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ABSTRACT 

 

Furman, Amanda René. M.S., Department of Pharmacology/ Toxicology, Wright State 
University, 2012. Evaluation of CM-2,525 as a neuroprotectant against sarin: A 
comparison with 8-OH-DPAT. 
 

 

 

Exposure to the chemical warfare agent sarin produces long term neurological deficits. 

The long term medical consequences could be averted with the development of 

neuroprotectants to preserve brain function. In our mouse model, the combination of the 

carboxylesterase inhibitor 2-(o-cresyl)-4H-1:3:2-benzodioxaphosphorin-2-oxide (CBDP) 

with the organophosphorus (OP) nerve agent sarin was used to render mice more 

sensitive to poisoning and reduce the amount of hydrogen fluoride cleaved from sarin 

during binding to esterases. Since carboxylesterase acts as a scavenger, reducing the 

levels causes sarin to have a greater inhibition effect on acetylcholinesterase. These 

smaller doses permitted the use of doses similar to those producing symptoms in humans. 

Prior work demonstrated that 8-OH-DPAT (DPAT) was neuroprotective when given up 

to two hours after sarin administration through its secondary pharmacology. The aim of 

this study was to explore the efficacy of CM-2,525, which acts on part of that secondary 

pharmacology, as a neuroprotectant and to directly compare its effects with DPAT. Male 

C57BL/6 mice were administered a toxic challenge of 1.5 mg/kg of CBDP plus the dose 

of sarin needed to achieve 35% mortality. A dose-response curve for CM-2,535 was



	  
	  

	  iv 

 determined by administration one minute after the toxic challenge. Male C57BL/6 mice 

also were administered a toxic challenge followed in one minute by saline or DPAT (1 

mg/kg). Functional Observational Battery (FOB) data were collected for each mouse and 

weight data were collected pre- and post-exposure for 3 days. Treatment with DPAT 

revealed no benefit on FOB scores and had no effect on weight loss. Low doses of CM-

2,525 reduced the FOB scores and the higher doses decreased weight loss. 

Immunohistological analysis was performed using Glial Fibrillary Associated Protein 

(GFAP) which increases in sarin treated animals and Neuronal Nuclei (NeuN), a stain for 

mature neurons that decreases after toxic challenge. Previously we found that treatment 

with DPAT resulted in a significant decrease in GFAP-labeled cells in the dentate gyrus 

(DG) and is effective when given two hours after the toxic challenge. In this study it both 

reduced GFAP and increased NeuN. The higher doses of CM-2,525 significantly 

decreased GFAP-labeled cells in the amygdala (Amy) and DG regions and increased 

NeuN-labeled cells in the Amy, piriform cortex, and DG regions. CM-2,525 has efficacy 

superior to DPAT with effects on weight loss and FOB scores as well as providing 

neuroprotection and would likely be neuroprotective as long after sarin exposure as 

DPAT. 
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I. Introduction 

Background and history 

 The nerve agents, also known as organophosphorus (OP) compounds, were first 

synthesized by the Germans prior to World War II (Sidell, Newmark, & McDonough, 

2008). The compounds, organic esters derived from phosphoric acid, are some of the 

deadliest compounds made by man for use against man (Grob & Harvey, 1953; Wiener & 

Hoffman, 2004). The German scientist Dr. Gerhard Schrader synthesized the first 

compound in 1936 while looking for a stronger pesticide; the new pesticide was found to 

be more potent and extremely toxic to humans. By the end of WWII, other agents were 

developed. Four major OP compounds were developed: tabun (GA), sarin (GB), soman 

(GD), and VX, each differing in potency and volatility (Solberg & Belkin, 1997). The G 

agents were developed in Germany and VX in Britain (Wiener & Hoffman, 2004).  

 During WWII, the Germans created a production facility to manufacture sarin and 

tabun for use during the war. The agents were stockpiled but were not used. After the 

war, the Soviet forces annexed the production facility and Allied forces uncovered nerve 

agents stored in munitions. The potential of the agents was recognized and stockpiles 

were developed by the Soviet Union and the United States. The first battlefield use of 

sarin and tabun occurred in 1988 by the Iraqis against Iranian forces. The first reported 

terrorism use of nerve agents was in 1994 (Sidell et al., 2008; Wiener & Hoffman, 2004). 

Sarin was implemented by the terrorist organization Aum Shinrikyo in Japan in two 

separate incidences. The first release on June 27, 1994 was targeted against three judges 
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in the city of Matsumoto. Seven people were killed and nearly 500 were sent to the 

hospital. The second release was in the Tokyo Subway on March 20, 1995. Packages of 

sarin were placed on five different trains converging on Tokyo; 12 people were killed and 

one thousand were injured (Olson, 1999).  

 Sarin, isopropyl methylphosphonofluoridate, is a colorless, odorless, volatile 

liquid. Of the agents, sarin is the most volatile with a vapor pressure similar to water. 

Since the vapors are heavier than air and they sink to the ground (Weinbroum, 2004; 

Wiener & Hoffman, 2004). Sarin is liquid at room temperature with a boiling point of 

158° C, the lowest boiling point of all the nerve agents and persists in the environment 

from 2-24 hours depending on temperature, humidity, and wind (Wiener & Hoffman, 

2004; Sidell et al., 2008). Once dispersed, the nerve agent is absorbed through the skin, 

eyes, or respiratory tract and distributes rapidly in tissues. The biological effects are 

related to the phosphorylating abilities of the nerve agents (Abu-Qare & Abou-Donia, 

2002). 

 The threat of an attack using nerve agents still exists today. Given the previous 

use by Aum Shinrikyo and use in the Iraqi-Iran war in the 1980s, sarin is the nerve agent 

most likely to be used in a future attack. Sarin is the most volatile of the nerve agents and 

is relatively easy to manufacture. The formula and methods for synthesis can be found on 

the internet and in research articles; one was written by Abu-Qare and Abou-Donia 

(2002). Due to the ease of finding the methods and the ease to manufacture, there is 

potential for use by terrorist organizations or by countries in which we are at war.  

Symptoms 
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 Nerve agents can be dispersed as a vapor, spray, aerosol, adsorbed as dust, or 

made into solutions; therefore, exposure can be by inhalation, dermal absorption, 

digestion, or injection routes. It has been estimated that the lethal exposure amount is 

about 30-50 times the dose that induces symptomatic exposure (Grob, 1956). Symptoms 

are due to the inhibitory effects of nerve agents on acetylcholinesterase (AChE) and 

subsequent activation of the nicotinic and muscarinic acetylcholine (ACh) receptors. The 

muscarinic effects are the first to appear. Symptoms include salivation, lacrimation, 

urination, defecation, diaphoresis, and emesis. Bronchorrhea (watery sputum), 

bronchoconstriction, and bradycardia with tightness in the chest and heartburn are the 

more life-threatening effects. Nicotinic effects follow the muscarinic symptoms. 

Nicotinic manifestations are due to the elevated ACh levels at the neuromuscular 

junction. Symptoms include increased fatigability, mild to severe generalized weakness, 

involuntary muscle twitching, scattered muscular fasciculation, flaccid paralysis, and 

paralysis of the diaphragm and chest wall muscles (Grob, 1956; Wiener & Hoffman, 

2004).  

Neurotoxicity 

 Central nervous system manifestations are marked by convulsions. Symptoms can 

be broken down into three main categories: neuropsychiatric disorders, convulsions, and 

respiratory depression. The neuropsychiatric disorders include tension, anxiety, 

jitteriness, restlessness, emotional instability, and giddiness (Lemercier, Carpentier, 

Sentenacroumanou, & Morelis, 1983). With moderate exposure, insomnia with excessive 

dreaming can occur. Extensive exposure results in headache, tremor, drowsiness, 

difficulty in concentrating, and a slowness of recall and mental confusion (Grob & 
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Harvey, 1953). The neuropsychiatric disorders are followed by convulsions, coma, and 

then death if not treated (Lemercier et al., 1983). Death occurs due to depression of the 

central respiratory drive and the consequential respiratory failure (Dunn & Sidell, 1989). 

If treatment is obtained, symptoms may be lessened, but a complete recovery is unlikely 

and improvement is slow. Chronic symptoms involve similar symptoms as is seen with 

extensive exposure (Abou-Donia, 2003). 

 Convulsions are a major indicator of OP intoxication. Seizures rapidly progress to 

status epilepticus, which is unremitting seizures, and causes brain damage (Solberg & 

Belkin, 1997). Seizure activity is thought to originate at the muscarinic receptors in the 

piriform cortex and spreads through the hippocampus towards the thalamus (Tattersall, 

2009). Damage to brain structures occurs in several brain areas including the pyramidal 

layer of the hippocampus, the piriform cortex, the thalamus, and the amygdaloid complex 

(Lemercier et al., 1983). Severe damage is not evident by gross histopathology alone, as 

no lesion develops (Grob, 1956). This makes it necessary to stain for neurodegeneration 

markers to see the damage and to use a functional observational battery to detect effects.  

Mechanism 

 The effects of sarin are primarily due to the inhibition of AChE and the 

accumulation of ACh in the peripheral and central nervous system. The neurotransmitter 

ACh is released in response to nerve stimulation and binds post-synaptically to ACh 

muscarinic and nicotinic receptors resulting in muscle contraction or gland secretions 

(Abu-Qare & Abou-Donia, 2002). Muscarinic receptors are found at postganglionic 

parasympathetic nerve endings, on sympathetic receptors for sweat glands, in the heart, 

and the CNS. The nicotinic receptors innervate the sympathetic and parasympathetic 
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ganglion, the neuromuscular junction, and the CNS (Wiener & Hoffman, 2004). The 

normal function of AChE enzymes is to hydrolyze acetylcholine leading to the 

breakdown and reduction in concentration of the neurotransmitter at the neuromuscular 

junction or the synapse. ACh binds to the active site of the enzyme and undergoes a 

hydrolysis reaction by the serine hydroxyl, releasing choline and acetate. Acetate is 

covalently bonded to the serine forming an acetylated enzyme intermediate. Water binds 

to the intermediate releasing acetate and reactivates the enzyme (Wiener & Hoffman, 

2004; Abu-Qare & Abou-Donia, 2002). 

