
 
 
 
 

EXPLORATION OF IRON AND COBALT CORE-SHELL NANOPARTICLES VIA 
THERMAL AND MICROWAVE POLYOL SYNTHESIS 

 
 
 
 
 
 
 
 
 
 
 
 
 

A thesis submitted in partial fulfillment  
of the requirements for the degree of 

Master of Science  
 
 
 
 

By 
 
 
 
 

 HOPE MARIE KLUKOVICH 
B.A., University of Nevada Las Vegas, 2002 

 
 
 
 
 
 
 
 

2006 
Wright State University 

 



 ii

 

 

WRIGHT STATE UNIVERSITY 
 

SCHOOL OF GRADUATE STUDIES 
 
 

October 26, 2006 
 

 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY 
SUPERVISION BY   Hope Marie Klukovich ENTITLED Exploration of Iron and Cobalt 
Core-shell Nanoparticles via Thermal and Microwave Polyol Synthesis BE ACCEPTED 
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF 
Master of Science . 

 
 
 

 ______________________________ 
 Eric Fossum, Ph.D. 
 Thesis Director 
 
 
                                                                                    ______________________________ 
 Kenneth Turnbull, Ph.D. 
 Department Chair 
 
Committee on Final Examination 
 
 
_________________________________ 
 David A. Grossie, Ph.D. 
 
 
_________________________________ 
 Eric Fossum, Ph.D. 
 
 
_________________________________ 
 Vladomir Katovic, Ph.D. 
 
 
__________________________________ 
         Joseph F. Thomas, Jr. Ph.D. 
Dean of the School of Graduate Studies 

 



 iii

 
 
 
 
 

ABSTRACT 

Klukovich, Hope Marie M.S., Department of Chemistry, Wright State University, 2006. 
Exploration of Iron and Cobalt Core-shell Nanoparticles via Thermal and Microwave 
Polyol Synthesis. 
 

Thermal and microwave polyol methods were investigated in the synthesis of various 

iron and cobalt core-shell nanoparticles. The reaction involved 1 mmol of an Fe+2 or Co+2 

salt, bis-acetylacetanato [(Acac)2] iron (II), cobalt (Acac)2 or iron (II) acetate along with 

1 mmol of a surfactant capping agent. The salt was reduced with 2 mmol of a 1,2 diol. 

When 1,2-hexadecanediol solid was used as a reducing agent, it was dissolved along with 

the metal salt and capping agent in octyl ether. When 1,2-hexanediol liquid was used as 

the reducing agent, it was also the solvent, and octyl ether was eliminated. For reactions 

in which octyl ether acted as the solvent, the capped nanoparticles were precipitated using 

ethanol. For reactions in which the solvent also acted as the reducing agent, the particles 

precipitated after nucleation and supersaturation of the polyol solvent/reducing agent. 

The effects of reducing agent, capping agent, and heating mechanism were investigated. 

The thermal polyol method was investigated to reproduce published results and compared 

against results from the microwave polyol method. Development of a new microwave 

polyol method was investigated using solvents with higher dielectric constants than those 

used in the thermal polyol method. Products were characterized using FT-IR, and Powder 

X-ray Diffraction (XRD) to determine bond breakage and formation and crystal structure. 

AFM and TEM were used for some products to determine size and morphology. 
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I. INTRODUCTION 

1.1 Background/Driving-force for Research 

Turbine engines convert the kinetic energy from a moving fluid into mechanical 

energy by using the motion of the fluid to turn the fan blades of a rotor. The rotor is 

connected to a device that does useful work in that it powers the aircraft forward.1 the 

fluid that jet engines use is a hot, pressurized gas produced by the combustion of jet fuel. 

When the gas escapes from the engine it drives a turbine that drives a compressor that 

compresses the air entering the engine.1 By way of Newton’s third law, when the hot 

compressed gas leaves the turbine engine at a high velocity it propels the jet in the 

opposite direction of the escaping gas.  

Jet fuel is an essential component for the combustion process. Current technology 

does not allow for the complete separation of all the different hydrocarbons found in 

aviation fuel; by some estimates there are over a thousand. These hydrocarbons are 

mainly paraffins and aromatics. Based on the concentrations of the different components, 

the fuel has different thermodynamic properties. For a fuel that contains mostly 

aromatics, the density will be higher and the energy content by weight will be increased 

relative to one that contains mostly paraffins or naphthalene.1 

Different types of aviation fuel contain numerous ranges of carbon numbers and 

molecular weights associated with the hydrocarbons. JP-8 is the grade of fuel most 

commonly used by the Air Force for their aircraft. JP-8 is almost completely kerosene 

with a ∆Hcomb of about -46.3kJ/g. This value can only be obtained experimentally due to 
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the highly complex mixture of hydrocarbons. The amount of heat released per gram of 

fuel is very important because jets have strict weight limits to maintain. The more energy 

they can get per unit of weight the better. One of the most desirable properties a jet fuel 

can possess is a low carbon number. A low carbon number jet fuel equates to less weight, 

and therefore the jet can carry a heavier payload. In kerosene based fuels the carbon 

number ranges from about 8 to 16.1 Different specifications for jet fuels such as freeze 

point (for high altitude), smoke point, or naphthalene concentration aid in determining the 

carbon number of the fuel.1 The main way of separating the different carbon numbers is 

based on the boiling point of the liquid as the boiling point is directly related to molecular 

weight.  

In the commercial aviation arena, the jet fuel that is used is called Jet-A. On the 

military side of aviation the fuel used starts out as Jet-A, but an additive package 

specifically tailored to military flying missions is added. This additive package changes 

the fuel from Jet-A to JP-8. The additives are normally petroleum based and their 

chemistries are highly specialized.1They are added in very small amounts; in the ppm 

range. The additives typically found in JP-8 are an antioxidant, an electrical 

conductivity/static dissipater, a corrosion inhibitor, and an ice inhibitor.1 There is a more 

specialized type of JP-8 used in military aircraft known as JP-8 +100. The +100 

designation denotes that the thermal stability additive has been added to increase the 

thermal stability of the fuel by about 1000C.1 The JP-8 +100 fuel is mostly used for high 

altitude and high mach missions such as those of the SCRAMJET aircraft. These types of 

high stress missions require a fuel with a higher thermal stability.  
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Thermal stability is a measure of the amount of heat stress a fuel can withstand 

before it begins to do damage to the aircraft. Thermal instability leads to the formation of 

materials such as peroxides, soluble gums and insoluble particulate matter that can coat 

the inside surfaces of an engine. Not much is known about these instability reactions. 

However, it is believed that most of them are multi-step oxidation reactions. The 

reactants are thought to be sulfur and nitrogen containing compounds as well as organic 

acids and reactive olefins.1 Trace contaminant metals may act as catalysts for these 

reactions. 

In addition to powering the engine through combustion, fuel also acts as a heat 

sink for the heat generated by the aircraft’s engine and other moving parts. Because an 

aircraft does not have a radiator like a car, the fuel is used to remove the potentially 

damaging heat by acting as a heat exchange medium. The heating of the fuel can initiate 

reactions that can leave harmful deposits on the inside of the engine.1 Thus, the issue of 

thermal stability becomes an important and limiting factor for aircraft. 

It is difficult to measure thermal stability because it is an intangible parameter. 

There are many indirect ways of measuring thermal stability such as smoke point and, 

more commonly, freeze point. There is a strong correlation with lowering the freeze point 

of the fuel and increasing the thermal stability. Differential scanning calorimetry (DSC) 

has been used to investigate thermal stability by studying phase transitions and transition 

enthalpies.2  

Dissolved oxygen in fuel decreases thermal stability because it triggers a chain of 

oxidation reactions, which produce harmful build up on engine parts such as the fuel 

nozzle. If the fuel nozzle becomes clogged, it becomes difficult to create the correct 
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mixture of fuel and air for combustion, which can lead to engine stall or failure. 

Approved anti-oxidants, typically hindered phenols such as 2,6-di-tert-butyl-4-methyl 

phenol, are currently added to most hydrotreated fuels to prevent oxidation chain 

reactions.1 

 

OH

 

Figure 1.1 2,6-ditertiary butyl-4-methyl phenol 

Antioxidants work by interrupting the oxidation chain reactions set off by a small 

amount of dissolved oxygen, thereby preventing the formation of peroxides, soluble 

gums, or insoluble particulates. These anti-oxidants do not increase the thermal stability 

of the fuel, and are mainly used for improving storage stability.1 Recent work has focused 

on creating an anti-oxidant that can also increase thermal stability. One of the most 

promising types of research in this area has come from nanotechnology. 

1.2 Nanotechnology 

Nanoscience is a rapidly expanding field of science and engineering. The study of 

nanoscience leads to new developments in nanotechnology. Nanotechnology is the 

development and manipulation of materials on the 1-100 nm scale. To get an idea of how 

small that is, a sheet of a paper is about 100,000 nm thick. Materials of this size are 

particularly interesting because of their inherent chemical and physical properties. 
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Because of a high surface-to-volume ratio, nanoparticles are very sensitive to surface 

environments. The aim of nanotechnology is to better understand these properties and 

find new ways of utilizing them. 

The relatively new field of nanotechnology is attempting to solve the problems 

associated with dissolved oxygen in jet fuel. Nanomaterials have been the focus of a great 

deal of study because they possess interesting optical, electrical, magnetic and chemical 

properties.3 These interesting properties are attributed to the fact that these materials 

exhibit much different characteristics than when in bulk.3 For example, because these 

particles have a large surface area relative to the number of atoms they contain, there is a 

notable effect on the cohesive interactions between particles. The increase in cohesive 

interactions has been shown to decrease the melting temperature as the diameter of the 

nanoparticle decreases.4,5 Particles that possess such a small diameter are in an 

intermediate state between bulk and molecular states.6 Due to the vast interface between 

the nanoparticle and the surrounding medium, the medium can have a profound influence 

on the physical and chemical properties of the nanoparticle making it well suited for 

chemically selective sensing.5 Advances in facile synthesis techniques for ordered 

nanostructures are essential for producing novel nanodevices.  

