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ABSTRACT 

 

 

Schradin, Kelly D. M.S., Department of Biological Sciences, Wright State University, 

2012. 

The role of plant-soil feedback in exotic plant invasion: soil type, and biotic or abiotic 

factors? 

 

 

Plants alter soil characteristics in many ways causing changes in their subsequent 

growth resulting in either positive or negative feedback on their own fitness. Plants in 

their native ranges typically experience negative feedback from natural enemies, while 

feedback is often positive in invaded ranges where they escape enemies, experience new 

beneficial mutualisms, or bring with them a novel biochemical weapon. I conducted a 

fully factorial greenhouse experiment to examine plant-soil feedback in the invasive 

shrub Lonicera maackii and whether or not positive feedback may contribute to its 

successful invasion in southern Ohio. I also investigated whether the sign and strength of 

the feedback changed across two distinct soil types, and whether effects were due to 

shifts in biotic or abiotic soil traits by analyzing soil properties, phenolic content and 

microbial communities. I compared L. maackii’s response to the related native shrub, 

Diervilla lonicera, using their conditioned soils along with soil conditioned by an 

unrelated native tree, Fraxinus pennsylvanica. I hypothesized that L. maackii would 

experience positive feedback overall in both soil types. L. maackii showed positive 

feedback in Shawnee soils, but neutral to negative feedback in Wright State soils. Growth 

of L. maackii decreased and positive feedback was eliminated with sterilization in 

Shawnee soil which may indicate that it had benefitted from mutualisms that were 

destroyed by sterilization. In Wright State soil, sterilization significantly increased 
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growth, suggesting L. maackii had been released from pathogenic organisms found in live 

soils. Despite this, feedback became even more negative with sterilization in Wright State 

soil which may be a sign that its own phytochemicals hinder its growth in the absence of 

biotic symbioses. Lonicera maackii performed similarly in its own soils and in those of F. 

pennsylvanica and D. lonicera, regardless of soil type. Our findings also suggest native 

species are controlled by negative feedbacks in their own soils. Diervilla lonicera 

displayed negative feedback overall in its own unsterilized soil regardless of soil type, but 

sterilization eliminated or reversed feedback relationships. Growth of Diervilla lonicera 

varied little in soils conditioned by L. maackii and F. pennsylvanica in both soil types. 

Our results indicate that both soil type and soil microorganisms play a large role in plant-

soil feedback, yet feedback in L. maackii is dependent on soil type. Our evidence reveals 

that sign and strength of feedback can vary with soil source. This is the first study to 

examine plant-soil feedback in L. maackii, one of the most important invaders in Ohio 

uplands. 
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INTRODUCTION 

 
Invasive species can incur high economic and ecological costs and continue to 

threaten global biodiversity (Pimentel et. al 2000). It is estimated that 50,000 nonnative 

species (both plants and animals) have been introduced to the United States for various 

reasons: as ornamental specimens, soil erosion-control, biological pest controls, and food. 

As a result, biodiversity suffers as our native species become threatened with extinction 

(Pimentel et al. 2000). Understanding the mechanisms responsible for abundance and 

distribution of invasive plants may lead to different management methods of control in 

addition to conserving rare and endangered native species and ecosystems. Nonnative 

invasive plant species can negatively impact native species by reducing seed germination, 

growth, survival and reproduction (Callaway and Aschehoug 2000; van Wilgen et al. 

2004; Thorpe 2006). Invasives can have a negative impact on native plant populations 

through resource competition, allelopathy, and plant-soil interactions (Callaway and 

Aschehoug 2000; Callaway et al. 2004a; Ehrenfeld 2006; Stinson et al. 2006; Thorpe 

2006; Cipollini et al. 2008; Kueffer et al. 2007; Callaway et al. 2008; Cipollini and 

Dorning 2008; Cipollini et al. 2008a/b).  Exotic invasives gain an advantage over their 

native neighbors through above-ground competition (Cipollini, K. et al. 2008) and below-

ground competition (Callaway et al. 2004a; Ehrenfeld 2006; Stinson et al. 2006). For 

example, the invasive Centaurea maculosa (spotted knapweed) acquires more 

phosphorus than surrounding native species, giving it a competitive edge (Thorpe 2006). 

Some invasive species possess allelopathic compounds that can alter native communities 

with potentially long-lasting negative impacts on neighboring plants (Kueffer et al. 2007; 

Callaway et al. 2008; Cipollini and Dorning 2008; Cipollini et al. 2008a/b).  Allelopathic 
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compounds are secondary metabolites produced by a plant that negatively impact 

surrounding plants, soil properties and soil organisms (Beckstead and Parker 2003; 

Callaway et al. 2004a/b; Reinhart and Callaway, 2004; Cipollini and Dorning 2008; 

Cipollini et al. 2008). These allelopathic compounds from plant tissue come from sources 

such as volatilization and leaf and root exudation. In fact, changes in soil properties are 

an increasingly recognized impact of invasive species and they may leave lasting effects 

in the soil (Klironomos 2002;; Agrawal 2005; Hawkes et al. 2005; Ehrenfeld 2006; 

Stinson et al. 2006; Cipollini and Schradin 2011).   

 

Plant-soil feedback 

Research suggests that plant-soil feedback can affect plant distributions, patterns 

of dominance, invasion and succession (Klironomos 2002; Callaway et al. 2004a; 

Kueffer et al. 2007; Mangan et al. 2010; Mangan 2010). During plant growth, the soil 

rhizosphere (the soil surrounding a plant’s root system) develops characteristics that can 

have effects that feed back on the plant. These changes to soil biochemical properties 

include altered pH and mineral and microbial composition. For instance, modified soil 

characteristics surrounding an invasive species can alter populations of existing soil biota. 

These effects can have either positive or negative feedback on the plant’s own fitness 

(Callaway and Aschehoug 2000; Callaway et al. 2004a; Hawkes 2005; Klironomos 2002; 

Mangan et al. 2010; Thorpe, 2006). To determine the direction of feedback, soil is first 

preconditioned by the growth of a plant species. If subsequent conspecific plants perform 

better in the preconditioned soil than when grown in unconditioned (soil unplanted with 

any plants) soil, it is considered positive feedback. Negative feedback occurs when the 
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conspecific plants experience decreased fitness in the preconditioned soil. Often, plants 

experience negative feedback in their native soils due to natural enemies (pathogens) 

which keep the plants’ growth in check. When plants are introduced to a new area, they 

can sometimes modify soil organisms or nutrient cycling to their advantage. Feedback is 

often positive in invaded ranges because they escape these enemies, experience new 

beneficial mutualisms, or bring with them a novel biochemical weapon. Positive 

feedback resulting from both direct and indirect effects of allelopathy and changes in soil 

characteristics is partly responsible for nonnative plants becoming invasive in introduced 

areas (Inderjit 2004; Ehrenfeld et al. 2006; Kulmatiski et al. 2006).   

 

Microbial effects on plant-soil feedback 

Plants are greatly regulated by soil organisms, both beneficial and pathogenic, 

which can control plant fitness, abundance, and distribution by influencing a plant’s 

growth and physiological response to stress and its ability to take in nutrients and water 

(Klironomos 2002; Callaway et al. 2004a; Agrawal et al. 2005; Hinsinger et al. 2005; 

Reinhart et al. 2005; Beest et al. 2010).  Beneficial examples include mycorrhizae, which 

are mutualistic fungi that extend a plant’s root system and increase its access to water and 

less mobile nutrients, and which receive photosynthate from the plant roots in return 

(Schnepf 2008). Symbiotic nitrogen-fixing bacteria are responsible for transforming 

nitrogen into a usable form for many plants since plants cannot assimilate molecular 

nitrogen (Franch, et al. 2009). Pathogenic bacteria, nematodes and fungi are known to 

suppress growth of species in their native soils (Reinhart et al. 2005; Mangan et al. 2010) 
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Below-ground soil biota can cause shifts in plant allocation responses. Beest et al. 

(2010) found that allocation to stem biomass and height increased when Chromolaena 

odorata (Siam weed) was grown in soils inoculated with nonnative soil communities 

compared to native soil inoculations. Sterilizing soil is a way to study microbial effects as 

it destroys bacteria and fungi without greatly changing chemical or physical properties of 

the soil (Trevors 1996). Researchers grew Centaura maculosa in soils collected from its 

native range in Europe and from its invaded range in North America that were either 

sterilized by autoclaving or not sterilized (Callaway et al. 2004a). Growth of C. maculosa 

was 166% higher in the sterilized soils from the native range than in unsterilized soils 

from the native range, but only 24% higher in sterile soils from the nonnative range than 

in unsterilized soils of the nonnative range. Thus, plants experienced more negative 

feedback in their native range soils than in nonnative North American soils. Results of 

this sterilization treatment show how soil microbes can inhibit invasive plants in their 

native soils while providing an advantage in nonnative soils, possibly contributing to 

invasive behavior (Callaway et al. 2004a). 