 Sarin, a potent inhibitor of AChE, binds to the enzyme allowing ACh to 

accumulate (Grob, 1956). When sarin binds, it phosphorylates the serine hydroxyl group 

on the active site. The phosphoric ester formed is stable and hence the isopropyl group on 

sarin does not undergo hydrolysis and the enzyme becomes irreversibly inactivated, a 

process known as aging (Dunn & Sidell, 1989; Abou-Donia, 2003). The time until aging 

occurs varies among the nerve agents with an aging half-time of 5 hours for sarin 

(Wiener & Hoffman, 2004). A new AChE enzyme must be synthesized in order for ACh 

to be broken down. The first stage of toxicity, the acute cholinergic syndrome, occurs 

when 75% of the AChE enzymes are permanently inactivated (Abu-Qare & Abou-Donia, 

2002). 

 The first step in the mechanism of seizures of OP exposure involves an early 

cholinergic phase, which lasts up to 5 minutes after seizure onset. The cholinergic stage is 

characterized by the accumulation of ACh and is proposed to be the seizure initiator. The 

seizure then progresses into a transitional phase, which consists of cholinergic and 

noncholinergic components and lasts for 40 minutes after onset. Other changes in 
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neurotransmission occur in the transitional stage. Changes in NE, DOPAC, HVA, 

glutamate, DA, 5-HT, 5-HIAA, and GABA are seen from 5 minutes to hours after seizure 

onset. The increase in glutamate occurs in the limbic system immediately and is initiated 

by the muscarinic receptors. NE depletion occurs, DA turnover increases, and GABA 

functions are impaired. The final stage, after 40 minutes, is noncholinergic in nature. In 

the final stage, the extracellular levels of ACh return towards normal. Increases in DA 

and GABA are still observed after 40 minutes, while increases in 5-HIAA and the 5-HT 

turnover rate increases from 2-4 hours (Tattersall, 2009). Sustained seizure activity is 

speculated to result from the excessive amounts of glutamate released. Glutamate is 

presumed to stimulate the continued release of ACh contributing to the extended seizure 

activity (Solberg & Belkin, 1997).  

 Three hypotheses have been suggested to explain the neuropathology after OP 

exposure. The excitotoxic theory uses the prolonged seizure activity as the main cause. 

Hypoxic factors, to explain changes in oxygenation and blood flow to the brain, are the 

second hypothesis. Direct toxic action on the neurons by the OPs is the third (Tattersall, 

2009). The increase in glutamate may play a role in the neurodegeneration seen after OP 

exposure and may be evidence for the excitotoxic theory. Glutamate, through ionotropic 

NMDA and non-NMDA receptors, causes an influx of sodium and potassium into the 

neuron. The resulting depolarization of the membrane facilitates calcium influx, which 

induces neuronal death via deterioration of cellular metabolism (Peruche, Backhauß, 

Rehn, & Rieglstein, 1994).  

Therapeutics 
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 Developing treatments is still ongoing research. The aim of prophylaxis thus far 

has been on resistance against nerve agents, pre-treatments, and to stop or minimize the 

toxic effect. To minimize toxic effects, researchers have focused on AChE inhibition, 

including scavengers, reversible AChE inhibitors, and AChE reactivators, and 

anticholinergics to combat the ACh accumulation (Bajgar, Fusek, Kassa, Kuca, & Jun, 

2009). Currently there are four classes of therapeutics used in the treatment of OP 

exposure: anticholinergics, oximes, anti-convulsants, and pretreatments. The 

pretreatments used include carbamates and scavengers.  

 Since nerve agents were first developed, atropine has been the basis for therapy 

(Dunn & Sidell, 1989). Atropine, derived from Atropa belladonna (deadly nightshade), is 

the primary drug given after acute OP poisoning. As a competitive antagonist of the 

muscarinic receptor, atropine is only efficacious for the muscarinic effects and not the 

nicotinic effects. Atropine has limited penetration into the CNS sufficient only to block 

convulsions for a limited time (Husain, Ansari, & Ferder, 2010). Other anti-muscarinic 

drugs were developed with greater ability to cross the blood brain barrier, but they have 

worse adverse effects if given when nerve agents are not present. The increased toxicities 

led to the rejection of these drugs for treatment and the continued use of atropine (Wiener 

& Hoffman, 2004).  

 Oximes are used for AChE reactivation and act on the nicotinic effects: muscle 

fasciculations and reverse the paralysis of respiratory muscles (Dunn & Sidell, 1989). 

They work by binding to the AChE enzyme reversibly. Competition between the oxime 

and the nerve agent occurs and proceeds with the eventual release of the inactivated nerve 

agent from the enzyme. Reactivation of the enzyme transpires when the nerve agent is 
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removed from the enzyme, but is only effective if aging of the enzyme has not occurred. 

Currently, 2-pyridine aldoxime methyl chloride (2-PAM) is the oxime of choice for 

treatment (Weinbroum, 2004). Some newly tested oximes can pass the blood brain barrier 

and possibly help with CNS symptoms, though the effectiveness has not been extensively 

measured (Stojiljkovic & Jokanovic, 2006). At this time a universal oxime capable of 

protecting against all known organophosphates does not exist. Oximes are not as 

effective when used alone, though are more efficacious when atropine is co-administered 

(Stojiljkovic & Jokanovic, 2006). 

 Anticonvulsants are considered essential to enhance the current treatment as 

seizures do not respond well to atropine and oximes. The combination of atropine, an 

oxime, and a benzodiazepine is more efficacious than atropine or oxime alone in 

improving survival. Diazepam is currently used to stop convulsions brought on by OP 

poisoning (Weinbroum, 2004). The benzodiazepine class binds allosterically to GABA 

receptors, depressing the CNS and thereby decreasing seizures through post-synaptic 

targets involved in the seizure process. GABAergic-based anticonvulsants hyperpolarize 

the neurons making them less prone to depolarization. GABA agonists, such as the 

benzodiazepine class, work on non-ACh mechanisms as well as the indirect effects on 

ACh receptors. Diazepam is also useful in reducing the anxiety, restlessness, and muscle 

fasciculations associated with nerve agent exposure (Husain et al., 2010). Pentobarbital, 

another GABA allosteric agonist, was effective against seizures when treatment was 

delayed 40 minutes. However, severe respiration side effects are observed after seizures 

due to a post-ictal depression characterized by suppression of the respiratory system 

(Myhrer, Andersen, Nguyen, & Aas, 2005).  Current research has focused on NMDA 
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receptor antagonists for treatment of the prolonged convulsions. Non-competitive NMDA 

antagonists were investigated as post-exposure treatment. MK-801 is more potent as an 

anticonvulsant than diazepam. Blockage of the NMDA receptor by MK-801 prevents 

excitatory neuronal activity and can block seizures by this mechanism. However, NMDA 

antagonists have their own neurotoxic effects at other sites, precluding their use as a 

therapeutic response (Ballough, Newmark, Levine, & Filbert, 2008; Olney et al., 1991). 

Ketamine afforded some protection when given 30 minutes after exposure, but multiple 

doses were required if treatment was delayed further. Two or three doses given one hour 

post-exposure improved survival but were not effective in preventing seizure remittance. 

Further delay in treatment resulted in a reduction of the protection afforded at the earlier 

time points (Dorandeu et al., 2005). The use of NMDA antagonists, thus far, has resulted 

in protection and toxic side effects and is only effective when multiple doses are given 

for up to one hour post-exposure.  Pyridostigmine, a carbamate, is commonly used in 

the military as a pretreatment against a hostile environment if soman poisoning is 

suspected. The spontaneous reversibility of carbamate binding to AChE protects a 

proportion of the enzyme from attack by nerve agents. By protecting a portion of AChE, 

the enzyme can be reactivated offsetting the additive toxicity. Pyridostigmine does not 

penetrate deeply into the CNS but rather, provides protection to the peripheral nervous 

system. The protection provided by treatment with pyridostigmine is not uniform and is 

not effective without the use of antidotes, such as atropine and 2-PAM. For this reason, 

pyridostigmine is considered a pretreatment adjunct and not a pretreatment by itself 

(Dunn & Sidell, 1989).  
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 Recently, research has focused on the use of scavengers as a possible treatment. 

Scavengers can be either catalytic, enzymes that split the OP, or stoichiometric, enzymes 

that bind the OP. Butyrylcholinesterase (BuChE) and AChE from plasma were effective 

in protecting against OP intoxication. The enzyme works at the beginning of the toxic 

response and does not tend to interact with tissues so few side effects are seen. BuChE as 

a pretreatment was effective against low levels of sarin exposure (Bajgar et al., 2009). 

However, the majority of research used scavengers as a pretreatment and found them 

ineffective as post-exposure treatments.  

 Combining treatments appears to be the most effective plan at this time. The 

current treatment methodology involves a combination of drugs to increase survival. The 

standard pretreatment is pyridostigmine to shield a fraction of ChE. Atropine is then 

given to antagonize ACh at the muscarinic receptors. 2-PAM, an oxime, is given to 

reactivate the un-aged enzyme. An anticonvulsant, in particular diazepam, is used to 

control seizure activity. The combination approach to treatment of acute OP poisoning is 

the most effective for a reduction of mortality (McDonough & Shih, 1997).  

Need for new therapies 

 A novel therapeutic for chemical weapons is long overdue. The standard 

treatment of atropine, oxime, and an anticonvulsant has been the mainstay regimen since 

the chemical warfare agents were first developed. Improvements need to be made in 

treatments against the neurotoxicities and ensuing brain damage.  

 Atropine, or other anticholinergics, must be administered immediately after 

symptoms present. The anticholinergics studied are effective as a pretreatment and when 

given shortly after seizure onset. An increase in dose may be required to have the same 
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effect after 5 minutes of seizure (McDonough & Shih, 1997). When treatment with 

anticholinergics is delayed by 20 minutes after seizure onset they are no longer effective. 

Some newer drugs are effective after a 40 minute delay. Atropine only has peripheral 

effects on the muscarinic receptor; central efficacy is seen in very high doses only. Side 

effects of atropine occur with high doses or if nerve agents are not present in the system 

and include dry mouth, difficulty swallowing, mild drowsiness, slowing of motor 

activity, and blurred vision (Grob, 1956). Scopolamine, a newly studied anticholinergic, 

works on both the periphery and central effects, however elimination is quick and adverse 

side effects are seen if nerve agents are not present (Bajgar et al., 2009).  

