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ABSTRACT

Chakravarthy, Vasu. Ph.D., Engineering Ph.D. Program, College of Engineering and Com-
puter Science, Wright State University, 2008.
Title: Evaluation of Overlay/Underlay Waveform via SD-SMSE Framework for Enhancing
Spectrum Efficiency.

Recent studies have suggested that spectrum congestion is mainly due to the inefficient

use of spectrum rather than its unavailability. Dynamic Spectrum Access (DSA) and Cogni-

tive Radio (CR) are two terminologies which are used in the context of improved spectrum

efficiency and usage. The DSA concept has been around for quite some time while the

advent of CR has created a paradigm shift in wireless communications and instigated a

change in FCC policy towards spectrum regulations. DSA can be broadly categorized as

using a 1)Dynamic Exclusive Use Model, 2) Spectrum Commons or Open sharing model

or 3) Hierarchical Access model. The hierarchical access model envisions primary licensed

bands, to be opened up for secondary users, while inducing a minimum acceptable inter-

ference to primary users. Spectrum overlay and spectrum underlay technologies fall within

the hierarchical model, and allow primary and secondary users to coexist while improving

spectrum efficiency. Spectrum overlay in conjunction with the present CR model considers

only the unused (white) spectral regions while in spectrum underlay the underused (gray)

spectral regions are utilized. The underlay approach is similar to ultra wide band (UWB)

and spread spectrum (SS) techniques utilize much wider spectrum and operate below the

noise floor of primary users.

Software defined radio (SDR) is considered a key CR enabling technology. Spec-

trally modulated, spectrally encoded (SMSE) multi-carrier signals such as Orthogonal

Frequency Domain Multiplexing (OFDM) and Multi-carrier Code Division Multiple Ac-

cess(MCCDMA) are hailed as candidate CR waveforms. The SMSE structure supports and

is well-suited for SDR based CR applications. This work began by developing a general

soft decision (SD) CR framework, based on a previously developed SMSE framework that
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combines benefits of both the overlay and underlay techniques to improve spectrum effi-

ciency and maximizing the channel capacity. The resultant SD-SMSE framework provides

a user with considerable flexibility to choose overlay, underlay or hybrid overlay/underlay

waveform depending on the scenario, situation or need. Overlay/Underlay SD-SMSE

framework flexibility is demonstrated by applying it to a family of SMSE modulated sig-

nals such as OFDM, MCCDMA, Carrier Interferometry (CI) MCCDMA and Transform

Domain Communication System (TDCS). Based on simulation results, a performance anal-

ysis of Overlay, Underlay and hybrid Overlay/Underlay waveforms is presented. Finally,

the benefits of combining overlay/underlay techniques to improve spectrum efficiency and

maximize channel capacity is addressed.
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Introduction

1.1 Motivation

”Spectrum is the lifeblood of Radio Frequency (RF) Communications” [17]. With an ever

increasing demand for higher data rates, coupled with an increase in new applications and

the number of users, spectrum crowding and congestion continue to increase. Spectrum

congestion is a concern and problem to both military and commercial users. At first glance,

as depicted in Fig. 1.1 which shows the Federal Communication Commission’s (FCC) fully

allocated spectrum chart, it seems like there is a spectrum scarcity [18] . Recent studies

have suggested that spectrum congestion is mainly due to the inefficient use of the spectrum

rather than its scarcity [19].

Figure 1.1: Illustration of spectrum congestion factors

A number of studies by different institutions, government agencies and academia such
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as Shared Spectrum, Defense Advanced Research Project Agency (DARPA), FCC, U.C.

Berkeley to name a few, have performed number of measurements to study spectrum uti-

lization in and outside USA. One such study performed under DARPA’s NeXt Generation

(XG) communication program suggested that on average, only two percent of the spectrum

is actually in use in the United States at any given time [1]. Another study by the FCC

revealed that about five to ten percent is being used at any given time. These measurements

revealed that in many bands spectrum access is more of a problem than spectrum scarcity.

The problem of spectrum inefficiency stems from the fact that we are trying to adapt

the 21st century technology coupled with the increase in number of users and demand for

more spectrum, to the policies and regulations formulated in 1934, wherein different fre-

quency bands are assigned to different users or service providers, and licenses are required

to operate within those bands.

Figure 1.2: FCC’s spectrum utilization chart
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Figure 1.3: Spectrum utilization study by DARPA’s Next Generation (XG) program [1]

To exploit the unused spectrum more efficiently in dynamically changing environ-

ments, it is desirable to have a secondary communication system capable of utilizing the

unused spectrum, by adapting to the rapidly changing environmental conditions while en-

suring minimal, or at least manageable interference to existing primary users. Such a tech-

nology is termed the Cognitive Radio (CR) [3]. In 2003 the FCC issued a Notice of Pro-

posed Rule Making (NPRM)[19] calling for inputs on how CR could be realized, and in

2005 the FCC adopted rule changes to include CR in the Television (TV) bands [20].

1.1.1 Dynamic Spectrum Access

Two terminologies namely Dynamic Spectrum Access (DSA) and Cognitive Radio (CR)

have been used by the research community in the context of improving spectrum efficiency.

As illustrated in Fig. 1.4, DSA can be categorized into three groups namely 1) Dynamic ex-

clusive use model, 2) Open Sharing Model and 3) Hierarchical Access Model [2]. Dynamic

exclusive model basically follows the present policy and regulations. Spectrum property

rights and dynamic spectrum allocation are two methods introduced within this model to

add flexibility for spectrum efficiency. In the first method, primary user (licensees) are

3



Figure 1.4: Dynamic Spectrum Access scenarios [2]

allowed to sell/trade spectrum and can choose technology of their choice. The second

method, dynamic spectrum allocation introduced by the European DRiVE project, aims

to improve spectrum efficiency via dynamic spectrum assignment utilizing the spatial and

temporal statistics of different users. Open sharing model also known as spectrum com-

mons employs sharing among peers as the basis to manage a spectrum region. This model

basically gains support from the success of wireless services operating in unlicensed indus-

trial, scientific and medical (ISM) band. Finally, in the hierarchical access model interac-

tion between primary and secondary users are considered for achieving spectrum efficiency.

The basic idea here is to open the licensed spectrum to secondary users while maintaining

minimum acceptable interference to the primary users. Spectrum overlay and Spectrum

underlay are two spectrum sharing approaches which have been under consideration. Spec-

trum overlay allows the unlicensed secondary users to utilize the unused spectrum simul-

taneously with the primary user on a non-interference basis. This overlay approach was

first adapted by [3] and further researched by the DARPA’s Next Generation (XG) program

under the term opportunistic spectrum access [21]. Similarly, spectrum underlay allows

the unlicensed secondary user to simultaneously operate in primary user bands but with a

severe power constraint on the transmit power of the secondary user. Out of all these three

spectrum access models, the hierarchical access model is perhaps the most compatible one

with current FCC policies and legacy wireless systems.
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Out of all the three DSA methods discussed, Cognitive Radio (CR) seems to be most

compatible with the hierarchical access method. Even though the present definition of

CR only considers overlay approach, research trend suggests that a combination of over-

lay/underlay can be employed to maximize the spectral efficiency utilizing both white and

gray portion of the spectrum [2, 22, 23]. Therefore, CR can be further categorized as

overlay-CR and underlay-CR.

1.2 Overview of Cognitive Radio

Over the last few decades, radio engineering, and in particular wireless communication has

made significant advances enabled by Moore’s law of computational evolution. Advances

in Digital Signal Processor (DSP) and General Purpose Processer (GPP) were key enablers

in implementing modulation, demodulation and signaling protocols, revolutionizing tech-

nologies from analog to digital to software functions [17]. The 90’s introduced the concept

of Software Defined Radio (SDR) [24, 25]. These radios typically have a RF front-end

with a software-controlled tuner. Digitized baseband signal processing is performed by a

reconfigurable device such as field-programmable gate array or DSP processor [13]. De-

partment of Defense (DOD) programs such as Speakeasy I and Speakeasy II demonstrated

the feasibility of SDR [26]. Later in 2000, Mitola in his dissertation work extended the

concept of SDR and coined the term Cognitive radio [3, 27].

The introduction of CR technology has created a paradigm shift in wireless communi-

cations. It has instigated research interest not only among radio engineering community but

also among other disciplines such as networking, mathematics (game theory), Economics,

Marketing, Business law to name a few. With the involvement all the these heterogeneous

disciplines many different interpretation and definitions of the term Cognitive Radio can be

found in the literature.

Ever since Mitola coined the word Cognitive Radio[3] many definitions have emerged
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depending on the usage and viewpoint.Perhaps the most complete and extensive definition

of CR found in literature are given by Mitola and Haykin. Mitola [3] defines CR as ”Sys-

tems consisting of wireless Personal Communication System (PCS) and other wired net-

works which are computationally intelligent about radio resources and related computer-

to-computer communications to detect user communication needs as a function of use con-

text, and to provide radio resources and wireless services most appropriate to those needs.

It is a vision of intelligent wireless ”black-box” with which the user travels. Wherever the

user goes, cognitive device will adapt to new environment allowing the user to be always

connected”.

Mitola envisions an ideal CR as one which integrates CR techniques with advanced

software defined radio, computer vision, high performance speech understanding, global

positioning system (GPS), sophisticated adaptive networking, adaptive physical layer radio

waveform and a wide range of machine learning process in creating an ideal CR or personal

digital assistant (PDA) [21]. Some of the functionality of the ideal CR are:

• CRs see what you see, discovering radio frequency uses, needs, and preferences.

• CRs hear what you hear, augmenting your personal skills.

• CRs learn to differentiate speakers to reduce confusion..

Haykin defines it as ”An intelligent wireless communication system that is aware of its

surrounding environment (i.e. outside world), and uses the methodology of understanding

by building to learn from the environment and adapt its internal states to statistical varia-

tions in the incoming RF stimuli by making corresponding changes in certain parameters

(e.g. transmit power, carrier frequency, and modulation strategy) in real time, with two pri-

mary objectives in mind: highly reliable communications whenever and wherever needed

and efficient utilization of the spectrum” [28].

FCC has opted for a more concise definition by just focusing on the physical layer

adaptation. FCC defines CR as ” A radio that can change its transmitter parameters based
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on interaction with the environment in which it operates” [20].

Meanwhile, National Telecommunications and Information Adminstration (NTIA) the

other spectrum regulatory body in the US focuses on the applications of cognitive radio and

defines CR as A radio or system that senses its operational electromagnetic and can dynam-

ically and autonomously adjust its radio operating parameters to modify system operations,

such as maximize throughput, mitigate interference, facilitate inter-operability, and access

secondary markets,”[15].

Similarly, there are other definitions of cognitive radio from institutions such as IEEE

USA, IEEE 1900 Software Defined Radio Forum Cognitive Radio Working Group (SDFR

CRWG) and Virginia Tech Cognitive Radio Working Group (VT CRWG) to name a few.

Even though all these definitions by these various groups and institutions appear to create

more confusion than harmony, a closer look at the fundamental functionalities of these

definitions as summarized in Table 1.1 actually reveals some commonalities amongst these

definitions. The common underlying assumption in all these definitions is that they have

some level of cognition and autonomous operation. Also, the common capabilities found

in all the definitions are, observation, adaptability and intelligence [15].

So far, various definitions of cognitive radio from number of different perspectives

have been presented. A group of cognitive radios communicating and interacting with

each other exchanging information can be termed as Cognitive Radio Networks (CRN)

[17, 29]. CRN clearly delineates from cognitive radios in terms of the controlling goals.

In a CRN, goals are derived based on end-to-end network performance objectives, whereas

in CR the goals are localized only to the radio’s user. These end-to-end goals are derived

at run-time from operators, users, applications and resource requirements in addition to

any design-time goals. The difference in the scope of the goal from local to end-to-end

enables the cognitive radio networks to operate more easily across all layers of the protocol

stack [17, 30]. Next, some of the basic building blocks and terminologies associated with

cognitive radio will be discussed.
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Table 1.1: Cognitive Radio Definition Matrix [15]
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FCC • • • •
Haykin • • • • • • • •
IEEE 1900.1 • • • • •
IEEE USA • • • • • • •
ITU-R • • • • • •
Mitola • • • • • • • • • •
NTIA • • • • • • •
SDRF CRWG • • • • • •
SDRF SIG • • • • • • • • •
VT CRWG • • • • • • • • •

1.2.1 Types of Radios

Since the FCC definition is primarily focusing on the physical layer adaptation of the spec-

trum, there is common belief that CR is just another fancy name for adaptive radios [30].

In general, radios can be classified as 1) Aware radios, 2) Adaptive radios and 3) Cognitive

radios [21].

Aware Radio

Radios which are capable of sensing all or part of their environment are considered as

radios with spectrum awareness or simply aware radio. A voice radio inherently has sensing

capabilities in both audio and RF frequencies. When these sensors are used for the purpose

of collecting environmental information, it becomes an aware radio. RF spectrum sensing

information is utilized in channel, interference or signal estimation.
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Adaptive Radio

Radio with ability to sense the RF environment as well as autonomously change its op-

erating parameters are termed as adaptive radios. Frequency, instantaneous bandwidth,

modulation, error correction code, equalizers are examples of operating parameters which

can be utilized in adaptation. For example, a frequency hopping spread spectrum system

(FHSS) is not considered adaptive since the hopping patterns are predetermined. How-

ever, if the FHSS is capable of changing its hop pattern to reduce collision, then it can be

considered as an adaptive radio.

Cognitive Radio

A radio which is aware, has ability to adapt and also is capable of learning is considered

as cognitive radio. The first examples of CRs were modeled in the DARPA’s XG program.

These radios sense the spectrum environment, identify an unoccupied or unused spectrum,

and rendezvous multiple radios in the unused spectrum band and move to another band if

a legacy user re-enters that band. The adaptive capability of these radios improves as they

learn more about the environment.

1.2.2 Cognition in Cognitive Radio

The term cognition is usually associated with human thought process and reasoning abili-

ties. It is defined as a mental processing to analyze a given situation utilizing aspects such

as, awareness perception, reasoning and judgement. Cognition in cognitive radio sense is

defined as, monitoring and structuring the knowledge of self, other users, and the environ-

ment to provide information services. It is also defined as learning from experience to tailor

services to user requirements, scenarios and environments [3, 17].

Similar to cognitive radios, there does not seem to be a commonly accepted definition

of cognition cycle. As a reference to cognition cycle in relation to cognitive radios, Mitola’s
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Figure 1.5: Cognition Cycle as defined by Mitola [3]

version of cognition cycle provides a good example [3]. Mitola’s cognition cycle in Fig. 1.5

stems from the OODA loop concept. The OODA loop is a concept that originated from the

military strategist Col. John Boyd of the United States Air Force. Its main outline consists

of four overlapping and interacting processes: Observe, Orient, Decide and Act.

In the cognition cycle of Fig. 1.5, a radio gathers information regarding its operating

scenario by observation (Observe). The information is then analyzed (Orient) to determine

its importance. Based on this evaluation, a radio sorts through it’s various options (Plan)

and chooses the best option (Decide) suitable for that situation and radio scenario. Finally,

assuming a waveform change is necessary, the radio adapts, implementing the alternative

solution (Act) by adjusting its resources and applying appropriate signaling.

There are a number of different cognition cycle in the literature depending on one’s

need and interpretation of a cognitive radio. A cognition cycle can be as elaborate as the

one in Fig. 1.5 or as simple as the one shown in Fig. 1.6.
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Figure 1.6: A simpler version of the cognition cycle

Figure 1.6 shows the key components in a cognitive radio or cognitive radio net-

work. The sensing function can include environmental changes, spectrum holes and pri-

mary/secondary users and their positions. Learning functions includes protocols, physi-

cal/network layer parameters, interference levels and system or channel capacity. Learning

tools includes algorithms (genetic, game theory, pattern recognition, etc.), external inputs

and past experiences. Finally, adaptation can take place at any single layer or by using a

cross-layered approach.

Fig. 1.7 illustrates different types of diversity techniques presently under considera-

tion for cognitive radio application. In general, diversity paves way for orthogonality and

orthogonality is essential in minimizing multi-user interference. The combination of these

diversity techniques spanning across different layers of a communication system is also

termed as Cross-Layer design of Cognitive Network.

1.2.3 Spectrum Sensing

Spectrum sensing is one of the most important functions in the realization of Cognitive Ra-

dios. In general, spectrum sensing is associated with measuring the spectral content using
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Figure 1.7: Diversity: A Key Enabler of Cognitive Radio Networks

a number of spectrum estimation methods. In a CR sense, spectrum sensing not only has

to deal with identifying spectrum holes but also requires awareness about their operating

environment in a multi-dimensional space such as frequency, time, space and code [17].

Other unique signal features such as modulation, waveform bandwidth, baud rate, carrier

frequency and geolocation are also important not only in distinguishing primary/secondary

users but also in designing a waveform which can minimize interference and maximize

spectral efficiency. There are a number of challenges in implementing spectrum sensing

techniques in CR scenario. To begin with there are Radio Frequency (RF) front-end design

requirements, the need for a wide band antenna with a narrow band frequency resolution,

Analog-to-Digital Converter with high sampling rate and dynamic range, and high perfor-

mance signal processing algorithms. Other challenges and considerations in design and

implementation of sensing algorithms are, identifying the hidden node, detection of agile

and spread spectrum primary signals, sensing window or time, implementation complexity,

presence of multiple secondary users, coherence time, multipath, competition, robustness
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and power consumption [17].

Even though spectrum sensing in a CR sense is still in its infancy stages, number

of approaches which are utilized in the signal detection methods have been extended in

detection, identification and classification of primary and secondary signals. Match Filter-

ing, Waveform-Based sensing, Cyclostationary featured based sensing, Energy or Power

spectrum based sensing are some of the methods proposed in the literature. Matched

filtering is an optimum detection method when primary user signal features are known

[12, 31, 32, 33, 34, 35, 36, 37]. Energy detection is simple and can be implemented ef-

ficiently by using an FFT algorithm. However, there are some drawbacks for energy de-

tection: 1) the decision threshold is subject to changing signal to noise ratios. 2) it can

not distinguish interference from a user signal. 3) it is not effective for signals whose sig-

nal power has been spread over a wide bandwidth. Feature based detection methods have

been extensively utilized in military application to detect the presence of weak signals [38].

Cyclostationary feature detection is a promising option especially in the situation where en-

ergy detection is not so effective. However, it requires a large computational capacity [11].

A detailed discussion of cyclostationary based signal detection is presented in Appendix

8.1.

