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Abstract 

Koehler, Christopher M. Ph.D., Department of Computer Science and Engineering, 
Wright State University, 2010. Visualization of Complex Unsteady 3D Flow: Flowing 
Seed Points and Dynamically Evolving Seed Curves with Applications to Vortex 
Visualization in CFD Simulations of Ultra Low Reynolds Number Insect Flight. 
 
 
 
 Three dimensional integration-based geometric visualization is a very powerful 

tool for analyzing flow phenomena in time dependent vector fields.  Streamlines in 

particular have many perceptual benefits due to their ability to provide a snapshot of the 

vectors near key features of complex 3D flows at any instant in time.  However, 

streamlines do not lend themselves well to animation.  Subtle changes in the vector field 

at each time step lead to increasingly large changes between streamlines with the same 

seed point the longer they are integrated.  Path lines, which show particle trajectories over 

time suffer from similar problems when attempting to animate them. 

 Dynamic deformable objects in the flow domain also complicate the use of 

integration-based visualization.  Current methods such as streamlines, path lines, streak 

lines, particle advection and their many conceptual and higher dimensional variants 

produce undesirable results for this kind of data when the most important flow 

phenomena occurs near and moves with the objects. 

 In this work I present methods to handle both of these problems.  First, the 

flowing seed point algorithm is introduced, which visually captures the perceptual 

benefits of smoothly animated streamlines and path lines by generating a series of seed 

points that travel through space and time on streak lines and timelines.  Next, a novel 

dynamic seeding strategy for both streamlines and generalized streak lines is introduced 
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to handle deformable moving objects in the flow domain in situations where static 

seeding objects fail for most time steps. 

 These two methods are then combined in order to visualize the instantaneous 

direction and orientation of a flow which results from flapping objects in a fluid.  Initial 

tests are performed with a single rigid flapping disk.  Further tests were performed on a 

more complex biologically inspired CFD simulation of the deformable flapping wings of 

a dragonfly as it takes off and begins to maneuver.  For this test, seeds are automatically 

chosen such that the formation, evolution and breakdown of the leading edge vortex is 

highlighted as well as the wing wake interactions that occur between the forewings and 

hind wings. 
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1 Introduction 

 Visualization is concerned with interactively representing data with computer 

graphics in order to gain insight into the data that would be otherwise impossible or 

extremely difficult to gain.  Insight acquired through visualization can be used to answer 

specific questions about a data set and it can also help one gain an understanding of 

processes that were previously unknown.  

 While it is considered to be a branch of computer science and engineering, 

visualization shares quite a few principles with mathematics, cognitive science, physics, 

perception science, and many other disciplines and has applications in an even wider 

range of fields.  Visualization is also very closely related to other sub-fields of computer 

science and engineering such as computer graphics in that it employs many graphical 

techniques that were not originally intended for understanding data.  There are many data 

modalities for which visualization is useful, however this work focuses on flow 

visualization. 

 

1.1 Flow Visualization 

 Flow visualization is a sub-field of scientific visualization concerned with 

visualizing vector fields.  Vector field data occurs in many different natural science and 

engineering applications, however this work focuses on the velocity vector fields 

generated through computational fluid dynamics (CFD) simulations.  Velocity is an 

intrinsically continuous quantity, however these simulations output the data as discrete 

arrays of velocity vectors. 
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As the processing power of computers increases so does our ability to simulate 

larger and more complex fluid phenomena.  However, our ability to generate large multi-

phase unsteady fluid simulations through elaborate immersed dynamically deforming 

geometry is ahead of our ability to visualize and understand the subtleties of the resulting 

data. This is due to the fact that flow visualization is limited both by computational power 

as well as human understanding.  One cannot simply apply flow visualization algorithms 

that work with small simple vector fields to extremely large vector fields representing 

complex flows and expect a good result.  In most cases the resulting visualizations will be 

extremely busy and hard to interpret. Thus, rapidly increasing CFD dataset sizes impose 

not only computational difficulties but perceptual challenges as well. 

 

1.1.1 Categorization 

Flow visualization algorithms have been categorized as being direct, texture-based, 

feature-based, partition-based or geometric [1-5].  Direct flow visualization is the 

simplest of the four categories.  It uses a low level of abstraction when turning velocity 

vector fields into visual representations.  Texture-based flow visualization creates a dense 

visual representation of a vector field by smearing a noise image in the direction of the 

flow at each point.  Feature-based flow visualization defines what features about the data 

are interesting, tries to detect those features and then marks them in the data.  Partition-

based flow visualization partitions the entire flow domain based on properties of the 

vector field and then uses the partitions as a basis for visualizations.  Geometric flow 

visualization, also known as integration-based flow visualization, involves using discrete 

geometric objects, that are locally tangent to the vector field, whose shape, transparency, 
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and color attributes are based on characteristics of the underlying flow phenomena.  Each 

category of flow visualization techniques has its own strengths, weaknesses and 

challenges so the ideal visualization method to use is highly dependent on the nature of 

the data. 

 

1.1.2 Geometric Flow Visualization 

 The research presented in this document deals primarily with geometric flow 

visualization.  The main constructs of geometric flow visualization are streamlines, path 

lines, timelines and streak lines.  The theory behind these techniques is presented in detail 

in Section 3.  Multiple categorizations of geometric flow visualization have been 

proposed based on the dimensionality of the stream object used in the resulting 

visualization, the spatial dimensionality of the data domain, the spatial dimensionality of 

the seeding object and the temporal dimensionality of the simulated flow [4].   

 I propose adding further classifications to this scheme based on the characteristics 

of any objects within the flow domain that the visualization method must work with.  In 

particular visualization methods could be classified based on whether they handle no 

objects, static objects, rigid moving objects or dynamically deforming objects in the 

vector field.  While little has been done to specifically target visualizing flows containing 

dynamic objects, the fact that many traditional visualization methods suffer when they 

are presented with such data justifies this classification.  One of the main contributions of 

this work is a seeding method that can more effectively handle objects that move and 

dynamically deform inside of an unsteady 3D vector field.  The remainder of this 

introduction presents some fundamental concepts that are important for understanding 
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this research effort as well as additional motivation for this work.  Figure 1.1 shows an 

example of several streamlines, the most well known geometric visualization construct. 

 

 
Figure 1.1: Several streamlines in a simple dataset containing one vortex. 
 

 

1.2 Fluid Dynamics 

 The data visualized with the methods described in this document is based on fluid 

dynamics.  Fluid dynamics is a sub-field of fluid mechanics that studies fluids in motion.  

Any substance that undergoes a constant deformation in the presence of shear stress is 

considered a fluid.  Fluid dynamics has a wide range of applications, including weather 

prediction, micro air vehicles, movie special effects, wind turbines, micro fluidic devices, 

large aircraft and blood flow.  The following section presents a brief overview of the 

theory of fluid dynamics and simulation because it is important that the visualization 



5 
 

methods used to understand fluid behavior be based in a firm understanding of the theory 

behind the original application. 

 

1.2.1 Navier-Stokes Equations 

 The Navier-Stokes equations are a set of partial differential equations that 

describe the motion of incompressible fluids.  They hold throughout a fluid and can be 

written as follows: 

 𝛿𝑢�⃗
𝛿𝑡

+ 𝑢�⃗ ∙ ∇𝑢�⃗ +
1
𝜌
∇𝑝 = �⃗� + 𝑣∇ ∙ ∇𝑢�⃗  (1.1) 

 

 ∇ ∙ 𝑢�⃗ = 0 (1.2) 

 

 Where 𝑢�⃗  is the velocity of the fluid, 𝜌 is the density of the fluid (𝑚 𝑉⁄ ), 𝑝 is the 

pressure that the fluid exerts on anything, �⃗� is the acceleration due to gravity, and 𝑣 is the 

kinematic viscosity coefficient.  The kinematic viscosity coefficient is the dynamic 

viscosity coefficient 𝜇 divided by the density.  The Laplacian operator ∇ ∙ ∇ is a measure 

of how far a quantity at a point is from the same quantity in the area around it, and ∇ is 

the gradient operator. 

 The first equation, which is known as the momentum equation or force equation, 

is essentially Newton's second law �⃗� = 𝑚�⃗�.  The acceleration can be rewritten as: 

 
�⃗� ≡

𝐷𝑢�⃗
𝐷𝑡

 (1.3) 
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With the capital D material derivative notation, so Newton's equation becomes: 

 
�⃗� = 𝑚

𝐷𝑢�⃗
𝐷𝑡

 (1.4) 

 

 The force �⃗� can then be replaced with the sum of all forces acting on a particle in 

a fluid.  The pressure force, or body force can be measured as the negative gradient of 

pressure  −∇𝑝.  The viscosity force can be written as the product of the dynamic viscosity 

coefficient and the measure of how far the velocity at a particle in the fluid is from the 

surrounding velocities 𝜇∇ ∙ ∇𝑢�⃗ .  The force due to gravity is written as 𝑚�⃗�.  The pressure 

and viscosity forces must be integrated over the whole volume of fluid, so they are 

multiplied by the volume  𝑉 as an approximation. 

All these forces can be combined as follows: 

 
𝑚�⃗� + 𝑉𝜇∇ ∙ ∇𝑢�⃗ − V∇𝑝 = 𝑚

𝐷𝑢�⃗
𝐷𝑡

 (1.5) 

 

If we divide by the volume 𝑉 and rearrange several terms we can almost get back to the 

original equation: 

 
𝜌
𝐷𝑢�⃗
𝐷𝑡

=  
𝑚
𝑉
�⃗� − ∇𝑝 + 𝜇∇ ∙ ∇𝑢�⃗  (1.6) 

 

 𝐷𝑢�⃗
𝐷𝑡

=  �⃗� −
1
𝜌
∇𝑝 +

𝜇
𝜌
∇ ∙ ∇𝑢�⃗  (1.7) 

 

 𝐷𝑢�⃗
𝐷𝑡

+
1
𝜌
∇𝑝 =  �⃗� +

𝜇
𝜌
∇ ∙ ∇𝑢�⃗  (1.8) 
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The kinematic viscosity coefficient can then be substituted in: 

 𝐷𝑢�⃗
𝐷𝑡

+
1
𝜌
∇𝑝 =  �⃗� + 𝑣∇ ∙ ∇𝑢�⃗  (1.9) 

 

The material derivative is then rewritten based on the chain rule.  The result can be 

substituted back into the previous equation, which gets us back to the original momentum 

equation. 

 𝐷𝑢�⃗
𝐷𝑡

= �
𝐷𝑢 𝐷𝑡⁄
𝐷𝑣 𝐷𝑡⁄
𝐷𝑤 𝐷𝑡⁄

� = �
𝛿𝑢 𝛿𝑡⁄ + 𝑢�⃗ ∙ ∇u
𝛿𝑣 𝛿𝑡⁄ + 𝑢�⃗ ∙ ∇v
𝛿𝑤 𝛿𝑡⁄ + 𝑢�⃗ ∙ ∇w

� =
𝛿𝑢�⃗
𝛿𝑡

+ 𝑢�⃗ ∙ ∇𝑢�⃗  (1.10) 

 

1.2.2 Computational Fluid Dynamics  

 The field of computational fluid dynamics studies how to use numerical methods 

to simulate fluid flow.  Using a CFD solver, a model is built to represent some real world 

system that you want to study or visualize.  The main benefit of using CFD is that it 

allows you to study things that are difficult to produce via experimentation.  Its details are 

outside the scope of this work, but the data used to test the visualization algorithms in this 

document was generated with Dong et al.'s immersed boundary method CFD solver [6, 

7]. 

 

1.3 Vector Data Modality 

 The data resulting from CFD simulations is vector based.  An 𝑛-dimensional 

vector is a tuple of 𝑛 scalar components 𝒗 = (𝑣1, 𝑣2, … , 𝑣𝑛),𝒗𝑖 ∈ ℝ 𝑛, however only 2D 

and 3D vectors are normally used in CFD simulations.  A vector field 𝒗 is a function 

𝑓:𝐷 → ℝ3, where 𝐷 is a subset of ℝ3, and a vector dataset is a discrete sampling of a 
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vector field.  Since CFD is able to simulate time-dependent flow phenomena of 3D 

compressible flows, the data typically consists of a series of vector fields output at a 

discrete number of time steps. 

 

1.4 Divergence, Vorticity and Helicity 

 For each vector field output at each time step of a CFD simulation there are 

several metrics that are typically computed at each vector.  Divergence is a scalar 

quantity used to measure the increase or loss of mass at any point in a vector field.  If the 

divergence at a point in the vector field is positive that means the flow is spreading 

outward from that point, and if it is negative then the flow is being sucked into that point.  

Mathematically, the divergence of a vector 𝑣 = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) is defined as follows: 

 
𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒(𝑣) =

𝛿𝑣𝑥
𝛿𝑥

+
𝛿𝑣𝑦
𝛿𝑦

+
𝛿𝑣𝑧
𝛿𝑧

 (1.11) 

 

 Vorticity is another important measurement that can be made at each point in a 

vector field.  Vorticity is a vector quantity and is essentially a measure of how much a 

massless particle placed in the vector field will "spin".  It characterizes the direction and 

speed of rotation at every point in the vector field.  Vorticity will be of particular 

importance later when the application of visualizing air flow around a dragonfly wing is 

discussed.  Vorticity can be used to calculate helicity, which is basically the degree to 

which a vector field exhibits a cork screw shaped motion.  Mathematically, vorticity is 

defined as follows: 

 
𝑣𝑜𝑟𝑡𝑖𝑐𝑖𝑡𝑦(𝑣) = �

𝛿𝑣𝑧
𝛿𝑦

−
𝛿𝑣𝑦
𝛿𝑧

,
𝛿𝑣𝑥
𝛿𝑧

−
𝛿𝑣𝑧
𝛿𝑥

,
𝛿𝑣𝑦
𝛿𝑥

−
𝛿𝑣𝑥
𝛿𝑦 �

 (1.12) 
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1.5 Motivation 

 There have been many derivatives of streamlines, path lines, timelines and streak 

lines attempting to enhance them or increase their dimensionality.  However, there have 

been very few attempts at integrating them.  Thus, the first goal of this work was to 

combine the benefits of multiple geometric flow line primitives into one method.  

Another issue that drove this work is the lack of flow visualization targeted at handling 

unsteady flows containing deformable immersed objects that are causing flow 

disturbances.  I suspect this is both because of the additional difficulties it creates and 

also because such data is rare.  The goal of applying this visualization to a flapping wing 

dragonfly CFD simulation is to understand how vortices behave in insect flight.  

Ultimately the hope is that the study of insect flight will lead to the creation of smaller 

and more efficient micro air vehicles. 

 The remainder of this manuscript is organized as follows:  Section 2 presents the 

results of an exhaustive literature review of steady and unsteady geometric flow 

visualization methods for 2D and 3D data, applied flow visualization, vortex detection 

and flapping flight theory.  Section 3 reviews several basic concepts of geometric flow 

visualization and then introduces the flowing seed point algorithm as well as several 

unique methods to generate dynamic seed curves.  Section 4 presents data generation 

methods, implementation details, rendering techniques that can improve perception of 

geometric visualization, and a kinematics analysis of one of the data sets used to test the 

visualization methods.  Section 5 presents the results of applying the new visualization 

methods to the series of vector fields from a quad wing dragonfly simulation.  Section 6 

reviews the main points of this work and proposes some future work. 
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2 Related Work 

 This section presents a comprehensive literature review of integration-based 

geometric flow visualization as well as several other areas of interest.  The majority of 

the work can be categorized based on whether it is designed for either steady or unsteady 

flow.  The dimensionality of the flow domain is used to further categorize the works.  

Methods that utilize programmable GPU's are grouped into a separate section.  Vortex 

detection methods are also discussed because vortices are of particular interest in several 

of my data sets.  Finally, several applications of geometric flow visualization on real 

world data sets are discussed.  Since the goal of the proposed visualization methods is to 

improve the understanding of insect flight, a section is devoted specifically to previous 

work in flapping flight theory. 

 

2.1 Steady Flow Visualization 

 A steady flow is independent of time.  Thus, as time elapses the vector field 

representing the flow does not change.  Due to this property, streamlines, streak lines and 

path lines are all identical in such flows, which simplifies things greatly.  The research 

presented later in this document primarily deals with unsteady flows, however the vector 

fields at any instant in an unsteady flow can be handled the same way as a steady flow 

would be, so this is important background information. 
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2.1.1 2D Steady Flows 

 This section looks at previous work in visualizing 2D steady state vector fields 

with integration-based methods.  Typically the goal of visualizing a 2D steady flow is to 

get an even streamline coverage that captures all the important features.  Also the ability 

for the user to interactively control the streamline density is a convenient feature of such 

applications. 