 The biggest problem with oximes is that they must be given before aging occurs 

(Weinbroum, 2004). The current oximes being tested are not capable of affording 

protection against all OPs (Stojiljkovic & Jokanovic, 2006). Thus, oximes must be given 

either as a pretreatment or alongside atropine shortly after indication of exposure. 

 The anticonvulsants are only effective during the first 20 minutes after seizure 

onset. After treatment with benzodiazepines, seizure activity can reoccur so that multiple 

doses may be required. A side effect of the benzodiazepine is respiratory depression, 

which can be more detrimental to survival (Tattersall, 2009). With the recurrence of 

seizures after diazepam treatment, protection against brain damage is not complete.  

 Pyridostigmine does not provide protection by itself and is only effective as a 

pretreatment (Dunn & Sidell, 1989). Reactivators that are used as pretreatments are 

ineffective immediately and have a low affinity for the enzyme. To be effective, 

reactivators must be taken minutes after exposure (Bajgar et al., 2009). Scavengers like 

BuChE are effective but must be given as a pretreatment. The stoichiometric enzymes 
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require a 1:1 ratio of scavenger to OP molecule to offer adequate protection, which 

requires large doses.  

 The current treatments are inadequate at providing reduced lethality and do not 

offer neuroprotection. There is a lack of efficacious treatments after 20 minutes for OP 

exposure and the current treatments are inadequate at providing reduced lethality. The 

effects of anticonvulsant drugs are temporary unless the underlying mechanism is 

corrected. The current treatment regimen does not offer neuroprotection by the 

prevention of seizure activity or motor convulsions. A better therapeutic is required to 

provide neuroprotection from the prolonged convulsions. There is a requirement for 

treatments that are efficacious after the 20 minute mark when the other therapies are no 

longer effective.  

 
Figure 1: Theorized mechanism for sarin neurotoxicity and where treatment is viable.  
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Use of CBDP in the research model 

 Carboxylesterases (CaE) are enzymes in the same family as cholinesterases. The 

CaE enzymes, found in the blood and nearly all organs, bind stoichiometrically to OP 

molecules (Wheelock et al., 2008). The enzymes act as scavengers to OPs and offer 

protection for AChE enzymes. Rodents have a higher level of CaE than humans. The 

higher levels of CaE in rodents allow for more sarin to be detoxified than would be in 

humans. By using the CaE inhibitor 2-(O-cresyl)-4H-1:3:2-benzodiox- aphosphorin-2-

oxide (CBDP), CaE was blocked allowing the free OPs to inhibit more critical enzymes, 

like AChE (Jimmerson, Shih, Maxwell, Kaminskis, & Mailman, 1989). With less CaE 

available to inactivate sarin, a smaller sarin dose is more effective at inhibiting AChE and 

directly killing the cells. Using a lower dose of sarin provides a better representation of 

the effects seen in humans. A dose of 1.5 mg/kg of CBDP inhibits CaE by 80% in one 

hour with no effect on AChE activity in the blood or brain (Garrett, Rapp, Grubbs, 

Schlager, & Lucot, 2010).  

8-OH-DPAT as a neuroprotectant 

 8-OH-DPAT (DPAT) is a serotonin 1A (5-HT1A) receptor agonist. Early work 

with 5-HT1A receptor agonists was performed in 1997 using BAYx3701, now known as 

repinotan. The neuroprotective role repinotan plays on ischemia and traumatic brain 

injury was assessed. Repinotan was found to have long-lasting neuroprotective effects in 

animal models of ischemic stroke. Early studies verified that 5-HT1A receptor agonists 

were effective in pathways leading to neuroprotection and neuronal function (Berends, 

Luiten, & Nyakas, 2005). 
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 Binding sites for 5-HT1A are present in the basal ganglia, the midbrain, the spinal 

cord, and widely throughout the brain and serve multiple functions (Barnes & Sharp, 

1999). DPAT has been studied as a neuroprotectant in stroke and NMDA-induced 

excitotoxicity. The mechanism of protection has not been determined. It is thought that 

DPAT and other 5-HT1A agonists stimulate astroglial cells (Harkany et al., 2001). Others 

noticed a reduction in glutamate release with the administration of DPAT against 

ischemic brain damage (Alessandri, Tsuchida, & Bullock, 1999). Another explanation for 

the neuroprotective effects is due to activation of PKC-α via the ERK pathway. The ERK 

pathway induction leads to caspase-3 inhibition and a reduction in apoptosis (Adayev, 

Ray, Sondhi, Sobocki, & Banerjee, 2003).  

 The use of DPAT as a neuroprotectant has been studied in stroke and 

excitotoxicity models. Oosterink et al (2003) found that DPAT may counteract 

excitotoxic neural injury when used as a pretreatment or a post-treatment. Treatment with 

DPAT 6 hours after NMDA-induced excitotoxicity resulted in improved behavioral 

recovery and an increase in cholinergic density, a sign of neuroprotection. A study on 

NMDA-induced stroke revealed a reduction in frequency of immobility when given up to 

6 days after NMDA infusion (Harkany et al., 2001). In stroke studies, DPAT offered 

neuroprotection and improved neurobehavioral performances (Kline, Yu, Horvath, 

Marion, & Dixon, 2001). Mauler and Horyáth found the DPAT had a therapeutic window 

of at least 5 hours against stroke, and others have found a therapeutic window of 2-4 

hours as a neuroprotectant in stroke (2005).  

 Previously in our laboratory we found 8-OH-DPAT to be efficacious as a 

neuroprotectant after sarin exposure. Treatment with 1 mg/kg DPAT 2 hours after sarin 
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resulted in a lower mortality rate and a decrease in astrocytes, as indicated by a decrease 

in glial fibrillary acidic protein (GFAP) staining. Changes in body weight over three days 

and the Functional Observational Battery (FOB) scores were not affected by treatment 

with DPAT (Joshi, 2009). 

 The ideal neuroprotectant would result in a decrease in FOB scores and a lack of 

change in body weight along with the decreases in GFAP staining and increases in 

neuronal nuclei (NeuN) staining. The purpose of the present study was to compare 

another drug, CM-2,525, with DPAT for use as a possible neuroprotectant.  
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II. Hypothesis 

Development of hypothesis 

 The current treatments for sarin exposure are only effective if given 40 minutes 

after symptoms and do not offer neuroprotection. Previous work in our lab found that 8-

OH-DPAT was effective at reducing the levels of glial fibrillary protein (GFAP) in the 

dentate gyrus when given 2 hours after exposure. The effects of 8-OH-DPAT were not 

reversed by treatment with a 5-HT1A antagonist suggesting that DPAT’s secondary 

pharmacology provided the neuroprotection.  

Hypothesis 

 CM-2,525 will act on the secondary pharmacology affected by DPAT to provide 

neuroprotection from sarin seizure-induced neuronal damage in a dose-dependent and 

time-response manner. 

Aim 1 

 To test the hypothesis that CM-2,525 has efficacy comparable to DPAT in 

providing neuroprotection by determining a dose response curve with CM-2,525 

administered one minute after toxic challenge with sarin and comparing with the standard 

dose of DPAT.  

Aim 2 

 To test the hypothesis that CM-2,525 has efficacy in providing neuroprotection at 

time points comparable to DPAT by determining a time-response curve
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III. Methods 

Animals 

 Male C57BL/6 mice, age 6-8 weeks, weighing 20-25 grams were acquired from 

Harlan Laboratories (Indianapolis, IN). Mice were housed in single cages and maintained 

on a 12 hour light/dark cycle. Standard pellet rodent diet and water were available ad 

libitum. Mice were allowed a 7 day acclimation to the facility before dosing. Mice used 

in behavioral studies were handled for three days prior to dosing. Handling over several 

days prior to experimentation habituates them to the stresses of injections and being 

removed from the home cage (Hogg, 1996). The procedures were approved by the 

Laboratory Animal Care and Use Committee at Wright State University, Dayton, OH. 

Mice were euthanized 14 days post-injection via CO2 and decapitation. Frontal cortex 

(FC) tissue was taken to measure cholinesterase activity as described below and whole 

brains used for evaluation of neuropathology.  

Treatment 

 Mice were injected with 1.5 mg/kg 2-(O-cresyl)-4H-1:3:2-benzodiox- 

aphosphorin-2-oxide (CBDP) subcutaneously. This dose was determined previously to 

inhibit CaE but not AChE or BuChE. The CBDP was diluted using a 10% ethanol and 

propylene glycol solution. One hour later, mice were injected with sarin (USAMRICD, 

Aberdeen Proving Ground, MD) subcutaneously. The sarin was diluted with 0.9% saline 

with an injection volume of 0.5 mL/ 100 g. The dose of sarin used was determined prior 

to each experiment to be the LD50 based on that dilution series and mouse shipment
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 (43.7 µg/kg, 38.5 µg/kg, and 50.7 µg/kg). One minute following sarin injection, mice 

were treated with varying doses of CM-2,525 to determine the dose response curve or 

saline as a control. For comparison with prior data, 1 mg/kg of 8-OH DPAT was given 

one minute following sarin injection. DPAT was made in an injection volume of 0.5 mL/ 

100 g and diluted with 0.9% saline. The drug CM-2,525 was diluted with distilled de-

ionized water (DDI), with an injection volume of 0.5 mL/ 100 g. The CM-2,525 doses 

were as follows: 0.03 mg/kg, 0.1 mg/kg, 0.3 mg/kg, and 1 mg/kg. Both saline and CM-

2,525 were administered via an intraperitoneal (IP) injection, while DPAT was 

administered via a sub-cutaneous injection (sc). Doses were not corrected for the salt.  

Functional Observational Battery (FOB) 

 FOB’s were scored following injections. Each animal was given a sheet on which 

we score gait, posture, breathing, eyes, and motor behavior. Times of first seizure and 

time of death are recorded because a correlation between the severity of convulsions and 

degeneration in the hippocampus was found after soman exposure (Filliat et al., 2007). 

Scores are collected 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, and 24 

hours after the sarin injection. Scores (out of 4, or 3 for breathing) are added together for 

each time point. An additional score is added for whether death occurred at the interval. 

The highest score for the first hour is reported. Percentages are calculated out of 21 total 

points. FOB scores give an indication of how sick the animal is, with a higher score the 

more sick the mouse. The FOB is a modification of Shih & Romano (1988) and Moser 

(1995) and was modified by Garrett et al., (2010).  
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Figure 2: FOB scoring sheet 

Animal Weights 

 The threshold for severe weight impairment was determined to be 20% loss. 