There are many different methods of producing nanoparticles such as 

sonochemical, micellular, coprecipitation and microemulsion, and laser pyrolysis.7 Most 

often, metal nanoparticles are formed in the presence of surfactants, which bond to the 

surface of the particles, or “cap” the particles. Thiols have been used most extensively for 

coating metals and metal oxides.8 Carboxylic acids such as oleic acid and amines such as 

oleylamine are of much interest as capping agents. These capping agents are useful in the 
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fabrication of metal nanoparticles because of their lubrication, catalysis, and corrosion 

resistance properties.8,9 These surfactants play a very important role in the successful 

formation of certain metal nanoparticles such as cobalt. It is difficult to prepare Co 

nanoparticles without surfactant materials because the attractive forces between the 

particles are large.10 

OH

O

 

NH2  

Figure 1.2 Common capping agents used in metal nanoparticle syntheses 

There are many published reports as to how these amphiphilic molecules bond to 

the surface of metals. These capping agents have been described as adsorbing to the 

surface of the nanoparticle spontaneously when the particle is directly exposed to the 

capping agent, and any ordering of the molecules that occurs is spontaneous.9 The 

structure of this layer of capping agent can depend on the type of metal it is bonding to as 

well as the chain length of the capping agent. Depending on the type of metal the capping 

agent is binding to, this bond formation can be described by three types of bonding. 1) the 

acid forms a metal carboxylate salt, 2) the acid is chemisorbed via proton transfer to a 

lattice oxygen atom, and 3) the acid is chemisorbed with no proton transfer, in other 

words, hydrogen bonded.9 The mechanism by which the capping agent bonds to the 

surface can affect particle shape and size. In turn, particle shape and size affect the 

chemical properties of the nanoparticle, therefore, it is very important to be able to 

control the size and shape of the particles.11  

Oleic Acid 

Oleylamine 
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The capping agents bond to the surface of various metals differently. For 

example, on silver surfaces, the carboxylate is bound to the surface through both oxygen 

atoms.8 It has been reported that an ionic bond exists between the carboxylic acid head 

group and the metallic ions on the surface of iron oxide nanoparticles.8 The FT-IR region 

which indicates a chemical bond between the organic acid and the metal surface has been 

formed is the v(C=O) stretching mode. This band is observed at 1706 cm-1 for 

nonadecanoic acid, but after it has bonded to a metal substrate, the v(C=O) stretching is 

observed in two bands at 1593 and 1440 cm-1.8 These two bands correspond to the 

symmetric and asymmetric v(C=O) stretches, respectively. The presence of both of these 

vs(C=O) and va(C=O) stretching modes indicates that a portion of the carboxylate head-

groups are bonded to the metal surface at an angle. There are also two bands in the 2850-

2960 cm-1 region that are associated with the CH2 symmetric and asymmetric stretching.8 

These bands can also be used to verify that the capping agent is still present after 

reaction. If only the symmetric stretching, vs(C=O) is observed in the form of a single 

band at around 1404 cm-1, this indicates the organic acid is bonded to the surface of the 

metal via a bridged metal-oxygen-carbon-oxygen-metal bond.8,12 
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Scheme 1.1 Bonding of the organic acid to the nanoparticle surface 
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1.3 The Polyol Method 

 The polyol method was developed in the 1980s, by Fievet et al., for the 

preparation of finely divided metal powders of easily reducible metals.13 The method 

involves reduction of a metal salt with a diol, typically ethylene glycol, diethylene glycol, 

or a mixture of both.14 Tetraethylene glycol has also been used extensively. A 

simultaneous reduction of the metal species and oxidation of the polyol solvent occur.15 

The diol acts as the reducing agent as well as the solvent for the reaction.  

One advantage of using ethylene glycol is its reducing power.16 The reducing 

power of ethylene glycol has been investigated by analyzing the volatile compounds 

produced from its oxidation.14 It has been shown that the reducing action of ethylene 

glycol is not the same for all metals.14 For example, Ni metal particles have been 

prepared from Ni(OH)2 at the boiling point of ethylene glycol, whereas Pd particles can 

be prepared from Pd(NO3)2 at room temperature.15  

One of the least understood aspects of the polyol method is the electrochemistry 

involved. Linear sweep voltammetry has been used to study the electrochemical behavior 

of ethylene glycol, and to determine the reduction potential of different transition metals 

in it at room temperature.15 The electrochemical window of ethylene glycol (0.4 M 

LiNO3) was found to lie between –0.82 and 2 V for a Pt electrode, and between –1.15 and 

1.65 V for a glassy carbon electrode.15 The slight differences in these domains indicate 

different kinetics for oxidation and reduction based on the nature of the electrode.15 

According to Bonet et al., ethylene glycol was observed to oxidize at potentials more 

positive than those of the metal reduction potentials, however completely reduced metals 

were produced. This was explained by the fact that the measured potentials are the sum of 
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the thermodynamic potential and overpotential. They found that the potential becomes 

more negative as the temperature increases.15 

 The metal salt must be soluble in the diol, so the metal acetate or acetylacetonate 

is generally used. Even the less soluble hydroxide and oxide forms of Co, Ni or Cu have 

been completely reduced.14  

OO

O O
O

O

M

O

O
M

 

 

Figure 1.3 Structures of M+2 complexes with acetylacetonate and acetate ligands 
investigated in the polyol process 

 

The solution is heated until boiling, and a complete reduction of the metal can be 

achieved within a few hours.13 The earlier work with this process produced finely divided 

metal powders with micro scale dimensions. Subsequent work with the polyol process 

has made it an accepted method for preparing nano scale materials. The polyol process 

has also been extended to include the use of thiols. This variant on the method produces 

nanowires rather than the spherical nanoparticles produced by the diols.17 Alloys have 

also been produced via this method with atomic level mixing.18 

  The polyol mechanism is poorly understood, but it is thought to occur via the 

ethylene glycol being oxidized to the diacetyl.15,19,20 

  

 

Bis-acetylacetonato M(II) 
Tetrahedral 

Metal (II) acetate 
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Scheme 1.2 Proposed metal reduction mechanism  

In the first step of this reaction, the diol is dehydrated to form an aldehyde. The 

aldehyde is then oxidized twice by the metal salt to form a diketone.14,21 The reaction is 

thought to proceed via dissolution rather than solid phase transformation as shown in 

Scheme 1.3 .14  This means that the metals are reacting while solvated as the acetate 

species. Nucleation and metal nanoparticle growth also occur in this liquid phase. 

Nucleation and growth must be two completely separate steps in order to keep the 

particles from agglomerating.14,22 The first process is the nucleation step. The 

nanoparticles form in the liquid phase of the supersaturated diol solution. In the second 

phase of the process, these seed nanoparticles grow into larger nanoparticles and finally 

fall out of solution as a precipitate.  

 

2H2O 

+ H2 + M 
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Scheme 1.3 Mechanism of metal core-shell formation and precipitation from 
corresponding metal salt Ms 

 

After the metal particles form in the polyol solvent, they precipitate out as solid 

metal nanoparticles. In some variations of the polyol method, this precipitation occurs 

when the saturation point of the liquid polyol has been reached, which is thought to be 

very small.14 There are modified versions of the method in which precipitation of the 

metal doesn’t occur during the reaction because the reaction is carried out in a nonpolar 

solvent. This nonpolar solvent prevents precipitation because the particles are normally 

capped with a long chain hydrocarbon. In order to precipitate the particles, ethanol is 

typically used. From X-ray diffraction and IR spectroscopy, it has been determined that 

the metal intermediate phases show a lamellar, incompletely ordered structure with 

intercalation of the solvent/reducing agent molecules and the corresponding alkoxy 

radicals. These intermediate phase structures, along with the final particle structures, 

differ from metal to metal.14  
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 M0 

M0 
M0 

M0 

M0 

M0 

M0 

Solvation with 
reducing agent 

Solvated acetate 
species 

Metal 
reduction 

Nanoparticle 
growth 

Nucleation 

Nanoparticle 

Metal salt 



 13

Temperature plays a big role in the reaction because it influences the rate of 

reaction by controlling diffusion of the intermediate phase of the metal and likewise the 

reduction of the metal. Temperature also influences the reduction potential of the 

ethylene glycol along with the breaking and formation of chemical bonds.23 The standard 

reduction potentials of some common metals not bound by a particular ligand are listed in 

Table 1.1. Ligands do affect the standard reduction potentials of metals. The polyol 

method reduces metals bound by ligands such as acetate and acetylacetonate. It is 

generally accepted that ligands contribute to a negative shift in the standard redox 

potentials of metals because the ligand binding inhibits electron transfer to the metal 

center.24  

Reduction Potential 
(E°) 

Co+2               Co0 –0.28 V 

Fe+2
                         Fe0 –0.447 V 

Fe+3                 Fe0 –0.037 V 

Table 1.1 Standard reduction potentials of selected divalent metals 

 Controlling the size of the nanoparticles is essential, and this is another reason the 

polyol method works very well for this type of synthesis. In order to produce a uniform 

size of nanoparticle, it is very important to reduce the occurrence of coagulation of the 

individual particles. The polyol used in the reaction can help avoid coagulation because, 

it can be adsorbed and produce steric stabilization which in turn inhibits agglomeration of 

the particles during growth.22 After the nuclei have been created in the liquid phase of the 

solvent the metal crystal growth initiates on these nuclei to form the nanoparticle. As 

long as the metal is provided slowly by the reduction, the process will produce uniform 



 14

sized particles.14 The metal species is reduced relatively slowly throughout the course of 

the reaction due to shifts in the equilibrium caused by growth of the metallic phase.  

Particle size and shape can be easily directed with the polyol method. 

Temperature, amount of metal precursor and the application of an external magnetic field 

(when ferromagnetic metals are used) are just a few factors that govern the polyol 

reaction and can influence particle size and shape. For instance, if the temperature is 

increased, the size of the particles normally decreases, as a result of more nuclei being 

formed in a shorter amount of time, allowing the intermediate metal phase to diffuse 

more rapidly.14 When the ratio of metal precursor to polyol is increased, the particle size 

increases due to the fact that the number of nuclei formed during the nucleation step at a 

certain temperature is independent of the amount of metal salt introduced to the system. 

If the number of particles is constant, but more metal is available, the particle sizes will 

increase.14  

 Another reason the polyol method works well for synthesizing nanoparticles is 

because it is not as susceptible to impurities as are other methods. The level of impurities 

in the metal precursor hydroxide form of cobalt, Co(OH)2 , such as Ca, Fe, or Na, have 

been found to be much lower compared to a solid-gas reduction which relies on the 

chemical removal of oxygen from an oxide. In part, this may be due to the polyol’s 

relative inability to reduce these to the pure metals. For example, Ca and Na 

contaminants were reduced by almost two orders of magnitude using the polyol method 

verses solid-gas reduction.14 However, a significant draw back associated with the polyol 

method is the possibility of the final product containing a noteworthy weight percent of 
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carbon which results from the reaction taking place in the liquid phase in the polyol 

solvent.14  

1.4 Microwave Overview 

 Electromagnetic waves contain both magnetic and electric field components. The 

electric constituent applies a force on charged particles causing them to move within the 

electric field. The more rapidly the particles move, the more the particles become 

polarized. At the molecular level, polarization involves distortion of the electron cloud 

surrounding a molecule or physical rotation of molecular dipoles.25 Microwaves are 

electromagnetic waves. Most commercial laboratory microwaves use a 2.45 GHz 

frequency corresponding to a 12.2 cm wavelength range, between infrared and radiowave 

wavelengths.23 The forces in these waves change direction at a rate of approximately 2.4 

x 109 times per second.23 Most material exposed to microwaves can not respond fast 

enough to these changes in wave direction which induces friction, which, in turn, 

produces heat.  

 In order for the microwaves to be effective heat sources, the material that the 

microwaves are being applied to must be able to couple with the microwave energy. In 

other words, the material should be able to efficiently convert electromagnetic energy 

into heat at a given frequency and temperature. This is known as the dielectric loss 

constant ε”.23 A dielectric material is one which allows charge to be stored and no dc 

conductivity is observed between plates.25 A dielectric material would act as a capacitor 

when placed between two electrodes. The heating rate dependence on the presence of a 

dielectric field is: 

Tan δ= ε’/ε” (23)               (1.1)                     
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Where ε’ is the measure of the molecule’s ability to be polarized in an electric field.23 The 

dielectric heating rates rely on Tan δ, which itself is dependent on frequency, 

temperature, physical state and composition.23 

 The volume of the material and the geometry of the microwave cavity and the 

reaction vessel exposed to the microwaves are all important factors in heating rate. Tan δ 

is related to penetration depth by: 

Dp= λo "/' εε  (23)          

If the volume is increased, the waves experience an absorbance loss. Dp is the penetration 

depth of the incident waves and λo is the wavelength of the microwave.23 2.45 GHz is the 

frequency most often used because of its penetration depth in most laboratory samples.26 

Because the microwave field is not homogeneous in the sample, uneven field distribution 

can have an effect on chemical reactions taking place in the microwave. This 

inconsistency in the energy can lead to hot spots in the sample if the energy generation is 

faster than heat transfers.27 These hot spots lead to the unusual temperature profiles 

witnessed in microwave heating. 