In their native ranges, plants are usually suppressed by soil-borne pathogens such 

as parasitic fungi and nematodes, but in nonnative regions, they are not exposed to these 

natural enemies. The process known as enemy escape is central to the “Natural Enemies 

Hypothesis” (or Enemy Release Hypothesis). Beckstead and Parker (2003) tested this 

hypothesis in invasive Ammophila arenaria (European beachgrass). In a greenhouse 

experiment, they germinated seeds in soil collected from A. arenaria rhizospheres from 

both its European native range and its invaded range in California that was either 

sterilized or unsterilized. Seed germination, seedling survival and biomass all decreased 
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in the unsterilized soils from its native range suggesting that soil-borne pathogens had a 

negative effect on seedling survival in its native habitat. 

Feedback resulting from “enemy release” may help explain invasiveness of 

certain plants in introduced habitats. For example, Klironomos (2002) grew five rare 

plants native to North America in soils from their home range as well as in foreign soils 

and compared growth responses to five invasive species that were also grown in their 

home soils and in foreign soils. The native plants showed significant negative feedback 

when grown in their home soils as compared to foreign soils. In another set of 

experiments, he used specific microbial fractions added to both home and foreign soils. 

He found that the native plants suffered strong negative feedback when grown in home 

soil combined with pathogens from their own root systems whereas invasives did not 

experience similar effects.  

 Prunus serotina (black cherry), which is invasive in Europe, also displayed 

negative feedback in its native North American soils. Survival and germination rates 

were compared in soils collected from beneath conspecific and heterospecific trees in a 

greenhouse experiment. Sterilization significantly increased P. serotina survival in 

conspecific soils, showing a negative effect of soil biota. Fungicide was used to measure 

soil pathogen effects and its application increased survival by 27% in conspecific soils 

with no effect in heterospecific soils. Interestingly, seedling mortality had the least effect 

in the sandiest of all soils that were examined, indicating that soil texture and structure 

may play a role in the regulation of plant growth by soil biota (Reinhart et al. 2005). 

Agrawal et al. (2005) used phylogenetically related plants to examine plant-soil feedback 

in a range of native and nonnative species pairs. A phylogenetic comparison controls for 
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the variability introduced to a study of using species that are not closely related. In their 

study, native species experienced twice as much negative feedback as nonnatives. 

Specific combinations of plants and soil microbes lead to divergent effects. 

Centaurea maculosa had an interactive effect with native grasses in a common garden 

experiment using soils treated with a fungicide and untreated soils. Callaway et al. 

(2004b) measured the biomass of C. maculosa grown in the presence and absence of 

competitors and with and without fungicide.  Growth of C. maculosa increased in the 

presence of two species, but not when fungicide was applied. Its growth was inhibited 

when grown with a third species in the absence of fungicide but increased with the 

application of fungicide. This shows that specific interactive combinations between 

plants and soil microbes can lead to different outcomes for plant growth. 

Plants in introduced habitats may profit from “enhanced mutualisms,” beneficial 

microbial allies or mutualists they have not encountered in their native regions. In a 

greenhouse experiment, Reinhart and Callaway (2004) tested the effects of soil from 

native vs. nonnative ranges, and from conspecific vs. heterospecific competitors on seed 

germination, height and biomass on Acer species.  Invasive Acers initially benefited from 

soil biota in their nonnative ranges, but feedback became increasingly negative with 

establishment of the species. Soil biota from the nonnative soil under heterospecifics 

increased biomass and height suggesting benefits from “new allies.” Biomass and height 

were both higher in the sterilized soil from Acer native ranges than in nonnative ranges 

suggesting that microbial pathogens were important in native soils. In the nonnative 

range, sterilization increased growth with conspecifics but not with heterospecifics. These 
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results support the “Enemy Release Hypothesis,” and also support “enhanced mutualists” 

in nonnative ranges. 

Negative feedback can increase over time. Using sterilized field soil inoculated by 

soils from different successional stages, in addition to extracting and utilizing soil 

nutrients, Kardol et al. (2006) grew plant mixtures of differential successional classes in a 

feedback experiment in which they found that early successional species displayed 

negative feedback while mid-successional species had neutral feedback.  

  

Nutrient Cycling and plant-soil feedbacks 

Plants can also affect the presence of nutrient cycling microbes which in turn 

affect available nitrogen (N) in the soil (Ehrenfeld 2003; Hawkes et al. 2005). Hawkes et 

al. (2005) used native and nonnative plants grouped in monocultures and mixtures to 

examine effects of soil microbial activity on changes to N levels over a 4 year time span. 

They found that monocultures of invasive plants increased gross rates of nitrification 

whereas mixed groups did not.   

Alliaria petiolata (garlic mustard) is native to Europe and Asia and has invaded 

many areas in North America. It is known to have characteristics which may increase its 

invasive success. For example, Rodgers et al. (2007), showed through soil analysis that 

the presence of A. petiolata in field sites significantly increased N, P, Ca and Mg 

availability. Interestingly, decomposing A. petiolata leaves increased decomposition of 

native leaf litter, possibly explaining why A. petiolata increases nutrient availability, 

which may facilitate its own continued invasion and could be a example of positive 

feedback mediated by effects on nutrient cycling (Rodgers et al. 2007).  
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Extracts from the invasive shrub Lonicera maackii (Amur honeysuckle) have 

been shown to limit growth and reproduction of Arabidopsis thaliana, a non-mycorrhizal 

mustard, directly and indirectly (Cipollini and Dorning 2008; Cipollini et al. 2008a). 

Extracts of L. maackii were found to directly inhibit growth of A. thaliana and inhibited 

its positive response to added nutrients (Cipollini et al. 2008a). Cipollini and Dorning 

(2008) also found that phenolic allelochemicals in L. maackii leaf and root extracts could 

inhibit A. thaliana’s response to nutrient availability. However, in this study, initial 

growth reductions in A. thaliana in L. maackii conditioned soils were followed by 

increases in that soil later suggesting that inhibitory effects degrade over time. 

 

Allelochemicals and plant-soil feedbacks 

Most plants produce secondary metabolites of various classes, including 

phenolics, which may have a role in allelopathy and plant-soil feedbacks. Phenolic 

compounds, as a group, are known to play a role in plant-soil interactions through direct 

and indirect effects on microbial composition and nutrient cycling and are also known to 

cause changes in pH and mineral composition (Inderjit and Dakshini 1994; Ehrenfeld 

2006; Callaway et al. 2008; Cipollini et al. 2008a; Pollock et al., 2011). Phenolics are 

commonly produced by plants as pathogen or herbivore deterrents, but are also used as 

attractants to pollinators or seed dispersers, thus providing a selective advantage. For 

example, coumarins (recognized as the scent of newly-mown hay) are a class of 

phenolics known to have antimicrobial qualities and can inhibit seed germination and 

inhibit plant growth. Coumarin-rich extracts of alfalfa leaves were shown to significantly 

reduce root growth of alfalfa and barnyard grass (Chon et al., 2002). Flavonoids, another 
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class of phenolics which have antifungal and antibacterial properties, are plant pigments 

producing yellow or red/blue pigmentation in petals used to attract pollinator animals. 

Tannins (found in tea and wine) are one more set of phenolic compound that have 

astringent properties and are known to bind proteins. These various compounds have 

potential allelochemical effects on plant-soil interactions.  

A species in its introduced range may use biochemical weapons that inhibit 

neighbors directly or disturb other ecosystem properties giving the invader some 

advantage. These same weapons are ineffective against neighbors in its native range, 

which are adapted to cope with such allelochemicals. This principle is the basic concept 

of the “Novel Weapons Hypothesis” (Callaway and Ridenour 2004). Indeed, Callaway et 

al. (2008) found that these novel weapons in Alliaria petiolata, some of which may be 

phenolics, inhibit native plant growth by disrupting mycorrhizal activity. They found that 

A. petiolata’s phytochemicals were more allelopathic to arbuscular mychorrizae 

mutualisms in soils where it is invasive in North America than in its native European 

soils.  

Extracts of L. maackii were found to inhibit seed germination of Impatiens 

capensis, A. petiolata, and A. thaliana in Petri dish bioassays. Interestingly, these same 

extracts actually increased germination of its own seeds when compared to controls, 

possibly explaining its invasive behavior (Dorning and Cipollini 2006). In addition, 

Cipollini et al. (2008b) isolated 13 of L. maackii’s phenolic metabolites and these extracts 

were found to have an inhibitory effect on A. thaliana seed germination. In a study 

designed to compare effects of A. petiolata and L. maackii, on nonmychorrizal A. 

thaliana, Cipollini et al. (2008a) showed L. maackii extracts significantly reduced growth 
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and reproduction of A. thaliana yet extracts of A. petiolata had no significant effect. 

Furthermore, Pollock et al. (2011) found that invasive Centaurea stoebe Lam. (spotted 

knapweed), which is known to exude (±)-catechin from its roots, inhibited microbial 

communities in soil from its invaded range, possibly increasing its competitive ability. 

The soil biota from its native region in Romania was more resistant to the inhibitory 

catechin. 