So far, the discussion has been limited to physical layer detection related to cognitive

radio or single user, but in a practical scenario it is expected that a network or cognitive

radio will operate in the presence of network of primary users. Cooperative and collabo-

rative sensing approaches have been proposed in addressing a number of issues raised in

spectrum sensing discussion such as noise uncertainty, fading, shadowing and hidden node

problems, to name a few. Centralized and distributed sensing are two cooperative methods

discussed in literature [39, 40].
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Figure 1.8: Illustration of horizontal and vertical sharing [4]

1.2.4 Spectrum Sharing

Spectrum sharing or learning how to share can be viewed as a two dimensional problem

consisting of vertical and horizontal sharing [41]. Vertical sharing is defined as sharing re-

sources with users of multiple systems with different levels of regulatory status. Horizontal

sharing is between users of systems with equal regulatory status. Fig. 1.8 shows spectrum

sharing between TV broadcast (primary users) and CR systems (secondary users) an ex-

ample of vertical sharing. Sharing with other cognitive radio systems or secondary user

”systems” such as 802.11 and 802.16 is an example of horizontal sharing. For both verti-

cal or horizontal sharing, a CR system must not only be capable of identifying spectrum

holes, it should be also able to design an appropriate waveform which will cause minimal

interference.

CR waveforms can be classified as two types: underlay and overlay waveforms [4, 42].

Underlay waveforms are those which operate on top of other systems. Fig. 1.9 depicts Ultra

Wide Band (UWB) as an underlay waveform approved by the FCC. Overlay waveforms

are those which are designed to operate only in the spectrum holes. Fig. 1.10 illustrates an
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overlay scenario consisting of primary and secondary systems.

Spectrum sharing or spectral co-existence is not entirely a new concept, multi-users in

a homogeneous system can share the spectrum using a number of Multiple Access (MA)

techniques such as Code Division Multiple Access (CDMA), Time Division Multiple Ac-

cess (TDMA), Frequency Division Multiple Access (FDMA) and Carrier Sense Multiple

Access (CSMA) [43]. Studies up until now have been focused on spectrum sharing is-

sues related to legacy cellular system, users in the unlicensed band using different 802.xx

standards and more recently a lot of attention has been given to UWB communication and

its ability to coexist with other systems [44, 45, 46, 47]. In the case of cellular systems

and unlicensed band users, spectral coexistence occurs in a limited sense using spatial and

temporal diversity along with power control etiquettes. UWB systems have shown promise

for short range applications. UWB causing interference for other systems as the number of

UWB users increase remains a concern.

1.2.5 Physical Layer Adaptation

The parameters influencing cognitive radio physical layer waveform design includes power,

frequency, modulation, symbol rate, pulse shaping and coding. The main objective and

challenge of CR physical layer is designing a waveform which will be overlayed across

multiple primary users bands while at the same time minimizing mutual interference to

both primary and cognitive radio secondary users. Multi-Carrier modulations have been

recognized as a potential candidate for the physical layer waveform design [28, 37, 48, 49].

In [48] the OFDM modulation scheme was chosen to implement its proposed spectrum

spooling method to enhance spectrum efficiency. The goal of spectrum spooling is to en-

hance spectral efficiency of mobile radio systems by overlaying secondary mobile radio

systems on existing primary users. The work in [37, 49] also considered OFDM based

Multi-carrier modulation as an ideal candidate for overlay cognitive radio systems. The

Fast Fourier Transform (FFT) used in OFDM are very effective in channel sensing in iden-
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Figure 1.9: Illustrates CR-Underlay spectrum sharing concept.
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Figure 1.10: Illustrates CR-overlay spectrum sharing [5].
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tifying spectrum holes, however they are also known for their spectral leakage problem. To

mitigate this spectral leakage problem a multi-carrier filter bank approach was proposed

[37].

A variant of the OFDM scheme in which arbitrarily selected subcarriers are disabled or

de-activated to avoid interference to primary user bands is termed as discontiguous or non-

contiguous orthogonal frequency division multiplexing (NC-OFDM) [50, 51]. Researchers

have proposed and implemented a hardware prototype demonstrating the NC-OFDM con-

cept. Work in [50] adopted the NC-OFDM and build a hardware prototype in implementing

the IEEE 802.22 format which envisions improvement to the spectrum efficiency by utiliz-

ing the vacant TV bands. Work in [51] proposed a field programmable gate array (FPGA)

based SDR transceiver capable of generating arbitrary NC-OFDM type waveforms.

In NC-OFDM, the sub carriers which are used by the primary user will be de-activated.

Therefore, there are zero-valued inputs for the IFFT of the transmitter and zero valued

outputs for the FFT of the receiver. When zero-valued inputs/outputs are greater than non-

zero inputs/outputs, the standard FFT/IFFT used in OFDM application in no longer efficient

[52]. The authors in [52, 53, 54] have all proposed computationally efficient methods in

implementing NC-OFDM architecture.

The above research efforts have thus far identified multi-carrier waveforms in particu-

lar OFDM based waveforms as a strong CR candidate. The next series of papers [5, 55, 56]

have considered other physical layer parameters such as power, modulation and coding in

optimization of CR physical layer. Dynamic spectrum access utilizing CR concept will

no doubt improve spectrum efficiency but it will increase the overhead information of the

CR users reducing their effective throughput. To minimize the CR overhead, an adap-

tive sub-carrier block size algorithm proportional to the incumbent spectral occupancy has

been proposed [5]. CR users in a dynamically time varying environment will experience

performance degradation due to propagation loss because of fading. Assuming constraints

on available subcarrier and power, a CR protocol which will employ adaptive modulation,
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coding and power control algorithms before increasing the power or subcarrier block size

has been proposed [55, 56].

Even though most of the initial research has focused and suggested OFDM based

multi-carrier modulation as a suitable candidate for CR applications, OFDM by itself is not

utilized in practical application due to its performance degradation in frequency selective

fading [10]. Further more, a pure OFDM is more suitable for only broadcast type scenarios

such as cellular down links or digital audio broadcast applications[56]. To mitigate these

problems and to satisfy high data rate requirements as well as to improve spectrum effi-

ciency and at the same time avoid interference to primary and other secondary users, other

multi-carrier modulations such as MC-CDMA [57], CI/MC-CDMA [58, 59] and TDCS [7]

have also been proposed as a possible CR candidate waveform [60, 61, 62, 63, 64, 65].

Software defined radio (SDR) is another promising DSA enabling technology where

the radio transceivers perform baseband processing in software. SDR has the ability to

quickly reconfigure its operating parameters, which is a fundamental requirement in the

CR scenarios. The synergistic union of these two DSA technologies is termed ”CR-

based SDR”. That is, the SDR provides the software controlled communication vehicle

(core technology for air interface and waveform generation), the control and application of

which is based on CR principles guided by spectral monitoring to achieve efficient spec-

trum usage [66]. Driven by SDR principles, a general analytic framework was developed

to encompass a myriad of multi-carrier signals. The framework is applicable to a broad

class of waveforms that are called Spectrally Modulated, Spectrally Encoded (SMSE) sig-

nals [66, 67, 68]. Using this SMSE framework and depending on a CR user needs, various

multi-carrier waveforms can be generated, including: OFDM, MC-CDMA, CI/MC-CDMA

or TDCS.
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1.2.6 Cognitive Radio Standards

There are a number of standards related to DSA. DSA’s main objective is to improve spec-

trum efficiency by accommodating spectrum coexistence. Majority of the IEEE 802 stan-

dards (802.11h, 802.15 and 802.16) have been extended to include dynamic spectrum ac-

cess capabilities [69]. Cognition is not particularly necessary to implement co-existence

in improving spectrum efficiency, but cognitive techniques can be helpful in facilitating

coexistence. In this section two well-known cognitive radio standards namely SCC41 and

IEEE 802.22 will be examined.

Standards Coordinating Committee

The Standards Coordinating Committee 41 (SCC41 or P1900) standards evolved from

the Dynamic Spectrum Access Networks (DySPAN) Standards Coordinating Committee

(SCC) projects. Instead of just recommending a specific physical (PHY) or media access

control (MAC) layer, SCC41 focuses on developing architectural concepts and specifica-

tions for network management between heterogeneous wireless networks [69]. The SCC41

is sub-divided into six working groups as follows:

IEEE P1900.1 This group works on terminologies and concepts for the next generation

radio systems and spectrum management initiations.

IEEE P1900.2 The main focus is on recommended practice for interference and coexis-

tence analysis.

IEEE P1900.3 This groups function is to lay out techniques for testing and analysis to

be used in evaluating new radio systems. It also identifies radio system design features to

simplify the evaluation process.
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IEEE P1900.4 The objective of this standard is to define basic building blocks such as

network resource managers and device resource manager, enabling coordinated network-

device distributed decision making which will aid in the optimum use of radio resources.

IEEE P1900.5 and IEEE P1900.6 SSS41 has recently proposed two new working groups

to address policy language and RF sensing. The objective of these two working groups is

to develop the policy language framework using ontology-based language and also to the

address spectrum sensing function to be managed by each CR terminal [69].

IEEE 802.22

In 2004, the FCC formalized a Notice of Proposed Rule Making (NPRM) that announced

the use of unlicensed wireless operation in the analog television (TV) bands [70]. In re-

sponse to this notice, the IEEE 802 standards committee created the IEEE 802.22 working

group (WG) on wireless regional area networks (WRANs) with a CR-based air interface

for use by license-exempt devices on a non-interfering basis in the very high frequency

(VHF) and ultra high frequency (UHF) bands. Since its inception, significant progress has

been made towards the PHY, MAC and cognitive domain definitions of the standard.

1.3 Scope and Assumptions

1.3.1 Scope

Of all the dynamic spectrum access methods discussed, this research effort is limited to the

hierarchical spectrum access methodology. In particular, the focus here is on the physical

layer design of CR-Overlay, CR-Underlay and hybrid overlay/underlay waveforms.
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1.3.2 Assumptions

A number of assumptions have been made throughout the document in order to constrain

the research effort and to focus on physical layer waveform design and analysis. Some of

the major assumptions are:

• Perfect Synchronization was assumed between primary and secondary users when

performing co-existence analysis. Synchronization between secondary transmitter

and receiver was also assumed.

• Since the spectrum sensing function requires identifying spectrum holes, primary

and other secondary users, and also setting up an interference threshold, a spectrum

utilizations map was assumed to be known.

• In the performance evaluation of CR-Overlay and CR-Underlay waveforms over a

frequency selective fading channel, it was assumed that the primary user interference

to secondary user was not experiencing fading effects.

• The secondary user receiver can perfectly estimate the channel fading coefficients

required for the maximum diversity combiner.

1.4 Dissertation Contributions

Driven by SDR principles, a general analytic framework was developed to encompass a

myriad of multi-carrier signals. The framework is applicable to a broad class of signals

that are called Spectrally Modulated, Spectrally Encoded (SMSE) signals [66, 67, 68]. De-

pending on CR user needs, various multi-carrier waveforms can be generated, e.g., OFDM,

MC-CDMA, CI/MC-CDMA or TDCS, using this SMSE framework. Given the original

SMSE framework employed hard decision frequency allocation, its applicability is limited

to overlay-CR signals. To extend its applicability and maximize spectrum efficiency by
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utilizing both unused and underused regions, a soft decision SMSE (SD-SMSE) frame-

work was subsequently developed to realize overlay-CR, underlay-CR and hybrid over-

lay/underlay CR signals [8].

• Presented a novel multi-functional SDR based SD-SMSE framework which can be

utilized to generate overlay-CR, underlay-CR, and hybrid overlay/underlay CR wave-

forms.

• Extended the analytic SMSE expression to SD-SMSE by taking into account both

unused and underused spectrum to maximize spectrum efficiency. From the gen-

eral SD-SMSE expression, overlay-CR, underlay-CR and hybrid overlay/underlay

expressions were derived.

• Derived an analytic expression for Bit Error Rate (BER) to evaluate a overlay-CR

and underlay-CR performance in AWGN and fading channels.

• Demonstrated feasibility of overlay-CR and underlay-CR waveforms via numerical

simulation, and validated its performance by comparison with the newly derived CR

centric analytic expressions.

• Finally, presented the performance enhancement and spectrum efficiency improve-

ment gained by using the hybrid overlay/underlay waveform with channel coding.

1.5 Dissertation Outline

This document is organized into seven chapters. The first chapter introduces the dynamic

spectrum access (DSA) problem and provides an overview of different components in-

volved in cognitive radio development. Chapter 2 provides an overview of the background

information relevant to this dissertation, including an overview of Multi- Carrier (MC)

modulations such as OFDM, MC-CDMA, CI/MC-CDMA and TDCS. This is followed
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by the general analytic expression for Spectrally Modulated, Spectrally Encoded (SMSE)

waveforms which encompasses all the multi-carrier waveforms used in this research. Chap-

ter 3 provides development of the new SD-SMSE framework that accounts for both unused

and underused spectral region. Using the SD-SMSE framework, Overlay-CR, Underlay-

CR and hybrid Overlay/Underlay waveforms are presented. Chapter 4 presents evaluation

of overlay and underlay waveforms under AWGN channel conditions. Chapter 5 presents

the evaluation of overlay and underlay waveforms in frequency selective fading channels.

Chapter 6 covers evaluation of a hybrid overlay/underlay waveforms in both AWGN and

frequency selective fading channels. Finally Chapter 7 provides concluding remarks fol-

lowed by open problems for future research.
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Overview of Multi-Carrier Modulations

2.1 Introduction

This chapter starts with a brief overview of multi carrier modulations. In particular, the

modulations used in this dissertation include OFDM, MC-CDMA, CI/MC-CDMA and

TDCS. This will be followed by a discussion involving a general ”Spectrally Modulated,

Spectrally Encoded” (SMSE) expression from which a number of multi-carrier modula-

tions can be formulated.

2.2 Overview of Multi-Carrier(MC) Modulations

Orthogonal Frequency Division Multiplexing (OFDM) is a popular Discrete Fourier Trans-

form (DFT)-based technique that was initially proposed in the 1970s [6]. It’s main use

was for providing bandwidth reduction as an alternative to conventional multi-carrier tech-

niques such as Frequency Division Multiplexing (FDM). OFDM has gained popularity with

the emergence of wireless communications and wide band systems because of its inherent

ability to compensate for multipath. In 1993, Linnartz et al. [71] combined OFDM with

Code Division Multiple Access (CDMA) and proposed a new modulation scheme called

Multi-Carrier CDMA (MC-CDMA). MC-CDMA effectively mitigates multipath interfer-

ence while providing multiple access capability. Besides OFDM and MC-CDMA, there are
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other variations of these approaches such as CI/OFDM, CI/MC-CDMA and TDCS found in

the literature, which have been proposed to address the problems and limitations associated

with OFDM and MC-CDMA. This chapter gives a brief overview of different multi carrier

modulations. The general analytic expression to represent a number of these spectrally

modulated, spectrally encoded multi-carrier signals is discussed.

2.2.1 Orthogonal Frequency Division Multiplexing (OFDM)

OFDM is a digital modulation scheme in which a wide-band signal is split into a number

of narrow-band signals. Because the symbol duration of the narrow-band signal will be

larger than the wide band signal, the amount of time dispersion caused by multi-path delay

spread is reduced. OFDM is a special case of Multi-Carrier Modulation (MCM) in which

multiple user symbols are transmitted in parallel using different sub-carriers with overlap-

ping frequency bands that are mutually orthogonal. The origination of MCM or Frequency

Division Multiplexing (FDM) dates back to 1950s and early 1960s for use in the military

radios.

The overlapping multi-carrier technique implements the same number of channels as

conventional Frequency Division Multiplexing (FDM), but with a much reduced bandwidth

requirement. In conventional FDM, adjacent channels are well separated using a guard

interval. In order to realize the overlapping technique, cross-talk between the adjacent

channels must be reduced. Therefore, orthogonality between sub-carriers is required.

In OFDM each sub-carrier has an integer number of cycles within a given time interval

T and the number of cycles each adjacent sub-carriers differ by is exactly one. This prop-

erty assures OFDM sub-carrier orthogonality. The sub-carriers are data modulated using

Phase Shift Keying (PSK) or Quadrature Amplitude Modulation (QAM). The amplitude

spectrum of each modulated sub-carrier using either PSK or QAM has a sinc2 shape. At

the peak spectral response of each sub-carrier all other sub-carrier spectral responses are

identically zero.
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Following data modulation, symbols are fed through a serial-to-parallel conversion

process. Each PSK or QAM symbol is assigned a sub-carrier, and an Inverse Discrete

Fourier Transform (IDFT) is performed to produce a time domain signal. OFDM deals

with multi-path delay spread by dividing a wide band signal into N narrow band channels

where N is the number of sub-carriers. However, if the delay spread is longer than the

symbol duration, multi-path will affect the performance. A guard-time is introduced to

eliminate Inter-Symbol Interference (ISI) caused by delay spread. As a rule, the guard time

is usually two to four times larger than the expected delay spread. This can take care of

ISI but Inter-Carrier Interference (ICI) (cross-talk between sub-carriers) remains an issue.

To reduce ICI, OFDM symbols are cyclically extended into the guard interval. This cyclic

extension ensures that OFDM symbol will have an integer number of cycles in the DFT

interval as long as the delay is less than the guard time.

At the receiver, after the RF and Analog to Digital (A/D) conversion stage, time and

frequency synchronization between the transmitter and the receiver is very crucial with re-

gard to performance of an OFDM link. A wide variety of techniques have been proposed

for estimating and adjusting both timing and carrier frequency. Next, a DFT is used to

demodulate all sub-carriers. To demodulate the sub-carriers using PSK or QAM modula-

tions, reference phase and amplitude of the constellation on each sub-carriers are required.

To overcome the unknown phase and amplitude ambiguities two techniques namely, coher-

ent and differential detection are used [6].

Figure 2.1 illustrates the block diagram of a OFDM transmitter. As can be seen from

Figure 2.1, each data symbol is transmitted via one narrow band subcarrier. Hence, each

data symbol experiences a flat fade, leading to a simple OFDM receiver structure.

2.2.2 MC Code Division Multiple Access (MC-CDMA)

There are many possible ways to interpret and implement MC-CDMA. The approach used

here to introduce MC-CDMA is by combining DS-CDMA and OFDM. Like OFDM, the
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Figure 2.1: OFDM transmitter block diagram [6]

MC-CDMA signal is made up of a series of equal amplitude sub-carriers. Unlike OFDM

where each sub-carrier transmits a different symbol, MC-CDMA transmits the same data

symbol over each N sub-carrier. MC-CDMA applies spreading in the frequency domain by

mapping a different chip of the spreading sequence to an individual OFDM sub-carrier [6].

The MC-CDMA transmitter can be implemented by concatenating a DS-CDMA spreader

and an OFDM transmitter. The input data sequence is first converted into a number of par-

allel data sequence and then each data sequence is multiplied by a spreading code. The

data in the spreading bits are modulated in baseband by IDFT and converted back to serial

data. The spreading sequence in MC-CDMA provides multiple access capability. A guard

interval with cyclic extensions similar to OFDM is inserted between symbols to counter ISI

caused by multi-path fading. Similar to OFDM systems, MC-CDMA systems are very sen-

sitive to non-linear amplification and require linear amplifiers. Two parameters that affect

MC-CDMA design and performance are the guard interval and the number of sub carriers.

