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ABSTRACT 

Mateo, Julio Christian. M.S., Department of Psychology, Wright State University, 2007. 

Effect of Variable Feedback Delay on Visual Target-Acquisition Performance. 

 

Traditionally, private communication channels with stable characteristics have been 

used in teleoperation situations. However, recently there have been a few attempts at 

using public communication channels such as the Internet. In spite of their convenience, 

very little is known about the effect of the variable delays inherent in this type of channel 

on motor performance. In this thesis, we provide empirical data on the impact of variable 

feedback delays on a 3D visual target-acquisition task performed in a virtual 

environment. Target size, distance between targets, mean feedback delay, and feedback-

delay variability were manipulated and the number of errors and movement time (MT) 

were measured. Results showed that feedback-delay variability affected the closed-loop 

part of visual target-acquisition movements, even though its effect was weaker than the 

effect of mean feedback delay. Our results advise against using techniques that reduce 

feedback-delay variability at the expense of increasing mean feedback delay. In addition, 

we found that target size was critical for visual target-acquisition performance in the 

presence of feedback delays and this should be considered when designing teleoperation 

situations. Issues associated with studying feedback-delay variability are identified and 

lines of future research are suggested.
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I.  INTRODUCTION 

Most of the activities people perform in their daily lives, such as writing, picking up a 

glass, or turning off a light switch, involve coordination between motor actions and the 

sensory feedback resulting from those actions. Among the many types of sensory 

feedback (e.g., proprioceptive and haptic feedback) that are important for the successful 

completion of motor tasks, the focus in this thesis is on visual feedback and visuo-motor 

coordination. 

In everyday situations, most people perform simple motor activities easily and 

without realizing the important role that visual feedback plays in their successful 

completion. Only when visual feedback is deteriorated (e.g., low or no light) are people 

likely to realize that they were using it to perform their actions. During most everyday 

activities, people can directly see the consequences of their actions, since visual feedback 

is available to the person from the moment the action occurs without delay. For example, 

most people can directly see their own hand moving (e.g., when picking up a coffee 

mug), as well as the objects that the hand might contact during the movement (e.g., a 

glass of water next to the mug). This visual feedback allows the person to avoid spilling 

the glass of water when reaching for the coffee mug and, if the glass was touched during 

the movement, the person could use the instantaneous feedback (visual and haptic) to 

correct his/her action and avoid the spillage. 

However, in some less common situations (e.g., on-orbit satellite repair, deep 

underwater exploration, or radioactive waste removal), it is impossible or too dangerous 

to have the person (i.e., operator) performing the action in the same location as the object 

on which they are performing the actions. In these cases, as illustrated in Figure 1, it is 
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often convenient to place an effector (e.g., a robotic arm) in the remote site where the 

action needs to take place while the human operator controls (operates) it from a local, 

safer site. In these teleoperation situations, it is usually impossible to provide the human 

operators instantaneous with visual feedback about their actions and the consequences of 

these actions. Actions performed by the human operator in the local site are not executed 

in the remote site until some time has elapsed (i.e., control delay) and actions executed by 

the effector (e.g., robotic arm) in the remote site are not displayed to the operator in the 

local site until some time has elapsed (i.e., display delay). In the telerobotics literature, 

the terms transmission delay and round-trip delay have often been used to refer to the 

total delay between the moment the human operators act in the local site to the moment 

when they receive feedback from their actions (i.e., control delay plus display delay). In 

the case of visual feedback, round-trip delay corresponds to the time elapsed between the 

moment the operator moves in the local site to the moment his/her movement is depicted 

in the display in that same location.  

In this thesis, we are not interested in the source of the delay (i.e., control vs. display 

delay) but rather we are interested in how delayed visual feedback experienced by 

operators affect their motor performance. For this reason, the term feedback delay is used 

almost exclusively to refer to the time elapsed between the moment the operator performs 

an action and when this action and its consequences are visually displayed to the 

operator. The feedback delays used in our experiment were technically display delays 

(i.e., the operator’s actions were implemented immediately but the display of these 

actions was delayed). 
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Figure 1. Illustration of a typical teleoperation situation with both control and display delays. 

The round-trip delay is the total delay between the moment an operator acts and when the 

resulting actions are displayed (i.e., control delay plus display delay). We refer to this round-

trip delay in this thesis as feedback delay. 

The type of tasks performed in teleoperation situations often resemble (or can be 

subdivided into) simple movements between two points followed by a particular action 

(e.g., unscrew a hatch). For this reason, researchers (e.g., Ferrell, 1965) have often used 

target-acquisition tasks to study human motor performance in teleoperation situations. In 

target-acquisition experiments, participants are instructed to move to a specific location 

(i.e., target) determined by the experimenter. Most often, participants are required to 

minimize the time to acquire the target (i.e., to move to the target as quickly as possible). 

The time taken to complete a trial (i.e., movement time, MT) and the number of errors 

(e.g., number of times the participant stops outside the target area) are typical dependent 

measures in target-acquisition studies. Given our interest in teleoperation situations and 

the usefulness of this type of tasks to study teleoperation performance, we used a visual 
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target-acquisition task to investigate how feedback-delay manipulations  affect 

performance. 

Most studies exploring the effect of feedback delays in visual target-acquisition tasks 

have explored the impact of constant feedback delays. Given that most of the current 

teleoperation applications use private, exclusive communication channels resulting in 

constant delays (e.g., Hu, Yu, Tsui, & Zhou, 2001), studying constant feedback delays 

has been appropriate. As might be expected, researchers (e.g., MacKenzie & Ware, 1993) 

have consistently found a negative impact of increasing feedback delays on human motor 

performance in these studies (i.e., longer feedback delays resulted in longer MTs and 

more errors). 

In the last decade, many researchers (see Goldberg & Seigwart, 2002, for a review) 

have suggested using public, shared channels (e.g., Internet) for some telerobotic 

applications. The Internet has many convenient features (e.g., its ubiquity, low cost, and 

easy access) when compared to private, exclusive channels. However, public channels 

also have an important drawback: transmission delays (and therefore, feedback delays) do 

not remain constant over time but vary continuously depending on many factors (e.g., 

number of users or routing paths). This property of the Internet results in variable 

feedback delays that, if large enough, lead to discontinuities in the movement of the 

effector (e.g., it may freeze and then jump to catch up with its latest location). Obviously, 

the representation of the effector provided to the user through the display will also show 

discontinuities in these cases. When the delay variability (or jitter) is large enough, the 

operator can easily notice it and his/her performance is expected to be negatively affected 

by this variability. 
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A detrimental effect of feedback-delay variability on motor performance (above and 

beyond the effect of mean feedback delay) seems reasonable given that the displayed 

visual representation of the operator’s original movement is no longer a consistent 

representation of that original (input) movement. That is, a smooth input movement by 

the operator may be displayed as a sequence of cursor jumps, making it difficult for the 

operator to know where his cursor really is and to adapt to it. In spite of the logical 

argument to expect this effect, empirical research exploring the effect of delay variability 

(and movement discontinuity) on motor performance is sparse and very little is known 

about this relationship. Given the potential of Internet-based teleoperation, it is important 

that more research is done in order to improve our understanding of the relationship 

between feedback-delay variability and motor performance. Understanding this 

relationship is a necessary step for the development of operator models for Internet 

teleoperation situations and appropriate strategies to deal with the variable delays 

resulting from the use of the Internet as a communication channel. The main objective of 

this thesis is to improve our understanding of the relationship between feedback-delay 

variability and motor performance. For this purpose, we conducted an empirical study in 

which feedback-delay variability was systematically manipulated and its effects on motor 

performance were measured. 

In the first and second sections of the literature review, the main frameworks 

traditionally used to model human motor performance in the presence of feedback delays 

are briefly described and some of the empirical studies that have explored the impact of 

constant delays on human performance are presented. Due to the large number of studies 

fitting this criterion, those studies that explored visual target-acquisition tasks and 



 

 6 

attempted to model human performance are emphasized. In the third section, the few 

studies that have explored the impact of variable feedback delays on human performance 

in individual and collaborative tasks are described. The fourth section includes a review 

of the strategies that human operators use to deal with constant and variable feedback 

delays and, in the fifth section, some of the techniques proposed by designers to 

ameliorate the negative effects of constant and variable feedback delays on performance 

are introduced. Finally, the goals and predictions of this thesis are presented. 

Motor-Performance Models 

The models that have been proposed to explain human performance in movement 

tasks can generally be categorized under one of two frameworks: Information theory and 

Control theory. In broad terms, models based on Information theory compare the human 

operator to a communication channel of limited capacity, whereas models based on 

Control theory compare the human operator to a feedback control system. The models 

account for the effect of feedback delays in slightly different ways. 

Models Based on Information Theory 

Since Shannon and Weaver (1949/1963) formulated the mathematical theory of 

communication, many psychologists have used information measures derived from 

Shannon and Weaver’s work to characterize different aspects of behavior (see Welford, 

1960, for a review). In the context of movement control, models based on Information 

theory have assumed that the human motor system acts as an information channel of 

limited capacity (e.g., Fitts, 1954). That is, a certain amount of information is transmitted 

every time a person performs an aimed movement, and the amount of information that 

the human motor system can transmit per unit of time (i.e., the channel capacity) is 
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limited. In this context, information refers to a reduction of uncertainty, and the 

information transmitted by a specific movement depends not only on the movement 

characteristics (e.g., how far the person moves) but also on the number of possible 

alternative movements with the body part used to carry out the movement. That is, 

moving a body part that allows many possible alternative movements (e.g., an arm) 

transmits more information than moving a body part with less possible alternative 

movements (e.g., a finger). 

Fitts (1954) was the first researcher to apply these Information-theory ideas to the 

study of the human motor system. One of the tasks used by Fitts in this initial study, and 

the most widely known, is the reciprocal-tapping task in which participants moved a 

stylus horizontally back and forth between two plates separated by a certain distance, 

stopping within the area of the target plate each time. Fitts varied the distance between 

plates and the size of the plates across conditions. (Fitts referred to these two variables 

respectively as movement amplitude, A, and target width, W, in his one-dimensional 

task; however, in this paper the terms distance between targets, D, and target size, S, are 

used instead because they are more general and apply better to three-dimensional 

situations.) Using an information measure, Fitts defined the index of difficulty (ID) of a 

specific movement as: ID = log2

  

! 

2"D

S

# 

$ 
% 

& 

' 
( . From an Information-theory standpoint, S can 

be interpreted as the uncertainty after the execution of the movement (i.e., how much 

error is tolerated in an ‘accurate’ movement), and   

! 

2"D was arbitrarily selected by Fitts 

to represent the uncertainty before starting the movement. 

Another measure used by Fitts (1954) was the index of performance (IP), which is 

analogous to the capacity of a communication channel in Information theory (i.e., the 
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higher the IP, the more information can be transmitted per unit of time). Index of 

performance was defined as: IP =

  

! 

ID

MT

 where   

! 

MT  is the average movement time for the 

corresponding index of difficulty. Fitts found that the human index of performance for 

the tasks and body parts considered in his study (i.e., arm and hand) ranged from 10 to 12 

bits/s. For the same task and body parts, changes in ID did not affect the index of 

performance (within limits). The following equation was obtained by regressing 

movement time (MT) on index of difficulty: MT = a +     

! 

b" ID, where a and b are 

empirically determined constants (i.e., intercept and slope, respectively), and IP = 
    

! 

1

b
 

(Fitts & Peterson, 1964). MacKenzie (1992) interpreted the intercept (a) in Fitts’ law as 

the extra time needed to perform “the select operation, which typically follows pointing” 

(p. 98). For example, in a traditional desktop computer interface, the intercept would 

correspond to the time required to select an icon after placing the cursor over the desired 

one. If a singe click (instead of a double click) were needed to select an icon, the 

intercept in Fitts’ equation would be expected to decrease, but no change would be 

expected in the slope (b). Using this information-based model of movement control, Fitts 

(1954; Fitts & Peterson, 1964) and many others (e.g., Langolf, Chaffin, & Foulke, 1976) 

have accounted for more than 95% of the variance in movement time for visual target-

acquisition tasks. Due to its robustness, this prediction equation is known as Fitts’ law.  

Fitts and Peterson (1964) used a discrete task in which participants, instead of serially 

moving between two targets as in Fitts’ initial study (1954), started at a central resting 

position and moved to one of two lateral targets (i.e., right or left of the resting position) 

in response to a light onset (i.e., slightly right or left in front of the participants). Fitts and 
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Peterson measured both the time elapsed from the appearance of the light to the moment 

the participants started moving (i.e., reaction time, RT) and the time from the beginning 

of the movement to the moment the person touched the surface of the target (i.e., MT). 

They found, as expected, that RT was unaffected by index of difficulty and that MT 

followed Fitts’ law. That is, when using visual target-acquisition tasks in which the 

participant does not know the target location before the beginning of the trial, 

Information theory predicts a linear effect of index of difficulty on MT (i.e., Fitts’ law), 

but no effect of index of difficulty on RT.  

Although the original formulation of Fitts’ law (1954) presented above has 

consistently yielded good fits to the data, MacKenzie (1992) proposed a modification of 

Fitts’ index of difficulty to make it more faithful to the original Information theory of 

communication (Shannon & Weaver, 1949/1963): MT = a +

! 

b" log2
  

! 

D + S

S

" 

# 
$ 

% 

& 
'  = a + 

! 

b" log2
  

! 