Studies of plant-soil interactions in the context of plant invasions are increasing 

but many studies focus on single mechanisms (Ehrenfeld et al. 2006). Holistic 

examinations of plant-soil interactions give us a much better understanding of invasive 

species and how they alter plant communities. Invasive plants may have the ability to 

influence their surroundings differently from native competitors, ultimately leading to 

changes in community structure which may affect ecosystem processes. Knowledge of 

nutrient availability, microbial community structure, and soil chemistry in different soil 

types can provide insight to more complete understanding of how exotic invasion occurs. 

Knowing the influence of soil type (structure and texture) may be helpful in determining 

why certain areas are more vulnerable to invasion than others. Soil texture (balance of 

sand, silt and clay) and structure (size and shape of particles and how they aggregate) can 

determine the rate of water flow and nutrients through the system and can contribute to 

soil community dynamics which may aid in successful invasions (Hudson 1994; 

Ehrenfeld 2003). 
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Lonicera maackii and plant-soil feedbacks 

  Lonicera maackii (Rupr.) Maxim (Amur honeysuckle: Caprifoliaceae) is a 

nonnative invasive deciduous shrub found throughout most of the Midwest and eastern 

United States. It is one of the most important invasive species in Ohio and its abundance 

is increasing. It can grow in many soil types and is commonly found in old fields, forest 

edges and interior canopy gaps as well as in riparian zones and is often associated with 

disturbance (Bartuszevige et al. 2006). It can tolerate a pH of 5.5 to 8.0 (USDA 2010). 

Lonicera maackii is native to northeastern China and Korea (Luken and Thieret 1996) 

and was introduced to the United States by 1898, making it to Ohio in the 1960s. It was 

intentionally brought here for use as an ornamental, erosion control and wildlife habitat 

improvement. Distribution of L. maackii has more than doubled in the last two decades, 

from 21 Ohio counties in 1995 to 56 counties in 2010 (Rick Gardner, personal 

communication; USDA 2010). Research suggests that the American Robin (Turdus 

migratorious), a winter frugivore, is an important seed disperser for L. maackii 

presumably due to the high availability of winter fruit (Sauer et al. 2008; Watling and 

Orrock 2010). This shrub negatively affects individual plants and plant communities 

through such mechanisms light and soil resource competition, and allelopathy and can 

have detrimental effects on community species abundance and richness (Hutchinson and 

Vankat 1997, Collier et al. 2002; Cipollini et al. 2008a/b; Cipollini and Dorning 2008; 

USDA 2010), but the potential role of plant-soil feedbacks in its invasive success has 

never been examined. 
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Hypotheses and predicted results 

I conducted a greenhouse study to determine the extent to which the invasive 

shrub L. maackii, the native relative shrub, Diervilla lonicera, and the widespread native 

tree, Fraxinus pennsylvanica, had positive or negative feedback on their own fitness and 

how their growth affected fitness of the other species. In addition, I investigated whether 

the sign and strength of the feedback changed across two distinct soil types, and whether 

effects were due to shifts in biotic or abiotic soil traits, or some combination thereof.   

 I hypothesized that invasive Lonicera maackii would experience more positive 

feedback in its own soils (Lonicera-conditioned soil) than native species would in their 

own soils. I also hypothesized that a sandy-acidic soil type would show reduced positive 

feedback effects in L. maackii compared to loamy-circumneutral soil.  

 I predicted that each species would generally experience negative feedback in its 

own soil versus unconditioned soil. I predicted that each species would generally 

experience more negative feedback in its own soil versus soil conditioned by other 

species. Finally, I expected native D. lonicera to suffer the poorest growth in L. maackii 

soils compared to its own soil or in Fraxinus-conditioned soils.   

 I expected L. maackii-conditioned soils to cause bigger changes than other 

species in soil chemistry and microbial profiles due to its known allelochemicals. This 

effect is expected to be less pronounced in sandy soils than in loamy soils, possibly due 

to less organic material to bind allelochemicals resulting in less negative feedback for 

plants grown in L. maackii-conditioned soils. If feedback is less negative in this soil type, 

I would expect more growth of L. maackii in the preconditioned sandy soils compared to 

preconditioned loamy soils. 
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If biotic factors are responsible for feedback in either direction, sterilization 

should eliminate the feedback relationships. If abiotic factors are responsible for 

feedback, then differences in soil nutrients, pH, and allelochemistry after conditioning 

and in different soil types would better account for changes.  
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MATERIALS AND METHODS 

 

Soil sources 

 

The study took place at Wright State University in the laboratory and greenhouse. 

To determine if L. maackii is more successful in loamy, circumneutral soils, than in 

sandy-acidic soils, experiments were conducted in two types of soil, both collected in 

June 2010, from microsites uninhabited by any of the experimental species. Bulk soil 

samples were taken from multiple locations in the Wright State Woods in Dayton, Ohio 

and in Shawnee State Park in West Portsmouth, Ohio, and then pooled together, by 

location, to be used for the conditioning stage. Soil textures were determined using the 

Pipette method (Gee & Bauder, 1986). I added 100g of sieved soil to a 500mL beaker 

followed by 20mL of calgon solution and 100 ml of autoclaved deionized water and 

mixed thoroughly by hand. The soil slurry was transferred to a blender and mixed on 

lowest setting for 10 minutes. I then transferred the slurry to a 1000mL graduated 

cylinder and I added deionized water to the 1000mL mark. I then covered the cylinder 

with Parafilm® and tilted itend to end several times to mix the solution. I allowed the 

slurry to settle based on predetermined time periods in order for each particulate to settle 

out of solution. Percentages of sand, silt and clay were calculated and texture was 

determined using a textural triangle. The first soil type was a circumneutral loam, 

collected from the Wright State Biological Preserve in Dayton, OH. The Wright State 

Woods are located at the southern edge of Ohio’s glaciated region. These soils have a 

circumneutral pH and contain high Ca and Mg contents due to limestone bedrock. Soils 

here are classified as Miamian silt-loam, characterized by low permeability (ODNR 

2010; USDA: SCS 2010). The second soil type is an acidic sandy loam, collected from 
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Shawnee State Park, located in West Portsmouth, OH, near the Ohio River, within 

Shawnee State Forest in the Western Allegheny Plateau. Soils here are composed of 

weathered sandstone, siltstone, and shale sedimentary rock. These soils are classified as 

Shelocta-Brownsville, described as well drained soils formed in colluvium (transported 

due to gravity) and residuum (formed in place from rock) with a strongly acid subsoil 

(ODNR 2010; USDA: SCS 2010).  

 

Plant Species 

 

Diervilla lonicera 

 In addition to L. maackii, D. lonicera P. Mill., native northern bush honeysuckle, 

was chosen as a test species because it is also in the Caprifoliaceae and a closely related 

species to L. maackii (Jacobs 2009). Related species may have similar evolutionary traits 

that contribute to their behavior and distribution patterns whereas unrelated species have 

different characteristics. Diervilla lonicera is a rhizomatous shrub that is pollinated by 

bumble bees and hawk moths (Schoen 1977) and it has a pH tolerance of 4.8 to 7.0. Its 

distribution patterns are similar to those of the invasive L. maackii but with a greater 

shade tolerance. It is less abundant and is currently listed as rare in Indiana and as 

threatened in Tennessee (USDA 2010).  

 

Fraxinus pennsylvanica 

Fraxinus pennsylvanica Marsh. (green ash), a deciduous tree native to North 

America, is in the Oleaceae (olive family). It is widespread throughout the United States 
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and Canada east of the Rocky Mountains. This species was chosen to represent a 

pioneering species whose broad distribution overlaps the ranges of both L. maackii and 

D. lonicera. It has a very wide pH tolerance of 5.0 to 8.1 (USDA 2010). Green ash is the 

most common ornamental ash species presumably because it grows well in multiple 

landscapes having the ability to withstand drought, flooding, salt and alkaline soils. Ash 

are under threat of the exotic insect, emerald ash borer (EAB) (Agrilus planipennis) 

which is slowly destroying the species, and could seriously upset biodiversity in natural 

forests (MacFarlane and Meyer 2005). 

 

 

Soil Conditioning  

 

The soil conditioning phase of this study ran from August, 2010 through March, 

2011. First season F. pennsylvanica seedlings were collected from a naturally growing 

population at Kiser Lake State Park in Conover, Ohio, in July, 2010. Both L. maackii and 

D. lonicera seedlings used for the conditioned phase were 12 weeks old. Plants were 

grown in sterilized ProMix BX potting mix without mycorrhizae (Premier Horticulture 

Inc. Quakertown, PA) and maintained in 1L pots and grown in a temperature-controlled 

greenhouse under ambient light supplemented with fluorescent lights between 0700 and 

2100.    

On July 27, 2010, seedlings of each species were planted in each soil type in 

plastic tubs for 6 months. I also maintained an unconditioned soil control that contained 

no plants. Field soils were first mixed to ensure homogeneity and sand (QUIKRETE™ 

washed, screened and dried play sand) was mixed  into soils in each tub (1:5, sand to soil) 

to inhibit compaction. Each tub contained 25L of soil/sand mixture into which 10-15 of 
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each species were planted, matched to achieve similar biomass. Plants of each species in 

each tub were grown in the greenhouse and all tubs (including unconditioned/unplanted 

control) were rotated weekly to ensure even light exposure and watered as needed with 

deionized water and no fertilizer was added.     