1.4.1 Laboratory Use of Microwaves: 

 When compared to thermal heating, microwave heating has many benefits in 

organic synthesis, such as rapid volumetric heating, higher reaction rates, higher reaction 

selectivity, higher product yield and energy saving.28 In conventional thermal heating, 

heat transfers depend on the thermal conductivity, temperature difference across the 

materials and convection currents.27 Microwave heating removes all these variables 

because in microwave heating, the energy source of the microwaves are not in direct 

(1.2) 
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contact with the reaction solution, so the heat produced is via dielectric heating. This can 

lead to completely different temperature profiles.25 

One factor that plays a role in microwave heating is superheating in the presence 

of a large number of ions.23 Electrolytes affect the ability of the material to couple with 

microwaves efficiently. Electrolytes generally have a large dipole moment which allows 

them to convert microwave energy to heat better than less polar molecules. When the 

solvent component of a reaction mixture is able to efficiently couple with the microwave 

energy, the heating rate is dramatically increased. This type of heating is not really any 

different than thermal heating, because with thermal heating, the solvent is being heated 

and in-turn heating the reactants. The only difference would be the rate at which the 

reaction was brought up to temperature; this leads to reduced energy consumption. If a 

non-polar solvent is used for the reaction, and the reactants dissolved in the solvent are 

able to couple with the microwave energy effectively (i.e. they are good electrolytes), the 

heating is markedly different from thermal heating. When the reactants themselves are 

absorbing the microwave energy, heating becomes even faster and more efficient.23 It 

would be ideal to use a solvent that has a low dielectric loss and use reactants that have 

high dielectric loss constants.  

The use of nonpolar solvents can affect the reaction mechanism because, when 

using microwave heating, there would be less coupling of the microwave energy with the 

solvent. This would allow the reactants to absorb the microwave energy and transfer the 

energy to the solvent instead of the solvent transferring the energy to the metal salt being 

reduced, similar to traditional thermal heating. It has been shown that the magnitude of 

the perceived microwave effects decreases with increasing solvent polarity.29  



 18

Conventionally, organic synthesis has been carried out under conductive heating 

conditions. The reaction vessel is placed in contact with the heat source, and the materials 

inside are heated through convection. This is an inefficient way to transfer heat because it 

depends on the thermal conductivity of the glassware and the solvent.26 Microwaves 

penetrate the glass surface of reaction vessels. The glassware does not interact with the 

microwaves and therefore does not undergo dielectric heating, and most organic solvents 

used have large Dp values. Therefore, the maximum temperature of the reaction mixture 

can be achieved within the entire reaction vessel as opposed to just the outer portion with 

conventional heating. This has been confirmed using IR imaging.30 This dielectric 

heating can produce different temperature profiles during the reaction and can lead to 

different chemical product distributions from the reaction.25 These differences in product 

yields may be due to the possibility that certain isomers produced during thermal heating 

may not be stable under microwave super heating, and therefore a different isomer ratio 

is observed.30 

 During microwave heating, if there is inefficient mixing of the solution, boundary 

effects can have an impact on the reaction progress. This is another reason for the 

different temperature profiles observed during microwave reactions as opposed to 

thermal heating reactions. A phenomenon known as nucleate boiling occurs at the surface 

of a reaction vessel and its rate is governed by the temperatures at the surface and 

availability of nucleation sites.30 Nucleate boiling is not observed in microwave reactions. 

During a microwave reaction, the temperature at the surface of the reaction vessel is 

lower than the internal temperature, therefore a steady state boiling point is achieved at a 

higher temperature.30 The higher steady state boiling points observed in the microwave 
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reactions are influenced by the wetting properties of the solvent, the power input, surface 

condition and surface tension.30 It has been shown that organic solvents can superheat by 

13-26 °C above the normal boiling point at atmospheric pressure which indicates the 

importance of the wetting properties of the solvent.23 These different temperature zones  

can lead to control of kinetic vs. thermodynamic isometric ratios of the products.23 

1.4.2 Specific Microwave Effects: 

 There have been debates for years over the question of microwaves causing 

chemistry that is unique only to microwave energy. The overwhelming evidence points to 

the fact that there are no known unique microwave effects. Most rate enhancement effects 

that have been reported are simply due to poor temperature control and monitoring.23 A 

more detailed survey of microwave reactions revealed that they are governed by the same 

fundamental principles of thermodynamics and kinetics as reactions using thermal heat 

sources.25 The region of electromagnetic energy that microwaves operate in can only 

affect molecular rotation, not its structure.26 Microwaves contain about  

2.39 X 10-4 kcal/mol of photons.23 The energy contained in these photons is very low 

when compared with the energy to cleave a molecular bond which is typically 80-120 

kcal/mol.26 It is safe to assume that microwaves will not affect the molecular structure of 

materials within the reaction vessel. Therefore no unique chemistry should be attributed 

solely to microwaves themselves. Molecular activation such as that in photochemistry 

could only be achieved by the species in solution somehow storing the microwave energy 

and giving rise to an activated state. The microwave energy would either have to be 

stored in the vibrational energy of the molecule by e.g. an antenna group or by alignment 

of molecules.23 This activated state could only be achieved through a step-by-step 
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accumulation of energy from the microwaves. This possibility can be ruled out because 

of a fast relaxation time.27 

 It is easy to understand why microwave effects have been credited with rate 

enhancements. Because steady state boiling is achieved during microwave heating, the 

reaction proceeds at a much higher temperature than it would with conductive heating. A 

superheating effect of 300C leads to a rate enhancement of about 8 fold.30 There is also a 

significant reduction in the time it takes to reach the steady state boiling temperature 

using microwaves. A 10-50 fold reduction in time could be achieved using microwave 

versus conventional heating.30 Only reaction rates that are enhanced by 100-1000 fold at 

atmospheric temperatures can be attributed to microwave effects.30 

 Rate enhancements when using microwave energy have been reported for a 

number of organic syntheses. These accelerated reactions are a result of material-wave 

interactions, which lead to thermal effects.29 Any type of specific microwave effect can 

always be explained by a more conventional thermal effect. When reactions have been 

carried out under carefully monitored reaction conditions, no specific microwave effects 

have been found, but an accurate comparison to thermal heating is difficult to attain.27 

1.5 Microwave Polyol 

 Komarneni was the first to report metallic powders produced via a microwave 

polyol method.31, 32 Microwave synthesis is an optimal method for preparing 

nanoparticles via the polyol method. The metallic particles that are produced during the 

polyol reaction are excellent receptors for microwave energy which leads to even more 

rapid heating of the solution.19  When these metallic particles are exposed to microwave 

radiation it can create localized superheated regions in the solvent. This phenomenon is 
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known as The Maxwell-Wagner effect, or interfacial polarization.33 This effect occurs 

when particles that couple well with the microwaves are in contact with nonconducting 

materials. These hot spots speed up the reactions between the metal particle and the 

organic substrate.25 The localized super heated regions produced could be similar to what 

is observed in sonochemical methods.27, 34 Smaller sample sizes or stirring the sample 

while in the microwave oven can help lessen the effect of these hot spots, but this can 

lead to other problems.27 The localized super heated regions make for a more rapid 

synthesis of organometalic nanoparticles, and also allows for the formation of even 

smaller nanoparticles. These smaller particles are formed because in the super heated 

regions, the reaction rate of the organic coating with the metal surface is increased, thus 

the particle is not allowed to grow very large before it is capped. 

Another reason microwave synthesis is an ideal method for the polyol synthesis is 

because polyol solvents such as ethylene glycol have a large dipole moment.16 The 

dielectric constant for ethylene glycol at 25°C is 41.4.34 This high dielectric constant 

allows the solvent to couple extremely well with the electromagnetic waves and leads to 

much faster heating of the solvent. These high boiling point solvents are also well suited 

for microwave synthesis because they are known to prevent arcing. Arcing is known to 

cause degradation of solvents in microwave-assisted reactions. The high weight percent 

of carbon, sometimes associated with the polyol method, can be linked to this arcing 

phenomenon.19  

The microwave polyol synthesis has many advantages over the conventional 

heating polyol synthesis. The localized hot spots created by the microwave synthesis 

produce much smaller particles than are produced in conventional heating which 
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normally produces micron sized particles.13 Under microwave radiation, solvents undergo 

significant overheating, the consequence of which is that a metal ion can be reduced to its 

zero oxidation state via the previous proposed mechanism.31 With conventional heating, 

only the most easily reducible metals can be converted to metal powders.13 Microwave 

heating allows for metals such a Fe+2 to be reduced.35 As discussed before, the microwave 

heating reduces impurities in the product, and the reaction time is reduced from hours to 

minutes. One disadvantage of the microwave synthesis is that it tends to produce more 

agglomerated particles than some other methods such as sonochemical.19 

1.6 Magnetite (Fe3O4) and Cobalt Ferrite (CoFe2O4) 

Magnetite nanoparticles can be readily synthesized via the polyol method. During 

the reaction of iron salts with a 1,2 diol, air can be sparged through the reaction to 

produce magnetite nanoparticles. 



 23

 

                           

 

Figure 1.4 Schematic of magnetite core-shell nanoparticle (top) and crystal lattice 
structure of magnetite36 (bottom) 
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Magnetite is a fairly common iron oxide. It is a member of the spinel group, 

which has the general formula AB2O4. In magnetite A is Fe+2 and B is Fe+3.37 Oxygen 

forms a fcc closed packing and the Fe cations occupy the interstitial tetrahedral sites and 

octahedral sites.38,39 The  tetrahedral sites contain Fe(III) and the octahedral sites contain 

both Fe(II) and Fe(III).40 These octahedral sites contribute to magnetite’s interesting 

properties, because the electrons can flow between the Fe+2 and Fe+3 ions in these sites at 

room temperature.38 This transfer of electrons creates an electric vector which generates a 

magnetic field.37   

Ferrite nanoparticles are of great interest in the scientific community because of 

their potential application in ferrofluids, magnetic fluids, magnetic recording media, and 

magnetic resonance imaging.41, 42 Magnetite particles can also be coated to aid in clinical 

medicine.38 The crystallinity of magnetite nanoparticles can strongly affect their magnetic 

properties, therefore it is very important to be able to produce high quality magnetite 

nanoparticles.7 Most of the intriguing and beneficial properties that magnetite possesses 

are only accessible if the particles are on the 20 nm range, because at this size they can 

have superparamagnetic properties.38 This superparamagnetic behavior arises from the 

infinitely small coercivity brought on by the negligible energy barrier in the hysteresis of 

the magnetization loop of the particles as predicted by Cloch and Neel.41 The term 

“superparamagnetic” means that these particles are attracted to a magnetic field, but 

when removed from the field, they retain no residual magnetism.43 This means that these 

particles can be introduced to a magnetic field without agglomerating once the field is 

removed, and this can be advantageous in drug delivery.  
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Through variation of the divalent cations contained in ferrite molecules, their 

magnetic properties can be finely tuned. Cobalt ferrite particles have been studied 

extensively because of their ferromagnetic properties.44 Due to different strengths of 

magnetic interactions at lattice sites, CoFe2O4 nanoparticles possess very different 

magnetic properties than magnetite.45 The differences in magnetic properties between 

magnetite and cobalt ferrite have been attributed to the spin-orbital couplings at the Co+2 

and Fe+2 sites in the crystal lattice.45 CoFe2O4 nanoparticles have been shown to display 

much better magnetic characteristics than Fe3O4. 