D

S
+1

" 

# 
$ 

% 

& 
' . This form clarifies the role of the distance (D) as the signal (i.e., desired 

movement) and of the target size (S) as noise of the channel (i.e., allowable variability in 

the endpoint of the movement) and it consistently yields slightly better fits to the data 

than Fitts’ original index of difficulty. For this reason, MacKenzie’s modification is often 

used instead of Fitts’ law. 

Fitts (1954) hypothesized that the index of performance (i.e., channel capacity) would 

change from one task to another depending on the central demands imposed by the 

specific task. For example, the presence of longer feedback delays is expected to increase 

the central demands on the operator. Due to increasing central demands, the human index 

of performance for a specific task is expected to decrease (i.e., steeper regression lines) 
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with increasing delay (e.g., Hoffmann, 1992) or, in other words, the same increase in 

index of difficulty is expected to result in a greater increase of MT with longer feedback 

delays than with shorter ones.  

Models Based on Control Theory 

Models based on Control theory characterize the performance of the human operator 

in movement tasks with analytical techniques used to describe feedback-control systems 

(Craik, 1947). An example of such a system would be an antenna with a tracking system 

that allows it to rotate to face in the desired direction (Jagacinski, 1977). The components 

of such a system are: a desired direction as the input signal (analogous to the target in a 

movement task), an antenna (analogous to the hand), a motor that allows the antenna to 

move (analogous to the muscles in the arm and hand), and information about the current 

direction of the antenna that can be compared to the desired one (analogous to sensory 

feedback).  

Control theory uses quantitative measures such as gain, lag, time delay, and lead to 

model human performance. Gain in Control theory describes how fast the system moves 

to correct for error (i.e., difference between the current and desired position). Movements 

with higher gains will be faster, whereas movements with lower gains will be slower. 

Jagacinski and Flach (2003) proposed that gain could be interpreted as an “index of the 

sensitivity of the system to error” (p. 30). In Control theory, lag and time delay are two 

distinct concepts: a system with a lag begins its response to an input instantaneously and 

gradually approaches a steady-state output, whereas a system with a time delay does not 

begin its response to an input until after a period of time (i.e., the delay) has elapsed, and 

then, it reaches a steady-state output instantaneously. Although it is not always the case in 
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the literature (e.g., MacKenzie & Ware, 1993), in this paper, the terms lag and time delay 

are used following the Control-theory convention and, therefore, are not interchangeable 

(actually, we will talk almost exclusively about time delays). Finally, a lead refers to the 

prediction of future inputs based on past observations. For example, in order to 

successfully catch a moving ball, it is necessary to anticipate the position of the ball into 

the future (i.e., when it will reach the receiver’s position). In some cases, the lag (or time 

delay) of a system may be partially cancelled by a lead. 

Researchers in Control theory are generally interested in the stability of systems, and 

the time delay between input and output signal is an important parameter in this context. 

For the orienting-antenna feedback-control system, a specific combination of time delay 

and gain will allow the antenna to rotate to the desired direction in an optimal amount of 

time. If gain is too low (for a specific delay), it will take longer than optimal to reach the 

desired position, whereas if gain is too high, the antenna will overshoot first and then 

oscillate around the desired position (i.e., an example of an unstable system). A 

modification of the delay or gain of the system in the appropriate direction would be 

necessary to stabilize the system. Delayed systems are expected to require lower gains 

than systems with the same characteristics but no time delay; therefore, according to 

Control theory, longer movement times are also expected with increasing feedback 

delays. 

Most of the studies exploring the effect of feedback delays on visual target-

acquisition tasks emphasize Information-theory over Control-theory models and the 

literature review in this thesis reflects this bias. Control-theory models have mostly been 

used to model tracking performance (i.e., where the human operator is trying to minimize 
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the error between their output and a continually changing target position). Although 

tracking tasks differ from target-acquisition tasks in some respects, it is important to 

acknowledge that either approach (i.e., Information or Control theory) could potentially 

be used to model target-acquisition performance. Control theory’s predictions of MT in 

target-acquisition tasks are equivalent to Fitts’ law predictions (e.g., Jagacinski & Flach, 

2003) and, in addition, Control theory also predicts the time histories of movements for a 

given gain, lag, time delay, and lead. Although Information-theory terminology is used 

when comparing results with previous research, the data from this thesis could be used to 

develop human-performance models from either (or both) framework(s).  

Studies Exploring the Impact of Constant Feedback Delays on Motor Performance 

Numerous studies have looked at the effect of constant feedback delays on motor 

performance during the last 50 years. While early studies were motivated by an interest in 

the impact of feedback delay on handwriting and drawing, interest in telerobotics and 

virtual environments has motivated more recent studies. 

Early Studies on Feedback Delay and Behavior  

The discovery of the interference of delayed auditory feedback on speech (Lee, 1950) 

motivated an initial interest in the effect of feedback delay on handwriting. van Bergeijk 

and David (1959) explored the effect of 6 levels of feedback delay between 0 and 520 ms 

on a handwriting task, finding a gradual increase in completion time with longer feedback 

delays. They also observed that some participants changed their performance strategy 

when faced with feedback delays. For example, they described how some participants, 

instead of writing continuously, often wrote one letter at a time without paying attention 

to feedback, then stopped to check feedback, and repeated this sequence for the following 
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individual letters until they completed the task. Participants using this strategy took 

longer to complete the task, but they also produced fewer errors and obtained better 

“neatness” ratings than participants that attempted to perform the task continuously.  

Smith, McCrary, and Smith (1960) studied nine movement tasks under two feedback-

delay conditions (i.e., no delay and 520-ms delay). In describing the performance of their 

participants while trying to place dots in circles (i.e., one of the nine tasks), they wrote 

“what normally would be fast, smooth, placing motions becomes erratic and oscillatory 

movements which assume a characteristic jerkiness” in the presence of feedback delays 

(p. 1013). This task was similar to the visual target-acquisition tasks in which we are 

interested and Smith et al.’s qualitative observation closely resembles Control theory’s 

description of an unstable system with oscillatory behavior. 

Visual Target-Acquisition Performance in the Presence of Constant Feedback Delays 

The development of the first telerobotic systems in the early 1960s motivated some 

research on the effect of feedback delays in visual target-acquisition and manipulative 

tasks. Ferrell (1965) used a task with 2 degrees of freedom (2DOF) plus grasp in which 

participants moved a manipulator, which had two parallel fingers, from the starting 

position to the target location and, then, closed the two fingers to grab the target. In his 

study, Ferrell introduced feedback delays of 0.0, 1.0, 2.1, and 3.2 s and observed that 

human operators tended to spontaneously adopt a move-and-wait strategy in the presence 

of feedback delays. This strategy consisted of making an open-loop (OL) movement (i.e., 

without using feedback), waiting for the feedback to show the result of their actions, and 

then repeating the sequence again until they completed the task. Ferrell hypothesized that 

movement times in the presence of feedback delay could be estimated knowing the 
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performance of participants in the absence of delay and the number of OL movements 

participants needed for the task. He assumed that total MT in the condition with feedback 

delay was equal to the sum of reaction times (RT), open-loop movement times (MTOL), 

and waiting times (corresponding to the duration of the feedback delay, Del) for the total 

number of OL movements (N). 

In order to determine the number of OL movements (i.e., submovements) necessary 

for the specific task, Ferrell (1965) created an OL condition in which participants were 

instructed to use a move-and-wait strategy in the absence of feedback delay (i.e., they 

were asked to only open their eyes when they were not moving and only move with their 

eyes closed). Ferrell measured the movement times for this open-loop condition (MTOLC). 

In addition, Ferrell compared the number of OL movements in the OL condition to the 

number of OL movements in the presence of feedback delays and concluded that the 

number of OL movements for a specific task remained relatively stable across conditions 

and levels of feedback delay. 

Based on the movement time in the no-delay condition (MTNoDel), the MT in the OL 

condition (MTOLC), and the number of movements needed to complete the task in the OL 

condition (N), Ferrell proposed two estimates to predict movement time in the presence 

of feedback delays (MTDel). The first estimate (MTDel1) was based on the MT in the no-

delay condition: MTDel1 = MTNoDel +   

! 

N"(Del + RT). Because this estimate took the no-

delay condition with continuous movements as its baseline, it was expected to 

underestimate MTDel. The second estimate (MTDel2) was based on the movement time in 

the OL condition, MTDel2 = MTOLC +   

! 

N"Del. Because it took the OL condition as its 

baseline and the MTOLC included the time required to open the eyes, focus, and close the 
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eyes, MTDel2 was expected to overestimate MTDel. (Notice that MTNoDel included the total 

MT plus the initial RT, whereas MTOLC included all RTs and all MTs, making it 

unnecessary to include RT in the MTDel2 formula.) And so, Ferrell (1965) proposed using 

the average of these two estimates, MTDel = 
  

! 

MT
Del1

+ MT
Del2

2
 to predict MT in the 

presence of feedback delays. Using this average estimate, he found good agreement 

between the predicted and observed MTDel. Ferrell was the first researcher to 

systematically explore the impact of feedback delays in a visual target-acquisition task 

similar to teleoperation tasks and his was the first attempt to model human-operator 

performance in the presence of feedback delays. Most of the later studies exploring the 

effect of feedback delays used modified versions of Fitts’ law to model the performance 

of human operators. 

Both Hoffmann (1992) and MacKenzie and Ware (1993) proposed similar 

modifications of Fitts’ law to account for the effect of constant feedback delays on MT in 

visual target-acquisition tasks. In Hoffmann’s study, participants rotated a control knob 

whose movements were translated into one-dimensional pen displacement. The 

participants’ task was to move the pen into the target area as quickly as possible. 

Hoffmann used feedback delays of 30, 200, 500, and 1000 ms, and his analysis of 

variance (ANOVA) showed significant effects of index of difficulty (ID), feedback delay 

(Del), and the interaction between index of difficulty and feedback delay (ID

! 

"Del). In 

addition, Hoffmann performed a multiple regression of MT on ID, Del, and ID

! 

"Del for 

each individual participant. He found that the predictor feedback delay (Del) was not 

significant in 7 out of the 8 participants, but the interaction ID

! 

"Del was always 

significant. Therefore, he proposed a prediction model using index of difficulty and the 
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interaction between index of difficulty and feedback delay as the predictors and MT as 

the outcome: MT = a + b

! 

"(c + Del)

! 

"ID, where a, b, and c are empirically determined 

constants. This model accounted for 97% of the variance of MT in Hoffman’s experiment 

and for 92% of the variance in Ferrell’s (1965) data. However, in contrast to Ferrell, 

Hoffmann found that the number of OL movements did increase with delay.  

MacKenzie and Ware (1993) used a one-dimensional task in which the participants 

controlled a cursor on a computer monitor using a mouse. The cursor always appeared on 

the left side of the screen and the target appeared to the right of the cursor. The 

participants’ task was to move the cursor horizontally to the target area as quickly as 

possible as soon as the target appeared. MacKenzie and Ware used shorter feedback 

delays (8.33, 25, 75, and 225 ms) than Hoffman (1992), and their ANOVA showed a 

significant main effect of index of difficulty (ID), feedback delay (Del), and their 

interaction (ID

! 

"Del) on MT, error rate, and index of performance (IP). They tested four 

different models and finally proposed a model equivalent to Hoffmann’s: MT = a + (b + 

c

! 

"Del)

! 

"ID. In their study, MacKenzie and Ware’s model accounted for 93.5% of the 

variance in MT. In contrast to Hoffmann (1992), MacKenzie and Ware did not test the 

regression model for individual participants, and therefore, did not justify the exclusion 

of Del from the prediction model. In both of these studies, the proposed model changed 

the index of performance depending on the feedback delay conditions: IP = 
    

! 

1

b + c"Del
.  

In a later study, Mateo, Manning, Cowgill, Simpson, Moore, Weisenberger, and 

Gilkey (2005) explored the impact of constant feedback delays in a three-dimensional 

(3D) visual target-acquisition task (i.e., more similar to real telemanipulation tasks) 

performed in a virtual environment (VE).  In their study, participants wore head-mounted 
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displays (HMD) that displayed a cubical virtual workspace in 3D and controlled a cursor 

in all three dimensions of the workspace via a PHANTOM® haptic device. Their cursor 

was always visible in the virtual workspace and hollow cylindrical targets with one 

circular face facing the participant (see Figure 2) appeared one at a time in one of 33 

possible locations within the 3D virtual workspace. The participants’ task consisted of 

piercing the front circular side of the cylindrical target in the workspace as quickly as 

possible. Each time they acquired a target successfully, the target disappeared from its 

location and reappeared at a different location. 

 

Figure 2. Screen shot of the virtual workspace used by Mateo et al. (2005), showing a 

hollow cylindrical target and the cursor on the bottom left corner of the workspace. 

Using feedback delays of 32, 266, 532, and 799 ms, Mateo et al. found results (shown 

in Figure 3) in their 3D task that were consistent (i.e., same trends) with the models 
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Hoffmann (1992) and MacKenzie and Ware (1993) had proposed for one-dimensional 

tasks. That is, with increasing feedback delay, the index of performance of the task 

gradually decreased (i.e., the regression line became steeper). However, the amount of 

variance accounted for in Mateo et al.’s study was lower than in Hoffman’s or 

MacKenzie and Ware’s study. Nevertheless, Mateo et al.’s study suggested that the VE 

and experimental design they used could be used to study visual target-acquisition 

performance in the presence of feedback delays. 