Weight loss was found to peak around day 2 or day 3 and was observed for 13 days 

(Filliat et al., 2007). Body weights were taken previous to injection and for the following 

three days. Any animals found dead were recorded in the animal book with the date they 

were found. Changes in body weight at each day and percent change in body weight were 

calculated; only 1 and 3 day time points were graphed. If an animal lost more than 25% 

of its baseline body weight it was euthanized. Percent change in weight was determined 

by subtracting the post-exposure weight (PW) on day 1 and day 3 from the baseline 

weight (BW) and dividing by baseline weight (BW). The value was then multiplied by 

100 to get percentage of weight loss, (((PW-BW)/BW)*100).  

Behavior 

Locomotor activity 

 The open field (OF) was used to examine general locomotor activity and 

willingness to explore in rodents. Rodents prefer the periphery to the center of the arena. 

Anxiolytic behaviors include an increase in time spent in the center with no differences in 

the total locomotion or vertical activity. A decrease in time spent in the center with 

increases in locomotion or vertical activity signifies an anxiogenic response (Prut & 
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Belzung, 2003). Testing was done two days after injections in the morning. Mice were 

carried into the testing room and left to acclimate for 15 minutes. The OF is an automated 

system with infrared photo-beams consisting of a 16x16 inch (40.6x40.6 cm) plexiglass 

square (Hamilton Kinder, Motor Monitor Version 3.11; Poway, CA). The arenas were 

separated from view with the use of boards and curtains. Mice were placed in the center 

open field arena and allowed to explore for 10 minutes. The OF arena was cleaned with 

70% ethanol and dried after testing each mouse. Scores were recorded using the Kinder 

Scientific MotorMonitor Software Package (Build 08356-14 Update 12jan2008). Data 

were analyzed using the periphery vs. center settings. Scores for basic movements, 

immobility, fine movements, X-ambulation, Y-ambulation, and periphery and center 

distance (in), time (s), and rest time (s) were determined by IR beam interruptions. Basic 

movements include larger body movements, while fine movements consist of head-

twitching and grooming. 

Elevated Plus Maze 

 The elevated plus maze (EPM) was used to assess anxiety-like responses in the 

mice and is a useful preclinical screen for drugs with antianxiety activity. Rodents prefer 

to explore in the closed arm portion of the maze. Forced or voluntary entry into the open 

arms elicits an anxiogenic response. Anxiolytic drugs reduce the aversion and lead to an 

increased time spent in the open arms. Anxiety producing drugs have the opposite 

effect.The expression of scores as percentage of time and distance in open arms allows 

for the correction of overall changes due to exploration of the maze, reducing the 

activity-induced artifacts (Hogg, 1996). Two factors are thought to represent anxiety in 

the EPM: % open entries and % open time (Rodgers & Johnson, 1995). The EPM 
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(Hamilton Kinder, model EPM2001, Poway, CA) consists of two open arms (2x14 in), 

two closed arms (2x14 in), and a 2x2 in central square. The entire maze is raised 30 

inches above the floor. One week after injections, the mice were moved to the dark 

testing room and left to acclimate for 45 minutes prior to the test. Testing was performed 

in the morning and in the dark to account for possible influences by light level and 

circadian rhythm on the anxiolytic behavior (Walf & Frye, 2007). For the test, mice were 

placed in the central square facing an open arm and left to explore for 5 minutes. 

Between each trial, the maze was cleaned using 70% ethanol and dried. Automated 

software (Kinder Scientific MotorMonitor Software Package, Build 08356-14 Update 

12jan2008) kept a record of the number of entries, distance traveled (inches), and time 

spent (seconds) in the closed and open arms. Entry was determined when all four paws of 

the mouse were on the arm. Scores were transformed to percents in open arms. An 

increase in time and entries into open arms compared indicate an anxiolytic effect.  

Cholinesterase activity 

 Frontal cortex (FC) tissue was dissected to determine cholinesterase activity in the 

mice 14 days post-injection. The FC tissue was sonicated for 5 seconds 2-3 times in 200 

µL of 0.1 M NaPO4 pH 7.4 buffer with 0.5% Tween-20. Following sonication, the 

samples were centrifuged at 13000 rpm for 5 minutes at 4° C. Two 0.5 mL microtubes 

were prepared for each sample: one for inhibited and one for uninhibited. The inhibited 

tube received 1 µL of 10mM iso-OMPA (tetraisopropyl-pyrophosphoramide). After 

centrifugation, 99 µL of supernatant was transferred to each 0.5 mL microtube, gently 

mixed, and left on ice for 45 minutes to allow for inhibition of butyrylcholinesterase 

(BuChE) activity. During the inhibition process, a 96 well plate was prepared. Each 
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sample was done in triplicate, resulting in 3 wells for uninhibited and 3 for inhibited. In 

the wells, 150 µL of 0.1 M NaPO4, pH 8.0, 10 µL of each sample, 20 µL of 0.01M 

DTNB (dithionitrobenzoate made in 0.1M NaPO4 buffer, pH 7.0), and 20 µL of 0.01M 

ATCh (acetylthiocholine made in DDI). Cholinesterase activity was determined using a 

BiotekTM EL808 Microplate Analyzer and Gen5 software (version 1.02.8). Protein 

concentration was determined from the supernatant using the Bradford method (BioRad, 

Inc). BuChE activity was calculated by subtracting the AChE activity from the total ChE 

activity and was reported as nmol/µg tissue/ min.  

Neuropathology 

Histology 

 Mice were lightly anesthetized via CO2 and decapitated. Whole brains were 

removed and flash frozen using isopentane prior to storage in the -80° C freezer. Slides 

were cleaned and gelatin coated prior to use following a standard method in which they 

were soaked in gelatin for a few minutes, drained on a paper towel, and dried in an oven 

at 60°C for 2 hours and placed in slide boxes until use. Brains were sectioned 12 microns 

thick using the Cryotome (Thermo Shandon, model 77210163GB). Brains were attached 

to the sectioning block with tissue freezing medium (TBS, INC, Durham, NC). Sections 

were collected between 0.64 mm and 1.98 mm (Franklin & Paxinos, 2008). Four sections 

were placed on each slide and 15-20 slides were collected from each brain. Slides were 

then left out at room temperature overnight to dry. The next day, the slides were post-

fixed in 4% Paraformaldehyde, diluted from 16% PFA (EMS, lot: 110720) using PBS 

(pH 7.2), for 10 minutes. Following post-fixation, the slides were rinsed twice for two 

minutes with PBS and then placed on a slide warmer set to 37 ° C for 30 minutes. The 
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slides were left at room temperature for 4 hours prior to being placed in the -20 freezer 

for storage until staining was performed.  

 Pictures of the stained slides were taken using a Leica DMR microscope and the 

Leica DFC 310 FX camera. Leica Application Suite (version 3.7.0) was used to save the 

pictures. The regions analyzed consisted of amygdala, dentate gyrus of the hippocampus, 

and the piriform cortex. Pictures were analyzed using Image J (NIH, version 1.44) for 

area and cell counts.  

GFAP staining 

 Glial cells are activated in response to neural injury. Changes in the glial cells, 

such as astrogliosis and hypertrophy, are associated with increases in glial fibrillary 

protein (GFAP). An increase of GFAP indicates activated astrocytes at the site of injury. 

Microglia are the primary immune effector cells of the CNS and undergo changes after 

brain injury. Seizures cause reactive changes in astrocytes and microglia. After soman 

exposure, an increase in GFAP staining was observed in anatomically specific sites, such 

as the piriform cortex and the hippocampus (Zimmer, Ennis, & Shipley, 1997). A sharp 

peak of microgliosis occurred 3 days post-exposure. Between post-exposure day 8 and 

day 15, a pattern of over-expression of GFAP was seen in the hippocampus and 

amygdala and is most likely due to gliosis (Collombet et al., 2005).  

 Prior to staining, the slides were allowed to warm to room temperature. An 

antigen retrieval process was required due to the formaldehyde cross-links. Slides were 

placed in a tris-EDTA buffer, pH 9.0, heated to 70-75° C for 20 minutes and then left out 

to cool for 20 minutes. The sections were marked with a Pap pen (RPI). The slides were 

then placed in a humidity chamber for the remaining of the staining process. Slides were 
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washed with 0.01M PBS + 0.1% Triton X (PBS-T) 3 times for 5 minutes. Blocking was 

done using 10% Normal Goat Serum for 30 minutes. The slides were rinsed with PBS-T 

for 2 times for 5 minutes. The GFAP primary antibody (Invitrogen rabbit x anti-GFAP) 

was diluted to a 1:500 concentration in PBS-T. The primary antibody was left on the 

slides overnight at 4° C. Another wash step using PBS-T was done (3 times for 5 

minutes). The secondary antibody, anti-rabbit IG Fluoroscein linked whole antibody from 

donkey (GE healthcare), a 1:50 concentration, was left on the slides for 2.5 hours. A rinse 

step was completed with PBS (3 times for 5 minutes) prior to coverslipping. The 

coverslip was mounted using mounting medium for fluorescence (Vecta-shield, H-1400 

and H-1000).  

NeuN staining 

 When exposed to soman, damaged neurons were deprived of the 

immunoreactivity for Neuronal nuclei (NeuN). NeuN stains neuronal cells which are 

post-mitotic and morphologically differentiated (Mullen, Buck, & Smith, 1992). NeuN 

protein levels were not affected, so the loss of immunoreactivity was suggested to be due 

to reduced antigenicity of the degenerating neurons (Collombet et al., 2006). In the 

hippocampus, NeuN-positive cells peaked at day 1 and remained unchanged until day 15. 

The number of positive cells decreased after soman exposure by 40% in the first week 

(Collombet et al., 2006).  