Our research group is developing highly reactive core-shell nanoparticles that can 

alter the thermal stability of jet fuel via targeted chemical reactions. At the center of the 

nanoparticles that are being created is an iron core. The iron core has a zero charge. It is 

completely reduced and therefore highly reactive to oxygen. This iron core cannot be 

exposed to the atmosphere therefore it must be protected. During the reaction to form the 

nanoparticles, oleic acid is added which serves as a surfactant and a capping agent. The 

capping agent helps to control the particle size and shape, as well as increasing its 

stability and solubility in organic media. This amphiphilic coating can be taken advantage 

of as a delivery mechanism for the iron into the hydrocarbon rich environment of jet fuel. 

Jet fuel acts as a coolant for the heat generated by the aircraft engine. The 

temperature of the fuel begins to rise as more heat is transferred to it from the engine. 

Once the fuel reaches a certain temperature, which has yet to be determined, it is believed 

that the oleic acid can become permeable to the dissolved oxygen in solution. The ability 

of Fe0 nanoparticles to remove dissolved oxygen has been investigated by studying the 

lifetime of pyrene in a hexane solution. The long lifetimes of pyrene above ~1100C 
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indicate that the oleic acid capped Fe0 nanoparticles did remove the dissolved oxygen 

present when heated.46 Once the iron core is exposed, it can immediately react with any 

dissolved oxygen making it unavailable to undergo the harmful chain reactions leading to 

harmful deposits.  

4 Fe0 + 3 O2 → 2 Fe2O3    E°=1.67 V                                 

After the iron core reacts with the dissolved oxygen in the fuel, it forms iron oxide 

or rust. These particulates are also not beneficial to the fuel, so in order to work, there has 

to be a way of removing them effectively. The removal of these particulates is another 

area of study for these nanomaterials involving magnetic core-shell nanoparticles. Cobalt 

ferrite core-shell nanoparticles are being studied to be used as a possible filter to 

magnetically remove these leftover rust particles. 

The polyol method was chosen for this research because it employs relatively 

mild conditions, softer chemistry and lower temperatures than many other methods such 

as sonochemical or micellular.19 The polyol method only requires the solvent be brought 

to its boiling point, not superheated. Other than the advantage of energy conservation and 

safety, the preparation of new phases that are inaccessible at higher temperatures because 

of thermodynamic instability are possible.19 The starting materials used are also much 

less toxic than other techniques which use iron precursors such as Fe(CO)5 which 

releases CO. 

 
 
 
 
 
 

 

(1.3) 
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II. EXPERIMENTAL PROCEDURES 

2.1. X-Ray Powder Diffraction (XRD) 

 During the course of this research, powder XRD was used to determine the 

different phases of iron present in the products of each experiment. It was used for 

compositional analysis and as a probe into the structure of the product. XRD has been 

widely used for investigating the structural properties of crystals, amorphous samples and 

layered systems.47 By comparing the position of the peaks in the diffracted beam to the 

standards provided by the International Center for Diffraction Data (ICDD), the unknown 

phases present in each sample can be identified.48 

 After the phase of the material was determined, the XRD patterns were then used 

to investigate the structural nature of the material, for example, the size and crystallinity 

of the particles. A material’s structure can be either crystalline or amorphous. Crystalline 

materials have sharp peaks in their XRD patterns while amorphous materials have more 

diffuse peaks because of fluctuations in the lattice parameters. When it comes to 

amorphous nanomaterials, smaller sized particles also produce broader peaks in the XRD 

patterns, however, based on peak width, XRD patterns can be used to estimate size in 

nanomaterials The peaks are broader for smaller sized nanoparticles even if the particle is 

highly crystalline because, as the particle size decreases, the crystal lattice becomes less 

aligned, leading to broadening of the XRD pattern.  
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The XRD analysis in this work was performed on a Bruker AXS D8 Advance 

diffractometer equipped with a type KFL Cu 2K source with a 1.54 Å wavelength and a 

Sol-X detector. Powdered samples were pulverized with a mortar and pestle and placed 

on a 50 mm zero background silicon single crystal sample holder and pressed into a thin 

layer using a Fisherbrand Pre-Cleaned Microscope Slide. The sample holder was then 

placed in the D8 Advance for XRD analysis. The more wax-like samples were smeared 

onto the sample holder using a cotton swab wetted with a drop of n-hexane until a thick 

enough layer was deposited. 

To ensure a clean, complete fingerprint, spectra were obtained in continuous scan 

mode over a 2θ range of 5° to 85°, with a speed of 5 sec/step, and a diffracted angle 

increment of 0.05°. A continuous scan option, in which the X-ray source and the X-ray 

detector continuously repeat the 2θ range, was used on all scans to provide further 

refining of the X-ray data points. Upon completion of the X-ray sample run, the data 

were analyzed in the EVA program, which has a built-in diffraction pattern library to 

compare the sample’s diffraction pattern to the diffraction patterns in the ICDD database.  

2.2 Transmission Electron Microscopy (TEM) 

 Transmission Electron Microscopy (TEM) was used in this work to determine the 

size, shape and arrangement of the particles produced from some of the reactions. The 

TEM analysis done for this work was performed by the Materials and Manufacturing Lab 

at the Air Force Research Lab by Pam Lloyd and Lt Melissa Ingram and by Dr. Sun’s 

group at Clemson University. To obtain TEM images, a Hitachi HD2000 STEM system 

was used. The solid samples were dispersed in a chloroform solution using a sonocating 

bath. The samples were transferred onto custom carbon-coated 300 mesh copper grids for 
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TEM imaging. The use of carbon-coated grids ensures that the background will be of low 

density and have little contrast in the TEM image.  

 When analyzing a TEM image, both light and dark areas will be visible. The 

lighter areas are areas where the material is less dense and more electrons have passed 

through. The darker areas are where the material has greater electron density and fewer 

electrons have been transmitted through. The material the electrons are passing through 

in this work is both the organic coating as well as the core nanoparticle. This light and 

dark contrast can be reversed if the instrument is in the Z-contrast mode. Because 

inorganic particles, such as iron oxides, tend to be dense agglomerations of atoms with 

relatively higher atomic weights than organic materials, they will impede the flow of 

electrons through the sample. The less dense areas of the material, such as the organic 

coating, will allow more electrons to penetrate; therefore we should only see the iron 

oxide core on a TEM image. From the TEM images, one can determine the size, shape 

and arrangement of the inorganic particles in the sample. 

2.3 Atomic Force Microscopy (AFM) 

 AFM images obtained in this work were done on a multimode Nanoscope IIIA 

Microscope, manufactured by Digital Instruments Veeco Metrology Group. The AFM 

was operated in Tapping Mode using an N-type phosphorus-doped silicone tip. The 

diameter of the tip was between 10-20 nm. AFM specimens were prepared by drip 

coating a 1mg/mL sample solution onto small silicone wafer chips followed by drying in 

air.  
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2.4 Fourier Transform Infrared (FT-IR) Spectroscopy 

 The FT-IR spectrometer used in this work was a Perkin Elmer System 2000 FT-

IR. To prepare the powdered samples for analysis, a small quantity of purified KBr was 

added to the pulverized powdered sample and pressed into a pellet. The waxy samples 

were prepared for analysis by smearing a thin layer on KBr salt plates with a cotton swab 

moistened with n-hexane. The sample chamber was purged with nitrogen during analysis 

for all samples unless otherwise noted. Each spectrum consisted of 16 scans with 1.0 cm-1 

resolution.  

2.5 Thermal Polyol Core-shell Nanoparticle Synthesis 

Attempts were made to reproduce the results of a published iron oxide core-shell 

nanoparticle synthesis.33, 49 From the literature, the process was adapted slightly from two 

different papers. All reagents were purchased from Sigma Aldrich and used without any 

further purification. The amounts of reagents used were roughly the following ratios 

unless otherwise noted: 1 mmol of the iron source (254 mg iron (II) acetylacetonate)  to 2 

mmol of the reducing agent (517 mg 1,2-hexadecanediol); 1 mmol of capping agent (320 

µL oleic acid); 20 mL of solvent. The oleylamine used in published reports was left out 

because the literature indicated that it was only used because it bound to the Pt more 

readily than the oleic acid, and the goal of the experiment was to create Fe nanoparticles, 

not FePt nanoparticles.36  

The reagents were added to a two neck round bottom flask. To ensure proper 

mixing of reagents, samples were placed in a Solid State/Ultrasonic FS-28 Sonocating 

Bath for approximately 30 min. The brownish yellow liquid was placed in a heating 

manifold with a condenser attached. The heating manifold was turned on and the liquid 
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reached approximately 280°C, and it remained at that temperature for 30 min. Air was 

sparged through the reaction flask throughout the reaction to promote the formation of 

magnetite particles. Small gaseous emissions were noted during the reaction which 

decreased the temperature almost 10°C every emission. It isn’t clear what caused these 

emissions. The flask was removed from the heat and allowed to cool. The black liquid 

was then separated into two vials and approximately 20 mL of ethanol was added to each 

vial to precipitate the product.  

It was apparent that a precipitate began to form immediately, as the solutions 

became opaque and cloudy. The vials were then left to sit over night. The precipitates 

were a dark brown color and the supernatant was a clear, pale brown. Products were 

centrifuged in an Eppendorf Centrifuge 5804 counter balanced with a centrifuge tube 

containing DI water. The solutions were typically centrifuged for 30 minutes at 5000 rpm 

for every wash step. Washes consisted of sonicating in ethanol three times and a final 

sonication in n-hexane. The solution fractions were typically discarded after centrifuging 

leaving a brown powder insoluble in both ethanol and n-hexane. The product was dried 

under a nitrogen flow.  

After successful synthesis of magnetite nanoparticles, the same procedure was 

used to synthesize Fe0 nanoparticles. In-order to produce Fe0 particles, oxygen had to be 

removed, thus the reaction mixture was sparged with nitrogen for 30 min prior to heating. 

Nitrogen was sparged through the vessel through out the reaction. The resulting solid was 

a dark brown wax. These products were washed and centrifuged as in the previous 

procedure, but these products were soluble in n-hexane. The product was dried under a 
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nitrogen flow. This procedure was repeated using microwave heating. The products from 

each heat source were compared.  

2.6 Microwave Polyol Core-shell Nanoparticle Synthesis 

The procedures for the microwave reactions were adapted from the thermal polyol 

reactions. The amounts of reagents used were roughly the following ratios unless 

otherwise noted: 1 mmol of the iron source (254 mg iron (II) acetylacetonate, or 174 mg 

iron (II) acetate ) to 2 mmol of the reducing agent ( 517 mg 1,2-hexadecanediol or 20 mL 

of liquid polyol solvent); 1 mmol of capping agent (320 µL oleic acid); 20 mL of solvent. 

However, neither the Pt co-reactant nor the oleylamine co-capping agent reported in the 

literature were used unless otherwise noted. The reagents were added to a round bottom 

flask. To ensure proper mixing of reagents, samples were placed in a Solid 

State/Ultrasonic FS-28 Sonocating Bath for approximately 30 min. The brownish yellow 

liquid was placed in a CEM Discover Microwave Synthesis Workstation equipped with a 

condenser column with a nitrogen line fed through it. The reaction mixture was sparged 

with nitrogen for 30 min prior to turning on the microwave. A stir bar was also added to 

the flask and the stir plate on the microwave was turned on. The temperature was set at 

270°C. Depending on the solvent/reducing agent used, the temperature did not always 

reach 270°C in the course of the reaction. The temperature was controlled automatically 

through power adjustment. The maximum power (300W) was applied to the microwave 

cavity until the set temperature was reached.  Nitrogen was sparged during the reaction 

(air was never used for the microwave reactions).  