 

Figure 3. Mean MT (in seconds) as a function of index of difficulty: ID = log2 
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'  (ID = 

1.34, 1.59, 2.06, 2.35, 2.53, 2.86, 2.78, 2.85, 2.89, 3.22, 3.30, 3.49, 3.69, 4.05, & 4.45 bits) for 

each level of feedback delay (32-ms, 266-ms, 532-ms, and 799-ms) used by Mateo et al. 

(2005). Each panel shows the mean data of 1 of the 4 participants. As feedback delay 

increases, the slopes of the linear fit become steeper and the fits become poorer. 
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So and Chung (2002) also explored motor performance in the presence of feedback 

delays in an immersive VE. They tracked both the head and hand movements of the 

participants. Feedback delays of 0, 110, and 220 ms were introduced both between the 

moment the participants moved their head and the moment the scene view was updated 

(i.e., head-related delays, HeDel) and between the moment the participants moved their 

hands and the moment their virtual hand moved in the scene (i.e., hand-related delays, 

HnDel). These hand-related delays correspond to what we have previously referred to as 

feedback delays, whereas head-related delays were not addressed in any of the studies 

described above. (Mateo et al. used a VE and head-mounted displays, but they did not 

track head movements in their study.) So and Chung hypothesized that the relative impact 

of distance between targets and target size on MT would differ in the presence of HnDel 

or HeDel. Specifically, they hypothesized that, as HnDel increases, size would have a 

greater effect on MT than distance (first hypothesis) and that, as HeDel increases, 

distance would have a greater effect on MT than size (second hypothesis). For this 

reason, they did not combine distance and size into an index of difficulty (which assumes 

equal impact of distance and size), but instead used them as independent predictors. 

So and Chung (2002) supported their first hypothesis, which is consistent with (and 

was, actually, motivated by) Woodworth’s (1899) two-component theory dividing visual 

target-acquisition movements into two parts: an initial-impulse phase and a current-

control phase. The initial-impulse phase involves an OL movement to get into the 

vicinity of the target (and therefore, is expected to be more affected by distance between 

targets), whereas the current-control phase involves closed-loop (CL) movements (i.e., 

using feedback) to acquire the target (and therefore, is expected to be more affected by 
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target size). So and Chung’s findings suggested that feedback delays affected the current-

control phase more than the initial-impulse phase. Their second hypothesis was only 

marginally supported. So and Chung expected head movements to occur only when 

targets were very far apart, but apparently participants used head movements also when 

the targets were comfortably within their field of view in order to center the area of 

interest in their foveal region.  

Based on their results, So and Chung (2002) concluded that combining target size and 

distance between targets into an index of difficulty may not be appropriate in the 

presence of feedback delays, as some of the previous models had done (e.g., Hoffmann, 

1992). Using a stepwise regression of MT on the predictors HnDel, HeDel, log2
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log2 (D), and all their interactions, So and Chung obtained the following model, which 

accounted for 95% of the variance in MT: 

MT = -0.82 + 3.47

! 

"HnDel + 0.14

! 

"log2
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' + 0.26
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Although this model has more parameters and does not account for more variance 

than the previous models, it addressed some issues that are relevant for the study of 

movement control in VE (where feedback delays affecting head movements, HeDel, may 

be an issue). In addition, this model emphasized the different relative impact of distance 

and size on MT when the task is completed in the presence of feedback delays affecting 

hand movement (i.e., HnDel). 
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Studies Exploring the Impact of Variable Feedback Delays on Motor Performance 

Most traditional teleoperation systems have used private, exclusive communication 

channels with stable, predictable characteristics that resulted in transmission delays that 

remained constant. Not surprisingly, most studies exploring the effect of feedback delays 

on teleoperation performance have used exclusively constant delays. However, during the 

last decade, many researchers have proposed using the Internet as the communication 

channel for some telerobotic applications. Some of the properties of the Internet make it a 

desirable channel for some applications, such as telesurgery in the battlefield or in rural 

areas (e.g., Hanly & Broderick, 2005). However, the Internet is not a private, exclusive 

channel but, instead, it is public and shared. As a consequence, the transmission delay 

(and the resulting feedback delay) experienced by operators varies continuously 

depending on factors such as number of users, routing path, and so forth. Moreover, the 

factors affecting Internet delays are often unpredictable and difficult to model (Oboe & 

Fiorini, 1997). 

Most of the research in the field of Internet-based teleoperation has been performed 

from an engineering perspective, addressing issues such as the technical feasibility of 

Internet-based teleoperation (e.g., Goldberg, Gentner, Sutter, Wiegley, & Farzin, 2002), 

the efficacy of different Internet protocols (e.g., Oboe & Fiorini, 1997), or interface 

design (e.g., Hu, Yu, Tsui, & Zhou, 2001). In general, it has been assumed that direct 

control of online robots is not possible and, therefore, most implementations have used 

supervisory control (e.g., Hu et al., 2001). Furthermore, research on the impact of 

variable transmission delay created by the Internet on motor performance has been 

concerned mostly with haptic-feedback delays (e.g., Chopra, Spong, Hirche, & Buss, 
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2003).  Because haptic feedback is often provided through the control input (e.g., a 

joystick), directly affecting its position, haptic-feedback delay has been viewed as a more 

serious problem than visual-feedback delay, which does not directly affect the position of 

the operator’s controller. Such haptic-feedback delays are very likely to destabilize the 

system, since the operator cannot ignore them or compensate for them (e.g., by using a 

move-and-wait strategy) to avoid instability. For that reason, some researchers (e.g., 

Anderson & Spong, 1988) have suggested that instability is only a problem when haptic 

feedback is delayed.  

However, MacKenzie and Ware (1993), So and Chung (2002), and others clearly 

showed that visual-feedback delays do have a detrimental effect on performance and 

ignoring these findings seems unwise. Some researchers (e.g., Jay & Hubbold, 2005) 

have even found a greater impact of visual-feedback delays than haptic-feedback delays 

on performance. Exploring the impact of variable visual-feedback delays on human 

motor performance is especially interesting now that the Internet has become a candidate 

channel for teleoperation applications. Current models of human performance in the 

presence of feedback delays do not consider delay variability as a parameter (e.g., 

MacKenzie & Ware, 1993). For example, these models cannot address the differences 

among a constant 500-ms feedback delay, a variable feedback delay with a mean of 500 

ms, and a variable feedback delay with a maximum magnitude of 500 ms. In the 

literature, however, it is generally assumed that hard-to-predict variable feedback delays 

result in worse performance than constant feedback delays, even when the latter are much 

longer (Lane, Carignan, & Akin, 2002). A model that can predict performance for both 

constant and variable feedback delays would be useful and the first step in the 
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development of such a model is understanding how feedback-delay variability affects 

human motor performance.  

Impact of Variable Feedback Delays on Individual Performance 

An interest in virtual environments (VEs) motivated Watson and his colleagues 

(Watson, Spaulding, Walker, & Ribarsky, 1997; Watson, Walker, Ribarsky, & Spaulding, 

1998) to explore the effects of feedback delays with different levels of variability on the 

performance in a movement task. These researchers were interested in variability 

occurring in VEs (not necessarily in teleoperation applications) and, as a consequence, 

their manipulations involved varying the frame rate during their trials. With these frame-

rate manipulations, however, feedback-delay variability also varied across conditions 

and, therefore, their findings are relevant.  

The task used by Watson and his colleagues consisted of the participants tracking an 

object moving from left to right in front of them, grasping it, and then moving the object 

to a placement box on the right side of the workspace. They divided this movement task 

into two components: the OL grasping movement and the CL placement movement. Not 

surprisingly, given that the manipulation affected feedback, they found that the CL 

movement was more sensitive to the feedback-delay-variability manipulation than the OL 

movement. The results of their studies suggested that frame-rate variations that resulted 

in standard deviations of less than 83 ms had no effect on performance, but larger ones 

could affect performance.  

In addition, Watson et al. (1998) explored different ways of manipulating feedback-

delay variability: either by adding a specific frame-rate variation (e.g., SD = 2.0 Hz) to all 

mean frame rates or by adding a frame-rate variation whose magnitude is proportional to 
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the mean feedback delay (e.g., if SD = 20% of the mean, then SD = 1.8 Hz for the 9-Hz 

mean, SD = 2.6 Hz for the 13-Hz mean, and SD = 3.4 Hz for the 17-Hz mean). Watson et 

al. concluded that manipulating feedback-delay variability in magnitudes proportional to 

mean feedback delay (e.g., 20% of the mean) resulted in more consistent results than 

manipulating it in absolute magnitudes (e.g., 2.0 Hz for all mean levels). However, 

Watson et al. found that magnitude was not the only aspect of the feedback-delay-

variability manipulation that made a difference: distribution shape (i.e., skewness) was 

also important. That is, feedback-delay variability seemed to affect performance more 

when the feedback-delay distribution was negatively skewed (i.e., biased toward longer 

delays) than when the feedback-delay distribution was symmetrical around the mean (or 

positively skewed).  

Interested in telerobotic applications, Sheik-Nainar, Kaber, & Chow (2005) explored 

the effect of a number of variables (e.g., level of automation, delay) on the performance 

of a telerover-navigation task. Their network-delay manipulation was especially relevant 

to the present study. The three network-delay conditions were: no delay, constant 1000-

ms delay, and random delay (varying between 750 and 1250 ms). Surprisingly, they 

found that participants completed the navigation task faster and more accurately under 

the random-delay conditions than under the constant-delay conditions. Sheik-Nainar et al. 

explained this counterintuitive result by pointing out that the mean feedback delay in 

their random-delay condition was shorter (i.e., M = 960 ms, SD = 140 ms) than the 

constant delay (i.e., 1000 ms). If true, this argument indicates that the effect of mean 

feedback delay on performance was greater than the effect of feedback-delay variability, 
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since the effect of a standard deviation of 140 ms was negligible compared to the effect 

of changing mean feedback-delay by 40 ms. 

Because of their different motivations and the way they manipulated delay variability, 

the results from these studies provide limited information about the nature of the 

relationship between feedback-delay variability and individual motor performance. More 

research is necessary to better understand how network-like variable delays affect motor 

performance. Using feedback-delay distributions more similar to the ones teleoperators 

face when controlling a robotic arm over the Internet, yet keeping experimental control, 

may help understand how real-network delays affect performance.  

Impact of Variable Feedback Delays on Collaborative Performance 

A few studies interested in collaborative motor performance have explored the impact 

of delay variability across a network (e.g., the Internet). In this context, participants 

needed to coordinate their movements with their delayed virtual partners in order to 

perform a specific task. Although the nature of collaborative tasks is different from 

individual tasks, some of the findings from these studies provide useful information about 

the effect of variability of transmission delays on human motor performance.  

Park and Kenyon (1999) compared the performance of pairs of participants 

interacting through different types of networks, creating combinations of latency (i.e., 

mean delay) and jitter (i.e., delay variability) and the average and maximum delays for 

each network condition were measured during experimental sessions. For example, two 

of the networks created a constant 200-ms delay (Constant-Long) and a variable delay 

with an average between 150 and 300 ms and a maximum delay of approximately 2 s 

(Variable-Long). During the collaborative task, each participant in the VE controlled 



 

 26 

either a ring or a “path” (i.e., the path was a stick-like object with one of several shapes: 

straight, curving, etc.). The collaborative task consisted of transferring the ring, 

controlled by the first participant, along the corresponding path, controlled by the second 

participant, as quickly and accurately as possible. Each contact between path and ring 

was considered an error and both MT and number of errors were recorded as dependent 

measures. 

Park and Kenyon found a significant effect of mean delay and of delay variability on 

collaborative performance. In their post-hoc analysis, they showed that MTs for the 

Variable-Long condition were significantly longer than MTs for the Constant-Long 

condition. However, these findings were obtained in a collaborative task and the authors 

did not systematically vary mean delay and delay variability (i.e., it was not possible to 

compare delays of same mean magnitude but different variability or of the same 

variability but different mean magnitude).  

Gutwin (2001) was also interested in the effect of network delays on collaborative 

performance. He explored the effects of latency (i.e., mean delay) and jitter (i.e., delay 

variability) on performance in two different tasks: a prediction task and a coordination 

task. In the prediction task, the participants needed to determine as quickly as possible the 

location where the other participant was pointing, whereas in the coordination task they 

were required to pick objects from a central area and transport them to their respective 

target areas. Although the participants picked and transported the objects individually in 

the coordination task, they were not allowed to grab the same object from the central area 

at the same time. When they both tried to pick the same object from the central area, it 

was considered an error (i.e., some collaboration was required). Gutwin found that delay 
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variability had an impact on both MT (for SD ! 600 ms) and error rate (for all levels of 

delay variability) in the prediction task, but only on error rates in the coordination task. 

Mean delay also had an effect on error rate in the coordination task (for M ! 240 ms).  

Although Gutwin did vary both mean delay and delay variability and was able to 

compare the effects of each one of them on performance, only feedback from the 

partner’s movements was delayed. Therefore, Gutwin’s study provided no direct 

information about how delaying feedback resulting from the participants’ own cursor 

movements affects performance. However, some of the phenomena described in his study 

are relevant to individual performance. For example, if we assume that operators use a 

move-and-wait strategy when performing visual target-acquisition tasks with feedback 

delays (i.e., they perform an OL movement, wait for feedback, perform the next OL 

movement, and so forth) as previous research has suggested (e.g., Ferrell, 1965), then 

determining when the visual display is reflecting the end of their OL movement is 

important. It is reasonable to expect the use of this move-and-wait strategy to be hindered 

if a cursor pause cannot be reliably interpreted as the end of operator’s movement (i.e., 

the cursor may also stop due to a freeze resulting from feedback-delay variability). Even 

though findings from collaborative studies are informative, more research exploring the 

effect of variable feedback delay affecting the participant’s own movements is necessary 

to understand how feedback-delay variability impacts performance in individual visual 

target-acquisition tasks. 

