UNIVERSITY OF CINCINNATI

February 7, 2001

|, Nazanin Mansouri,
her eby submit thisas part of the requirementsfor the
degree of:

Doctor of Philosophy

in:

Dept. of Elec. and Comp. Eng. and Comp. Science
It isentitled:

Automated Correctness Generation for Formal

Verification of Synthesized RTL Designs

Approved by:

Dr. Ranga Vemuri
Dr. Perry Alexander
Dr. Steve Pelikan
Dr. Carla Purdy
Dr. John Schlipf

Automated Correctness Condition Generation for

Formal Verification of Synthesized RTL Designs

A dissertation submitted to the

Division of Research and Advanced Studies
of the University of Cincinnati

in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in the Department of
Electrical and Computer Engineering and Computer Science
of the College of Engineering

February 7, 2001
by

Nazanin Mansouri

B.E (Computer Engineering),
College of Engineering,
Iran University of Science and Technology - Tehran,
Iran, 1992

Thesis Advisor and Committee Chair: Dr. Ranga R. Vemuri

Abstract:

This work presents a formal methodology for verifying the functional correctness of synthesized
register transfer level designs (RTL) generated by a high-level synthesis system. The verification is
conducted by proving the observation equivalence of the RTL design with a description of its desired

behavior.

High-level synthesis tools generate register transfer level designs from algorithmic behavioral spec-
ifications. The high-level synthesis process consists of dependency graph scheduling, function unit
allocation, register allocation, interconnect allocation and controller generation tasks. Widely used
algorithms for these tasks retain the overall control flow structure of the behavioral specification al-
lowing code motion only within basic blocks. Further, high-level synthesis algorithms are in general
oblivious to the mathematical properties of arithmetic and logic operators, selecting and sharing
RTL library modules solely based on matching uninterpreted function symbols and constants. Many
researchers have noted that these features of high-level synthesis algorithms can be exploited to
develop efficient verification strategies for synthesized designs. This dissertation reports a verifi-
cation methodology that effectively exploits these features to achieve efficient and fully automated

verification of synthesized designs.

Contributions of this research include formalization and formulation in higher-order logic in a
theorem proving environment mathematical models for the synthesized register transfer level designs
and their behavioral specifications and a set of sufficient correctness conditions for these designs.
It presents an in depth study of pipelining in design synthesis, and identifies the complete set
of correctness conditions for RTL designs generated through the synthesis processes that employ
pipelining techniques.

This method has been implemented in a verification tool (the correctness condition generator, CCG)
and is integrated with a high-level synthesis system. CCG generates (1) formal specifications of the
behavior and the RTL design including the data path and the controller, (2) the correctness lemmas
establishing equivalence between the synthesized RTL design and its behavioral specification, and (3)
their proof scripts that can be submitted to a higher-order logic proof checker. The tool performs
model extraction, correctness condition generation and proof generation automatically and without
human interaction. This approach is based on the identification, by the synthesis tool during the
synthesis process, of the binding between critical specification variables and critical registers in the
RTL design and between the critical states in the behavior and the corresponding states in the RTL
design. CCG is capable of handling a broad range of behavior constructs that may be used for
specifying the behavior and a wide variety of algorithms that may be employed during the synthesis
process. Also, the verification algorithms of CCG have the appealing feature of relying on symbolic
analysis of the uninterpreted values of the variables and registers. This has resulted in a considerable
reduction in verification time compared to other post-synthesis verification systems, that are often

restrained by this factor.

To my mother Pary,
To Adrian,

for believing in me.

Acknowledgements

I take this opportunity to express my thanks to several people who have made this dissertation
possible. I would like to thank my academic advisor Dr. Ranga Vemuri for providing support,
motivation and guidance throughout my work at the University of Cincinnati. I thank Dr. Perry
Alexander who has been a model for me as a teacher and as a person. I thank Dr. John Schlipf who
has one of the most generous hearts, and has shown me throughout the years how to be great as
a scientist and as a being. I also would like to convey my gratitude to the wonderful professors at
UC whom I have had the pleasure to know and work with: Dr. Karen Davis, Dr. Carla Purdy, Dr.
Hal Carter, and Dr. Philip Wilsey. I thank Dr. Pelikan, and the other members of my dissertation
committee. This work is sponsored in part by DARPA and monitored by US Army Ft. Huachuca
under contract number DABT63-96-C-0051.

I thank my colleagues at UC and all members of the DDEL lab who made my years of studying
more pleasant. I would like to thank Meenakshi, Christophe, Peter, Ramanan, Preetham, Karam,
Arun, Iyad, Rajesh, Jeff, Satish, Sree, Abhijit and Priya, and specially Ela - who is the sunshine
in the cloudy moments of graduate school - for their friendship. I am thankful to all the Synthesis

experts at DDEL who provided many interesting design examples for this dissertation,

My life has not been a smooth journey. I have lost many people dear to my heart and I have had
many gloomy days. I would have surrendered to sorrow if it have not been for the wonderfulness of
the people in my life: My friend Badri who has always stood by me, my friend Mehdi who has never
lost faith in me, even when I did, my friends Jorgen, Chris, Scott, Shiva, Ziba, Roxana, Shidokht,
Shokoufeh, Maria, Sanghwa, June, Marc, Kataneh, Leyla, Elaheh, Mojgan, Farahnaz, Andy, Ilona
and my dearest cousin Saeed who have showered my life with their astonishing goodness and made

it so much richer and more delightful.