 Slides were stained using the same method as for GFAP. The NeuN primary 

antibody (Millipore MAB377 mouse anti-NeuN clone A60) was diluted to a 

concentration of 1:100 using PBS-T. The secondary antibody (anti-mouse cy-3 from 

goal, Jackson labs) was made to a 1:1000 concentration.  
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Statistical Analysis 

 Statistical analysis was performed using Statistica (Statsoft, version 7). Weight 

loss data were analyzed using a repeated measures ANOVA with a Fisher LSD post-hoc 

test. FOB data were analyzed with a Kruskal-Wallis ANOVA with multiple comparison 

post-hoc test. Histology, open field, elevated plus maze, and AChE data were analyzed 

using a one-way ANOVA with a Tukey or Fisher LSD post-hoc test, based on the best 

test for the data. 
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IV. Results 

Mortality and Seizure data 

 Seizure latency data and death latency data were recorded for each animal and 

analyzed using a one-way ANOVA with a Tukey post-hoc test. The average latency to 

the first seizure (F5,82=10.33, p<0.001) increased from 7minutes 54 seconds in the 

positive controls (sarin treated) to 16 minutes 36 seconds at the 0.1 mg/kg dose CM-

2,525 (p<0.01) with other doses in between (see table 1). Treatment with DPAT did not 

have an effect on latency to seizure or latency to death. The average latency to death 

(F3,18=5.05, p<0.05) in CM-2,525-treated groups was similar to that of the positive 

controls (sarin treated) except at the 1 mg/kg dose of CM-2,525 for which it increased 

(p<0.05). Three groups contained animals that did not exhibit seizure activity: four out of 

14 (28.6%) in the 0.1 mg/kg dose and one animal (10%) in the 0.03 mg/kg CM-2,525 

group, and one animal (5.6%) in the DPAT group. All animals in the positive controls 

and all other doses of CM-2,525 exhibited seizure activity. In summary, the 0.1 mg/kg 

dose had a beneficial effect on the average time to the first seizure. Both the 0.1 mg/kg 

and 0.03 mg/kg doses of CM-2,525 had animals that did not display seizure activity. The 

1 mg/kg dose of CM-2,525 increased the latency to death compared to the positive 

controls. A beneficial effect with regards to seizure latency and latency to death was not 

seen in animals given 1 mg/kg DPAT.  

 The percent mortality at three days was lowest in the DPAT (33.3%) and 0.1 

mg/kg of CM-2,525 (28.6%) but highest after 1 mg/kg of CM-2,525 (70%). The 0.03 
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mg/kg and 0.31 mg/kg doses of CM-2,525 were similar to the positive controls. In 

summary the DPAT group and the 0.1 mg/kg dose of CM-2,525 showed a decrease in 

percent mortality  

Table 1: Average latency to seizure and death (minutes: seconds) of those responding and 
percent mortality for CM-2,525 and DPAT. 
Group Latency 

to 
seizure  

Latency 
to death  

% 
never 
seized 

% 
mortality 
same day 

% 
mortality 
1 day 

% 
mortality 
3 days 

% 
mortality 
4 days 

Positive 
Controls 

7:54 16:35 0 30 30 49 55 

1 mg/kg 
DPAT 

7:58 17:48 5 33 33 33 33 

0.03 
mg/kg 
525 

6:30 10:50 10 40 40 40 50 

0.1 
mg/kg 
525 

16:36 14:17 29 7 14 29 29 

0.3 
mg/kg 
525 

11:22 13:27 0 10 20 40 40 

1 mg/kg 
525 

7:15 24:59 0 40 50 70 70 

Functional Observational Battery (FOB) 

 A Kruskal-Wallis ANOVA indicated differences at one hour (H5=0.001), two 

hours (H5<0.001), and 24 hours (H5<0.05) (see figure 3). The positive controls, 0.3 

mg/kg and 1 mg/kg CM-2,525, and 1 mg/kg DPAT showed a similar pattern of high 

scores at one hour to slightly lower scores by 24 hours. The 0.03 mg/kg dose CM-2,525 

had lower scores at every time point and was significant at 24 hours (p<0.01). The 0.1 

mg/kg group had lower scores at one and two hours (p<0.01). The 0.3 mg/kg CM-2,525 

group had slightly higher scores at every time point than the positive controls, though 

none were significant. DPAT and 1 mg/kg CM-2,525 had no effect on FOB scores. Thus 
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the lower doses of CM-2,525 produced some reduction in symptoms at every time point 

except four hours.  

 
Figure 3: FOB scores for varying doses of CM-2,525 compared to DPAT. * indicates 
differences from positive controls, p<0.05. 

Weight loss 

 Weight loss at one day is mainly due to immobility and dehydration. A decrease 

by 20% or more on day three correlates with severe impairment. The results were 

significant at both one day (F5,31=11.03, p<0.001) and at three days (F5,31=11.41, 

p<0.001) (see figure 4). There was an increase in weight loss in the 0.03 mg/kg group at 

day one and at day three (p<0.05). There was a decrease in weight loss in the 0.1 mg/kg 

group at day one (p<0.05) but not at day three. There was a clear protection from weight 

loss in the 1 mg/kg group at day one (p<0.001) and an increase in body weight by day 

three (p<0.01). DPAT had no effect on weight either day. In summary, the 1 mg/kg dose 

of CM-2,525 reduced loss in body weight to the extent that they were no different from 
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negative controls whereas the 0.03 mg/kg dose produced an increase in weight loss at 

both days compared to the positive controls.  

 
Figure 4: Percent weight loss for varying doses of CM-2,525 given one minute after sarin 
and 1 mg/kg DPAT. * indicates differences from positive controls day 1, # indicates 
differences from positive controls day 3, p<0.05. 

Behavior 

 Behavior tests were only performed using positive controls, DPAT, and the 0.03 

mg/kg dose of CM-2,525; this was due to the Army, ICD, declining to ship additional 

sarin and the consequential loss of funding and access to active agent. Historic controls 

were utilized for negative controls and for DPAT in the elevated plus maze due to lack of 

animals. The historic data used are a representation of results consistently found at 

similar time points in the laboratory. 

Open Field (OF)  

 The OF analyzes general locomotor activity and willingness to explore. Mice 

were tested two days after sarin exposure. A one-way ANOVA showed differences in 
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peripheral distance (F3,16=4.12, p<0.05), peripheral rest time (F3,16=3.67, p<0.05), basic 

movements (F3,16=7.23, p<0.01), and fine movements (F3,16=3.45, p<0.04).  

 Periphery distance and basic movements have a similar pattern suggesting fewer 

movements with the positive controls and DPAT compared to the negative controls 

(p<0.05). The 0.03 mg/kg CM-2,525 dose was similar to the negative controls with basic 

movements and periphery distance (see figure 5A and 5C). Periphery rest time increased 

for DPAT compared to the negative control (p<0.05). The 0.03 mg/kg CM-2,525 

periphery rest time was similar to the negative control (see figure 5B). Fine movements, 

such as grooming, decreased in the DPAT animals compared to the negative control 

(p<0.05) (see figure 5D). In all cases, the 0.03 mg/kg CM-2,525 group was similar to the 

negative controls. No differences were seen with center time and distance or rearing. In 

all measures, the 0.03 mg/kg CM-2,525 group was not different from the negative 

controls and DPAT treatment resulted in scores much like the positive controls.  
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Figure 5: Differences in OF, a comparison of 1 mg/kg DPAT to 0.03 mg/kg CM-2,525 to 
the positive controls in (A.) periphery distance, (B.) periphery rest time, (C.) basic 
movements, and (D.) fine movements. * indicates differences from the negative controls, 
p<0.05. OF was performed 2 days after exposure. 

Elevated Plus Maze (EPM) 

 The EPM was used to monitor the anxiolytic properties of CM-2,525 and DPAT 

and was performed seven days after sarin exposure and treatment. Historic controls were 

added to DPAT, by 7 days only one animal was still alive in the group. An ANOVA 

revealed differences in percent open arm distance (F4,15=4.67, p<0.05), percent total time 

in open arms (F4,15=6.11, p<0.01), and percent rest time in open arms (F4,15=9.95, 

p<0.001). Differences were also seen in basic movements, which parallels what was seen 

in the open field, with 0.03 mg/kg CM-2,525 resulting in a score similar to the negative 
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control. The 0.03 mg/kg CM-2,525 group had increases in time in the open arms, rest 

time in the open arms, and distance in open arms compared to both controls (p<0.05) (see 

figure 6). DPAT was similar to the controls in distance and total time in the open arms, 

and was slightly decreased though not significant in percent rest time in the open arms. 

The increase in total body movements combined with the increase in open arm time for 

the 0.03 mg/kg CM-2,525 group is indicative of a greater tolerance of a stressful event 

than either positive or negative controls.  

 
Figure 6: Differences in EPM for 1 mg/kg DPAT and 0.03 mg/kg CM-2,525 against the 
positive controls for (A). % distance in open arms, (B.) % total time in open arms, and 
(C.) % open arm rest time. * indicates p<0.05 compared to controls. EPM was performed 
7 days post-exposure. 

Cholinesterase (ChE) activity 

 Animals were lightly anesthetized via CO2 and decapitated at 14 days; frontal 

cortex tissue was dissected and used for the AChE assay. Frontal cortex tissue for the 

lowest dose of CM-2,525 was not collected and thus was not included in the study. 

Results were analyzed using a one-way ANOVA with a Tukey post-hoc test. Historic 

controls were added for negative controls for a better comparison. Differences were seen 

with AChE (F5,25=6.90, p<0.001). The positive controls had lower levels than the 
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negative controls (p<0.01). DPAT and the lower doses of CM-2,525 restored the levels 

back towards the negative controls (see figure 7). The highest dose of CM-2,525 

produced a decrease in levels of AChE compared to the negative controls (p<0.001) and 

was not different from the positive controls.  

 
Figure 7: AChE rates (nmole/min/µg protein) for varying doses of 525 compared to 
DPAT and controls. * indicates differences from negative controls, p<0.05. 

Neuropathology  

 Brain sections were stained for Glial Fibrillary Acidic Protein, GFAP, which 

increases after sarin exposure, and Neuronal Nuclei, (NeuN), which decreases after sarin 

exposure. Staining with GFAP and NeuN revealed differences in the amygdala, dentate 

gyrus, and the piriform cortex regions. A one-way ANOVA followed by a Tukey post-

hoc test was performed to detect differences. 
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Figure 8: (A.) GFAP staining and (B.) NeuN staining in the dentate gyrus for varying 
doses of CM-2,525 compared to DPAT and negative and positive controls. * indicates 
differences from negative controls and # indicates differences from positive controls, 
p<0.05. 