Strategies Adopted by Human Operators to Deal with Feedback Delays 

Given the limited research exploring delay variability, it is not surprising that the 

strategies operators use to deal with feedback delays described in this section are mostly 
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concerned with constant delays. However, in the second subsection, we attempt to 

describe how these strategies would apply to the case of variable feedback delays. 

Strategies to Deal With Constant Feedback Delays 

As Smith et al. (1960) described, performing in the presence of feedback delays can 

be difficult and frustrating even for very simple movement tasks. When presented with 

this type of situation, humans tend to adopt new strategies to overcome this difficulty. In 

agreement with previous less systematic observations (e.g., van Bergeijk & David, 1959; 

Crossman & Goodeve, 1963/83), Ferrell (1965) showed how participants performing an 

individual movement task with 2 degrees of freedom plus grasp in the presence of 

constant feedback delays tended to adopt a move-and-wait strategy for feedback delays of 

300 ms or more. In general, these results have been confirmed in the literature (e.g., 

Black, 1971, found similar results for a 6-degree-of-freedom task). Only the magnitude of 

the feedback delay at which operators transition from a relatively continuous movement 

to a move-and-wait strategy has been disputed (e.g., Hoffmann, 1992, proposed that the 

strategy changes when the human operator is faced with feedback delays of 700 ms or 

more, instead of the 300-ms feedback delay proposed by Ferrell), but not the fact that 

operators naturally adopt this strategy in the presence of feedback delays. 

Another strategy operators use to deal with feedback delays is anticipating future 

events, so that they need to rely less on feedback. For example, if a person is asked to 

track a predictable signal, such as a sine wave, at first the person will tend to follow the 

feedback signal but, with some practice, the person will realize the repetitive pattern and 

will begin to anticipate the future position of the target without the need to wait for the 

feedback (Jagacinski & Flach, 2003). When this happens, the person starts using an 
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internal model of the target trajectory to guide the movements, instead of the slower 

visual feedback. In visual target-acquisition tasks, something similar can happen if, for 

example, the participant knows in advance exactly where the next target is going to 

appear (i.e., if the position of future targets is predictable). Given this tendency of 

humans to anticipate future events, researchers often use randomly appearing stimuli in 

both visual-tracking and visual-target-acquisition experiments to confound such 

predictive strategies (Sheridan & Ferrell, 1974).  

Hanly and Broderick (2005) reviewed some strategies adopted by telesurgeons to deal 

with feedback delays. These strategies included slowing down (i.e., lowering the gain, in 

Control-theory terms), anticipating (i.e., lead), and delegating high-precision tasks to the 

in-site surgeon. This last strategy obviously depends on the availability of a local human 

(or intelligent robotic) agent. 

Strategies to Deal With Variable Feedback Delays 

The first two strategies described above (i.e., move-and-wait and anticipation) have 

been found in research exploring human motor performance in the presence of constant 

feedback delays. However, it is reasonable to expect that operators will attempt to adopt 

similar strategies when feedback delays are variable, even if the low predictability of 

variable feedback delays may make the use of these strategies more difficult and 

frustrating for the operator. For example, using a move-and-wait strategy may be more 

difficult in the presence of variable feedback delays because the waiting period is 

continuously changing. In addition, an anticipatory strategy may be difficult in these 

circumstances because feedback arrives asynchronously, providing a temporally warped 

view of the movement of the target or the actions of the effector (e.g., a smooth 



 

 30 

movement of the operator often appears as a sequence of cursor jumps). However, no 

empirical research has directly addressed the strategies adopted by human operators in 

the presence of variable feedback delays. 

One study that provided some information about how human operators adapt to 

variable feedback delays came from the collaborative-performance literature. Vaghi, 

Greenhalgh, and Benford (1999) were interested in studying how humans adapt to 

variable feedback delays (in their case, gradually increasing in magnitude, not randomly 

changing like in network delays) in collaborative tasks. They used a virtual ball game 

(soccer-like) in which avatars (controlled by the participants) were used to hit a ball into 

the opponent’s goal as their collaborative (actually opponent) task. The movements of 

each participant’s avatar were limited to the half of the field corresponding to the 

participant. Within each 23-min trial, feedback delay was gradually increased from 0 ms 

to 999 ms (there were 9 different levels of delay). Vaghi et al. observed how their 

participants changed their coping strategies as delay increased.  They showed that 

participants took some time to notice the delay change but, once they did, they tended to 

adapt to it naturally. The coping strategies adopted by their participants included slowing 

down (i.e., lower gain) and anticipating the future position of the ball based on its 

movement trajectory (i.e., lead). This study led to the idea that providing the participants 

with information about the current feedback-delay characteristics may facilitate 

performance by reducing the time needed to notice feedback-delay changes. 

Design Techniques to Ameliorate the Effect of Feedback Delays 

Many techniques have been developed and implemented to help users deal with 

feedback delays, mostly for the case of constant feedback delays. Nevertheless, these 
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techniques are often applicable to variable feedback delays. In addition, a few techniques 

have been developed exclusively to deal with variable delays. However, these have often 

been developed to deal with variable haptic-feedback delays and it is unclear how they 

apply to visual-feedback delays. This aspect is important because, even though the 

importance of haptic feedback for telerobotic performance has been recognized, many 

telerobotic applications (e.g., telesurgery, Hanly & Broderick, 2005) provide only visual 

feedback. 

Design Techniques to Aid With Constant Feedback Delays  

Probably two of the most important aids are predictive displays and supervisory 

control. Predictive displays provide a visual indication of the expected effector position 

and they are often superimposed on the actual display (e.g., Lane et al., 2002, used a 

translucent image of the effector for the predictive display and a solid image for the last 

known position). In order to make accurate predictions, it is necessary to have a dynamic 

model of the robotic arm and the environment. However, even with imperfect models, 

predictive displays can improve performance substantially.  

Sheridan (1992) proposed the use of supervisory control in order to deal with 

transmission delays. Supervisory control gives more autonomy to the telerobot at the 

remote site (see Figure 1 on page 11), which is able to understand higher order 

commands (i.e., ‘pick up the glass’ instead of ‘move to the left’) given by the operator. 

Therefore, the operator does not directly control the detailed movement of the telerobot, 

but instead the telerobot receives higher order operator commands and translates them 

into actions. The use of supervisory control minimizes the effect of transmission delay by 

giving more control to the telerobot. This strategy resembles the one telesurgeons use 
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when they delegate part of their workload to the in-site surgeon (e.g., Hanly & Broderick, 

2005). If the task is very simple and predictable, full automation could also be used and 

the feedback-delay problem could be completely eliminated.  

Other techniques that have been used to ameliorate the effect of constant feedback 

delays on performance include gain adaptation and level-of-detail (LOD) management. 

The gain-adaptation approach (e.g., Sheik-Nainar et al., 2005) consisted of adjusting the 

gain of the operator-effector system as a function of the feedback-delay conditions. That 

is, in the presence of a longer feedback delay, the gain of the system was lowered and the 

same operator movement resulted in a slower movement of the effector. This approach 

was based on the Control-theory idea that, as feedback delay increases, a reduction of 

system gain is necessary to maintain the system stability. For example, even in the 

presence of very long feedback delays, if the operator moves slowly enough, there may 

be few errors. As expected, Sheik-Nainar et al. found that participants performing the 

task in the presence of feedback delays took longer to complete the task, but made 

significantly less errors, in the gain-adaptation condition when compared to the no-

adaptation condition. 

The LOD-management approach (e.g., Watson et al., 1998), instead of assisting the 

operator to perform the task in the presence of feedback delays, attempts to reduce the 

feedback delay experienced by the operator in order to preserve performance. 

Specifically, LOD reduces the quality or complexity of the visual image on the display 

when feedback delays are considered long enough to affect performance. Because less 

information needs to be transmitted through the communication channel when LOD is 

reduced, feedback delay can be reduced as well and, as a consequence, performance can 
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be maintained. However, there is a limit to how much LOD can be reduced before 

performance is affected; that is, there is a tradeoff between LOD and feedback delay. The 

nature of this trade-off seems likely to be extremely task dependent and, therefore, the 

LOD-management approach may need to be tuned for each specific task and subtask. 

Design Techniques to Aid With Variable Feedback Delays 

Although designed to aid with constant delays, we expect predictive displays and 

supervisory control to be also helpful in the presence of variable feedback delays. For the 

specific case of variable delays, some researchers (e.g., Kosuge & Murayama, 1998) 

interested in haptic-feedback delays have proposed approaches to eliminate (actually, 

minimize) delay variability at the expense of increasing mean delay by using a buffering 

technique. When using this technique, a variable delay is transformed into a (nearly) 

constant delay by determining the criterion delay value under which 95% of the possible 

delay magnitudes fall. For example, in the case of a uniformly distributed variable delay 

with a mean of 400 ms and a range of 400 ms (i.e., 200-600 ms), 95% of the delay values 

are expected to be under 590 ms (i.e., between 200 ms and 590 ms). Once this criterion 

delay value has been determined, feedback information that arrives in less than 590 ms is 

put into a buffer and not displayed until 590 ms have elapsed so that, 95% of the time, the 

delay experienced by the operator is constant and equal to 590 ms. This approach 

assumes that variable delays are so disruptive that dramatically increasing the overall 

delay (e.g., from M = 400 ms to M " 590 ms) would improve performance. Kosuge and 

Murayama’s technique was developed to deal with haptic-feedback-delay variability and 

its applicability to visual-feedback delays is unknown.  
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Gutwin, Benford, Dyck, Fraser, Vaghi, and Greenhalgh (2004) used collaborative 

tasks similar to those used by Gutwin (2001) and studied how providing information 

about the current feedback-delay conditions through display decorators affected 

collaborative performance. In their first experiment, for example, participants had to 

determine the position at which the partner had stopped moving (i.e., prediction task). 

Delay jitter (i.e., variability) was introduced between the moment the partner moved and 

the moment that information was displayed to the participant by freezing the cursor in 5% 

of the frames for an interval of time corresponding to the jitter condition (i.e., 0, 800, 

1100, or 1400 ms). As soon as this interval of time had elapsed, the cursor jumped to its 

current position. In the decorator condition, the color of the cursor changed as a function 

of the time since the last cursor-position update was received. That is, a white cursor 

indicated that the cursor position was up to date, a cursor with darker shades of grey 

indicated longer time since last update, and a black cursor indicated that no update had 

been received for 1000 ms. Providing information about the current feedback-delay 

conditions (e.g., by changing the color of the cursor) helped users adopt the 

corresponding strategies faster and, as a consequence, improved their performance when 

compared to the no-decorator condition. Gutwin et al.’s study used collaborative tasks 

and the delay only affected feedback resulting from the partner’s actions. The 

effectiveness of this display strategy to ameliorate the effect of variable feedback delays 

affecting the operator’s actions while working individually is unclear. However, using a 

display cue (i.e., decorator) that informs the operator about the feedback-delay conditions 

seems like a reasonable idea if network characteristics (i.e., mean delay and delay 

variability) can be identified in an instant-to-instant basis.  
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LOD-management and gain-adaptation techniques could also be used to help 

operators perform motor tasks in the presence of variable feedback delays when network 

characteristics can be identified in an instant-to-instant basis. Sheik-Nainar et al. (2005) 

found that gain adaptation was similarly beneficial for performance (i.e., shorter 

completion times and less errors) in the presence of random feedback delays as it was in 

the presence of constant delays. 

Goals of the Present Thesis 

The main goal of this thesis is to study how variable feedback delays (e.g., Internet 

delays) affect performance in visual target-acquisition tasks similar to those performed in 

teleoperation situations. Previous studies exploring how variable delays affect 

collaborative performance (e.g., Park & Kenyon, 1999) and how variable haptic-feedback 

delays affect individual performance (e.g., Kosuge & Murayama, 1998) have found a 

negative relationship between delay variability and motor performance (i.e., higher levels 

of feedback-delay variability resulting in worse motor performance). In the context of 

visual-feedback delays and individual performance, Lane et al. (2002) stated that because 

shorter variable feedback delays were found to be more detrimental to performance than 

longer constant feedback delays, a strategy that holds information for a period of time to 

guarantee a constant feedback delay could be used to improve performance. However, 

Lane et al. did not actually present any empirical data to support this claim. Furthermore, 

most studies exploring the effect of feedback-delay variability on individual motor 

performance suggested that the effect of variable feedback delays might be very small 

(e.g., Watson et al., 1998) or even negligible (e.g., Sheik-Nainar et al., 2005) compared to 

the effect of mean feedback delay.  
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In this thesis, we provide empirical data to determine the effect of feedback-delay 

variability on visual target-acquisition performance, as well as how this effect compares 

to the effect of mean feedback delay. Improving our understanding of these topics is 

essential for the development of models to describe human performance in the presence 

of variable feedback delays, as well as for the development of new techniques to aid 

operators in dealing with this type of delays (and evaluation of the current ones). 