I would like to thank my father for loving me and for supporting my education in any possible
way. I would like to give particular thanks to my uncle Fery who has never even owned a watch,
but has gifted me with a book for every week that I have lived. For all our afternoon walks, for
all the smiles he brought to my sometimes sad childhood, for our frequent trips to the bookstore,
theater, movies, for all the books that he gave me, for the endless hours that he sat and read
for me, for everything he has taught me, and for all the love he has given me. I thank my uncle
Mehdi for treating me as an equal since my early age, for all the enlightening discussions that he
gifted me with, for being a great uncle, a comrade, and a friend. I thank my grandmother Molouk-
joon for her infinite love, and for showing me with her life the essence of generosity, patience and
forgiveness. I like to thank my sister Behin for her friendship and love, and for all the beauty and
joy she has brought to my life. I thank my mother Parvin, for being the source of inspiration in my

life, for her extraordinary sacrifices that gave me a better life than what she had, for her sleepless

working nights that provided me with an education, for teaching me the joy of thinking and living
independently as a woman, for loving me beyond the borders of time, for always believing in me
and encouraging me in achieving my goals, and for being the best mother one can ask for. Lastly,
I would like to thank my partner in life, Adrian, for his genuinely loving heart, for teaching me
the true meaning of giving and trust, for helping me to remain faithful to myself, to my beliefs,
and to the truth, and for being the source of strength for me in struggling with the hardships, and

achieving my goals.

Contents

1 Introduction 1
1.1 Motivation e e e e e e e e e 2
1.2 Objectives o e e e e e 4
1.3 Scope of Our Verification Approach, 5
1.4 An Overview of High-Level Synthesis Process 7
1.5 Background L e e e 10
1.6 Correctness L L e e e e e 11
1.7 Classification L L e e e 11
1.8 Formal Verification Methods oo 11
1.9 Formal Proof Process o e 12
1.10 OVerview o o i o e e e e e e e 14
1.11 Qutline of the Thesis o . L e 15
2 A Survey of Related Research 17
2.1 Transformation Based or Formal Synthesis Methods 17
2.2 Post-Design Verification Methods oo oL, 18
2.3 Symbolic Simulation Methods Lo o oL 19
2.4 Simulation-Based Methods Lo o 20
2.5 DISCUSSION L . e e e e e e e e e e e e e e 20

3 Correctness 21

3.1 Behavior L e e e e 22
3.2 Equivalence L L e e 23
3.3 Equivalence Checking through Decomposition 25
4 Formal Specification and Modeling 33
4.1 Modeling e e 33
4.2 Specification. oL oL e e 34
4.3 Logical Framework L 35
4.4 Behavior Model L 37
4.5 Design Model L 39
4.6 Formal Specification of the Behavior 40
4.7 Formal Specification of the Design Lo L oL 41
4.7.1 RTL Component Specification 42
4.7.2 Type and Interconnection of RTL Components 42
473 RTL Controller e 42

4.8 Conclusion L e e 43

5 Deploying Methodical Design Construction Knowledge for Identifying Design

Properties 45
5.1 An Overview of High-Level Synthesis Process 46
5.2 Impact of Scheduling on Verification Methodology 48
5.2.1 Scheduling of Non-Hierarchical CDFGs 52
5.2.2 Scheduling of Hierarchical CDFGs, 55
5.2.3 Discussion Lo e e e e e e e e 56
5.3 Impact of Operator Allocation on Verification Methodology 57
5.4 TImpact of Register Allocation on Verification Methodology 58

ii

6

7

5.4.1 Carrier Based Register Allocation

5.4.2 Value Based Register Allocation
5.5 Impact of Interconnect Allocation on Verification Methodology
5.5.1 Bit-Level Interconnect Allocation
5.6 Impact of Controller Generation on Verification Methodology
5.7 Conclusion L e e e e e

Formalization of the Verification Technique

6.1 Critical Verification Elements o o o oo
6.2 Formalization e
6.3 Dynamic Register Binding and Criticality Masking Technique
6.4 Conclusion e e e e e e

Proof Construction

7.1 Proof Strategy
7.2 Proof Tactics o o o e e e e e e
7.3 Proof Steps L e
7.4 Inference Rules and Axioms
7.5 Conclusion L e e e e e

Correctness Condition Generation

8.1 Generic AXIOMS o . L i e e e e e e e e e
8.2 Behavior Axiom Generation Lo
8.3 Data Path Axiom Generation oo e
8.4 Controller Axiom Generation Lo o e
8.5 Generation of Critical Path Equivalence Lemmas
8.6 Generation of Proof Scripts Lo o oL

iii

69
69
71
7

79

80
82
83
84
86

87

89

9 Structural Pipelining in Design Synthesis

9.1 Multi-Cycle Resources . .

9.1.1 Synthesis with Unconstrained Non-pipelined Multi-Cycle Resources

9.2 Pipelined Resources . . .

9.3 Synthesis with Resource Constraints oL,

94 Conclusion

10 Loop Winding and Functional Pipelining

10.1 Verification of Non-Pipelined Loops

10.1.1 Pipelined Loops .

10.1.2 Verification of Pipelined Loops

10.1.3 Verification of Pipelined Loops : An Alternative Approach

10.1.4 Discussion

10.1.5 Concluding Remarks Lo

10.2 Functional Pipelining in Design Synthesis

10.2.1 Sequential Specifications e

10.2.2 Specifications with Conditional Constructs

10.2.3 Specifications with Conditional and Iterative Constructs

10.3 Conclusion

11 Implementation and Results

11.1 Discussion

12 Conclusion and Future Work

12.1 Discussion
12.2 Future Work

12.3 Summary of Contributions

v

99

100

106

123

138

140

141

141

155

158

169

181

182

183

183

183

186

186

187

188

198

A PVS Specification and Proof of Equivalence Theorem 202

B A Comprehensive Example 206
C Symbolic Analysis of Specifications and Implementations 264
C.1 Specification Variables 266
C.1.1 Mathematical and Logical Expressions 266

C.1.2 Statements in the Specifications, 267

C.1.3 Specification Variables and Transition Sequences 268

C.2 Register Transfer Operations, 270
C.3 Combinational and Sequential Components 271
C.3.1 Data Transfersinan RTL Design 274

C.3.2 Application of Symbolic Analysis in Verification of Synthesized RTL Designs 276

