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ABSTRACT

Brand, Jason. M.S.Egr., Department of Electrical Engineering, Wright State University, 2014. Bi-
axial Material Design Method for the Reduced Aperture Waveguide Model.

The design and characterization of metamaterials has emerged as a field of great interest

in electromagnetics in recent years. The characterization has been accomplished primar-

ily by means of fabrication, measurement, and parameter estimation. Previous work by

Knisely and Havrilla [8] has shown that biaxial anisotropy can be created by machining air

vias uniaxially into a homogeneous, isotropic material. This research project proposes a

design method for manufactured biaxial materials. Full wave modeling and simulation is

used for samples with varying via size, separation and pose to obtain the scattering param-

eters S11 and S21. To compare the simulated S-parameters to theoretical S-parameters of

different dielectric values solved by mode matching, a cost function was created. The cost

function is minimized using a constrained non-linear least squares optimization technique.

When the global minimum of the cost function is found the material parameter for the

values that optimized the function are estimated to be the values of the simulated material.

iii
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Introduction

1.1 Metamaterials

The term metamaterials has been ambiguous since it was first introduced. For the scope

of this research project, the term will be used as defined by Dr. Smith at the Duke Meta

Group. Dr. Smith defines metamaterial as ”any material with properties not found in nature

[1]”.

One example of a manufactured metamaterial was show by Dr. Nathan Kundtz [2]. In

his dissertation, it is proposed that to insert a metamaterial slab in the path of a propagating

electric field causes the path of the field to change in a manner consistent with the properties

of the guiding structure. Figure 1.1 shows the result of this theory.

Figure 1.1: (Left) The electric field propagating in free space. (Right) The resulting propa-
gation path of the electric field when a metamaterial has been inserted from 0 to 0.2 [2]
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A second example for metamaterials was proposed by Dr. Popa [3] who showed

that the metamaterial can be designed using conformal mapping. In [3], the metamaterial

analysis and design will allow one array of antennas to produce the same far field radiation

pattern as another array (Fig 1.2).

A well-known example of metamaterial application and design was given by Dr.

Nathan Pendry [4]. Pendry’s design causes the electromagnetic waves to propagate around

an occupied region of space as it were void. Hence, the name invisibility cloak. The results

of which are shown in Fig. 1.3. One complication that arises in these examples is that the

electric permittivity and magnetic permeability ¯̄ε and ¯̄µ are strongly anisotropic, lossy, and

inhomogeneous.

Figure 1.4 shows the metamaterial design that Dr. Pendry used to create the electro-

magnetic cloaking device. The cloak consists of concentric circles of individual resonant

structures where the layering results in the desired anisotropic and non-homogeneous prop-

erties. While this design is one possible way to create materials, this research project will

be focused on a material design process that allows for the use of weakly anisotropic and

inhomogeneous materials. The approach is based on the method developed by Havrilla

et al [9]. The proposed method allows for the creation of anisotropic material from bulk

Figure 1.2: (Left) Radiation pattern of a linear array of radiators. (Right) Radiation pattern
of a circular array of radiators around a Perfect Magnetic Conductor. (Center) Radiation
pattern of a circular array of radiators around a Perfect Magnetic conductor surrounded by
a metamaterial. Metamaterial causes the radiation pattern to mimic that of the linear array.
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Figure 1.3: (Left) Electric field as it propagates in free space. (Center)Show the propagation
pattern of the field with a circular Perfect Electric Conducting object inserted. (Right)
Propagation of the field with the PEC object surrounded by a meta material designed to
provide the cloaking properties.

material.

In Ref. [9], a bulk simple (homogeneous, isotropic, and linear) material is machined

into a cube that perfectly fits a cubic sample holder. Anisotropic behavior is achieved by

drilling vias or ducts along one axis the sample [5]. The example in Fig.1.5 shows vias

were created in a square lattice while Fig.1.6 shows a 3D perspective of the vias which are

created uniaxially in the bulk material and extend the entire length of the test sample.

Figure 1.4: The meta material cloak designed by Dr. Pendry. [4]
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Figure 1.5: Example of a metamaterial containing 25 air vias in a 5 by 5 lattice. The shaded
region representing the bulk material and the clear region represents the air vias.

By creating these vias in the bulk simple material the electromagnetic properties will

be adjusted allowing for the materials to become inhomogeneous or biaxial in nature. One

should note however that the material’s dielectric properties are bound by the inherent

properties of the bulk material. Anisotropic material properties will be discussed in 2.1.1.

1.2 Challenges

The primary challenge in the creation of metamaterials is to find a design system that allows

the creator to predict what the properties of the material will be before it is manufactured

as well as how changing parameters in the material design will affect the electromagnetic

Figure 1.6: Oblique view of a uniaxially machined material.
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properties. Another issue is that depending on the outcome of the material properties a

frequency selective material can be inadvertently created due to a resonance behavior at

certain frequencies. There are also production constraints that can be placed on the ma-

terial; for example, size constraints of the vias, separation between the vias, or the bulk

material dielectric properties.

1.3 Research Hypothesis

This research project proposes a design method for the uniaxially machined biaxial mate-

rial. It is believed that the simple periodic lattice can be designed to achieve specific values

of permittivity and permeability. However, this work will focus on the method which uses

full-wave electromagnetic modeling and simulation and non-linear optimization of the via

size, dimensions, and pose.

1.4 Outline

The outline of this thesis is as follows. Chapter 2 will present a review of pertinent electro-

magnetic theory that will be of use throughout the paper. The theory will be followed by

an overview of biaxial material properties and how they affect Maxwell’s equations. Then

it will explain the three methods that were used to perform, verify and extract the data from

the necessary simulations. Chapter 3 describes the proposed method. Chapter 4 presents

the results and discusses how density of air-to-dielectric and shape of the vias affects the

permittivity and permeability. Finally, Chapter 5 summarizes the work and proposes future

research goals pertaining to parameter extraction from simulated metamaterials.
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Background

2.1 Maxwell’s Equations

The study of electromagnetic fields is at its core the study of the interaction of charges

and the materials around them. When the charges are at rest the fields they create are

quite simple to represent even with algebra. When the charges are put into motion the

defining formulas become much more complicated as they progress into a series of partial

differential equations. The first of Maxwell’s equations which is used to determine the

electric field is Farday’s Law which states

∇× ~E = − ~Mi −
∂ ~B

∂t
. (2.1)

The magnetic field is given by the second equation know as Ampere’s Law stating that

∇× ~H = ~Ji +
∂ ~D

∂t
. (2.2)

For simple media (2.1) and (2.2) are used to derive the wave equation [6]

∇2 ~E − µσ∂
~E

∂t
− µε∂

2 ~E

∂t2
= ∇× ~Mi + µ

∂~Ji
∂t

(2.3)

with ~Mi being any magnetic currents and ~Ji representing electric currents. The solu-

tion of (2.3) will show the properties of a wave traveling in a simple media, for example

6



E = E0 cos(βx+ φ) (2.4)

2.1.1 Biaxial Materials

While (2.3) shows how the fields behave inside a simple media, in general a material has

more complicated properties: anisotropy, non-homogeneity, dispersiveness, non-linearity.