In the present study, participants performed a visual target-acquisition task, based on 

Fitts’ (1954) original work, similar to the one described by Mateo et al. (2005). This task 

was chosen because it was representative of some of the components of a real 

teleoperation task (e.g., moving a robotic arm to a desired position). In addition, the 

virtual environment used by Mateo et al. allowed the task to be performed in 3D space, 

therefore making it more similar to real teleoperation tasks and it allowed the 

experimenter to manipulate relevant variables, such as task difficulty and feedback-delay 

characteristics. Target size, distance between targets, mean feedback delay, and feedback-

delay variability were manipulated in the present study. Given that the motivation for this 

research was to understand the effect of real network delays on motor performance, 

feedback-delay variability was manipulated simulating Internet delays and feedback 

delays were kept in the range of mean-delay and delay-variability values reported for 

Internet connections in the literature (e.g., Gutwin, 2001).  

Dependent variables included both movement time (i.e., MT, time elapsed from the 

appearance of a target to the moment the participant successfully acquired it) and number 

of errors (i.e., number of times the participant attempted to unsuccessfully acquire a 

target by pressing the button while outside the target area). Movement times were further 
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subdivided into reaction time (RT); time to complete the initial distance-covering, open-

loop (OL) part of the movement (MTOL); and time to complete the later “homing in,” 

closed-loop (CL) part of the movement (MTCL).  

Predictions 

We examined a total of eight predictions in this thesis. The first four predictions 

describe the expected main effects for each of the four independent variables and the last 

four describe how we expected a subset of the effects of the independent variables to 

compare to or interact with each other. 

Prediction 1: Effect of Target Size 

We predicted smaller target sizes to result in longer MTCL and more errors than 

bigger target sizes, but we expected changes of target size to have no effect on RT or 

MTOL. This prediction was based on the assumption that target size would be particularly 

important during the CL part of the movement but would not affect either motor planning 

(e.g., Fitts & Peterson, 1964) or the initial OL part of the movement (e.g., So & Chung, 

2002). Participants were only expected to press the response button during the CL part of 

the movement (i.e., when close to the target). 

Prediction 2: Effect of Distance Between Targets 

We predicted longer distances between targets to result in longer MTOL, but we 

expected changes in distance to have no effect on RT, MTCL, or number of errors. The 

rationale behind this prediction was that the initial OL movement would cover most of 

the distance and, therefore, during the CL part of the movement distance would have no 

effect on performance. Predictions 1 and 2 were based on So and Chung’s (2002) and 

Woodworth’s (1899) findings. 



 

 38 

Prediction 3: Effect of Mean Feedback Delay 

We expected longer mean feedback delays to result in longer MTCL and more errors 

than shorter mean feedback delays, but we expected changes in mean feedback delay to 

have little or no effect on RT or MTOL. Given the nature of the manipulation, we 

expected changes in mean feedback delay to affect only parts of the movement dependent 

on feedback (i.e., MTCL and number of errors). 

Prediction 4: Effect of Feedback-Delay Variability 

We expected greater feedback-delay variability to result in longer MTCL and more 

errors than lower delay variability, but we expected changes in delay variability to have 

little or no effect on RT or MTOL. The rationale behind this prediction was identical to the 

rationale behind prediction 3: given that delay variability is a feedback manipulation, 

only dependent measures sensitive to feedback should be affected.  

Prediction 5: Differential Effects of Mean Delay and Delay Variability 

We expected the effect of increasing (e.g., doubling) mean feedback delay to have a 

greater negative effect on performance (i.e., longer MTCL and more errors) than an 

equivalent increase (e.g., doubling) of feedback-delay variability. This prediction was 

based on the results of previous studies (e.g., Sheik-Nainar et al., 2005; Watson et al., 

1998) and our unpublished pilot study. 

Prediction 6: Interaction Between Mean Delay and Delay Variability 

We expected the effect of feedback-delay variability on MTCL and number of errors 

to be greater for longer mean feedback delays than for shorter ones. The rationale behind 

this prediction was that, as mean delay makes the task more challenging to perform, the 
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same levels of variability that were easy to handle with short or no feedback delays 

would become more difficult to handle.  

Prediction 7: Interaction Between Target Size and Mean Delay 

We expected the effect of target size on MTCL and on number of errors to be greater 

for longer mean feedback delays than for shorter ones. This prediction is consistent with 

So and Chung’s (2002) results and it is based on the idea that, as feedback conditions 

worsen (i.e., longer mean delay), acquiring smaller targets becomes more difficult than 

under more favorable feedback conditions. 

Prediction 8: Interaction Between Target Size and Delay Variability 

The effects of target size on MTCL and on number of errors were expected to be 

greater for higher levels of delay variability than for lower ones. Although we are not 

aware of any study exploring this relationship before, the rationale behind this prediction 

is identical to the rationale behind prediction 7, given that both mean delay and delay 

variability are manipulating feedback-delay conditions. 
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II. METHOD 

Participants 

There were 6 paid participants (3 males and 3 females) from the subject panel at 

AFRL/HECB, Wright-Patterson Air Force Base. The participants ranged in age from 19 

to 25 years old. All of them were right-handed and had normal color vision. Out of the 6 

participants, 3 were familiar with the equipment and had some experience with similar 

target-acquisition tasks. The remaining 3 had no previous experience with the equipment 

or task.  

Apparatus 

During this experiment, the participants were immersed in a three-dimensional (3D) 

virtual environment (VE) created using two computers (i.e., a server and a client) 

connected through a local network. Participants wore head-mounted display (HMD) 

through which the workspace was presented to them in 3D and used a PHANTOM® 

haptic device for input to the VE.  

Computers 

The server computer was a dual-processor Alienware (AMD Athalon 2800 MP) and 

the client computer was a dual-processor Dell Precision 530 workstation (2.2 GHz 

IntelXeon
TM

 processor). The server contained the necessary trial-by-trial information 

(i.e., order of trial presentation, target size and location, and frame-by-frame delays) and 

transferred it to the client during the experiment. The participant interacted exclusively 

with the client, which was connected to both the input (PHANTOM®) and output (head-

mounted display) devices. The position of the PHANTOM® device at every frame was 
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transferred from the client to the server and stored in the latter. No data were stored in the 

client computer. Both computers used Windows XP Professional. The 3D VE was 

generated with a program created in C++ using the Vega Prime API graphics (MultiGen-

Paradigm).  

 

Figure 4. Each participant sat in front of a computer, wearing a head-mounted display (HMD) 

through which the 3D workspace was displayed. The 3DOF head tracker attached to the back 

of the HMD. The 3D image displayed through the HMD in stereo was also displayed on the 

monitor (in 2D) for the experimenter’s use. A view of this workspace is shown on the top left 

corner (see text for details). The PHANTOM® was placed on the right side of the participant. 

Head-Mounted Display (HMD) 

The 3D VE was displayed to the participants through a Visor SX HMD (1280 x 1024 

pixels, 60 Hz stereo), from NVIS, Inc. A head tracker (Intersense) with 3 degrees of 

Head tracker 

  PHANTOM® 

 Workspace 

Head-mounted 

display (HMD) 

  Target 
 Cursor 
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freedom (3DOF) was attached to the HMD so that the VE could be updated to match the 

participant’s head orientation (i.e., head, pitch, and roll), allowing participants to use 

motion-parallax cues. The HMD was connected directly to the client workstation and a 

2D version of the image being displayed to the participant was available to the 

experimenter on the monitor of the client workstation (see Figure 4). 

PHANTOM® Device 

Participants interacted with the VE by means of a 6DOF PHANTOM® Premium 1.5 

haptic device (SensAble Technologies, Inc). The 6DOF PHANTOM® device allowed the 

participants to move the cursor in the three dimensions of the virtual environment (x, y, 

and z) and press a button (see Figure 5) to select a target. Haptic feedback was not 

provided (i.e., the PHANTOM® was used merely as a 3D mouse) and the remaining 

3DOF of the PHANTOM® (i.e., head, pitch, and roll) were not used or recorded. The 

only reason to use a 6DOF PHANTOM® device instead of its 3DOF counterpart was that 

the former has a button (see Figure 5), which was used as response input, that the latter 

lacks.  

The PHANTOM® was controlled with the Ghost API (SensAble Technologies, Inc.) 

and was only connected to the client workstation. At the beginning of each block of trials, 

the PHANTOM® was reset at its starting position (i.e., center of the workspace) using 

wooden jig built specifically for that purpose (see Figure 5). 
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Figure 5. The PHANTOM® device had a button on its handle that participants pressed to 

select a target. A custom-made wood jig was used to ensure that the reference position of the 

PHANTOM® (i.e. center of the workspace) was identical across trials. Before the block 

started, this wood jig was removed. 

Virtual Environment (VE) 

The VE depicted a 3D cubic workspace of dimensions 0.66 x 0.66 x 0.66 units (the 

virtual appearance of 1 unit was approximately 1 m in length). The workspace had a 

room-like appearance with white and dark grey walls and brown hardwood-like floor (see 

the top left quadrant of Figure 4). These surface-information cues were added to facilitate 

the perception of depth within the workspace. The top of the cube (ceiling) and the side 

(wall) facing the participant were transparent to allow the participant to see the interior of 

the workspace. 

 Button 

Wood jig 
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Targets appeared sequentially one at a time within the workspace in 1 of 17 possible 

locations. One possible location was the origin (i.e., the center of the workspace) and the 

remaining 16 locations were located along (invisible) line segments from the origin to 

each of the 8 corners of the cubic workspace: 8 of these locations were 0.115 units away 

from the origin and the other 8 were 0.415 units away from the origin. Targets were green 

semi-translucent spheres (as shown in Figure 4). We used targets with spherical shape, as 

opposed to the cylindrical targets used by Mateo et al. (2005), in order to avoid some of 

the issues associated with computing target size for different approach angles 

(MacKenzie & Buxton, 1992) and because we did not need to accommodate a 

collaborative task, as did Mateo et al. 

A red spherical cursor, 0.01 units in diameter, was always present in the workspace. 

Its movements were restricted to the interior of the workspace and controlled by the 

participant through the PHANTOM® device. When the cursor was inside the target area, 

the color of the target changed from green to red, matching the color of the cursor that 

penetrated it. The position of the PHANTOM® device was sampled once per frame 

(frame rate = 30 Hz) and the VE had a minimum feedback delay of 32 ms before any 

intentional delay was added to the system (due to the time between the moment the 

PHANTOM® position was read and the moment it was displayed). Therefore, all 

feedback delays intentionally added to the VE were added to this inherent delay. For 

example, if a constant 93-ms feedback delay were added to the system, the cursor in the 

VE would move 125 ms (93 ms + 32 ms) after the corresponding movement was sampled 

from the PHANTOM®. The feedback-delay values reported in the Design and Procedure 

section correspond to the feedback delay experienced by the participants and, therefore, 
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they already include the inherent delay of 32 ms. No delay was added to the head-

tracking system. 

Initially, we considered creating real network delays by physically separating the 

server and the client computers. Although there are obvious advantages of this approach 

(i.e., external validity), adopting it would limit our ability to control and manipulate the 

feedback-delay conditions (e.g., mean feedback-delay and feedback-delay variability). 

Given that our main goal was understanding how mean-delay and delay-variability levels 

affected performance and how these variables interacted with each other and with other 

variables (i.e., target size and distance between targets), we emphasized internal over 

external validity. For this reason, we used simulated feedback delays that allowed us to 

manipulate mean delay and delay variability independently, even if mean-delay and 

delay-variability levels do not change independently of each other in real networks. 

Weibull distributions were used to simulate network-delay distributions. Because the 

values from Weibull distributions are always positive, the shape of the feedback-delay 

distribution had to change with variability manipulations. For example, the top panel of 

Figure 6 shows how, as delay variability increases from a standard deviation of 10 ms to 

a standard deviation of 80 ms, the Weibull distribution (always with M = 93 ms) becomes 

more positively skewed. There were two main advantages of using Weibull (instead of, 

e.g., Gaussian) distributions to create variable feedback delays: first, negative values are 

not possible in Weibull distributions (the same way negative transmission delays are not 

possible in telerobotic situations) and, second, the changes in distribution shape are 

similar to changes of delay distributions occurring naturally in real networks, including 

the Internet (e.g., Phillips & Hernandez, 2004).  
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Figure 6. Changes in the shape of Weibull probability density functions as the mean and 

standard deviation of the feedback-delay distribution were manipulated. Notice that, in our 

study, distributions were shifted 32 ms due to the inherent delay in the VE; in this case, this 

resulted in a mean of 125 ms and 500 ms, respectively, and a minimum delay of 32 ms 

(instead of 0 ms). 

In order to simulate feedback delays resulting from real transmission delays, a value 

(i.e., delay) was selected from a Weibull distribution on each frame. This value was used 

to look up, in a buffer, the position of the PHANTOM® delay ms earlier. However, the 

PHANTOM® position was sampled discretely 30 times per second (e.g., at 33.33 ms, 

66.67 ms, 100.00 ms, 133.33 ms, 166.67 ms, etc.), whereas delay was continuous (e.g., it 

could have a value at 40.50 ms). In order to address this issue, the position of the 

PHANTOM® delay ms earlier was estimated by linearly interpolating from the recorded 

positions surrounding delay ms earlier. For example, if delay was 40.50 ms and we knew 

that the position of the PHANTOM® 33.33 ms earlier was 1 and its position 66.67 ms 
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earlier was 2, we expected the position 40.50 ms earlier to be somewhere between 1 and 

2.  