Bibliography 276

List of Figures

1.1

1.2

3.1
3.2

3.3

4.1
4.2
4.3

4.4

5.1
5.2
5.3
5.4
9.5
5.6

5.7

Synthesis Hierarchy 6
High-Level Synthesis Process 8
Constructing G? from Gg 26
Composition of S’ from Communicating subsystems 28
Composition of I’ from Communicating subsystems 30
A Behavior Specificationo 0oL oL 36
Example of an RTL design generated by a high-level synthesis system . . 38
Relational description of the behavior of register component 41
HDL description of the port-map of the multiplier component 42
A Sequential Basic Block 50
Scheduled Sequential Basic Block 50
Scheduled Conditional Basic Block, 51
Scheduled Iterative Basic Block, 52
Scheduled Procedure Basic Block o0, 52

Control-step assignment to a sequential basic block during the global
scheduling of a non-hierarchical CDFG 53

Control-step assignment to a conditional basic block during the global
scheduling of a non-hierarchical CDFG 54

vi

5.8 Control-step assignment to an iterative basic block during the global
scheduling of a non-hierarchical CDFG

5.9 Control-step assignment to a procedure basic block as part of scheduling
of a non-hierarchical CDFG

5.10 The Effects of Scheduling

5.11 Mapping relation between specification variables and design registers

when no register optimization is performed
5.12 Specification of the Greatest Common Divisor Design

5.13 Example of the data-path of an RTL design generated by a high-level syn-
thesis system after scheduling and resource optimization

5.14 Mapping relation between specification variables and design registers in
a carrier-based register allocation schemeo,

5.15 Example of a partial specification

5.16 Mapping relation between specification variables and design registers in
a value-based register allocation scheme

5.17 Virtual Components : Accounting for Bit-Level Interconnections
5.18 Detailed SPLIT Component,

5.19 Detailed SPLIT Component,

7.1 Hierarchical proof generation 0oL
7.2 Relational description of the multiplier component
7.3 Component interconnections as part of the data-path of an RTL design

7.4 HDL description of the port-map of the multiplier component

8.1 Stages of Correctness Condition Generation
8.2 Some Generic Declarationso o o0 o 0.
8.3 Some Basic Design-Specific Definitions and Axioms
8.4 Axioms for Some Behavior Transitions

8.5 Axioms for Some RTL Library Components

vii

85

8.6
8.7
8.8
8.9

9.1
9.2
9.3

9.4

9.5
9.6
9.7
9.8
9.9

9.10
9.11
9.12

9.13

9.14

10.1
10.2
10.3

10.4

Axioms for Some Data Path Components 95

RTL Controller e e 95
Some Critical Path Equivalence Lemmas 96
Proof Scripts for a Correctness Theorem 98
The stages of a multi-cycle component o000, 101

Partial specification adopted from the Differential Equation benchmark . 103
Formal description of the partial specification of Figure 9.2 105

A possible unconstrained schedule for the partial specification of Figure

0.2 e 106
Data path of the design synthesized from the schedule of Figure 9.4 107
Controller of the design synthesized from the schedule of Figure 9.4 108

Description of behavior of the components in the data-path of Figure 9.5 110
The stages of a pipelined component 123

A possible unconstrained schedule with pipelined resources for the partial

specification of Figure 9.2 o L 124
Data path of the design synthesized from the schedule of Figure 9.9 126
Controller of the design synthesized from the schedule of Figure 9.9 127

Description of behavior of the components in the data-path of Figure 9.10129

A possible schedule with constrained non-pipelined resources for the par-
tial specification of Figure 9.2 L. 139

A possible schedule with constrained pipelined resources for the partial

specification of Figure 9.2 L 140
A simple loop basic block e 142
The unrolling of a simple loop basic block 145
An iterative basic block o oL 155
Sub-block dependencies e 156

viii

10.5 A possible pipelined version of the loop of Figure 10.3 157

10.6 A pipelined implementation of theloop 158
10.7 Control flow graph of the pipelined loop at the steady state 159
10.8 All the iterations of the pipelined loop with distinctive cFgs 160
10.9 The control graph of a pipelined loop 161
10.10The life span of two consecutive iterations of a pipelined loop 162
10.11Backward Value Propagation Algorithm 168
10.12Register assignment in a pipelined implementation of aloop. 170
10.13The control graph of a pipelined loop revisited 171
10.14Critical registers at each stage of execution of an iteration: 173
10.15Balancing a Conditional Basic Block where (i <j) 184
11.1 Proof Time as Function of the Number of Critical Paths 189
11.2 Proof Time as Function of the Number of Critical Registers 190
11.3 Proof Time as Function of the Total Number of States 191
11.4 Proof Time as Function of the Number of Lemmmas 192

11.5 Average Proof Time of DECOMPRESS Equivalence Lemmas as Function

of the Number of States per Path 194
11.6 Average Proof Time of TLC Equivalence Lemmas as Function of the

Number of States per Path 195
11.7 Average Proof Time of MOVE Equivalence Lemmas as Function of the

Number of States per Path 0o 0. 196
A.1 Execution Path Equivalence Theory 203
A.2 List Induction Theory it 203
A.3 PVS Proof of Execution Path Equivalence Theorem 205
B.1 VHDL Behavioral Description of a Traffic Light Controller 207

B.2 Intermediate Behavioral HDL Description of the Traffic Light Controller 209

ix

B.3 Intermediate Structural HDL Description of the Traffic Light Controller . 218
B.4 Register Binding Information of TLC 221
B.5 Critical Register Binding for TLC 223
B.6 TLC Behavior AXioms ittt et e i e e 239
B.7 TLC Data-Path Axioms, 242
B.8 Description of the Controller of the RTL Design 247
B.9 Behavior Description of the Components used in Synthesis of TLC 252
B.10 TLC Critical Path Equivalence Lemmas 260
B.11 Proof Script for Lemma eq cpO_st lemma 262
B.12 Proof Script for Lemma eq cpl_hl lemma 263
C.1 Partial Behavioral Specification of Bubble-Sort 269
C.2 Multiplier Component L 272
C.3 Register Component 273
C.4 Random Access Memory Component 273
C.5 Example of Interconnection of the Data-Path Components 274
C.6 Parts of Controller and Data-Path of an RTL Design 277