 

Feedback Experiment 

 

At the end of the conditioning phase, plants were removed from soils, the soils 

mixed within tubs and then half of each soil was sterilized by fractional sterilization 

(Tyndallization). The moist soil was heated in an autoclave to 100C for 1 hour on 3 

successive days. Three repetitions were needed to trigger heat-resistant spores to 

germinate and subsequently be destroyed in the next stages. This lower temperature 

sterilization technique preserves soil structure and quality better than autoclaving at 

121C (Wolf et al. 1989). I then transferred sterile soil to sterile containers and used soil 

immediately.  Successful sterilization was confirmed by culturing soil extracts from 

unsterilized and sterilized soils from both locations. I prepared soil dilutions in sterile 

saline and plated the lowest dilutions (1:10000) on Tryptic Soy Agar plates (2 reps). 

Cultures were incubated at room temperature for 72 hours and examined for microbial 

growth (Trevors, 1996). Microbial growth was negative on sterilized soil plates and 

positive on unsterilized soil plates of both soil types (Figure 11).   

In January, 2011, L. maackii seeds were surface sterilized by soaking in a 10% 

chlorine bleach solution for 10 minutes and rinsed with autoclaved water and then 

germinated in petri dishes on Whatman No. 2 filter paper in an incubator at 24°C, using 

100mg/L concentration of gibberellic acid to hasten germination rates (Hidayati, et al. 
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2000). Diervilla lonicera seeds were  purchased from Gardens North (wild collected in 

Canada), Annapolis Royal, NS, Canada, and germinated in petri dishes in an incubator at 

24°C on autoclaved sand moistened with autoclaved deionized water in January, 2011.  

In February, 2011, I planted all viable germinated seeds of both species in 300mL 

propagation cell packs, contained in self-watering trays, purchased from BFG,  using 

sterilized ProMix BX potting mix without mycorrhizae (Premier Horticulture Inc. 

Quakertown, PA). Plants were maintained in a temperature-controlled greenhouse under 

ambient light supplemented with fluorescent lights between 0700 and 2100.  Fraxinus 

pennsylvanica plants were not used in the feedback experiment.  

On March, 27, 2011, I removed seedlings of each species from cell packs and 

disposed of any loose potting mix then planted seedlings in 0.5L pots in each  possible 

combination (reciprocally) of soil type, conditioning and sterilization levels. I had 8 

replicates each, totaling 256 (2x2x4x2x8) pots (Figure 1). Plants were haphazardly 

assigned a location on tables in the greenhouse and rotated biweekly to ensure equal light 

exposure and to minimize microclimatic effects.  

Height and basal stem diameter (BSD) were measured at the start of the 

experiment and biweekly thereafter. All plants were harvested after 12 weeks (June, 

2011), separated from soils by rinsing under running water until roots were clean, and 

dried at 60C for 48 hours before weighing roots and shoots individually.  All statistical 

analyses were performed using SAS (Version 9.2). Final dry total biomass, root and shoot 

biomass, root/shoot ratios, height, and BSD of each species were compared among soil 

types, conditioning treatments, sterilization treatments and their interactions with three-

way ANOVA. Means within conditioning, sterilization and soil types were compared 
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using Tukey’s tests. The effects of the same factors on changes in height and BSD were 

analyzed with repeated measures MANOVA. Correlations between all end-of-season 

measures (total dry biomass, root and shoot biomass, root/shoot ratios, height, and BSD) 

were made using Pearson correlations.  

I treated all plants periodically for spider mite infestation in mid-May through 

early-June 2011, using AVID® (Syngenta) miticide per manufacturer’s instruction. 

 

 

Soil Chemical Properties 

 

 In order to determine how each species affected the nutrient content and other soil 

attributes, soils were analyzed after the conditioning phase. I collected soil samples (225 

g) from within each tub, sieved and packaged according to treatment level. Analyses for 

pH, organic matter, total N, NH4, NO3, available P, exchangeable K, Mg, and Ca, Cation 

Exchange Capacity (CEC), and  percent base saturation, were performed by Spectrum 

Analytic, in Washington Court House, Ohio.  

 In order to examine how putative allelochemicals varied among soils and 

treatments, I quantified total soluble phenolic concentrations of soil (modified from 

Scharfy 2010). I made soil extracts by adding 5 mL of 50% ethanol to 1 g of sieved soil 

and placed them on a shaker at 200 rpm for 1 h. Samples were then centrifuged at 10000 

rpm for 5 minutes and the supernatant retained. I diluted a 3-mL aliquot of this extract 

with 2 mL of autoclaved deionized water and  added 100 L Folin-Ciocalteu-reagent 

followed by 300 L of 2 M Na2CO3 after 8 minutes. Phenolics producing absorbance at 

760 nm were detected in a microplate reader after 1 h. A standard curve for phenolics 
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was prepared with gallic acid. Results of the soil analyses for N, P, K, and pH and total 

phenolics were not analyzed statistically because of the absence of biological replication. 

 

 

Community level physiological profiles (CLPP) using Biolog® EcoPlate™ 

 

 The Biolog® EcoPlate™ is used by microbial ecologists to analyze microbial 

community footprints over time and is a good tool for analyzing changes in response to 

soil conditioning. The EcoPlates™ were designed for the ecological study of whole 

microbial communities rather than indentifying individual strains. The Biolog® 

microplates contain 31 carbon substrates (with 3 technical replicates) and allow 

measurement of substrate utilization by microbial communities. Microorganisms utilize 

the substrates causing changes in the color formation of the tetrazolium dye and light 

absorbance is measured by a spectrophotometer (Stefanowicz, 2006).  

 After conditioning, I collected soil samples (10 g dry weight, approximated from 

moist soil) from each tub of soil, first by taking core samples randomly from the tub, 

mixing them thoroughly and weighing the required amount. Samples were kept on ice 

and shaken for 60 min in 20 mL of a 10 mM Bis-Tris (C4H11NO3) solution (pH 7) and 

allowed to settle for 30 minutes. I decanted the extracts immediately.  I first made serial 

dilutions and then added 100 l of the 1:1000 diluted solution to each microplate well 

and incubated it at 22C. Substrate utilization was monitored by measuring light 

absorbance at 590nm. Measurements were made immediately following inoculation and 

at 12h intervals for 6 days during March, 2011. I accounted for background absorbance 

by subtracting the absorbance of the least utilized substrate, which varied by conditioning 

treatment, to prevent negative values (Hitzl et al. 1997). I used the corrected absorbance 
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values to calculate the average well color development (AWCD) which was 0.42. The 

point chosen for analysis was based on the reading that exhibited the same mean as the 

AWCD which best represents the optimal incubation time based on substrate utilization 

(Stefanowicz, 2006). Community level physiological profiles (CLPP) were analyzed by 

Principal Components Analysis (PCA) using R (V. 2.14.1). Community Average 

Metabolic Response (AMR) depicts the average respiration of carbon substrates. AMR of 

conditioned soils was calculated by averaging the mean difference between the 

absorbance value of the substrate wells and the control well (value of the least used 

substrate). Community Metabolic Diversity (CMD), which represents community 

richness, reflects the number of utilized substrates, and is calculated by adding the total 

number of positive responses after incubation. A positive response was established based 

on observed purple coloration of the wells. The threshold was set at an absorbance of 0.1. 

Both AMR and CMD were graphed as a function of incubation time in Sigma Plot.    
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RESULTS 

 

Effects of soil type and conditioning on soil properties 

 

 Conditioned soils of both types were analyzed for pH, nutrient and phenolic 

levels, and other properties, but were not compared statistically due to analyzing only one 

sample per soil type. However, several general patterns were observed. Wright State soil 

had higher pH levels, more organic matter, and greater cation-exchange capacity than 

Shawnee soil. Soil type seemed to affect soil nutrient levels. Wright State soil had greater 

nutrient availability than Shawnee soil treatments after conditioning, though Shawnee 

soil had higher levels of Mg than Wright State soil. Interestingly, P levels, albeit low to 

start, did not vary in Shawnee soil treatments yet decreased by at least 20% with 

conditioning in Wright State soil. Calcium/magnesium ratios were twice as high in 

Wright State soil compared to Shawnee soil. Phenolics tended to be higher overall in 

Wright State soil than in Shawnee soil (Table 1).   