This work focuses on the aniotropic property where the permittivity is

¯̄ε =


εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 (2.5)

and the permeability is

¯̄µ =


µxx µxy µxz

µyx µyy µyz

µzx µzy µzz

 . (2.6)

Equations (2.5) and (2.6) are best understood by their constitutive relations

~D = ¯̄ε ~E

~B = ¯̄µ ~H

(2.7)

which relate electric and magnetic fluxes to fields.

For example, εyx, εyy, and εyz represents how the flux of the ŷ component responds to

an arbitrary electric field, i.e. Dy = εyxEx + εyyEy + εyzEz. A more in depth look at the

vector calculus is presented in [7].

Following a similar procedure as was done for simple media the wave equation for

7



anisotropic and inhomogeneous materials becomes

∇× ¯̄µ−1∇× ~E + σ
∂ ~E

∂t
+ ¯̄ε

∂2 ~E

∂t2
= −∂

~Ji
∂t
−∇× ¯̄µ−1 ~Mi. (2.8)

While the simple wave equation (2.4) can be given in a simple form. The anisotropic

wave equation (2.8) does not have an easy solution and is generally solved by numerical

methods.

2.1.2 Boundary Conditions

Mawell’s equations and the wave equations that were derived from them take the form

of vector partial differential equations; the solutions provide the field vectors under the

constraints that the fields are single-valued and bounded[6]. However, unique solutions

are determined from the enforcement of boundary conditions which occur when there is

a change of material. An excellent example of electromagnetic boundary conditions is

illustrated in the solution of fields propagating in a waveguide[6].

When two materials with different dielectric properties share a boundary the electric

field must satisfy

n̂× ( ~E2 − ~E1) = ~Ms (2.9)

and the magnetic field must satisfy

n̂× ( ~M2 − ~M1) = ~Js. (2.10)

These relations mean that assuming there are no impressed currents or free charges at the

boundary both (2.9) and (2.10) will equal zero; the tangential components of both the

electric and magnetic fields will be continuous across the boundary.

8



The normal components of the fluxes behave in a similar fashion as

n̂ · ( ~D2 − ~D1) = ~qes (2.11)

and

n̂ · ( ~B2 − ~B1) = ~qms. (2.12)

The normal components of the electric and magnetic fields will be discontinuous

across the boundary by an amount equal to the the amount of charge that exists on that

boundary. However, the normal components of the electric and magnetic fields are discon-

tinuous by the material properties:

n̂ · (ε2 ~E2 − ε1 ~E1) = 0

n̂ · (µ2
~H2 − µ1

~H1) = 0

(2.13)

or

~E2n =
ε1
ε2
~E1n

~H2n =
µ1

µ2

~H1n

(2.14)

where E2n and E1n represent the normal components of the electric and magnetic fields.

For propagation across a half-space (Fig. 2.1) the normal component will be discontinuous

by an amount relative to the ratio of the dielectric properties.

The second boundary condition that is of concern to this research project is that be-

tween a PEC boundary and another material because the waveguide test fixture is assumed

to have PEC walls. A PEC is a theoretical material in which the resistivity(σ) is considered

to be infinite. While a PEC does not exist naturally in nature there are some substances

9



Figure 2.1: An example of the boundary of two unlike materials.

that can be estimated to contain these properties, e.g. silver, copper, and aluminum. As a

result of having a negligible resistivity any charges that accumulate on the surface of the

material will distribute themselves in such a way to make the field inside it come to zero.

By looking at Fig. 2.2, which shows an illustration of the transverse cross-section of a

WR90 waveguide, and labeling the fields inside the waveguide as ~E2 and the fields in the

PEC region as ~E1 the boundary conditions (2.9) and (2.11) become

n̂× ~E2 = 0

n̂ · ~D2 = 0.

(2.15)

At the PEC material interface the normal and tangential components of the electric

field must be zero. The boundary conditions of the rectangular waveguide shown in Fig.

2.2 results in electric fields inside the guide with form

TE : Amn cos(βxx) sin(βyy)e−jβzz,TEz,


m,n = 0, 1, ...,∞

m = n 6= 0

TM : Bmn cos(βxx) cos(βyy)e−jβzz,TMz,m, n = 1, 2, ....,∞

(2.16)

where the wave functions cos() and sin() represent the standing waves, the exponential

10



represents the propagating wave and the dispersion relation is

β2 = ω2µε = β2
x + β2

y + β2
z (2.17)

The specific forms of βx, βy, βz depend on the material and cross-sectional shape of the

guide.

Figure 2.2: An example of PEC waveguide

2.1.3 Mode Matching

Mode matching is a method of analysis for guiding structures that compares the propagating

modes in different sections by applying boundary conditions at each junction[5]. As an

example, the reduced aperture waveguide test fixture of [9] is analyzed by solving a linear

system of equations formed by enforcement of boundary conditions. Figure 2.3 illustrates

two different sections of waveguide. When the system is excited from region A, coefficients

shown in Fig. 2.3 will result.

Figure 2.4 shows an air filled waveguide (z < 0, z > d) with an anisotropic sample

contained in the sample holder (0 < z < d). A TE10 excitation will be used in the left

region and due to the symmetry of the guide only TEn0 fields will exist throughout [9].

When the wave reaches the sample holder (z = 0) there will be a reflection of waves due

to a mismatch. Also, geometric discontinuities cause scattered waves at the junctions. The

portion of the TEn0 waves not reflected back towards the source will continue through the

sample region until the point when the sample region meets the right portion of the air

11



filled waveguide (z = d) and again a portion will be reflected and a portion transmitted.