 One of the first attempts at a streamline seeding algorithm for 2D steady flows 

was presented by Turk and Banks [8].  The algorithm starts with random initial seed 

points and then an image-guided energy function is used to incrementally improve the 

seeds until a desired streamline density is reached.  Examples were presented on how this 

can be done for both streamlet seeding as well as for seeding longer streamlines.  Prior to 

this work streamline seeding was done by regular grids, random sampling and user 

interaction only. 

 Another early attempt at visualizing 2D steady flow fields with evenly spaced 

streamlines was introduced by Jobard and Lefer [9].  The algorithm works by starting 

with a single streamline and then generating the next seed at a minimal distance from the 

first streamline.  The new streamline is integrated in both directions until it either comes 

to close to another streamline or it leaves the vector field.  All potential seed points 

surrounding one streamline are integrated before trying potential seeds around a new 

streamline.  This process is repeated until there are no more potential seed points.  The 

main benefit of this algorithm was that it requires only a single pass, unlike the iterative 

approach in [8].  Streamline density is user controlled by changing the separation distance 
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between adjacent streamlines.  This streamline seeding algorithm has been combined 

with animated line integral convolution in order to animate steady 2D flows [10]. 

 Another non-iterative seeding strategy for placing streamlines in 2D steady flows 

was developed by Verma et al. [11].  The main goal of this algorithm is to place 

streamlines near critical points in the flow while maintaining a relatively low streamline 

density.  This is accomplished by segmenting the vector field into regions containing only 

one critical point.  Each critical point region is seeded based on a predefined template.  

Several randomly placed streamlines are then added to help fill in sparse areas in the 

coverage.  Streamlines are terminated based on a user controlled minimum distance that 

they are allowed to come towards other streamlines.  It is mentioned that the algorithm is 

fast enough to perform interactively even in 3D, however all examples given are for 2D 

flows. 

 Lefer et al. presented a refined method for animating streamlines in order to 

visualize both velocity magnitude and flow direction of a steady 2D flow.  Streamlines 

are densely seeded and colored so you can see a pattern on them.  They are animated by 

making these patterns move down the streamlines in the direction of the flow.  This is 

achieved by shifting color table entries cyclically, which yields a completely cyclic 

animation. 

 Mebarki et al. proposed another method for seeding streamlines in 2D steady flow 

vector fields [12].  They generate seeds for new streamlines at the farthest point in the 

vector field from all current streamlines, which fills gaps in the coverage and promotes 

longer streamlines.  Results using this method give similar results to those achieved in 

[8], however their greedy algorithm is around 200 times faster and conceptually simpler. 
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 Liu et al. presented an advanced evenly-spaced streamline placement algorithm 

that improves the quality of streamline placement in 2d steady state vector fields [13].  

Double queuing is used to prioritize seed points in the neighborhood of critical points as 

well as seed points that will result in long streamlines.  In order to increase speed, they 

used Hermite polynomial interpolation to decrease the necessary samples per streamline 

while still generating streamlines that are visually smooth.  Also, a method for detecting 

spiraling streamlines is presented in order to reduce visual clutter. 

 More recently Li et al. developed an artistically inspired streamline seeding 

strategy to generate illustrative streamlines for 2D steady flow visualization [14].  The 

goal of this work was the capture flow patterns with the minimum set of streamlines 

while deemphasizing less essential and repetitive portions of the flow.  The algorithm 

works by computing a local similarity measure among streamlines in the same region.  

The similarity measure is accumulated along each point of a streamline and a greedy 

algorithm is used to choose the next seed point that has the lowest degree of similarity to 

the current streamlines. 

 

2.1.2 3D Steady Flows 

 In 3D vector fields, self occlusion of geometric visualization constructs is a major 

problem that was not an issue in 2D vector fields.  Thus, even streamline coverage of the 

entire flow field is no longer a good goal because it will result in very busy visualizations 

where important flow features are occluded by the flow at the border of the vector field.  

The goal is typically to choose seed points that only capture important features of the 

flow so they will be easier to see.  For the same reason, choosing a suitable streamline 
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integration time becomes more challenging.  If streamlines are integrated to long they 

tend to leave the important areas and begin to contribute to visual clutter.  Choosing a 

suitable rendering method is another challenge when displaying 3d geometric 

visualizations because it can potentially help alleviate depth of field ambiguities. 

 

2.1.2.1 Surface Seeding in 3D Steady Flows 

 The extra dimension in 3D vector fields allows for more freedom when defining 

geometric objects upon which seeds can be generated.  A method for rendering surface-

particles in 3D flows that exploits this fact was presented by van Wijk [15].  Surface-

particles are modeled as points in space along with a normal vector, which allows diffuse 

and specular lighting equations to be used during rendering.  Several possible geometric 

sources are defined, from which the surface-particles are emitted either from random or 

regularly spaced positions.  Some of the choices presented for seeding objects are points, 

lines, circles, ellipses, rectangles and spheres.  They allowed for both pulsatile or 

continuous emission.  In the case of continuous emission, the result is a streamline 

because the flow is steady. 

 

2.1.2.2 2.5D Visualization of  3D Steady Flows 

 One way to visualize 3D vector fields that contain solid objects in the flow 

domain is to use 2.5D visualization.  Essentially 2.5D visualization is the generation of 

stream objects on the surfaces of objects in the flow field.  For instance if there was a 

simulation of a propeller, the streamlines would be drawn on the surface of the propeller 

instead of everywhere in the vector field. 
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 Mao et al. developed a method for placing uniformly distributed streamlines on 

3D parametric surfaces in curvilinear grids [16].  A curvilinear grid has the same 

structure as a regular grid, but the cells are quadrilaterals or cuboids instead of rectangles.  

The computational space of a curvilinear grid is the rectangular grid which defines its 

logical organization.  The algorithm works by mapping vectors from the surface of the 

object into the computational space of the surrounding curvilinear grid.  From there, the 

evenly spaced streamline algorithm developed by Turk and Banks [8] is used.  A new 

energy function is added to minimize the mapping distortion caused by the uneven 

density of the curvilinear grid. 

 Spencer et al. introduced an image-based automatic streamline seed generation 

algorithm for vector fields defined on 3D surfaces [17].  A key feature of this approach is 

that the vector field is projected onto the image plane before integrating any streamlines.  

This guarantees that the streamlines will remain evenly space regardless of the mesh 

orientation and they will not occlude each other.  The projection also makes this a very 

efficient algorithm because streamlines can be computed much faster than if the tracing 

was performed directly on the surface in model space and they don't have to waste time 

tracing streamlines on portions of the surface which will be occluded. 

 Rosanwo et al. proposed a streamline seeding method for 3D surfaces which is 

guided by dual streamlines that are orthogonal to the vector field [18].  Streamline seeds 

are only placed on the dual streamlines, which significantly reduces the search space for 

seed placement.  This approach can be extended to curved surfaces within the flow 

domain without requiring a surface parameterization. 
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2.1.2.3 Streamline Integration in 3D Steady Flows 

 There are several sources of error when using numerical methods to calculate 

streamline trajectories.  The numerical integration method used is one source of error.  

For example, low order Euler integration yields misleading results.  Also the step size 

must be appropriate for the resolution of the grid you are working on.  The cell 

interpolation scheme is another potential source of error.  This is particularly evident in 

areas of high streamline curvature.  The grid type used by the original CFD simulation 

also impacts the accuracy of the streamlines.  The remainder of this section presents an 

overview of several published works on the computational aspects of tracing streamlines 

in steady flows as well as several methods for evaluating and comparing streamline 

accuracy. 

 A new method for tracing streamlines in steady 3D vector fields based on stream 

functions was developed by Kenwright and Mallinson [19].  The flow within each cell is 

represented by two stream functions.  Another way of describing a streamline is that it is 

the intersection of two stream surfaces.  Since stream surfaces are always tangential to 

the flow, a line of intersection between two of them must also be tangential to the flow.  

Calculating streamlines via tracking constant values of each stream function is 

mathematically equivalent to finding the intersection of two stream surfaces. 

 Ueng et al. described techniques for tracing streamlines in unstructured grids [20].  

Tetrahedral cells of the unstructured grid are transformed to a so called canonical 

coordinate system in order to simplify calculations.  Also, a Runge-Kutta based 

numerical integration implementation is proposed to speed up the streamline calculation 
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process in the canonical coordinate system.  The methods were also applied to 

streamribbon and streamtube construction. 

 Lodha et al. presented methods for visualizing uncertainty in streamline 

visualizations [21].  As mentioned in the intro to this section, there are many possible 

sources or numerical uncertainty and errors when calculating streamlines.  In order to be 

confident in one's results it is convenient to be able to visualize the relative errors of 

different approaches.  In particular, this application focuses on the uncertainty caused by 

numerical integration.  Uncertainty glyphs, flow envelops, priority sequences, 

animations, rakes and trace viewpoints were used to compare the effectiveness of various 

numerical integration algorithms at tracing streamlines. 

 An interactive flow visualization method designed to work on locally refined 

Cartesian grids was presented by Schulz et al. [22].  The grids local refinement is used in 

areas of the flow that have more interesting features.  In particular a simulation of a 

vehicular body design is visualized.  The portion of the grid corresponding to the area 

around the wheels, in front of the windshield and at the very front and back of the car was 

divided down to the smallest cell size.   

 Although the vehicle was a static object in this simulation, this is one of the few 

works that discusses some of the complications that arise when there are objects of any 

kind in the flow domain [22].  In simulations where a curvilinear grid is used the object 

could be handled automatically in that the grid border describes the vehicle surface, 

however with a Cartesian grid there must be an explicit representation of any objects in 

the flow domain.  Due to numerical errors it is possible for streamlines near the object 

surface to actually intersect the surface.  One option they propose is to just end the 
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streamline if it intersects an object surface due to numerical errors.  An octree data 

structure was used to simplify collision detection between streamlines and the large 

triangular mesh that represented the vehicle in their study. 

 Comparitive visualization attempts to compare the content of two or more data 

sets.  Verma and Pang outlined methods for comparing vector data sets [23][11].  They 

classify the potential comparative visualization approaches as being either on the image, 

data or feature level.  Feature level comparison is essentially an extension of data level 

comparison except features that were derived from the data set are the objects being 

compared.  One relevant application independent flow feature is the noble streamline.  

The metric they use to visually compare streamlines is the Euclidean distance between 

corresponding streamline points.  These corresponding points are connected with lines, 

strips or spheres in order to visually convey the differences between the streamlines.  

Their methods work with streamlines that were generated with different numerical 

approaches and with different data sets. 

 Pugmire et al. evaluated two approaches to computing streamlines in parallel for 

huge datasets and also presented a new parallelization algorithm that is a hybrid of the 

two previous approaches [24].  Both previously presented methods, static data 

decomposition and load on demand, use straight forward parallelization strategies.  Their 

novel approach is a hybrid in that it parallelizes over both the data and the set of 

streamlines to be integrated simultaneously by balancing I/O, computation, and 

communication.   Tests showed their method provided better scalability with most 

datasets. 
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2.1.2.4 Seed Point Generation in 3D Steady Flows 

 Seed point generation is very important in 3D flows because it has a significant 

impact on what features are captured by the streamlines.  There has been work using both 

automatic and user controlled seeding strategies.  Laramee et al. presented a comparison 

of geometric, direct and texture-based visualization methods to analyze swirl and tumble 

flow in an automotive engine [25].  As part of this application they created an interactive 

streamline seeding plane tool.  The seeding plane provides the user with six degrees of 

freedom for choosing seed points. 

 Ye et al. presented a strategy for streamline seeding that attempts to balance field 

coverage with clutter reduction [26].  The algorithm first searches the flow for critical 

points and then categorizes them based on the eigenvalues of their Jacobian matrices.  

Seeds are then placed in the vicinity of the critical points based on a series of seeding 

templates.  In order to fill in areas without sufficient coverage Poisson seeding is used.  

Feature based filtering of the resulting streamlines is used to reduce clutter. 

 Li and Shen proposed an image-based method for streamline seeding in 3D vector 

fields [27].  Projections of streamlines into image space are used to control seed 

placement in order to avoid streamline overlap and visual clutter.  The seeds generated in 

the 2D image plane are unprojected back into the flow domain so they can be integrated.  

This approach assures a minimum spacing between the projections of streamlines in the 

image plane. 

 Chen et al. developed a streamline seeding method for 2D and 3D steady flows 

that uses a similarity measure to grow streamlines from a dense set of potential seed 

points [28].  Seeds are randomly chosen from the set of candidates and integrated until 
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the similarity measure between the current streamline and any existing streamline falls 

below a threshold value.  The similarity measure takes into account Euclidean distance as 

well as the shape and orientation differences between pairs of streamlines.  A streamline 

evaluation method that attempts to reconstruct the vector field from a set of streamlines 

and compare it to the original is also presented. 

 

2.1.2.5 Perceptual Streamline Enhancements 

 Several methods beyond just seed point placement have been proposed to address 

the perceptual challenges of streamlines in 3D vector fields.  In particular these methods 

attempt to improve perception of depth, directional orientation and occlusion.  When 

combined with the seeding methods mentioned in the previous section, streamlines are a 

very powerful tool for visualizing 3D steady flow. 

 Zöckler et al. introduced a technique for visualizing 3D vector fields with dense 

illuminated streamlines [29].  The traditional Phong shading model utilizes surface 

normal vectors to determine light intensity on mesh objects.  Streamlines, which are 

represented by line primitives, have infinitely many normal vectors at any point.  In order 

to apply the lighting equations to line primitives, they choose the normal vector that is 

coplanar with the light vector and the tangent vector.  The resulting images increase 

rendering quality and make it easier to visualize small features in the vector field. 

 Mallo et al. presented an enhanced method of illuminating streamlines in order to 

increase realism [30].  The main contribution of this algorithm is a cylinder averaging 

technique that improves diffuse and specular reflections on bundles of streamlines.  The 
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method supports multiple or infinite light sources as well as both orthographic and 

perspective projections. 

 Fuhrmann and Gröller introduced the concept of dashtubes for visualizing 3D 

steady flows [31].  Dashtubes are essentially cylinders extruded along streamlines with 

animated opacity mappings to help visualize the flow velocity and direction.  The opacity 

mapping helps lessen occlusion while providing directional information.  The dash length 

is kept independent of the underlying velocity because high velocity areas would result in 

long gaps. 

 Mattausch et al. used illuminated evenly-spaced stream tubes to explore the 

perceptual benefits of several other rendering options for visualizing 3D steady flows 

[32].  A slightly revised 3D version of Jobard and Lefer's seeding strategy was used [9].  

They then tested several streamline enrichment methods such as end tapering, mapping 

scalar quantities to streamtube density, using opacity to show direction, color coded 

depth, streamline halos, magic volumes, region of interest placement and spotlight 

rendering. 

 In order to further address the perceptual problems inherent to 3D streamlines 

Laramee et al. explored several techniques such as oriented streamlines, streamlets and 

streamcomets[33].  Oriented streamlines use opacity to depict flow orientation in still 

images.  Streamcomets work in a similar fashion but they offer more degrees of freedom 

to visually represent properties of the data.  Tests were performed on several real world 

datasets to evaluate the effectiveness of the methods. 

 Weigle and Banks presented a study comparing the perceptual benefits of 

perspective projections and global illumination when rendering dense 3D streamtubes 
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[34].  Their tests involved human subjects who attempted to identify the closer of two 

streamtubes from a densely seeded area and flow domain shapes from varying densities 

of streamtubes.  Their results show that physically-based illumination is a strong cue for 

accurate perception of 3D streamtubes. 

 Although intended for rendering molecular structures and not streamtubes, the 

rendering techniques of Tarini et al. have potential applications to rendering streamtubes 

and other geometric flow visualization constructs [35].  Their methods combine ambient 

occlusion, depth-aware halos, depth-revealing contour lines and intersection-revealing 

contour lines to create molecular renderings that are more informative and more capable 

of revealing shape. 

 Schussman and Ma developed a method of rendering extremely dense line data 

which can be used to improve perception of densely seeded streamlines in huge data sets 

[36].  Their method works by applying a lighting model to the lines and then sampling 

them into anisotropic voxels.  These voxels are rendered with traditional volume 

rendering.  The result is improved rendering efficiency as well as improved perception of 

structure and depth. 

 Salzbrunn and Scheuermann introduced streamline predicates in order to illustrate 

connections between streamlines and features as well as to answer questions about the 

overall structure of all streamlines in a flow [37].  Predicates are essentially functions that 

return Boolean values.  Streamline predicates tell if a specific feature exists in a 

streamline.  For example streamline predicates might tell if a streamline flows through a 

specific vortex or not.  Salzbrunn et al. later extended this concept to path line predicates 

in unsteady flows [38]. 