Conditioning also appeared to have an impact on pH levels. In both soils, 

conditioning by all three species seemed to result in a higher pH than unconditioned soils, 

with a minimum increase of 0.4 in Wright State soil and a minimum increase of 0.8 in 

Shawnee soil treatments. Conditioning also appeared to influence nutrient levels. For 

instance, K and P levels decreased with conditioning when compared to unconditioned 

soils from Wright State soil treatments. Ca increased with conditioning, akin to the 

increase in soil pH. In Shawnee soils, Fraxinus-conditioned soil had more K and 

Diervilla-conditioned and Lonicera-conditioned soils had lower K than unconditioned 

soil. NH4 and NO3 levels varied widely with conditioning levels. Ca:Mg tended to 

increase with conditioning in both soils, but more so in Wright State soil. The trend seen 
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in phenolics was different among conditioning treatments. The highest phenolic level was 

in Wright State, Diervilla-conditioned soil and the lowest was in Shawnee, Fraxinus-

conditioned soil. Phenolic levels seemed to be highest in Diervilla-conditioned soil in 

both soil types. In Wright State soil, Fraxinus-conditioned soil had the second highest 

phenolic level (Table 1).                    

 

 

Effects of soil type and conditioning on growth of Lonicera maackii  

 

For L. maackii, there was a significant effect of soil type on total biomass (Table 

2). Plants were larger overall in Wright State soil than in Shawnee soil (Figure 2). 

Conditioning alone had no significant effect on L. maackii’s biomass; however there was 

a significant interactive effect between soil type and conditioning (Table 2). In general, 

plants responded to the conditioning treatments differently in Shawnee soil than in 

Wright State soil (Figure 2). For example, plants grew similarly in Wright State soil 

regardless of conditioning and total biomass was significantly greater in its own 

conditioned soil and that of Fraxinus-conditioned soil than unconditioned or Diervilla-

conditioned soil in Shawnee soil treatments. Sterilization had a significant positive effect 

on total biomass of L. maackii overall (Table 2, Figure 2), but there was a highly 

significant interactive effect between soil type and sterilization (Table 2). Sterilizing soils 

significantly increased total biomass of L. maackii across all conditioning treatments in 

Wright State soils, but had an overall negative effect in Shawnee soil (Table 2, Figure 2). 

Finally, soil conditioning and sterilization had a significant interactive effect on total 

biomass (Table 2). Sterilization tended to benefit growth more in unconditioned and in 

Diervilla-conditioned soils than it did in Lonicera- and Fraxinus-conditioned soils, a 
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pattern seen most clearly in Wright State soil. However, the three way interaction of soil 

type, conditioning, and sterilization was not significant (Table 2). The patterns of 

significance and effects on total biomass were similarly reflected in root and shoot 

biomass (Table 4, Figure 2). All end-of-season measures were significantly correlated 

with each other, with the exception of root/shoot ratio and root biomass.  

Soil type had a significant effect on root/shoot ratios, which were higher overall in 

Shawnee soil (Table 6, Figure 4). There was no significant effect of conditioning alone, 

or its interaction with soil type. Sterilization and its interaction with soil type had 

significant impacts on root/shoot ratios (Table 6). Sterilization increased root/shoot ratios 

in Shawnee soil treatments, but in Wright State soil, root/shoot ratio was not affected by 

sterilization. There was also a significant interactive effect between conditioning and 

sterilization (Table 3). Sterilizing soils increased root/shoot ratios in all conditioning 

levels with the exception of a decrease in Diervilla-conditioned soils (Figure 4). There 

was also a significant three way interaction, where this same pattern was seen in Shawnee 

soil treatments but in Wright State soil treatments, sterilization did not affect ratios across 

conditioning treatments (Figure 4).  

Height of L. maackii was significantly impacted by soil type (Table 7). Plants 

were generally taller in Wright State soil treatments than in Shawnee soil (Figure 5). 

Conditioning had no independent effect, but there was a significant interactive effect 

between soil type and conditioning (Table 7). The tallest plants grew in unconditioned 

Wright State soil, while the shortest plants were in Shawnee soil conditioned by F. 

pennsylvanica and L. maackii (Figure 5). Sterilization alone had no significant effect on 

height; however, there was a significant interaction between soil type and sterilization 
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(Table 7). Sterilization increased height in all Wright State soil treatments, but generally 

decreased height in Shawnee soil (Figure 5). There was also an interactive effect between 

conditioning and sterilization on plant height (Table 7). Sterilization had the most 

positive effect on Diervilla-conditioned soils, and was the only conditioning treatment in 

which sterilization increased height in Shawnee soil (Figure 5). The three way interaction 

was not significant. Basal stem diameter (BSD) had similar patterns of significance and 

effects as height patterns (Table 7, Figure 5).  

Height of L. maackii changed through time. Time, as a factor, significantly 

interacted with both soil type and sterilization, and sterilization interacted with both soil 

type and with conditioning (Table 8). For example, plants in unconditioned and sterilized 

Wright State soil started equally with other treatments, but clearly were the tallest around 

day 28 and were quite taller than all others. Conversely, plants in Lonicera-conditioned 

and in unsterilized Wright State soils did just the opposite. Soil type and sterilization 

individually significantly affected BSD through time but conditioning did not (Figure 6).  

There was no four way interaction on height or BSD.  Patterns in BSD mirrored height 

patterns (Figure 6, Table 8). 

 
 

Effects of soil type and conditioning on growth of Diervilla lonicera 

 

Soil type had no significant effect on total biomass of Diervilla lonicera, but 

conditioning had a significant impact (Table 3). Total biomass was higher in 

unconditioned soil than in conditioned soil and D. lonicera grew significantly less in its 

own conditioned soil than in all other treatments (Figure 2). Soil type and conditioning 

had a significant interactive effect on total biomass (Table 3). Plants had the same general 
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patterns in both soil types, with the exception that they performed best in unconditioned 

Wright State soil, and in Lonicera-conditioned treatment in the Shawnee soil (Figure 2).  

Sterilization had a highly significant effect and resulted in increased biomass overall 

(Table 3, Figure 2). There was no significant interactive effect between soil type and 

sterilization but there was a significant interaction between conditioning and sterilization. 

Sterilization had the most positive impact in Diervilla-conditioned soils (Figure 2). There 

was no significant three-way interaction between treatment factors (Table 3).   

Individually, soil type and conditioning did not significantly affect root biomass, 

but they had an interactive effect (Table 3). In Shawnee soil, root biomass was highest in 

Lonicera-conditioned soils, but in Wright State soils, it was highest in unconditioned 

soils (Figure 3). Sterilization significantly increased root biomass across all treatments 

(Table 3, Figure 3). Soil type and sterilization had no significant interactive effect, though 

conditioning did significantly interact with sterilization (Table 3). Sterilization clearly 

increased growth of D. lonicera most in Diervilla-conditioned and Lonicera-conditioned 

soils. The three way interaction of soil type, conditioning, and sterilization was not 

significant (Table 3).  Shoot biomass was significantly affected by soil type (Table 3) 

with plants growing larger in Wright State soil than in Shawnee soil treatments.  

Conditioning had a significant effect on shoot biomass with Diervilla-conditioned soils 

resulting in the smallest shoots  (Table 3, Figure 3). Sterilizing soils significantly 

increased shoot biomass across all treatments (Table 3, Figure 3). Soil type and 

sterilization had a significant interaction (Table 3). Sterilization was more beneficial in 

the Wright State soil than in Shawnee soil (Figure 3). There was a significant interactive 

effect between conditioning and sterilization (Table 3). Shoot biomass of plants in 
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Diervilla-conditioned soils responded more positively to sterilization than in other 

conditioning treatments (Figure 3). There was no significant three-way interactive effect 

between treatment factors (Table 3).   

Nearly all end-of-season measures of D. lonicera were significantly positively 

correlated (Table 7). Height, BSD, root, shoot, and total biomass were all significantly 

positively correlated with each other (Table 7). Root/shoot ratio was not significantly 

correlated with height, BSD, and shoot biomass, but was significantly positively 

correlated to root biomass and total biomass.  

The root/shoot ratio was significantly higher in Shawnee soil treatments than in 

Wright State soil (Table 6, Figure 4). There were no significant impacts to root/shoot 

ratios by conditioning or the interaction of soil type and conditioning. Sterilization 

significantly impacted root/shoot ratios both independently and in its interaction with soil 

type. Root/shoot ratios were highest in sterilized Shawnee soil treatments (Table 6, 

Figure 4). There was no significant three way interactive effect on Diervilla root/shoot 

ratios. 

Soil type had no significant impact on height of Diervilla. Conditioning alone had 

a significant effect on height (Table 7). Plants generally grew tallest in unconditioned 

soils and shortest in Diervilla-conditioned soils (Figure 7). The interaction of soil type 

and conditioning significantly affected height (Table 7). For example, plants grew taller 

in unconditioned Wright State soil than in unconditioned Shawnee soil, but grew the least 

in Diervilla-conditioned Shawnee soil treatments (Figure 8). Sterilizing soils significantly 

increased overall plant height (Table 7, Figure 7). There was an interactive effect 

between soil type and sterilization (Table 7). Plant heights were increased by sterilization 
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more strongly in Wright State soil than in Shawnee soil (Table 7; Figure 7). There was a 

significant interactive effect between sterilization and both soil type and conditioning 

(Table 7). For example, plants were taller in unsterilized Shawnee soil conditioned by the 

three species than in unsterilized Wright State soil conditioned by the three species. 