This behavior causes waves to exist in the sample region that travel in both the +z and −z

direction. Finally, the transmitted portion of the wave will continue to travel to the right

most air-filled waveguide (z > d) without obstruction due to the assumption of a perfectly

matched port allowing for the appearance of an infinite waveguide section. By forming a

set of linear equations of the TEn0 modes in each region, from the boundary conditions,

the strength of the modes can be computed using matrix algebra. the process of expanding

the fields into a series of TEn0 modes and determining the coefficients is mode matching.

The exact form of the mode matching model of reduced aperture waveguide is outlined in

2.2.2.

Figure 2.3: Outline of the sections of reduced aperture waveguide used for Mode Matching.
Image from [10].

Figure 2.4: Cross sectional view of the reduced aperture sample system. Image from [10].
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2.2 Characterization Methods

As metamaterials have gained popularity in recent years so to has the desire to accurately

characterize the properties of these materials. Many methods have been developed in the

pursuit of this goal such as waveguide measurement systems [13], resonant cavity measure-

ment systems [15], free space methods [14], rectangular to square measurement system [8],

and the reduced aperture method [9]. One commonality between all of the methods is that

they all require the material to be physically created. Different electromagnetic quantities

are measured from which the permittivity and permeability can be estimated. Measure-

ments are also limited. The resonant cavity measurement system is only valid around the

frequencies that the cavity resonates. The waveguide measurement system can only be

used with uniaxially anisotropic materials for a single sample. In order to extract the bi-

axial anisotropic properties from Eqs. (2.5) and (2.6) three samples must be created which

increases the chance for manufacturing error to effect the properties. The free space method

which requires exciting a field with a spot beam on the material requires large sample sizes

with regard to the size of the beam to limit fringing. The rectangular-to-square and reduced-

aperture systems allow for biaxial parameters to be extracted with a single relatively small

sample which provides an advantage over the other measurement methods.

2.2.1 Reduced Aperture Waveguide

The reduced aperture waveguide (RAW) is a system that was introduced by Dr. Crowgey

in [9] and illustrated in Fig. 2.5. Dr. Crowgey derived a procedure in which the tensor

quantities could be extracted using scattering parameters from a RAW measurement sys-

tem. Although shown for S-band frequencies, the technique scales with waveguide size.

This technique has the advantage in that it only requires a single cubic sample. The uti-

lization of a cubic sample allows for all of the S-parameters required for permittivity and

permeability extraction to be accomplished with a set of four measurement configurations.
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The test sample is machined and placed in the sample holder and excited by a TE10

mode and the S-parameters are measured. This procedure is then repeated with the sample

being rotated in various orientations to excite each of the primary axes of the test sample.

The parameter extraction process is then accomplished by minimizing the difference be-

tween the measured S-parameters and the theoretical S-Parameters that are obtained via the

mode matching solution (Section 2.2.2).

Figure 2.5: A picture of the RAW as shown by Crowgey. Taken from [9].

2.2.2 Reduced Aperture Mode Matching Solution

In the reduced aperture waveguide model [9] shown in Fig. 2.6 an analytical solution was

put forth that would allow for the verification of different simulation methods of the testing

structure. The chosen analytic solution is a mode matching method which is ideal for

this problem as it resembles a layered material problem. the formulation presented in this

section closely follows [9]to allow the reader to better understand the material extraction

method presented in Section 3.3. To start it would be useful to look at the wave equation

for the material inside the sample region (Region B). By placing the material so it is biaxial

with respect to the of x, y, z directions and considering a TEz excitation in the sample

region the magnetic field wave function hx(x, y) satisfies [9]

µx
β2 − k20µxεy

∂2hz
∂x2

+
µy

β2 − k20µyεx
∂2hz
∂y2

− µzhz = 0 (2.18)
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where k0 = ω
√
µ0ε0. For TEz fields, H(x, y, z) = hz(x, y)e±jβz, and for TE10 excitation

there will be no y dependency in the wave equation which reduces to

(
∂2

∂x2
+ k2c

)
hz(x) = 0 (2.19)

The cut off frequency k2c is

k2c =
µz
µx

(k20µxεy − β2). (2.20)

By solving the differential equation and applying the boundary conditions for a per-

fect electric conducting wave guide the modal tangential electric field esy,n(x) and modal

tangential magnetic fields hsx,n(x) are given as [9]

ey,n(x) = sin
(
ksc,n

(
x− w

2

))
(2.21)

hsx,n(x) = ±
esy,n(x)

Zs
n

. (2.22)

By accounting for the forward propagating excitation (A+
1 e

e
y,1(x)e−jβ

e
1z) and the sum-

mation of the reflected fields that exist in region A (
∑∞

n=1
odd

A−n e
e
y,n(x)ejβ

e
nz) the total field

becomes

Ey(x, z) = A+
1 e

e
y,1(x)e−jβ

e
1z +

∞∑
n=1
odd

A−n e
e
y,n(x)ejβ

e
nz. (2.23)

Similarly the total magnetic field can be shown as

Hx(x, z) = −
A+

1 e
e
y,1(x)

Ze
1

e−jβ
e
1z +

∞∑
n=1
odd

A−n e
e
y,n(x)

Ze
n

ejβ
e
nz. (2.24)

In the definition of the wave functions ejωt time convention is assumed. Hence, e−jβz
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represents a forward propagating wave.

In region B the fields will be an infinite sum of both forward and reverse traveling

waves represented as

Ey(x, z) =
∞∑
n=1
odd

[B+
n e
−jβs

n +B−n e
jβs

nz]esy,n(x) (2.25)

Hx(x, z) =
∞∑
n=1
odd

[
B+
n

Zs
n

e−jβ
s
n +

B−n
Zs
n

ejβ
s
nz

]
esy,n(x) (2.26)

where the coefficients B+
n and B−n represent the complex amplitudes. The fields in region

C of the model will only contain forward propagating waves due to the perfect match at the

end of the waveguide. This regions fields are represented as

Ey(x, z) =
∞∑
n=1
odd

C+
n e

e
y,n(x)e−jβ

e
n(z−d) (2.27)

Hx(x, z) =
∞∑
n=1
odd

C+
n

Ze
n

eey,n(x)e−jβ
e
n(z−d). (2.28)

Once the equations have been determined there are 4 coefficients that must be deter-

mined A−, B−, B+, and C+. It should be noted that since A+ represents the excitation

field in the waveguide this is known. The 4 unknown coefficients are found by applying

the electric and magnetic boundary conditions at the two boundaries z = 0 and z = d.