List of Tables

4.1 The symbolic value function § 37
4.2 The state transition function o o oo oo 39
11.1 Experimental Results o oL oLl 188
C.1 Symbolic Evaluation of Specification Variables after State Transitions. . . 268
C.2 Symbolic Evaluation of Specification Variables along A Critical Path . . . 271

xi

Chapter 1

Introduction

Advances in the area of digital design have provided the engineers with the potential to build
systems of unprecedented size and complexity. The tremendous growth in this area has been
made possible by the development of sophisticated design tools and software which automatically
build implementations of the systems at different levels from their specifications at a more abstract
level. The above process known as synthesis reduces the design time and also human design errors.
Manual design processes are still superior to the synthesis processes in terms of the performance
of the final product, but the time and human expertise they require are very restrictive. Synthesis
processes have gained popularity in recent years since they meet the demands of modern technology

to design more efficiently and more quickly.

The rapid evolution of digital technologies has resulted in a proliferation of features but a decline in
reliability [31]. Automated design procedures reduce the possibility of design errors, but they don’t
eliminate it altogether. With exploding complexities brought about by expanding scale, it becomes
increasingly difficult to ensure that digital systems will not malfunction due to design errors. Failure
of the systems due to design errors may have severe ramifications. For example, failure of the class of
safety-critical systems may be catastrophic. Design errors may often be associated with high costs,
too. Failure of the commercial systems may lead to irrecoverable financial loss. Unfortunately,
despite the impressive advances of the computer aided design technology in recent years, computer

aided verification remains at its infancy.

Today, as our lives become more dependent than ever on computer systems, the urgency for de-
velopment of validation methods and verification tools that can assure correctness, safety, security
and reliability of digital hardware asserts itself. This has prompted the researchers to look for firm
theoretical basis for correct design of hardware systems. Mathematical methods have been devel-

oped to model the functional behavior of electronic devices and to verify, by formal proof, that their

designs meet rigorous specifications of intended behavior. This approach to validating the correct-
ness of systems is known as formal verification. This work presents research in formal verification

of digital designs and focuses on this problem at register transfer level (RTL) of abstraction.

1.1 Motivation

Our world is increasingly dependent on digital systems. These systems often have critical applica-
tions: safety critical systems (e.g. avionics and nuclear monitoring), medical monitoring, communi-
cation networks, space probes and integrated circuits (e.g. microprocessors). The criticality of the
applications of these designs demands that they perform as expected i.e. be functionally correct.
Despite the overwhelming advances in design of digital circuits that has resulted in the advent
of systems with unprecedented size and complexity, their reliability has declined. Unfortunately,
verification technology, due to its immature state, cannot deliver a countermeasure. In digital de-
sign domain, verification technology — and in particular automated verification technology — has
not progressed at the same pace as synthesis technology. The conventional post-design methods of
validating functional correctness, such as testing, can no longer cope with the complexity present
in today’s designs within feasible amounts of testing time. Therefore, the current methods and
existing tools cannot deal with the design and verification problems at the same level and with
the same capacity. This issue has raised a mounting sense of urgency in the search for more sys-
tematic approaches to the verification problem. In the past decade, it has become apparent that
our confidence in hardware systems can only be derived from our rigorous analysis rather than by

experimentation. Formal methods currently offers the most promising vehicle to achieve this goal.

Formal methods is the applied mathematics of computer system engineering [2]. Formal methods
employs mathematical logic in modeling, specification, analysis and engineering of a system and
in verifying by mathematical proof that the system design and implementation satisfy system
functional and safety properties. Formal verification is the use of mathematical logic for the purpose
of verifying various properties of the systems or the methods applied for constructing them. Formal
verification is an integral part of any successful formal design discipline. In such a setting an
immediate application of formal verification is validating the correctness and integrity of design
construction methods, and verifying that these methods do not violate any design rules. Formal
verification is used for proving the correctness (or otherwise uncovering errors) of systems that are

designed through an informal process and their functional correctness is in question.
Several characteristics are desired in a verification method:

Scalability: A number of verification methods can be effectively employed to detect and locate

subtle design errors in systems of relatively small size. Unfortunately, these methods fail to scale to

large systems. As an example, in BDD (Binary Decision Diagram) based methods, the complexity
of the verification algorithm is an exponential function of the bit size of the variables. Consequently,

these methods are severely limited by the size of the designs they can verify.

Ideally, a verification algorithm deals with the designs of arbitrarily large size. However, it is
reasonable to expect that a verification tool copes well with the designs of moderate to large size,

encountered in industrial-scale synthesis environments.

Soundness: A primary goal of formal verification is reducing the possibility of design errors in
computer systems. Some verification exports adopt conservative approaches for error detection and
argue that such approaches meet this goal. When investigating if a design is correct, a conservative
method does not identify the erroneous designs as correct (it doesn’t generate false positives), but
it may identify some of the correct designs as erroneous (it generates false negatives). Even though
such methods don’t address completeness issues they are sound. However, the effort in reducing
the possiblity of design errors should not be interpreted in a such a way that a verification tool

identifies some of the design errors, but not others (generate false positives).

A formal verification method must be sound, i.e. it must identify all the design errors that exist in

a system.

Completeness: The state-of-the-art synthesis system today, employs complex techniques (in partic-
ular sophisticated optimizations) and generates designs that have equally complex and sophisticated
structural and control properties. Verification engineers have often found validation of general syn-
thesized designs a hard problem to tackle and its solution beyond immediate reach. Consequently,
they have resorted to simplifying this problem by restricting the freedom of the synthesis tools in
their design choices. These restrictions sometimes limit the permitted primitive constructs (struc-
tural constructs as well as control constructs) composing the design, and sometimes the construction
rules adopted in generating the design. Therefore, such methods are only effective in identifying
errors in design structures of a particular (usually basic) style. An ideal verification method has a

broad domain of application, and copes well with general moderately to highly complex designs.