Figure 2.2 shows the block diagram of a MC-CDMA transmitter. It is clear that now

each and every user’s data symbol is spread over all subcarriers via the application of the

spreading sequence. By choosing different spreading sequence, different versions of MC-

CDMA can be implemented.

At the receiver a coherent detection method is employed to successfully de-spread

the signal. The received signal after down conversion and digitization is first coherently

detected with DFT and then multiplied by a gain factor. Equal Gain Combining (EGC)
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Figure 2.2: MC-CDMA transmitter block diagram [6]

and Maximum Ratio Combining (MRC) are standard combining techniques used in MC-

CDMA receivers. The advantage of using combining techniques is that even though indi-

vidual branches may not have sufficient SNR, their combined sum increases the probability

of detection by increasing the SNR of a given signal. In EGC all branches are given equal

weight (unity) irrespective of signal amplitude, but the signals from each branch are co-

phased to avoid signals arriving at the same time. In MRC each signal is multiplied by

a weight factor depending on the signal strength. Strong signals are amplified whereas

weak signals are attenuated. Like EGC, MRC signals are also co-phased to avoid signal

cancellations.

2.2.3 Carrier Interferometry (CI) MC-CDMA

Carrier Interferometry pulse shaping technique to reduce the interference and improve the

performance has been applied to both OFDM and MC-CDMA [58, 59]. CI has been ap-

plied to OFDM (CI/OFDM) to minimize the peak to average power problem without re-

ducing the data rate and also to provide narrow band interference suppression capability

[72, 73]. CI has also been applied to MC-CDMA (CI/MC-CDMA). One difference be-

tween CI/MC-CDMA and MC-CDMA lies in the phase coding. MC-CDMA has different

versions employing both pseudorandom (PN) as well as orthogonal codes. Each subcarrier

is encoded with a -1 or +1. CI/MC-CDMA codes are polyphase orthogonal codes with
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values ranging from {0, π}. Specifically, the polyphase orthogonal CI code of the kth user

corresponds to
{

ej 2π
N
·k·0, ej 2π

N
·k·1, · · · , ej 2π

N
·k·(N−1)

}
(2.1)

When CI/MC-CDMA and MC-CDMA have both used orthogonal codes, CI codes

have demonstrated superior performance than MC-CDMA in frequency selective fading

channels [58]. MC-CDMA user limit is at K = N where as CI/MC-CDMA provides added

flexibility of supporting k > N users by adding users with pseudo orthogonal signatures

[58].

2.2.4 Transform Domain Communication System (TDCS)

Traditionally, communication waveforms are synthesized in the time domain using as-

signed frequency allocation(s) to the user(s). If interference is present, it can be mitigated

using real-time transform domain filtering techniques to provide interference suppression.

Such techniques can be traced back to [74, 75] where primary responsibility for achieving

Signal-to-Noise Ratio (SNR) improvement rested on the receiver. Subsequent advances in

processing power have enabled more computationally intense techniques [76, 77] whereby

SNR improvement is achieved synergistically through transmit/receive waveform diversity

to provide interference avoidance. The basic idea behind TDCS Fundamental Modulation

Waveform (FMW) generation is to avoid existing users or jammers by operating dynami-

cally over a given bandwidth. In 1988, German [77] proposed a system which uses spectral

information to modify a Direct Sequence Spread Spectrum (DS-SS) waveform to avoid

jammed frequencies. Subsequently in 1991, Andren of Harris Corporation patented a con-

ceptual Low Probability of Intercept (LPI) Communication System for hiding the trans-

mitted signal in noise using transform domain signal processing [76]. The patent does not

provide theoretical analysis or address implementation issues associated with functional

processing. The Air Force Research Laboratory (AFRL) and Air Force Institute of Tech-
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Figure 2.3: TDCS transmitter block diagram [7]

nology (AFIT) adopted Andren’s framework for environmental sampling and waveform

generation and German’s transmit signal processing. Conventional time-domain matched

filtering and Maximum Likelihood (ML) detection estimation are employed at the receiver

[78, 79, 80, 81, 82, 83, 84, 85].

TDCS architecture assumes that both the transmitter and receiver are observing the

same electromagnetic environment and thus produce similar spectral estimates and notches.

In a basic TDCS implementation, spectral interference and friendly signal presence is es-

timated using Fourier-based or general spectral estimation techniques. Once the frequency

bands containing interference or other signals are identified, typically through estimation

and threshold detection, those bands are effectively ”notched” (removed) prior to creating

a clean or interference free spectrum. Then a complex poly-phase code is applied to the

clean spectrum or sub-carriers in OFDM terms. Then a time-domain Fundamental Modu-

lation Waveform (FMW) is obtained using the appropriate inverse transform (e.g., inverse

DFT). Data then modulates the FMW to generate the digitally encoded waveforms. Since

the FMW is spectrally synthesized to specifically avoid interference regions, transmitted

communication symbols do not contain energy at spectral interference locations and re-

ceived symbols are largely unaffected. Figure 2.3 shows the functional block diangram

of TDCS signal generation and transmission, beginning with environmental sampling and

spectral estimation. Once the interference-free spectral regions are established, the FMW
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Figure 2.4: Discrete spectral components

b(t) is generated, stored, data modulated and transmitted [7].

2.3 A General SMSE Expression

The overview and discussion presented in this section is adapted from the Ph.D. disserta-

tion by Roberts [10]. All the multi-carrier waveforms which have been discussed in this

chapter fall under the ”Spectrally Modulated Spectrally Encoded” framework [67, 68]. The

first consideration in developing a general unifying framework, is the number and type of

variables required to ensure that the desired level of diversity is achieved. There are a num-

ber of key variables associated with development of a SMSE analytic expression but the

most important variable is the number of frequency components available in a given band-

width of interest for a CR user. Identifying usable spectral components can be classified

into two variables. The number of frequency components Nf in Figure 2.4 can be defined

by the vector a = [a1, a2, . . . , aNf
], ai ∈ {0, 1}. From this assigned frequency vector a, cer-

tain frequencies may be unavailable due to interference or by system design. The available

frequency vector to be used can be expressed as u = [u1, u2, . . . , uNf
], ui ∈ {0, 1}, where

zeros indicate unused frequencies and there are P ≤ Nf used frequencies.

The other variables to consider in the design of the analytic expressions are the code
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c = [c1, c2, . . . , cNf
], ci ∈ C, data modulation d = [d1, d2, . . . , dNf

], di ∈ C, windowing

function for spectral shaping w = [w1, w2, . . . , wNf
], wi ∈ C. These complex variables

account for component-by-component amplitude and/or phase variations which are applied

to frequency components. One last ”phase only” variable to provide orthogonality among

users is also considered and is represented by θo = [o1, o2, . . . , oNf
], θoi

∈ [0, 2π).

Figure 2.4 illustrates a starting point where the spectrum bandwidth is divided into a

number of equal sub-carriers or spectrum bins. A continuous time-domain expression for

the discrete frequency-domain signal represented in Figure 2.4 is found via an inverse FFT

(IFFT) of S[m] as shown in 2.2.

sk(t) =
∑
m

Re
[F−1 {rpos

m δ(f − fm) + rneg
m δ(f + fm)}] , (2.2)

where ti ≤ t ≤ ti + T and T = Nf4t.

Using (2.2) as a starting point, an SMSE waveform was developed by applying the

data modulation, coding, and windowing factors. The resultant expression for the kth data

modulated symbol Sk[m] can be written as a sequence of terms

Sk[m] =
{

cmdm,kwme
−j(2πfmtn+θdm,k

+θcm+θwm )
}Nf−1

m=0
, (2.3)

where m is the frequency component index, Nf is the total number of components, fm =

m/(Nf∆t), tn = n∆t for n = 0, 1, . . . , Nf − 1 [10], and c, d, and w denote complex

code, data modulation, and windowing vectors (magnitudes and phases, as appropriate).

By design, the coding and windowing factors only vary with frequency index m while data

modulation factors are varied according to symbol index k as well. The expression in (2.3)

can be further modified to incorporate orthogonality and account for frequency assignment

and use via

Sk[m] =
{

amumcmdm,kwme
−j(θdm,k

+θcm+θwm+θom,k
)
}Nf−1

m=0
. (2.4)
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The general analytic expression for generating SMSE waveform is given by equation (2.4)

where m is the frequency component index, Nf is the total number of components, fm =

m/(Nf∆t), tn = n4t for n = 0, 1, . . . , Nf − 1 [86, 87], and c, d, and w denote complex

code, data modulation, and windowing vectors (magnitudes and phases as appropriate)

respectively. Once again, the coding and windowing factors only vary with frequency

index m while data modulation factors are varied according to symbol index k as well.

The variables a and u representing the usable spectral components can take on values

amum ∈ {0, 1} and θom,k
= 2πk · (amum/P )

m∑
i=1

amum with P ≤ Nf . The phase term θom,k

is used to ensure orthogonality between users.

The final expression for the spectral content of the SMSE transmitted symbol shown

in (2.4) contains the spectral data modulation and encoding magnitude and phase factors.

The sinusoid identifier F1m contains the um term, which dictates frequencies that are used.

A time domain version of the SMSE symbol is generated by applying an Inverse Discrete

Fourier Transform (IDFT) to (2.4).

sk[n] =
1

Nf

Re





Nf−1∑
m=0

amumcmdm,kwmej(2πfmtn+θdm,k
+θcm+θwm+θom,k)



 . (2.5)

for tk ≤ tn ≤ tk + T , fm = fc + m∆f , and ∆f is the frequency resolution [66].

2.3.1 OFDM via SMSE Analytic Expression

Using variables defined in Table 2.1 for a basic OFDM system, the analytic expression

can be simplified by setting variables ui = ai, wi = 1, and θwi
= 0 ∀ i. Since there is

no windowing or coding in basic OFDM, the expression in (2.4) simplifies to expression

shown in (2.6)
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Table 2.1: Spectrally encoded waveform variables
selection

Operation Basic OFDM MC-CDMA CI/MC-CDMA TDCS
MPSK MPSK MPSK MPSKData

M-QAM M-QAM M-QAM M-QAMModulation
relies on m,k relies on k relies on k relies on k

c = 1 c = 1 c = 1 c = 1Coding
θc = 0 θci

∈ {0, π} θci
∈ [0, 2π) θci

∈ [0, 2π)
w = 1 w = 1 w = 1 w = 1Windowing
θw = 0 θw = 0 θw = 0 θw = 0

Orthogonality θo = 0 θo = 0 θo = 0 θo = 0
Frequency

Assignment
a a a a

Frequencies ui depends on ui depends on ui depends on
Used

u = a
F -parameter F -parameter notching process 3mm

Sk[m] =

{
amdm,ke

−j
(
θdm,k

)}Nf−1

m=0

, (2.6)

Substituting for di ∈ C, dm,ke
−jθdm,k = (αm,k + jβm,k) yields (2.7), where αm,k and

βm,k depend on the data modulation being used, e.g., αm,k, βm,k ∈ {±1} for QPSK and

αm,k, βm,k ∈ {±1,±3} for 16-QAM. Finally, applying an IFFT to (2.7) results in the

discrete time domain OFDM expression (2.8) [67].

Sk[m] = {(αm,k + jβm,k)}Nf−1
m=0 (2.7)

sk[n] =
1

Nf

Re





Nf−1∑
m=0

(αm,k + jβm,k)e
j(2πfmtn)



 (2.8)

2.3.2 MC-CDMA via SMSE Analytic Expression

Around 1993-94 time frame there were a number of hybrid MC-CDMA techniques pro-

posed combining OFDM and CDMA [71, 88, 89]. The MC-CDMA technique considered

here is based on the work presented in [71]. By inserting the variables listed in Table 2.1,

wi = 1 and θwi
= 0 ∀ i (no windowing). Also, θoi

= 0 ∀ i (no orthogonality control).
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Finally, the data variable only depends upon k because of spectral spreading. Applying all

these variables to (2.4).

Sk[m] =
{

amumcmdke
−j[θcm+θdk ]

}Nf−1

m=0
, (2.9)

Spectral spreading is accomplished using a random application of phases, 0 or π, such that

ci = 1 and θci
∈ {0, π} ∀ i. For amum = 1, this further simplifies equation (2.9) to

Sk[m] =
{

dke
−j[θcm+θdk ]

}Nf−1

m=0
, (2.10)

For complex data modulation dke
−jθdk = (αk + jβk), (2.10) can be rewritten as

Sk[m] =
{

(αk + jβk)e−j[θcm ]
}Nf−1

m=0
, (2.11)

where αk and βk depend on the modulation type being employed. After an IFFT operation

on (2.11), the transmitted MC-CDMA signal is given by

sk[n] =
1

Nf

Re





Nf−1∑
m=0

(αk + jβk)e
j(2πfmtn+θcm )



 . (2.12)

2.3.3 Carrier Interferometry Signals via SMSE Analytic Expression

Carrier Interferometry has been applied to both OFDM (CI-OFDM) and MC-CDMA (CI/MC-

CDMA). As in the case of OFDM, there are NF equally spaced orthogonal subcarriers.

However, in a CI/OFDM scenario, each data modulated symbol is simultaneously trans-

mitted over all subcarriers. Orthogonality between the subcarriers is maintained via the

inclusion of a phase term or carrier interferometry. Similar to the OFDM case the general

expression is simplified by applying the following conditions. First, since the data is spread

across all the subcarriers, dm, k ∈ C only varies with k. Then the addition of CI phase term

is accounted by changing θom = 0 ∀ m, to θom,k = m4θk, where 4θk = k (2π/Pu). Sub-
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stituting these condition in the general expression (2.4) yields the NF spectral components

for the kth CI/OFDM communication symbol as

Sk[m] =
{

umdke
−j(θdk

+θom,k)
}Nf−1

m=0
. (2.13)

After an IFFT operation on (2.13), the transmitted CI/OFDM signal is given by

sk[n] =
1

Nf

Re





Nf−1∑
m=0

dke
j(2πfmtn+θdk

+θom,k)



 . (2.14)

One of the main differences between MC-CDMA and CI/MC-CDMA is the coding.

There are number of MC-CDMA versions utilizing variety of pseudorandom as well as

orthogonal codes, whereas the codes utilized in CI are orthogonal [58, 59, 72, 90]. CI

coding coupled with MC-CDMA is termed as CI/MC-CDMA, which is also referred to as

CI multiple access (CIMA). One of the key differences in implementing CI/MC-CDMA via

the general SMSE expression is the inclusion of the orthogonal phase term and the deletion

of the pseudorandom spreading code used in MC-CDMA.

sk[n] =
1

Nf

Re





Nf−1∑
m=0

(αk + jβk)e
j(2πfmtn+θom,k)



 . (2.15)

2.3.4 TDCS via SMSE Analytic Expression

The analytic expression of a basic TDCS implementation starts with setting the variables

wi = 1 and θwi
= 0 ∀ i (no windowing). Coding is applied as random (or pseudo-random)

phase variations between 0 and 2π and thus ci = 1 ∀ i. Data variables only depend upon k

because of spreading. Orthogonality variable θoi
= 0 ∀ i does not play a role in TDCS be-

cause the application of pseudo random phase accommodates orthogonality between users

[79, 84]. Substituting these variables into (2.4) results in
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Sk[m] =
{

amumdke
−j(θcm+θdk)

}Nf−1

m=0
, (2.16)

Spreading is performed in the frequency domain by using pseudo random phase distribution

θcm ∈ [0, 2π). The amum term depends not only upon cognitive assignment, but also

upon the adaptive TDCS notching process which deems specific frequency components as

unusable based on channel interference characterization. For these “notched” components,

amum = 0. Applying these conditions results in (2.17).

Sk[m] =
{

dke
−j(θcm+θdk)

}Nf−1

m=0
, (2.17)

After an IFFT operation on (2.17), the transmitted TDCS signal is given by

sk[n] =
1

Nf

Re





Nf−1∑
m=0

dke
j(2πfmtn+θcm+θdk)



 , (2.18)

which is consistent with the TDCS discrete-time analytic expression presented in

[91].
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Overlay-Underlay Waveforms

3.1 Introduction

In the hierarchial access model, interactions between primary and secondary users are con-

sidered to achieve spectrum efficiency. The basic idea here is to open up the licensed

spectrum to secondary users while inducing minimum acceptable interference into the pri-

mary users. Spectrum overlay and spectrum underlay are two approaches under consid-

eration to accomplish this. Spectrum overlay allows unlicensed secondary users to uti-

lize unused spectrum simultaneously with primary users on a non-interference basis. This

overlay approach was first adapted by [3] and subsequently researched under DARPA’s

Next Generation (XG) program as an ”opportunistic spectrum access” approach. Similarly,

spectrum underlay allows unlicensed secondary users to simultaneously operate in primary

user bands but under strict transmit power constraints. Of all the spectrum access models

presented, the hierarchical access model is perhaps the most compatible with current FCC

policies and legacy wireless systems.

As proposed in [19, 20], CR technology fits within the hierarchial access method.

Even though the present CR definition only considers overlay approaches, the research

trend suggests that a hybrid technique combining overlay/underlay concepts can be em-

ployed to maximize spectral efficiency by using both white and gray spectral regions

[2, 23]. Therefore, CR can be further categorized as being either overlay-CR or underlay-

CR depending on the spectral region being used.
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Channel capacity is directly related to bandwidth B and signal to noise ratio (SNR).

This chapter starts with examining how the channel capacity can be maximized by uti-

lizing both unused and underused portions of the spectrum. Then a general SD-SMSE

framework is proposed followed by the implementation of Overlay, Underlay and hybrid

Overlay/Underlay waveforms.

3.2 CR Channel Capacity

According to Shannon’s channel capacity condition given by (3.1), channel capacity can

be optimized by increasing the signal-to-noise ratio (S/N ) and/or channel bandwidth (W ).

C = W log (1 + S/N) (3.1)

In the current CR framework, the transmitter continuously monitors the radio spectrum and

identifies frequency bands as being in one of two categories, either used or unused. The

unused frequency bands are identified as CR bands for secondary users as shown in Fig.

3.1. The channel capacity when utilizing unused CR bands can be written as [62]

CCR =

(
N∑

k=1

Wuk

)
log




1 +

N∑

k=1

ΦCRk
Wuk

n0

N∑

k=1

Wuk




(3.2)

where N is the total number of unused spectral bands in the total CR monitored bandwidth

W , Wuk
is the bandwidth of the kth unused band and ΦCR1k

is the power spectral density

of the CR transmission in the kth unused band.