At z = 0,

A+
1 e

e
y,1(x) +

∞∑
n=1
odd

A−n e
e
y,n(x) =


∑∞

n=1
odd

[B+
n +B−n ]esy,n(x), 0 < |x| < w

2

0, w
2
< |x| < a

2

(2.29)
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represents the total electric field.

The total magnetic field at z = 0 becomes

−A+
1

eey,1(x)

Ze
1

+
∞∑
n=1
odd

A−n e
e
y,n(x)

Ze
1

=

∞∑
n=1
odd

[
− B+

n

Zs
n

+
B−n
Zs
n

]
esy,n(x), 0 < |x| < w

2
.

(2.30)

The other two equations used to solve for the coefficients are derived by enforcing the

boundary conditions at z = d. These boundary conditions cause the electric field to be

defined as

∞∑
n=1
odd

C+
n e

e
y,1(x) =


∑∞

n=1
odd

[B+
n e
−jβs

nd +B−n e
jβs

nd]esy,n(x), 0 < |x| < w
2

0, w
2
< |x| < a

2

. (2.31)

By the same approach, the H field at z > d becomes

−
∞∑
n=1
odd

C+
n

Ze
n

eey,n(x) =

∞∑
n=1
odd

[
− B+

n

Zs
n

e−jβ
s
nd +

B−n
Zs
n

ejβ
s
nd

]
esy,n(x), 0 < |x| < w

2
.

(2.32)

Equations (2.2.2) to (2.32) can be solved using matrix algebra and the scattering pa-

rameters S11 and S21 can be calculated as
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Figure 2.6: A diagram of the reduced aperture waveguide. Region A and C are lengths of
WR-90 waveguide. Region B is a square sample region.

S11 =
A−1
A+

1

S12 =
C+

1

A+
1

.

(2.33)

2.2.3 Parameter Extraction

The parameter extraction introduced in [9] is a straight forward process that involves com-

paring the theoretical from Section 2.2.2 Sthy21 (ε) for a given permittivity and the measured

Smeas21 for a sample under test. The unknown quantity ε of the physical sample is determined

by

Sthy21 (ε)− Smeas21 = 0 (2.34)

In [9], these values are determined using Newton’s method.

For the biaxial case, Dr. Crowgey places the the sample in 4 orientations conforming

to

(A,B,C)→ (x, y, z)⇒ [Smeas11,1 Smeas21,1 ], (2.35)

(A,B,C)→ (−z, y, x)⇒ [Smeas11,2 Smeas21,2 ], (2.36)

(A,B,C)→ (y,−x, z)⇒ [Smeas11,3 Smeas21,3 ], (2.37)
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(A,B,C)→ (z, x, y)⇒ [Smeas11,4 Smeas21,4 ]. (2.38)

With the S-Parameters measured from the 4 orientations (2.35) to (2.38) and the rela-

tion given in (2.34) all six of the unknown complex material parameters (εA, εB, εC , µA, µB, µC)

can be found [9].

The first three values (εB, µA, µC) can be solved finding the solution to

Sthy11,n(εB, µA, µC)− Smeas11,n = 0, n = 1 (2.39)

Sthy21,n(εB, µA, µC)− Smeas21,n = 0, n = 1, 2. (2.40)

Next using the parameters from (2.37) εA and µB can be determined by using a New-

ton’s method on

Sthy11,3(εA, µB)− Smeas11,3 = 0, (2.41)

Sthy21,3(εA, µB)− Smeas21,3 = 0, (2.42)

The final unknown parameter (εC) is found using

Sthy21,4(εC)− Smeas21,4 = 0. (2.43)

While this method does require a fourth measurement to be taken Dr. Crowgey has found

that the reduction of unknowns in each step is advantageous.

A second method of parameter extraction was introduced by Dr. Nicolson in [16]. Dr

Nicolson presented a measurement method in which a disk of material with thickness d is

placed in an air-filled coaxial waveguide Fig. 2.7. When excited an electromagnetic wave

travels through the air-filled region with characteristic impedance Z0 until reaching the disc
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at A where the characteristic impedance becomes [16]

Z =

√
µr
εr
Z0 (2.44)

If d were extended to be infinite in length the reflection coefficient is shown to be

Γ =

√
µr
εr
− 1√

µr
εr

+ 1
. (2.45)

By limiting the thickness to a finite value of d the transmission coefficient in the disk

becomes

z = e−j
ω
c

√
εrµrd (2.46)

Using microwave theory the S11 and S21 of the system can be determined by treating this

as a 4 port system, as shown in Fig. 2.7, with

S11 =
VA
Vinc

=
(1− z2)Γ
1− Γ2z2

S21 =
VB
Vinc

=
(1− Γ2)z

1− Γ2z2
.

(2.47)

By adding and subtracting S11 and S21

V1 = S21 + S11

V2 = S21 − S11

(2.48)

and if χ is defined as

χ =
1− V1V2
V1 − V2

(2.49)
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then the reflection coefficient can be defined as

Γ = χ±
√
χ2 − 1 (2.50)

The sign is chosen to ensure |Γ| ≤ 1. Also, z can also be defined in terms of reflection

coefficients as

z =
V1 − Γ

1− V1Γ
. (2.51)

Now (2.45) can be use to define c1 as

µr
εr

=
1 + Γ

1− Γ

2

= c1 (2.52)

and (2.46) to define c2 as

µrεr = −{cln1

z
}2 = c2. (2.53)

These two equations can then be used to derive the complex permittivity and permeability

as

µr =
√
c1c2

εr =

√
c2
c1
.

(2.54)

For the purpose of this research project the method of extraction introduced in [16] is

not practical since it requires a hole in the material for the center conductor to pass through.

Due to this project’s focus on periodic structures this is less than ideal as the presence of

the center conductor would break the periodic nature of the lattice. The center conductor

would also have an unwanted effect on the air-to-dielectric ratio.
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Figure 2.7: Dielectric measurement system using transmission line system. Taken from
[16].