 Differences in GFAP and NeuN staining were seen in the dentate gyrus 

(F6,36=28.25, p<0.001) (F6,24=6.62, p<0.01) (see figure 8). The higher doses of CM-2,525 

resulted in similar levels of GFAP staining to the negative control and was reduced 

compared to the positive controls (p<0.01). The DPAT group had an intermediate 

response with a slight decrease, but was not significant from either controls (see figure 

8a). The 0.03 mg/kg CM-2,525 group was increased beyond the positive control 

(p<0.001). NeuN staining followed a similar pattern as GFAP staining with the higher 

doses of CM-2,525 resulting in similar NeuN levels as the negative controls. The 0.1 

mg/kg and 1 mg/kg CM-2,525 groups were not different from the negative controls. 

DPAT and 0.3 mg/kg CM-2,525 had an intermediate effect with levels increased 

compared to the positive controls, but was not different from either controls (see figure 

8b). A decrease in NeuN staining compared to the negative controls was observed in the 

0.03 mg/kg CM-2,525 and was similar to the positive controls (p<0.05). Thus in the 

dentate gyrus the higher doses of CM-2,525 provided nearly complete protection.  
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Figure 9: GFAP staining in the dentate gyrus for (A.) no primary added control, (B.) 
negative control, (C.) positive control, (D.) DPAT, (E.) 0.03 mg/kg 525, (F.) 0.1 mg/kg 
525, (G.) 0.3 mg/kg 525, and (H.) 1 mg/kg 525.  

 
Figure 10: NeuN staining in the dentate gyrus for (A.) no primary added control, (B.) 
negative control, (C.) positive control, (D.) DPAT, (E.) 0.03 mg/kg 525, (F.) 0.1 mg/kg 
525, (G.) 0.3 mg/kg 525, and (H.) 1 mg/kg 525.  
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Figure 11: GFAP and NeuN overlay of the dentate gyrus for (A.) no primary added 
control, (B.) negative control, (C.) positive control, (D.) DPAT, (E.) 0.03 mg/kg 525, (F.) 
0.1 mg/kg 525, (G.) 0.3 mg/kg 525, and (H.) 1 mg/kg 525.  

 
Figure 12: (A.) GFAP staining and (B.) NeuN staining in the amygdala for varying doses 
of CM-2,525 compared to DPAT and negative and positive controls. * indicates 
differences from negative controls and # indicates differences from positive controls, 
p<0.05. 

 In the amygdala, the higher doses of CM-2,525 (p<0.01) produced GFAP levels 

(F6,33= 13.27, p<0.001) similar to negative controls. DPAT showed a trend towards a 

reduction in GFAP staining, but was not significant. The 0.03 mg/kg dose CM-2,525 

produced an increase in GFAP staining compared to negative controls (p<0.001) and was 
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similar to the positive controls (see figure 12a). NeuN staining was increased but was not 

different from either positive or negative controls at doses above 0.1 mg/kg of CM-2,525 

and DPAT was increased significantly above the levels of the positive controls (see 

figure 12b). The 0.03 mg/kg dose CM-2,525 produced a decrease in NeuN staining 

similar to the positive control. Based on the results of GFAP staining and NeuN, the 0.1 

mg/kg CM-2,525 dose provided the best protection in the amygdala followed by DPAT.  

 
Figure 13: GFAP staining in the amygdala for (A.) no primary added control, (B.) 
negative control, (C.) positive control, (D.) DPAT, (E.) 0.03 mg/kg 525, (F.) 0.1 mg/kg 
525, (G.) 0.3 mg/kg 525, and (H.) 1 mg/kg 525.  

 
Figure 14: NeuN staining in the amygdala for (A.) no primary added control, (B.) 
negative control, (C.) positive control, (D.) DPAT, (E.) 0.03 mg/kg 525, (F.) 0.1 mg/kg 
525, (G.) 0.3 mg/kg 525, and (H.) 1 mg/kg 525.  
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Figure 15: (A.) GFAP staining and (B.) NeuN staining in the piriform cortex for varying 
doses of CM-2,525 compared to DPAT and negative and positive controls. * indicates 
differences from negative controls and # indicates differences from positive controls, 
p<0.05. 

 GFAP staining in the piriform cortex did not result in differences between the 

negative controls (untreated animals) and the positive controls (see figure 15a), although 

differences were seen with 0.03 mg/kg dose of CM-2,525 and DPAT (F6,34=9.75, 

p<0.001). Increases in GFAP staining compared to both controls were observed with 

DPAT and 0.03 mg/kg CM-2,525 (p<0.05). When stained with NeuN (F6,23=5.64, 

p<0.01), a decrease in staining was seen in the positive controls (p<0.001) and the 0.03 

mg/kg dose (p<0.05). The higher doses of CM-2,525 resulted in intermediate NeuN 

staining compared to the controls (see figure 15b). Treatment with DPAT increased 

NeuN staining compared to the positive controls (p<0.01) and was not different from the 

negative controls. In the piriform cortex, the higher doses of CM-2,525 produced a slight 

protection from sarin exposure based an increase in NeuN staining. DPAT produced an 

increase in GFAP staining and near complete protection based on the increase in NeuN 

staining. 
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Discussion 

 This study determined that CM-2,525 is more efficacious than 8-OH-DPAT in 

providing neuroprotection in a dose-dependent manner. The middle doses of CM-2,525 

were efficacious against the acute toxicity, including mortality, FOB, and AChE levels. 

The higher doses were efficacious against the neurotoxicity measures such as weight loss 

and histochemical markers. Neuroprotection was observed in the dentate gyrus and 

amygdala as measured both by a reduction in glial fibrillary protein, GFAP, staining for 

astrocytes as a measure of neuronal damage and by denser NeuN staining for mature 

neurons. Treatment with 8-OH-DPAT had effects on percent mortality, but not FOB or 

weight loss. Previously, DPAT was effective when given two hours after sarin at 

reducing the neural injury in the dentate gyrus. As a comparison with CM-2,525, DPAT 

was effective at providing neuroprotection in the amygdala and dentate gyrus when given 

one minute after sarin. Low doses of CM-2,525 were better than DPAT on FOB and the 

intermediate doses were better than DPAT on weight loss and immunohistochemistry 

measures.  

Use of CBDP and sarin 

 In our animal model, we use CBDP and the active agent sarin. CBDP, the 

carboxylesterase inhibitor 2-(o-cresyl)-4H-1:3:2-benzodioxaphosphorin-2- oxide, 

catalyzes the hydrolysis of carboxylesters (Wheelock et al., 2008). Carboxylesterase is 

another enzyme with sarin as a substrate and acts as a scavenger to reduce the amount of 

administered sarin available for binding to acetylcholinesterase (AChE). Rats and mice 
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express a larger amount of carboxylesterases (CaE) than humans so it is important to 

lower its levels. With reduced levels of sarin, less non-specific effects from the hydrogen 

flouride leaving group are seen. By reducing the levels of CaE in the mouse, it becomes 

possible to use a lower dose of sarin to achieve an LD50 much closer to that of other 

species. The dose of CBDP chosen, 1.5 mg/kg, does not inhibit AChE activity in the 

brain or blood of mice when used alone (Garrett et al., 2010).  

 The use of sarin instead of surrogates was necessary for this study. The 

organophosphate pesticides and surrogate agents have different characteristics than the 

nerve agents, despite being cholinesterase inhibitors. Nerve agents are 100-1000 times 

more potent than the pesticides. The differences in toxicity are due to the chemical 

groups surrounding the phosphorus atom (Forsberg, 1995). Though the biological effects 

are similar between the pesticides and nerve agents, differences exist in duration of 

biological activity and response to therapy (U.S.Army Medical Research Institute of 

Chemical Defense, 2007). Nerve agents have shorter durations of biological effects and 

respond faster to therapy, whereas the pesticides have a longer duration and can have 

delayed onset of symptoms (Sidell, 1994; Keyes, 2005). As for treatment, larger amounts 

of atropine are needed to treat severe pesticide poisoning. There are two main reasons for 

differences in biological activity. The pesticides have a greater fat solubility than nerve 

agents and may be sequestered in the fat stores providing a longer duration of free levels 

(Sidell et al., 2008). Differences may also be due to the ability of the pesticide 

compounds to bind with the target enzyme, AChE, and the rate of ACh accumulation 

(Savolainen, 2001). Nerve agents bind irreversibly to the target enzymes and have a 

longer duration of action. These differences and possible unknown differences between 
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pesticides and nerve agents support the use of active agent for studying nerve agent 

treatments. The FDA, for drug approval using the animal rule, also necessitates the use of 

active agent. In order to get a new drug approved when human studies are not ethical and 

feasible, the challenge agent used in the animal studies must be identical to the agent 

causing human disease (Food and Drug Administration, 2009).  

 It is also important to note that differences between kainic acid and sarin were 

found with the C57BL/6 mouse strain. Based on several measures including dose, AChE 

levels, weight loss, and histological measures, it was determined that the C57BL/6 mouse 

strain was sensitive to sarin. Studies with kainic acid, a glutamatergic agonist, revealed 

the C57BL/6 mouse strain was resistant to seizures and to the consequential neuronal 

damage (McLin & Steward, 2006). The levels of AChE inhibition and time course for 

toxicity were different after DFP, an organophosphate pesticide, though the same strain 

was found sensitive. AChE levels were inhibited for 24 hours and then began to rise 

again (Smolen, Smolen, Wehner, & Collins, 1985). Levels of AChE stay inhibited after 

sarin exposure for at least 14 days (Garrett et al., 2010). Such differences between the 

possible surrogates and active agent neurotoxicity support the need for the use of active 

agent in novel therapeutic research.  

Dose-response of CM-2,525 

 A dose-response curve from 0.03 to 1.0 mg/kg one minute after toxic challenge 

was completed to assess the efficacy of CM-2,525 against sarin. CM-2,525 was effective 

at reducing mortality and improving the latency to seizure. The dose of 0.03 mg/kg also 

had a proportion of animals that did not seize but had little effect on latency to seizure or 

mortality. The dose of 0.1 mg/kg CM-2,525 produced an enhancement in mortality. The 
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latency to seizure increased by nearly double that of the positive controls and an 

appreciable percentage of animals did not seize at the intermediate doses. The higher 

doses of CM-2,525 had little effect on mortality or latency to seizure. Based on mortality 

and seizure latency, the 0.1 mg/kg dose CM-2,525 had the best results. Sarin-induced 

seizures are initiated by the cholinergic system, due to the accumulation of acetylcholine 

(ACh) in the central nervous system. The seizures are thought to be maintained by a 

mixture of cholinergic and noncholinergic components, mostly glutamate (Tang, Loke, & 

Ling, 2011). The release of glutamate into the extracellular matrix induces neuronal 

swelling and death due to calcium influx followed by water into the neuron. The current 

hypothesis regarding nerve agent induced-excitotoxicity states that glutamate release 

activates both NMDA and non-NMDA glutamatergic receptors leading to neuronal death 

(Solberg & Belkin, 1997). Delayed latency to seizure and the increase in survival with 

CM-2,525 points toward a protective effect and a disruption of the excitotoxic state 

brought on by sarin exposure at the earlier time points. 