Automation: Ideally, formal verification process should be completely automatable. Unfortunately,

for large classes of problems this promise has yet to be fulfilled.

The appeal of automatic formal verification is that it’s automated [28]. Formal verification is often a
tedious and time consuming activity that results in tremendous strain on the verification engineer.
Automating this effort reduces the verification time considerably. In addition, it minimizes the
expensive human labor. Close to one half of the total man-time and CPU-time in a design cycle
is dedicated to verification time. This is to say that automating formal verification process is

translated to increase in productivity and shortening the time-to-market cycle.

Efficiency: Even-though certain verification methods may be used theoretically to detect and
locate the errors in a generic synthesized design, they cannot deliver these results within practical
verification time. Also, some verification methods may require practically indefinite memory re-

sources (state explosion problem). It is apparent that such methods are very inefficient in practice.

An ideal verification method conducts the verification task using practical time and memory re-
sources. This ensures that simple and short specifications are verified with minimal resources, but
more importantly, that the time and memory requirements for verification of the designs of sub-
stantial size is reasonable. That is to say, a design with no complex constructs, that is specified
in two to three pages, should be verified in a few minutes, and the processing time of the more

complex specifications increases proportional to less complex specifications [1].

Validation: During a formal verification exercise, correctness proofs are generated automatically or
manually. An ideal formal verification methodology should provide a means to validate these proof
sessions through a trust worthy proof checking process[1]. Each completed proof session should
be validated by the proof checking mechanism. A trustworthy proof checker validates only correct
proofs. The proof checking mechanism should be independent from the reasoning mechanism. This

ensures that only sound proof steps were employed in the proof process.

Current methods and existing tools for formal verification of digital systems, posses some of these
features and characteristics, but lack others. As example, we can mention the successful efforts
made in the area of formal verification of industrial scale microprocessors [29, 57]. Such methods
are complete, sound, effective, and they often scale well, but may not be very efficient. Most
importantly, the degree of the verification effort that can be automated is negligible. Model checking
approaches are the example of methods that are generally sound and amenable to automation, but

are not scalable, complete or efficient.

1.2 Objectives

The primary objective of this dissertation is to develop a scalable, complete, sound, and effective
methodology for formal verification of digital systems at register transfer level of abstraction (RTL),
that is amenable to complete automation, and in addition, its correctness is provable by an au-
tonomous reasoning system. As the first step in achieving this objective, a coherent framework for
modeling, specification, analysis and verification of RTL designs has been developed. The formal
modeling, specification, and analysis procedures are developed as a side product, and to serve the
purpose of verification. Nonetheless, the discussions that cover these aspects present valid argu-
ments regardless of the context. Then, a formal verification methodology, and based on that a

verification system have been developed that meet the following goals:

e The verification system has a similar capacity to a typical synthesis system in terms of the
size of the designs it can manage. This system can be used for verification of the designs

generated by a realistic synthesis system.

e The verification method addresses the soundness and completeness requirements. A conser-
vative notion of correctness has been adopted in verification process. However, with respect

to this interpretation of correctness, the method is sound and complete.

e The method may be exploited for verification of a relatively inclusive subset of synthesized
designs. In particular, we have noted that the verification of iterative constructs (loops) and
pipelined synthesized designs present interesting research topic, but are not well investigated.
Loop unrolling technique is used in verification of general iterative constructs, and in syn-
thesis of pipelined iterative constructs. However, this technique cannot be applied when the
number of the iterations of the loop is not known in advance. Verification of the designs
with such loop constructs is very tedious and inefficient, if not impossible and these designs
are often excluded from the set of verifiable synthesized designs. We believe that such loops
are very real control constructs in synthesized RTL designs, and should be dealt with during
the verification process. Chapters 9 and 10 present a detailed study of pipelining in design
synthesis, and discuss verification issues involving non-pipelined and pipelined loops, and

pipelined synthesized designs.

e Finally, verification algorithms are developed to achieve significant improvement in processing
time over the existing tools and to avoid the exponential complexities of the BDD-based
methods.

1.3 Scope of Our Verification Approach

The term synthesis refers to the automated derivation of an implementation from a pregiven spec-
ification in a top-down manner. Synthesis is a hierarchical procedure, i.e. the implementation at
one level of abstraction, is the specification at immediately lower level (Figure 1.1). In a complete
synthesis process, a high-level behavioral description of the design (the specification at the highest

level of abstraction) is transformed into a layout (the implementation at the lowest level).

The complete synthesis of a design from the behavior description down to the layout is in general not
feasible in one step, but proceeds by the solution of a number of subproblems that are combined to
solve the general problem. Each subproblem is mapped to the problem of synthesis at a particular
level of the hierarchy. The complete synthesis of the design typically consists of three stages high-

level synthesis, logic synthesis and layout synthesis.

Behavior Specification

ARCHITECTURE behavior OF ex IS
BEGIN

PROCESS
VARIABLE var : BIT :=1’;
BEGIN
IFen =1 THEN
var ;= NOT var;
END IF;
ok <= var;
WAIT FOR 1 US;
END PROCESS;
END behavior;

High-Level
Synthesis

Register Transfer Level Design

Logic
Synthesis

Gate Level Design

Layout
Synthesis

Layout

Figure 1.1: Synthesis Hierarchy

"

During the high-level synthesis process, register transfer level (RTL) implementations are derived
from behavioral specifications. Logic synthesis transforms the specifications at the register transfer
level into gate-level implementations. Finally, in layout synthesis, a layout implementation is

extracted from a gate-level specification.

Since we are not interested in a synthesized design that does not work, it should be verified that
the synthesized design implements its specification correctly. As synthesis is a hierarchical process,

the verification of synthesized designs can also be performed hierarchically.