Once the set time in the microwave had elapsed, the flask was removed from the 

microwave and allowed to cool. The liquid was then separated into two vials and 
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approximately 20 mL of ethanol was added to each vial to precipitate the product and left 

to sit over night. Products were centrifuged in an Eppendorf Centrifuge 5804 counter 

balanced with a centrifuge tube containing DI water. The solutions were typically 

centrifuged for 30 minutes at 5000 rpm for every wash step. Washes consisted of 

sonicating in ethanol 3 times and a final sonication in n-hexane. The ethanol solution 

fractions were discarded after centrifuging leaving a black wax soluble in n-hexane. The 

product was dried under a nitrogen flow. All variations to these procedures have been 

summarized in Tables 3.1 – 3.12. 

The application of microwave energy involving metal powders seems to have 

obvious drawbacks, but it has been shown that this synthetic procedure can be performed 

safely and successfully.50 One possible problem with producing metal nanoparticles in a 

microwave is the possibility of arcing. This arching can cause a degradation of the 

solvent and lead to high levels of carbon in the resulting products. Mingos and Whittaker 

have shown that the used of high boiling point alcohols in microwave reactions can 

prevent this arcing.50 Alcohols seem to prevent arcing because of their significant 

dielectric loss tangent. This large loss tangent leads to a decrease in electric field strength 

and thus induced voltages in the metal.50 
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III. RESULTS AND DISSCUSSION 
 

3.1 Research Overview 

The main purpose of this research was to produce different types of iron and 

cobalt core-shell nanoparticles capped with oleic acid (along with other possible capping 

agents) via thermal and microwave polyol methods. One of the main parameters that was 

changed during the course of the investigation into the thermal polyol and microwave 

polyol processes was the choice of solvent/reducing agent. The microwave polyol solvent 

was changed during the course of this exploration from a non-polar ether to a relatively 

polar 1,2-hexanediol. The change was made to examine the difference between the three 

types of heating: 1) conventional thermal heating 2) microwave heating with a non-polar 

solvent 3) microwave heating with a polar solvent (which should mimic the products of 

conventional thermal heating). The following scheme represents our proposed polyol 

mechanisms, based on the literature,15,19,20 for the 1,2 diols and divalent metals 

investigated. 
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Scheme 3.1 Proposed metal reduction mechanism for diols and metals investigated 

  

In the first step of this scheme the iron salt is solvated by the respective diol 

(either 1,2-hexadecanediol or 1,2-hexanediol). The diol is then oxidized, and two possible 

oxidation products are possible. The predicted major product is illustrated in Scheme 3.1. 

This would be the major oxidation product because it would have the more stable enol 

form than the other possible aldehyde. This oxidation product then reduces the metal and 

is oxidized to the diketone. Once the metal is produced, more metal grows on these 

nucleates and then forms metal nanoparticles. These metal particles are formed in the 

presence of surfactants, which cap the nanoparticle thus stopping any further growth. 
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3.2 Thermal Polyol Magnetite Core-shell Nanoparticle Synthesis 

The first set of experiments was conducted to reproduce published results of 

nanoscale magnetite particle synthesis under conventional thermal heating conditions.33,49 

These conditions are summarized in Table 3.1 

Sample 
# Type Capping 

Agent Reducing Agent Solvent Metal Salt Variation 

1 Fe w/ O2 oleic acid 1,2-hexadecanediol octyl ether Fe (Acac)2   

2 Fe w/ O2 oleic acid 1,2-hexadecanediol octyl ether Fe (Acac)2  
reduction 

by ¼ 

3 Fe w/ O2 oleic acid 1,2-hexadecanediol octyl ether Fe (Acac)2 

solution 
fraction 

investigat
ed 

4 Fe w/ O2 oleic acid 1,2-hexadecanediol octyl ether Fe (Acac)2 
Repeat of 
#1,2 and 3 

Table 3.1 Summary of thermal polyol magnetite syntheses reagents and conditions 

 

The first reaction, using thermal heating, produced a brown powdered product. 

FT-IR was performed to identify the characteristic features that are associated with 

capped nanoparticles. Figure 3.1 shows the FT-IR spectra of the product from the 

magnetite core-shell nanoparticle synthesis and oleic acid, respectively. The v(C=O) 

stretch at 1710 cm-1 in the oleic acid spectrum is not present in the FT-IR spectrum of the 

magnetite product, this is common to all acids used to cap nanoparticles.29 The FT-IR 

spectrum of the product shows the two signature bands at 1600 cm-1 and 1480 cm-1 that 

correspond to the vs(C=O) and va(C=O) stretching modes and indicate that the oleic acid 

bonded to the surface of the metal particle. It has been suggested that surfactants such as 

oleic acid bond to the surface of iron oxide nanoparticles via ionic bonds, in other words, 

as the oleate species.12 All other bands below 2000 cm-1 are due to the v(C-C) stretch, 

v(C-O) stretches, CH2 deformations and other motions that are too complex to assign51,52 



 37

and match those from the oleic acid spectrum, indicating the oleic acid chain is still 

present.  

The IR bands in the 2850-2960 cm-1 region arise from the CH2 symmetric and 

asymmetric stretching, respectively,12,29,52 of the oleic acid carbon chain. The small band 

at 3003 cm-1 is due to the v(C-H) mode of the C-H bond adjacent to the C=C bond of the 

oleic acid, and the very small peak at around 1650 cm-1 is from this v(C=C) mode.52 A 

broad v(O-H) stretch at 3400 cm-1 is present as well. This is attributed to hydrogen-

bonded hydroxyl groups.51,53 The v(O-H) stretch in the FT-IR spectrum of the magnetite 

product at 3400cm-1 is more pronounced than in the oleic acid FT-IR. This feature is very 

common in the FT-IR spectra acquired on polyol products. The two bands at 2400 cm-1 

and 2390 cm-1 are from CO2 because the chamber was not purged with nitrogen prior to 

acquiring the spectrum. 
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Figure 3.1 FT-IR spectrum from thermal magnetite core-shell nanoparticle product (top) 
and of oleic acid alone (bottom) 

 

Signature 
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indicate nanoparticle 
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and asymmetric 
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The XRD pattern shown in Figure 3.2 displays a well resolved magnetite 

structure based on comparison to the ICDD database. Using the Scherrer equation, 

particle sizes can be estimated based on the peak width at half the height of a peak in the 

XRD pattern.54  

t = 0.9λ/Bcosθ         (3.1) 

Where λ = 1.54Å, B = broadening of the peak at full width half max, θ = angle of 

incidence (Bragg angle) and t = particle size. 

Based on this equation, particle sizes were estimated to be about 5 nm. From the 

FT-IR data, it was determined that the magnetite particles were successfully capped with 

the oleic acid. All data agreed with published reports.  Because magnetite is a naturally 

occurring magnet, the magnetite products should respond to an external magnet, which 

was confirmed with a common refrigerator magnet. It was not expected that Fe0 would be 

produced from this reaction because it was done in an ambient environment. Repeat 

syntheses were performed, and all results were reproducible.  
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Figure 3.2 XRD pattern from thermal polyol magnetite core-shell nanoparticle product 
(top) and ICDD database diffraction pattern of Fe3O4 with labeled Miller-index planes 

(bottom) 
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3.3 Fe0 Core-shell Nanoparticle Synthesis Attempts: Thermal and Microwave 
 
After the published results of core-shell magnetite nanoparticles had been 

repeated, and reproducibility established, syntheses of Fe0 core-shell nanoparticle were 

attempted. Table 3.2 summarizes reaction conditions for these reactions.  

Sample 
# Type Capping 

Agent Reducing Agent Solvent Metal Salt Variation 

1 Fe w/N2 oleic acid 1,2-hexadecanediol octyl 
ether Fe (Acac)2  

N2 rather than 
air 

2 Fe w/ N2 oleic acid 1,2-hexadecanediol octyl 
ether Fe (Acac)2  

capping agent 
concentration 
reduced by ½ 

3 Fe w/ N2 oleic acid 1,2-hexadecanediol octyl 
ether Fe (Acac)2  

capping agent 
concentration 
reduced by ¼ 

4 Fe w/ N2 oleic acid 1,2-hexadecanediol octyl 
ether Fe (Acac)2  

Repeat of 
#1,2,and3 

Table 3.2 Summary of thermal polyol Fe0 nanoparticle syntheses reagents and 
conditions 

 

It was believed that removal of oxygen from the reaction vessel could produce a 

fully reduced iron metal core via the polyol technique. There are published reports of 

Co+2 becoming fully reduced to Co0 via similar polyol techniques at temperatures over 

160°C.51 While the reduction potential of Co+2 to Co0 is –0.28 V, and Fe+2 to Fe0 has a 

slightly more negative reduction potential of –0.447 V, it was hypothesized that Fe0 may 

be produced via similar techniques. The product of this synthesis was a black waxy 

material whereas powders were produced from the magnetite syntheses. Figures 3.3 and 

3.4 display the FT-IR spectrum and XRD pattern, respectively, of the product from the 

first Fe+2 to Fe0 attempt.   
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Figure 3.3 FT-IR spectrum of thermal polyol Fe0 core-shell nanoparticle product 

 

The OH peak is much broader and seems to have shifted to a lower energy in this 

sample. It has been reported that the v(OH) stretching band shifts to higher frequencies 

when powders are formed.20 This can be explained by a decrease in hydrogen bonding in 

the diol medium after formation of the powdered metal.20 The other characteristic peaks 

have not changed. The CO2 peak is not present because the instrument was purged with 

nitrogen. It was not expected that the formation of Fe0 particles would lead to major 

differences in the FT-IR spectrum as compared to magnetite. FT-IR only verified that the 

bond between the oleic acid carboxylate group and the metal core was formed, as well as 

the presence of the carbon chain from the oleic acid capping agent.  

Characteristic 
peaks 
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2θ
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Figure 3.4 XRD pattern from thermal polyol Fe0 core-shell nanoparticle product with 
labeled Miller-index planes 

 

Based on comparison to the ICDD database, the XRD pattern indicates some 

magnetite is present. The peaks are much broader than those from the original magnetite 

syntheses. Based on the Scherrer equation the particles produced were around 2 nm; 

much smaller than the particles produced in the previous reactions performed in an 

ambient environment. Along with smaller sized particles, broad peaks also indicate a 

more amorphous material might have been produced.55 The large feature below 10° has 

been attributed to the silicon sample holder, and is common to most XRD patterns in this 

work. The presence of a magnetite structure was somewhat surprising as attempts were 

made to maintain an oxygen free environment. However, the ethanol that was added to 

(111) 

(311) 

(400) (511) 
(440) 

Magnetite 
Fe3O4 
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precipitate the nanoparticles was not degassed and may have contained sufficient 

dissolved oxygen to oxidize the product. Therefore, it cannot be concluded that Fe0 was 

produced, but it cannot be ruled out either. Evidence of Fe0 in an XRD pattern would 

consist of one large peak at approximately 45°.48 This feature is not present in this XRD 

pattern. Repeat syntheses were performed with similar results. 

3.3.1 Capping Agent Concentration Investigation of Fe0 Thermal Polyol Method 

This investigation was done to determine if the capping agent concentration could 

affect the ability to produce Fe0 core-shell nanoparticles via the polyol method. Table 3.3 

summarizes the reaction conditions and reagents. 