2.3 Finite Element Method

The Finite Element Method (FEM) is a mathematical model that is used as an approxi-

mation method to solve the boundary-value problem of the partial differential equations

proposed by Maxwell’s Equations[11]. The FEM involves dividing the solution space into

a set of sub wavelength mesh points. The solution is then calculated at these points and

interpolated to the areas between them. For the scope of this research project COMSOL

Multiphysics®will be used as the FEM solver. FEM is a well-known and standard method

used to solve radiation, guided wave and scattering problems for exotic material properties.
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Experiment Methodology

The premise of this research project is that by using computational electromagnetics(CEM)

methods in lieu of measurements the structure of a metamaterial can be designed to produce

desired dielectric properties. Before this can occur, the simulation model must be created

and verified. The verification of the CEM model will be completed by comparing the results

from the simulated model to the results of the mode matching model with the sample holder

being filled with air. Once the CEM model has been built and verified a partial factorial

experimental design will be used to study the effects of the size, dimensions, and pose

of the vias discussed in Section 3.2. Parameter extraction, i.e., estimation of ¯̄ε, ¯̄µ will

be accomplished using a non-linear constrained least squares algorithm implemented in

MATLAB.

3.1 The Model

Following the reduced aperture waveguide used by Crowgey [9], which was created for

operation at S-band, the dimensions are scaled to that of WR-90 waveguide and modeled

in COMSOL. This base model (seen in Fig. 3.1) consists of a full wavelength of WR-

90 PEC waveguide connected to a reduced aperture cubic sample holder having the same

height dimensions as the height of the waveguide. That is then followed by another full

wavelength of waveguide Fig.3.1. One wavelength corresponds to the longest wavelength

under test (8 GHz or 3.75 cm).
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Figure 3.1: Reduced Aperture model with full wavelength of waveguide before and after
holder

With the RAW built and modeled in COMSOL the FEM results were obtained for an

air-filled sample holder. The S11 and S21 were then compared to the S-Parameters obtained

from the mode matching solution of Section 2.2.2. The error results for S11 are shown in

Fig. 3.2 and are O(10−3) to O(10−2).
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Figure 3.2: Error of S11 for a simulated reduced aperture structure with full wavelength
of waveguide before and after air filled sample holder compared to numerical solution at
variable mesh sizes

Figure 3.3 shows the relative error contained in the S21 of the simulation model when

compared to the analytic solution. These errors are a bit higher than the S11 data ranging

from O(10−3) to O(10−1.5). Due to propagation of the error through the process and the

constraints that are placed on the parameter extraction process larger mesh elements λ
8

and

λ
12

will be avoided in the simulation portion of the project. The reason being that the opti-

mization is sensitive to errors that are on the order of convergence tolerance. This method

will compare the values of the experimental data to the mode matching solution. Since the

S-parameter error is greater than 10−2 and that error propagates through the process it will

not be possible to satisfy the tolerance set in the routine.
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Figure 3.3: Error of S21 for a simulated reduced aperture structure with full wavelength
of waveguide before and after air filled sample holder compared to numerical solution at
variable mesh sizes

With a large number of simulations required to analyze the effects of changing certain

design parameters, a reduction of the size of the RAW model was made. This reduction

came in the form of shortening the λ-length waveguide sections to λ
3

(Fig. 3.4). This

change could affect the accuracy of the S-Parameters being measured. Higher-order modes

are created by scattering off the discontinuities in the guide, but evanesce before reaching

the measurement planes. In order to assure that this change in the system would not affect

the accuracy of the model a verification was made to examine the error contained in the

S-Parameters just as was done with the original model. Figure 3.5 shows the error of the

modified system which remains within the acceptable error constraints actually providing

a smoother distribution than the original model. Figure 3.6 shows the error in the S21 from

the modified system which exhibits similar error levels to the original model.
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Figure 3.4: Reduced Aperture model with 1/3 wavelength of waveguide before and after
holder

Figure 3.5: Error of S11 for a simulated reduced aperture structure with λ
3

of waveguide
before and after air filled sample holder compared to numerical solution at variable mesh
sizes

27



Figure 3.6: Error of S21 for a simulated reduced aperture structure with λ
3

wavelength
of waveguide before and after air filled sample holder compared to numerical solution at
variable mesh sizes

When comparing the results of the simulation error (shown in Fig. 3.2 to 3.6) it can

be seen that by shortening the waveguide we can eliminate 41.61% of the computational

volume while maintaining the same error levels.

3.2 Experiment Design

The experiment design used for this research project will consist of a partial factorial

method of experiments meaning that certain independent variables (size, separation, pose

of vias) in the material under test (MUT) will be altered and simulated using the finite

elements method. However, due to limited resources for simulation only a subset of the

S-Parameters will be exported and run through a MATLAB parameter extraction process

yielding the 6 complex material properties.
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The initial test was designed to compare the number of vias, along with the size and

separation of the vias. The values explored are shown in Table 3.1 with δ representing the

size of the square vias, lattice size representing the number of vias in each dimension of the

sample (nxn), and Dx representing the separation between each via. The variable ρ was

created as a tool for demonstrating the ratio of base dielectric material to air in the sample

and defined as

ρ =
δxNxδyNy

XY − δxNxδyNy

(3.1)

with δx representing the size in the x direction of the via, Nx the number of vias in the x

direction, δy the size of the vias in the y direction, Ny the number of vias in the y direction,

and XY representing the area of the sample holder. Since all vias are uniaxial and span the

entire depth of the MUT only the ratio on the single face must be found and will accurately

represent the entire volume of the sample.
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Trial Via Size δ(mm) Lattice size (nxn) Separation Dx(mm) Ratio of material to air (ρ)

1 1 2 2.72 .040312178

2 1 3 1.79 .095515444

3 1.5 2 2.38667 .09551544

4 1 4 1.232 0.183432387

5 2 2 2.05333 0.183432387

6 1.5 3 1.415 0.244047648

7 1 5 0.86 0.31958847

8 2.5 2 1.72 0.3195885

9 1 6 0.5943 0.5355103

10 1.5 4 0.832 0.5355103

11 2 3 1.04 0.5355

12 3 2 1.387 0.5355

13 1 7 0.395 0.9036322

14 3.5 2 1.0533 0.90363223

15 1.5 5 0.4433 1.19743016

16 2.5 3 0.665 1.19743016

17 2 4 0.432 1.6316

18 4 2 0.72 1.631588

19 1.5 6 0.1657 3.644

20 3 3 0.29 3.6445

21 4.5 2 0.38667 3.644446

22 2 5 .02667 31.00198

23 5 2 .05333 31.00198

Table 3.1: Partial factorial experiment design of via size and separation.
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3.3 Parameter Extraction

With the desired sample configurations established, a simulation procedure was created to

retrieve the 6 complex S-Parameters that are used in the parameter extraction code. This

was accomplished by using a y-directed TE10 excitation in the modified RAW test system

shown in Fig. 3.4 of Section 3.1 and rotating the sample in the sample holder to excite the

sample along the primary axes (shown in Fig. 3.7) in a 4 step measurement process.