During the verification process, the implementation at each level of abstraction is compared with its
specification at that level (the implementation at an immediately higher level), and is correctness is
verified. If a design error at one stage of synthesis process goes undetected, the implementation in
that stage as well as the implementations at all the following stages will be erroneous. Therefore, it
is important to find design errors as early in the design cycle as possible. Based on this principle,
in developing a formal verification methodology the logical starting point is high-level synthesis
domain. This research focuses on verification of register-transfer level designs, generated through

high-level synthesis. In following section an overview of this process is presented.

1.4 An Overview of High-Level Synthesis Process

High-level synthesis systems generate register-transfer level designs from algorithmic behavioral
specifications (Figure 1.2) [21, 17, 61, 10, 66, 33]. The RTL design consists of a data path and a
controller. The data path consists of component instances selected from an RTL component library.
The controller is a finite-state machine (FsM) description subject to down-stream FSM synthesis.
High-level synthesis process begins by compiling the behavior specification into a control-data flow
graph (CDFG) representation. The CDFG typically consists of operator nodes representing the
arithmetic and logical operators in the specification and control nodes representing the control
flow operations in the specifications. The goal of the high-level synthesis system is to bind the
operator nodes to arithmetic-logic units (ALUs), specification variables and data dependencies to
registers and interconnect units, and control nodes to states in the controller FSM such that the

user constraints on speed and cost (area) are met.

High-level synthesis process typically involves five tasks: module selection and scheduling, function
unit allocation, register allocation, interconnect allocation and controller generation. Module selec-
tion and scheduling step selects a set of ALU resources from the RTL library while meeting any area
constraint and schedules the CDFG across control steps such that at any control step the selected
resources are sufficient to perform all the operations scheduled in that step and the clock-speed and

latency constraints, if any, are met. Binding refers to the final assignment of behavioral operators,

Behavioral
Specification

%CDFG

M odule Selection
and <heduling |
Oper ator | flags :
Allocation [> !
Register _>: Data Path Controller :
Allocation ['
| Control |
I nter connect | signals !
Allocation o _____ '
Controller
Generation
RTL design

Figure 1.2: High-Level Synthesis Process

variables and data/control dependencies to RTL ALUs, registers and interconnect units. By main-
taining links with the elements of the behavior specification throughout the high-level synthesis
process (as discussed, for example, by Thomas et al. [59], the high-level synthesis tool can generate
detailed binding information. As it can be seen in the following sections, this observation is the

fundamental ground for our verification method.

Scheduling may be viewed as the process of code motion in compilers combined with introduc-
tion/removal of temporary variables that hold values across control steps. High-level synthesis
tools in general, are oblivious to the mathematical properties of the operators used in the behav-
ioral specification. Further, while scheduling the ¢DFG, high-level synthesis tools do not perform
code motion across control flow operators in the CDFG such as conditional and iterative statement
boundaries. Such behavioral transformations (involving transforms like constant propagation, com-
mon subexpression elimination, code motion, dead-code elimination, loop unfolding, commutative
and associative rewriting of expressions, etc.) are performed prior to the commencement of schedul-
ing in a preprocessing step called behavior transformation [17, 61]. Proving the correctness of such
general behavioral transformations involves techniques similar to those used in program verifica-

tion. McFarland studied various behavioral transformations and proposed the algebra of behavioral

expressions as means to specify and verify their correctness [37].

In this research, we assume that the behavioral specification has already been transformed into
the desired algorithmic form before synthesis commences. Once submitted to the synthesis sys-
tem, it is not subjected to further behavioral transformation. High-level synthesis process is then
predominantly concerned with resource sharing. The goal of high-level synthesis is to determine
constraint-satisfying sharing among ALUs, registers and interconnections. To facilitate resource-
sharing, high-level synthesis tools perform scheduling which permits time sharing of resources whose

life times do not overlap across the scheduled time-scale.

During the scheduling process operations may be scheduled at any time-step as long as the data
and control dependencies are not violated. That is, if an operator is data-dependent on a source
operator, it can only be scheduled after the source operator is scheduled. Similarly, if an operator
is control dependent on a control operator then it is not scheduled until after the control operator is
scheduled. All scheduling algorithms in high-level synthesis assume that control operators introduce
sequential control flow points into the CDFG being scheduled [21, 17, 61, 10, 66, 33]. For example,
all operators inside a case statement are scheduled only after the deciding expression has been
scheduled. All statements following the case statement are scheduled only after all the branches
of the case statement are scheduled. All statements inside a while statement are schedule only
after the deciding expression has been scheduled and all statements following the while statement
would be scheduled only after the body of the while statement has been scheduled. This ensures
that the control flow branches in the behavior specification are preserved and no new control flow
branches are introduced. Scheduling, thus, is the process of implicit code motion possibly involving
introduction of additional temporary variables in order to explore the design-space to determine a

constraint-satisfying time-area tradeoff point.

Operator, register and interconnect allocation algorithms, which follow the scheduling step, are
typically based on clique partitioning [62] or graph coloring [5]. Register allocation involves binding
both the specification variables and any temporary variables introduced during scheduling to data
path registers. Typically, a compatibility graph or a conflict graph is formed following a life-
time analysis of the variables of the scheduled data flow graph. This graph is subjected to clique
partitioning (for compatibility graphs) or graph coloring (for conflict graphs) to obtain a near-
optimal register allocation subject to an interconnect cost model. Interconnect allocation is a
similar procedure during which buses are formed. Operator, register and interconnect allocation
algorithms perform no code motion and do not alter the control flow. Their focus is essentially on

resource sharing to meet cost (area) constraints.