23 
 

2.1.2.6 Integral Surfaces in 3D Steady Flows 

 Hultquist presented the concept of a stream surface for visualizing steady 3D 

vector fields [39].  An integral or stream surface is the result of joining multiple 

streamlines that were seeded from the same line or curve into a single surface.  This is 

typically accomplished by connecting all of the sample points on each streamline with a 

polygon mesh.  Like other stream objects, the main challenge of flow visualization with 

integral surfaces is to minimize occlusion while capturing all important flow features.   

 From the implementation side stream surfaces introduce more complexity.  Areas 

of divergence in the flow are particularly troublesome.  For example, if the streamlines 

that originated on the same rake take drastically different paths through the vector field 

how should this be handled in the discrete representation of the stream surface?  Similar 

situations happen if a portion of a stream surfaces converges to a critical point which it 

takes an infinite time to reach while other parts diverge into different areas of the flow.  

One way this can be handled is through tearing the stream surface, but this is logically 

complex and can have undesirable visual effects if handled incorrectly. This section 

details previous research on using integral surfaces to visualize steady state 3D vector 

fields. 

 Van Wijk presented a new method for generating stream surfaces [40].  In this 

method a stream surface is represented by the equation of an implicit surface.  The initial 

curves of a stream surface can then be defined by this function at the boundary of the 

flow field.  This approach can only generate stream surfaces that intersect the flow 

boundary. 
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 Löffelmann et al. developed a technique to enhance stream surface visualizations 

called streamarrows [41].  Streamarrows are essentially arrow-shaped portions that have 

been removed from a stream surface via transparency mapping.  This helps alleviate the 

occlusion problems inherent to large opaque stream surfaces.  Streamarrows were 

implemented by mapping a texture of regularly shaped arrows onto a stream surface and 

then using it to control the surface's transparency. 

 Scheuermann et al. proposed a technique for generating stream surfaces on 

tetrahedral grids[42].  Within each tetrahedral cell, interpolation is based on barycentric 

coordinates.  The stream surface is traced over one tetrahedron at a time.  With this 

scheme, the portion of a stream surface inside any tetrahedral cell is also a ruled surface. 

 Garth et al. introduced a stream surface based method for visualizing vortices 

[43].  Their method for generating stream surfaces provides enhancements to Hultquist's 

method [39] so that it yields more accurate results in areas with very complicated flow 

structures.  In particular their streamline integration is based on arc length instead of 

parameter length.  They also explained a method to determine boundary surfaces of 

vortex cores to improve vortex visualization. 

 Laramee et al. presented a visualization method that combines stream surfaces 

with texture advection [44].  Texture advection is a flow visualization method that smears 

white noise in the direction of the flow.  Stream surfaces alone have difficulty conveying 

flow direction.  When texture advection is applied to stream surfaces it helps solve this 

problem.  They demonstrate this method's effectiveness with an engine simulation 

dataset. 
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 Peikert and Sadlo presented methods for visualizing topological features with 

stream surfaces [45].  They demonstrated that topology based stream surfaces can capture 

relevant flow features in the vicinity of periodic orbits and critical points while 

maintaining a relatively simple geometric representation. 

 

2.1.2.7 Integral Volumes in 3D Steady Flows 

 Integral volumes are the result of further increasing the dimensionality of the seed 

object to a plane or surface.  While this in and of itself does not imply a volumetric 

representation of the resulting object, the term integral volume is used to refer to all 3D 

stream objects for simplicity.   

 Schroeder et al. introduced the stream polygon concept for visualizing 3D steady 

flows [46].  Polygons placed normal to the flow are used as seed points for streamlines.  

The polygons are then either swept along streamlines to create tube structures or used to 

place new polygons at each streamline sample point.  Scalar metrics of the underlying 

vector field such as normal strain, shear strain and rotation can then be visualized by 

varying the radius of the polygon and the shading of the resulting tube. 

 The concept of flow volumes, the volumetric equivalent of streamlines, was first 

introduced by Max et al. [47].  The idea was inspired by real world flow visualization 

experiments where smoke is injected into physical flows.  They used volume rendering of 

semi-transparent flow volumes to simulate the results of these physical experiments.  

Becker et al. extended Max's concept of flow volumes [47] to work in unsteady flows by 

using streak lines [48]. 
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 Flow volumes suffer from information on the interior of the volume being lost.  

Implicit flow volumes were introduced in order to address the problem by Xue et al. [49].  

Two methods are presented for rendering implicit stream flows.  The first method is a 

slice-based 3D texture mapping renderer  and the second method is based on a interval 

volume renderer. 

 

2.2 Unsteady Flows 

 Unsteady flows evolve over many time steps, thus the sets of streamlines at 

different time steps are different  For steady flows, you only need one vector field 

because it is the same at any point in time, however for unsteady flows you need a 

separate vector field for each time step of the simulation.  This leads to extremely large 

data sets.  Three dimensional simulations performed over many time steps on grids with a 

high resolution can easily grow into the terascale.  Faster methods for generating integral 

curves in such data is a very active research area.  Recently multi-core programmable 

GPUs have been applied in this area, however there is a bottleneck in that the GPU's 

onboard memory can only hold a few time steps.  This section presents an overview of 

the previously published methods of visualizing unsteady flow data. 

 One key thing to note about this previous work is that there have been relatively 

few attempts at animating true streamlines and even fewer attempts to deal with 

dynamically deforming and moving objects within the flow field.  Methods for solving 

these two problems will be addressed in detail later and represent a major contribution of 

the current work. 
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2.2.1 2D Unsteady Flows 

 Jobard and Lefer developed one of the first methods for visualizing 2D unsteady 

flow data by using animated streamlines [50].  Their approach to circumventing the 

inherent problems streamlines have with animation is to establish a correlation between 

streamlines at consecutive time steps in order to create smooth animations.  The goal is to 

reduce motion in the animation that is not along a streamline.  To this end they employ a 

feed forward algorithm where streamlines at any given time step are used to determine 

the streamlines at the next time step.   

 For each point on each candidate streamline at time 𝑡, a corresponding seed is 

generated at time 𝑡 + 1 .  These corresponding streamlines are all integrated and 

compared to their respective candidate streamlines.  The criterion used to measure 

correspondence with the candidate streamlines is the average distance between 

corresponding pairs of sample points.  After corresponding streamlines have been 

established, the next step of their algorithm is to fill in sparse areas with additional 

streamlines.  This step would probably not be included if a 3D version of the algorithm 

were developed due to occlusion issues. 

 Cyclical animated textures based on Lefer's previous work in [51] are applied to 

the resulting streamlines to give the impression that flow is moving in the direction of the 

streamline.  As will be explained later in this document, the methods presented here do 

not rely on animating textures on the streamline because the end points of the individual 

streamlets serve the same purpose as all their seed points at a given instant travel along 

their respective generalized streak line as time elapses.  Thus, the illusion that the 
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streamlines are moving in a direction that is instantaneously orthogonal to the flow is 

achieved via entirely geometric means. 

 The work of Jobard and Lefer [50] represents one of the few attempts at 

animating streamlines in unsteady vector fields.  It's concept is novel and very useful, 

however more work needs to be done in this area.  In particular, it has not been tested 

with 3D data and there is no guarantee that there will be streamlines in the most critical 

flow regions that have streamlines at consecutive time steps for which a good 

correspondence exists.  The fact that correspondence between streamlines at consecutive 

time steps drops as the integration time of the streamlines increases is another drawback 

of the algorithm.  Also, the fact that seed points of corresponding streamlines are not 

necessarily consistent between time steps could potentially lead to a slightly jerky effect 

in the animation as alternating portions of streamlines are more active between time 

steps. 

 

2.2.1.1 Generalized Streak Lines 

 Wiebel et al. introduced the concept of generalized streak lines, which are 

essentially streak lines that allow a moving seed point [52].  They use this method to 

visualize vortices that develop and move along static objects in 4D flows simulations.  A 

new method is also presented to track singularities over curved surfaces based on the 

shear stress field.  As these singularities are tracked on object boundaries they are used as 

the particle emission points for the generalized streak lines. 

 I have only found two instances where generalized streak lines were used in the 

literature.  The idea of a moving seed point is a simple concept however it adds additional 
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challenges to the seeding process but also has much potential for improved streak line 

based visualization methods.  Clearly more work is needed to explore seeding strategies 

for generalized streak lines as well as their potential uses. 

 

2.2.2 3D Unsteady Flows 

 Visualization of unsteady 3D flows is one of the most difficult areas of flow 

visualization.  It has similar perceptual challenges to visualizing 3D steady flows and 2D 

unsteady flows but it is inherently slower due to the much higher disk and memory 

requirements for storing the data.  For simplicity 3D unsteady flow can also be referred to 

as 4D flow due to the three spatial dimensions and one time dimension.  This section 

outlines several previously published works on tracing particles through multiple steps of 

a time dependent flow, seed generation in unsteady flows and higher dimensional 

geometric visualization such as integral surfaces and volumes. 

 

2.2.2.1 Line Integrals in 3D Unsteady Flows 

 Lane developed a method for visualizing large 3D unsteady flows by using streak 

lines [53].  The largest dataset, a Descending Delta Wing, consisted of a grid with 

900,000 points simulated for 1,800 time steps resulting in 64.8 GB of flow data.  Both the 

data sets in this work also involved moving grids, a feature rarely addressed in the 

literature, which further complicates visualization.  Streak lines were generated from 

fixed seed points in the data sets.  For the Delta Wing dataset, 340 seed points were used 

and for the other dataset, a V-22 tilrotor aircraft, 400 seed points were used.  In this work 

the seeds were chosen manually.  In order to handle the large data size, they limited the 
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number of time steps that could be interactively examined so that all time steps could fit 

in the available memory. 

 Lane also developed UFAT, a system for tracing particles through unsteady flow 

fields [54].  The two main benefits of UFAT over other systems available at the time was 

its ability to handle a very large number of time steps and the fact that it could handle 

moving grids.  Methods are presented for particle integration in both physical and 

computational coordinate space.  Streak lines at each time step are computed in a 

preprocessing step and stored on disk so they can be viewed later without having to 

integrate them again, thus speeding up the application.  The system also visualizes scalar 

metrics of the flow data such as temperature, density, pressure and mach number via 

color mapping.  The data from several simulations based on real-world problems were 

used to test the system.   

 In the context of this work, it is important to note that while streak lines have been 

used effectively for data with dynamic objects in the flow field [53, 54] they still have 

limitations for this kind of data.  One such limitation is that they are not tangent to the 

underlying vector field at any given moment, which could potentially mislead a user.  

Also, most streak line implementations are limited by the fact that the source from which 

particles is emitted over time is fixed.  If a simulation occurs over many time steps there 

is no guarantee that particles emitted from the same source will interact with the objects 

moving through the flow.  Another weakness of streak lines is the fact that they can 

potentially intersect moving objects in the flow field. 

 A method for efficient tracing of particles and streak lines in large unsteady 

vector fields resulting from aeronautical simulations was developed by Kenwright and 
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Lane [55].  In the case of curvilinear grids, particle tracing is much slower than in regular 

grids, however accuracy is sacrificed if the grid is transformed to a more convenient 

computational space.  Their method performs integration, step size control and 

interpolation on curvilinear grids by using tetrahedral decomposition to speed up point 

and velocity interpolation. 

 Teitzel et al. present an analysis of the relationship between the errors caused by 

interpolation and those caused by numerical integration in order to develop a robust 

adaptive step size integration scheme that offers improved efficiency without sacrificing 

performance [56].  When dealing with discrete samplings of time dependent vector fields 

there are inherent errors due to interpolation of velocity vectors within cells and 

interpolation between entire time steps.  For such rough data, higher order numerical 

integration algorithms are potentially more accurate than necessary.  They propose an 

adaptive 3rd order Runge-Kutta scheme and prove that it is accurate enough while much 

faster than higher order schemes. 

 Sparse grids are a method that can be used to reduce the total number of data 

points in a vector field.  They have been proposed as a method of data compression for 

visualizing the huge data sets resulting from time dependent unsteady 3D flow simulation 

by Teitzel et al. [57].  Sparse grids have their own set of challenges though because not 

all particle tracing algorithms can handle them.  Teitzel and Ertl proposed new methods 

for effectively tracing particles in unsteady flows that are represented by sparse grids 

[58].  They also introduce a method for particle tracing on sparse curvilinear grids. 

 Interactive integration-based flow visualization has been the goal of much of the 

research presented in this section.  Schirski et al. developed a software framework which 
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combines much of this work into a single unified package [59].  The end result is a 

system that allows multiple interactive visualization options for the exploration of 

unsteady flow fields in a virtual environment. 

 

2.2.2.2 Seeding in 3D Unsteady Flows 

 One of the first attempts at visualizing unsteady 3D flow was developed by 

Bryson and Levit in their virtual windtunnel [60].  A user wears a six degree of freedom 

head mounted stereo CRT monitor to see inside the virtual windtunnel.  A glove 

controller is used to interactively choose seed points for streamlines, streak lines and path 

lines. 

 Wiebel and Scheuermann presented methods for creating 3D visualizations of 4D 

flows [61].  Their goal is to address some of the drawbacks of animation like the lack of a 

transient impression at any given time step.  They generate a so called eyelet point and 

use it to define bundles of streak lines and path lines that pass through it at different 

times.  Particles are selected such that they pass the eyelet at equidistant and evenly 

distributed points in a time interval.  Then a method to use these bundles of lines to create 

surfaces is explained.  In addition, iso-surfaces are places at areas of the vector fields at 

which local metrics vary heavily over time.  These areas of high activity are also used for 

choosing more informative eyelets because the path lines passing through an eyelet only 

change if there are changes in the flow at that point.  All geometry in the unsteady flow 

data that was used to test this method was static.  Dynamic objects could potentially 

cause problems due to the fact that the eyelet locations are fixed in space. 
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 Helgeland and Elboth presented a texture-based method for visualizing 3D 

unsteady flow [62].  The first step of the algorithm is to inject evenly spaced particles 

into the flow domain and calculate their path lines.  The initial particle seeding is based 

on Jobard and Lefer’s algorithm [9].  At any given time step, these particles are 

essentially a sparse input texture.  Sparse input textures don’t suffer from the same 

occlusion issues that dense texture methods do when used on 3D datasets.  Field line 

generation is then done at each time step with an LIC based method.  The particle 

advection and field line generation steps are both separated from the volume rendering of 

the result in order to speed up the rendering process and allow interactive visualization. 

 

2.2.2.3 Visualization Enhancments in 3D Unsteady Flows 

 Jänicke and Scheuermann presented a new way of visualizing unsteady vector 

fields by using ε-machines, which show a compressed representation of the data [63].  An 

ε-machine is essentially a finite state machine that is visualized with directed graphs.  The 

ε-machine compresses the data down to its essentials in order to highlight important 

phenomena.  A use can select a subset of the compressed version of the data in order to 

visualize the corresponding portion of the original data with more traditional methods 

such as flow lines and surfaces. 

 

2.2.2.4 Integral Surfaces in 3D Unsteady Flows 

 Integral surfaces have also been used to visualize 3D unsteady flows.  Schafhitzel 

et al. introduced a point-based method for generating and rendering stream and path 

surfaces [64].  The point-based approach relies on the massive integration of particles in 
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parallel on the GPU, thus avoiding the slow triangulation step used by other stream 

surface algorithms.  Also, the point-based surface representation lends itself well to 

efficient rendering via splatting.  They also demonstrated how texture-based methods can 

be applied to both stream and path surfaces in order to visualize the flow structure on the 

interior of the surfaces. 

 Garth et al. developed an algorithm for generating integral surfaces that is based 

on successive timeline approximation [65].  It is applicable on both steady and time 

dependent vector fields.  They identify that many problems with previously proposed 

stream surface generation algorithms is the lack of separation between the surface 

approximation and the generation of a corresponding mesh that is suitable for rendering. 

 Von Funck et al. presented a method for interactively generating streak surfaces 

by skipping the typical adaptive remeshing step and hiding the artifacts with smoke 

rendering [66].  Unlike stream surfaces, all locations on a streak surface are updated 

every time step which means the entire resulting polygon mesh must be regenerated each 

time step as well.  This is very computationally intense.  Without adaptive remeshing, the 

mesh representing the streak surface will keep a relatively low triangle count, however 

some of the triangles will have a poor aspect ratio.  These unfortunate triangles are 

hidden with opacity mapping and smoke rendering.  They present comparative 

visualizations of smoke surfaces with significantly different triangle counts to show that 

the same smoke structures are visible. 

 McLoughlin et al. introduced an algorithm for generating stream and path 

surfaces that is fast and simple enough to use in practical visualization applications [67].  