Figure 3.7: Biaxial material with Vias oriented along C axis. Figure taken from [5].

The first measurement configuration involves aligning the sample’s B axis with the y

excitation. The sample is placed in a position of (A,B,C) → (x.y.z) with respect to the

RAW coordinate system shown in Fig. 3.8.
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Figure 3.8: Excitation of sample’s B axis. Figure taken from [5].

The second measurement once again places the sample’s B axis in line with the exci-

tation mode, but the sample is rotated such that (A,B,C) → (−z, y, x) as shown in Fig.

3.9. These first three measurements (S11,1, S21,1, S21,2) allow for the extraction of 3 of the

desired material parameters that will be designated as ε̂B, µ̂A and µ̂C . The hat represents

an estimated parameter extracted from simulated measurements of the MUT.
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Figure 3.9: Second excitation of sample’s B axis. Figure taken from [5].

The third orientation measured allows for the excitation of the A axis of the MUT by

setting the alignment to be (A,B,C) → (y,−x, z) illustrated in Fig. 3.10. This configu-

ration along with the use of µ̂C from the previous step allows for the extraction of ε̂A and

µ̂B.
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Figure 3.10: Excitation of sample’s A axis. Figure taken from [5]

The fourth and final measurement excites the sample’sC axis by placing it in a relative

orientation of (A,B,C)→ (z, x, y) as shown in Fig. 3.11. This orientation in conjunction

with the use of µ̂A and µ̂B from previous steps allows for the extraction of the final complex

parameter ε̂C . A summary of these measurements and the parameters they are used to

extract are listed in Table 3.2.
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Figure 3.11: Excitation of sample’s C axis. Figure taken from [5]

Configuration #

(Figure)

Sample Orientation

(εyy, µxx, µzz)
Newton Method Formulation

1 (3.8) (A,B,C)→ (x, y, z)

Sthy11 (εB, µA, µC)− Smeas11,1

Sthy21 (εB, µA, µC)− Smeas21,1

Sthy11 (εB, µC , µA)− Smeas21,2

=


0

0

0

→ [ε̂B, µ̂A, µ̂C ]1 (3.8) (A,B,C)→ (x, y, z)

2 (3.9) (A,B,C)→ (−z, y, x)

3 (3.10) (A,B,C)→ (y,−x, z)
Sthy11 (εA, µB, µ̂C)− Smeas11,3

Sthy21 (εA, µB, µ̂C)− Smeas21,3

=

0

0

→ [ε̂A, µ̂B]
3 (3.10) (A,B,C)→ (y,−x, z)

4 (3.11) (A,B,C)→ (z, x, y)
[
Sthy21 (εC , µ̂A, µ̂B)− Smeas21,4

]
= [0]→ [ε̂C ]

Table 3.2: A summary of the measurement orientations and the corresponding parameter
extraction.
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3.3.1 Cost Function

The measurements described in Section 3.3 can support a set of complex non-linear cost

functions
Sthy11,A(f; ¯̄ε, ¯̄µ)− Smeas11,A (f) = δA

Sthy21,A(f; ¯̄ε, ¯̄µ)− Smeas21,A (f) = γA

Sthy11,B(f; ¯̄ε, ¯̄µ)− Smeas11,B (f) = δB

Sthy21,B(f; ¯̄ε, ¯̄µ)− Smeas21,B (f) = γB

Sthy11,C(f; ¯̄ε, ¯̄µ)− Smeas21,C (f) = δC

Sthy21,C(f; ¯̄ε, ¯̄µ)− Smeas21,C (f) = γC

(3.2)

which may be used to estimate the complex material tensors. In (3.2){δA, δB, δC , γA, γB, γC}

are tolerances for the cost functions. Minimization is accomplished using non-linear un-

constrained minimization. Despite the complex nature of the simulated S-Parameters real-

valued cost functions can be developed by considering the magnitude of the differences

between the simulated (measured) and analytic values. The cost function for the first stage

listed in Table 3.2 is given as [5]

g(~x) = |Sthy11 (f ; ~x)− Smeas11,1 (f)|+ |Sthy21 (f ; ~x)− Smeas21,1 (f)|+ |Sthy21 (f ; ~x ′)− Smeas11,2 (f)|

~x = [x1, x2, x3, x4, x5, x6] = [εB,R, εB,I , µA,R, µA,I , µC,R, µC,I ]

~x ′ = [x1, x2, x5, x6, x3, x4] = [εB,R, εB,I , µC,R, µC,IµA,R, µA,I ]

x̂ = argmin
x1,x2,x3,x4,x5,x6 g(~x)

(3.3)

with µ = µR − jµI and ε = εR − jεI . Equation (3.3) allows for the estimation of the

material parameters ε̂B, µ̂A, and µ̂C . It should be noted that ~x and ~x′ are comprised of the

same values but in different orders. For this reason only ~x is solved for in (3.3).

36



The cost function for the second step of the extraction process is

g(~x) = |Sthy11 (f ; ~x)− Smeas11,3 (f)|+ |Sthy21 (f ; ~x)− Smeas21,3 (f)|

~x = [x1, x2, x3, x4, x5, x6] = [εA,R, εA,I , µB,R, µB,I , µ̂CR
, µ̂C,I ]x̂ = argmin

x1,x2,x3,x4 g(~x)

(3.4)

and solves for (ε̂A, µ̂B) when the function is minimized.

