

continues to increase,
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Figure 23: Normalized SRR reflection vs. frequency with increasing substrate imag(εr)
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it becomes clear that between ε
′′

= 0.3 and ε
′′

= 0.5 the resonant behavior is lost.
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Figure 24: Normalized SRR reflection vs. frequency with increasing substrate Imag(εr)

When ε
′′
> 1.2 the SRR structure can no longer maintain any sort of resonant

behavior. newline

4.2 SRR Parameter Changes

4.2.1 Results for changing gap distance g

It is known from [3] that increasing the gap distance g between the two rings of the

SRR structure decreases the mutual capacitance and mutual inductance between

the rings, thus increasing the resonant frequency of the system. Assuming that

increasing the resonant frequency of the SRR structure will increase its ability to

maintain resonance on a lossy substrate, an experiment is set up that increases gap

distance g on a substrate with permittivity εr = (1− 0.5j).
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Figure 25: SRR configuration with increased gap distance g.
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Figure 26: Normalized SRR reflection vs. frequency with increasing gap distance g.

The results in Figure 26 show that while the resonant frequency is in fact increased,

the SRR structure also maintains a more prominent dip in resonance (-63.5 dB) on

a substrate with ε
′′

= 0.5 compared to when it had its standard design and was

attached to a substrate with ε
′′

= 0 (-57 dB). Figure 35 also implies that while a

much more prominent dip in resonance is obtained when g increases from 0.2 mm to

0.6 mm, the results are much less prominent when increasing g from 0.6 mm to 0.7
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mm. To obtain a better understanding of this phenomenon, the permittivity is then

increased to εr = (1− 1j) and the gap values are increased from g = 0.6 mm to

g = 0.7 mm. The results are shown in Figure 27.

Frequency (GHz)
5 6 7 8 9 10 11 12

R
e

fl
e

c
ti
o

n
 (

d
B

)

-64

-62

-60

-58

-56

-54

-52

-50

g=0.6mm
g=0.7mm

Figure 27: Normalized SRR reflection vs. frequency with increasing gap distance g.

While there is a small effect for the gap increase between g = 0.6 mm to g = 0.7 mm

when the substrate permittivity is εr = (1− 0.5j), the 0.1 mm gap increase for

permittivity εr = (1− 1j) is crucial to maintaining resonance. Figure 28 observes

the reflected field strength as ε
′′

increases from 0.5 to 1.0 while the gap is increased

from 0.6 mm to 0.7 mm.
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Figure 28: Normalized SRR reflection vs. frequency with increasing substrate imag(εr) and g = 0.7
mm.

It is apparent that the SRR structure can no longer maintain resonance when

εr = (1− 1j) with a gap value of 0.6 mm. When observing the same change in loss

with a gap value of 0.7 mm.
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Figure 29: Normalized SRR reflection vs. frequency with increasing substrate imag(εr) and g = 0.9
mm.

It is clear that the 0.1-mm gap increase is crucial to maintaining resonance for a
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substrate of εr = (1− 1j). This relationship between increasing the gap value and

maintaining the resonant frequency at increasing loss values leads one to believe

that significantly increasing the gap width will cause the resonant frequency to be

increased but maintained at a significantly higher loss value. Fig 30 displays the

reflection curves for g = 1.2 mm and the loss increasing from ε
′′

= 2.5 to ε
′′

= 3.0.
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Figure 30: Normalized SRR reflection vs. frequency with increasing substrate imag(εr).

It is clear that if the loss of the substrate is going to be increased to a significant

amount, the SRR structure must be modified from its original configuration in ways

other than just the gap width. It also raises the question as to whether or not

increasing the gap width is only useful to a certain extent.

With εr = (1− 3j) at its highest value investigated thus far in the study, the gap is

further increased to investigate if it truly has reached a saturation point.
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Figure 31: Normalized SRR reflection vs. frequency with increasing gap distance g.

This proves that increasing the gap is in fact not going to be the only parameter

that needs to be altered for this study.