There are two types of register allocation schemes used in high-level synthesis: wvalue based and
variable based. In value based schemes, each instance (value) of each variable may be bound to

a different register. In variable based schemes all instances of a variable are bound to the same

register. The first scheme yields a mapping from values to registers and the second scheme yields a
mapping from variables to registers. Value-based register allocation algorithms, such as the left-edge
algorithm [36] yield optimal results, but can only be used when the behavior specification doesn’t
have conditional branches and loops resulting in an interval compatibility graph. In the presence of
conditional and iterative constructs in the behavior specification, the life-cycles of variables form a
general compatibility graph and value based register allocation cannot be used. In this case one has
to use some form of clique partitioning or graph coloring depending upon whether a compatibility

graph or conflict graph has been formed.

The final step in the high-level synthesis process is controller generation [17]. During this stage an
FSM specification based on the CDFG schedule which determines the set of register-transfers to be
activated in each control step is generated. Typically, each control step in the scheduled flow graph
is turned into an FSM state, a transition is created between each control-step boundary and control
signals are asserted in that state to activate all register transfers scheduled at step in the data-path.
Conditional control flow nodes in the CDFG are turned into conditional states predicated on the

transition conditions which are supplied from the data path in the form of condition flags.

Synthesis process and verification process are tightly connected. FEach synthesis step, directly
influences the elements of the verification algorithm. We will provide arguments in the following

chapters to support this claim.

1.5 Background

Different approaches for verification of the RTL designs generated through high-level synthesis exist.
Simulation which has been the most traditional method of verification, is being replaced with more
formal methods in recent years. The rapid increase in the level of complexity of the designs, makes
it impractical, if not infeasible to subject them to all possible test patterns (exhaustive testing).
The use of random test patterns, on the other hand, could result in errors going undetected, thus

lowering the user’s confidence in the simulation exercise (random testing).

Formal verification methods rely on establishing by mathematical proof that designs are faithful to
their specifications. Since the correctness proof does not depend on specific input/output values, it
is not necessary to investigate all the input /output patterns, therefore, the problems with exhaustive

testing does not arise in this case.

10

1.6 Correctness

Verification in this class of design validation methods involves furnishing a proof that an imple-
mentation ’'satisfies’ a specification. The notion of satisfaction has to be formalized, typically in
the form of requiring that a certain formal relationship hold between the descriptions of the imple-
mentation and the specification. Various notions have been used by researchers, the semantics for

each of these ensuring that the intended satisfaction relation is met:

- Implementation is equivalent to specification (Imp = Spec),
- Implementation logically implies specification (Imp = Spec),

- Implementation provides a semantic model with respect to which specification is true (Imp |=
Spec).

1.7 Classification

Research in formal verification of synthesized designs can be classified as transformation based

synthesis (formal synthesis) and post-synthesis verification.

In transformation based synthesis, all the synthesis steps are formally proved by verifying the
correctness of each and every transformation involved in that step. Unfortunately, even though it
guarantees designs that are correct by construction, transformation synthesis is largely interactive.

It requires a large degree of human expertise on the part of the verifier.

In post synthesis verification the correctness of a synthesized design is mathematically established.
The verification process can be partially or fully automated and hence is usually transparent to the
designer. The disadvantage of this approach is that it is severely limited by design size and often,
demand computing resources that increase exponentially with design size. Model checking methods
in general suffer from this disadvantage and are usually not applicable to the real size industrial

designs.

1.8 Formal Verification Methods

Various proof methods can be used to formally establish the formal relationship between the spec-

ification and implementation:

11

Theorem Proving - Relationship between a specification and an implementation is re-
garded as a theorem in logic, to be proved within the context of a proof calculus, where the

implementation provides axioms and assumptions from which the proof can be deduced.

Model Checking - Specification is in the form of a logic formula, the truth of which is

determined with respect to a semantic model provided by an implementation.

Equivalence Checking - Equivalence of a specification and an implementation is checked,

e.g. equivalence of functions, equivalence of finite state automata, etc.

Language Containment - The language representing an implementation is shown to be

contained in the language representing a specification.

Any correctness relation between the specification and implementation can be established using each
of the proof methods, e.g. it can be proved by model checking that an implementation logically

implies the specification.

In this work, we propose a post synthesis verification methodology, which establishes the correct-
ness of synthesized designs, by verifying that the specification and implementation of design are

equivalent, through theorem proving.

1.9 Formal Proof Process

A formal proof process typically consists of the following steps:

e Adopting a general proof method and an appropriate logic framework.

e Stating the premises or the known facts about the situation in hand using the formal language
of the adopted logic.

e Stating the property (or properties) to be proven using the formal language of the adopted

logic (e.g. as a theorem of logic or as as boolean formula).

e Decomposition of the problem in case of a property requiring a complex proof. A complex
problem may usually be split into several simpler and more manageable problems. Then the
proof of each sub-problem may be independently derived. In this case an additional proof
step is required to show that the proof of the sub-problems collectively imply the proof of the

original problem.

e scheming a proof strategy and accordingly constructing a proof using the premises and the
deduction rules of the adopted logic.

12

e Validating the proof by an independent proof checker to ensure the soundness of the deductive

steps.

Validating a digital design by constructing a formal proof of its correctness is similar to any other

formal proof procedure:

At the first step, a general proof method is adopted. The choice of a proof method to a great extent
depends on the type of the design properties that need to be validated. The choice of the method
in question in turn influences the choice of the logic framework. For example, in a model-checking
approach temporal logic, and in a theorem-proving approach propositional logic, or higher-order

logic can be the logic of choice.

The next step is to is construct a formal model of the system. This is done by converting the
design into a formal description using the language of the adopted logic. This procedure is usually
a compilation task. The model of the system captures those properties that are essential for
establishing the correctness of the design. At the same time, this model should abstract away
those details of the system that do not affect the correctness proof, but complicate the proof effort.
Abstraction mechanisms may be used to eliminate unimportant or irrelevant details of the design
during the modeling process. In addition, the known properties of the design may be expressed as
premises, using the formal language of the adopted logic. These premises may be utilized during

the proof construction process.

At the third step the property (properties) that the design must satisfy are stated in some logical
formalism. The remaining steps are as sketched above. If necessary, the problem is decomposed,
a strategy is schemed, and a logical proof is constructed. This proof is then validated by a proof

checker.