The final cost function to extract the value of εC is

g(~x) = |Sthy21 (f ; ~x)− Smeas21,4 (f)|

~x = [εC,R, εC,I , µ̂A,R, µ̂A,I , µ̂B,R, µ̂B,I ]

x̂ = argmin
x1,x2 g(~x)

(3.5)

Clearly, the aggregate estimation errors for ε̂A, ε̂B, µ̂A, µ̂B, µ̂C will influence the accuracy

on ε̂C .

These cost functions require an initial guess of dielectric properties. The optimization

algorithm searches for values near the initial guess until g is minimized or a maximum

number of searches occurs. The algorithm is supervised, meaning that the user must decide

to keep something near the last result or to start with a new initial guess for each frequency.

However, the material properties are expected to be slowly varying with frequency, so the

reult of the previous frequency can be used for the current search. A specific example of

the procedure pertaining to the experiment project is outlined in Section 3.3.2

3.3.2 Procedure

The first step to apply the experimental design in this research project will use to extract

parameters that will be used in the analysis of dielectric properties with respect to the

changes made to the air filled vias. This step was described in Section 3.2. The second

stage is to complete the full wave simulation using the model in Section 3.1, Fig. 3.4. The
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third stage is to evaluate the cost functions given in Section 3.3.1. The mode matching

solution of Section 2.2.2 serves as the theoretical results in the non-linear unconstrained

minimization function. The optimization algorithm is implemented in MATLAB and uses

non-linear least squares.

3.3.3 Verification of Parameter Extraction

The verification of the parameter extraction process is completed by filling the sample re-

gion with free space and performing the procedure outlined in Section 3.3.2. The expected

parameter estimation has an expected isotropic permittivity taking the form of

¯̄ε = ¯̄Iε (3.6)

and permeability

¯̄µ = ¯̄Iµ (3.7)

where ε = εrε0 and µ = µrµ0. In the case of free space εr = µr = 1.

Figure 3.12 to Fig. 3.14 shows the estimated permittivity (ε̂A, ε̂B, ε̂C) for the air-filled

sample holder. As can be seen the permittivity provided by the air sample is consistent with

the permittivity of free space.
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Figure 3.12: Extracted εA for air-filled reduced aperture structure with full wavelength of
waveguide before and after sample holder.
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Figure 3.13: Extracted εB for air-filled reduced aperture structure with full wavelength of
waveguide before and after sample holder.
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Figure 3.14: Extracted εC for air-filled reduced aperture structure with full wavelength of
waveguide before and after sample holder.

Figures 3.15 to 3.17 shows the estimated permeability (µ̂A, µ̂B, µ̂C) and agrees with

the non-magnetic nature of free-space..

41



Figure 3.15: Extracted µA for air-filled reduced aperture structure with full wavelength of
waveguide before and after sample holder.
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Figure 3.16: Extracted µB for air-filled reduced aperture structure with full wavelength of
waveguide before and after sample holder.
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Figure 3.17: Extracted µC for air-filled reduced aperture structure with full wavelength of
waveguide before and after sample holder.
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Results

The bulk material used in the simulated experiment in this section has the properties of

lossless, simple media with εr = 2.8 − j0 and µr = 1 − j0. The procedure was run as

outlined in Section 3.3.2. The parameter estimation process was repeated 10 times for each

trial and the results were averaged. This repetition allowed some insight into the accuracy

of the material estimation program.

4.1 Via Size and Spacing

For the purpose of examining the effects that size and spacing of the machined vias have

on the final estimated parameters, 24 trials listed in Table 3.1 were modeled and simulated.

Figures 4.1 - 4.3 show the electric permittivity along the 3 cardinal axes which are sub-

scripted A,B, and C. Only results at 8, 9, 10, and 11 GHz are shown. The εA (Fig. 4.1)

and εB (Fig. 4.2) have very similar behavior which is to be expected due to the symmetry

of the air via lattices as shown in the example lattice in Figure 1.5. However, when looking

at the permittivity along the asymmetric axis (Fig. 4.3) the permittivity shows slightly

different characteristics. In all three of the cases it can be seen that the imaginary part of

the permittivity is very close to zero which shows that the loss less property of the base

dielectric material is preserved. In all three cases it can be seen that when the test sample

is 96% material and 4% air the real part of the permittivity only reduces to 2.7008 or the

equivalent of 97.5% of the original material permittivity. The outliers near 1
ρ

= 3 appear
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for certain frequencies can be explained by resonances created by the vias [9].

Figure 4.1: Complex permittivity along A axis versus air-to-dielectric ratio(ρ).
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Figure 4.2: Complex permittivity along B axis versus air-to-dielectric ratio(ρ).

47



Figure 4.3: Complex permittivity along C axis versus air-to-dielectric ratio(ρ).

Figures 4.4 to 4.6 show the complex permeability along the three cardinal axes (A,B,C).

These provide insight as to how change in the lattice structure affects the non-magnetic

qualities of the base material. It can be seen that varying the size, spacing, and ratio of

air-to-dielectric ratio of the material has no effect on the permeability of the structure. It

retains the property of µr,fs = µr,sample.
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Figure 4.4: Complex permeability along A axis versus air-to-dielectric ratio(ρ).

49



Figure 4.5: Complex permeability along A axis versus air-to-dielectric ratio(ρ).
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Figure 4.6: Complex permeability along A axis versus air-to-dielectric ratio(ρ).

Another observation can be made by examination of Fig. 4.1 to 4.6 is that the via

size and separation do not cause any frequency selectivity to be created in the metamaterial

structure.

Due to the material showing almost no variation due to frequency the following anal-

ysis is at the center frequency of the band (10 GHz) but should be assumed valid for any

frequency in the band (8-12 GHz). Figure 4.7 shows the reaction of the material property

ε̂A with respect to ρ for the parameter estimation. Standard deviation bounds are also shown

about the mean. The variation of the individual parameter estimations is very small. This

would indicate that near the global minimum of the cost function, the hyperplanes are very

smooth causing the algorithm to find virtually the same values for the estimated parameters

each time.
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Figure 4.7: Complex permittivity along A axis versus air-to-dielectric ratio (ρ) for 10 GHz.

Utilizing MATLAB’s curve fitting tool a formula for the estimated material property

(ε̂A = ε̂′A − jε̂′′A) is given as

ε̂′A = −0.18067x3 + 0.055116x2 + 0.95278x+ 1.7366 (4.1)

ε̂′′A = 0 (4.2)

where x is defined as log 10(1
ρ
) and ρ is defined as (3.1).