However, sterilization increased height more strongly in Wright State soil than in 

Shawnee soil. Sterilization increased height most in Wright State soil and had the most 

positive effect in Diervilla-conditioned soil. Patterns in BSD were very similar, though 

there was no significant interaction between soil type and conditioning on BSD (Table 7).  

Height and BSD of Diervilla changed through time and significantly interacted 

with almost every other factor, the exception being the four way interaction on both 

height and BSD (Table 9). For instance, plants in sterilized, Wright State, unconditioned 

soil were indistinguishable from other treatments at the start, but surpassed height in 

other treatments on day 70 and then were tallest at harvest. Plants in unsterilized, Wright 

State, Diervilla-conditioned soils grew the least throughout the experiment. BSD patterns 

followed suit (Figure 8). 

 

 

Effects of soil type and conditioning on microbial community shifts  

 

Biolog® data revealed that there were no major patterns in microbial communities 

caused by conditioning. Principal components analysis (PCA) revealed a pattern in 

microbial community composition based on soil type, where different communities were 

cultivated by the different soils (Figure 9). The first two principal components explained 

59% of the variation in Biolog® data (PC1: 33.96%, PC2: 25.13%). Average metabolic 

response (AMR) was higher over all in Shawnee soils and highest in Diervilla-
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conditioned soils. Unconditioned Wright State soil was the first to show a metabolic 

response (substrate utilization indicated by development of tetrazolium dye); however it 

had the lowest response at the end of incubation compared to all other treatments. 

Interestingly, unconditioned Shawnee soil and Lonicera-conditioned Wright State soil 

had nearly the same final metabolic response, though their patterns over time differed 

considerably (Figure 10). Community functional richness was generally higher in 

Shawnee soils. Fraxinus-conditioned soils cultivated the highest community functional 

richness in both soil types. Diervilla-conditioned Shawnee soils, Lonicera-conditioned 

Shawnee soils and Fraxinus-conditioned Wright State soils had similar richness levels at 

the end of incubation, but differed in their development over time. Fraxinus-conditioned 

Wright State soils maintained the highest richness from 48 hours through120 hours, only 

to be surpassed at the last observation by Fraxinus-conditioned Shawnee soils. 

Unconditioned Wright State soils cultivated the lowest community richness (Figure 10). 

 

 

Feedback effects of soil type, conditioning and sterilization on plant growth 

 

 In Shawnee soil treatments, total biomass of L. maackii was higher in both 

conspecific and heterospecific soils that were unsterilized than in unconditioned soils, 

showing evidence of positive feedbacks, but showed the opposite pattern in Wright State 

soils conditioned by L. maackii or F. pennsylvanica. However, sterilization generally led 

to decreased biomass of L. maackii in Shawnee soil, thereby changing feedback direction 

in that soil. In Wright State soil, sterilization made the negative feedback even stronger 

(Figure 2). Diervilla lonicera experienced strong negative feedback in unsterilized in 

Wright State soil conditioned by both conspecifics and heterospecifics, but experienced 



30 
 

negative feedback in its own soil in unsterilized Shawnee soils. Total biomass was lower 

in Diervilla-conditioned soils than unconditioned soil in both soil treatments, but was 

~80% lower in Wright State soil compared to ~50% lower in Shawnee soil. Sterilization 

increased biomass of Diervilla overall and eliminated evidence of feedback in Wright 

State soil and resulted in positive feedback in Shawnee soil treatments (Figure 3). 
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DISCUSSION 
 

 
  
Feedback effects of soil type and conditioning on growth of Lonicera maackii 

 

Our results indicate that both soil type and soil biota play a large role in plant-soil 

feedback. I hypothesized that L. maackii would experience positive feedback overall in 

both soils because it is not native to North America. Usually plants display negative 

feedback in their native soils and positive feedback in nonnative soils (Klironomos 2002; 

Beckstead and Parker 2003; Callaway et al. 2004a; Reinhart and Callaway 2004; Van 

Grunsven et al. 2007).  Lonicera maackii showed positive feedback in unsterilized 

Shawnee soil, growing almost twice as much in its own soil versus unconditioned soil in 

accordance with predictions. I expected plants in Shawnee soils to show reduced positive 

feedback compared to Wright State soil, but contrary to prediction, feedback was 

relatively neutral to slightly negative in Wright State soils. I found L. maackii to be less 

affected by conditioning alone than by soil type and its interactions with conditioning and 

sterilization. The interaction between sterilization and soil type was the most significant 

factor affecting the nature of feedback in L. maackii. In Wright State soil, L. maackii 

grew similarly in unsterilized soil whether it was conditioned or not but responded very 

positively to soil sterilization. This may indicate that this soil type contained pathogens 

that suppressed its growth, indicating that biotic controls were more important than 

abiotic controls. Others have found that invasives initially benefit from soil biota in 

nonnative regions, but over time the soil microbial community becomes inhibitory 

(Reinhart and Callaway, 2004). Indeed, Kardol et al., (2006) found that mid-successional 

plant species displayed neutral feedback which might mean that this exotic has achieved 
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peaked invasion in this region and may be on a decline. Lonicera maackii may have 

experienced positive feedback in unsterilized Shawnee soils by taking advantage of 

mutualists not previously encountered in this soil type. Reinhart and Callaway (2004) 

found increased benefit from mutualisms when invasives have escaped natural enemies. 

Others have found increased mycorrhizal formation in soils beneath L. maackii compared 

to soils beneath natives which were uninhabited by L. maackii (Alverson, unpublished). 

Because sterilization reversed the sign of feedback between soil types, it suggests that 

different biotic factors were important in each soil type. Patterns of growth of L. maackii 

in Shawnee soil supported that it had benefitted from mutualisms that were destroyed by 

sterilization. Patterns of growth in Wright State soil developed during conditioning 

suggesting that it was negatively affected by pathogens that accumulated during 

conditioning that were killed by sterilization, even in unconditioned soils. Despite this, 

feedback became even more negative with sterilization in Wright State soil partly 

because plants in unconditioned soils responded so positively to sterilization. This also 

suggests that L. maackii’s phytochemicals may somehow suppress its growth in the 

absence of biotic symbioses. In Wright State soils, L. maackii performed similarly in its 

own soils and in F. pennsylvanica and D. lonicera soils. In Shawnee soils, L. maackii did 

better in its own soil than in other soils supporting our argument that feedback is 

dependent on soil type. Our results show that L. maackii is more negatively affected by 

organisms in soils where it has invaded than in soils where it is not prevalent. This might 

be because microbial richness was lower in Wright State soils than in Shawnee soils, but 

also because different microbial communities exist in the two soils as indicated by the 
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Biolog data.  This could also mean that microbes in the Shawnee area are naïve to L. 

maackii and have not yet evolved to interact and limit growth of L. maackii.  

 

Feedback effects of soil type and conditioning on growth of Diervilla lonicera 

Native species may be more susceptible to biotic factors than exotics. Our 

findings suggest that a native species was controlled by negative feedbacks in its native 

soil. Diervilla lonicera displayed negative feedback overall in its own unsterilized soil 

and in heterospecific soils in the Wright State soil type. This finding is similar to other 

studies and is most likely due to accumulated soil pathogens, or “natural enemies” 

(Klironomos, 2002; Beckstead and Parker, 2003). Sterilization enabled us to observe 

changes in plant growth caused by biotic conditions. Sterilization affected growth more 

so than any other factor for D. lonicera. Sterilizing soils generally eliminated evidence of 

negative feedback in either soil type. This finding is consistent with other research of 

native species in native soils (Mangan, et al., 2010) and suggests that local soil biota may 

be a key factor in the decline of a less abundant native plant species. It is important to 

mention that sterilization can release nutrients into the soil and it is often controlled for 

by fertilization (Troelstra et al., 2001). However, because I had different responses to 

sterilization between species, I feel that the results of sterilization are not due to nutrient 

release caused by sterilization. By using lower sterilization temperature, I was able to 

minimize nutrient and phenolic conversion effects and I confirmed that sterilization 

effectively eliminated microbes by culturing soil extracts. Biolog® data revealed that 

there were no obvious patterns in microbial community changes caused by conditioning, 

meaning that species generally cultivated the same communities and species-specific soil 
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microbial communities did not appear to be a major factor in feedback effects. However, 

there seemed to be a pattern in microbial community composition based on soil type.  

Different communities were cultivated by the different soil types, most likely having a 

stronger influence on growth of L. maackii and D. lonicera. This pattern is supported by 

community level physiological profiles (CLPP) which showed that Shawnee soils 

cultivated microbial communities with higher average metabolic response (AMR) and 

community metabolic diversity (CMD) than Wright State soils. Biolog results should be 

interpreted with caution because they may not fully represent species diversity or 

richness. An experiment with added nutrients may allow for clearer interpretation of 

these results.    