The authors speculate that the reason stream surfaces have not been more widely adopted 
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outside of visualization research applications is due to implementation complexity.  In 

this algorithm, the stream or path surface is represented by a quad-based mesh.  The quad 

mesh lends itself to being stored in a 2D array, which greatly simplifies the 

implementation.  Their method handles convergence, divergence and rotation in the flow 

without distorting the stream surface. 

 Krishnan et al. proposed an efficient method of generating time and streak 

surfaces in large 4D vector fields [68], which allows for interactive exploration of the 

evolving surface.  Their method is based on a decoupling of particle trajectory integration 

and surface construction, which allows for increased parallelism in the surface advection 

stage.  They also presented an extension of generalized streak lines [52] to generalized 

streak surfaces. 

 Bürger et al. introduced the first algorithm for real-time adaptively refined streak 

surface integration and rendering [69].  Two approaches for accomplishing this are 

presented.  The first approach is patch-based and the second is particle-based.  Both 

schemes run entirely on the GPU using 3D texture maps to store the Cartesian grids of 

the vector field. 

 

2.3 Vortex Detection in Vector Fields 

 Topological or feature-based visualization relies on detection and tracking of 

features in vector fields.  For example, in flow visualization some common features 

include vortices, shock waves, recirculation, flow separation and flow attachment.  While 

this research is centered on geometric integration-based visualization, feature detection is 

still useful for seed point generation.  Of particular interest in my test data is vortex 
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detection and tracking.  Vortex detection algorithms can be categorized in several ways.  

On categorization is based on whether they attempt to find regions in the flow that 

contain vortices or if they attempt to find vortex cores only.  Another possible 

categorization is to group methods that work based on measurements at single points in 

the vector field and methods that work by measuring geometric constructs like 

streamlines or path lines in the vector field. 

 The simplest method of finding regions that contain vortices is to use metrics that 

can be applied to any point in the flow.  For example one can look for areas with vorticity 

magnitude above a threshold value, however Zabusky showed that areas of high vorticity 

are not guaranteed to contain a vortex [70].  For example, shear flows can exhibit high 

vorticity at every point without containing a vortex.  Villasenor and Vincent developed an 

algorithm that uses this approach to construct vortex tubes based on the average vorticity 

vectors found within cylinders [71].  Levy et al. used a similar approach except instead of 

vorticity they used the helicity of a flow to detect regions that contain vortices [72].  

Another similar approach proposed by Robinson is to use areas of low pressure to locate 

vortices [73].  It is possible to have areas of low pressure that don't contain vortices 

however.  Most of these methods work best with relatively simple flow data, however 

they can be useful in more complex flows when combined with other methods to help 

narrow the search area. 

 In order to identify the core of a vortex Banks and Singer presented a predictor-

corrector method [74].  Seed points with high vorticity and low pressure are chosen.  

Streamlines which run along the vortex core are then traced by integrating along the 

vorticity field.  Roth and Peikert proposed a method for vortex core detection that works 
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by identifying points where vorticity is parallel to velocity [75].  Sujudi and Haimes 

presented an algorithm for finding vortex cores by determining where the Jacobian matrix 

has one real eigenvector which is parallel to the velocity at that point [76].  Kenwright 

and Haimes used the eigenvector method to detect vortex cores, vortex bursts, spiral 

vortex breakdowns and vortex diffusion [77].  Roth and Peikert presented a novel vortex 

detection scheme for 3D vector fields.  It is based on the eigenvector method and uses 

higher-order derivatives in order detect vortices with cores that are not straight [78]. 

 Jiang et al. developed an algorithm to detect vortices that works by testing each 

grid cell to see if it belongs to a vortex core by examining the vectors at neighboring cells 

[79]. More recently, Jankun-Kelly et al. presented a feature-based vortex detection 

method for large vector fields represented by unstructured meshes [80].  They exploit the 

fact that local extrema in certain scalar fields coincide with vortex cores.  They also use 

k-means clustering in order to handle complex vortex topologies like those that occur 

when two vortices merge.   

 Streamlines have also been used as a method of detecting vortices.  Sadarjoen and 

Post presented two such methods which are based on measuring properties of 2D 

streamlines [81, 82].  This approach differs from the majority of previously presented 

vortex detection methods in that does not depend on point-based measurements taken on 

the vector field.  Their first approach is based on measuring the curvature center of the 

oscillating circle on a streamline at many sample points.  The second approach is to 

measure the winding-angle of streamlines in order to determine which streamlines are 

part of a vortex.  This method is more powerful than point based approaches because it 

can find weak vortices.  I believe there is more work to be done in this area by testing 
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other geometric stream objects and more global measurements on them in order to 

identify vortices. 

 

2.4 Applications of Geometric Flow Visualization 

 One cannot fully determine the quality of a visualization method if it is only 

tested on very simple synthetic data.  This is the motivation for testing my algorithms on 

the simulated dragonfly data set.  There have been several past publications presenting 

the results of testing flow visualization methods on more complex real world inspired 

CFD simulations. 

 Laramee et al. presented a visual exploration of fluid flow through a cooling 

jacket [83].  They used a broad range of direct, geometric and texture-based visualization 

methods as well as automatic, semi-automatic and interactive feature extraction.  

Advantages and disadvantages of the various methods are compared in light of the 

application.  Bauer et al. presented a case study of visualization in a time dependent 3D 

flow resulting from an industrial application [84].  The application was the rotating helix 

structure that builds in the draft tube of a wind turbine, known as a vortex rope.  They 

employed a particle based approach to animated visualization such that particles are only 

visible in the region of interest and their density represents the density of the simulation 

medium. 

 You et al. used visualization to study vortex shedding and motion in a flow 

containing a flexible plate [85].  They present a series of iso-line visualizations arranged 

with respect to time or according to simulation settings.  While this work did not utilize 

integration-based stream objects, the application domain was one of the few examples 
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that used a deformable plate in the flow field and has a lot in common with my dragonfly 

simulation data sets. 

 Flow visualization studies have also been done in several biomedical applications.  

Soni et al. performed a visual exploration of air flow in the small bronchial tubes [86].  

Secondary flows within the bronchial tubes are dominated by vortices, which influence 

particle deposition.  Streamline based visualization of the flow through the bronchial 

tubes was combined with dense visualizations on slices perpendicular to the tubes in 

order to show secondary flow at the same time.  In a similar application He et al. used 

streamlines to visualize blood flow in a hemodynamic simulation through a cerebral 

artery [87].  A patient-specific model of a cerebral artery with an aneurysm was 

constructed.  Visualizations were done with vector glyphs and stream tubes with velocity 

mapped to the surface color in order to show how flow slowed in the aneurysm. 

 

2.5 Insect Flight Simulation 

The generalized streak line seeding and flowing seed point algorithms explained 

later in this document are ultimately intended to improve visualization of insect flight 

simulations.  Insect flight seems impossible based on traditional notions of aerodynamics 

and physicists, aerospace engineers, zoologists and biologists have been puzzled for years 

over how these tiny creatures can fly.  Insect wings are essentially deformable flapping 

airfoils, which bend and twist during flight allowing them to make a variety of quick 

flight maneuvers.  For instance, Wootton showed that insects can accelerate a precise 

mass of air directly downward in order to hover, or obliquely to fly in any given direction 

[88]. 
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Little attention has been placed on understanding the flight mechanisms employed 

by airborne objects that operate at ultra-low Reynolds numbers in the 100 to 10,000 

range.  It is in this ultra-low Reynolds number range where insects have evolved into the 

undisputed masters of flapping wing flight in the micro-aerial world.  For instance, 

dragonflies operate at a Reynolds number near 10,000, where viscous effects are 

dominant and cannot be ignored like they can when studying objects that operate at high 

Reynolds numbers like airplanes.  Insects have incorporated hovering, maneuvering and 

gliding skills into their flight repertoire, but it is still not completely clear how they can 

fly at all, but perhaps the use of new flow visualization methods can help clarify it. 

 

2.5.1 Flapping Flight Theory 

Insects flap their wings to generate lift and drive.  In order to fly, the thrust 

produced must overcome the drag generated from moving through the air and the lift 

produced must overcome the insect's weight.  An extremely unsteady flow field is the 

result of the constantly flapping insect wings and it is not entirely clear how the process 

works.  Several theories as to how insects generate the required lift and propulsion to fly 

have been proposed with the most notable being the clap-and-fling [89], quasi-steady 

aerodynamics [90] and the leading edge vortex hypothesis [91]. 

 In the clap-and-fling mechanism proposed by Weis-Fogh [89], the wings clap 

together above the insect's body and then fling apart. During the fling air gets sucked in 

and creates a vortex over each wing. These vortices move across the wings and act as the 

starting vortices for the opposite wings during the next clap.  Thus circulation occurs and 

lift is increased enough to explain the lift that certain insects generate, however Marden 
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showed that most insects do not use the clap [92] so it clearly cannot explain the high 

light coefficients that all insects produce.   

 Quasi-steady aerodynamic theory was first proposed by Ellington [90] to reduce 

the complex unsteady nature of flapping flight to a simplified model.  The basic theory is 

that instantaneous forces on the wing are equivalent to steady state forces at the same 

angle of attack and instantaneous velocity.   In other words, the air flow over the wing at 

any given time is the same as how the flow would be over a non-flapping, steady-state 

wing.  The potential effects the fluid from previous points in time has on the next static 

position is ignored.  However, multiple scientists have demonstrated that quasi-steady 

aerodynamic theory alone cannot account for enough lift force to counter an insect's 

weight [90, 93-96].  This means that some unsteady phenomena is providing additional 

aerodynamic forces, which is why unsteady flow visualization is essential to this 

application. 

 

2.5.1.1 The Leading Edge Vortex 

 Due to the fact that clap-and-flip and quasi-steady aerodynamic theories were 

unable to correctly account for lift in flapping flight, attention has shifted to the leading 

edge vortex (LEV).  The theory is that fluid separates from the sharp leading edge of an 

airfoil and is then drawn into a vortex, which creates a low pressure region above the 

wing resulting in higher lift production.  The total lift force develops normal to the 

surface of the wing and consists of a vortex lift term and a potential flow term. 

 For blunt airfoils at an angle of attack, fluid moves around the leading edge which 

produces a suction force parallel to the airfoil’s chord.  Lift is calculated by adding the 
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suction force to the normal force.  At higher angles of attack the LEV grows to the point 

where it can no longer remain attached to the foil.  A trailing edge vortex begins to form 

and moves towards the leading edge resulting in vortex shedding from the leading and 

trailing edges.  This vortex shedding causes a loss of lift, however the presence of a large 

LEV just before it separates results in a temporary high lift coefficient.  Many researchers 

suspect that insects take advantage of this phenomenon to generate such high lift forces. 

Maxworthy demonstrated that the leading edge vortex could be a source of lift in flapping 

flight by means of a mechanical flapping model [97]. 

 Studies of the LEV have produced different results in 2D and 3D.  Dickinson and 

Götz showed that in 2D simulations of an airfoil moving with a high angle of attack, the 

LEV grows until flow reattachment can no longer occur.  A trailing edge vortex forms 

and is shed into the wake followed by the leading edge vortex, at which time a new LEV 

begins to form [98].  Sane demonstrated that lift production in 2D air foil studies is time 

dependent with the maximum lift occurring just before the LEV is shed [99].  The angle 

of attack used in this study was well below the maximum utilized by insects.  

 Three dimensional studies of flapping wings differ in that the LEV grows to a 

certain point and then remains attached during the down stroke [100].  In this experiment 

Ellington et al. observed 3D smoke trails flowing around the flapping wings of a 

hawkmoth tethered to a stand in a wind tunnel.  The LEV could be observed in the smoke 

streak lines as it increased in size while moving towards the wing tips via axial flow 

during the down stroke. This study found that the lift force accounted for 1.5 times the 

weight of the hawkmoth.  Berg and Ellington's experiments on mechanical flapping foils 

[101] and Willmott's work with tethered hawkmoths [96] have also identified the 
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dynamic stall that occurs when the angle of attack is rapidly changed as a way to generate 

the kind of lift needed for insect flight. 

 While it is clear that the LEV is capable of generating the necessary lift for insect 

flight, it is not clear why it grows to a certain size and then stabilizes in the 3D case but 

not the 2D case.  A similar experiment involving a fruit fly wing contradicted the results 

of the hawkmoth experiment.  The fruit fly study or Birch and Dickinson [102] was 

performed with a Reynolds number of 160 and showed no signs of a helical vortex.  

Additional experiments showed that lift is generated from the LEV itself and not from its 

stable attachment to the wing throughout the stroke. 

 In addition to the contributions of the LEV, there are additional lift sources 

present in flapping wing insect flight.  For example Dickinson showed that the wing 

rotation during the down stroke to up stroke transition provides additional lift [103].  In 

addition Dickinson et al. concluded that delayed stall, rotational circulation as well as 

wake capture all contributed to lift production [104].  Wake capture refers to the 

phenomena where vortices are shed into the flow field and then later encountered by the 

same or a different wing after the stroke reversal.  Wake capture allows insects to recover 

energy that was lost during the previous stroke and it is of particular interest in the study 

of quad wing insects. 

 

2.5.2 Visualization Implications of the LEV 

Continuing research is still being conducted on the formation and stabilization of 

the leading edge vortex.  The formation and attachment of the LEV is thought to be 

governed by the Reynolds number, because spiral flow along the wing span was observed 
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by Birch et al. only at high Reynolds numbers [105].  Yet, another experimental study by 

Adrian et al. suggested that span wise flow is not necessary for the stabilization of the 

LEV, and the growth, formation, and stabilization of the LEV is associated with the rapid 

increase in angle of attack and its shedding is caused by a decrease in the angle of attack 

[106]. 

All these variations in results suggest that this area of research needs more 

attention to accurately define and understand the mechanisms responsible for the high lift 

production via the leading edge vortex.   Although researchers in the bio-fluid field [107-

109] agree with the LEV being the main source of lift production for insects, 

understanding the unsteady nature of flapping airfoils is the first step in understanding the 

nature of insect flight [110].  Thus, the main goal of visualizing insect flight simulations 

should be to highlight how the wing kinematics affect the formation of the LEV.  If a 

visualization either occludes the behavior of the LEV or does not properly emphasize it 

relative to other flow features it will decrease the visualization quality.  At the same time 

it is also desierable for visualizations to capture any wing wake interactions, trailing edge 

vortex formation and rotational circulation at stroke reversal. 
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3 Method 

 This section presents a theoretical background and overview of several novel 

visualization techniques.  First, the theory behind streamlines, path lines, timelines and 

streak lines is introduced because this forms a basis for the new methods.  Next, the 

flowing seed point algorithm is introduced.  Visual examples of how flowing seeds work 

with a variety of flow lines are provided.  Then, the dynamic seed curve concept is 

introduced.  Several methods of generating dynamic seed curves based on both the 

underlying vector fields and on the moving objects in the flow field are presented.  The 

majority of the examples in this section use the flapping disk data set.  More information 

about the creation of this data set can be found in section 4, and the results of applying 

the techniques described in this section to a more complex data set can be found in 

section 5. 

 

3.1 Streamlines 

 Streamline based geometric visualization constructs were chosen as the basis for 

the flow visualization research in this document.  Streamlines are essentially trajectories 

in a time independent vector field that are computed over time intervals.  They are 

tangent to the vector field at all points and are computed by integrating over a vector field 

𝒗 for some time interval when starting at a seed point 𝑝0.  In a steady flow, the time 𝑡 

represents integration time, not physical time, thus it is constrained only by speed and 

numerical precision.  The following differential equation describes a streamline 𝑺 and 

Figure 3.1 shows an example of several simple streamlines. 
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 𝑑𝑺𝑡0,𝑝0(𝑡)
𝑑𝑡

= 𝒗(𝑺𝑡0,𝑝0(𝑡)) (3.1) 

 

 𝑺𝑡0,𝑝0(𝑡0) = 𝑝0 (3.2) 

 

The streamline is then obtained by solving the differential equation step by step: 

 𝑺𝑡0,𝑝0(𝑡 + Δ𝑡) = 𝑺𝑡0,𝑝0(𝑡) + � 𝒗(𝑺𝑡0,𝑝0(𝑡))𝑑𝑡
𝑡+Δ𝑡

𝑡
 (3.3) 

 

The fourth order Runge-Kutta method is used to find a numerical solution as follows: 

 Δ𝑝0 = Δ𝑡 · 𝒗 �𝑺𝑡0,𝑝0(𝑡)� (3.4) 

 

 Δ𝑝1 = Δ𝑡 · 𝒗(𝑺𝑡0,𝑝0(𝑡) + Δ𝑝0 2⁄ ) (3.5) 

 

 Δ𝑝2 = Δ𝑡 · 𝒗(𝑺𝑡0,𝑝0(𝑡) + Δ𝑝1 2⁄ ) (3.6) 

 

 Δ𝑝3 = Δ𝑡 · 𝒗(𝑺𝑡0,𝑝0(𝑡) + Δ𝑝2) (3.7) 

 

 𝑺𝑡0,𝑝0(𝑡 + Δ𝑡) = 𝑺𝑡0,𝑝0(𝑡) +
Δ𝑝0

6
+
Δ𝑝1

3
+
Δ𝑝2

3
+
Δ𝑝3

6
 (3.8) 
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Figure 3.1: Several streamlines in a 2D vector field that contains one vortex. 
 