UWB signaling can be used as underlay technique to support CR transmission. In

UWB signaling, a very large contiguous bandwidth is used in a coexistence manner such

that the spectrum is simultaneously shared with primary narrow band transmissions as
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Figure 3.1: Illustration of notional Cognitive Radio Overlay concept
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Figure 3.2: Illustration of notional Cognitive Radio Underlay concept

 


frequency
  


po
w

er
 d

en
ci

ty

 




   
   

   
   

   
   

   
  
P

rim
ar

y 
U

se
r 


3

  
  




  
 
   

   

 Pr

im
ar

y 
U

se
r 


2

 


 
  
   

   
  
 


 Pr
im

ar
y 

U
se

r 
1


 


 

 

 


CR
 

Band
 

 


 

 

 


CR
 

Band
 

 


 

 

 


CR
 

Band 
  

3
 


CR 

Band
  
 CR 
Band
 
 CR Band
 


Figure 3.3: Illustration of notional Cognitive Radio Overlay/underlay concept
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shown in Fig. 3.2. In this way, the total bandwidth W in (1) is maximized. However,

to avoid interferences to primary (licensed) users, UWB transmissions are regulated by the

FCC which limits the UWB transmitted power spectral density to a very low level. Hence,

the channel capacity of UWB transmission is extremely limited and is given by (3.3) [62].

CUWB = W log




1 +
ΦUWBW

n0W +
M∑
i=1

Φpi
Wpi




(3.3)

where n0 is the additive Gaussian noise power spectral density, ΦUWB is the average power

spectral density of the UWB transmission, M is the total number of primary users operating

within total bandwidth W , Φpi
is the narrow band average power spectral density of the ith

primary user and Wpi
is the corresponding bandwidth of ith primary user.

The coexistence of an UWB transmission with primary narrow band transmissions

suggests that most of the narrow band transmission can tolerate a certain level of interfer-

ence, i.e., even though some frequency bands are occupied by primary users they are likely

to be underused. To maximize channel capacity, the so called used bands also need to be

considered, this concept is illustrated in Fig. 3.3. Accounting for both unused and under-

used bands, the new SDCR [62] channel capacity for a given Cognitive Radio transmitter

can be written as [62],

CSDCR = W log




1 +

N∑

k=1

ΦCR1k
Wuk

+
M∑
i=1

ΦCR2i
Wpi

n0W +
M∑
i=1

Φpi
Wpi




(3.4)

where ΦCR1k
is the CR transmitted power spectral density in the kth unused band, and

ΦCR2i
is the CR transmitted power spectral density in the ith underused band. The follow-

ing constraints are imposed to maximize overall channel capacity while minimizing mutual

interference between CR users and other primary users:
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ΦCR2i
≤ Ii,∀i (3.5)

ΦCR1k
≤ φk, ∀k

N∑

k=1

ΦCR1k
Wuk

+
M∑
i=1

ΦCR2i
Wpi

≤ S

where Ii is the interference tolerance level in the ith used band, φk is the maximum allowed

transmitted power spectral density (e.g., FCC mandated interference temperature) in the

kth unused band, and S is the total transmit power of the cognitive user across all unused

and underused frequency bands.

Our objective is to maximize the channel capacity CSDCR of the proposed system

(3.4) subject to the constraints in (3.5). Assuming Φpi
, the power spectral density of the

primary is fixed, this is a standard optimization of a convex function subject to convex

constraints which can be solved using the technique of Lagrange multipliers [92].

The results of this standard optimization can be implemented in the form of the fol-

lowing algorithm [93].

1. Initialize all values ΦCR2j
= 0 and ΦCR1j

= 0,∀j.

2. Construct the two lists

L1 = {Wui
log

(
1 +

1

Wui
n0

)
}, i = 1, . . . , N

and

L2 = {Wpi
log

(
1 +

1

Wpi
(n0 + Φpi

)

)
}, i = 1, . . . , M

for unused and used bands respectively.

3. Sort L1 and L2 in non-increasing order and merge the two lists.
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Let L = {l1, l2, . . . , lN+M} be the resultant sorted list.

4. Starting from the front of list L, (i.e j = 1, 2 . . .), for the jth element set ΦCR2j
= Ij

if lj corresponds to a used band or set ΦCR1j
= φi if lj corresponds to an unused

band. Compute S ′ =

j∑
i=1

ΦCRi
Wi, where ΦCRi

and Wi are chosen appropriately

depending on whether li is a used or unused band.

5. If S ′ < S, then choose j = j + 1 and go back to step 4.

6. If S ′ ≥ S, reduce ΦCRj
such that S ′ = S, set ΦCRk

= 0,∀j < k ≤ N + M and exit.

3.3 Overlay-Underlay Framework

Multi-carrier modulations such as OFDM and MC-CDMA are hailed as promising candi-

dates [28] for realizing CR applications. To satisfy high data rate requirements, improve

spectrum efficiency and at the same time avoid interference to primary and other secondary

users, non-contiguous multi-carrier waveforms have been proposed [50, 54, 60, 62]. Soft-

ware defined radio (SDR) is another promising DSA enabling technology where the radio

transceivers perform baseband processing in software. SDR has the ability to quickly re-

configure its operating parameters, which is a fundamental requirement in the CR scenarios.

The synergistic union of these two DSA technologies is termed ”CR-based SDR”. That is,

the SDR provides the software controlled communication vehicle (core technology for air

interface and waveform generation), the control and application of which is based on CR

principles guided by spectral monitoring to achieve efficient spectrum usage [66].

Driven by SDR principles, a general analytic framework was developed to encompass

a myriad of multi-carrier signals. The framework is applicable to a broad class of wave-

forms that are called Spectrally Modulated, Spectrally Encoded (SMSE) signals [66, 67,

68]. Depending on CR user needs various multi-carrier waveforms can be generated, e.g.,

OFDM, MC-CDMA, CI/MC-CDMA or TDCS, using this SMSE framework. Since this
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Figure 3.4: Identification of primary users, unused and underused spectral regions.

original SMSE framework employed hard decision frequency allocation, its applicability

is limited to overlay-CR signals. To extend its applicability and maximize spectrum effi-

ciency by utilizing both unused and underused regions, a soft decision SMSE (SD-SMSE)

framework was subsequently developed to realize overlay-CR, underlay-CR and hybrid

overlay/underlay CR signals [8].

The SMSE framework provides a unified expression for generating and implementing

a host of multi-carrier type waveforms (e.g., OFDM, MC-CDMA, CI/OFDM, TDCS, etc)

and satisfies current CR goals of exploiting unused spectral bands. However, it does not ex-

ploit underused spectrum. This section revisits the original SMSE framework development

and the frequency assignment variables to exploit both unused and underused spectrum to

generate both overlay and underlay type waveforms.

Fig. 3.4 illustrates a conceptual view of the unused and underused spectrum utilization
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using an arbitrary interference threshold (IT). IT is assumed to be a limit set forth by the

primary users based on the measured power spectrum density in a given bandwidth. Two

cases of under-utilized spectrum are demonstrated: 1) when the spectral assignment is

based on a binary decision the bands adjacent to the primary users are unavailable to overlay

CR users and 2) primary users bands which are below the IT are also unavailable to the

CR users. A soft decision CR (SDCR) will be able to exploit these underused frequency

bands to increase channel capacity and improve performance. To support the envisioned

SDCR system, the original SMSE framework is extended to account for both unused and

underused frequency bands.

The proposed SD-SMSE framework is first illustrated using Fig. 3.5 and Fig. 3.6, by

re-defining the design variables to extend the SMSE expression to account for both unused

and underused spectrum. Fig. 3.5a and Fig. 3.5b show how the current CR framework

identifies the used and unused spectrum based on binary decisions. Fig. 3.5c shows the

weighted spectrum estimation resulting from spectrum sensing block shown in Fig. 3.6.

The weighted spectrum estimate (WSE) (a) is further processed taking into account inputs

from the IT estimator, primary users, other secondary users requirements and channel con-

ditions. Specifically, the weighted spectrum estimate provides a metric of the allowable

transmission power density at each and every frequency component in the entire band-

width. Hence, the WSE divides the entire bandwidth into unused (u) and underused (b)

frequency components and both the unused and underused spectrum can be exploited. No-

tice in Fig. 3.5 that different underused frequency components have different allowable CR

transmission power densities. It is envisioned that any CR-based SDR will have the op-

tion to choose overlay-CR, underlay-CR or hybrid overlay/underlay waveforms to improve

performance depending on the scenario, situation and need.
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Figure 3.5: Spectrum parsing using weighted spectrum estimation in realization of SD-
SMSE waveform.

Figure 3.6: Block diagram representation of SD-SMSE framework [8].
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3.3.1 Spectrum Sensing

Spectrum sensing is one of the most critical and important function in the implementation

of a CR. The first challenge is to detect if a signal is present or not, which is particulary chal-

lenging if the primary and secondary users adopt sophisticated spread spectrum techniques

and operate below the noise. Once the presence of a signal is detected, feature extraction

plays the role of information assimilation, such that salient characteristics of the signals can

be identified [22]. Almost all deterministic signals exhibit cyclostationary features arising

from underlying periodicities within those signals. In addition to the inherent cyclic prop-

erties, a cyclostationary signature, intentionally embedded in the physical properties of a

digital signal will aid in coordination of multiple secondary user sets [33]. Feature detec-

tion by itself is a very challenging research problem, especially when the received signal

is under noise levels or thresholds which are below the sensitivity levels of the primary

devices [34, 94]. If a signal exhibits cyclostationary properties, it can be detected at very

low signal-to-noise ratios (SNR) and fading channels [11, 12, 38, 95]. A detailed cyclosta-

tionary signal detection theory is presented in Appendix 8.1. Spectrum sensing function is

beyond the scope of this research. It is assumed that the usable spectrum is provided by the

spectrum sensing block.

3.3.2 Interference Threshold

Spectrum sensing techniques are helpful in detection of spectrum holes and identification

of other primary and secondary users. In order to know if a certain portion of the spectrum

is unused or underused, the power spectrum density (PSD) in a given bandwidth needs to

be compared to a predetermined threshold called interference threshold. This interference

threshold can be set forth by primary users or in conjunction with primary and secondary

users.

The concept of noise floor provides a means for evaluating the background noise in
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over-utilized portions of the spectrum. Secondary user (SU) usage of the spectrum will

raise the noise floor of the primary user (PU). To quantify this interference phenomenon,

FCC spectrum policy task force has recommended interference temperature (IT) as a new

performance metric [19].

In May 2007 FCC issued another notice stating that it has terminated the IT concept.

Even though, there are few supporters for adopting the IT approach to measure or set a

threshold, there appears to be no clear cut method or rules to implement IT. The commu-

nity in general (technical as well as user) argued that the IT approach is not practical and

would only result in increased interference in its operating ranges. Even though FCC has

temporarily abandoned the interference temperature concept, research community in gen-

eral is still considering IT as a viable metric, since IT is basically a measure of PSD in a

receiver [17, 21, 37]. There are a number of cooperative/collabarative sensing approaches

being proposed in the literature to share information between secondary users and also

between primary and secondary users [39, 40].

3.3.3 A General SD-SMSE Analytic Expression

The first step in SD-SMSE framework development is to re-examine the design variables

in the original SMSE framework. For the SD-SMSE development, frequency related fac-

tors are termed primary variables, while amplitude and phase related factors are termed

secondary variables. Since the objective here is to optimize the spectrum usage, only fre-

quency components related design variables are considered. From this point forward the

SD-SMSE framework development is based on the scenario depicted in Fig. 3.5. As shown

in Fig. 3.5c, the weighted spectrum estimate represents all frequency components which

can be utilized for secondary user applications. It is represented by variable a with the

range changed from binary values (hard decision) to real values (soft decision), i.e.:

a = [a0, a1, . . . , aNf−1], 0 ≤ am ≤ 1. (3.6)
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From the weighted spectrum estimate a, the unused spectrum vector u can be derived as

u = [u0, u1, . . . , uNf−1] (3.7)

where,

um =





1 if am = 1

0 else
m = 0, 1, · · ·Nf − 1 (3.8)

In SMSE, hard decision CR design is employed by transmitting over the unused spectrum

specified by u.

Now a new variable b is introduced to account for the underused spectrum, i.e.,

b = [b0, b1, . . . , bNf−1] (3.9)

where,

bm =





0 if am = 1

am else
m = 0, 1, · · ·Nf − 1 (3.10)

Note that when am = 1 the value of bm = 0, because when am = 1 the spectral component

is termed as unused and is assigned to um. It is obvious that if one frequency component is

underused, it cannot also accounted as unused and vice versa, i.e., um = 0 if bm > 0 and

bm = 0 if um = 1.

The remaining waveform design variables, i.e., code (c), data (d), window (w) and

orthogonality (o), remain unchanged from the original SMSE framework.

Applying all these design variables, the mth component of the kth data symbol of the

SD-SMSE can be expressed as

Sk[m] = amcmdm,kwmej(θdm,k
+θcm+θwmθom,k) (3.11)
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This equation can be rewritten in terms of um and bm as,

Sk[m] =





umcmdm,kwmej(θdm,k
+θcm+θwmθom,k) if am = 1

bmcmdm,kwmej(θdm,k
+θcm+θwmθom,k) else

(3.12)

The expression in (3.12) can be decomposed into unused and underused SMSE waveform

representing the new SDCR architecture shown in Fig. 3.6. Applying the IDFT to (3.12)

results in the discrete time domain waveform given by:

sk[n] =
1

Nf

Re





Nf−1∑
m=0

amcmdm,kwmej(2πfmtn+θdm,k
+θcm+θwm+θom,k)



 (3.13)

sk[n] =
1

Nf

Re





Nf−1∑
m=0

umcmdm,kwmej(2πfmtn+θdm,k
+θcm+θwm+θom,k)



 (3.14)

+
1

Nf

Re





Nf−1∑
m=0

bmcmdm,kwmej(2πfmtn+θdm,k
+θcm+θwm+θom,k)





where the first summation represents the unused frequency components and the second

summation accounts for the underused frequency components.

The SMSE expression in (3.13) was demonstrated by applying it to a number of

OFDM based multi-carrier signals [66]. The process of generating these waveforms can

be viewed as a two-step approach: 1) generating the frequency related primary variables

and 2) applying the secondary variables such as the code, data modulation, windowing and

orthogonality to the frequency vector. Since the SD-SMSE only focused on manipulating

the primary variables, all the OFDM based multi-carrier modulations expressions such as

NC-OFDM, NC-MC-CDMA, CI/MC-CDMA and NC-TDCS are applicable to both over-

lay and underlay scenarios.
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SD-SMSE Overlay Waveform

Current CR techniques only employ overlay waveforms that exploit unused spectral bands.

It is apparent that current CR transmission is just a special case of the soft decision CR

when no underused frequency components are exploited. In the SMSE framework, if the

underused variable b is forced to be zero and the frequency assignment variable a to be

binary:

b = [0, 0, . . . , 0] (3.15)

a = [a0, a1, . . . , aNf−1], am ∈ {0, 1} (3.16)

the second summation in (3.14) is eliminated and reduces to current hard decision CR

overlay:

sk[n] =
1

Nf

Re





Nf−1∑
m=0

umcmdm,kwmej(2πfmtn+θdm,k
+θcm+θwm+θom,k)



 . (3.17)

SD-SMSE Underlay Waveform

Unlike the overlay waveforms which only operate in the unused bands of the spectrum, the

underlay waveform operates in the underused portions of the spectrum. An underlay wave-

form spreads its signal over a wide bandwidth to minimize its interference to the existing

primary users and also to achieve the required processing gain to improve its performance.

In general, UWB technology has been associated with underlay approaches. By defini-

tion, a signal is defined as UWB if it occupies a bandwidth that is greater than 500 MHz.

Therefore, not all underlay waveforms are UWB by this definition. For example, a low

data rate underlay waveform used as a control channel might only require a few mega hertz

of bandwidth. In the SD-SMSE context, UWB is a special implementation of an underlay
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waveform. An UWB transmission uses underlay waveform which operates across all spec-

tral components but minimizes its interference by limiting its transmission power spectral

density to avoid interference to all primary users. Hence, its transmission power spectral

density is determined by the primary user most sensitive to interference. In this case, all

frequency components are treated as underused components. Hence, by setting

u = [0, 0, . . . , 0] (3.18)

b = [K, K, . . . , K], 0 < K < 1 (3.19)

the first summation in (3.14) can be eliminated and the CR underlay signal corresponds to

an UWB transmission:

sk[n] =
1

Nf

Re





Nf−1∑
m=0

Kdm,kwmej(2πfmtn+θdm,k
+θcm+θwm+θom,k)



 , (3.20)

where K is a constant obtained by taking the minimum value of the weighted power spec-

tral density shown in Fig. 3.5. Note that although b was assumed to be constant for sim-

plicity purpose, in general each underused spectral component can have different spectral

weights capable of employing adaptive baseband modulations.

SD-SMSE Overlay/Underlay

In the proposed soft decision CR, the waveform achieves benefits of both overlay and un-

derlay waveforms by taking advantage of both unused and underused spectrum. This is

done by employing soft decision criteria at each and every frequency component while

minimizing the interference to primary users [50, 54, 60]. The expression shown in (3.14)

represents the hybrid overlay/underlay utilizing the SD-SMSE framework.
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Evaluation of Overlay and Underlay

Waveforms in AWGN Channel

4.1 Introduction

In this chapter analytic BER performance for overlay-CR and underlay-CR in AWGN chan-

nel is derived. Simulation analysis of overlay-CR and underlay-CR are performed and val-

idated with the newly derived analytic expressions. Co-existence analysis of primary and

secondary users in a multi-user scenario is demonstrated.

4.2 Performance Analysis of Overlay and Underlay Wave-

forms

This section starts with the applications of the general SMSE and SD-SMSE framework to

a number of multi-carrier modulations such as OFDM, MC-CDMA, CI/MC-CDMA and

TDCS. It has been shown that these multi-carrier modulations can be easily adapted to a

non-contiguous spectrum environment by de-activating undesired sub carriers interfering

with the primary user bands [50, 54, 60, 62, 64].

Here, the BER performance of Overlay and Underlay waveforms are evaluated. The
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total received signal in a cognitive radio scenario in AWGN channel is

r(t) =
K∑

k=1

Spk
(t) +

L∑

l=1

Ssl
(t) + n(t) (4.1)

where K is the total number of primary users, L is the total number of secondary users,

Spk
(t) represents the kth primary user’s signal, Ssl

(t) is the lth secondary user’s signal,

and n(t) represents the additive Gaussian noise. Fig. 4.1 illustrates such a dynamic spec-

trum access scenario. As shown in Fig. 4.1, there are two primary users occupying two

non-contiguous frequency bands, and two spectrum holes are available for secondary user

transmission. it is assumed that the kth primary user transmits an OFDM signal with BPSK

modulation over its Mk subcarriers, so the kth primary user’s signal corresponds to:

Spk
(t) =

√
Ebk

T
Re

{
Mk−1∑
i=0

b
(k)
i ej2πfkig(t)

}
(4.2)

where Ebk
is the kth user’s bit energy, b

(k)
i is the kth user’s ith bit, fki

is the ith subcarrier

of the kth user, g(t) is a rectangular waveform of unity height which time-limits the code

to one symbol duration T , and the subcarrier bandwidth ∆f = fki
− fki−1

= 1/T .