4.2.2 Results for three split rings

It is worth going back to a lower loss value to observe if other changes in the SRR

structure is going to be able to maintain a resonance as the loss of the substrate

increases. While it is not documented in [3], the assumption is made that increasing

a third, smaller ring with the same slit widths within the SRR structure may

decrease the mutual capacitance and mutual inductance, thus increasing the

resonant frequency. Results are shown in Figure 33.
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Figure 32: SRR configuration with third inner ring

Frequency (GHz)
5 6 7 8 9 10 11 12

R
e

fl
e

c
ti
o

n
 (

d
B

)

-64

-62

-60

-58

-56

-54

-52

-50

SRR with Two Rings
SRR with 0.9mm Third Ring in Center

Figure 33: Normalized SRR reflection vs. frequency with third inner ring.

This assumption proved to be incorrect, as it is clear that adding an additional

third ring that is 0.9 mm in radius has no effect on the resonant frequency

compared with the standard SRR configuration.

4.2.3 Results for changing split width d

Another parameter to observe is the split width d. A study in [3] shows that
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increasing d increases the resonant frequency by decreasing the overall capacitance

of the system. Since increasing the gap width g has already proven successful to an

extent, the gap width will be fixed at g = 0.7 mm, the permittivity of the substrate

will be fixed at εr = (1− 1j), and the split width d will be increased.

Figure 34: SRR configuration with increased split width d and increased gap distance g.
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Figure 35: Normalized SRR reflection vs. Frequency with increasing split width d.

While d does provide an increase in the resonant frequency value with the standard

SRR configuration and a lossless substrate, it is in a saturation region if the gap is
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greater than the standard configuration gap, g = 0.2 mm and there is a lossless

system.

4.2.4 Results for changing ring width w

Another parameter that is studied in [3] is the metal width w. As the radius of the

inner ring increases there is a decrease in the mutual inductance and mutual

capacitance in the system, which causes an increase in the resonant frequency.

Therefore, SRR’s with thinner rings will have a lower resonant frequency. This

study explores how the resonant frequency is effected by a decreasing inner ring

radius if the gap g is fixed at 0.6 mm.

Frequency (GHz)
5 6 7 8 9 10 11 12

R
e

fl
e

c
ti
o

n
 (

d
B

)

-64

-62

-60

-58

-56

-54

-52

-50

r
2
=0.5mm

r
2
=0.7mm

r
2
=0.9mm

Figure 36: Normalized SRR reflection vs. frequency with decreasing inner ring width r2.

Figure 36. shows that while decreasing the inner ring radius decreases the resonant

frequency when the SRR structure is in its standard configuration. The direct

relationship does not exist if the gap g is greater than the standard configuration

gap of g = 0.2 mm. Since there does not appear to be a tangible relationship

between changing the inner gap radius and the resonant frequency, this parameter

will not be further investigated.

While it is clear that g = 1.2 mm is past its saturation region when εr = (1− 3j),
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the outer ring radius is increased in hopes of decreasing the resonant frequency and

having a positive effect on the resonant response.
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Figure 37: Normalized SRR reflection vs. frequency with increasing outer ring width r1.

4.2.5 Summary of geometric changes

It appears that while the SRR configuration is already in saturation, the resonant

response shows no improvement when the outer ring radius is increased. With the

permittivity εr = (1− 3j), an additional parameter to investigate is the thickness of

the substrate. It is reported in [27] that increasing the thickness of the substrate

causes the resonant frequency to decrease but makes no mention of this

phenomenon when the substrate is lossy.
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Figure 38: Normalized SRR reflection vs. frequency with increasing substrate thickness t.

It is found that changing this SRR parameter has no effect on the resonant

frequency when the substrate has the permittivity εr = (1− 3j).

If the outer ring radius is increased with a smaller gap between rings g, that has

proven to not be past the saturation region (g = 0.8 mm), there is interest to

observe if the SRR structure can mention any resonant frequency with an increased

outer ring radius.
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Figure 39: Normalized SRR reflection vs. frequency with increasing substrate imag(εr).
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This shows that while increasing the outer ring radius is not useful with the

structure parameters εr = (1 = 3j) and g = 1.2 mm, the outer ring radius change

may be useful when altered in tandem with other parameters in a future study. An

additional parameter to investigate is the array size.