Similarly, Fig. 4.8 shows the estimated values of ε̂B as
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Figure 4.8: Complex permittivity along B axis versus air-to-dielectric ratio (ρ) for 10 GHz.

ε̂′B = −0.17462x3 + 0.062365x2 + 0.94968x+ 1.7354 (4.3)

ε̂′′B = 0. (4.4)

Finally, ε̂C has a similar trend
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Figure 4.9: Complex permittivity along C axis versus air-to-dielectric ratio (ρ) for 10 GHz.

ε̂′C = −0.17404x3 + 0.0094338x2 + 0.93314x+ 1.8385 (4.5)

ε̂′′C = 0. (4.6)

While the general shape of all three property graphs is similar it should be noted that the

variance of ε̂C is higher than the other two properties. This is due to the fact that it is the

final property to be extracted as seen on 3.2. This means that any error that is in the system

is compounded upon each step of the process causing greater variation in the properties

that are estimated at the end.

As seen before and confirmed in figures 4.10 to 4.12 neither the size nor the spacing

of the elements of the lattice cause the material to show a magnetic response assuming that
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the starting material is non-magnetic.

Figure 4.10: Complex permeability along A axis versus air-to-dielectric ratio (ρ) for 10
GHz.
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Figure 4.11: Complex permeability along B axis versus air-to-dielectric ratio (ρ) for 10
GHz.
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Figure 4.12: Complex permeability along C axis versus air-to-dielectric ratio (ρ) for 10
GHz.

A further examination that would be beneficial would be to change the ratio of via size

in the A and B directions. The expectation for the material properties is that εA and µA will

have properties agreeing with the air-to-dielectric ratio in the A direction. While, εB and

µBwill have properties agreeing with the air-to-dielectric ratio in the B direction. Finally,

εC and µC will be defined from the total density considering both the A and B densities.
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Figure 4.13: A test sample with rectangular vias with a side ratio of 3 to 1.

4.2 Rectangular Via

The next set of results to explore the effects that rectangular vias will have on the anisotropic

nature of the material properties as opposed to the square vias used in the previous section.

To explore these effects an experiment was designed that would extract the properties from

materials that were designed with vias that have a ratio of 3 to 1 for the length of the sides

along the A and B axis. This experiment used measurements of 1.53 mm and .51 mm

with respect to the axis creating the material sample shown in Fig. 4.13. The results of

the parameter estimation process are shown in figures 4.14 to 4.16. The resulting material

parameters are then analyzed by using the ratio of air-to-dielectric along the n axis (A, B,

C) as

ρn =
δnNn

ln

n = A,B

(4.7)

and

ρC = ρAρB (4.8)

with δn being the length of the air via along the n axis, Nn the number of vias along

the n axis, and ln the length of the sample along the n axis.

As was seen in results given earlier the via sizes have no effect on the material per-

meability and does not cause the material to take on a lossy nature. Due to this only the
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real part of the permittivity will be explored in this section. Figure 4.14 shows the real

permittivity along the A axis (εAA) with respect to density changes in the A, B, and C axes.

Figure 4.14: Real permittivity along the A axis a 3 to 1 rectangular via.

Similarly, Fig. 4.15 shows the real permittivity along the B (εBB) axis as
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Figure 4.15: Real permittivity along the B axis a 3 to 1 rectangular via.

and Fig. 4.16 shows the real permittivity along the C axis (εCC) as
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Figure 4.16: Real permittivity along the C axis a 3 to 1 rectangular via.
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Figure 4.17: A test sample with the pose of the vias set to 45°.

4.3 Via Pose

To test the pose of the vias, a simulation was made with a value of ρ = 0.54 and no rotation.

The vias were then rotated about their their center points to angles of 15, 30, and 45 Fig.

(4.17). No measurements were taken beyond 45 degrees because of symmetry of the vias.

As can be seen in figures 4.18 to 4.20 the pose of a square via has no effect on the

material permittivity. This can be explained by the fact that the dimensions of the air vias

(1mmx 1mm) are electrically much smaller than the wavelength of the excitation wave (3

cm). The results shown by the variations in pose of the vias are beneficial in manufacturing

as it removes the sensitivity of the machining process and small variations in the rotation

of the individual elements of the lattice structure.

Likewise, Figures 4.21 to 4.23 shows the pose has no effect on the permeability.
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Figure 4.18: Complex permittivity along A axis compared to rotation.
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Figure 4.19: Complex permittivity along B axis compared to rotation.
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Figure 4.20: Complex permittivity along C axis compared to rotation.
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Figure 4.21: Complex permeability along A axis compared to rotation.
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Figure 4.22: Complex permeability along B axis compared to rotation.
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Figure 4.23: Complex permeability along C axis compared to rotation.
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4.4 Summary of Results

The results shown in Chapter 4 show that the primary factor for adjusting the permittivity of

a material by introduction of air vias is the ratio of air-to-dielectric. In this research project

the vias ranged from 1 to 5 mm upon each dimension meaning they are electrically small

compared to the excitation wavelength of 3.75 to 2.5 cm. Due to this fact the configuration

of the vias showed almost no noticeable affect on the permeability. This can be seen by

the testing of multiple different configurations of vias with the same air-to-dielectric ratio

yielding the same permittivity. The trend of the material properties was easily mappable

to a simple cubic function dependent solely on the air-to-dielectric ratio for the case of

symmetric vias. Also, the if a non-lossy bulk material was used the material remained non-

lossy after introduction of the air vias. The permeability of the material was unchanged by

the introduction of the vias assuming that the material was non-magnetic. Rotation of the

vias also tended to have almost no effect on the final permittivity and permeability of the

final metamaterial allowing for some small variation in manufacturing without altering the

material properties.
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Future Research

Suggested future progress for this research progress would be to collaborate with Dr.

Havrilla et. al. to have some designed samples machined and characterized by the mea-

surement process outlined in [8]. This process would provide an outside verification for the

design parameters outlined in this research project. Also, developing a statistical analysis

as to how the ratio between the A and B dimensions of the vias can effect the correspond-

ing electromagnetic properties. A study of the contrast between the dielectric values of

the base material and air would provide insight into the relations of power and energy. Fi-

nally, further analysis of how non-square vias can be used to effect the electromagnetic

properties.
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