Sample 
# Type Capping 

Agent Reducing Agent Solvent Metal 
Salt Variation 

1 Fe 
w/N2 

oleic acid 1,2-hexadecanediol octyl 
ether Fe (Acac)2  

N2 rather 
than air 

2 Fe w/ 
N2 

oleic acid 1,2-hexadecanediol octyl 
ether Fe (Acac)2  

capping 
agent 

concentration 
reduced by ½ 

3 Fe w/ 
N2 

oleic acid 1,2-hexadecanediol octyl 
ether Fe (Acac)2  

capping 
agent 

concentration 
reduced by ¼ 

Table 3.3 Summary of thermal polyol capping agent concentration investigation 
reagents and conditions 

 

The FT-IR spectra of the three different capping agent concentrations (1 mmol, 

0.5 mmol, and 0.75 mmol) are shown in Figure 3.5. Comparing the three FT-IR spectra, 

the ratios of the vs(C=O) and va(C=O) stretching modes to the vs(-CH2) and va(-CH2) 

stretching appeared to decrease as the capping agent concentration was reduced with the 
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most dramatic change being observed when the concentration was reduced to one half of 

the original. All three appear to be capped by the oleic acid. 
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Figure 3.5 FT-IR spectra comparison of different capping agent concentration products 

prepared by thermal polyol Fe0 core-shell nanoparticle synthesis 
 

All three XRD patterns (Figure 3.6) have been identified as magnetite. All peaks 

are very broad indicating that fairly small and/or amorphous particles were produced. 

When the oleic acid concentration was significantly reduced (50% reduction), more 

pronounced and broader features were noted in the lower angles. The ratio between the 

features at approximately 20° and that at approximately 35° is seemingly inverted as the 

capping agent concentration is decreased. Large low angle features like this could be 

                  Capping agent concentration reduced by ½ 
                  Capping agent concentration reduced by ¼ 
                  Original capping agent concentration 
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related to interlayer spacing in lamellar structures.51 This is the opposite of what one 

would expect, because if less capping agent is present (less organic material) the feature 

indicating organic material should decrease rather than increase. This observation has not 

been successfully explained. 

2θ

0 10 20 30 40 50 60 70

 

Figure 3.6 XRD pattern from three different capping agent concentration products 
prepared by thermal polyol Fe0 core-shell nanoparticle synthesis 

 

 

 

 

 

 

                  Capping agent concentration reduced by ½ 
                  Capping agent concentration reduced by ¼ 
                  Original capping agent concentration 
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3.3.2 Iron Oxidation State Investigation via Thermal Polyol Method 

For this synthesis attempt, the iron salt was changed from an iron (II) source to 

iron (III) bromide. It was unclear whether the previous attempts had been successful in 

producing Fe0 core-shell nanoparticles simply by the removal of oxygen. As mentioned 

previously, Co+2 to Co0 has been successfully achieved via the polyol method14,51 and has 

an associated reduction potential of –0.28 V. Therefore, it was hypothesized that Fe0 

could be produced from an Fe (III) salt. Fe+3 to Fe0 has a reduction potential of –0.037 V. 

This means it should be easier to reduce than Co+2, but ligands play a big role in the 

actual reduction potential of metals. Reagents and conditions for this reaction are 

summarized in Table 3.4  

Sample # Type Capping 
Agent Reducing Agent Solvent Metal 

Salt 

1 FeBr3 w/ N2 oleic acid 1,2-hexadecanediol octyl ether FeBr3 

2 FeBr3 w/ N2 oleic acid 1,2-hexadecanediol octyl ether FeBr3 

Table 3.4 Summary of thermal polyol Fe0 nanoparticle syntheses reagents and 
conditions 
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Figure 3.7 FT-IR spectrum of the thermal polyol Fe0 core-shell nanoparticle product 
prepared with FeBr3 

 

A black waxy product was produced from this reaction. The FT-IR spectrum of 

the sample (Figure 3.7) indicates the bond has been formed with the oleic acid and the 

metallic core. The IR bands in the 2850-2960 cm-1 region arise from the vs(-CH2) and  

va(-CH2) stretching of the oleic acid carbon chain.12,29,52 A broad v(OH) stretch at 3400 

cm-1 is present as well. The two signature bands at 1600 cm-1 and 1480 cm-1 that 

correspond to vs(C=O) and va(C=O) indicating a bond has formed between the particle 

and the capping agent are present as well. All other bands below 2000 cm-1 are due to the 

v(C-C) stretch, v(C-O) stretches, CH2 deformations and other motions that are too 

δH2O 
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complex to assign51,52 and indicate the oleic acid chain is still present. The sharp band at 

1620 cm-1 has been attributed to a δH2O vibration (δ signifies an in phase rock).51  

2θ

0 10 20 30 40 50 60 70

 

Figure 3.8 XRD pattern from thermal polyol Fe0 core-shell nanoparticle product 
prepared with FeBr3 

 

The XRD pattern from the product (Figure 3.8) is significantly different than any 

previous XRD patterns. There is no clear magnetite structure. However, there is no clear 

feature present at approximately 45° either. The large feature at approximately 20° may 

arise from an amorphous iron core or possibly the oleic acid capping agent. There are a 

few very sharp features that have been attributed to noise because all other features are 

broad in nature. 
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3.3.3 Microwave Synthesis Attempt of Fe0 Core-shell Nanoparticles  

Based on published reports, higher temperatures seem to facilitate the reduction of 

metal salts via the polyol technique.15,51 Microwave energy was investigated for possible 

higher reaction temperatures in localized hot spots analogous to those seen in 

sonochemical reactions. Sonochemical methods have been successful in producing 

amorphous Fe0 core-shell nanoparticles.46 The sonochemical method of producing these 

Fe0 particles relies on localized hot spots created by acoustic cavitations in the 

hydrocarbon solvent. Therefore, the microwave polyol technique was applied in attempts 

to produce Fe0 core-shell nanoparticles. A summary of reagents used in the microwave 

syntheses are listed in Table 3.5. 

Sample # Type Capping 
agent Reducing agent Solvent Metal Salt Variation 

MW1 Fe oleic acid 1,2-hexadecanediol octyl 
ether Fe (Acac)2  

microwave 
heat source 

(30min) 

MW2 Fe oleic acid 1,2-hexadecanediol octyl 
ether Fe (Acac)2  

Repeat of 
MW1 

MW3 Fe oleic acid 1,2-hexadecanediol octyl 
ether Fe (Acac)2  

Repeat of 
MW1 

MW4 Fe oleic acid 1,2-hexadecanediol octyl 
ether Fe (Acac)2  

Repeat of 
MW1 

MW5 Fe oleic acid 1,2-hexadecanediol octyl 
ether Fe (Acac)2  

Repeat of 
MW2 

Table 3.5 Summary of microwave polyol Fe0 nanoparticle syntheses reagents and 
conditions 

 

Unfortunately, the octyl ether has a very low dielectric constant, and does not 

absorb microwave energy efficiently enough to achieve the temperatures reached during 

thermal heating. Thermal heating brought the temperature of the solution to its boiling 

point; 270°C, while microwave heating only achieved 190°C. 
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Figure 3.9 FT-IR spectrum of the microwave polyol Fe0 core-shell nanoparticle product 

 

The product of this reaction was a black waxy solid. The FT-IR spectrum from 

the microwave polyol Fe0 core-shell nanoparticle synthesis (Figure 3.9) indicates that the 

oleic acid has bonded to the metal surface. The ratio of the vs(C=O) and va(C=O) bands to 

the vs(-CH2) and va(-CH2) bands is much higher in this spectrum than in previous spectra. 

This could indicate that a larger concentration of oleic acid is bonded to the surface of the 

particles. The v(OH) stretch is very broad and shifted to lower energies, similar to the 

thermal polyol Fe0 particle attempt (Figure 3.3). 
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2θ
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Figure 3.10 XRD pattern of microwave polyol Fe0 core-shell nanoparticle product 
 

As is evident from the XRD pattern of this product (Figure 3.10), magnetite was 

again formed. However, the peaks in the XRD are a lot sharper than the thermal Fe0 core-

shell nanoparticle synthesis attempt (Figure 3.4); more similar to the produces from the 

thermal magnetite syntheses (Figure 3.2). Again, these sharp peaks indicate the presence 

of a more crystalline structure. Also, larger particles were possibly produced. 
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Figure 3.11 TEM image of particles produced from microwave polyol Fe0 core-shell 
nanoparticle synthesis  

 

TEM was employed to verify that spherical nanoparticles were produced from 

this synthesis. The TEM image (Figure 3.11) indicates that fairly mono-dispersed 

spherical particles were produced. The particles are in the 3-15 nm size range, which are 

larger than the thermal Fe0 estimated particle size, which could explain why the peaks in 

the XRD pattern are sharper than the thermal Fe0 product XRD pattern. After this initial 
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synthesis attempt failed to definitively produce Fe0, repeat syntheses were performed, but 

similar results were obtained. 

3.3.4 Solvent/Reducing Agent Investigation (1,2-hexanediol) 

Microwave energy was investigated because the localized hot spots produced 

during microwave syntheses could possibly facilitate the creation of an amorphous Fe0 

core-shell nanoparticle. However, the dioctyl ether solvent has a very low dielectric 

constant, and therefore did not couple well with the microwaves. The bulk solution did 

not reach the temperatures that were reached in thermal heating (190°C vs. 270°C). 

Because the solvent was not being heated, this meant the solvated iron salt was absorbing 

the microwave energy. It has been reported that localized superheated regions, induced 

from the interactions of microwave radiation with a metal powder, can enhance the yield 

of a specific reaction without a significant change in the average temperature.56 

Unfortunately, the desired results were not achieved with this set of reaction conditions. 

Therefore, it was postulated that changing to a more polar solvent could produce 

different results. Most polyol reactions from the literature use the polyol as the solvent 

and the reducing agent. The most commonly used polyols are ethylene glycol and 

tetraethylene glycol. Up to this point a solid diol reducing agent was used and dissolved 

in an ether solvent.  For the next set of experiments 1,2-hexanediol was chosen as the 

new solvent/reducing agent because it has a much higher dielectric constant and should 

be able to reach temperatures similar to those observed with thermal heating. Capping 

agent and iron salt were also changed during the course of these experiments, but there 

was no observed difference in the product’s characteristics based on these variations. To 

the best of our knowledge there are no published reports utilizing this solvent/reducing 
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agent in the polyol method. Table 3.6 summarizes the reaction conditions and reagents 

for these syntheses. 

Sample 
# Type Capping 

Agent 
Reducing 

Agent Solvent Metal Salt Variation 

MW1 Fe oleic acid 1,2-hexanediol 1,2-hexanediol Fe (Acac)2  
changed red 
agent/solvent 

MW2 Fe oleic acid 1,2-hexanediol 1,2-hexanediol Fe (Acac)2  reduced by 1/2 

MW3 Fe oleic acid 1,2-hexanediol 1,2-hexanediol Fe (Acac)2  
scaled up by 2 
from MW10 

MW4 Fe oleic acid 1,2-hexanediol 1,2-hexanediol Fe (II) acetate changed iron 
source 

MW5 Fe oleic acid 1,2-hexanediol 1,2-hexanediol Fe (II) acetate Repeat of 
MW20 

MW6 Fe PVP 1,2-hexanediol 1,2-hexanediol Fe (II) acetate changed 
capping agent 

MW7 Fe PVP 1,2-hexanediol 1,2-hexanediol Fe (II) acetate Repeat of 
MW22 

Table 3.6 Summary of microwave polyol Fe0 nanoparticle syntheses reagents and 
conditions 
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Figure 3.12 FT-IR spectrum of the microwave polyol Fe0 core-shell nanoparticle    
synthesis product prepared with 1,2-hexanediol 

 

The product of this synthesis was a tan powder. The FT-IR spectrum of the 

product prepared with 1,2-hexanediol (Figure 3.12) resembled the FT-IR spectra from 

the samples that were sparged with air during thermal heating (Figure 3.1). The v(OH) 

stretch at 3400 cm-1 is very prevalent, and similar to the v(OH) stretch in the other spectra 

of powders rather than waxes. There are a few features around 1000cm-1 that have been 

attributed to v(C-O) stretches. These features along with the very pronounced OH peak 

are possibly due to residual diol in the sample. The other characteristic peaks such as the 

vs(-CH2) and va(-CH2) peaks in the 2850-2960 cm-1 region, and the two signature bands at 
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1600 cm-1 and 1480 cm-1 that correspond to the vs(C=O) and va(C=O) stretching modes 

respectively,29 of the oleic acid carbon chain are present as well.  