 

3.2  Path Lines, Timelines and Streak Lines 

 Path lines are logically similar to streamlines, but they are used to view unsteady 

flows by tracing the path of massless particles over multiple time steps.  Since the flow is 

time-dependent, one must integrate over multiple time steps of the vector field to 

compute a path line.  The trajectory of a path line 𝑷𝑡0,𝑝0(𝑡), where 𝑡0 is the seed time, 𝑝0 
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is the seed point and 𝑡 is now both the simulation time and integration time, can be 

determined by solving the following differential equation.  This concept is illustrated in 

Figure 3.2. 

 𝑑𝑷𝑡0,𝑝0(𝑡)
𝑑𝑡

= 𝒗(𝑷𝑡0,𝑝0(𝑡), 𝑡) (3.9) 

 

 𝑷𝑡0,𝑝0(𝑡0) = 𝑝0 (3.10) 

 

Integrating yields: 

 
𝑷𝑡0,𝑝0(𝑡 + Δ𝑡) = 𝑷𝑡0,𝑝0(𝑡) + � 𝒗(𝑷𝑡0,𝑝0(𝑡), 𝑡)𝑑𝑡

𝑡+Δ𝑡

𝑡
 (3.11) 

 

 
Figure 3.2: Several path lines and the corresponding particles at time steps 0, 200, 400, 600, 800 and 1000 
of the flapping disk data set. 
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 Streak lines and timelines are easy to define based on the previous definition of a 

path line.  A streak line is generated by connecting a series of particles that were released 

into the flow from the same seed point (Figure 3.3).  In real world applications this is 

done by injecting dye or smoke into a flow.  A streak line 𝑲𝑡0,𝑝0(𝑡) is defined based on 

the definition of a path line, as shown in the following equation. 

 𝑲𝑡,𝑝0(𝑡0) = 𝑷𝑡0,𝑝0(𝑡) (3.12) 

 

 
Figure 3.3: Evolution of a streak line at 6 time steps (blue) and the corresponding path lines (green). 
 

 

 Wiebel et al. proposed the concept of a generalized streak line [52].  A 

generalized streak line 𝑮𝑡,𝑝𝑖𝑗(𝑡0) is a line connecting all particles which were released at 

consecutive time steps from a seed location 𝑝𝑖𝑗(𝑡0) as it moves along a seed curve 𝑝𝑖𝑗.  

Generalized streak lines will be used later in this document to keep particles near the 

leading edge vortex of a flapping wing as it moves throughout the flow domain.  Figure 
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3.4 shows a conceptual description of generalized streak lines and Figure 3.5 shows 

several time steps of a generalized streak line generated with the flapping disk data set. 

 𝑮𝑡,𝑝𝑖𝑗(𝑡0) = 𝑷𝑡0,𝑝𝑖𝑗(𝑡0)(𝑡) (3.13) 

 

 
Figure 3.4: Conceptual illustration of a series of generalized streak lines. 
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Figure 3.5: A generalized streak line in the flapping disk data set at 12 time steps starting at time 180 and 
proceeding at 40 time step increments.  The red dot is the moving seed point which all particles pass 
through.  The five blue particles pass the seed at time steps 220, 260, 300, 340 and 380. 
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 Conceptually timelines are lines connecting a series of particles that were all 

released into the flow at the same time.  The particles are aligned along a seed curve 𝑝 

when emitted into the flow.  The seed curve is typically a straight line, but this is not 

essential.  A definition of a timeline 𝑻𝑡0,𝑝(𝑡) is provided in the following equation by 

relating it to the path line definition and a visual example is provided in Figure 3.6.  

Throughout the remainder of this document the term "flow lines" will be used to refer to 

streamlines, path lines, timelines, streak lines and generalized streak lines simultaneously. 

 𝑻𝑡0,𝑝(𝑡) = 𝑷𝑡0,𝑝(𝑡0)(𝑡) (3.14) 

 

 

 
Figure 3.6: A single timeline moving through the flapping disk data set at time steps 300, 400, 500, 600, 
700, 800, 900, 1000 and 1100. 
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3.3 Flowing Seed Points 

 Clearly streak lines and timelines lend themselves to animation whereas 

streamlines and path lines do not.  In the case of streamlines, slight changes in the vector 

field between time steps can lead to very large changes in the streamline trajectory, 

resulting in a choppy animation.  Despite this problem, it has been shown that for many 

data sets, short streamlines or streamlets can be animated relatively smoothly [62]. 

 Path lines with constant seeds on the other hand have temporal data built in so it 

does not make sense for them to move over time.  One possible way to animate path lines 

is to gradually move the seed point in either space, time or both, but this suffers from the 

same choppy animation problems encountered when animating streamlines.  Another 

more effective way of animating path lines is to only show a small portion of the path 

line in the immediate vicinity of the corresponding massless particle as it moves in time. 

 On the other hand, while they are easier to animate, streak lines and timelines do 

not posses all of the perceptual benefits inherent to streamlines and path lines.  Neither is 

instantaneously tangent to the flow, and they offer little contextual information about 

individual particle trajectories.  Also, streak lines can potentially be perceptually 

misleading in that the human brain may think that the flow is moving tangent to the 

streak line, when this is rarely the case.  Both streak line and time line animations also 

suffer if the animation is paused.   

 This section describes a novel method, known as flowing seed points, which 

combines multiple flow line variants into one smoothly animated visualization such that 

the benefits of each are achieved simultaneously.  The flowing seed point visualization 
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approach has the following advantages when compared to traditional geometric 

visualization methods: 

 

• Improved visualization of vortex formation and breakdown 

• Temporally smooth animation of streamline and path line evolution 

• Visualization of instantaneous and temporal divergence 

• Ability to handle moving objects in the flow field 

• Visualization of instantaneous and time varying velocity 

• Comparative visualization of vector fields at neighboring time steps 

 

3.3.1 Flow Lines as Seed Curves 

 In the previous definitions of timelines and generalized streak lines, the concept 

of a seed curve was used to describe groups of particles released into the flow at the same 

time as well as particles emitted from one moving seed point at different times.  These 

seed curves can be either user defined or automatically generated. 

 There is no reason why seed curves can't also be used to seed inherently static 

flow lines like streamlines and path lines.  There is also no reason why a seed curve 

cannot dynamically evolve over time.  When the seed curve used to place streamlines and 

path lines evolves over time, the result is an animation.  This is susceptible to all of the 

previously mentioned animation problems, which is why only very short streamlets and 

pathlets are used.  Multiple seed curves are discretized into many distinct seed points to 

maintain a high level of coverage despite the low number of integration steps used in 

each streamlet or pathlet.  While any static or dynamic seed curve could be used to seed a 
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series of streamlets and pathlets, there are many perceptual benefits from using either a 

timeline, streak line or generalized streak line as the seed curve.  This concept, known as 

flowing seed points, is illustrated in Figure 3.7. 

 

 
Figure 3.7: Flowing seed point method used to generate streamlets along a streak line. 
 

 

3.3.1.1 Streamlets, Pathlets and Flowing Seeds 

 Streamlets offer many perceptual benefits when combined with flowing seed 

points.  The main benefit is that one can see the evolution of the instantaneous state of the 

vector field within the context of the seed curve while at the same time visualizing the 

massless particle trajectories.  This allows for a good streamline coverage while 

maintaining spatial coherence in the animation while at the same time maintaining all the 

benefits of the underlying seed curve.  Pathlets on the other hand make it easier to 
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visualize how the particles within the flowing seed curve are diverging or converging.  

The animation can be paused for a more detailed look at some feature and the pathlets 

still maintain some contextual information about the neighboring time steps.  Figure 3.8 

shows the results of both streamlets and pathlets with flowing seed points near a vortex in 

the flapping disk data set. 

 

 
Figure 3.8: Comparison of streamlets and pathlets with the same flowing seed curve: (a) streamlets, (b) 
pathlets. 
 

 

3.3.2 Time Seeds 

 Timelines are one option to use as a flowing seed curve.  This concept is 

illustrated at several time steps in Figure 3.9.  The shape of the streamlets at the earlier 

time steps allows a user to predict the timeline shape at later time steps.  Figure 3.10 

shows a comparison of the same timeline with and without flowing seeds.  It is easy to 
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see how the lengths of the streamlets seeded along the timeline tell you things about the 

velocity of the vector field at that instant, which cannot be seen without them.  

 

 
Figure 3.9: Time seeds at several time steps in the flapping disk data set. 
 

 

 Timelines are typically more useful with simulations that contain an inlet flow.  

Also, they aren't particularly well suited to the flapping wing data sets that this research is 

focused on visualizing.  For these reasons the majority of the flowing seed point tests 

performed throughout the remainder of this document use streak lines or generalized 

streak lines for the seed curve. 
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Figure 3.10: Comparison of a timeline with and without flowing seeds: (a) particles, (b) flowing seeds. 
 

 

3.3.3 Streak Seeds 

 Streak lines are another option to use as a flowing seed curve.  Figure 3.11 shows 

an example of this.  One perceptual problem with streak lines is that a user may believe 

they are instantaneously tangent to the vector field, when this is rarely the case.  Clearly 

the streamlets seeded along the streak line visually convey when the instantaneous vector 

field is approximately tangent to the streak line and when it is not.  It shows that in many 

cases the streak line is closer to being perpendicular to the instantaneous vector field 

trajectory. 
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Figure 3.11: Streak seeds at several time steps in the flapping disk data set. 
 

 

 While streak seeds make more sense than time seeds to study the flapping wing 

data sets, they are still not ideal.  This is due to the fact that streak lines have static seed 

points themselves.  This means more seed curves are needed to capture moving vortices.  

This can be seen in Figure 3.12 where six streak line seed curves are used.  In this figure 

the flowing seeds begin to capture the leading edge vortex as the disk moves downward, 

but there are many wasted seeds in less important areas.  It has already been 

demonstrated that generalized streak lines are most effective at getting the majority of the 

particles in the vicinity of the flapping wing induced flow phenomena (Figure 3.5), so 

that is the flowing seed curve the remainder of this research will focus on. 
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Figure 3.12: Six streak line seed curves begin to capture the leading edge vortex with many unnecessary 
particles. 
 

 

3.3.4 Generalized Streak Seeds 

 When using the flowing seed point method with flapping wing data sets, 

generalized streak lines are the ideal seed curve because they allow the particle emission 

point to move with the key flow features, which in turn moves with the flapping wings.  

In the case of flapping flight simulations, the particle emission point can move with the 

leading edge of the wing.  When all flowing seeds are emitted in close proximity of the 

leading edge vortex core and not traced very far in time before being removed, coverage 

is maximized while self occlusion is held to a minimum.  An example of this can be seen 

in Figure 3.13. 
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Figure 3.13: Several particles with the same moving seed point used to seed streamlets in a vortex. 
 

 

 Generalized streak lines and flowing seeds are particularly useful for visualizing 

vortices that are only present in a flow for a very short period of time.  This is illustrated 

in Figure 3.14.  The top row of images in this figure shows the state of the streamlets 

right before the formation of the vortex, during the existence of the vortex and right as 

the vortex begins the break down.  When looking at the particles alone it is unclear 

exactly when the vortex forms and how long it lasts. 
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Figure 3.14: Vortex formation and breakdown captured with generalized streak seeds (first row) and the 
corresponding particles without streamlets (second row). 
 

 

 My method yields still images that reveal the instantaneous flow structure instead 

of just approximating it.  Thus, each time step of the animation can be easily interpreted 

compared to single time steps of typical 3D time dependent flow animation techniques 

like streak lines or particle advection along path lines.  The flowing seed point method 

can be further enhanced by using streamlet tubes and color mapping scalar quantities like 

vorticity (Figure 3.15). 
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Figure 3.15: Tube representation of flowing streamlets following a vortex with vorticity magnitude mapped 
to color. 
 

 

3.4 Dynamic Seed Curves 

 Flowing seed points is one approach to dynamically evolving seed curves 

however there are other options.  Dynamic seed curves and surfaces can be created by 

using some feature of the underlying flow such as vorticity.  Without restricting the 

search in some way this can be extremely time consuming.  One way to speed up the 
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process is to generate iso-surfaces on a series of planes based on vorticity magnitude.  

These surfaces are then used to place flow line seeds at a series of time steps.  This is also 

a rudimentary method of vortex core detection, but it is quite effective in situations where 

you know approximately where the most important vortices are. 

 Objects in the flow field can also be used to create dynamic seed curves and 

surfaces.  By exploiting 3D modeling operations such as edge loop selection, surface 

patch selection, vertex normals and path extrusion a user can easily define seed objects at 

a single time step which will evolve over time as the base object moves in the flow 

domain.  When dealing with complex data sets this is much more effective than static 

linear seed objects (Figure 3.16) which are typical in most commercial visualization 

packages. 

 

 
Figure 3.16: Result of a static linear seed object in a very simple data set. 
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3.4.1 Iso-Seed Planes 

 Using a global iso-value threshold alone is not an effective seeding method in the 

flapping wing data sets due to the fact that the points of maximum vorticity magnitude 

are generally all clustered together.  It is also extremely computationally expensive to use 

a seeding method that involves reading all the scalar values from a large block of 3D 

vector field data.  Tests have shown it is much more effective to partition the data set in 

some way and then seed based on the maximum vorticity in each section.  One way to 

both restrict the search area and partition the data is to use a series of iso-planes.  This 

works particularly well with flapping wing data sets because the planes can be bound to 

the leading edge, which is where the most interesting flow occurs.  An example of using 

iso-planes for seed placement and vortex core detection in the flapping disk data set is 

shown in Figure 3.17. 

 

 
Figure 3.17: A series of color mapped iso-planes placed perpendicular to the leading edge vortex core. 
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 One of the main strengths of the iso-seed plane method is that it works just as well 

with much more complicated data sets.  This can be seen in the next example with the 

dragonfly data set.  Iso-planes are placed perpendicular to the leading edge of each wing 

at a user defined number of points (Figure 3.18).  The point on each plane with the 

maximum vorticity magnitude is chosen and connected into a vortex core line for each 

wing, which is then discretized into a series of seed points, as seen in Figure 3.19.  The 

vortex core detection is limited to the area around the planes, however this can be 

desirable since we know approximately where the main vortex is. 

 
 

 
Figure 3.18: Dragonfly with iso-seed planes positioned along the leading edge of each wing. 
 
 



67 
 

 
Figure 3.19: Iso-seed plane results at a single time step: (a) vortex core detection, (b) seed point generation. 
 

 

3.4.2 Vertex Normal Seeds 

 Another approach to generating dynamic seeding objects in complex flows is the 

vertex normal seeding approach.  This method works in flows that contain one or more 

mesh based objects moving within the flow domain.  It completely ignores the underlying 

vector field and assumes that the mesh objects moving in the flow are causing the most 

interesting flow phenomena.  Thus, seeds are bound near the surface of the objects in 

order to capture the neighboring flows features.  Specifically, seeds are placed along the 

vertex normals of user selected vertices on objects in the flow domain.  Vertex normals 

are calculated by averaging the surrounding face normals (Figure 3.20).  Figure 3.21 

shows how a user can control the distance from the original mesh vertex that a seed is 

placed at. 
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Figure 3.20: Calculation of vertex normals. 
 

 

 
Figure 3.21: Multiple seed points placed along the normals of 5 vertices on the original immersed object. 
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 In order to use vertex normal seeds effectively, a user must be able to quickly 

select vertices in the areas where seed points are desired.  To accomplish this, several 3D 

polygon modeling operations were incorporated into the software.  In particular, edge 

loop selection can identify a series of connected border edges by counting the number of 

faces adjacent to each edge connected the original selected edge.  Edge loop selection 

was used to place seeds along the leading edge vortex of the dragonfly wing.  Path 

extrusion can be used to increase the seed density along an edge loop.  Surface patch 

selection and subdivision refinement can be used to control the density of seeds in a 

selected area. 