 A Functional Observational Battery was used to assess acute toxicity and detect 

differences in neurobehavioral parameters. FOB scores were decreased with the lower 

doses of CM-2,525 signifying a reduction in acute symptomology. The higher doses had 

no effect on FOB scores. The FOB is a valid test for detecting acute toxicity and is 

commonly used for neurotoxicity screening. By defining relevant categories representing 

the different biological actions of the toxic compound, the FOB allows for the sampling 

of behavioral and neurological functions in the animal model and a comparison to 

humans (Moser, 1990).  
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 Acetylcholinesterase activity was analyzed using frontal cortex tissue 14 days 

post-exposure. Sarin decreased AChE activity at this time point. A reduction was 

observed in the positive, sarin treated, controls compared to the negative controls. The 

inhibition seen in the positive controls demonstrates that sarin was effective. The lower 

doses of CM-2,525 increased AChE activity and produced levels slightly below the 

negative controls. Treatment with 1 mg/kg CM-2,525 did not protect AChE as the value 

was similar to the positive controls. The lower doses of CM-2,525 had a protective effect 

on the AChE levels in the frontal cortex resulting in levels not different from either 

negative or positive controls. Blood AChE levels are restored quickly, by day 4, from 

replacement of red blood cells (Garrett et al., 2010). AChE levels in the brain take longer 

to restore because new enzyme must be synthesized. Studies with soman revealed a 

correlation between moderate to severe symptoms and a strong ChE inhibition in the 

brain 24-48 hours after exposure. A complete recovery of AChE levels in the brain did 

not occur by day 8 (Lemercier et al., 1983) and inhibition of AChE was seen in the 

frontal cortex up to 14 days post-exposure with sarin (Garrett et al., 2010). The apparent 

protection of low doses of CM-2,525 was not seen with the higher doses. This pattern of 

differences with AChE in the dose-response of CM-2,525 is similar to that seen with 

FOB scores in that the lower doses are effective but not the higher doses. This 

correspondence is sufficient explanation for the ability of only low doses to reverse the 

acute behavioral effects since the high doses did not have an effect on FOB scores.  

 Weight loss over three days was found to correlate with severe neuropathology 

after soman exposure; the threshold for severe impairment was determined to be 20% 

decrease in weight by the third day (Filliat et al., 2007). Changes in body weight were 
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observed on both days 1 and 3 after sarin treatment. The lower doses of CM-2,525 

reduced the amount of weight lost and the higher dose actually resulted in a weight gain. 

Based on FOB scores, the 0.1 mg/kg dose of CM-2,525 had the best results, but had only 

a slight effect on weight loss. The 1 mg/kg dose resulted in improvements in body 

weight, but had no effect on FOB scores. A similar finding was seen after sarin exposure 

with weight loss most pronounced during the first three days (Kadar et al., 1995). A 

positive correlation was also found between weight loss and latency to onset of soman-

induced seizures, similar to what is observed in studies with epilepsy (Myhrer, Enger, & 

Aas, 2007). The reduction in symptoms with the lower doses of CM-2,525 was expected 

based on the increase in latency to seizures. Differences in the dose-response curves 

between FOB and weight loss may provide insight into how and where CM-2,525 is 

acting and could lead to new insights into the sequence of events leading to neurotoxicity.  

 Two behavioral tests were completed to compare general locomotor activity, 

willingness to explore, and the anxiolytic/anxiogenic properties of CM-2,525. Only a 

limited number of groups were tested due to lack of funds. The open field test was 

completed two days after sarin treatment. A slight decrease in distance and an increase in 

rest time were observed, though the overall locomotor activity was not different among 

the groups. Differences in the peripheral distance and rest time were not observed 

between the sarin treated animals and the controls. Treatment with CM-2,525 brought the 

basic movements, fine movements, and periphery distance and rest time values to those 

seen in the negative controls, reversing the differences seen with sarin treatment. The 

cholinergic system is thought to play a role in regulating locomotor activity. A reduction 

in general locomotor activity is likely a symptom of the overstimulation of the 
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cholinergic system (Mach et al., 2008). Differences in locomotor activity were found 

after exposure to sarin and soman in rodents. Soman exposed guinea pigs had lower 

exploratory behavior than controls three months after the initial exposure (Mamczarz, 

Pereira, Aracava, Adler, & Albuquerque, 2010b; Mamczarz, Pereira, Aracava, Adler, & 

Albuquerque, 2010a). Repeated low doses of sarin resulted in less activity and a 

reduction in basic movements and exploratory activity one day post-exposure (Mach et 

al., 2008). Higher doses of sarin increased immobility and decreased fine movements, 

grooming, and basic movements, rearing up to 6 hours after injection, however the 

differences were not present from 6 to 72 hours between the sarin treated animals and 

controls (Nieminen, Lecklin, Heikkinen, & Ylitalo, 1990). In this study, sarin treated 

animals did not have a reduction in overall locomotor behavior 48 hours after treatment, 

but did have deficits in basic and fine movements that were reversed by CM-2,525 This 

result indicates that the acute treatment prevented the lasting effects of the toxic 

challenge because the countermeasure was cleared from the system before the behavioral 

tests were conducted.  

 The elevated plus-maze was used to measure the anxiolytic/anxiogenic response 

one week after treatment. Anxiolytic responses are indicated by increases in percent open 

arm time and distance (Hogg, 1996). Seven days post sarin exposure there were no 

differences from the negative controls. CM-2,525 treatment, combined with the toxic 

challenge, increased the total distance, total time, and rest time in the open arms 

compared to both the negative and positive, sarin treated, controls. This is indicative of 

an anxiolytic response and a greater tolerance of a stressful environment. Studies with 

soman have found no differences in elevated plus-maze seven days after soman but 
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decreased open arm time and open arm entries 30-60 days post-exposure, suggesting a 

delayed onset anxiogenic effect after both high and low doses (Baille et al., 2001; 

Coubard et al., 2008). The lack of differences between the sarin-treated controls and the 

negative controls is similar to what was found after soman treatment. The effect from 

CM-2,525 is likely not a direct effect from treatment as the drug had left the system prior 

to testing. The increases with CM-2,525 treatment after the toxic challenge may represent 

an interaction with the drug and sarin resulting in a behavioral change.  

CM-2,525 as a neuroprotectant 

 Sarin-induced neurotoxicity is due to the seizure activity which rapidly progresses 

to status epilepticus. Seizures begin after an overstimulation of the muscarinic ACh 

receptors leading to calcium-sensitive non-specific cation current and the release of 

glutamate. The excitotoxic neuronal damage is due to the glutamatergic hyperactivity and 

the resulting sustained and reinforced seizure activity. A strong correlation exists between 

seizure intensity and duration and the severity of the neuropathology (Aroniadou-

Anderjaska, Figueiredo, Apland, Qashu, & Braga, 2009). Seizure induction is thought to 

start in the piriform cortex and spread to the amygdala and hippocampus as profound 

damage is seen in these areas after nerve agent exposure (Tattersall, 2009; Aroniadou-

Anderjaska et al., 2009). The hippocampal region appears to be activated before the 

amygdala in the excitiotoxic response (Myhrer et al., 2007). The innervated areas 

affected by nerve agent exposure have both muscarinic and nicotinic ACh receptors. 

Damage increased in severity one week after exposure compared to 24 hours in rats. 

There was a loss of neurons in the piriform cortex and amygdala and gliosis in the 

hippocampus. No further decline in damage was seen from one week to three months 
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(Kadar et al., 1995). Since damage mainly occurs in the dentate gyrus of the 

hippocampus, piriform cortex, and amygdala, these areas were examined for 

neuropathology. 

 Glial fibrillary acidic protein (GFAP) is a marker for astrocyte activity reflecting 

neuronal damage and stress and it increases after sarin exposure. GFAP staining 

increased in the dentate gyrus of the hippocampus after exposure 1 day post-exposure and 

was evident until day 15. The peak was evident at day 14 after sarin exposure (Garrett et 

al., 2010). An increase in astrocytic GFAP indicates neural trauma or injury and without 

the use of another stain or measure, a drug-induced decrease in sarin treated animals does 

not necessarily suggest neuroprotection (Collombet et al., 2007). As such, an additional 

stain for mature, highly differentiated neurons, neuronal nuclei (NeuN) was included. 

NeuN immunohistochemistry was found to be a good marker for predicting long-term 

neuronal degeneration after soman exposure. The number of hippocampal neurons fell by 

40 percent during the first week and continued to a 50 percent reduction by three months. 

The number of NeuN-labeled cells in the hippocampus remained unchanged up to post-

soman day 15 (Collombet et al., 2006). Using the time course of staining for GFAP and 

NeuN after sarin and soman exposure, a time point of 14 days was chosen. 

 Immunohistochemistry was used to verify damage and determine the 

effectiveness of CM-2,525 as a neuroprotectant. A decrease in GFAP and increase in 

NeuN staining compared to the positive, sarin treated, controls signifies neuroprotection, 

whereas an increase or constant GFAP value and a decreased NeuN signifies damage and 

a lack of protection. Similar results were obtained in the amygdala and dentate gyrus 

throughout. To verify prior work, DPAT treated animals were stained with GFAP and 
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NeuN was added to confirm its efficacy. The 0.03 mg/kg dose of CM-2,525 increased 

GFAP-positive cells and decreased NeuN-labeled cells and was similar to the positive 

controls. This is in contrast to the decrease in FOB scores with the lowest dose. The 

higher doses of CM-2,525 provided neuroprotection as demonstrated both by the 

decrease in GFAP and by the increase in NeuN staining similar to the negative controls. 

The 0.1 mg/kg and 1 mg/kg doses of CM-2,525 were the best at providing 

neuroprotection in the dentate gyrus and the amygdala.  