4.2.1 Performance Analysis of Overlay Waveforms

When the secondary user employs overlay waveform for its transmissions, only spectrum

holes are used. Here it is assumed that one secondary user transmitting over all the available

spectrum holes. The signal corresponding to the secondary user waveform employing NC-

OFDM can be written as:

Ss(t) =

√
Ebs

T
Re

{
Mh−1∑
i=0

b
(s)
i ej2πfhi

tg(t)

}
(4.3)

where Ebs is the secondary user’s bit energy, b(s)
i is the secondary user’s ith bit, fhi

is the ith

subcarrier of the spectrum holes, and Mh is the total number of subcarriers of all spectrum
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holes.

Similarly, a secondary user employing NC-MC-CDMA can be written as

Ss(t) =

√
Ebs

MhT
Re

{
b(s)

Mh−1∑
i=0

βie
j2πfhi

tg(t)

}
(4.4)

where βi is the ith component of the spreading code of the secondary user.

Since the secondary user’s transmission is assumed to be synchronized in time with

the primary users’ transmission, and the secondary user only transmits over spectrum holes,

there is no interference from the secondary user to primary users and vice versa. Hence,

the BER performance of the secondary user (and the primary users) is simply as shown in

(4.5) for BPSK modulatons or (4.6) for 8PSK modulation with Gray coding [43].

P (b) = Q

(√
2Eb

N0

)
(4.5)

P (b) =
2

3
Q

(√
6Eb

N0

sin
π

8

)
. (4.6)

4.2.2 Performance Analysis of Underlay Waveforms

When underlay waveform is employed by the secondary users for transmission, the trans-

mission occupies the entire bandwidth instead of only the spectrum holes. Here, multiple

secondary users can be accommodated using MC-CDMA. The total secondary users’ signal

corresponds to:

Ss(t) =
L∑

l=1

Ssi
(t) =

√
Ebs

NfT
Re





L∑

l=1

b(l)

Nf−1∑
i=0

β
(l)
i ej2π(fc+i∆f)tg(t)



 (4.7)

Nf is the total number of subcarriers over the entire bandwidth, β
(l)
i is the ith component

of lth user’s spreading code.
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At the receiver side, the received signal is first decomposed to Nf subcarriers, then

recombined together to create the final decision variable for the desired secondary user.

Specifically, the nth secondary user’s decision variable is:

R(n) =

Nf−1∑
i=0

r
(n)
i . (4.8)

When one subcarrier is in a spectrum hole, there is no primary user’s signal:

r
(n)
i =

√
Ebs

Nf

b(n) +

√
Ebs

Nf

L∑

l=1,l 6=n

b(l)β
(l)
i β

(n)
i + ni (4.9)

where the first term is the desired signal, the second term is the Multiple Access Interfer-

ence (MAI), and the third term represents the additive Gaussian noise.

However, if one subcarrier is not in a spectrum hole, the secondary users’ signal co-

exist with one primary user’s signal:

r
(n)
i =

√
Ebs

Nf

b(n) +

√
Ebs

Nf

L∑

l=1,l 6=n

b(l)β
(l)
i β

(n)
i +

√
Ebk

b
(k)
i + ni (4.10)

When orthogonal spreading codes are employed for secondary users, the nth secondary

user’s decision variable after recombining now corresponds to:

R(n) =

Nf−1∑
i=0

r
(n)
i = Nf

√
Ebs

Nf

+
K∑

k=1

√
Ebk

Mk−1∑
i=0

b
(k)
i +

Nf−1∑
i=0

ni. (4.11)

The first term in (4.11) is the desired signal, the second term represents the interference

from primary users to the secondary user and the third term is the noise contribution where

E[ni
2] =

N0

2
. Note that there is no MAI in the final decision variable due to the orthogo-

nality among spreading codes.

Using a Gaussian approximation [43], the interference power from the primary user

on the secondary user given by the second term in (4.11) is [73]:
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E




(
K∑

k=1

√
Ebk

Mk−1∑
i=0

b
(k)
i

)2

 =

K∑

k=1

MkEbk
. (4.12)

If all primary users have equal bit energy Ebp , the above expression in (4.12) reduces to

K∑

k=1

MkEbk
= MEbp , (4.13)

where M =
∑K

k=1 Mk is the total number of subcarriers occupied by primary users.

It is easy to show that the signal-to-interference plus noise ratio (SINR) is

SINR =
NfEbs

K∑

k=1

MkEbk
+ Nf

N0

2

. (4.14)

With the BER performance of the nth secondary given by

P (e) = Q(
√

SINR) = Q




√√√√√√
NfEbs

K∑

k=1

MkEbk
+ Nf

N0

2




= Q




√√√√√√√√

2Ebs

2
K∑

k=1

MkEbk

Nf

+ N0




.

(4.15)

When all primary users have the same bit energy, the BER reduces to:

P (e) = Q




√√√√√
2Ebs

2MEbp

Nf

+ N0


 . (4.16)

58



4.3 Overlay-CR and Underlay-CR Simulation Analysis

Performance of all three overlay and underlay waveforms is demonstrated via simulation

under AWGN channel conditions. Perfect synchronization is assumed between primary and

secondary users. Analytic versus simulated Pb versus Eb/No is used as a performance met-

ric to validate these waveforms. When the secondary user is perfectly synchronized with

the primary user, there is no interference from the secondary user to primary user when

secondary user employs overlay waveform, hence, the performance of the non-contiguous

overlay waveform secondary user follows the theoretical performance under AWGN chan-

nel conditions.

4.3.1 Overlay-CR Simulation Results

In current CR methods only the unused spectrum is allocated for secondary users. The

overlay spectrum allocation scenario is illustrated in Fig. 4.1. The spectral bins having a

value of one identify secondary user bands and the zeroed-out bins identify primary user

bands. It is assumed that at any given time, 32 non-contiguous sub-carriers will be available

for secondary CR users. Performance of four non-contiguous overlay waveforms is demon-

strated in Figs. 4.2 through Fig. 4.5. The results demonstrate that with perfect synchroniza-

tion between primary and secondary users, non-contiguous waveforms such as NC-OFDM,

NC-MCCDMA, NC-CI/MC-CDMA and TDCS employing BPSK and 8PSK modulation,

match the theoretical expressions of BPSK and 8PSK modulations under AWGN channel

conditions.

4.3.2 Analysis of Underlay Waveform

A CR underlay waveform utilizes the underused portion of the spectrum, operating on

top of the other primary user waveform. In the previous overlay case, since perfect syn-

chronization was assumed, there was no interference between primary and CR overlay
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Figure 4.1: Spectrum response for scenario with non-contiguous spectrum available for CR
users.
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Figure 4.2: Performance of overlay NC-OFDM waveform in AWGN channel.
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Figure 4.3: Performance of overlay NC-MC-OFDM waveform in AWGN channel.
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Figure 4.4: Performance of overlay NC-CI/MC-CDMA waveform in AWGN channel.
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Figure 4.5: Performance of overlay NC-TDCS waveform in AWGN channel.

secondary user. However, in the CR underlay case, primary and secondary underlay user

will be interfering with each other causing performance degradation to each other. To get

an insight and understanding of the mutual interference to each other, three scenarios have

been considered. The first two scenarios examine CR underlay waveform with primary user

as interference and the third scenario analyzes primary user performance in the presence of

CR underlay as interference.

In the first scenario, the primary user is modeled as OFDM with BPSK modulation

using a contiguous 32 sub-carrier spectrum. The underlay waveform is modeled as MC-

CDMA with BPSK modulation. The underlay waveform uses much lower power and will

spread its spectrum while maintaining its own performance requirements and minimizing

its interference to the primary user. Figure 4.7 and Fig. 4.8 illustrate the performance of an

underlay secondary user under AWGN channel conditions with primary user interference.

The underlay waveform in Fig. 4.7 is operating at -20dB transmission power relative to

that of the primary user. It can be seen that as the underlay waveform spectrally spreads,

its performance improves and approaches the theoretical baseline at N = 512. Similarly,

in Fig. 4.8 the underlay waveform operating at -30dB relative to the primary user has to
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Figure 4.6: Performance of underlay NC-MCCDMA BPSK as a secondary user. Primary
to secondary user power ratio is 10dB.
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Figure 4.7: Performance of underlay NC-MCCDMA BPSK as a secondary user. Primary
to secondary user power ratio is 20dB.
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Figure 4.8: Performance of Underlay NC-MCCDMA bpsk as a secondary user. Primary to
secondary user power ratio is 30dB.

increase its spreading length to N = 1024 to improve its performance to come close to the

theoretical expression.

Results in Fig. 4.12 and Fig. 4.13 enable the comparison of theoretical and simulated

BER performance of a secondary user using an underlay waveform. Figure 4.12 shows

results when the secondary user’s transmission power is 20dB lower than that of the primary

user, and Fig. 4.13 shows the case of 30dB power difference. The solid lines in Fig. 4.12

represent theoretical BER performance of the secondary user specified by (4.15), the circles

represent the simulation results when the secondary user spreads to 128 subcarriers, the

stars represent the simulation results when the secondary user spreads to 256 subcarriers,

and the squares represent the case of 512 subcarriers. Fig. 4.13 shows the case of secondary

user spreading to 256, 512 and 1024 subcarriers. As can be seen in these figures, the

simulation results are well predicted by the theoretical analysis derived in the previous

section.
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Figure 4.9: Performance of Underlay NC-CI/MCCDMA bpsk as a secondary user. Primary
to secondary user power ratio is 20dB.
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Figure 4.10: Performance of Underlay NC-TDCS bpsk as a secondary user. Primary to
secondary user power ratio is 20dB.
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Figure 4.11: Comparing analytic with simulated results for Underlay secondary user per-
formance (at power -10dB below primary user) .
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Figure 4.12: Comparing analytic with simulated results for Underlay secondary user per-
formance (at power -20dB below primary user) .
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Figure 4.13: Comparing analytic with simulated results for Underlay secondary user per-
formance (at power -30dB below primary user) .
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Figure 4.14: Performance of Underlay NC-MCCDMA 8PSK as a secondary user. Primary
to secondary user power ratio is 20dB.
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Figure 4.15: Performance of Underlay NC-CI/MCCDMA 8PSK as a secondary user. Pri-
mary to secondary user power ratio is 20dB.
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Figure 4.16: Performance of Underlay NC-TDCS 8PSK as a secondary user. Primary to
secondary user power ratio is 20dB.
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Figure 4.17: Performance of underlay NC-MCCDMA BPSK as a secondary user in the
presence multiple primary users.

Multiple Primary Users

The second scenario also models the primary user as OFDM-BPSK consisting of 32 con-

tiguous sub-carriers. In this case the underlay spread length is fixed to N = 512 and the

secondary to primary power ratio is set at -20dB. In the previous scenario there was just one

single primary user in the entire underlay spread bandwidth, whereas in this case the entire

bandwidth is populated with multiple primary users, each operating over 32 sub-carriers.

It is evident from Fig. 4.17 that as the number of primary users increases, underlay per-

formance goes down, prompting the underlay user to employ other means such as spread

further or add channel coding to improve the performance.

Fig. 4.18 shows the theoretical BER performance and the simulation results of the sec-

ondary user using underlay waveform with multiple primary users. All primary users are

assumed to have the same transmission power and each primary user occupies 32 subcarri-

ers. The solid lines in Fig. 4.18 represent theoretical curves, the circles represent simulation

results when one primary user is present, the stars represent the simulation results with two

primary users present, the squares represent simulation results with four primary users, and
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Figure 4.18: Comparing analytic with simulated results for underlay secondary user per-
formance with multiple primary users.

the diamonds represent simulation result with eight primary users. It is evident from these

curves that the simulation results perfectly match the theoretical analysis presented in the

previous section.

Secondary Interference to Primary

The first two scenarios examined the effects of primary user interference to the secondary

underlay waveform. The effect of secondary underlay interference to the primary user

is shown in Fig. 4.19. As in the previous cases primary user is modeled as length 32

sub-carrier OFDM-BPSK and secondary underlay is modeled as MC-CDMA BPSK with

length N = 512. Orthogonal Hadamard-Walsh codes are used to support the multiple

users MC-CDMA underlay waveform. It can be seen from Fig. 4.19 that as the number of

secondary users increases to 10 (at primary to secondary power ratio of 20dB) the primary

user performance severely degrades and at that point the secondary underlay users drop

their power level to -30dB to lessen interference to the primary user.
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Figure 4.19: Performance of primary users with multiple secondary users present.
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Evaluation of Overlay and Underlay

Waveforms in Fading Channel

5.1 Introduction

This chapter starts with an overview of fading concepts and diversity techniques to miti-

gate the effects of fading. Then in the next few sections analytic expressions to calculate

bit error rate (BER) performance curves for overlay-CR and underlay-CR in both flat and

frequency selective fading channels are presented. Finally, simulation results are presented

to demonstrate performance of overlay-CR and underlay-CR waveform in frequency se-

lective fading channel. The flexibility of the overlay/underlay framework is demonstrated

by applying it to a family of SMSE signals including OFDM, MC-CDMA, CI/MC-CDMA

and TDCS.

5.2 Fading Channel Overview

In a wireless communication system a transmitted signal usually travels through a medium

called ”Channel” before it is received and processed for extracting the information content.

Usually, Additive White Gaussian Channel Noise (AWGN) serves as a starting point to

evaluate the performance of a communication system in an ideal channel conditions. In a
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Figure 5.2: Fading Type 2. [9]

practical scenario, the wireless medium between the transmitter and the receiver can vary

from a simple line of sight to a severely obstructed medium influenced by building, moun-

tains, foliage and motion (if the wireless systems are on a mobile platform). A wireless

communication system will experience performance degradation due to propagation loss

resulting from the distance from the transmitter and receiver and also the multipath effects

due to the obstruction.

The variations in the received power due to propagation loss and obstruction over a

long distance is referred to as large scale propagation loss or large scale fading. A num-
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ber of propagation models are available to mitigate the effects of large scale fading effects

[9, 96]. Rapid fluctuations of the amplitude, phase or multipath delays over a short period

or distance is referred to as small scale fading. The three important effects in small scale

fading due to multipath phenomenon are: 1)Rapid changes in signal strength, 2)Random

frequency modulation due to Doppler shift on different multipath signals and 3)Time dis-

persion or echoes caused by multipath delays [9]. In order to identify and understand of

different aspects of multipath fading, a good understanding of key parameters and termi-

nologies is necessary. Small scale fading effects can be characterized either in the time

or frequency domain. Signal bandwidth, coherence bandwidth and Doppler bandwidth are

frequency domain parameters. Similarly, symbol period, multipath delay spread and co-

herence time are time domain parameters which are used in characterization of small scale

fading effects.

• Signal Bandwidth: Range of frequencies predominantly occupied by a wireless

communications system. In general, the communication occupies bandpass signal

bandwidth W that is inversely proportional to the symbol period T or duration.

W ≈ 1

T
. (5.1)

• Coherence Bandwidth: Coherence bandwidth Bc is a statistical measure of the

range of frequencies over which the channel is considered to be ”flat”. In other

words, coherence bandwidth is the range of frequencies over which two frequency

components have a strong potential to be correlated in amplitude [9]. Coherence

bandwidth is usually expressed in terms of στ , the root mean square (rms) delay

spread.

Bc ≈ 1

5στ

. (5.2)
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• Doppler Bandwidth: Doppler bandwidth Bd or Doppler spread is a measure of

the spectral broadening caused by the time rate of change due to wireless system

mobility. It is defined as the range of frequencies over which the received spectrum

is essentially non-zero, expressed as

Bd ≈ υ

λ
, (5.3)

where υ is relative velocity and λ is wavelength.

• Symbol Period: Symbol period is the time duration of one symbol and is inversely

proportional to the bandwidth.

T ≈ 1

W
. (5.4)

• Delay Spread: The time period or the delay during which the multipath components

exceeds a specified power relative to the strongest multipath component is called

the delay spread. Multipath spread Tm is inversely proportional to the coherence

bandwidth.

Tm ≈ 1

Bc

. (5.5)

Since channels with identical delay spread can have different signal intensity profiles,

delay spread may not be an ideal metric to measure system performance. Therefore,

rms delay spread as in (5.6) is usually used when discussing delay spread. It is

important to note that coherence bandwidth and delay spread exhibit duality property.

στ ≈ 1

5Bc

. (5.6)
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• Coherence Time: Coherence time is the time period during which the channel re-

mains constant meaning no temporal or spectral variations occur during this time

period.

Tc =

√
9

16πB2
d

=
0.423

Bd

. (5.7)

FreqTime

Figure 5.3: Flat Fading - fast.[10]

Time Freq

Figure 5.4: Flat Fading -slow. [10]
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Time Freq

Figure 5.5: Fading type - Frequency Selective fast fading. [10]

Now that all key parameters have been introduced, as required to characterize small

scale fading effects, the two type of fading namely flat and frequency selective can be

discussed. The fading phenomenon experienced by the small scale fading can be expressed

as shown in (5.1) using time domain parameters such as rms delay στ and coherence time

Tc, or as shown in (5.2) using frequency domain parameters such as doppler bandwidth

Bd and coherence bandwidth Bd. A channel is said to be experiencing frequency selective

fading if the channel bandwidth is greater than the coherence bandwidth W > Bc, or in

time domain, if the symbol period is less the rms delay spread T < στ . Wideband or

high data rate signals (e.g., MC-CDMA, CI/MC-CDMA and TDCS) usually experience

frequency selective fading. On the other hand a channel is said to be experiencing flat

fading. If the coherence bandwidth is greater than the channel bandwidth (Bc > W ).

Similarly, in the time domain the channel is considered flat fading if the symbol duration

is greater than the delay spread T >> στ . Narrow band channels (e.g., OFDM) will

experience flat fading. If the wireless system is in motion it will experience Doppler shifting

according to (5.3). Since doppler introduces a change in the frequency, it will also affect

how fast or slow the channel fluctuates. Depending on how fast the transmitted signal

changes as compared to the rate of change of the channel, the channel may be classified as
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Figure 5.6: Fading type - FS slow fading. [10]

fast fading or slow fading. Figure 5.3 and 5.4, illustrate the fast and slow versions of the

flat fading channel [10]. Similarly, Fig. 5.5 and Fig. 5.6, illustrates fast and slow fading in

a frequency selective fading channel [10].

5.2.1 Overview of Diversity Combining

In wireless communication systems, the RF signal usually suffers from multi-path fading.

In designing the SMSE multi-carrier transmission schemes, the bandwidth of each and ev-

ery subcarrier ∆f is carefully chosen so that ∆f << (∆f)c, where (∆f)c is the coherence

bandwidth of the fading channel. Hence, while the total transmitted SMSE signal is trans-

mitted through a multi-path fading channel, each subcarrier only experiences a flat fading

channel. This feature significantly simplifies the design and implementation of the SMSE

multi-carrier transmission transceiver.