4.3 Array Size Effects on Resonance

4.3.1 Effects of array size on a standard SRR

Thus far in this study the SRR structure has been a 3x3 array. With a permittivity

εr = (1− 1j) and a gap size g = 0.7 mm, the array size is increased from 3x3 to 4x4.

Results are shown in Figure 40.
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Figure 40: Normalized SRR reflection vs. frequency with increasing array size.

Increasing array size appears to increase the resonant effect observed as a decrease

in reflection from and decreased bandwidth. This change does however cause an

unwanted shift in the resonant frequency from roughly 9.8 GHz to 7.3 GHz.

Increasing the array size appears promising to increasing the resonance, thus the

same structure but with a gap g = 0.6 mm is observed on a substrate εr = (1− 3j).

The results are shown in Figure 41.
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Figure 41: Normalized SRR reflection vs. frequency with increasing array size and εr = (1− 3j).

The 4x4 configuration shows promise in maintaining resonance. Increasing the gap

width has been found to increase the resonant frequency even on a substrate

εr = (1− 3j). The gap will now be further increased on the 4x4 Array.

4.3.2 Increasing the gap width on a 4x4 array
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Figure 42: Normalized SRR reflection vs. frequency with increasing gap distance g.

This configuration appears to be somewhat successful at producing a resonant
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frequency on a substrate with loss ε
′′

= 3.0. The gap can not be increased past

g = 0.9 mm as this study has found that it causes the SRR structure to saturate on

a high loss substrate.

The logical next step would be to create a resonant structure with g = 0.9 mm,

w = 0.9 mm, d = 0.2 mm, r1 = 2.7 mm and r2 = 3.6 mm on a 5x5 array and a

substrate with a thickness t = 0.5 mm and permittivity εr = (1− 3j).
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5 Conclusion and Future Work

5.1 Summary

This thesis showed that it is possible for the baseline SRR to operate on a substrate

with an electromagnetic loss factor up to 3.0. The experiment also shed light on

what parameters of an SRR can be altered to maintain resonance as the

electromagnetic loss of its substrate increases. It was found that increasing the gap

width between the two rings, g, has a positive impact on the resonant behavior as it

is increased from 0.2 mm to 0.9 mm. It appears that values greater than 0.9 mm

have a negative on the systems resonance.

Other techniques used to reduce the SRR’s capacitance while on a lossy substrate

proved to be less effective. This includes altering the inner and outer ring width w

and the split width d. Increasing the array size from 3x3 to 4x4 in conjunction with

increasing the gap width to g = 0.9 mm proved to maintain the most prominent

resonant behavior on the substrate with the loss observed in this experiment

(εr = (1− 3j)).

The primary contribution of this study is the increased understanding of how

altering the SRR design parameters affects the resonant frequency of the SRR when

the SRR is placed on a highly lossy substrate. As common fruits have highly lossy

electromagnetic properties, the SRR resonance is expected to suffer. It may be

possible to maintain the resonance by increasing the array size which could limit the

types of fruit for monitoring. The secondary contribution is the derivation of the

resonant frequency equation for an SRR with two rings and four capacitive slits.
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5.2 Recommendation for Future Work

Computation power limited the array size for this experiment, preventing runs with

an array size of 5x5 from completing. The next experiment to continue this work

would be to attempt a 5x5 SRR array with g = 0.9 mm,d = 0.2 mm,w = 0.9

mm,r1 = 3.6 mm,r2 = 2.5 mm and placed on a substrate with εr = (1− 3j). If the

increased array size is more effective at maintaining resonance on the lossy

substrate, the next suggestion would be to continue to increase the array size and

increase the substrate loss to test the SRR’s true limitations when operating on a

lossy substrate. However, one must consider alternative electromagnetics modeling

and simulation software so the size of the numerical problem is not a limiting factor

in the study.
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