2θ

0 10 20 30 40 50 60 70

 

Figure 3.13 XRD pattern from microwave polyol Fe0 core-shell nanoparticle synthesis 
product prepared with 1,2-hexane diol 

 

This XRD pattern (Figure 3.13) resembles that of Fe0 core-shell nanoparticle 

synthesis attempts using FeBr3 (Figure 3.8). The large feature at approximately 20° 

indicates the presence of an amorphous material, possibly a large amount of organic 

material. Similar features have been reported when producing Co oxide nanoparticles in 

different isomers of butane diol.51 According to these reports, the presence of a strong 

low-angle reflection is related to interlayer spacing in lamellar structures. This is an 

indication that stacked metal-oxygen sheets separated by bonded alkoxide ions are 
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present.51 This feature could also be attributed to residual diol in the sample which is 

further supported by the FT-IR data. Even though there was no clear structure based on 

the XRD pattern, TEM (Figure 3.14) indicates nanoparticles were produced. 

 

Figure 3.14 TEM image of particles produced from microwave polyol Fe0 synthesis 
prepared with 1,2-hexanediol 

 

The TEM image of the particles from this synthesis indicates that a fairly wide 

range of sizes were produced. The particles appear to be spherical and range from 
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 4 to 20 nm in diameter. After these new results were attained, additional syntheses were 

performed and similar results were achieved. 

 

3.3.5 Solvent/Reducing Agent Investigation (Polyethylene Glycol MW 600 g/mol) 

In this set of experiments, PEG MW 600 g/mol was investigated as a possible 

reducing agent/solvent for the microwave polyol method of synthesizing Fe0 core-shell 

nanoparticles from an iron salt. Table 3.7 summarizes the reaction conditions and 

reagents used in these syntheses. 

Sample # Type Capping 
Agent Reducing Agent Solvent Metal Salt 

MW1 Fe oleic acid PEG PEG Fe (Acac)2  

MW2 Fe oleic acid PEG PEG Fe (Acac)2  

Table 3.7 Summary of microwave polyol Fe0 nanoparticle syntheses reagents and 
conditions 

  

To our knowledge, there have not been any published reports of this particular 

PEG being used as a solvent/reducing agent for this method. The FT-IR spectrum of the 

product (Figure 3.15) did show the two characteristic vs(C=O) and va(C=O) stretching 

modes indicating that the particles had been capped with the oleic acid. The v(C=O) 

stretch at 1710 cm-1 is absent from the spectrum, which also indicates the particles were 

capped with the oleic acid. There are numerous features around 1000cm-1 that have been 

attributed to the v(C-C) stretch, v(C-O) stretches, CH2 deformations and other motions 

that are too complex to assign51,52. These features along with the very pronounced v(OH) 

peak are possibly due to residual diol in the sample. 
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 Figure 3.15 FT-IR spectrum of microwave polyol Fe0 core-shell nanoparticle 
synthesis product prepared with PEG 

 

The XRD pattern of the product from this synthesis (Figure 3.16) looked similar 

to those from the 1,2-hexanediol syntheses (Figure 3.13). There appears to be an 

underlying magnetite structure in the XRD pattern. The large feature at approximately 

20° is present as it was in the 1,2-hexanediol syntheses, but the (311) peak at 

approximately 36° from magnetite is also apparent. It can not be concluded that Fe0 or 

magnetite particles were produced from this synthesis. Repeat syntheses were performed 

with similar results being observed. 

 

v(C-O) 
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Figure 3.16 XRD pattern of microwave polyol Fe0 core-shell nanoparticle product 
prepared with PEG 
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Figure 3.17 TEM image of particles produced from microwave polyol Fe0 iron 
core-shell nanoparticle synthesis prepared with PEG 

 

Based on the TEM image (Figure 3.17) of the nanoparticles formed during this 

reaction, it appears that the particles are larger than the previous samples (10-20 nm). It 

also appears that there is much more agglomeration of the particles. It has been reported 

that particles produced in ethylene glycol possibly contain the diol along with capping 
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agent in their organic shell.20 There are also reports of higher molecular weight PEG 

(MW 3000 g/mol) used as a capping agent for particles produced via microwave polyol.11  

3.3.6 Microwave Magnetite Synthesis With 1,2-hexanediol and Oleylamine  
      Co-capping Agent 

Up to this point, it was concluded that magnetite core-shell nanoparticles had 

been produced from thermal and microwave heating for the polyol method. These 

nanoparticles were produced by following a published procedure that involved 1,2-

hexadecanediol dissolved in a long chain ether as the solvent/reducing agent. During the 

course of the investigation into the polyol technique, 1,2-hexanediol proved to be an 

interesting solvent/reducing agent. A disadvantage to 1,2-hexanediol vs. the ether was the 

difficulty in removing the high boiling point diol from the precipitate. A benefit was the 

elimination of the precipitation step with ethanol.  

It was unclear if 1,2-hexanediol had succeeded in producing Fe0 particles, because 

techniques such as X-ray photoelectron spectroscopic (XPS) technique, which has been 

used in the literature to characterize amorphous iron nanoparticles8, was not available. 

However, it was clear that magnetite core-shell nanoparticles had not been produced with 

1,2-hexanediol. In order to try to reproduce the magnetite core-shell nanoparticles, the 

co-capping agent oleylamine was used as per the original magnetite procedure.33,49 It has 

been reported that the use of oleic acid and oleylamine together yields a greater amount 

of magnetite particles than either one alone.57 The bonding of oleylamine to the magnetite 

particle has been explained by its coordination to Fe (III) on the surface of the magnetite 

particle. 57 Table 3.8 summarizes the reagents and reaction conditions. 
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Sample 
# Type Capping 

Agent Reducing Agent Solvent Metal Salt Variation 

MW1 Fe oleic 
acid/oleylamine 1,2-hexanediol 1,2-hexanediol Fe (II) acetate 

change 
solvent/red 
agent and 

Fe salt 

MW2 Fe oleic 
acid/oleylamine 1,2-hexanediol 1,2-hexanediol Fe (II)  acetate 

change 
solvent/red 
agent and 

Fe salt 

Table 3.8 Summary of microwave polyol magnetite syntheses reagents and 
conditions 

 

A black waxy material was produced from this reaction. The FT-IR spectrum of 

the product (Figure 3.18) indicates that the particles formed from this reaction were 

capped by both capping agents. Not only is the v(C=O) mode at 1710 cm-1 from the 

COOH group absent, but the v(N-H) of the NH2 at 3300 cm-1 is also absent. This 

indicates both the capping agents are bonded to the nanoparticle surface. The ratio of the 

vs(C=O) and va(C=O) peaks to the vs(-CH2) and va(-CH2) peaks is increased significantly 

in this spectrum. This could be due to more capping agent bonding to the surface of the 

metal nanoparticle.  
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Figure 3.18 (top) FT-IR spectrum of oleylamine and (bottom) FT-IR spectrum from 
microwave polyol core-shell magnetite nanoparticle synthesis product prepared with 1,2-

hexanediol and oleylamine co-capping agent 

v(N-H) 
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The XRD pattern (Figure 3.19) indicates a magnetite structure. There is a 

difference in the magnetite XRD pattern produced from this reaction vs. the magnetite 

XRD patterns produced previously (Figure 3.2 and Figure 3.10). There is a large broad 

feature at approximately 20°. This feature could be attributed to a large amount of 

organic molecules present or a lamellar structure. This was the first time this solvent was 

successfully removed, and the first instance of microwave heating producing magnetite 

with 1,2-hexanediol.  
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Figure 3.19 XRD pattern from microwave polyol magnetite core-shell nanoparticle 
synthesis product prepared with 1,2-hexanediol and oleylamine co-capping agent 
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AFM and TEM analysis were performed on the sample (Figure 3.20 and Figure 

3.21). Both indicate that spherical particles were formed. Based on these images, the 

particle sizes ranged from 9 –to 20 nm in diameter, which is in agreement with particle 

size estimates based on the XRD pattern. Repeat syntheses were performed with similar 

results. 
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Figure 3.20 Two AFM images of particles prepared via microwave polyol magnetite 
core-shell nanoparticle synthesis with 1,2-hexanediol and oleylamine co-capping agent 

AFM image of 
particles produced 
from magnetite 
synthesis 
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Figure 3.21 TEM image of particles prepared via microwave polyol magnetite core-shell 
nanoparticle synthesis with 1,2-hexanediol and oleylamine co-capping agent 
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3.4 Microwave Time Investigation 

To investigate the effect of time spent in the microwave, three identical reactions 

were performed varying only the reaction time. The reagents and reaction conditions are 

summarized in Table 3.9.   

Sample 
# Type Capping 

Agent Reducing Agent Solvent Metal Salt Variation 

MW1 Fe oleic acid 1,2-hexadecanediol octyl 
ether Fe (Acac)2  

increased to 
50min 

MW2 Fe oleic acid 1,2-hexadecanediol octyl 
ether Fe (Acac)2  

reduced time 
to 20min 

MW3 Fe oleic acid 1,2-hexadecanediol octyl 
ether Fe (Acac)2  

reduced time 
to 10min 

Table 3.9 Summary of microwave polyol time investigation reagents and 
conditions 

 

Figure 3.22 depicts the FT-IR spectra comparison of the products from the three 

microwave heating times, and they seem to show that the longer reaction times resulted 

in materials that displayed weaker bands in their FT-IR spectra. The XRD patterns from 

these reaction products were all similar, and all showed a magnetite structure.  
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Figure 3.22 FT-IR spectra comparison of three different microwave reaction times 

3.4.1 TEM Size Comparison of Microwave Time Study 

TEM was performed on the products from each reaction time. The particles 

produced from the 10 min reaction time (Figure 3.23) were noticeably smaller than those 

produced from the 50 min microwave reaction (Figure 3.24). From the TEM images, the 

particles from the 10 min microwave reaction are 5-7 nm, whereas the particles from the 

50 min microwave reaction were 10-15 nm. This seems to indicate that the time spent in 

the microwave can affect the size of the particles produced. This also supports 

information from the literature that the number of particles produced is fixed.14 The 

longer the particles were heated in the microwave, they only became larger, not greater in 

numbers. 

                  10 min heating 
                  20 min heating 
                  50 min heating 
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Figure 3.23 TEM image of 10 min microwave reaction 

 

 

Figure 3.24 TEM image of 50 min microwave reaction 

 

 

Microwave 
Polyol  
Produced  
Particles 
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3.5 Microwave Polyol Co0 Core-shell Nanoparticle Synthesis Attempt 

Having failed to conclusively produce Fe0 core-shell nanoparticles via thermal 

and microwave polyol syntheses, our attention turned to microwave synthesis of Co0 

core-shell nanoparticles. Co0 nanoparticle synthesis was attempted in order to verify that 

our microwave polyol method could indeed produce a fully reduced metal core 

nanoparticle. Based on reduction potentials, Co+2 should be more easily reduced to Co0 

than Fe+2 to Fe0. Table 3.10 summarizes the reaction conditions and reagents for these 

syntheses. 