Specifically, the ith subcarrier observes a flat fading characterized by αie
jθi , where

αi is the fading gain which is characterized as a Rayleigh random variable, and θi is the

phase offset introduced by the fading which is characterized as a uniform random variable.

Hence, the received signal on the ith subcarrier ri(t) is:
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ri(t) = Re[αie
jθisi(t)] + n(t) (5.8)

where si(t) is the transmitted signal on the ith subcarrier, and n(t) is the additive Gaussian

noise.

At the SMSE receiver side, the phase offset θi is first tracked and removed, then the

fading gain αi is estimated via different methods (such as blind estimation, pilot tones,

training sequences, etc).

The simplest SMSE waveform is OFDM. OFDM has been adopted by a wide variety

of applications because it enables both high data rates and reliability over multipath fading

channels. For example, HIPERLAN/2 and IEEE802.11 standards employ OFDM as their

modulation technique. In its basic form, OFDM transmits each data symbol on one of

N narrowband subcarriers, which in turn experiences a flat fade. Thus, each data symbol

arrives at the receiver with a unique fade amplitude, leading to a poor performance in deep

fades.

Traditionally, OFDM’s poor performance is resolved by a combination of interleaving

and channel coding. The resulting Coded OFDM (COFDM) system benefits from fre-

quency diversity at the cost of reduced throughput. An attractive alternative to OFDM and

COFDM is MC-CDMA (multi-carrier CDMA) and its variations (CI/MC-CDMA, TDCS,

etc). In these schemes, each data symbol is simultaneously modulated onto all N carriers,

exploiting large frequency diversity gains without any loss in throughput.

The transmitted signal for a K user MC-CDMA system at carrier frequency fc is

SMC−CDMA(t) = A

K∑

k=1

b(k)

N∑
i=1

β
(k)
i ej2π(fc+i∆f)tg(t) (5.9)

where A is the transmission amplitude ensuring unit energy, β
(k)
i is the ith chip of the kth

user’s spreading code, and g(t) is the rectangular pulse shape.
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After transmission through a multipath fading channel, the received MC-CDMA sig-

nal is simply:

RMC−CDMA(t) = A

K∑

k=1

b(k)

N∑
i=1

αiβ
(k)
i ej(2π(fc+i∆f)t+θi)g(t) + n(t). (5.10)

After phase offset removal, each subcarrier’s matched filter output is

ri =
K∑

k=1

b(k)

N∑
i=1

αiβ
(k)
i + ni. (5.11)

To decode the lth user’s data b(l), the lth user’s spreading code is being applied to all ri and

recombined to exploit frequency diversity:

R(l) =
N−1∑
i=0

Wi · ri · β∗(k)
i . (5.12)

Different combining schemes can be used in the frequency combining, such as EGC (equal

gain combining), MRC (maximum ratio combining), ORC (orthogonal restoration combin-

ing), MMSEC (minimized mean square error combining), etc [6].

In EGC, each combining weights is equal to one which is suitable for scenarios where

fading gain is not obtained:

Wi = 1. (5.13)

In MRC, the combining weight is the fading gain:

Wi = αi. (5.14)

MRC is optimal for a single user MC-CDMA system [6].

In ORC, MAI (multiple access interference) is eliminated, however, the BER perfor-
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mance is poor due to noise amplification:

Wi =
1

αi

. (5.15)

MMSEC has been considered the best combining scheme for MC-CDMA when channel

information is known at the receiver [6]:

Wi =
αi

Kαi + N0

2

. (5.16)

To model realistic wireless environments, the Rayleigh fading channel employed in our

simulation demonstrates frequency selectivity over the entire bandwidth, W , but flat fading

over each of the Nf carriers. As a result, the αi’s in the Nf carriers are correlated according

to ρi,j = 1
1+((fi−fj)/(∆f)c)

2 where ρi,j denotes the correlation between the ith carrier and the

jth carrier, and (fi − fj) is the frequency separation between these two carriers [97].

5.3 Performance Anlalysis of Overlay and Underlay Wave-

forms in Flat Fading Channels

In this section, analytic bit error rate (BER) performance of non-contiguous Overlay and

Underlay waveforms in flat fading channels is presented.

The total received signal in a cognitive radio scenario is

r(t) =
K∑

k=1

rpk
(t) +

L∑

l=1

rsl
(t) + n(t) (5.17)

where K is the total number of primary users, L is the total number of secondary users,

rpk
(t) represents the received signal of the kth primary user, rsl

(t) is the received signal

of the lth secondary user, and n(t) represents the additive Gaussian noise. Here, it is as-

sumed that the primary users’ signals are not going through the fading channel. Hence, the
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received secondary user signals are altered by the fading gain α as:

rsl
(t) = αssl

(t) (5.18)

while the primary users received signal stays the same as the transmitted signal:

rpk
(t) = spk

(t). (5.19)

Here, α is the fading gain, spk
(t) represents the kth primary user’s transmitted signal, ssl

(t)

is the lth secondary user’s transmitted signal. We assume that the kth primary user transmits

an OFDM signal with BPSK modulation over its Mk subcarriers, so the received signal of

the kth primary user corresponds to:

rpk
(t) =

√
Ebk

T
Re

{
Mk−1∑
i=0

b
(k)
i ej2πfkig(t)

}
(5.20)

where Ebk
is the kth user’s bit energy, b

(k)
i is the kth user’s ith bit, fki

is the ith subcarrier

of the kth user, g(t) is a rectangular waveform of unity height which time-limits the code

to one symbol duration T , and the subcarrier bandwidth ∆f = fki
− fki−1

= 1/T .

5.3.1 Performance Analysis of Overlay Waveforms

When the secondary user employs overlay waveform for its transmissions, only spectrum

holes are used. Here it is assumed that one secondary user is transmitting over all the avail-

able spectrum holes. The received signal corresponding to the secondary user waveform

employing NC-OFDM can be written as:

rs(t) = α

√
Ebs

T
Re

{
Mh−1∑
i=0

b
(s)
i ej2πfhi

tg(t)

}
(5.21)
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where Ebs is the secondary user’s bit energy, b(s)
i is the secondary user’s ith bit, fhi

is the ith

subcarrier of the spectrum holes, and Mh is the total number of subcarriers of all spectrum

holes.

Similarly, the received signal of a secondary user employing NC-MC-CDMA can be

written as

rs(t) = α

√
Ebs

MhT
Re

{
b(s)

Mh−1∑
i=0

βie
j2πfhi

tg(t)

}
(5.22)

where βi is the ith component of the spreading code of the secondary user.

Since the secondary user’s transmission is assumed to be synchronized in time with

the primary users’ transmission, and the secondary user only transmits over spectrum holes,

there is no interference from the secondary user to primary users and vice versa.

Hence, the BER performance of the secondary user (and the primary users) is simply

P (e) =
1

2

(
1−

√
γ̄/2

1 + γ̄/2
,

)
(5.23)

where γ̄ is the average signal-to-noise ratio, defined as

γ̄ =
Eb

N0

E
[
α2

]
. (5.24)

5.3.2 Performance Analysis of Underlay Waveforms

When underlay waveform is employed by the secondary users for transmission, the trans-

mission occupies the entire bandwidth instead of only the spectrum holes. Here, multiple

secondary users can be accommodated using MC-CDMA. The total secondary users’ signal

corresponds to:
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rs(t) = α

L∑

l=1

Ssi
(t) = α

√
Ebs

NfT
Re





L∑

l=1

b(l)

Nf−1∑
i=0

β
(l)
i ej2π(fc+i∆f)tg(t)



 (5.25)

Nf is the total number of subcarriers over the entire bandwidth, β
(l)
i is the ith component

of lth user’s spreading code.

At the receiver side, the received signal is first decomposed to Nf subcarriers, then

recombined together to create the final decision variable for the desired secondary user.

Specifically, the nth secondary user’s decision variable is:

R(n) =

Nf−1∑
i=0

r
(n)
i (5.26)

When one subcarrier is in a spectrum hole, there is no primary user’s signal:

r
(n)
i = α

√
Ebs

Nf

b(n) + α

√
Ebs

Nf

L∑

l=1,l 6=n

b(l)β
(l)
i β

(n)
i + ni (5.27)

where the first term is the desired signal, the second term is the MAI, and the third term

represents the additive Gaussian noise.

However, if one subcarrier is not in a spectrum hole, the secondary users’ signal co-

exists with one primary user’s signal:

r
(n)
i = α

√
Ebs

Nf

b(n) + α

√
Ebs

Nf

L∑

l=1,l 6=n

b(l)β
(l)
i β

(n)
i +

√
Ebk

b
(k)
i + ni. (5.28)

When orthogonal spreading codes are employed for secondary users, the nth secondary

user’s decision variable after recombining now corresponds to:

R(n) =

Nf−1∑
i=0

r
(n)
i = Nfα

√
Ebs

Nf

+
K∑

k=1

√
Ebk

Mk−1∑
i=0

b
(k)
i +

Nf−1∑
i=0

ni. (5.29)
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The first term in (5.29) is the desired signal, the second term represents the interference

from primary users to the secondary user and the third term is the noise contribution where

E[ni
2] =

N0

2
. Note that there is no MAI in the final decision variable due to the orthogo-

nality among spreading codes.

Using a Gaussian approximation, the interference power from primary user on the

secondary user, second term in (5.29) is given by

E




(
K∑

k=1

√
Ebk

Mk−1∑
i=0

b
(k)
i

)2

 =

K∑

k=1

MkEbk
. (5.30)

If all primary users have the same bit energy Ebp , equation (5.30) reduces to

K∑

k=1

MkEbk
= MEbp , (5.31)

where M =
K∑

k=1

Mk is the total number of subcarriers occupied by primary users.

It is easy to show that the average signal-to-interference-and-noise ratio SINR (signal

to interference and noise ratio) γ̄′ is

γ̄′ =
NfE[α2]Ebs

K∑

k=1

MkEbk
+ Nf

N0

2

. (5.32)

Hence, the BER for the secondary user in flat fading channel corresponds to

P (e) =
1

2

(
1−

√
γ̄′/2

1 + γ̄′/2

)
=

1

2




1−

√√√√√√√√√√√√√√

NfE[α2]Ebs

2
K∑

k=1

MkEbk
+ NfN0

1 +
NfE[α2]Ebs

2
K∑

k−1

MkEbk
+ NfN0




(5.33)
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P (e) =
1

2




1−
√√√√√√

NfE[α2]Ebs

2
K∑

k=1

MkEbk
+ NfN0 + NfE[α2]Ebs




(5.34)

P (e) =
1

2




1−

√√√√√√√√

E[α2]
Ebs

N0

E[α2]
Ebs

N0

+ 2
K∑

k=1

Mk

Nf

Ebk

N0

+ 1




. (5.35)

When all primary users have the same bit energy, the BER reduces to:

P (e) =
1

2


1−

√√√√√√√
E[α2]

Ebs

N0

E[α2]
Ebs

N0

+ 2
M

Nf

Ebk

N0

+ 1


 . (5.36)

5.4 Performance Analysis of Overlay and Underlay Wave-

forms in Multipath Fading Channels

In this section, the analytic expression to evaluate the BER performance of Overlay and

Underlay waveforms in multipath fading channels is derived. The total received signal in a

cognitive radio scenario is

r(t) =
K∑

k=1

rpk
(t) +

L∑

l=1

rsl
(t) + n(t) (5.37)

where K is the total number of primary users, L is the total number of secondary users,

rpk
(t) represents the received signal of the kth primary user, rsl

(t) is the received signal

of the lth secondary user, and n(t) represents the additive Gaussian noise. Here, it is as-

sumed that the primary users’ signals are not going through the fading channel. Hence, the
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received secondary user signals after transmission through a multipath fading channel is:

rsl
(t) = h(t) ∗ ssl

(t) (5.38)

while the primary users received signal stays the same as the transmitted signal:

rpk
(t) = spk

(t). (5.39)

Here, h(t) is the impulse response of the fading channel, ∗ represents convolution, spk
(t)

represents the kth primary user’s transmitted signal, ssl
(t) is the lth secondary user’s trans-

mitted signal. It is assumed that the kth primary user transmits an OFDM signal with

BPSK modulation over its Mk subcarriers, so the received signal of the kth primary user

corresponds to:

rpk
(t) =

√
Ebk

T
Re

{
Mk−1∑
i=0

b
(k)
i ej2πfkig(t)

}
(5.40)

where Ebk
is the kth user’s bit energy, b

(k)
i is the kth user’s ith bit, fki

is the ith subcarrier

of the kth user, g(t) is a rectangular waveform of unity height which time-limits the code

to one symbol duration T , and the subcarrier bandwidth ∆f = fki
− fki−1

= 1/T .

5.4.1 Performance Analysis of Overlay Waveforms

When the secondary user employs overlay waveform for its transmissions, only spectrum

holes are used. Here, it is assumed that one secondary user transmitting over all the avail-

able spectrum holes. The received signal corresponding to the secondary user waveform

employing NC-OFDM can be written as:
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rs(t) =

√
Ebs

T
Re

{
Mh−1∑
i=0

αib
(s)
i e(j2πfhi

t+θi)g(t)

}
(5.41)

where αi is the fading gain on the ith subcarrier, θi is the phase offset introduced by the

fading channel on the ith subcarrier, Ebs is the secondary user’s bit energy, b
(s)
i is the sec-

ondary user’s ith bit, fhi
is the ith subcarrier of the spectrum holes, and Mh is the total

number of subcarriers of all spectrum holes.

Similarly, the received signal of a secondary user employing NC-MC-CDMA can be

written as

rs(t) =

√
Ebs

MhT
Re

{
b(s)

Mh−1∑
i=0

αiβie
(j2πfhi

t+θi)g(t)

}
(5.42)

where βi is the ith component of the spreading code of the secondary user.

Since the secondary user’s transmission is assumed to be synchronized in time with

the primary users’ transmission, and the secondary user only transmits over spectrum holes,

there is no interference from the secondary user to primary users and vice versa.

Since the NC-OFDM does not provide frequency diversity, the BER performance of

the secondary user (and the primary users) employing NC-OFDM is the same as in a flat

fading channel:

P (e) =
1

2

(
1−

√
γ̄/2

1 + γ̄/2

)
(5.43)

where γ̄ is the average signal-to-noise ratio, defined as

γ̄ =
Eb

N0

E
[
α2

]
. (5.44)

On the other hand, in NC-MC-CDMA, the signal is recombined across all subcarriers to

exploit frequency diversity:

88



R(n) =

Mh−1∑
i=0

Wi · r(n)
i (5.45)

where

r
(n)
i = αi

√
Ebs

Mh

b(n) + αi

√
Ebs

Mh

L∑

l=1,l 6=n

b(l)β
(l)
i β

(n)
i + ni (5.46)

and Wi is the ith combining weight. Maximum Likelihood Combining (MLC) is employed,

since it offers the best BER performance in multipath fading channels:

Wi =
αi

√
Ebs

Mh

(L− 1)α2
i

Ebs

Mh
+ N0

2

. (5.47)

It is important to note that when there is only one secondary user (i.e., L = 1), MLC

reduces to maximum ratio combining (MRC) which is well known as the optimal frequency

diversity combining scheme [6, 96]:

Wi = αi. (5.48)

After frequency combining, the final decision variable corresponds to:

R(n) =

Mh−1∑
i=0

Wi · r(n)
i (5.49)

=

Mh−1∑
i=0

Wiαi

√
Ebs

Mh

b(n) +

Mh−1∑
i=0

Wiαi

√
Ebs

Mh

L∑

l=1,l 6=n

b(l)β
(l)
i β

(n)
i +

Mh−1∑
i=0

Wini

where the first term is the desired signal, the second term is the MAI (multiple access

interference), and the third term is the noise contribution. The power of the desired signal

corresponds to:
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PSignal =

(
Mh−1∑
i=0

Wiαi

√
Ebs

Mh

b(n)

)2

=
Ebs

Mh

(
Mh−1∑
i=0

Wiαi

)2

. (5.50)

The power of the MAI is

PMAI = E

[
Mh−1∑
i=0

Wiαi

√
Ebs

Mh

L∑

l=1,l 6=n

b(l)β
(l)
i β

(n)
i

]2

= (L− 1)
Ebs

Mh

Mh−1∑
i=0

W 2
i α2

i (5.51)

and the power of the noise contribution is

PNoise = E

[
Mh−1∑
i=0

Wini

]2

=
N0

2

Mh−1∑
i=0

W 2
i . (5.52)

The instantaneous signal to interference and noise ratio (SINR) is thus

SINR =
PSignal

PMAI + PNoise

=

Ebs

Mh

(
Mh−1∑
i=0

Wiαi

)2

(L− 1)
Ebs

Mh

Mh−1∑
i=0

W 2
i α2

i +
N0

2

Mh−1∑
i=0

W 2
i

.

(5.53)

The expression for probability of error as a function of SINR corresponds to

P (e)instant = Q
(√

SINR
)

(5.54)

and the average P (e) is the integration over the probability density function of SINR, i.e.,

P (e) =

∫ ∞

0

Q
(√

SINR
)

p(SINR)d(SINR). (5.55)
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The expression in (5.55) can be determined via numerical methods which can be easily

implemented.

5.4.2 Performance Analysis of Underlay Waveforms

When underlay waveform is employed by the secondary users for transmission, the trans-

mission occupies the entire bandwidth instead of only the spectrum holes. Here, multiple

secondary users can be accommodated using MC-CDMA. The total secondary users’ signal

corresponds to:

rs(t) =
L∑

l=1

rsi
(t) =

√
Ebs

NfT
Re





L∑

l=1

b(l)

Nf−1∑
i=0

αiβ
(l)
i e(j2π(fc+i∆f)t+θi)g(t)



 (5.56)

Nf is the total number of subcarriers over the entire bandwidth, β
(l)
i is the ith component

of lth user’s spreading code.

At the receiver side, the received signal is first decomposed to Nf subcarriers, then

recombined together to create the final decision variable for the desired secondary user.

Specifically, the nth secondary user’s decision variable is:

R(n) =

Nf−1∑
i=0

r
(n)
i . (5.57)

When one subcarrier is in a spectrum hole, there is no primary user’s signal:

r
(n)
i = αi

√
Ebs

Nf

b(n) + αi

√
Ebs

Nf

L∑

l=1,l 6=n

b(l)β
(l)
i β

(n)
i + ni (5.58)

where the first term is the desired signal, the second term is the MAI, and the third term

represents the additive Gaussian noise.