If we use the approach described above with no further constraints, every time delay 

for the current frame is more than 33.33 ms longer than delay for the previous frame, the 

cursor would be displayed in a position that is “older” than the position previously 

displayed. In other words, the cursor would have to “jump back” in time. In order to 

avoid this, we added an additional constraint: if delay pointed to a time earlier than the 

current cursor position, the position of the cursor did not change (i.e., it froze). For 

example, let us assume that delay was 100 ms for frame A and 200 ms for frame B (i.e., 

the next frame, 33.33 ms later). In frame B, instead of displaying the position of the 

PHANTOM® 66.67 ms before the position displayed in frame A (i.e., “jumping back” in 

time), the cursor stayed in the position displayed in frame A (i.e., it froze) until delay in a 

subsequent frame pointed to a more recent position.  

Button presses were recorded in the frame in which they occurred, independent of 

visual feedback. That is, the visual feedback informing participants about the success (or 

lack of success) of the button press was delayed, but button presses occurred in real time. 

Therefore, if a participant pressed the button during a cursor freeze and this button press 

was successful, the consequences of the successful button press (in this case, the 

beginning of a new trial, as explained in the Task subsection below) were not displayed 

until the delay corresponding to the frame in which the button press occurred had 

elapsed. This button press would be recorded even if the visual information associated 

with that frame were never displayed.  
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As a consequence of freezing the cursor when delays were too long, the feedback 

delays actually experienced by the user corresponded to a truncated Weibull distribution 

(see Figure 7). The mean and standard-deviation values presented in this thesis 

correspond to the experienced (output) delays, not to the input Weibull delays. 

Nevertheless, as Figure 7 shows, the distribution shape of the output delays is very 

similar to the shape of another Weibull distribution with the same mean and standard 

deviation as the output delay distribution. 

 

Figure 7. Probability density function of the input Weibull distribution (dashed), the output 

delay distribution (solid), and another Weibull distribution with the same mean and standard 

deviation as the output delay distribution (dashed and dotted). This figure illustrates how the 

computer truncated the original delay distribution by eliminating longest feedback delays. 

Nevertheless, the resulting (output) delay-distribution shape was still Weibull-like. 

Task 

Participants were instructed to move the cursor as quickly as possible to the spherical 

target present in the workspace and press the button while the cursor was within the 

target area. A successful acquisition was computed when the button was pressed while 
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the cursor was within the target boundaries in real time, independently of what the visual 

display showed. When a target was successfully acquired, the trial ended. Pressing the 

button while outside the target area was recorded as an error. 

The visual feedback informing the participant about the end of a trial (i.e., 

disappearance of the target from its location and reappearance at one of the other 

locations) did not occur immediately after the person successfully acquired the target 

(i.e., the end of the trial). Rather, this visual feedback occurred delay seconds after the 

end of the trial and marked the beginning of the next trial. The data recorded between the 

successful button press and the disappearance/reappearance of the target did not belong to 

either trial and were ignored in our analyses. 

Design and Procedure 

The 4 independent variables manipulated in the experiment were: target size (0.03 

and 0.06 units), distance between targets (0.115 and .415 units), mean feedback delay (M 

=125 and 500 ms), and feedback-delay variability (SD = 8, 16, 32, and 64 % of the 

mean). The actual standard-deviation values corresponding to these percentages of the 

mean were: SD = 10, 20, 40, and 80 ms, for the 125-ms mean delay, and SD = 40, 80, 

160, and 320 ms, for the 500-ms mean delay. In addition, we intended to run a zero-

variability condition (i.e., SD = 0 ms) but, due to experimenter error, this condition had a 

longer mean delay than all other conditions. As a consequence, the zero-variability 

condition was not analyzed in the present study, but it is mentioned in the design 

description below. Because we expected target size and distance between targets to affect 

the dependent variables differently under different feedback-delay conditions, they were 

considered as two separate independent variables in our statistical analyses. However, for 
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comparison purposes, we computed the indexes of difficulty resulting from combining 

our two sizes and two distances using MacKenzie’s (1992) modification,  
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' . These indexes of difficulty were: 1.54, 2.27, 2.98, and 3.89 bits.  

This 2 x 2 x 2 x 5 design resulted in a total of 40 conditions (i.e., combinations of 

target size, distance between targets, mean feedback delay, and feedback-delay 

variability). Within each block of trials, mean feedback delay and feedback-delay 

variability were kept constant and only target size and distance between targets were 

varied across trials. Each block consisted of a total of 37 trials: 1 positioning trial, 4 

practice trials, and 32 test trials, in this order. The target always appeared at the origin at 

the beginning of each block and the purpose of the initial positioning trial was to make 

sure that the cursor was near the origin when the first practice trial began. On every even-

numbered trial, the target appeared at 1 of the 16 peripheral locations (i.e., requiring a 

movement from the origin to that location). On every odd-numbered trial, the target 

appeared at the origin (i.e., requiring a movement from the location where the previous 

trial ended back to the origin). Therefore, in two consecutive even and odd trials (e.g., the 

2
nd

 and 3
rd

 trials) the participant was required to perform a back-and-forth movement 

from the origin to a peripheral location and back to the origin. For this thesis, we were 

only interested in the (less predictable by the participant) origin-to-periphery trials and, 

therefore, only data from the even trials (i.e., movements from the origin) were analyzed. 

The purpose of the 4 consecutive practice trials (i.e., 2 from the origin and 2 to the 

origin) was to acclimate the participants with the particular condition. In the first practice 

trial (i.e., 2
nd

 trial of the block and, therefore, an even-numbered trial), the target location 

was randomly selected from the 16 possible peripheral locations and the target size was 
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randomly selected from the two possible sizes. The same distance and size were kept for 

the second practice trial back to the center. The target size in the third and fourth practice 

trials (i.e., 4
th

 and 5
th

 trials of the block) was the same, but different from the target size in 

the first two practice trials (i.e., 2
nd

 and 3
rd

 trials of the block). The target location for the 

third practice trial was randomly selected from the 8 possible locations that corresponded 

to the distance not used for the first two practice trials. After these 4 practice trials, the 

participant completed 32 test trials using each of the 16 possible peripheral locations 

once, in random order. After the 37
th
 trial, the workspace disappeared from the HMD, 

signaling the end of the block. Data from practice trials were not included in the data 

analysis. 

Participants completed a total of 40 blocks grouped in four sequences. Each 10-block 

sequence contained 1 block for each combination of mean delay and delay variability and 

the 10 blocks within each sequence were completed in random order (without 

replacement). In every session, the participants completed a set of 3 blocks, took a 5-min 

break, and then completed a set of 2 blocks. A 1.5-min break was provided between each 

of the blocks within each set. Each of the 8 different 5-block sessions took approximately 

30 min (they ranged from 20 to 45 min). Participants were allowed to run a maximum of 

2 sessions within the same day, as long as they took a minimum break of 45 min between 

sessions. (Only 1 participant completed two sessions in the same day once.) Each 

participant took approximately 4 hr to complete the whole experiment (i.e., 8 sessions). 

Movement time (MT) was measured from the moment a target appeared in the 

workspace to the moment the participant acquired it. Therefore, higher values of the MT 

reflect worse performance. In addition, recording of frame-by-frame data allowed us to 
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divide this total MT into RT, MTOL, and MTCL (as explained in the next section). Errors 

were computed every time the participant pressed the button while outside the target area. 

Data Analysis: Dividing Total MT into RT, MTOL, and MTCL 

The task participants performed in this experiment can be conceptualized as having 

three components: a pre-movement portion of the trials (i.e., the participant sees the 

position of the target and plans the initiation of the movement), an open-loop (OL) part of 

the movement (i.e., the participant performs an initial fast distance-covering movement to 

reach the proximity of the target without using feedback), and a closed-loop (CL) part 

(i.e., the participant performs numerous slower short submovements in the vicinity of the 

target to “home in” to it, relying heavily on feedback). 

Following this conceptual framework, frame-by-frame data were used to divide the 

total MT for each trial into reaction time (RT, the time elapsed from the appearance of 

the stimulus to the moment the participant began to move toward the target), movement 

time to complete the initial OL part of the movement (MTOL), and movement time to 

complete the CL part of the movement (MTCL).  

Although dividing the total MT into RT, MTOL, and MTCL may seem straightforward 

at first, some of the characteristics of our experimental design made this division 

somewhat cumbersome. First, participants in our experiment did not stop completely 

between the end of one trial and the beginning of the next. Rather, the movements 

occurred serially and the appearance of the next target (i.e., the beginning of the next 

trial) was determined only by the successful acquisition of the target (i.e., the end of the 

previous trial). This difficulty would have been eliminated had we used a similar 

approach to the one used by MacKenzie and Ware (1993). That is, instructing 
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participants to move to the starting position and wait there (without moving) until the 

next target appears. However, MacKenzie and Ware’s 1D task with a computer monitor 

and a mouse, instead of a 3D virtual environment with a 3D input device (i.e., 

PHANTOM®), made it easier for participants to stay still in the starting position (e.g., 

they could rest their arm). In our experiment, the starting position was in the center of the 

3D workspace and the only way to use a similar procedure would have been to restrain 

their movements while in the starting position (until the target appeared). In order to deal 

with these difficulties, we developed an automated procedure to systematically identify 

these break points without the need to hand code each trial. After some trial and error, we 

developed a procedure that used the kinematic properties of the movement (e.g., velocity 

and acceleration) and provided, in general, adequate segmentation of data. However, the 

three dimensionality of the virtual environment made the use of these kinematic 

properties a little more difficult. For example, if a person performs a fast movement away 

from the target after it appears, it is unclear whether this indicates that the participant has 

initiated an intentional movement trying to get to the target and is simply moving the 

wrong way or that the participant has not yet seen the target. 

We initially considered using a simple target-boundary-crossing criterion to 

determine the break between the end of the OL movement and the beginning of the CL 

movement. That is, the movement would be considered OL until the person crossed the 

target boundary for the first time (and CL, thereafter). However, participants almost 

never crossed the target boundary within what appeared to be the initial OL movement 

(especially for long-distance trials) and, therefore, this criterion would have included CL 

movements in the OL part of the movement, overestimating the duration of the latter. 
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After some exploratory analyses and extensive visual inspection of individual trials, we 

developed the procedure described in detail below.  

Identifying the End of RT and the Beginning of MTOL 

Due to our experimental design, participants were not waiting without moving at the 

beginning of each trial (i.e., during the “pre-movement” part). In contrast, they were 

attempting to acquire the previous target (and therefore, moving) until they detected the 

new target and began the intentional movement to the target. So, in order to identify the 

beginning of the OL movement, we located a period of acceleration toward the target. 

Frame-by-frame position data were transformed into distance-to-target (DTT) data and 

velocity toward the target (VTT) was computed from these DTT data and smoothed by 

averaging with a moving window of five samples (i.e., low-pass filtered). Then, 

acceleration toward the target (ATT) was computed from the smoothed VTT data. The 

initial acceleration peak was often (although not always) the largest ATT in the trial, but 

it always happened when the participant was (relatively) far from the target. Therefore, 

ATT data were weighted as a function of distance to the target (i.e., farther weighted 

more than closer), as follows (where i is the frame number):   
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Then, the largest peak in ATTw was identified and frames before this peak 

acceleration were examined to find the beginning of this acceleration toward the target. 

The first frame when ATTw no longer increased (i.e., slope of ATTw was zero) was used 

if 

 

 

if 
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to signal the beginning of the intentional movement toward the target: the end of the RT 

and the beginning of the MTOL.  

Identifying the End of MTOL and the Beginning of MTCL 

The initial OL movement was expected to be fast and long compared to subsequent 

CL submovements; as soon as the participant started using feedback, slower and shorter 

movements were expected. Once we had identified the beginning of the initial OL 

movement toward the target, we used direction-independent kinematic properties of the 

movement to determine the end of the OL part of the movement and the beginning of the 

subsequent slower CL submovements. Three-dimensional speed (SPEED) data were 

computed from the frame-by-frame position data and were smoothed by averaging with a 

moving window of five samples. The resulting smoothed SPEED data were used to 

compute 3D acceleration (ACCEL). In order to identify the peak SPEED associated with 

the initial OL movement, we weighted the smoothed SPEED data by the relative distance 

to the target (again, farther was weighted more than closer) as follows (where i is the 

frame number): 
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Once the first peak of SPEEDw was identified, indicating the maximum speed of the 

initial OL movement, we proceeded to find the frame when this initial OL movement 

ended and feedback started to be used. We used the ACCEL function to search forward 

(from the fame of the SPEEDw peak) for frames where ACCEL crosses zero (i.e., when 

the participant stopped decelerating). In order to use feedback for control, the participant 

if 

 

 

if 
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needed to move relatively slow, so we picked the first zero-acceleration frame after peak 

SPEEDw when the SPEED was less than half of the maximum SPEED: 

  

! 

SPEEDi

max(SPEED)
<

! 

1

2
. The frame fulfilling all of these criteria was selected as the break point 

between MTOL and MTCL.  
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III. RESULTS 

The effects of target size, distance between targets, mean feedback delay, and 

feedback-delay variability were examined in four separate repeated-measures ANOVAs. 

Specifically, one 2 x 2 x 2 x 4 ANOVA was run for each dependent variable (i.e., RT, 

MTOL, MTCL, and number of errors). The four levels of feedback-delay variability 

included in the analysis were standard deviations of 8%, 16%, 32%, and 64% of the 

mean. As mentioned in the Design and Procedure section, the zero-variability condition 

was not included in the analysis because, due to implementation error, the mean feedback 

delay in this condition was always longer than the mean feedback delay in all other 

delay-variability conditions and would have contaminated the results. Only results 

showing statistical significance (! = .05) are reported in the text below. 

Reaction Time (RT) 

Only mean feedback delay had a significant effect on RT, F(1, 5) = 46.89, p < .01. 