 

Effects of soil type and conditioning on root/shoot ratios of Lonicera maackii 

Low root/shoot ratios is a trait associated with many invasive plants (Ehrenfeld, 

2003). Conditioning alone had little impact on root/shoot ratios but sterilization increased 

root/shoot ratios of L. maackii in Shawnee soils, with the exception of Diervilla-

conditioned soils. In Wright State soil, where sterilization benefitted biomass, root/shoot 

allocation did not change with sterilzation. Lonicera maackii is known to display 

plasticity in resource allocation (Luken 1988, Luken 1997). Indeed, exotic invasives can 

be more plastic than native species when not limited by resources (Davidson, et al., 

2011).  Lonicera maackii put more resources into root biomass in sterilized Shawnee 

soils where sterilization presumably destroyed mutualists and caused negative feedback.  

This may have been particularly important because of the poorer soil nutrient profile in 
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this soil type. Controlling resource allocation clearly provides a competitive advantage. 

Plasticity could strengthen its invasive capability through evolutionary change.  

 

Effects of conditioning on growth of both species 

 I expected more growth of both species in soil conditioned by other species than 

in their own conditioned soil. My findings support this for native D. lonicera, which grew 

significantly less in its own conditioned soil across both soil types. However L. maackii 

promoted its own growth in one soil type but not in the other, but effects on itself were 

largely similar to effects caused by heterospecifics. While L. maackii is not prevalent in 

the Shawnee area at present time, this positive feedback implies that it can successfully 

invade the area if given a chance. Allelopathic compounds are known to cause changes in 

microbial communities and vice versa (Inderjit, 2005: Callaway et al. 2004a; Callaway et 

al. 2008) and both allelochemicals and microbes have effects on nutrient cycling 

(Ehrenfeld 2003; Hawkes et al. 2005) and these interactions can affect ecosystem 

feedbacks and thereby composition (Klironomos 2002; Beckstead and Parker 2003; 

Callaway et al. 2004a; Hawkes, et. al, 2005; Reinhart et al. 2005; Beest et al. 2010). Both 

species performed similarly in unsterilized Lonicera-conditioned soil and in Fraxinus-

conditioned soil, which suggests that they modify soils similarly In fact, F. pennsylvanica 

is invasive in Hungary where research showed evidence of reduced germination rates and 

shoot and root length of white mustard  (Sinapis alba L) caused by green ash extracts 

compared to a control (Csiszár, 2009). Using multiple plant species to first condition soil 

allows us to make predictions about patterns of invasion based on current ecosystem 
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composition. It appears that L. maackii has no different effects than a widespread tree, 

but its responses might vary. 

 

Effects of conditioning on soil chemical properties    

 I expected L. maackii to cause large changes in soil chemistry and microbial 

profiles due to its documented allelopathy (Cipollini and Dorning 2008; Cipollini et al. 

2008a/b). In Shawnee soil, phenolic levels were lower in Lonicera-conditioned soils than 

in unconditioned soils, but they increased overall in Wright State soils. Different soil 

microorganisms degrade or magnify allelochemicals differently, possibly explaining 

differences seen between soil types (Inderjit, 2005). Though it has not been well studied, 

some phenolic compounds are known to be oxidized by high heat (Daskalaki et al., 2009) 

so the net effect of allelopathy may not be observable with sterilization. Phenolics should 

be compared before and after sterilization to better account for their putative effects. 

Interestingly, unsterilized Diervilla-conditioned soil generally had the highest total 

phenolics in both soil types.   

 

Implications, conclusions and future research  

Often, studies are missing key components when examining successful invasions. 

For example, they may only test “Enemy Release Hypothesis” (Beckstead and Parker, 

2003; Reinhart and Callaway, 2004) rather than exploring both abiotic factors, such as 

soil type and biotic factors such as microbial changes using Biolog® Ecoplates. Because 

there were so many significant interactions in this study with soil type, it is important that 

studies consider accounting for soil attributes. Using two distinct soil types allowed us to 
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compare potential feedback effects if plants are introduced to new areas which can help 

make predictions of their success or failure to invade that particular habitat. Conducting 

studies for adequate growth periods and taking measurements throughout the study rather 

than just end of season measures is important, as I noted significant differences through 

time. For instance, if I had stopped midway through our experiment, I would not have 

detected how dynamic plant-soil interactions can be over time. If I had stopped at day 28, 

where the height of L. maackii in sterilized, unconditioned Wright State soils, was similar 

to other Wright State soil treatments, I would not have detected the significant effect of 

sterilization that was evident at the end of the experiment. 

Study into the field of plant-soil feedback is still lacking, but is growing in 

popularity as new evidence is uncovered. In light of our results, I cannot say that plant-

soil feedback plays any more significant role in L. maackii’s successful invasion, though 

there was a tendency for feedbacks in unsterilized soils to be neutral to positive for L. 

maackii. In unsterilized soils where this species dominates, feedback was neutral, but 

strongly negative in sterilized soils. Both biotic and abiotic factors can influence plant-

soil feedback in general. By using sterilization, I was able to demonstrate that native 

species success is heavily reliant upon microbes. 

Though our results indicate that both soil type and soil microorganisms play a 

large role in plant-soil feedback, feedback in the invasive success of L. maackii is 

dependent on soil type. Most importantly, our evidence reveals that sign and strength of 

feedback can vary with soil source in native versus non-native species. More in depth 

analysis of soil properties, including proper biological repetition, would provide a better 

understanding of the impact of conditioning. It would also be beneficial to compare 
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growth of L. maacki in soils from its native and invaded regions. I suggest that these 

elements be considered in future research. 
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TABLES 

 
 

Table 1: Effects of soil conditioning by three different plant species in two soil types on soil properties. 

Several plants of each species were first grown in containers of each soil type for six months to condition 
soil, while an unconditioned soil for each soil type was maintained in the same manner. 

                                                                 Wright State soil                                          Shawnee Soil   

Factors 

 

DL FP LM UN DL FP LM UN 

pH 

 

7.9 7.8 8.0 7.4 7.0 6.9 7.1 6.1 

Organic matter (%)            

 

1.3 1.8 1.5 1.9 1.3 1.6 1.2 1.4 

Total N (%) 

 

0.2 0.55 0.14 0.21 0.37 0.29 0.24 0.40 

NH4 (ppm) 

 

20 8 7 1 7 9 4 8 

NO3 (ppm)                                  

 

7 9 8 43 5 48 6 65 

Available P (ppm) 

 

37 34 30 46 4 3 3 3 

Exchangeable K (ppm)                            
 

104 103 84 163 44 64 48 62 

Exchangeable Mg (ppm)                            

 

285 286 258 368 205 257 252 192 

Exchangeable Ca (ppm)                            

 

3451 3549 3779 3010 1163 1559 1535 1010 

CEC 

 

15.3 15.6 16.2 14.3 6.9 9.2 8.5 5.3 

K (% BS)                            

 

1.5 1.4 1.1 2.4 1.4 1.5 1.2 2.5 

Mg (% BS)                            

 

13.7 13.4 11.6 18.8 21.9 20.5 21.8 26.4 

Ca (% BS)                            

 

84.8 85.2 87.2 78.7 63.6 63.5 67.9 71.1 

Phenolics (µg g-1 soil) 0.206 0.180 0.158 0.173 0.181 0.125 0.165 0.126   
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Table 2: Results of three-way ANOVA of soil type, soil conditioning, and soil sterilization on root, shoot 

and total biomass on Lonicera maackii. 

                   Root biomass       Shoot biomass Total biomass 

Factors           df              F P F P F P 

Soil Type (T)  

 

1 31.52   <0.0001 52.95 <0.0001 47.14 <0.0001 

Condition (C)                 3   1.94 0.1277 2.06   0.1101  1.81  0.148 

T x C                                 3   6.50 0.0004 9.27 <0.0001  8.52 <0.0001 

Sterilization (S)                 1      11.4 0.0010 6.87   0.0100  6.68   0.0101 

T x S                                  1 59.78   <0.0001    95.57 <0.0001 87.05 <0.0001 

C x S                                  3  3.64 0.0150 3.81   0.0121  3.60   0.015 

T x C x S                            3  0.68 0.5661 2.16   0.0967  1.57   0.200 

Error                              112 
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Table 3: Results of three-way ANOVA of soil type, soil conditioning, and soil sterilization on root, shoot 

and total biomass on Diervilla lonicera. 

                      Root biomass Shoot biomass Total biomass 

Factors       df                F         P F P F P 

Soil Type (T)  

 

1   2.03  0.1574  15.94 <0.0001    2.76  0.0998 

Condition (C)                 3   0.47  0.7035  26.05 <0.0001  15.73 <0.0001 

T x C                                 3   4.40  0.0058  18.31 <0.0001  15.58 <0.0001 

Sterilization (S)                 1   166.58   <0.0001 412.03 <0.0001   426.27 <0.0001 

T x S                                  1   2.67  0.1054  14.9   0.0002     3.02   0.0854 

C x S                                  3   2.67  <0.0001  15.68 <0.0001   20.87 <0.0001 

T x C x S                            3   0.81   0.4912    2.56   0.0589      2.53   0.0614 

Error                                 106 
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Table 4: Correlation matrix of Lonicera maackii end-of-season measures. Numbers represent: Pearson 

Coefficients, P-value and sample size.  