However, if one subcarrier is not in a spectrum hole, the secondary users’ signal co-
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exists with one primary user’s signal:

r
(n)
i = αi

√
Ebs

Nf

b(n) + αi

√
Ebs

Nf

L∑

l=1,l 6=n

b(l)β
(l)
i β

(n)
i +

√
Ebk

b
(k)
i + ni. (5.59)

The secondary users’ signal is then recombined across all subcarriers to exploit frequency

diversity:

R(n) =

Nf−1∑
i=0

Wi · r(n)
i . (5.60)

After frequency combining, the final decision variable corresponds to:

R(n) =

Nf−1∑
i=0

Wi · r(n)
i (5.61)

=

Nf−1∑
i=0

Wiαi

√
Ebs

Nf

b(n) +

Nf−1∑
i=0

Wiαi

√
Ebs

Nf

L∑

l=1,l 6=n

b(l)β
(l)
i β

(n)
i

+
K∑

k=1

∑
i∈Pk

√
Ebk

b
(k)
i +

Nf−1∑
i=0

Wini

where Pk is the subcarrier set of the kth primary user. The first term in (5.61) represents

the desired signal, the second term represents the MAI from all other secondary users, the

third term is the primary users’ interference, and the fourth term is the noise contribution.

It can be easily show that the desired signal power is:

PSignal =




Nf−1∑
i=0

Wiαi

√
Ebs

Nf

b(n)




2

=
Ebs

Nf




Nf−1∑
i=0

Wiαi




2

, (5.62)

the MAI power is
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PMAI = E




Nf−1∑
i=0

Wiαi

√
Ebs

Nf

L∑

l=1,l 6=n

b(l)β
(l)
i β

(n)
i




2

= (L− 1)
Ebs

Nf

Nf−1∑
i=0

W 2
i α2

i , (5.63)

and the power of the primary users’ interference (PUI) is

PPUI = E

[
K∑

k=1

∑
i∈Pk

√
Ebk

b
(k)
i

]2

=
K∑

k=1

MkEbk
, (5.64)

where Mk is the total number of subcarriers of the kth primary user. If all primary users

have the same bit energy, the PUI power reduces to

PPUI =
K∑

k=1

MkEbk
= MEbp , (5.65)

where M =
K∑

k=1

Mk is the total number of subcarriers occupied by primary users.

The power of the noise contribution is

PNoise = E




Nf−1∑
i=0

Wini




2

=
N0

2

Nf−1∑
i=0

W 2
i . (5.66)

The instantaneous signal-to-interference and noise ratio (SINR) is thus

SINR =
PSignal

PMAI + PPUI + PNoise

=

Ebs

Nf




Nf−1∑
i=0

Wiαi




2

(L− 1)
Ebs

Nf

Nf−1∑
i=0

W 2
i α2

i +
K∑

k=1

MkEbk
+

N0

2

Nf−1∑
i=0

W 2
i

.

When all primary users have the same bit energy, the instantaneous SINR reduces to:
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SINR =

Ebs

Nf




Nf−1∑
i=0

Wiαi




2

(L− 1)
Ebs

Nf

Nf−1∑
i=0

W 2
i α2

i + MEbp +
N0

2

Nf−1∑
i=0

W 2
i

. (5.67)

The expression for probability of error as a function of SINR corresponds to

P (e)instant = Q
(√

SINR
)

(5.68)

and the average P (e) is the integration over the probability density function of SINR, i.e.,

P (e) =

∫ ∞

0

Q
(√

SINR
)

p(SINR)d(SINR). (5.69)

The expression (5.69) can be determined (calculated) via numerical methods which are

easily implemented.

5.5 Simulation Analysis of Overlay waveform in Multi-

path Fading

In this section, overlay-CR waveforms in frequency selective fading channel is demon-

strated. Multi-Carrier waveforms such as NC-OFDM, NC-MC-CDMA, CI/MC-CDMA

and TDCS have all been implemented. The overlay spectrum allocation scenario is similar

to the analysis performed in the previous chapter with total number of subcarrier, given

by N = 64 and at any given time 32 subcarriers are allocated to primary user and 32 are

allocated to overlay-CR user. Even though the multi-carrier overlay-CR waveforms are
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Figure 5.7: Performance of overlay NC-OFDM waveform in Frequency Selective Fading
channel.

suitable for multi-user scenario, the scope of the simulations is limited to single primary

and a single secondary user scenario. It is also assumed that the primary user signals which

are modeled as OFDM-BPSK are not going through a fading channel and the primary and

secondary users are perfectly synchronized.

In order to model a realistic wireless channel, the rayleigh fading channel employed

in the simulations demonstrates frequency selectivity over the entire bandwidth BW , but

flat fading over each of the subcarriers. This simulation assumes a channel model with

coherence bandwidth characterized by (∆f)c. It is assumed that the coherence bandwidth

is eight times the subcarrier bandwidth, i.e. (∆f)c = 8∆f . Hence, a primary user trans-

mitting over 32 subcarriers observes 4-fold diversity and in the overall CR bandwidth of

64 subcarriers the frequency selectivity is 8 folds. In order to mitigate multipath fading

effects and take advantage of the diversity, maximum ratio combining diversity approach

was selected.

Figure 5.7 illustrates the performance of NC-OFDM using both BPSK and 8PSK mod-

ulations. Since NC-OFDM transmits a different symbol on each of the subcarriers and each

subcarrier experiences flat fading, the diversity gain due to frequency selective combining
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Figure 5.8: Performance of Overlay NC-OFDM waveform with channel coding in Fre-
quency Selective Fading channel. This figure illustrates an OFDM waveform employing
channel coding to take advantage of channel diversity .
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Figure 5.9: Performance of overlay NC-MC-CDMA waveform in Frequency Selective Fad-
ing channel.

96



0 5 10 15 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No(dB)

P
ro

ba
bi

lit
y 

of
 b

it 
er

ro
r

 

 
Sim−BPSK
Sim−8PSK

Figure 5.10: Performance of overlay NC-CI/MC-CDMA waveform in Frequency Selective
Fading channel.
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Figure 5.11: Performance of overlay NC-TDCS waveform in Frequency Selective Fading
channel.
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Figure 5.12: Performance of NC-OFDM and NC-MCCDMA waveform in Frequency Se-
lective Fading channel. This figure illustrates the performance gained MC-CDMA dues to
the diversity combining.

is not applicable here. Hence the performance of overlay-CR employing NC-OFDM ex-

periences flat fading. One approach to take advantage of frequency diversity is to adopt

coding schemes, which is demonstrated in Fig. 5.8. The top solid line in Fig. 5.8 is the

uncoded version of NC-OFDM and the bottom two curves are NC-OFDM utilizing ham-

ming(7,4) and BCH(15,5) codes. More about these codes will be discussed in the next

chapter.

Figures 5.9 through 5.11, illustrate the performance of multi carrier waveforms such

as NC-MC-CDMA, NC-CI/MC-CDMA and TDCS using both BPSK and 8PSK modula-

tions. As expected, all three waveforms show performance improvement compared to the

uncoded version of NC-OFDM show in Fig. 5.7. Figure 5.12 illustrates the performance

of NC-OFDM-BPSK and NC-MC-CDMA BPSK modulations. The performance improve-

ment due to the 8 folds frequency selectivity gains by employing MRC diversity technique

is illustrated.
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5.6 Simulation Analysis of Underlay waveform in Multi-

path Fading

In this section simulation results are presented to demonstrate the performance of underlay-

CR waveforms in a frequency selective fading environment. To recapitulate some of the

underlay-CR properties, a underlay-CR waveform employed by the secondary user occu-

pies the entire CR bandwidth or can adjust the bandwidth depending on data rate and inter-

ference requirements set forth by the primary users. In an overlay-CR waveform implemen-

tation and analysis, perfect synchronization is assumed between primary and overlay-CR

secondary users, whereas in underlay-CR analysis, primary and secondary waveforms will

be overlapping, increasing signal to interference noise ratio to both the systems To min-

imize the mutual interference, underlay waveform similar to UWB and spread spectrum

signals will be expected to operate under the noise floor of the primary user signals.

The simulation analysis in this research is limited to single CR-primary user employ-

ing OFDM-BPSK modulations and a single secondary user employing multi-carrier wave-

forms such as NC-MC-CDMA, CI/MC-CDMA and TDCS employing BPSK and 8PSK

modulations. Even though the underlay waveform employed in the simulations operate on

a contiguous bandwidth, it has the ability to adapt to non-contiguous scenarios as demon-

strated in the overlay simulations.

The frequency selective channel model assumed in the overlay-CR simulation anal-

ysis also applies to the underlay-CR analysis. Recall that in these simulations a four fold

frequency diversity in a 32 subcarrier bandwidth was assumed. As the bandwidth increases

due to spreading of the underlay waveforms, the number of diversity folds also increases,

which results in performance improvements provided by utilizing an appropriate diversity

combining technique.

Figure 5.13 and Fig. 5.14, illustrate the analytic results of MC-CDMA BPSK and

MC-CDMA 8PSK, respectively, in a frequency selective fading channel employing MRC
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Figure 5.13: Analytic performance of MC-CDMA-BPSK due to diversity combining in
frequency selective fading channel.
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Figure 5.14: Analytic performance of MC-CDMA-8PSK due to diversity combining in
frequency selective fading channel.
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Figure 5.15: Illustration of performance gain due to spreading in Frequency Selective Fad-
ing channel. In this ideal underlay scenario there is no primary user interference.

diversity combining technique. It is evident from the figures that as the number of sub-

carriers increases, the performance gain due to frequency diversity also increases. It is

also worth noting that the difference in performance improvement gets larger at higher

Eb/No values. In order to validate the analytic results, underlay-CR simulations were also

performed with primary user interference. Figure 5.15 demonstrates that the simulation re-

sults matches the analytic results, validating the assumption made in deriving the analytic

expression as well as in the implementation. These analytic curves serve as a baseline to

compare and contrast underlay-CR results.

Figures 5.16 through 5.18, illustrate simulation results for an underlay-CR waveform

employing MC-CDMA BPSK, CI/MC-CDMA BPSK and TDCS BPSK modulations. The

underlay-CR waveforms are assumed to be operating at -20dB relative to the primary user.

The single primary user is modeled as 32 subcarrier OFDM-BPSK modulation. It is evident

from the figures that as the underlay-CR waveform increases its spreading bandwidth by

increasing the number of subcarrier there is a performance improvement, and at N = 512,

the simulation results approaches the baseline results.
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Figure 5.16: Performance analysis of Underlay waveform using MCCDMA-BPSK in Fre-
quency Selective Fading channel.
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Figure 5.17: Performance analysis of Underlay waveform using CI/MCCDMA-BPSK in
Frequency Selective Fading channel.
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Figure 5.18: Performance analysis of Underlay waveform using TDCS-BPSK in Frequency
Selective Fading channel.
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Figure 5.19: Performance analysis of Underlay waveform using MCCDMA-8PSK in Fre-
quency Selective Fading channel.
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Figure 5.20: Performance analysis of Underlay waveform using CI/MCCDMA-8PSK in
Frequency Selective Fading channel.
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Figure 5.21: Performance analysis of Underlay waveform using TDCS-8PSK in Frequency
Selective Fading channel.
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Similarly, Figures 5.19 through 5.21, illustrate simulation results employing MC-

CDMA 8PSK, CI/MC-CDMA 8PSK and TDCS 8PSK modulations. It can be seen from

the figures that even though the performance starts to improve it does not come close to the

baseline results. It should be noted that employing higher modulation schemes or lowering

the secondary to primary interference ratio, will result in an increase in the bandwidth or

the number of subcarriers in order to satisfy the performance requirements. For example, if

the performance requirement for underlay-CR waveforms was to achieve a minimum BER

of 10−3, then the number of subcarriers has to be increased, since at N = 512 it has reached

the irreducible noise floor.
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Evaluation of Hybrid Overlay-Underlay

Waveforms

6.1 Introduction

To maximize both spectrum efficiency and channel capacity, both unused and underused

portion of the spectrum has to be utilized. This chapter via simulation demonstrates the

performance enhancement utilizing both unused and underused spectrum using hybrid un-

derlay/overlay waveform.

6.2 Channel Coding Overview

Channel coding is usually associated with forward error correction (FEC) codes. FEC are

structured sequences which are added to the data to transform the overall sequence with

error detection and error correction capability. To accomplish this, the encoder transmits

not only the information symbols, but also one or more redundant symbols. The decoder

uses the redundant symbols to detect and possibly correct whatever errors occurred during

transmission. FEC codes can be divided into two categories, Block Codes and Convolution

Codes [43, 96].

Block coding is simply an extension of single bit parity-check codes for error detec-
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tion. Linear block codes extend this concept by using large number of parity bits to either

detect or correct more than one error. A linear block code can be functionally described by

two integer variables and a generator matrix or polynomial. The integer k represents the

number of input data or information bits and the integer n represents the total number of

bits associated with the output codeword.

A binary block code generates n coded bits from k information bits. This mapping is

termed as (n, k) binary block code. The rate of the code Rc = k/n represents information

bits per codeword symbol. If for example, the coded symbols are transmitted at a rate of

Rs symbols per second, then the information rate associated with an (n, k) block code is

Rb = RcRs = (k/n)Rs bits per second. The ratio k/n is called the rate of the code and

also a measure of redundancy. Block codes improve the performance with a penalty of

reduced data rate. Hamming, Bose-Chadhuri-Hocquenghem (BCH), Golay and extended

Golay are few examples of linear block code. This research has considered hamming and

BCH codes in implementing and demonstrating the hybrid overlay/underlay concept.

Hamming codes are the simplest from of linear block codes characterized by (n, k) =

(2m − 1, 2m − 1 −m) where m = 2, 3, .... All hamming codes have a minimum distance

dmin = 3, which indicates they are capable of correcting all single digit errors and can

detect up to two errors in a single block of codeword. Error correction capability is related

to the minimum distance.

BCH codes can be viewed as an extension to hamming codes which facilitates multiple

error correction capabilities. They are a class of cyclic codes that provide a large selection

of block length, code rates, alphabet sizes and error correction capability [43]. BCH codes

are considered as very powerful linear block codes because at a few hundred block length,

BCH outperforms all other block codes with the same block length and code rate.

Figure 6.1 illustrates a number of hamming and BCH codes with varying error correc-

tion capabilities. The top solid curve represents OFDM-BPSK in AWGN channel and the

bottom solid curve represents OFDM-BPSK with BCH(15,5) channel coding with an error
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Figure 6.1: Performance of overlay NC-OFDM employing number of channel coding
methods in AWGN channel conditions.

correction capability of three.

6.3 Evaluation of Hybrid Overlay/Underlay

The block diagram representations in Fig. 6.2 and Fig. 6.3 illustrate the conceptual view

of the hybrid overlay/underlay approach. Systematic block channel coding is introduced

to demonstrate the performance improvement gained by combining overlay and underlay

techniques. Two popular block codes, namely a (7,4) Hamming code with t = 1 error cor-

rection capability and a (15,5) BCH code with t = 3 error correction capability were chosen

for evaluation. In general, channel coding improves performance by adding redundant or

parity bits. For a given communication system this translates to increase in transmission

bandwidth or decrease in effective data rate. Hence, the overlay systems experience a re-

duction in effective date rate by a factor of k/n where k and n represent the number of

output encoded and input information bits, respectively.

However, in the proposed overlay/underlay system in Fig. 6.3, the information bits are

transmitted via overlay waveform (over unused frequency bands), and the redundant bits are
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Figure 6.2: Block diagram representation of Overlay with channel coding.

Figure 6.3: Hybrid overlay/underlay technique using channel coding.

transmitted via underlay waveform (over underused frequency bands). This way, both the

unused and the underused frequency bands are utilized. Compared to pure overlay system,

the new overlay/underlay system exploits channel coding gain without sacrificing data rate.

More importantly, the overlay/underlay system possesses an increased degree of flexibility

in receiver design. If preferred, no channel decoding needs to be implemented and the

receiver simply demodulates the data from the overlay transmission. On the other hand,

with a channel decoder present the overlay/underlay receiver can improve the performance

significantly.

6.3.1 Overlay/Underlay in AWGN

Figure. 6.4 shows simulation results for the overlay and overlay/underlay concepts illus-

trated in Fig. 6.2 and Fig. 6.3. The top solid line represents the OFDM-BPSK overlay

system without channel coding. The bottom two solid lines represents OFDM-BPSK over-

lay systems using H(7,4) and BCH(15,5) channel coding, respectively. The dashed lines

represent the overlay/underlay combinations. The underlay waveform spread length was

at N = 256 and N = 512, respectively. It is evident from the results in the figure that

applying channel coding improves performance significantly but at the cost of reduced ef-
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Figure 6.4: Performance of hybrid overlay/underlay waveform in AWGN channel con-
ditions. Overlay is implemented using NC-OFDM and underlay is implemented using
NC-MC-CDMA waveform.

fective data rate. Performance of the proposed overlay/underlay system approaches that of

the channel coded overlay system without undergoing the reduced data rate.

Similarly, Fig. 6.5 and Fig. 6.6 illustrate the performance of hybrid overlay/underlay

waveform. In both the figures OFDM-BPSK is used to model overlay-CR waveform,

whereas the underlay-CR waveforms in Fig. 6.5 and Fig. 6.6 are modeled using CI/MC-

CDMA BPSK and TDCS BPSK, respectively. Again, as in the previous scenario this

simulation only considered a single user environment and comparisons between the dif-

ferent MC modulations can only be made in multi-user scenarios. The intent here was to

demonstrate that using SDR-based CR platforms any of these multicarrier waveforms can

be easily implemented.

6.3.2 Overlay/Underlay in Fading channel

In the previous chapter the performance improvements gained by overlay-CR and underlay-

CR waveforms employing diversity combining in a frequency selective channel was demon-
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Figure 6.5: Performance of hybrid overlay/underlay waveform in AWGN channel con-
ditions. Overlay is implemented using NC-OFDM and underlay is implemented using
NC-CI/MC-CDMA waveform.
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Figure 6.6: Performance of hybrid overlay/underlay waveform in AWGN channel con-
ditions. Overlay is implemented using NC-OFDM and underlay is implemented using
NC-TDCS waveform.
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Figure 6.7: Performance of coded overlay NC-OFDM waveform in frequency selective
fading channel.

strated. In this section, the performance improvement gained by combining both overlay-

CR and underlay-CR in a frequency selective fading channel using diversity combining is

demonstrated.

As mentioned in the previous chapter, a multipath channel is assumed to experience

four folds frequency diversity. The single primary user interference is modeled as OFDM-

BPSK consisting of 32 subcarriers. It is also assumed that the primary user is not experi-

encing fading effects. In order to demonstrate the robustness of the hybrid approach, two

systematic block codes namely, hamming H(7,4) code with one error correction ability and

BCH(15,5) with up to three error correction capability were implemented.

Figure 6.7 illustrates how coding improves the performance in a frequency selective

(FS) fading channel. The top solid line is NC-OFDM experiencing fading whereas the

bottom two curves represent coded NC-OFDM performance.

From the above discussions it is evident that coding enhances performance of overlay-

CR systems in FS channels, but at the same time the overlay-CR systems experience a

reduction in effective date rate by a factor of k/n.
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Figure 6.8: Performance of hybrid overlay/underlay waveform using hamming codes in
Frequency selective fading channel. Overlay is implemented using NC-OFDM BPSK and
underlay is implemented using NC-MC-CDMA BPSK.