Specifically, RTs were longer in the long-mean-delay condition (M = 0.369 s, SD = 0.093 

s) than in the short-mean-delay condition (M = 0.295 s, SD = 0.053 s).  

Movement Time for the Open-Loop Part of the Movement (MTOL) 

Both distance between targets, F(1, 5) = 131.95, p < .01, and mean feedback delay, 

F(1, 5) = 11.37, p < .05, had significant effects on MTOL. Specifically, MTOL was longer 

in the long-distance condition (M = 1.122 s, SD = 0.127 s) than in the short-distance 

condition (M = 0.802 s, SD = 0.103 s) and longer in the long-mean-delay condition (M = 

0.998 s, SD = 0.204 s) than in the short-mean-delay condition (M = 0.925 s, SD = 0.185 

s). 
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Movement Time for the Closed-Loop Part of the Movement (MTCL) 

All independent variables: target size, F(1, 5) = 198.44, p < .01, distance between 

targets, F(1, 5) = 131.00, p < .01, mean feedback delay, F(1, 5) = 236.91, p < .01, and 

feedback-delay variability, F(3, 15) = 7.60, p < .01, showed a main effect on MTCL. 

Smaller sizes (M = 5.636 s, SD = 2.798 s), longer distances (M = 5.297 s, SD = 2.849 s), 

and longer mean delays (M = 5.978 s, SD = 2.591 s) resulted in longer MTCL than bigger 

sizes (M = 2.933 s, SD = 1.591 s), shorter distances (M = 3.272 s, SD = 1.966 s), and 

shorter mean delays (M = 2.591 s, SD = 1.241 s), respectively. In the case of feedback-

delay variability, unplanned pairwise comparisons suggested that MTCL in the 64% 

condition (M = 4.724 s, SD = 2.865 s) was greater than in the 16% condition (M = 4.041 

s, SD = 2.532 s), t(5) = 3.65, p < .05, and in the 8% condition (M = 4.015 s, SD = 2.430 

s), t(5) = 6.22, p < .01, but not significantly different from MTCL in the 32% condition (M 

= 4.358 s, SD =  2.747 s), t(5) = 2.15, p = .08. Actually, MTCL in the 32% condition was 

not different from MTCL in any of the other three feedback-delay-variability conditions. 

See Figure 8 for an illustration of how feedback-delay variability affected MTCL.  

Mean feedback delay interacted with both target size, F(1, 5) = 39.67, p < .01, 

and distance between targets, F(1, 5) = 26.89, p < .01. Specifically, the effects of 

both size and distance on MTCL were greater for longer mean feedback-delays than 

for shorter mean feedback-delays (see Figures 9 and 10). There was also a 

significant interaction between target size and distance between targets, F(1, 5) = 

48.52, p < .01. Specifically, the effect of size was greater for long-distance trials 

than for short-distance trials (see Figure 11). 
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Figure 8. Mean MTCL as a function of feedback-delay variability (SD = 8%, 16%, 32%, & 

64% of the mean). Error bars show standard errors of the mean. 

 

Figure 9. Mean MTCL as a function of mean feedback delay (M = 125 ms & 500 ms) for both 

levels of target size (0.03 & 0.06 units). Error bars show standard errors of the mean. 
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Figure 10. Mean MTCL as a function of mean feedback delay (M = 125 ms & 500 ms) for 

both levels of distance between targets (0.115 & 0.415 units). Error bars show standard errors 

of the mean.  

 

Figure 11. Mean MTCL as a function of distance between targets (0.115 & 0.415 units) for 

both levels of target size (0.03 & 0.06 units). Error bars show standard errors of the mean. 
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Number of Errors 

Both target size, F(1, 5) = 83.52, p < .01, and mean feedback delay, F(1, 5) = 64.29, p 

< .01, showed a main effect on number of errors. That is, participants committed more 

errors on trials with smaller target sizes (M = 0.55 errors, SD = 0.26 errors) than in those 

with bigger target sizes (M = 0.16 errors, SD = 0.12 errors) and on trials with longer 

mean delays (M = 0.46 errors, SD = 0.31 errors) when compared to those with shorter 

mean delays (M = 0.25 errors, SD = 0.21 errors). In addition, the interaction between 

target size and mean feedback delay was significant, F(1, 5) = 29.92, p < .01. 

Specifically, the effect of target size on number of errors was greater for longer mean 

feedback delays than for shorter mean feedback delays (see Figure 12).  

 

Figure 12. Mean number of errors per trial as a function of target size (0.03 & 0.06 units) for 

both levels of mean feedback delay (M = 125 & 500 ms). Error bars show standard errors of 

the mean. 
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IV. DISCUSSION 

The main ideas behind Woodworth’s (1899) model, which divided aimed movements 

into two parts (i.e., initial impulse and current control), are still widely accepted and are 

the basis for many recent models of human movement (see Elliott, Helsen, & Chua, 2001, 

for a review). The initial-impulse part of Woodworth’s model consists of a rapid OL 

movement to get to the vicinity of the target, while the current-control part consists of CL 

movements to “home in” on the target. Our first two predictions were based on this 

conceptual framework and stated that target size would only affect the CL part of the 

movement (during which the target boundary is expected to be crossed), while distance 

between targets would only affect the OL part of the movement (during which most of 

the distance is expected to be covered). Neither target size nor distance between targets 

was expected to affect RT (e.g., Fitts & Peterson, 1964).  

As expected by our first prediction, smaller target sizes resulted in longer MTCL and 

more errors than bigger target sizes and changes in target size did not affect RT or MTOL. 

Our second prediction stated that distance between targets would only affect MTOL, but 

not RT, MTCL, or number of errors. This second prediction was only partially supported 

because, in addition to MTOL, distance between targets also affected MTCL. We attribute 

this unexpected result to our (erroneous) assumption that the initial OL part of the 

movement would always cover most of the distance and bring the cursor into the vicinity 

of the target (independent of how far the targets were from each other). That is, we 

expected the distance left to cover during the CL part of the movement to be small and 

comparable in short- and long-distance trials. Even though, as expected, the initial OL 
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movement was longer for long-distance trials than for short-distance trials, post-hoc 

inspection of the data suggested that, at the end of the initial OL movement, the cursor 

was farther from the target in long-distance trials (M = 0.138 units, SD = 0.031 units) 

than in short-distance trials (M = 0.052 units, SD = 0.010 units), t(5) = 9.21, p < 0.001 

(one-tailed). Given that the distance to cover during what we considered the CL part of 

the movement was consistently longer in long-distance trials than in short-distance trials, 

it is not surprising that distance between targets had a significant effect on MTCL. 

It is important to keep in mind that our task was performed in a 3D workspace in 

which participants performed 3D oblique movements. Previous research (e.g., Phillips & 

Triggs, 2001) suggested that 2D diagonal movements (i.e., involving X and Y 

dimensions) were more problematic to participants than vertical or horizontal 

movements. By extension, it is reasonable to expect that 3D oblique movements (i.e., 

involving X, Y, and Z dimensions) might be more difficult than movements involving 

any one of those dimensions (e.g., directly to the right or directly up). The added 

difficulty of 3D oblique movements may be affecting the ability of participants to reach 

the vicinity of the target with the initial OL movement in long-distance trials. However, 

we intentionally chose these more complicated movements to make them more similar to 

movements in real teleoperation situation. It is possible that, with more extensive practice 

(once they become extremely proficient at programming the initial OL movement for 

long-distance trials), participants may be able to reach the vicinity of the target with the 

initial OL movement and the effect of distance between targets on MTCL may be reduced 

or even disappear. Although this possibility is consistent with the motor-learning 

literature reviewed by Elliot et al. (2001), which suggested that participants improve the 
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accuracy of their initial impulse with practice, further research is necessary to test the 

validity of this claim. 

Given that both target size and distance between targets affected MTCL, we cannot 

conclude from our analysis that target size was the main task-difficulty parameter 

affecting the CL part of the movement. However, previous unpublished research in our 

lab suggested that plotting the results as a function of index of difficulty,  
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' , can reveal important information about the relative effects of target 

size and distance between targets on MT.  

Given that index of difficulty assumes that size and distance have an equivalent effect 

on MT (i.e., halving the size results in the same increase of movement time as doubling 

the distance), a linear fit to the MT data when plotted as a function of index of difficulty 

would support this assumption. Deviations from this linear fit would provide information 

about the relative impact of size and distance on MT. Because we only used two levels of 

size and two levels of distance in our study, changes from the smallest index of difficulty 

(i.e., ID = 1.54 bits) to the second smallest (i.e., ID = 2.27 bits) and from the second 

largest index of difficulty (i.e., ID = 2.98 bits) to the largest (i.e., ID = 3.89 bits) 

corresponded exclusively to changes in target size (i.e., distance between targets was kept 

constant). Therefore, when the MT increase resulting from a reduction in size (from ID = 

1.54 to ID = 2.27 bits and from ID = 2.98 to ID = 3.89 bits) is small in comparison to the 

MT increase resulting from an increase in distance (from ID = 1.54 to ID = 2.98 bits and 

from ID = 2.27 bits to ID = 3.89 bits), it indicates the effect on MT is distance-

dominated. In contrast, when the MT increase resulting from an increase in distance is 
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small in comparison to the MTCL increase resulting from a reduction in size, it indicates 

the effect on MTCL is size-dominated. 

 

 

Figure 13. Mean RT (left panel), MTOL (center panel), and MTCL (right panel) as a function of 

index of difficulty (ID = 1.54, 2.27, 2.98, & 3.89 bits) for all levels of feedback-delay 

variability (SD = 64%, 32%, 16%, & 8% of the mean). The four indexes of difficulty resulted 

from the combination of: Big size – Short distance (ID = 1.54 bits), Small size – Short 

distance (ID = 2.27 bits), Big size – Long distance (ID = 2.98 bits), and Small size – Long 

distance (ID = 3.89 bits). 

Looking at the center panel of Figure 13, the steeper lines connecting equal-size data 

points when compared to equal-distance data points suggest a distance-dominated effect 

on MTOL. This result is consistent with the result of our ANOVAs. Looking at the right 

panel of Figure 13, it is obvious that the pattern in the data is quite different, showing 

steeper slopes in lines connecting equal-distance data points than in lines connecting 

equal-size data points and, thus, suggesting a size-dominated effect on MTCL. The 

ANOVAs did not allow us to conclude that this was the case, but looking at Figure 13 

RT MTOL MTCL 
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clearly suggests that there was a change from a distance-dominated MTOL (center panel) 

to a size-dominated MTCL (right panel), as shown by the different deviations from 

linearity in each panel. 

In terms of feedback-delay manipulations, we hypothesized (i.e., predictions 3 and 4) 

that both mean feedback delay and feedback-delay variability would affect only the CL 

part of the movement (i.e., MTCL and number of errors), but not the OL part (i.e., RT and 

MTOL). These predictions were only partially supported by our results. Although mean 

feedback delay affected MTCL and number of errors, as expected, it also showed 

significant (and unexpected) effects on both RT and MTOL. In the case of feedback-delay 

variability, we found an effect on MTCL and no effect on RT and MTOL, as expected. 

However, we did not find the effect of feedback-delay variability on number of errors 

that we expected. 

It is unclear why mean feedback delay affected the OL part of the movement. The 

increase in MTOL with longer mean feedback delays could have resulted from participants 

moving slower overall with increasing delays, from participants carrying out longer OL 

movements with increasing delays, or from a combination of both. The first possibility 

(i.e., slower movements) is based on the idea that, given that the feedback-delay 

conditions are kept constant within blocks, participants may have moved slower (i.e., 

lowered their gain, in Control-theory terms) throughout long-feedback-delay blocks to 

adapt to the feedback-delay conditions, even when they were not using visual feedback. 

A post-hoc examination revealed that the peak speeds (during the OL part of the 

movement) in trials with long mean feedback delays (M = 0.326 units/frame, SD = 0.039 

units/frame) were indeed slower than the peak speeds in trials with short mean feedback 
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delays (M = 0.367 units/frame, SD = 0.030 units/frame), t(5) = 3.90, p < 0.01 (one-

tailed). This post-hoc examination is consistent with the first explanation: if the first OL 

movement is slow in trials with longer feedback delays, greater MTOL are expected for 

longer feedback delays even if no feedback is used during this part of the movement. 

Another post-hoc analysis was conducted to investigate whether the distance covered 

during the OL part of the movement may have affected the longer MTOL in blocks with 

longer mean feedback delays. Our analysis showed that the length of the initial OL 

movement was longer in short-delay trials (M = 1.65 units, SD = 0.23 units) than in long-

delay trials (M = 1.40 units, SD = 0.21 units), t(5) = 4.80, p < 0.01 (two-tailed). This 

result is incompatible with the possibility that longer MTOL in long-delay trials were the 

result of longer OL movements. Therefore, these post-hoc examinations are consistent 

with the idea that participants moved slower overall during longer feedback-delay blocks. 

It may be interesting to perform more research to further explore the validity of this 

explanation.   

In terms of feedback-delay variability, our analyses did not allow us to compare the 

four different levels of feedback-delay variability to a zero-variability condition. We 

could only compare the four levels of feedback-delay variability to each other. These 

unplanned pairwise comparisons suggest that only the largest delay-variability level (i.e., 

SD = 64% of the mean delay) differed, in terms of their effect on MTCL, from the smallest 

delay-variability level (i.e., 8% of the mean delay). Unfortunately, no conclusions can be 

drawn from our results about which level of feedback-delay variability, if any, affected 

MTCL above and beyond the effect of mean feedback delay. However, if we assume that 

MTCL in the zero-variability condition was equal to or shorter than MTCL in the smallest 
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delay-variability level (i.e., if we assume that delay variability did not help performance), 

then our results suggest that at least the largest delay-variability condition resulted in 

longer MTCL than a constant feedback delay of the same mean. In spite of the rational 

appeal of this claim, future research needs to test its validity.  