 The piriform cortex had similar values for the GFAP staining in both positive and 

negative controls at all doses except for 0.03 mg/kg in which it was increased. The 

positive control had a reduction in NeuN-labeled cells and was similar to the 0.03 mg/kg 

CM-2,525 group. The higher doses offered slight protection, as observed by the slight 

increase in NeuN staining compared to the positive controls. However, in the piriform 

cortex the amount of neuroprotection afforded by CM-2,525 was not as great as that seen 

in the dentate gyrus and amygdala. Since the piriform is thought to be the initiator for 

nerve agent-induced seizures it is possible that damage to the area, especially with 

astrocytes, occurs early and is not present 14 days post-exposure; however, the damage, 

as indicated by NeuN, still remains. After soman exposure, the amygdala was found to 

have the most damage, followed by the hippocampus in terms of neurodegeneration. The 

piriform was not as damaged at a longer time-course (Aroniadou-Anderjaska et al., 

2009). When looking at inflammation and apoptotic measures, the piriform showed an 

increase in TUNEL staining for the first 4 hours after sarin and then diminished in 

response (Davidson, 2007). The dentate gyrus had a prolonged increase at 10 days. By 14 

days post-exposure, no differences were detected with IL-1β or TUNEL in the piriform 
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cortex. Differences were detected in the amygdala and dentate gyrus with IL-1β but only 

in the dentate gyrus with TUNEL staining (Joshi, 2009). The GFAP response could have 

receded by the 14 day time point used in this study. The reduction in NeuN staining of 

the positive, sarin treated, controls suggests that damage did occur, though it wasn’t as 

great as the damage that occurred in the amygdala and dentate gyrus.  

Comparison with 8-OH DPAT 

 DPAT is a 5-HT1A receptor agonist and has previously been used in studies of 

stroke, traumatic brain injury, and excitotoxicity models as a neuroprotectant (Oosterink, 

Harkany, & Luiten, 2003; Berends et al., 2005). In models of excitotoxicity using 

monosodium glutamate, DPAT was found to inhibit the depolarization-evoked release of 

glutamate in the hippocampus (Kamei, Igarashi, & Kasuya, 1991). The use of 5-HT1A 

receptor agonists resulted in a reduction in damage to neurons of 7-day old chick 

embryos exposed to glutamate (Peruche et al., 1994). 

 Previously, a dose of 1 mg/kg DPAT was found efficacious when treatment was 

delayed two hours after sarin exposure. A reduction in percent mortality and a decrease in 

neural injury in the dentate gyrus, shown by the reduction in GFAP-positive astrocytes, 

were observed with treatment from one minute to two hours post-exposure. DPAT had no 

effect on weight loss or FOB scores. Protection of AChE levels was not seen with DPAT 

at any time point (Joshi, 2009). The effects of DPAT were not prevented by a 5-HT1A 

receptor antagonist, thus suggesting a role of an additional receptor, or secondary 

pharmacology.  

 DPAT was used as a comparison with CM-2,525 because it was effective at 

providing neuroprotection but its mechanism was not clear. As was found previously, 
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treatment with DPAT one minute after sarin reduced the percent mortality and was 

similar to the 0.1 mg/kg dose of CM-2,525. However, DPAT did not have an effect on 

latency to seizure as did CM-2,525. While CM-2,525 had a positive effect on weight loss, 

leading to weight gain with the highest dose, DPAT did not have an effect. In the open 

field test, the DPAT group exhibited reduced periphery distance and increased time in the 

periphery and reduced in basic and fine movements. This, taken with the increased time 

and decreased distance traveled in the periphery, could be a sign of immobility. The 

DPAT treated animals were similar to the positive controls while the CM-2,525 treated 

animals were similar to the negative controls. Because the testing in this study occurred 

two days after treatment, it is unlikely that the response was due to DPAT directly, as the 

drug had been cleared from the system since the brain half-life of 1 mg/kg DPAT (SC) in 

a rat is 26 minutes (Perry & Fuller, 1989). Compared to both controls in the elevated plus 

maze, DPAT had no effect on percent distance, time, or rest time spent in the open arms. 

Treatment with CM-2,525 in toxic-challenged mice produced increases in all 

measurements consistent with a greater tolerance for a stressful environment. In this 

study, DPAT treatment after sarin exposure had no effect and was similar in the elevated 

plus maze to both positive and negative controls seven days post-exposure. These results 

are consistent with an absence of effects seen in the control groups seven days after 

soman exposure (Baille et al., 2001; Coubard et al., 2008). It is possible that an effect 

would have been obtained at an earlier time point. The effect of CM-2,525 thus differed 

from that of DPAT. 

 DPAT reversed the effects of the toxic challenge on AChE when given one 

minute post-exposure. Two doses of CM-2,525 also were similar to the negative controls. 
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Previously, DPAT one minute post-sarin produced AChE values that were similar to the 

positive controls and were further inhibited at the longer time points (Joshi, 2009). 

Although the effects on AChE in DPAT treated animals differed between the two studies 

at one minute, the AChE values obtained for DPAT at one minute in both the present and 

previous study were close. The differences in the two studies may be due to error alone 

and as such the experiment should be repeated. However, the important point is that the 

high doses of CM-2,525 that were neuroprotective, based on weight loss and 

histochemistry measures, did not produce increases in AChE activity.  

 The previous study with DPAT treatment for sarin exposure only looked at the 

dentate gyrus using GFAP, a stain for astrocytes. This study extends both the brain areas 

and the markers for neuroprotection. In the amygdala, DPAT decreased GFAP staining 

and increased NeuN staining to levels similar to the negative controls and provided 

neuroprotection, though was as not great as that seen with the higher doses of CM-2,525. 

Similar results were seen in the dentate gyrus, though the GFAP staining following 

DPAT was intermediate to the positive and negative controls and not significantly 

different from either, as was the case in the previous study with DPAT. Neuroprotection 

was afforded with DPAT, but the higher doses of CM-2,525 again had more of an effect. 

Treatment with DPAT increased the amount of GFAP-positive cells in the piriform 

cortex compared to both the positive and negative controls, but resulted in an increase in 

NeuN-positive cells. This is a prime example that an increase in GFAP staining does not 

necessarily indicate neuronal degeneration and only shows an injury has occurred. 

Similar results of neuroprotection were observed 14 days post-ischemia. A reduction in 

neuronal death and astroglial reaction was observed, suggesting increased neuronal 
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survival in the DPAT treated animals (Ramos et al., 2004). Although DPAT is effective 

as a neuroprotectant against sarin exposure, CM-2,525 afforded greater protection in the 

amygdala and dentate gyrus one minute post-exposure as well as producing effects on 

weight loss, FOB scores, and AChE levels.  

Conclusions 

 When all the results are viewed together, CM-2,525 is more efficacious as a 

neuroprotectant for sarin exposure than 8-OH DPAT. Not only does CM-2,525 offer 

neuroprotection in the amygdala and dentate gyrus but also improves the percent 

mortality, weight loss, and FOB scores. The mortality rate was further reduced by 

treatment with CM-2,525 and an effect on latency to seizure and death was observed. 

Weight loss and FOB scores were not reduced by DPAT but were by doses of CM-2,525. 

Based on all the results, the 0.1 mg/kg dose of CM-2,525 was the best by offering the 

lowest percent mortality, a reduction in FOB scores, less weight loss, and 

neuroprotection.  

 The present results provide evidence of novel ways both of providing 

neuroprotection and of understanding the physiological process that occur in response to 

neurotoxic doses of nerve agents. There is an increase in serotonin turnover rate two 

hours after sarin exposure (McDonough & Shih, 1997; Fernando, Hoskins, & Ho, 1984). 

The changes in serotonin activity may represent an effort to restore homeostasis after 

nerve agent seizures, an effect mimicked by DPAT at postsynaptic sites. Possible 

secondary mechanisms for the neuroprotection afforded by the 5-HT1A agonists include 

the inhibition of inflammation around blood vessels, the activation of G-protein coupled 

potassium channels and the induced neuronal hyperpolarization, a reduction in glutamate 
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release, and anti-apoptotic effects (Tfelt-Hansen, de Vries, & Saxena, 2000; Kline et al., 

2001; Adayev, El-Sherif, Barua, Penington, & Banerjee, 1999). CM-2,525 acts on the 

part of the secondary pharmacology of DPAT that may underlie all of its beneficial 

effects . The 5-HT1A receptor binding site is not crucial for neuroprotection because its 

blockade does not prevent its actions. In fact, this component of the action of DPAT may 

be counterproductive because of its action on 5-HT cell body autoreceptors to decrease 

serotonin activity (Bonvento, Scatton, Claustre, & Rouquier, 1992). This component 

would reduce activation of the relevant postsynaptic receptors by 5-HT, leaving only the 

effects of DPAT to provide neuroprotection. CM-2,525 does not alter 5-HT neuronal 

activity so that it’s postsynaptic effects would be additive to those of 5-HT. This could 

explain its superiority over DPAT across the spectrum of measurements.  

 The other treatments currently used are only effective for up to 40 minutes post-

exposure and do not offer neuroprotection. Even experiments with ketamine and MK-801 

did not offer neuroprotection past that time. New treatments being studied are mostly 

effective only as pretreatments. Some work on glutamate and NMDA antagonists has 

been done, but there are limitations in neuroprotection afforded (Weissman & Raveh, 

2008). The effectiveness of DPAT and possibly of CM-2,525 at longer time points allows 

for better treatment options for civilians and soldiers exposed to sarin. CM-2,525 and 

DPAT do not act on the acute symptoms, so atropine and 2-PAM must still be used as 

rescue-agents. However, CM-2,525 may be used in addition to the rescue agents for 

treatment.  

Future Studies 
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 Due to a change in management and vision at United States Army Medical 

Research Institute of Chemical Defense (USAMRICD) access to the active agent was 

terminated, making it impossible to complete the second aim, evaluating the time-

response efficacy of CM-2,525 and comparison with 8-OH DPAT. As such, the work 

done so far on CM-2,525 and DPAT is not complete. The time-course should be 

completed. Additional work needs to be completed in order to gain an understanding into 

the mechanism of DPAT and CM-2,525 against sarin exposure. A study using CM-2,525 

at different time points after sarin exposure is necessary to further the comparison against 

DPAT. The addition of the standard treatments, atropine and 2-PAM, with CM-2,525 

would also be beneficial to explore. 
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