 There are several key areas in the dragonfly data set where vertex normal seeding 

is useful.  Obviously the leading edge is important due to the leading edge vortex.  The 

wing tips are also of interest in order to visualize vortex shedding.  The wing roots are 

another important area if you are looking to visualize span-wise flow.  Results from 

generating vertex normal seeds at the wing tip, wing root and leading edge are shown in 

Figure 3.22.  All of these seeds were generated at a single time step with only a few 

mouse clicks, but they move dynamically with the wings as the vertices and their normals 

move.  Results from testing iso-seed planes, vertex seeds and flowing seeds with a variety 

of flow lines are presented in detail in section 5. 
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Figure 3.22: Vertex normal seeds placed at the wing tips (first column), wing root (second column) and 
leading edge (third column) shown at three different time steps. 
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4 Implementation 

 The main novel seeding and perceptual contributions to visualization presented in 

this work are theoretical in nature, however their accuracy depends on the underlying 

implementation.  For instance, flow lines are susceptible to numerical errors at many 

stages of their calculation and these errors tend to compound, resulting in images that 

may be visually appealing but not accurate.  To demonstrate the validity of my results 

and the relevance of the CFD data to which they are applied, this section details several 

aspects of data generation, numerical integration, vector interpolation, time step size and 

rendering that were used.  An explanation of how flow line computation is decoupled 

from visualization to allow for interactive exploration of the data is also presented.   

 

4.1 Test Data Generation 

 In order to test the visualization methods proposed in this document prior to 

trying them on any more complex data, simulations of the flow around a single rigid 

flapping disk were performed.  The simulations were run with an immersed boundary 

solver capable of simulating flows around complex moving objects in fixed Cartesian 

grids [6].  This grid structure is convenient because it is not necessary to convert the data 

to a less accurate computational space, however all of the concepts presented here will 

work with any grid structure upon which particle trajectories can be computed.  A much 

more complex insect flight data set was also generated. 
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4.1.1 Flow Around a Flapping Disk 

 The flapping disk test data sets are motivated both by the need to test the 

visualization methods in unsteady flows containing dynamically moving objects as well 

as the desire eventually capture the vortices that form in insect flight and micro air 

vehicle simulations.  Two versions of the simulation were done with both membrane as 

well as solid ellipsoidal flapping foils.   

 The term 'flapping' refers to the oscillatory pitch and heave of the foils.  While 

these data sets contain only one foil which does not undergo any of the active and passive 

nonlinear deformations present in insect wings, they are a good starting point to evaluate 

how well a visualization technique will capture the vortices formed in a more complex 

insect flight simulation.  

 The meshes used in the simulations are defined by their axes 𝑎𝑥, 𝑎𝑦 and 𝑎𝑧.  In 

this study 𝑎𝑥  and 𝑎𝑧  were set to 1 which yields a circular shape for the solid and 

membrane foils.  The thickness ratio 𝑎𝑦 𝑎𝑥⁄  of the solid foil was set to 0.12.  The mesh 

surfaces are composed of triangular faces.  Figure 4.1 shows both the solid and 

membrane foils. 
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Figure 4.1: Foil meshes: (a) solid disk mesh, (b) flat plate mesh. 
 

 

The flow moves over the disks as they undergo a pitch and heave motion.  The pitch 

motion of the foils can be described as follows: 

 𝜃(𝑡) =  𝐴𝜃 cos(2𝜋𝑓𝑡) (4.1) 

 

and the heave motion in the 𝑦-direction is described as follows: 

 𝑦(𝑡) = 𝐴𝑦 sin(2𝜋𝑓𝑡) (4.2) 

 

where 𝐴𝑦  is the heave amplitude, 𝐴𝜃  is the pitch amplitude, 𝜃  is the pitch angle with 

respect to the inlet flow, 𝑓 is the flapping frequency and 𝑡 is time.  For the purposes of 

this work, 𝐴𝑦 is set to 0.5 and 𝐴𝜃 is set to 30̊.  For each period of oscillation 800 time 

steps are exported, hence 𝑓 is set to 0.00125.  A total of six oscillations were simulated 

for each disk, hence 𝑡 ranges from 1 to 4800.  Also, a Reynolds number of 200 was used 

for both simulations.  Figure 4.2 shows several time steps of one period of the flapping 
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disk at 100 frame intervals, and Figure 4.3 shows an image of the 2800th time step of the 

simulation visualized with a simple vorticity magnitude based iso-surface.  The iso-

surface visualizations show how the vortex circling the leading edge of the disk has the 

highest vorticity, however the direction the flow is moving is completely missed with this 

method. 

 

 
Figure 4.2: Eight snapshots of the solid flapping disk taken at 100 frame intervals. 
 

 

 
Figure 4.3: Vorticity magnitude iso-surfaces at one time step of the flow around a flapping disk simulation 
visualized with four iso-values. 
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4.1.2 Insect Flight Data Generation 

 The primary data set used for testing the flowing seed point and dynamic seed 

curve methods is from the simulation of a quad wing dragonfly.  While it is clear that 

insect wings are not rigid it is difficult to capture and reconstruct the exact motions of the 

wings as they deform because they are moving extremely fast.  For this reason most past 

CFD simulations of insect flight have been based on theoretical rigid wing models.  This 

section details the techniques used to generate a more accurate reconstruction of a 

dragonfly's wings as it takes off, maneuvers and begins to hover.  The resulting 3D 

deformable wing reconstruction was used in a CFD simulation and the results were then 

used for further test my geometric flow visualization methods. 

 

4.1.2.1 Camera Setup 

 In order to capture the details of the wing kinematics several dragonflies were 

photographed from three angles with a high speed photogrammetric system, as shown in 

Figure 4.4.  The cameras are each capable of generating 1000 frames per second of 1024 

by 1024 black and white images.  Very low exposure times were used in order to avoid 

motion blur on the fast moving wings.  A synchronized end trigger system was used in 

conjunction with the cameras in order to save 2.5 seconds of data every time a desirable 

maneuver was performed.  Camera calibration was done with the direct linear transform 

method.  A conceptual look at the calibration setup is shown in Figure 4.5. 
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Figure 4.4: High speed photogrammetric system. 
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Figure 4.5: Camera calibration setup. 
 

 

4.1.2.2 Image Data Acquisition 

 A variety of local dragonfly species have been photographed with this system.  In 

particular, the blue dasher dragonfly was used for the first reconstruction and simulation 

experiment.  The dragonflies are stimulated either with a fan or with a poker.  Then the 

camera system is triggered after the dragonfly takes off, if any interesting maneuvers are 

observed.  Examples of the image data acquired along each axis is shown in Figure 4.6.  

Data is chosen for reconstruction based on the following criteria: 
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• Reproducibility of the observed maneuver 

• Image quality throughout the maneuver 

• Importance of the observed maneuver 

 

 
Figure 4.6: Image projections along each axis of a dragonfly in flight. 
 

 

 Data acquisition presented several challenges due to the speed at which the 

dragonfly wings are moving.  First, camera synchronization was an issue.  The cameras 

are configured as a master and two slaves.  They are fairly well synchronized, but the 

dragonfly wings are moving extremely fast, so any small gap in time between when the 

three cameras fire is noticeable in the data.  Camera focus is another issue.  A very long 

lens was needed due to the small size of the details on the wings, but this left us with a 
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very shallow depth of field in which we could focus.  If the dragonfly were to take off 

and fly a few inches in one direction it would go completely out of focus.  Glare on the 

wings was another issue.  Due to the speed of the wings we had to use a very low 

exposure time in order to avoid motion blur.  This low exposure time meant we also had 

to use a lot of light, which lead to glare obscuring details on the wings at times.  Finally, 

uncooperative dragonflies were a major challenge.  Much trial and error was necessary to 

get a few good recordings of important maneuvers such as takeoff and hover. 

 

4.1.2.3 3D Reconstruction 

 Prior to gathering data the dragonfly wings are marked with a marker to simplify 

the reconstruction process.  Hierarchical Subdivision Surfaces were used to create a 

smooth mesh for the body and wings based on a top down image of the original 

dragonfly.  Subdivision surfaces are essentially a unification of polygon meshes and 

parametric surfaces.  In particular, the Catmull–Clark algorithm for subdivision surfaces 

was used because Stam demonstrated it is capable of smoothing meshes with arbitrary 

topology [111].  The initial 3D reconstruction of the blue dasher dragonfly and a 

corresponding image of the original insect are shown in Figure 4.7.  The body was not 

included in the simulation, but it was reconstructed to aid in analyzing the dragonfly's 

kinematics. 
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Figure 4.7: Initial reconstruction of the dragonfly next to an image of its live counterpart. 
 

 

 Smoother surfaces can be generated with this surface representation by 

recursively repeating the subdivision algorithm with the resulting vertices of the previous 

subdivision.  A two level Catmull-Clark subdivision surface hierarchy was used to model 

the dragonfly wings because it allows for enough control over the deformations the wings 

undergo while flapping without having so much detail that it begins to occlude part of the 

data it must be aligned with (Figure 4.8).  More detail can always be added later prior to 

running the simulation. 

 

 
Figure 4.8: Subdivision surface based template wing aligned to the corresponding wing in the image data. 
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 Wings based on this surface scheme are then aligned with the images of the 

dragonfly along each axis.  Since there are three 2D images, two options are available for 

each of the three axes, as can be seen in Figure 4.10.  Unfortunately due to camera 

synchronization, perspective and focus issues, the same point in each of the three images 

at each time step does not always lie in the exact same place on corresponding axes.  In 

this case, the clearest option for each of the three axes is used.  Figure 4.9 and Figure 4.10 

show two different views of a reconstructed dragonfly and the corresponding images. 

 

 
Figure 4.9: Image projections with the corresponding time step of the reconstructed dragonfly. 
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Figure 4.10: All four dragonfly wings aligned to the image data at a single time step. 
 

 
 
 In order to measure the accuracy of the reconstruction, it is combined with 

segmentations of the original data.  The dragonfly wings and body are segmented in the 

original images through a series of thresholding operations.  Orthographic projections of 

the reconstructed wings are generated at each time step (Figure 4.11).  The segmentations 

and projections are then compared with a pixel based accuracy metric.  Measurements of 

the number of true positive, true negative, false positive and false negative pixels are 

made at each time step.  Figure 4.12 shows a plot of the accuracy measure recorded at 50 

time steps from 0.05 seconds of wing flap for the right ipsilateral wings when the 

reconstruction is compared to the images taken from one of the high speed cameras. 

 

 
Figure 4.11: Comparison between the original image of the dragonfly and the projection of the 
reconstruction along the same axis. 
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Figure 4.12: Plot of the accuracy measured for the right ipsilateral wings from 50 consecutive time steps. 
 

 

4.1.3 Data Set Sizes 

 Large data sets are one of the most challenging aspects of unsteady flow 

visualization.  Data sets often consist of several million grid points per time step and 

several thousand time steps.  At each grid point a location point and a velocity vector 

must be stored along with multiple other scalar quantities like vorticity and helicity.  

Table 4.1 shows the data set sizes for the two main data sets used in this study.  Also, 

Figure 4.13 shows a rendering of the simulation grid used for each time step of the 

dragonfly data set in order to convey just how large the data used in this work was. 

  

Dataset Grid Dimensions Grid Points Vector Field Size Time Steps Total Size 

Dragonfly 176x152x192 5,136,383 1.4GB 800 ~1.15TB 

Flapping Disk 145x129x105 1,964,025 450MB 2400 ~1.08TB 

Table 4.1: Comparison of data set sizes. 
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Figure 4.13: Dense grid used for each time step of the dragonfly simulation. 
 

 

4.2 Dragonfly Kinematics Analysis 

 Ultimately the goal of this work is to improve visualization of vortices in 

unsteady flows with moving immersed boundaries, however these visualizations are more 

valuable when they can be related to some physical phenomena that caused the vortices 

to form or dissipate.  Thus, an analysis of the Euler angles of the dragonfly body, wing 

motion and wing deformation was performed for the first two flaps after the dragonfly 

takes off and begins to fly.  The results of this analysis were used to identify key time 

steps and wing areas to focus on when applying the flowing seed point visualization 

method in the next section. 
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 Euler angles, roll, pitch and yaw, are widely used in aerospace to describe rotation 

of flying objects.  Relative to the speed at which the wings flap, deformations in the 

dragonfly's body are minimal over such a small time window so the body was assumed to 

be rigid.  Thus, the Euler angles as well as translation distance from the origin along each 

axis can be measured in the world coordinate system directly from the dragonfly's body, 

as seen in Figure 4.14.  While the simulation only captures the first three wing flaps due 

to time constraints, the reconstruction includes nine wing flaps.  Kinematic analysis was 

performed on all nine reconstructed flaps. 

 

 

Figure 4.14: Euler angles measured from the dragonfly's body. 
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 Once the Euler angles and translation distances are calculated they can be 

subtracted from both the dragonfly's body and wings to create an object coordinate space.  

The object coordinate space is useful for studying wing kinematics.  Flapping flight 

descriptors such as phase difference, stroke plane inclination, angle of attack and range of 

motion can be measured by defining anchor points on the dragonfly's wings and then 

tracking their movements relative to the body.  For example Figure 4.15 shows a 

perspective view of the wing tip trajectories over time, and Figure 4.16 shows how the 

range of motion around the x axis can be measured from the maximum wing tip 

trajectories projected onto the yz plane. 

 

 
Figure 4.15: Perspective projection of the wing tip trajectories from the full nine reconstructed wing flaps. 
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Figure 4.16: Range of motion of each of the dragonfly's wings. 
 

 

 Stroke change can also be determined by examining many points on the 

individual wings.  Since the wings are constantly undergoing complex nonlinear 

deformations, no one point on a wing can accurately determine the time of stroke 

reversal, so the average motion of all wing vertices was used.  Peaks in the motion history 

are determined and the average time step of each group of neighboring peaks is chosen as 

the stroke change time.  The peaks in Figure 4.17 correspond to stroke reversals, so the 

eighteen peaks per wing correspond to the nine reconstructed flaps. 
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Figure 4.17: Stroke change history illustrated as peaks in the motion of each wing vertex over time: (a) left 
forewing, (b) left hind wing, (c) right forewing, (d) right hind wing.  Movement in the x direction is shown 
in red, the y direction is green and the z direction is blue. 
 

 

4.2.1 Camber to Chord Ratio 

 The degree to which the dragonfly's wings deform during takeoff was also 

studied.  Prior to this work, the majority of flapping wing insect studies used less accurate 
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planar wing representations, which did not include camber.  The camber to chord ratio is 

defined as the ratio between the maximum camber height and the wing chord (Figure 

4.19).  This figure also shows the evolution of the camber to chord ratio over time for a 

single position on the left forewing.  Figure 4.18 shows the evolution of the chamber to 

chord ratio over time.  Ultimately a rigid wing version of the same dragonfly will be 

created to compare the effect of wing deformation on vortex production. 

 

 
Figure 4.18: Time history of camber/chord ratio in the left wings at the mid-chord cross section.  This 
chord to chamber ratio plot was created by Zach Gaston and Zongxian Liang. 
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Figure 4.19: Camber of a point on the dragonfly's wing over time as well as an explanation of the camber 
chord measurement. 
 

 

4.3 Dragonfly CFD Simulation 

 It is also beneficial to compare visualization results with various measurements, 

such as the force history, made by the CFD simulation that produced the vector fields.  In 

particular vortex shedding at stroke reversal should correspond to a drop in lift, while 

delayed stall that happens during both the up and down stroke should correspond to 

increased lift.   A second-order finite-difference based immersed-boundary solver [7] was 
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used to simulate the flow over the immersed 3D deformable wings.  The Eulerian form of 

the Navier-Stokes equations are discretized on a Cartesian mesh.  A ghost-cell method is 

used to enforce boundary conditions.  A validation of this method can be found in [6].  

Figure 4.20 shows the lift history for the left wings during the first two wing beats. 

 

 
Figure 4.20: Time history of lift coefficient over the first two strokes.  This force history plot was created 
by Zach Gaston and Zongxian Liang. 
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4.4 Numerical Integration 

 The forth order Runge-Kutta numerical integration method was used to integrate 

all flow lines in this work.  This method has been proven accurate for streamline  and 

path line integration.  In order to further validate the correctness of my streamline 

integration code, the results were compared with Tecplot and VTK for several 

streamlines with the same seed point and integration step size.  The following code 

snippet shows how the Runge-Kutta method is used for integrating a streamline starting 

at point P1 with an integration step size of h.  Tri-linear interpolation was used to 

interpolate vectors at points that do not lie directly on the grid. 