We also hypothesized (i.e., prediction 5) that an increase in mean feedback delay 

would result in greater increases of MTCL and number of errors than an equivalent 

increase of feedback-delay variability. This prediction was supported by our results. 

Actually, a four-fold increase of mean feedback delay (from M = 125 to 500 ms) resulted 

in a greater average increase of MTCL ("M = 3.387 s) than an eight-fold increase of 

feedback-delay variability from a standard deviation of 8% of the mean to a standard 

deviation of 64% of the mean ("M = 0.709 s), t(5) = 16.34, p < .00001. Consistent with 

our expectations, the same four-fold increase of mean feedback delay resulted in a greater 

increase of number of errors ("M = 0.21 errors) than an eight-fold increase of feedback-

delay variability ("M = -0.01 errors), t(5) = 4.20, p < .01. 

Given that the effects of mean feedback delay are much greater than the effects of 

feedback-delay variability, it seems unwise to employ strategies that minimize feedback-

delay variability at the expense of increasing mean feedback delay. That is, strategies 

such as the buffering technique proposed by Kosuge and Murayama (1998) to deal with 

haptic-feedback delays should not be adopted when dealing exclusively with visual-

feedback delays. This study did not explore haptic-feedback delays and, therefore, our 

results do not directly apply to techniques used to ameliorate the effect of variable haptic-

feedback delays. In addition, our findings may not apply to tasks that differ significantly 

from the visual target-acquisition task used in this experiment. For example, the effect of 
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feedback-delay variability on tasks that depend more on closed-loop feedback, such as 

visual tracking, may be greater than the effect found with our visual target-acquisition 

task.  

The results from our analyses also suggest that the difference between the effects of 

mean feedback delay and feedback-delay variability may not be only quantitative but also 

qualitative in nature. That is, not only does increasing mean feedback delay result in 

longer MTs and more errors than feedback-delay variability (i.e., greater effect: 

quantitative), but mean feedback delay may be affecting measures that feedback-delay 

variability does not affect (i.e., different pattern of effects: qualitative). As shown in our 

results, mean feedback delay affected all dependent measures independent of whether or 

not we had predicted them to depend on feedback, whereas feedback-delay variability 

affected only one of the two dependent measures expected to depend heavily on feedback 

(i.e., MTCL). One way to explore whether the difference between the effect of mean 

feedback delay and feedback-delay variability is purely quantitative would be to use 

higher levels of feedback-delay variability to explore how large feedback-delay 

variability affects dependent measures. If extremely high feedback-delay-variability 

levels only affect MTCL, it is possible that the difference between the effects of these two 

variables is qualitative in nature. If using higher levels of feedback-delay variability 

results in increases in all dependent measures, it is possible that the difference between 

the effects of mean feedback delay and feedback-delay variability is merely quantitative. 

Prediction 6 stated that an interaction between mean feedback delay and feedback-

delay variability was expected, but our results did not support this prediction. That is, 

neither the effect of feedback-delay variability on MTCL nor its effect on number of errors 



 

 70 

was affected by changes in mean feedback delay. We tested this prediction using delay-

variability levels in units of percentage of the mean (e.g., SD = 32% of 125 ms and SD = 

32% of 500 ms) instead of absolute magnitude. In spite of the fact that this choice would 

have made our prediction more likely to be supported, we did not find supportive results. 

Rather, our results strongly suggest that our prediction was wrong and that the effect of 

feedback-delay variability on performance did not change as a function of mean feedback 

delay. The lack of interaction between mean feedback delay and feedback-delay 

variability, when standard deviations are measured in units of percentage of the mean 

feedback delay, is consistent with Watson et al.’s (1998) recommendation to use 

percentage-of-the-mean units rather than absolute-magnitude units to manipulate 

feedback-delay variability. In addition, this lack of interaction suggests that, if a cutoff 

feedback-delay-variability level is to be identified above which performance begins to 

suffer, manipulating feedback-delay-variability in units of percentage of the mean 

feedback delay would be appropriate. 

Studies using Fitts’ law in the presence of feedback delays (e.g., MacKenzie & Ware, 

1993) assume that the relative impact of target size and distance between targets on MT 

is the same across feedback delays. However, some studies (e.g., So & Chung, 2002) 

have suggested that, with increasing mean feedback delay, the effect of target size on MT 

may become greater than the effect of distance between targets. The rationale behind So 

and Chung’s hypothesis (based on Woodworth’s model) was that increasing feedback 

delay would affect the CL part of the movement and, as a result, the effect of target size 

(but not the effect of distance) on MT would also increase. So and Chung’s results 

supported their hypothesis and our seventh prediction built on their results. In addition, 
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our division of MT into MTOL and MTCL improves our ability to test the theoretical 

predictions. 

Our results showed that longer mean feedback delays resulted in a greater effect of 

target size on MTCL and number of errors than shorter mean feedback delays, supporting 

prediction 7. The rationale behind this prediction (as described in the previous paragraph) 

also assumed that the interaction between distance and mean feedback delay would not 

be significant. In the case of number of errors, our results fulfilled this condition, 

supporting both our rationale and So and Chung’s (2002) findings (even though they did 

not directly explore number of errors).  

However, in the case of MTCL the interaction between distance and mean feedback 

delay was significant, showing a greater effect of distance between targets for longer 

mean feedback delays than for shorter ones. Our results are inconsistent with the idea that 

just the effect of target size (but not the effect of distance between targets) on MTCL is 

affected by feedback-delay manipulations. We attribute this unexpected result to the same 

source as the unexpected main effect of distance between targets on MTCL (i.e., our 

criterion to divide OL and CL parts of the movement). That is, given that the distance left 

to the target at the end of the initial OL movement was greater in long-distance trials than 

in short-distance trials, it is less surprising that it took longer to cover this distance in the 

presence of longer feedback delays.  

Notice, in the right panel of Figure 14, how the slope changes between first-second 

and third-fourth data points (i.e., change in target size) and between the first-third and 

second-fourth data points (i.e., change in distance between targets) as a function of mean 

feedback delay. In spite of having only partially supportive statistical results, the trend in 
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Figure 14 seems consistent with our prediction (i.e., the slope linking different-size points 

is steeper for longer mean feedback delays than for shorter ones). 

Prediction 8 followed the same rationale as the previous prediction, given that both 

mean feedback delay and feedback-delay variability are feedback manipulations. Thus, 

we expected the effect of target size on MTCL and on number of errors to be greater for 

higher levels of feedback-delay variability than for lower ones. Our results did not 

support this prediction, suggesting that feedback-delay variability does not interact with 

the effect of target size on MTCL and number of errors. 

 

Figure 14. Mean RT, MTOL, and MTCL as a function of index of difficulty (ID = 1.54, 2.27, 

2.98, & 3.89 bits) for both levels of mean feedback delay (M = 0.500 ms & 0.125 ms). The 

four indexes of difficulty resulted from the combination of: Big size – Short distance (ID = 

1.54 bits), Small size – Short distance (ID = 2.27 bits), Big size – Long distance (ID = 2.98 

bits), and Small size – Long distance (ID = 3.89 bits). 

 

 

MTOL MTCL RT 
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Summary of Results in Relation to Our Predictions 

Overall, we found at least partial support for most of our predictions. As expected, 

target size affected only the CL part of the movement (i.e., MTCL and number of errors) 

and distance between targets affected the OL part of the movement (i.e., MTOL). 

However, our results also showed an unexpected effect of distance on MTCL. This effect 

is attributed to our conceptualization of the movement as a single OL movement that 

brings the cursor into the vicinity of the target followed by a series of CL submovements 

to acquire it. This description may be accurate in short-distance trials but, in long-

distance trials, what we considered the initial OL movement usually ends far away from 

the target and, arguably, a series of these distance-covering OL movements (instead of a 

single one) are required to reach the vicinity of the target. In our study, every movement 

after the initial one is considered CL and, therefore, distance had a significant effect on 

MTCL.  

Mean feedback delay affected all dependent variables, even those we had not 

expected to rely on feedback a priori. One possibility is that participants compensated for 

longer mean feedback delays by lowering their gain (i.e., moving slower) and this 

strategy may have affected other parts of the movement in subsequent trials. As 

predicted, feedback-delay variability affected one of the two dependent variables that 

were expected to rely on feedback (i.e., MTCL) and did not affect the dependent variable 

that was expected to be independent of feedback (i.e., MTOL). However, we did not find 

an effect of feedback-delay variability on the other dependent variable expected to rely 

on feedback (i.e., number of errors).  
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As predicted, the effect of mean feedback delays was much greater than the effect of 

feedback-delay variability on MTCL and number of errors. The fact that mean feedback 

delay also affected dependent measures that were supposedly independent from feedback 

raises the possibility that the effects of mean feedback delay and feedback-delay 

variability may differ qualitatively, as well as quantitatively. 

As predicted, the effect of target size on MTCL and number of errors was greater for 

longer mean feedback delays. However, the effect of distance on MTCL was also greater 

for longer feedback delays, making it more difficult to conclude that the relative impact 

of target size on MTCL (compared to the impact of distance) becomes greater with 

increasing mean feedback delay. We attribute this unexpected result to the same source as 

our unexpected effect of distance on MTCL. That is, we assumed that a single OL 

movement would always bring the cursor to the vicinity of the target when, in fact, this 

was not always the case. 

Predictions addressing interactions between feedback-delay variability and mean 

feedback delay, as well as between feedback-delay variability and size, were not 

supported. The fact that feedback-delay variability did not interact with mean feedback 

delay suggests that it may be possible to find a level of feedback-delay variability (i.e., a 

certain percentage of mean feedback delay), independent of mean feedback delay, at 

which performance begins to deteriorate. However, more research is necessary to 

determine if this claim is true and to identify what these threshold levels are. 

Other Issues to Consider When Studying Variable Feedback Delays 

Although these data provide an initial picture of the effect of feedback-delay 

variability on human motor performance, many questions remain unanswered. One of the 
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reasons for this is that feedback-delay variability is a complicated variable and other 

factors (in addition to the magnitude of the standard deviation) may affect how it impacts 

performance. These factors include: the skewness of the delay distribution, the frequency 

of variation, the level of predictability of the variation, and the number of cursor freezes 

resulting from the delay variability.  

Watson et al. (1998) mentioned that the skewness of the delay distribution might have 

an effect on how much feedback-delay variability affected performance. Specifically, 

they suggested that positively skewed distributions might be less detrimental to 

performance than negatively skewed distributions. In our study, we chose feedback-delay 

distributions that were positively skewed or approximately symmetrical (i.e., Weibull) for 

practical reasons. That is, we were interested in network delays that tend to have these 

properties. However, how distribution skewness affects motor performance should be 

studied further in order to better understand the impact of feedback-delay variability on 

performance. For example, a study comparing the effects of symmetrical, positively 

skewed, and negatively skewed feedback-delay distributions (with the same mean and 

standard deviation) on performance could provide useful information.  

In our study, feedback delay was varied on every frame (i.e., the frequency of 

variation was high: 30 times per second). However, feedback delay may be constrained to 

vary less frequently (i.e., show a low-pass characteristic) in some applications. Informal 

observations during our pilot study suggested that, when the frequency of variation is 

very low, performance is not affected much (if at all) compared to a constant feedback 

delay. This finding is not surprising, given that as frequency of variation decreases, the 

condition becomes closer to a constant feedback delay.  
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Another factor to consider when discussing the effects of feedback-delay variability 

on performance is the level of predictability of the feedback delays. For example, 

different results may be expected if feedback delay is manipulated in an orderly manner 

(e.g., from shorter to longer, Vaghi et al., 1999), in a periodically varying manner (e.g., 

following a sinusoidal pattern), or in a randomly varying manner (e.g., using a real or 

simulated network). Although we are not aware of any study directly exploring these 

issues in this context, it seems reasonable to expect that less predictability would result in 

greater performance decrements than more predictability.  

One last factor that may affect the effect of feedback-delay variability is how often it 

results in a cursor freeze. If cursor freezes have an impact on performance, then it is 

possible that number of freezes may be a better description of feedback-delay variability 

(in terms of its effect on human performance) than the standard deviation of the 

distribution of feedback delays. Future research should explore this possibility in order to 

identify the best way to quantify feedback-delay variability when interested in its effects 

on motor performance. 
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V. CONCLUSIONS 

Feedback-delay variability can have a detrimental effect on performance, even if its 

effects are much weaker than those of mean feedback delay. More research is necessary 

to determine exactly when feedback-delay variability starts to affect performance, but our 

data clearly suggest that any technique that increases mean feedback delay in order to 

reduce variability (e.g., Lane et al., 2002) is likely to be counterproductive. In addition, 

our results suggest that target size is a critical variable when performing motor tasks in 

the presence of feedback delays and that objects that may need to be manipulated 

remotely should be designed accordingly (i.e., no small switches). In situations where the 

size of the objects to be manipulated cannot be changed (e.g., telesurgery), research 

should be performed to develop a display-and-control system that facilitates performance. 

Finally, future research is needed to explore how other variables (e.g., frequency of 

variation, skewness of the delay distribution) may affect the impact of feedback-delay 

variability on performance. 
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