Figure 6.8, illustrates the performance of hybrid overlay/underlay by employing NC-

OFDM BPSK as a overlay-CR waveform, MC-CDMA BPSK as a underlay-CR waveform

and hamming code H(7,4) was employed as an encoder. Underlay spreading length of 256

and 512 sub carriers was used. The top solid line represents OFDM with flat fading results.

The red curve labeled as ”OFDM(7,4)” represents coded OFDM and the labels ”H(7,4) N =

256” and ”H(7,4) N = 512” represent overlay/underlay with spreading length 256 and 512

subcarriers. It is evident from the simulation results that the hybrid overlay/underlay not

only offers performance improvements over overlay-CR but it also outperformed overlay-

CR with channel coding. Moreover, the hybrid performance gain is not at the expense of

reduced throughput as in the case of coded overlay-CR systems. Similarly, Fig. 6.9, illus-

trates hybrid overlay/underlay by employing NC-OFDM BPSK as the overlay-CR wave-

form and CI/MC-CDMA as the underlay-CR waveform.

Figure 6.10 and Fig. 6.11 illustrate performance of hybrid overlay/underlay using

OFDM BPSK as overlay-CR, MC-CDMA BPSK and CI/MC-CDMA BPSK as underlay-

CR employing BCH(15,5) encoder.
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Figure 6.9: Performance of hybrid overlay/underlay waveform using hamming codes in
Frequency selective fading channel. Overlay is implemented using NC-OFDM BPSK and
underlay is implemented using NC-CI/MC-CDMA BPSK.
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Figure 6.10: Performance of hybrid overlay/underlay waveform using BCH(15,5) codes in
Frequency selective fading channel. Overlay is implemented using NC-OFDM BPSK and
underlay is implemented using NC-MC-CDMA BPSK.
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Figure 6.11: Performance of hybrid overlay/underlay waveform using BCH(15,5) codes in
Frequency selective fading channel. Overlay is implemented using NC-OFDM BPSK and
underlay is implemented using NC-CI/MC-CDMA BPSK.
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Conclusions

To improve spectrum efficiency and maximize channel capacity, both unused (white) and

underused (gray) spectral regions need to be exploited. An existing SMSE framework

based on hard decision spectrum usage has been extended to soft decision SMSE frame-

work (SD-SMSE) for physical layer waveforms that are well-suited for ”CR-based SDR”

applications. Given an established set of SD-SMSE design variables, the ”CR-based SDR”

is capable of dynamically generating overlay, underlay and hybrid overlay/underlay wave-

forms based on user requirements. Each of these three waveforms is evaluated using the

SD-SMSE framework in a CR context under AWGN and frequency selective fading chan-

nel conditions. In general, the underlay-CR waveform is associated with UWB technology.

However, results here demonstrate that the underlay-CR waveform is able to adapt its band-

width based on user requirements and environmental conditions. It was also demonstrated

that the hybrid overlay/underlay waveform can be used to improve spectrum efficiency.

7.1 Future Research Topics

This research has provided a SD-SMSE framework with the ability to utilize both unsed and

underused spectrum of opportunity via Overlay/Underlay waveform design. Even though

this research has demonstrated that spectrum efficiency and performance enhancement can

be realized by combining overlay/underlay waveforms. A number of assumptions were

made and a number of issues remain unanswered.
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• Synchronization: This research assumed perfect synchronization between the sec-

ondary and primary user, which leads to two open problems: 1)Synchronization

issues related to the co-existence of primary and secondary users, and 2)Synchro-

nization of non-contiguous multi-carrier waveforms such as NC-OFDM, NC-MC-

CDMA, NC-CI/MC-CDMA and NC-TDCS.

• Multi-User Environment: This research was limited to a single secondary user sce-

nario. A thorough multi-user co-existence analysis with multiple primary and multi-

ple secondary users presents challenges not only at the physical layer but also at the

medium access control (MAC) layer. Metrics to measure interference threshold and

co-existence analysis also need to be considered.

• Multipath Fading: This research evaluated CR-overlay and CR-Underlay analyti-

cally in both flat and frequency selective fading channels and validated by simulation

the performance of frequency selective fading channels. It was assumed that only

the secondary user was experiencing fading and that the primary user was operating

over an AWGN channel. Even though this analysis serves as a baseline, other open

problems include 1) analysis of primary user fading effects on the secondary user

and 2) secondary user fading effects on primary users.

• Spectrum Sensing: In this work, the spectrum sensing function was assumed to be

available. For more realistic implementation of the SD-SMSE, the spectrum sensing

function needs to be integrated into the SD-SMSE framework.

• Adaptive Modulation: In the SD-SMSE framework, a weighted spectrum estimate

of the channel was assumed. This means that depending on the utilization and inter-

ference, each of the spectral bins or subcarriers will have a different power require-

ment. In order to maximize the channel capacity, subcarrier level adaptive modula-

tion is desired.
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• Primary User Interference: In this research, secondary user interference was lim-

ited to a primary user employing OFDM-BPSK modulation. Other practical primary

user interference sources could include other multi carrier waveforms, licensed users

such as TV, radio, cell phones, and unlicensed users might be considered as well.

• Applications of Overlay/Underlay Waveforms: One common CR research as-

sumptions is that either 1) all the secondary users will have the knowledge of pri-

mary users, secondary users and their channel conditions, or 2) there will exist some

control channel to exchange this information. While this assumption might help in

formulating or solving a particular problem, the question remains ”What does this

control channel look like?”. The CR-underlay waveform proposed in this research

might be an appropriate candidate to serve as the control channel for the secondary

users.
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Appendix

8.1 Cyclostationary based signal detection

This section provides an in depth analysis of cyclostationary (CS) based signal detection

method in low SNR conditions. A modulated signal as received by the classifier can mod-

eled as:

y(t) = Re{ỹ(t)}

ỹ(t) = s(t− t0)e
j2πfctejφ + ñ(t)

(8.1)

where y(t) is the received signal, ỹ(t) is the analytic signal of y(t), fc is the carrier fre-

quency, φ is the carrier phase, t0 is the signal time offset, n(t) is additive Gaussian noise,

and s(t) denotes the time-varying message signal. For digital signals, this can be further

specified as:

ỹ(t) = ej2πfctejφ

∞∑
−∞

skp(t− kTs − t0) + ñ(t) (8.2)

where p(t) is the pulse shape, Ts is the symbol period, and sk is the digital symbol transmit-

ted at time t ∈ (kT −T/2, kT +T/2). Here, the symbols sk are assumed to be zero-mean,

identically distributed random variables.

CS based approaches are based on the fact that communications signals are not ac-
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curately described as stationary, but rather more appropriately modeled as cyclostationary.

While stationary signals have statistics that remain constant in time, the statistics of CS

signals vary periodically. These periodicities occur for signals of interest in well defined

manners due to underlying periodicities such as sampling, scanning, modulating, multi-

plexing and coding. This resulting periodic nature of signals can be exploited to determine

the modulation scheme of the unknown signal.

8.1.1 Second Order Cyclic Features

The autocorrelation function of a CS signal x(t) can be expressed in terms of its Fourier

Series components [98]:

Rx(t, τ) = E{x(t + τ/2)x∗(t− τ/2)} =
∑

{α}
Rα

x(τ)ej2παt (8.3)

where E{·} is the expectation operator, {α} is the set of Fourier components, and the

function Rα
x(τ) giving the Fourier components is termed the cyclic autocorrelation function

(CAF), given by:

Rα
x(τ) = 1/T0

∫ T0/2

−T0/2

Rx(t, τ)e−j2παt, (8.4)

In the case of multiple incommensurate periodicities, (8.4) can be expressed as the limit:

Rα
x(τ) = lim

T→∞
1/T

∫ T/2

−T/2

Rx(t, τ)e−j2παt, (8.5)

The CAF Fourier Transform, denoted the Spectral Correlation Function (SCF) is given by:

Sα
x (f) =

∫ ∞

−∞
Rα

x(τ)e−j2πfτdτ, (8.6)

This can be shown to be equivalent (assuming cyclo-ergodicity) to [98]:
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Sα
X(f) = lim

T→∞
lim

∆t→∞
1

∆t

∫ ∆t/2

−∆t/2

1

T
XT

(
t, f +

α

2

)
X∗

T

(
t, f − α

2

)
dt (8.7)

XT (t, f) =

∫ t+T/2

t−T/2

x(u)ej2πfudu. (8.8)

Here it can be seen that Sα
x is in fact a true measure of the correlation between the spectral

components of x(t). A significant benefit of the SCF is its insensitivity to additive noise.

Since the spectral components of white noise are uncorrelated, it does not contribute to the

resulting SCF for any value of α 6= 0. This is even the case when the noise power exceeds

the signal power, where the signal would be undetectable using a simple energy detector.

At α = 0, where noise is observed, the SCF reduces to the ordinary Power Spectral Density

(PSD).

To derive a normalized version of the SCF, the Spectral Coherence Function (SOF) is

given as:

Cα
X(f) =

Sα
X(f)

[
S0

X

(
f +

α

2

)∗
S0

X

(
f − α

2

)]1/2
. (8.9)

The SOF is seen to be a proper coherence value with a magnitude in the range of [0, 1]. To

account for the unknown phase of the SOF, the absolute value of Cα
X(f) is computed and

used for classification. The SOF of some typical modulation schemes are shown in Fig.

8.1 and Fig. 8.2. The SOF of each modulation scheme generates a highly distinct image.

These images can then be used as spectral fingerprints to identify the modulation scheme

of the received signal.

An additional benefit to using the SOF is its insensitivity to channel effects. Wireless

signals are typically subject to severe multipath distortion. Taking this into consideration,

the SCF of a received signal is given as:
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Figure 8.1: Spectrum coherence function of BPSK in AWGN channel [11].

Figure 8.2: Spectrum coherence function of FSK in AWGN channel [11].
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Figure 8.3: Spectrum coherence function of BPSK in Multipath channel [12].

Sα
Y (f) = H

(
f +

α

2

)
H∗

(
f − α

2

)
Sα

x (f) (8.10)

y(t) = x(t)⊗ h(t) (8.11)

where h(t) is the unknown channel response, and H(f) is the Fourier Transform of h(t).

Here it can be seen that the resulting SOF of the received signal can be significantly dis-

torted depending on the channel. However, when forming the SOF, by substituting (8.10)

into (8.9) it is evident that the channel effects are removed, and the resulting SOF is equal

to that of the original undistorted signal. As a result, the SOF is preserved as a reliable

feature for identification even when considering propagation through multipath channels,

so long as no frequency of the signal of interest is completely nullified by the channel. The

SOF of some typical signals undergoing multipath fading are shown in Fig. 8.3 and Fig.

8.4.

To compute the SOF for a sampled signal, a sliding windowed FFT of length N can

be used to compute XT , and a sum taken over the now discrete versions of XT gives the
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Figure 8.4: Spectrum coherence function of FSK in Multipath channel [12].

resulting equation for Sα
X(f). Additionally, the limits in (8.7) and (8.8) must be made finite,

and an estimate of the SCF is obtained. This has the effect of limiting the temporal and

spectral resolution of the SCF. In (8.7), ∆t is the amount of time over which the spectral

components are correlated. This limits the temporal resolution of the signal to ∆t. In

[99] the cyclic resolution is shown to be approximately ∆α = ∆t. Similarly, the spectral

resolution is limited to ∆f = 1/T , where 1/T is the resolution of the FFT used to compute

XT .

To obtain a reliable estimate of the SCF, the random fluctuations of the signal must be

averaged out. The resulting requirement is that the time-frequency resolution product must

be made very large, with ∆t∆f À 1, or equivalently, ∆f À ∆α. This has the effect of

requiring a much finer resolution for the cycle frequencies than would be provided by the

FFT operation. To compensate for this, in [100] it was proposed to zero-pad the input to the

FFTs out to the full length of the original signal. However, this leads to a computationally

infeasible task. A more suitable method is to first estimate the cycle frequencies of interest

using the method outlined in [101]. After the appropriate cycle frequencies have been

located, the SCF can be computed using the equivalent method of frequency smoothing on
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the reduced amount of data:

Sα
X(f) =

1

∆f

∫ f+∆f/2

f−∆f/2

X∆t

(
t, f +

α

2

)
X∗

∆t

(
t, f − α

2

)
dt (8.12)

where X∆t(t, f) is defined in (8.8) with T replaced by ∆t.

The resulting feature derived from the SOF is a three-dimensional image. This presents

an unreasonable amount of data for a classifier to operate on in real-time. Therefore, it

must be further reduced to provide a more computationally manageable feature. The work

in [100] the authors proposed using merely the cycle frequency profile of the SOF. How-

ever, in our previous work [95] demonstrated that with a minimal increase in computational

complexity, both the frequency profile as well as the cycle frequency profile can be used,

creating a pseudo three-dimensional image of the SOF which performs at a significantly

higher degree of reliability for classification. The resulting feature used for classification

are then defined as the cycle frequency profile:

−→α = maxf [C
α
X ] (8.13)

and the spectral frequency profile

−→
f = maxα[Cα

X ] (8.14)

These features can then be analyzed using a pattern recognition-based approach. Due to

its ease of implementation, and its ability to generalize to any carrier frequency or symbol

rate, a neural network-based system is proposed to process the feature vectors.
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8.1.2 Higher Order Cyclic Features

While the SOF produces highly distinct images for different modulation schemes, some

modulation schemes produce identical images, as well as different orders of a single mod-

ulation scheme. Therefore, while the SOF is able to reliably classify each of the analog

signals as well as classify the digital schemes into a modulation family, it will not be able

to distinguish between some digital schemes (namely QAM and M-PSK, M > 4), or de-

termine the order of the modulation.

8.2 Interference Temperature

In 2003 has proposed Interference Temperature (IT) as a metric to aid in interference anal-

ysis and for establishing a threshold on the allowable interference induced by secondary

users. IT is ”a measure of the RF power generated by undesired emitters plus noise sources

that are present in a receiver system (I + N) per unit bandwidth,” or in other words, the

temperature equivalent of such RF power measured in unit of ”Kelvin” (K) [19].

Finally, on May 2007 FCC issued another notice saying that it has terminated the IT

concept. Even though, there are few supporters for adopting the IT approach to measure or

set a threshold, there is no clear cut method or rules to implement IT. The community in

general (technical as well as user) argued that the IT approach is not practical and would

only result in increased interference in its operating ranges

8.2.1 View of IT Opponents

This section is adapted from discussion by Krenik in EE times [102]. From the very begin-

ning there was lot of opposition to this concept, with arguments that interference and noise

behave differently and cannot be completely characterized with single measurement. Then

there are arguments on implementation of such a concept. The difficulty lies in effectively
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measuring the interference temperature. A CR is naturally aware of its transmit power level

and, with a global-positioning system, also knows its precise location. With this informa-

tion, a CR can compute the probability that its transmission could cause interference to

a neighboring receiver on the same frequency. The concept is similar to UWB, in which

transmit power is kept so low that no damaging interference normally would occur. How-

ever, there is no practical way for CR to locate all receivers of communications from the

transmitter in question or to assess the capabilities of those receivers. Some may generate

significant internal noise and, as a result, tolerate little interference. Some may be located

so far from the transmitter that their reception is marginal to begin with. Unless a CR can

measure the effect of its transmission on all possible receivers, taking a useful interference

temperature measurement may not be feasible .

For this reason, many system operators oppose shared use of their licensed frequen-

cies. Interference at the edges of their coverage areas could force them to drop service to

some customers or to build more towers. To address this concern, some flavors of cognitive

radio abandon the idea of sharing channels. Instead, they rely on identifying an unused

channel and transmitting at that frequency until a licensed user wants it. When the CR

detects other activity, it jumps to another channel not in use. Even this approach allows

for the possibility that an unlicensed CR user may deprive a licensee of access to channels

for which it has paid significant sums. In extreme cases, CR may not be able to detect a

competing signal even when a channel is actively in use. Such a situation can easily occur

when the CR transmits at high power levels while existing users of the channel are quite

far away and at low power levels.

Take the case of a television station’s remote news van. The van sends a signal to

the station, which then broadcasts the report to viewers at home. Now, suppose the van

is dispatched to an event only a mile or so from the station. The news report will go out

of the van at relatively low power across a directional antenna aimed at the station. A CR

located outside the directional antenna’s influence may not detect the transmission. If the
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CR decides that the channel is not in use and sends its own signal to a receiver on the far

side of the TV station’s main transmitter, it can blow the news right off the air. Interference

temperature concepts alone cannot effectively protect the licensee in this situation.

8.2.2 How IT works

FCC envisioned that by using this one measurement it can characterize both noise and

interference. For a given geographic area, FCC would set up an Interference Temperature

limit or threshold TL. Any unlicensed user utilizing this band must make sure that they do

not exceed this limit TI < TL , where TI is the measured interference consisting of both

noise and other licensed and unlicensed users.

IT expression TI as shown in (8.15) is a function of frequency and bandwidth (B). It

is a measure of power in a given B where PI(fc, B) is the average power in Watts centered

at fc over a bandwidth B in Hertz and k is the Boltzmann’s constant in Joules per Kelvin

degree. The expression in (8.15) can also be expressed in terms of power spectral density

S(f) of current RF environment as shown in (8.16).

TI(fc, B) =
PI(fc, B)

kB
(8.15)

TI(fc, B) =
1

Bk
PI(fc, B)

=
1

Bk

(
1

B

∫ fc+B/2

fc−B/2

S(f)df

)

=
1

B2k

(∫ fc+B/2

fc−B/2

S(f)df

)
. (8.16)

To satisfy FCC’s IT condition, an unlicensed user has to show that their added transmission

power will not exceed TL . This brings up number of questions such as which transmission
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Figure 8.5: Interference Temperature model [13, 14].

are to be considered as interference, unlicensed, licensed or both. To address some of these

scenarios, two conceptual models 1) Ideal and 2) Generalized are shown in Fig.8.5.

In an ideal IT model interference is just limited to licensed users. As shown in Fig.

8.5 , unlicensed users might be operating across multiple licensed user bands each with its

own TL. The unlicensed users challenge is to assure the all the licensed user’s condition

are met and also maximize the spectral efficiency.

TI(fi, Bi) +
MiP

kBi

≤ TL(fi) ∀ 1 ≤ i ≤ n. (8.17)

It is assumed that the TL value is set forth by the licensed transmitter. M is a value between

0, 1 representing the attenuation between the licensed transmitter and unlicensed receiver.

In the generalized model, no a priori knowledge of the licensed user in a given RF

environment is assumed to be available; therefore an unlicensed user cannot distinguish

between licensed signals from interference and noise as shown in Fig. 8.5. In this scenario

there is just one TL resulting in one constraint rather than multiple constraint as in (8.17).

TI(fc, B) +
MP

kB
≤ TL(fc). (8.18)
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