End of season 

measures 

   Height  Basal stem 

diameter 

Root 

biomass 

Shoot 

biomass  

Total 

biomass 

      R:S 

Height  0.88268 0.79493 0.89415 0.89965  -0.41990 

 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

       128 128 128 128 128 

Basal stem 

diameter 

  0.85516 0.89904 0.91692 -0.22397 

  <0.0001 <0.0001 <0.0001 0.0110 

  128 128 128 128 

Root biomass    0.92006 0.95115 -0.04522 

   <0.0001 <0.0001 0.6123 

   128 128 128 

Shoot biomass     0.99384 -0.34184 

    <0.0001 <0.0001 

    128 128 

Total biomass      -0.27039 

     0.0020 

     128 

R:S       
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Table 5: Correlation matrix of Diervilla lonicera end-of-season measures. Numbers represent: Pearson 

Coefficients, P-value and sample size.  

End of season 

measures 

 Height  Basal 

stem 
diameter 

Root 

biomass 

Shoot 

biomass  

Total   

biomass 

     R:S 

Height  0.67569 0.55717   0.87792 0.82128  -0.02157 

 <0.0001 <0.0001   <0.0001 <0.0001     0.8136 

       122       122          122 122          122 

Basal stem 

diameter 

  0.49240 0.73588 0.69880 0.01299 

  <0.0001 <0.0001 <0.0001 0.8871 

        122 122 122 122 

Root biomass    0.68571 0.87770 0.72080 

   <0.0001 <0.0001 <0.0001 

   122 122 122 

Shoot biomass     0.94878 0.02323 

    <0.0001 0.7995 

    122 122 

Total biomass      0.33142 

     0.0002 

     122 

R:S       
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Table 6: Results of three-way ANOVA of soil type, soil conditioning, and soil sterilization on 

root/shoot ratio of Lonicera maackii and Diervilla lonicera. 

                                                                     Lonicera maackii                        Diervilla lonicera   

         Factor                    df                         F                       P                       F                            P 

 Soil Type (T)  

 

1 8.65 0.004 10.55 0.0016 

   Condition (C)                 3 0.58 0.6278 2.05 0.1112 

   T x C                                 3 1.45 0.2316 1.52 0.2127 

   Sterilization (S)                 1 7.01 0.0093 6.59 0.0117 
   T x S                                  1      11.00 0.0012 9.01 0.0033 

   C x S                                  3 5.92 0.0009 1.18 0.3197 
   T x C x S                            3 2.76 0.0457 0.04 0.9881 

                                                   Error: 112           Error: 106 
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Table 7: Results of three-way ANOVA of soil type, soil conditioning, and soil sterilization on height and BSD 

of both species. 

                                                               Lonicera maackii                                           Diervilla lonicera   

       Height                      BSD Height BSD 

Factors df F P F P F P F P 

 Soil Type (T)  1 23.89  <0.0001    30.20 <0.0001    2.99  0.0867   5.58   0.0200 

 Condition (C)                 3   0.65 0.5874 1.08   0.3586  32.69 <0.0001 11.65 <0.0001 

 T x C                                 3   6.19 0.0006  5.76 0.0011  13.74 <0.0001   0.24   0.8690 

 Sterilization (S)                 1   0.08 0.7730  1.31 0.2549 222.11 <0.0001 84.66 <0.0001 

 T x S                                  1 57.86  <0.0001     45.45 <0.0001  26.75 <0.0001   0.50 <0.0001 

 C x S                                  3   5.69  <0.0001  1.74 0.1621  16.52 <0.0001   7.52  0.0001 

 T x C x S                            3   0.82 0.4873  0.53 0.6614    2.59   0.0564   1.07  0.3644 

  

 

Error:112 

 

  

 

  Error:106   

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   



46 
 

Table 8:  Results of Repeated measures MANOVA with Wilks’ lambda test (W) for the effect of time 

and its interactions with soil type, soil conditioning, and soil sterilization on height and BSD on Lonicera 

maackii.  

  

                Height                    BSD 

Subject 
                    df       W     F    P W       F P 

 Time 

 

6 0.047 354.94  <0.0001 0.056 298.35  <0.0001 

 Time x Soil Type (T)                  6 0.692 7.92  <0.0001 0.761 5.6  <0.0001 

 Time x Condition (C)                 6 0.778 1.56 0.0701 0.800 1.38  0.1389 

 Time x T x C                                 18 0.816 1.25 0.2201 0.715 2.12  0.0055 

 Time x Sterilization (S)                 6 0.717 7.01  <0.0001 0.877 2.49  0.0268 

 Time x T x S                                  6 0.666 8.92  <0.0001 0.709 7.29 <0.0001 

 Time x C x S                                  18 0.729 1.99     0.0101 0.775 1.58   0.0626 

 Time x T x C x S                            18 0.807  1.32 0.1739 0.828 1.16   0.2945 

 Error                                  112 
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Table 9:  Results of Repeated measures MANOVA with Wilks’ lambda test (W) for the effect of time 

and its interactions with soil type, soil conditioning, and soil sterilization on height and BSD on Diervilla 

lonicera.  

 

    Height Basal stem diameter 

Factors                                         df           W                   
 

F P W     F      P 

 Time 

 

6 0.013 1252.34    <0.0001 0.031 515.76  <0.0001 

 Time x Soil Type (T)                  6 0.701       2.13  0.0054 0.670  2.41 0.0013 

 Time x Condition (C)                 6 0.701      2.13  0.0054 0.670  2.41 0.0013 

 Time x T x C                                 18 0.621      2.91 <0.0001 0.741  1.77 0.0284 

 Time x Sterilization (S)                 6 0.451     20.47 <0.0001 0.675  8.08  <0.0001 

 Time x T x S                                  6 0.810      3.94   0.0014 0.888  2.11 0.0581 

 Time x C x S                                  18 0.548      3.76 <0.0001 0.661  2.50 0.0008 

 Time x T x C x S                            18 0.831      1.07   0.3819 0.895  0.63 0.8743 

 Error                                      106 
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FIGURES 

 

 

 
 

 

 

Figure 1: Full factorial design for effects of soil conditioning by three different species, 

and soil sterilization, in two soil types on Lonicera maackii and Diervilla lonicera. 
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Figure 2: Mean (+ 1SE) dry (A) total biomass, (B) root biomass and (C) shoot biomass 

of Lonicera maackii in response to soil sterilization, and soil conditioning by three 

different species, and two soil types. 
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Figure 3: Mean (+ 1SE) dry (A) Total biomass, (B) Root biomass and (C) Shoot biomass 

of Diervilla lonicera in response to soil sterilization, and soil conditioning by three 

different species, and two soil types. 
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Figure 4: The effect of soil sterilization, and soil conditioning by three different species, 

in two soil types on root/shoot ratio (R:S) (mean ± 1SE)  of (A) Lonicera maackii and (B) 

Diervilla lonicera 
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Figure 5: Mean (+ 1SE) final (A) height and (B) BSD of Lonicera maackii in response to 

soil sterilization, and soil conditioning by three different species and two soil types 
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Figure 6: Change in final (A) height and (B) BSD, (mean ± 1SE) in Lonicera maackii in 

response to sterilization, two different soil types, and soil conditioning by three different 

species 

0 20 40 60 80

H
e

ig
h

t 
(c

m
)

0

10

20

30

40

50

60
STSSDL 

STSSFP

STSSLM

STSSUN

STWSDL 

STWSFP 

STWSLM 

STWSUN 

UNSSSDL 

UNSSSFP 

UNSSSLM 

UNSSSUN 

UNSWSDL 

UNSWSFP 

UNSWSLM 

UNSWSUN 

 

 

Days

0 20 40 60 80

B
S

D
 (

c
m

)

0

1

2

3

4
STSSDL 

STSSFP

STSSLM

STSSUN

STWSDL 

STWSFP 

STWSLM 

STWSUN 

UNSSSDL 

UNSSSFP 

UNSSSLM 

UNSSSUN 

UNSWSDL 

UNSWSFP 

UNSWSLM 

UNSWSUN 

 

 

A 

B 



54 
 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Mean (+ 1SE) final (A) height, and (B) BSD of Diervilla lonicera in response 

to soil sterilization, and soil conditioning by three different species and two soil types 
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Figure 8: Change in final (A) height and (B) BSD, (mean ± 1SE) in Diervilla lonicera in 

response to sterilization, two soil types, and soil conditioning by three different species 
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Figure 9: Mean values of principal components (PC 1 and PC 2) in response to two soil 

types with 95% CI. Percent of explained variance are in parentheses. 
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Figure 10: CLPP comparing the AMR and CMD in response to soil conditioning by 

three different species and unconditioned soil control in two soil types. 
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Figure 11: Soil sterilization confirmation: soil extracts incubated on TSA plates for 72h 

(A) Wright State sterilized soil extract (B) Wright State unsterilized soil extract (C) 

Shawnee sterilized soil extract (D) Shawnee unsterilized soil extract. 
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