 

 K1 = h * vectorField->interpolate(P1); 

 

 P2 = P1 + (0.5 * K1); 

 K2 = h * vectorField->interpolate(P2); 

 

 P3 = P1 + (0.5 * K2); 

 K3 = h * vectorField->interpolate(P3); 

 

 P4 = P1 + K3; 

 K4 = h * vectorField->interpolate(P4); 

 

 Pk = P1 + ((0.166667 * K1) + (0.333333 * K2) + (0.333333 * K3) +  

 (0.166667 * K4));; 
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4.5 Integration Step Size 

 The CFD solver used to generate all of the data is not based on any physical unit 

measures.  Thus, the grid units as well as time steps have no physical equivalent.  The 

numerical integration time step used between simulation time steps is in the same 

"unitless units" as the simulation time steps when dealing with unsteady data (it is 

controlled mainly by how smooth the resulting curve is with steady data).   

 However, the dimensions of a single grid cell limit the range of acceptable 

integration time steps (as a rule of thumb, the integration time step should not be larger 

than the distance between grid points).  This in turn controls how many time steps of the 

simulation actually need to be exported.  The data sets used in this document use a 

simulation time step of 0.0015 units and the distance between grid points is 

approximately 0.004.  Therefore, only every other time step of the simulation actually 

needed to be used and the default numerical integration time step was 0.003 units. 

 

4.5.1 Adaptive Step Size 

 When dealing with a very large number of streamlines, the vertex count can get 

extremely high.  This problem compounds when dealing with tubes instead of lines.  One 

way to reduce the number of vertices and also reduce truncation and round-off errors is to 

use an adaptive step size when integrating.  One proven adaptive time step scheme that 

works with fourth order Runge-Kutta integration is step-doubling.  Step-doubling 

automatically adjusts the step size which saves memory by taking larger integration steps 

when the vector field is changing slowly. 
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 In order to further reduce the footprint of the flow lines after they have been 

integrated they are first converted to first degree B-Spline curves.  They are then rebuilt 

as third degree NURBS curves with a tolerance of 0.001 so there is very little error 

introduced but the number of vertices required to store each line is further reduced.  

Autodesk Maya's C++ API was used to rebuild the flow lines as NURBS curves.  Figure 

4.21 shows a before and after image of the number of vertices required for a single 

streamline.  The difference is most apparent in the relatively straight portions of the 

streamline. 

 
Figure 4.21: Two representations of the same streamline:  (a) without an adaptive step size,  (b) with an 
adaptive step size. 
 

 

4.6 Stream Tubes 

 While much work has been done to improve the visual presentation of flow lines 

through illumination models, a mesh based tube representation offers more flexibility 

when rendering.  Surface shininess, self shadowing and global illumination improve 
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shape and depth perception of the rendered tubes.  In order to generate stream tubes, a 

circular NURBS curve was extruded along each flow line.  This can be seen in Figure 

4.22.  A comparison between a polygonal mesh version of the same stream tube and a 

NURBS version with the same number of vertices is show in Figure 4.23. 

 

 
Figure 4.22: Two representations of the same streamline:  (a) line representation,  (b) tube representation. 
 
 

 

 
Figure 4.23: Two representations of the same streamline tube with the same number of vertices:  (a) 
polygon mesh version,  (b) NURBS surface version. 
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4.7 Rendering 

 Global illumination works by shooting thousands of rays out from light sources.  

These rays then take on the color of the first object they hit.  As the rays are reflected 

onto other objects, there is a slight mixing of colors which results in more realistic 

rendering that is pleasing to the eye.  Ambient occlusion on the other hand is a global 

rendering method based solely on the scene geometry.  Essentially it darkens surfaces 

based on how close they are to other surfaces.  This helps account for light attenuation 

due to occlusion.  The ambient occlusion pass is multiplied by the color pass in order to 

keep these areas dark in the final composite rendering.  When used with streamlines this 

improves depth perception, as can be seen in Figure 4.24. 

 

 
Figure 4.24: Composite rendering of several densely seeded streamlines in a vortex:  (a) Global 
illumination rendering,  (b) Ambient occlusion rendering, (c) Composite rendering of the previous two 
images. 
 

 

 Experiments were also performed to use rendering techniques and semi-

transparent surfaces to highlight areas of recirculation or near recirculation.  When 

streamlines are very densely seeded and integrated for a long time, the resulting images 
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can suffer from occlusion.  However if the streamline tubes are semi-transparent you will 

be able to see only the areas where there is considerable overlap.  If transparency values 

are high enough, you will only see closed streamlines and flow recirculation (Figure 

4.25).  This method only works for steady flow because the vortices must not move. 

 

 
Figure 4.25: Densely seeded streamlines around the leading edge vortex of the left hind wing.  When the 
streamline tubes are highly transparent, closed streamlines as well as areas of recirculation that do not 
include closed streamlines are highlighted. 
 

 

 Additional experiments were done on how transparency can be mapped to entire 

streamlines based on a scalar quantity at the streamline seed point in order to improve 

vortex visualization.  The ideal visualization of a vortex tells the user more than just 
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where its core is located.  It is better to be able to see the speed of the fluid at multiple 

levels moving outward from the core.  This can cause occlusion problems when using 

streamlines, however visualizations can be greatly improved by mapping transparency to 

streamlines started at different layers of the vortex.  An example of this is shown in 

Figure 4.26. 

 

 
Figure 4.26: Two groups of streamlines seeded based on different iso-values.  The transparency of the outer 
group of streamlines is incremented by 10% in each image. 
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4.7.1 Decoupled Particle Tracing and Rendering 

 While high quality renderings with global illumination and ambient occlusion can 

be slow, tracing hundreds of particles over thousands of time steps is an even more time 

consuming endeavor.  However, since the base seeding algorithms are established it is 

possible to create an interactive visualization by pre-computing all possible particle traces 

that lie within the bounds of the seeding algorithm.  With the particle traces stored on 

disk, the visualization interactivity is limited solely by rendering speed and not by 

particle tracing speed. 
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5 Results 

 While it is necessary to validate one's methods, the purpose of flow visualization 

research is not to analyze flow around a steady sphere data sets.  Flow visualization must 

not resemble a nebulous blob of spaghetti when applied to the most complex data sets but 

rather it should elucidate the critical features.  For the purposes of this work, the methods 

explained in Section 3 were used to study deformable wing insect flight. 

 The unsteady flow fields generated by a quad wing insect are very complicated 

and not well understood, which makes it an ideal test of a visualization algorithm's merit.  

The different areas within the flow induced by the wings require multiple seeding 

strategies to properly capture them all.  This section presents an overview of how 

generalized streak seeds, streamlines, particle advection, vertex normal seeds and flowing 

seed points were used to visually capture flow features believed to play a role in flapping 

flight. 

 

5.1 Dynamic Seed Curves and Streamlines 

 In section 3.4 the concept of dynamic seed curves was introduced to help 

automate seeding flow objects over multiple time steps in complex unsteady 3D flows.  

Results of using iso-seed planes and vertex normal seeds to place streamlines in the 

deformable wing dragonfly data set are presented here.  The goals are to keep the 

streamlines in the leading edge vortices, get uniform coverage of the different layers 

within the vortices that are rotating at different speeds, and minimize the amount of user 

interaction needed to choose the seed points. 
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5.1.1 Iso-Seed Plane Results 

 The iso-seed plane technique is one way to restrict seeds to a vortex forming 

along the edge of a moving object in the flow.  Figure 3.18 and Figure 3.19 show results 

of generating the planes and using them to detect the leading edge vortex core along each 

wing based on a series of iso-surfaces.  Each iso-plane corresponds to a mesh point on the 

dragonfly wing.  In order to capture all the layers of the vortices, seeds are placed on each 

plane at different iso-values at the point closest to the corresponding mesh point on the 

wing.  Figure 5.1 shows the result of placing streamlines at different iso-values. 

 
 
 

 
Figure 5.1: Streamlines seeded along the leading edge vortex at four different iso-values. 
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 This seeding method just starts streamlines in key areas, however it does not 

prevent them from leaving those areas and potentially self occluding if integrated to long.  

My experiments have shown that with this kind of data it is more effective to densely 

seed streamlines in the most important vortices but not integrate them very long.  The 

results of placing seeds in the leading edge vortex and integrating them for a varying 

number of time steps can be seen in Figure 5.2.  Ultimately the iso-seeding method 

proved very effective for streamline placement, as can be seen in Figure 5.3 

 

 

 
Figure 5.2: Effect of integration time on streamline quality. 
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Figure 5.3: An effective visualization based on dense iso-seed placement and low integration times. 
 

 

5.1.2 Vertex Normal Seed Results 

 Despite the effectiveness of iso-seeds, they have a few drawbacks.  The main 

issue is that they are dependent on the results of the vortex core detection algorithm.  In 

complex data sets there will often be multiple vorticity magnitude peaks in the iso-planes 

due to the presence of multiple vortices in the flow.  For example, in the flapping disk 

data set the detected vortex core jumps from the leading edge into the dynamic stall 

vortex when the angle of attack changes rapidly.  This can cause seed points to blink 

around in the flow domain.  If the seed points do not move smoothly between time steps 

it will compound the spatial coherency problems that streamlines have when animated. 
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 Unlike iso-seeds, vertex normal seeds remain a consistent distance above the 

mesh along the normal vector of the corresponding vertex.  For this reason, vertex normal 

seeds are generally more effective at more time steps of the flapping wing data sets.  The 

only problem with vertex seeds is that it is up to the user to choose a distance along the 

normal vector to place the seeds such that the desired flow features are captured.  

However, this can be chosen based on the average vorticity along all the normals of the 

selected vertices.  Figure 5.4 and Figure 5.5 show several vertex normal seeds on the 

dragonfly wings and the corresponding streamlines. 

 
Figure 5.4: Vertex normal seeds represented as spheres on the leading edge of each wing from the root to 
the pterostigma. 
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Figure 5.5: Streamline tubes with color mapped vorticity generated with vertex normal seeds on the leading 
edge of each wing. 
 

 

5.2 Dynamic Seed Curves for Particle Emission 

 The drawback of using dynamic seed curves with streamlines is that you must 

balance the tradeoff between flow coverage and spatial coherence when animating your 

visualizations.  Using dynamic seed objects makes seeding much easier from a user's 

perspective, but it does limit the area in the flow where seeds will be placed.  In general 

this is a good thing, but other useful flow phenomena could potentially be missed if the 
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streamlines are not integrated long enough.  For instance, in the case where seed points 

are bound to the leading edge, it is possible to see when the vortex sheds because it is no 

longer present during stroke reversals, however you cannot visualize where it goes.  Also, 

the downwash or induced flow resulting from the near field vortices is not captured with 

this visualization method. 

 These problems are mainly caused by the nature of streamlines.  Thus,  dynamic 

seed curves were also tested for particle emission and generalized streak line seeding.  

Particle advection over multiple time steps allows the particles to move into areas of 

interesting flow where it would be difficult to automatically place seeds.  In particular, 

particles can capture how the flow moves from the vortices near the seed curves into the 

wake, thus allowing the dragonfly to take off. 

 

5.2.1 Particle Lifetime 

 Particle lifetime controls how long a particle will stay in the scene before being 

removed.  When using dynamic seed curves, the particles are essentially guaranteed to at 

least enter the flow in the vicinity of an interesting feature.  If there are too many particles 

kept in a scene after they are no longer in an important area it will draw attention away 

from those key areas.  On the other hand a particle lifetime that is to short will cause 

particles to be removed while they are still in important areas.  In the flapping disk and 

dragonfly data sets, particles were kept in the scene anywhere from 200 to 600 time steps 

after being emitted.  This proved adequate to capture the induced flow but not float 

around aimlessly in the far corners of the data set. 
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5.2.2 Particle Emission Rate 

 The particle emission rate controls how close any given particle will stay to the 

particles emitted before and after it.  If the particle emission rate is high enough the result 

is, for all practical purposes, a generalized streak line.  True fully connected streak lines 

with adaptive refinement proved undesirable with the flapping wing data sets due to the 

fact that a complex mechanism to "tear" the streak lines when a flapping wing passes 

through them is necessary to avoid excessive stretching.  Typically as the number of 

emission points goes up, the emission rate decreases to avoid business. 

 

5.2.3 Iso-Plane Emission Points 

 The first particle emission test was done with iso-plane based seeding.  Seeds 

similar to those shown in Figure 3.19 are used to place particles in the flow with a 

predetermined emission rate.  The results of this are illustrated in Figure 5.6.  Particles 

are color coded based on the wing whose LEV was used to emit them.  The first thing 

that is obvious about these visualizations is that particles clearly are not as powerful as 

streamlines at conveying the precise shape of the vortices in the near field.  They allow 

you to see the general shape of the large vortices shed during stroke reversal, but the tight 

shape of the leading edge vortex is missed for the most part.  On the other hand, particles 

do show the wake structure resulting from the vortices and the direction the flow is 

moving.  The downwash is what allows the dragonfly to take off, so this is also a 

valuable flow phenomena that needs to be captured.  In Figure 5.6, the dragonfly begins 

to fly backward while taking off, which is why the majority of the wake moves forward 

and down after leaving the wings. 
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Figure 5.6: Results of using iso-seed plane based vortex core detection for particle emission. 
 

 

5.2.4 Vertex Normal Emission Points 

  Vertex normal based seed curves were also used to inject massless particles into 

the flow over time.  Despite the ease with which this method allows a user to define seed 

curves, it requires knowledge of the application domain in order to really be effective.  

Based on the literature review of all the major flapping wing insect flight studies 
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presented in Section 2.5, I choose several target areas to test vertex normal seeds on the 

dragonfly wings.  In particular, the wing roots were chosen in order to capture any 

potential spanwise flow (Figure 5.7).  Also the vertices along the leading edge were 

chosen to capture both leading edge vortex formation as well as the shedding of vortices 

into the wake.  Finally, multiple seed curves were placed near the wing tips on both the 

fore and hind wings to look for wake capture in an area of high force production. 

 

 
Figure 5.7: Vertex normal seeds placed at the wing roots used for particle emission. 
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 While it is clear that the LEV is responsible for the lift generation produced by 

insect wings, it is still unclear how the vortex stays attached to the wings so long.  In 2D 

simulations of a foil with a comparable angle of attack, vortex shedding occurs much 

earlier.  Obviously in the 2D case, flow cannot move parallel to the vortex core, so one 

potential explanation is that spanwise flow moving along a spiraling vortex drains energy 

away from the vortex core, thus stabilizing the LEV.  This theory is based on the 

phenomena that occurs in delta wing aircraft.  The results of placing particles on both the 

leading edge and the back of the wings near the dragonfly's body are shown in Figure 5.7, 

Figure 5.8 and Figure 5.9.  While there are signs of spanwise flow in the particle 

trajectories, particularly during the takeoff flap, it is not enough to say definitively 

whether or not this is the main reason why the LEV does not shed. 

 

 
Figure 5.8: Spanwise flow along the left forewing and hind wing during takeoff. 
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Figure 5.9: Spanwise flow along the right forewing and hind wing during takeoff, with the LEV highlighted 
in black. 
 

 

 The leading edge was the next obvious place to try emitting particles, as can be 

seen in Figure 5.10.  Overall, the results look similar to the iso-plane seeding results, 

however the smooth movement of the seed curves keeps particles that were emitted at 

adjacent time steps closer together.  This makes the flow features in the areas they move 

through slightly easier to discern.  In general most particles tend to stay close to the 

leading edge during the up stroke and down stroke except those near the wing tips.  
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Particles are then shed from the wings during stroke reversal.  While the particle behavior 

is essentially what is expected based on flapping flight theory, perceptually they have 

drawbacks.  Particles are more effective for capturing the induced flow, however the 

structure of the vector field near the tight leading edge vortex is not as clear as it was with 

streamlines.  Capturing both of these benefits is the motivation behind applying the 

flowing seed point method to flapping flight data. 

 

 

Figure 5.10: Particles emitted from several seed curves that follow the leading edges of the right fore and 
hind wings. 
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5.3 Flowing Seed Points and Dynamic Seed Curves Combined 

 Thus far I have visually captured the existence of the leading edge vortices that 

occur during both half strokes with streamline seeding and the induced flow structure has 

been captured with particle advection.  It is still unclear what happens to the leading edge 

vortices when they are not obviously attached to the wing.  Thus, the goal of applying 

flowing seed points to this data set is to track the movement of near field vortices without 

losing the ability to visually follow the path of individual massless particles. 

 Initial tests were done to determine suitable emission and integration parameters 

for the dragonfly data set.  Next, flowing seeds were emitted from several of the same 

locations that streamlines and particles were placed in Sections 5.1 and 5.2.  A camera 

animation method intended to complement flowing seed points as well as a wing chord 

seeding method that aims to increase seed density in a plane perpendicular to the LEV are 

then introduced.   

 Examples of situations where the flowing seed point method captures features that 

other visualization methods would be unable to capture are given specific attention.  For 

example, the movement of near field vortices as they are shed at stroke reversal, as well 

as wake capture between wings are given specific attention.  Like particle advection, 

flowing seed points are effective in still images but they are intended to be animated.  