Sample 
# Type Capping 

Agent Reducing Agent Solvent Metal Salt Variation 

MW1 Co oleic acid 1,2-hexadecanediol octyl ether Co (Acac)2   

MW2 Co oleic acid 1,2-hexanediol 1,2-hexanediol Co (Acac)2   

MW3 Co oleic acid 1,2-hexanediol 1,2-hexanediol Co (Acac)2  
stir bar left 

out 

MW4 Co oleic acid 1,2-hexanediol 1,2-hexanediol Co (Acac)2  
Repeat of 

MW2 

MW5 Co oleic acid 1,2-hexanediol 1,2-hexanediol Co (Acac)2  

tripled 
capping 
agent 

concentration 
Table 3.10 Summary of microwave polyol Co0 nanoparticle syntheses reagents 

and conditions 
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Figure 3.25 XRD pattern of product from microwave polyol Co0 core-shell nanoparticle 
synthesis  

 

The product of this reaction was a purple wax, that when exposed to ambient 

conditions turned to a blue/black material The XRD pattern (Figure 3.25) looks similar 

to the previous microwave samples prepared in 1,2-hexanediol and PEG (Figure 3.13 

and Figure 3.16). Repeat syntheses were conducted, and similar results were obtained. 

Based on the XRD, it could not be determined that Co0 core-shell nanoparticles were 

successfully produced. In order to conclusively identify the product as Co0 two peaks at 

approximately 44° and 47° should be evident.48 These two peaks are from a pure Co 

phase with hcp and fcc structures.58 These two characteristic peaks are not evident in the 

XRD pattern of this product, but their presence can not be ruled out due to the elevated 
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baseline. The TEM images (Figure 3.26) confirm the presence of nanoparticles with 

sizes from 20-35 nm.  

 

Figure 3.26 TEM image of particles produced from microwave polyol Co0 core-
shell nanoparticle synthesis  
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3.6 Thermal and Microwave Investigation of Cobalt Co-reactant  

Due to instrumentation limitations, no conclusive evidence was acquired for the 

formation of Fe0 and Co0 core-shell nanoparticles from both the thermal and microwave 

polyol reactions. There are many published reports of the polyol method producing Fe0 

particles, but these reactions were done in ethylene glycol.14,35 Ethylene glycol was not 

investigated in this work, because it has been studied extensively, and there are many 

published articles on its use in the polyol method.  

Thermal and microwave polyol reactions involving 1,2-hexadecanediol in octyl 

ether did produce magnetite core-shell nanoparticles. Because magnetite particles were 

produced fairly easily, a cobalt co-reactant was added to attempt to produce a FeCo oxide 

or, cobalt ferrite core-shell nanoparticle. The reaction conditions and reagents for these 

thermal reactions are summarized in Table 3.11.  

Sample 
# Type Capping 

Agent Reducing Agent Solvent Metal Salt Variation 

1 Fe Co w/ N2 oleic acid 1,2-hexadecanediol octyl ether Fe (Acac)2   and 
Co (Acac)2  

co-reactant 

2 Fe Co w/ O2 oleic acid 1,2-hexadecanediol octyl ether Fe (Acac)2  and 
Co (Acac)2  

co-reactant 
with air 

3 Fe Co w/ N2 oleic acid 1,2-hexadecanediol octyl ether Fe (Acac)2  and 
Co (Acac)2  

Repeat of 
#1 

4 Fe Co w/ O2 oleic acid 1,2-hexadecanediol octyl ether Fe (Acac)2  and 
Co (Acac)2  

Repeat of 
#2 

Table 3.11 Summary of thermal polyol cobalt ferrite nanoparticle syntheses 
reagents and conditions 

 

The first synthesis attempt was a thermal heating attempt in an ambient 

environment. This reaction resulted in a black powder rather than a wax. The black 

precipitate formed in this reaction responded to an external magnet and seemed to hold a 



 77

magnetic charge. The powder seemed to be magnetically attracted to itself and would ball 

up tightly when shaken. Based on previous FT-IR data from this research, it has been 

shown that the reaction successfully caps the resulting nanoparticles. Therefore, FT-IR 

analyses were not performed on the following set of reactions. The XRD pattern (Figure 

3.27) indicates CoFe2O4 was formed based on comparison to the ICDD database. Repeat 

syntheses were performed with similar results. One Fe atom is replaced with one Co atom 

in the crystal lattice structure of CoFe2O4 as compared to Fe3O4. Even though a third of 

the metal atoms are different in the crystal lattice structure of cobalt ferrite, there is 

almost no difference in a magnetite XRD pattern and a cobalt ferrite XRD pattern.  

2θ

0 10 20 30 40 50 60 70

 

Figure 3.27 XRD pattern of product from ambient thermal polyol CoFe2O4 core-shell 
nanoparticle synthesis with labeled Miller-index planes 
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Cobalt ferrite CoFe2O4 
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In subsequent reactions, oxygen was eliminated from the reaction conditions. This 

product was a black wax. The XRD (Figure 3.28) revealed peaks that appear to be 

broader and less intense, and the baseline appears to show broad, underlying features.  

2θ
0 10 20 30 40 50 60 70

Cobalt ferrite CoFe2O4

(311) (400) (440)
(111)

 

Figure 3.28 XRD pattern of product from oxygen-free thermal polyol CoFe2O4 core-shell 
nanoparticle synthesis with labeled Miller-index planes 

 

3.6.1 Microwave Polyol CoFe2O4 Core-shell Nanoparticle Synthesis 

After the oxygen-free and ambient thermal reactions produced cobalt ferrite, 

microwave heating was investigated for this reaction, mirroring the Fe0 core-shell particle 

syntheses. Table 3.12 summarizes the reaction conditions and reagents for these 

syntheses.  

 

(440) 
(400) (311) 

(111) 
(220) 
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Sample # Type Capping 
Agent 

Reducing 
Agent Solvent Metal 

Salt Variation 

MW1 FeCo oleic acid 1,2-hexadecane 
diol 

octyl 
ether 

Fe 
(Acac)2   
and Co 
(Acac)2  

co-reactant 

MW2 FeCo oleic acid 1,2-hexadecane 
diol 

octyl 
ether 

Fe 
(Acac)2  
and Co 
(Acac)2  

Repeat of 
MW1 

Table 3.12 Summary of microwave polyol cobalt ferrite nanoparticle syntheses 
reagents and conditions 

 

As with all microwave reactions, the reaction was performed under oxygen-free 

conditions. There was a low product yield and very little sample was available. The XRD 

pattern of the dark waxy product from this synthesis (Figure 3.29) is very noisy, and 

resembles that of the oxygen free thermal polyol cobalt ferrite synthesis (Figure 3.28). 

TEM was run on this sample, and Energy Dispersive X-ray (EDX) was used to confirm 

the presence of both Co and Fe. From the TEM (Figure 3.30), the particle size seems 

similar the magnetite particles (Figure 3.21) and the Co0 synthesis particles (Figure 

3.26); around 20-25 nm. Repeat syntheses were performed and similar results were 

achieved. 
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Figure 3.29 XRD pattern of the product from microwave polyol CoFe2O4 core-shell 
nanoparticle synthesis  
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Figure 3.30 TEM image of particles produced from microwave polyol CoFe2O4  
core-shell nanoparticle synthesis  
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IV CONCLUSIONS AND FUTURE WORK 

In this study, both thermal and microwave polyol methods were investigated for the 

synthesis of iron, cobalt and iron-cobalt core-shell nanoparticles. Magnetite core-shell 

nanoparticles were synthesized via thermal heating based on published results. Attempts 

were made to synthesize Fe0 core-shell nanoparticles via the same reaction by 

maintaining oxygen-free conditions. However, magnetite was again produced as 

confirmed by XRD analysis. It was also confirmed through FT-IR spectroscopic analysis 

that the oleic acid capping agent had formed a bond with the magnetite core. Microwave 

heating was then employed in an attempt to produce Fe0 core-shell nanoparticles, because 

it was thought that localized hot spots created in the microwave could facilitate 

amorphous Fe0 particle formation. However, magnetite was again produced, but the XRD 

pattern indicated the presence of smaller particles (around 2 nm) and possibly more 

amorphous particles.  

Having produced only magnetite core-shell nanoparticles with both thermal and 

microwave polyol reactions using 1,2-hexadecanediol dissolved in octyl ether, two 

different polyol solvent/reducing agents were investigated. In order to reach higher 

reaction temperatures, 1,2-hexanediol and PEG MW 600 g/mol were chosen because they 

possess a large enough dielectric constant to efficiently absorb microwave energy. The 

syntheses performed with these two polyol solvents/reducing agents yielded products 

with significantly altered XRD patterns which displayed strong low-angle reflections that 

might be related to interlayer spacing in lamellar structures.  Conspicuously absent was 
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the large peak at approximately 45°, which is an indicator of Fe0. FT-IR was again used 

to confirm the presence of the capping agent on the metal core. TEM was used to confirm 

the formation of submicron-sized particles. Based on this information, it could not be 

determined that Fe0 had been formed at any point in the reaction. 

Microwave assisted reactions performed with 1,2-hexanediol did not produce a 

magnetite structure. Therefore, the synthesis of a magnetite core-shell nanoparticle using 

1,2-hexanediol was carried out, but facilitated by the addition of an oleylamine co-

capping agent. A magnetite core-shell nanoparticle was prepared successfully and its 

structure was verified using XRD. 

Microwave assisted Co0 core-shell nanoparticle synthesis was attempted and the XRD 

pattern from the product had the same strong low-angle reflection as the previous Fe0 

synthesis attempts with 1,2-hexanediol and PEG. The two large peaks at approximately 

44° and 47°,which indicate Co0
, were not evident in the XRD pattern. Therefore, it could 

not be determined if Co0 was produced. 

The synthesis of Fe0 core-shell nanoparticles was again attempted. The oxidation state 

of the iron precursor was changed for this synthesis from Fe (II) to Fe (III). Based on the 

reduction potentials of Fe (II) and Fe (III), Fe (III) is much easier to reduce than Fe (II) or 

even Co (II). The XRD patterns from the products of the syntheses exhibited identical 

features to those from the Fe0 attempt with 1,2-hexanediol and PEG as well as the Co0 

synthesis.  However, it could still not be concluded that Fe0 had been produced.  

Other parameters such as capping agent concentration, microwave time, and the 

addition of a cobalt co-reactant were investigated. The capping agent concentration 

appeared to have a limited effect on the particles produced, but the time spent in the 
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microwave seemed to have a significant effect on particle size. Longer reaction times 

afforded larger particles. A 10 min microwave reaction time produced particles in the 5-7 

nm range, whereas the particles from the 50 min microwave reaction were 10-15 nm. 

When a cobalt co-reactant was introduced to the reaction, a cobalt ferrite structure was 

produced. All syntheses produced submicron particles with a protective surfactant layer. 

Future avenues for this work could include the synthesis of human body-soluble, 

magnetic cobalt core-shell nanoparticles for use in drug delivery and resonance imaging. 

This could be facilitated by coating the particles with a protein. Because of the milder 

conditions provided by the microwave assisted polyol method, degradation of the protein 

capping agent might possibly be avoided. Also, the electrochemistry of the reduction 

mechanism of diols other than ethylene glycol could be investigated using linear sweep 

voltammetry.  
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