Images are presented in groups at neighboring time steps to help convey how the 

visualization evolves over time.  Finally, to tie the visualization results back to the 

simulation analysis in Section 4.3 the visualizations are compared with the lift generation 

and the camber to chord ratio for each of the left wings for several time steps where the 

lift production is at a local peak. 
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5.3.1 Flowing Seed Parameters 

 When using dynamic seed curves for particle placement the rate at which particles 

were emitted into the flow and the time they stayed there played a significant role in how 

the resulting visualization would look.  These variables need to be treated differently with 

flowing seed points because of the overall larger number of polygons in the scene and the 

greater possibility of occlusion.  In the case of particle emission you must balance 

between being able to discern which particles were emitted at consecutive time steps 

while not crowding the scene with too many streamlets.  Figure 5.11 gives a comparison 

of several particle emission rates with the same underlying seed curve. 

 

 

Figure 5.11: Comparison of flowing seed particle emission rates. 
 

 

 In addition to worrying about the particle lifetime and emission rate, when dealing 

with flowing seeds you must control how long each individual flowing streamlet or 

pathlet is integrated.  If they are not integrated long enough then there is really no 

advantage over basic particles.  If they are integrated to long the scene can become very 
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busy and the animations will begin to look choppy.  A comparison of several different 

integration times is shown in Figure 5.12.  In general it proved effective to integrate the 

streamlets and pathlets anywhere from 8 to 32 time steps in each direction depending on 

the density of the emission points and the particle emission rate.  While a higher streamlet 

integration time appears better in a still image, it can become perceptually disconnected 

from its own flowing seed point when animated.  

 

 
Figure 5.12: Comparison of the effect of integration time on flowing streamlets. 
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5.3.2 Flowing Pathlets to Capture Vortex Formation 

 In general streamlets proved more useful with flowing seed points than pathlets 

due to their ability to capture vortices in the instantaneous flow.  Pathlets however have 

the unique ability to provide information about a range of time steps while looking at a 

still image.  In particular they can capture where in space time the leading edge vortex for 

any given wing formed by showing the path taken by particles emitted earlier in time.  

This allows a user to see how long after stroke reversal the LEV on any given wing 

formed as well as where it moved while examining the alignment of the wings at a point 

later in time.  This effect is illustrated in Figure 5.13.  As the number of flowing seeds 

increases it becomes very difficult to capture this effect, so for the majority of the tests 

with the dragonfly data set, streamlets were used instead of pathlets. 

 

 
Figure 5.13: Vortex formation time and location captured in neighboring time steps with flowing pathlets. 
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5.3.3 Seeds Flowing off the Leading Edge 

 I have already demonstrated the ability to capture the existence of the leading 

edge vortex as well as the far field induced flow.  What has not been captured is the 

shedding, breakdown and reforming of the LEV, so that is the main goal of applying 

flowing seed points.  Their ability to move with the vortex as it sheds while still showing 

the vector field trajectories makes them well suited for this task.  When placing 

streamlines and particles in the dragonfly dataset it proved very effective to focus on the 

wing roots, tip and leading edge (Figure 3.22).  Naturally the same base seed curves were 

used in the first attempts at using flowing seeds in the dragonfly data set.  An example of 

these seed curves is shown in Figure 5.14 and the results of inserting flowing seed points 

into the flow at the root, tip and leading edge of the right side wings are shown in Figure 

5.15, Figure 5.16, Figure 5.17 and Figure 5.18. 

 

 
Figure 5.14: Seed curves generated on the normals extending from the leading edge vertices. 
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Figure 5.15: Vortex shedding and dissipation captured with flowing streamlets. 
 

 
Figure 5.16: Several close ups of vortices captured by the flowing seeds emitted from the leading edge. 
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Figure 5.17: Flowing seeds emitted along vertex normal based curves at the tip of the right forewing. 
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Figure 5.18: Flowing seeds emitted from the wing roots capture vortex shedding off the trailing edge as 
well as spanwise flow along the leading edge. 
 

 

5.3.4 Wing Mounted Cameras 

 These first tests using flowing seed points with the flapping wing dragonfly data 

set suggested that the same seeding and viewing strategy that worked for streamlines, and 

particles was no longer ideal.  For example, when flowing seed emission points are 

placed in a single row along the leading edge they are not able to capture the entire LEV 

and the downwash suffers from information overload.  While they did capture the 

structure and velocity of the induced flow and some of the shed vortices the majority of 

the particles did not end up in interesting areas of the flow and did not convey much more 

information than simple particles.  Also, it required a lot of manual panning and rotating 

the scene to find an angle where the desired feature was not occluded. 

 These early tests suggested that perhaps emitting more flowing seed particles in a 

plane parallel to the wing chord and then keeping the view direction perpendicular to that 

plane might produce before results.  The goal is to get a fairly dense seed distribution at a 
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cross section of the leading edge vortex and then keep the camera looking down the core 

of the vortex.  In order to achieve the desired viewing angle without manually adjusting 

the camera, I chose to let the wing's motion drive the camera location.  A vector is 

calculated for each wing by subtracting the root vertex from the tip vertex.  The cameras 

are then placed on this vector a user defined distance from the wing tip at each time step 

with their "look at" points bound to the root of the corresponding wing.  Figure 5.20 

shows the position of cameras bound to each wing and Figure 5.19 shows the dragonfly 

through the left forewing camera at several time steps. 

 

 
Figure 5.19: Result of viewing the dragonfly with a camera bound to the left forewing at four time steps 
during the same stroke. 
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Figure 5.20: Cameras bound to all four of the dragonfly's wings. 
 

 

5.3.5 Vertex Normal Seeding Along Wing Chords 

 A new seeding strategy known as chord seeding was also used to help further 

clarify the flowing seed point results.  Vertex normal seeds are chosen along the wing 

chords and seed curves are created by connecting these points over time (Figure 5.22).  

Viewing long and slightly curved vortices, like those that occur on the wings, with this 

seeding scheme greatly reduces occlusion.  Note that the wing chord emission curves and 

camera angles are really only effective with flowing seeds, as can be seen in Figure 5.21. 

 

 
Figure 5.21: Comparison of sphere shaped particles and streamlets seeded at the same particle locations for 
vortex visualization. 
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Figure 5.22: Seed curves corresponding to several vertices along the chord 35% from the wing tip. 
 

 

 A series of tests were done placing seeds along the chords various distances from 

the wing tips.  Once a distance from the wing tip is chosen the user is limited to placing 

seeds on the plane parallel to the corresponding chord of the chosen wing.   This seems 

like a large restriction given the size of the data, but all the desired flow features can be 

captured with this method.  Figure 5.23 shows how chord seeds captured the leading edge 

vortex during both the up stroke and down stroke.  Unlike the streamline images of the 

LEV, flow reattachment is also illustrated.  The flow reattachment is key for flight 

because it means the vortex is stable and not shedding yet.  Figure 5.24 shows how seeds 

at a chord near the root can be used to more effectively capture spanwise flow along the 

leading edge vortex core.  This phenomena was only apparent in the first flap after 

takeoff, perhaps because more lift was needed at this time. 
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Figure 5.23: The leading edge vortex at eight time steps during both the up and down stroke. 
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Figure 5.24: Spanwise flow captured by emitting flowing seeds along the wing chord near the root.  The 
left column shows the LEV with a wing bound camera and the right column shows the same time steps 
from a camera perpendicular to the vortex. 
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5.3.6 Visualization of Vortex Shedding 

 As mentioned earlier in section 3.3.4, the combination of generalized streak seeds 

and carefully chosen base seed curves were useful for capturing the vortex shedding on 

the flapping disk as its angle of attack changed at the end of each stroke.  Tests were 

performed with the chord seeds at stroke reversal to see if the flowing seeds could 

capture similar effects in the dragonfly data.  When the vortex sheds over the top of the 

foil, it is known as dynamic stall, and it is believed to play a role in how insects generate 

the necessary lift to fly [96].  The up stroke to down stroke reversal showed the initial 

LEV dissipate and partially flow into the newly forming LEV (Figure 5.25). 

 

 
Figure 5.25: Vortex breakdown and reforming at the up stroke to down stroke reversal. 
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 A similar test was done at the down stroke to up stroke reversal.  In this case the 

leading edge vortex begins to grow in size and moves into the back of the wing as the 

angle of attack starts to change.  As the vortex moves away from the wing its strength 

diminishes.  Also, the core of the shed vortex is not a straight line.  Both of these factors 

would make it very difficult to detect directly which is why flowing seed points are 

powerful for visualizing this aspect of flapping flight flow fields.  Vortex shedding is 

important particularly in quad wing insect studies because it is possible to reclaim energy 

from vortices after they have been shed. 

 

 
Figure 5.26: Vortex shedding at the end of the down stroke. 
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 Clearly, the ability to capture the complex vortex behavior that occurs at stroke 

reversal is important for understanding how the dragonfly produces lift.  Once the 

particles are in the right area, the streamlets integrated at each flowing seed point are 

what actually captures the vortex formation, shedding and breakdown.  Particles alone 

would not capture this effect with this much clarity (Figure 3.14), nor would longer 

streamlines due to their spatial incoherence between frames.  Direct visualization of this 

effect with vorticity magnitude would not be very effective because the vorticity around 

the shed vortices is much lower than that of the newly forming leading edge vortex.  In 

2D cases, texture based methods such as line integral convolution would probably 

capture this phenomena, however they are not as clear in 3D.  Thus, visualization of how 

the leading edge vortex forms, sheds at stroke reversal and then reforms is an application 

where the flowing seed point algorithm is more useful than any traditional flow 

visualization method. 

 

5.3.7 Visualization of Wake Capture 

 Visualization of wake capture is another phenomena which flowing seed points 

are more effective than other methods at capturing.  It is similar to vortex shedding 

except that the vortices continue to interact with the wings after being shed.  In a quad 

wing insect, there are two scenarios where wake capture can occur.  In the first case the 

LEV from the previous stroke gets shed at reversal and partially flows into the new LEV 

forming at the beginning of the new stroke.  Energy is captured from the original vortex 

which allows the insect to generate more lift (Figure 5.27).  The other case is when a 

vortex is shed from the forewing,  such that it interacts with the flow around the 
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corresponding hind wing.  This situation is illustrated in Figure 5.28.  While this 

phenomena is visually clear, its effects on lift production is not.  In the case of wake 

capture between different wings on the same side of the insect, additional simulations are 

needed for individual wings in order to measure what effects the wake capture is really 

having. 

 

 
Figure 5.27: Wake capture from the previous half stroke on a single wing. 
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Figure 5.28: Visualization of a vortex shedding from the left forewing at stroke reversal and then partially 
attaching to the vortex on the left hind wing. 
 

 

5.3.8 Vortex Behavior and Lift Production 

 Thus far I have demonstrated that the flowing seed point method can effectively 

capture vortex formation, movement, breakdown and recapture in the dragonfly data set, 

however this is only one side of the analysis.  In order to prove what effects the vortices 

are having on the insect, the visualizations must be paired up with the studies of both the 

wing kinematics and lift production mentioned in Sections 4.2 and 4.3.  In the first test, 

the left hind wing lift production was examined visually at several time steps near a peak 

in lift output.  The results are shown in Figure 5.29. 
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Figure 5.29: Comparison of flowing seed point visualizations of the left hind wing with the force history 
and camber to chord ratio over time at a high lift production interval. 
 

 

 As expected the peak lift production appears to occur when leading edge vortices 

are attached to the wings.  This result is significant because most theories about quad 

wing flapping flight suggest that the hind wing's main purpose is to produce thrust, while 
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the forewings produce the majority of the lift.  Clearly the hind wing is also producing lift 

during the takeoff maneuver, however additional simulations are needed to clarify 

whether this is always the case or whether it just happens during takeoff.  In the next test, 

the flowing seeds around the left forewing were examined at a point of low lift 

production (Figure 5.30).  Not surprisingly the corresponding flowing seed point 

visualizations show that the LEV is shedding at stroke reversal and that the new LEV has 

not started forming yet. 

 

 
Figure 5.30: Comparison of flowing seed point visualizations of the left forewing with the force history and 
camber to chord ratio over time at a low lift production interval. 
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 In both of these tests the leading edge vortex is most stable and the lift production 

is greatest when the camber to chord ratio is not changing much.  However, it is not clear 

whether the wing camber is causing any of this or not.  The camber to chord ratio 

changes rapidly at stroke reversal.  Some vortex shedding obviously occurs at stroke 

reversal regardless of wing deformation however it is possible that the wing camber plays 

a role in how quickly a new LEV is formed.  Until a comparative analysis is conducted 

with a rigid wing version of the same dragonfly it will not be clear how much of the 

observed vortex behavior is due to the stroke reversal and how much is due to the wing 

camber. 
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6 Conclusion 

 I have shown how streamlets and pathlets can be seeded at a series of points on a 

discretized generalized streak line or time line in order to generate one concise smoothly 

animated visualization.  Also, I have demonstrated how dynamically deforming seed 

curves are much more powerful than traditional static seed objects when dealing with 

flows that contain multiple moving objects generating flow disturbances.  Preliminary 

tests were done with a relatively simple flapping disk data set.  In addition, an extremely 

complex deformable wing dragonfly takeoff and slow flight simulation was created in 

order to further evaluate the merits of these methods. 

 

6.1 Contributions 

 The major contribution of the flowing seed point technique is that it combines the 

perceptual benefits of streamlines and path lines with those of generalized streak lines 

and particle advection into one smooth animation.  Flowing seed points improve 

visualization of instantaneous and time varying velocity and divergence when compared 

to basic particles on the underlying seed curves.  The flowing seed point method also 

proved to be very useful, compared to other visualization methods, for capturing the 

formation, evolution and breakdown of vortices which are only present briefly in a flow 

field.  For example, it was able to capture the vortices that form through dynamic stall 

when the wings change their angle of attack. 

 The main contribution of dynamically deforming seed curves is the ability to 

achieve good particle coverage in the areas of the flow that are most important while 
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minimizing occlusion from less important areas.  By exploiting 3D modeling algorithms 

such as edge loop selection, vertex normals, subdivision refinement and path extrusion, 

dynamic seed objects are very easy for a user to define with only a few mouse clicks.  In 

addition, the vertex normal approach to generating dynamic seed curves in the vicinity of 

objects that are disturbing the flow has a significant speed advantage over any seeding 

method that is based on metrics taken from the underlying vector field.  Dynamic seed 

curves also proved to be very useful for visualizing flow simulation data in cases where 

there is no inlet flow to place a static seed object in front of. 

 While its application domain is not computer science related, the reconstruction 

and simulation of the deformable wing dragonfly is a novel contribution in its own right.  

Most previous insect flight simulation studies were based on rigid wing models and do 

not accurately reflect the insect's true wing kinematics.  Simulations of rigid wing models 

also do not accurately capture how a real insect produces the necessary lift to fly.  The 

integrated analysis of this more accurate reconstruction and CFD simulation with the 

flowing seed point visualization method has helped provide previously unknown insight 

into the relationship between wing deformation, lift generation and vortex production. 

 

6.2 Future Work 

 One possible extension to this work would be to combine it with some of the 

more sophisticated vortex detection algorithms mentioned in section 2.3 in order to 

improve coverage of all vortices in the flow domain.  The vortex detection method I used 

for testing purposes zeroes in on only the leading edge vortex on each wing, however 

there are other vortices in the flow where flowing seeds could be injected.  In particular 
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work is needed in detection and tracking of curved vortices in 3D unsteady flows.  A 3D 

extension of the work in [81, 82] has potential in this area.  Metrics that operate on larger 

portions of a series of densely seeded streamlines to measure the degree to which they are 

shaped like helices could potentially provide more robust vortex detection in very 

complex data sets. 

 Another possible future extension to this work is to try increasing the flowing 

seed point dimensionality to seed small stream surfaces.  Stream surfaces tend to suffer 

from occlusion problems, however they are less prone to information overload than 

having a lot of individual streamlets.  Recent developments using smoke based rendering 

with stream surfaces have lessened the occlusion problems so perhaps a series of short 

stream surfaces placed in critical areas of the flow would be better than a group of 

individual streamlets. 

 Finally it would also be useful to perform user studies of the perceptual benefits 

of the methods described in this document when compared to a series of other unsteady 

flow visualization methods.  This is a very important area that is for the most part ignored 

in visualization research.  The work by Ware suggests that the flowing seed point method 

for seeding streamlets at a series of time steps is perceptually more effective than even 

coverage of sphere shaped particles [112].  However, this study dealt only with 2D steady 

flow data.  More work is needed to truly understand and establish criteria which measure 

the perceptual merit of any 3D unsteady flow visualization method. 
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