When planning a proof exercise in general, and when planning a design validation proof procedure
in particular, the possibility of automating the effort partially or completely shall be investigated.
It is not yet possible to generate arbitrary complex proofs automatically. However, for specific
classes of problems, where proofs are long but simple, and development of precise proof strategies

is possible, the proof process may be automated.

A particular formal verification exercise usually entails tedious repetition of similar proof steps.
A deep study of specific strategies used during this exercise, and extensive experimentation is
required for precise identification of these similar proof steps. This also serves as an accurate
assessment of the amount of reasoning effort that may be automated. One goal of this research

plan is development of automated proof strategies to be used in formal verification process.

The formal verification methodology introduced in the dissertation follows these steps to prove the

correctness of the designs. Chapters 3, 4, 6, 7 and 8 discuss each step in our proof process in detail.

13

1.10 Overview

This research introduces the notion of synthesis aware post-design verification and presents a for-
mal approach for functional verification of synthesized RTL designs. Contributions of the research
include formalization and formulation in higher-order logic in a theorem proving environment math-
ematical models for the register transfer level synthesized designs and their behavioral specifications
and a set of sufficient correctness conditions for these designs. It presents an in depth study of
pipelining in design synthesis, and identifies the complete set of correctness conditions for RTL de-
signs generated through the synthesis processes that employ pipelining techniques. This approach
has been implemented in a verification tool integrated with a high-level synthesis system. The tool
performs model extraction, correctness condition generation and proof generation automatically

and without user interaction.

We focus on register transfer level designs that are generated from algorithmic behavioral spec-
ifications by a high-level synthesis tool. The high-level synthesis process consists of dependency
graph scheduling, function unit allocation, register allocation, interconnect allocation and controller
generation tasks. Widely used algorithms for these tasks retain the overall control flow structure
of the behavioral specification allowing code motion only within basic blocks. Further, high-level
synthesis algorithms are in general oblivious to the mathematical properties of arithmetic and logic
operators, selecting and sharing RTL library modules solely based on matching uninterpreted func-
tion symbols and constants. Many researchers have noted that these features of high-level synthesis
algorithms can be exploited to develop efficient verification strategies for synthesized designs. We
present discussions on how to apply the knowledge of methodical design to identify system proper-
ties that are the consequence of the construction methods, and report a verification methodology
that effectively exploits these properties to achieve efficient and fully automated verification of

synthesized designs.

The dissertation presents a notion of correctness of the systems in general, and RTL designs in
particular based on observation equivalence of the synthesized design and its behavioral specifica-
tion. We propose a decomposition for the verification problem and through a formal proof show
that a set of smaller and simpler design correctness lemmas can collectively capture the correctness
condition of an RTL design. Based on this decomposition the proof of correctness of a design is

reduced to the proof of design correctness lemmas.

To be able to reason about the design formally, and generate the proof of correctness of the design,
we model the behavior specification and its RTL implementation as extended finite state machines,
then formulate these models as axioms of higher order logic. The proof of correctness of design
lemmas can then be generated by simplifying it into subgoals, then proving each subgoal using the

inference rules of higher order logic and design axioms.

14

The work introduces a verification tool developed on this basis. This tool has multiple engines to ex-
tract formal models of behavior description and its RTL implementation, and the design correctness
condition lemmas. Also, as the proof of the design correctness lemmas consist of many repetitive
steps, as part of the verification tool a completely automated engine for generating these proofs
has been developed. This engine generates the proofs by constructing proof strategies consisting of

repetitive proof steps.

The dissertation also focuses on pipelining in design synthesis. In synthesis of digital designs three
different types of pipelining techniques may be used: structural pipelining, functional pipelining
and loop winding. We show the usefulness of our approach in presence of structural pipelining.
We show that our verification method can be extended to accommodate verification of RTL designs
that are synthesized from multi-cycle pipelined or non-pipelined resources by developing the library
of formal descriptions of synthesis resources in such a way that the formal descriptions of these
components capture their particular behavior. This particular behavior is reflected during the

verification exercise when the formal descriptions of these components are instantiated.

Also, we discuss the verification of synthesized implementations of iterative constructs in general,
and pipelined iterative constructs, in particular. We discuss loop-winding, a design technique used
to optimize the execution delay of a loop, and on that basis functional pipelining, a design technique
used to optimize the overall execution of a general design. We show that synthesis and therefore
verification of pipelined designs are different from synthesis and verification of non-pipelined designs
and point out these differences through a detailed analysis. Then, we present extensions of our
verification method to account for loop-winding and functional pipelining in a synthesized designs.
We present a set of three correctness conditions for pipelined synthesized designs, and prove that

these three correctness conditions are sufficient for verifying these deigns.

1.11 Outline of the Thesis

This dissertation thesis is organized in two parts. The first part discusses the verification of syn-
thesized RTL designs in general. The second part of the dissertation focuses on verification of loop
implementations, and pipelined synthesized RTL designs. The chapters are organized as follows:
Chapter 2 presents a survey of related research. A general notion of correctness based on the be-
havior of the designs is presented in Chapter 3. The discussions in Chapter 4 are concentrated on
modeling and formal specification of the behavior specifications that are the input of the synthesis
system and the synthesized RTL implementations. In Chapter 5 we present a detailed study of
high-level synthesis process, and show how the synthesis knowledge can be deployed for developing
effective verification methods. Chapter 6 presents a formalization of our verification technique.

Our hierarchical proof construction process is described in detail in Chapter 7. Chapter 8 intro-

15

duces a formal verification tool based on the concepts presented in this dissertation. The issues in
verification of special synthesized designs such as the implementation of loops or implementation
of pipelined synthesized designs are discussed in Chapter 9 and Chapter 10. Chapter 11 is a pre-
sentation of the implementation issues and results, and finally, concluding remarks, some avenues

for future research, and a summary of contributions are presented in Chapter 12.

16

Chapter 2

A Survey of Related Research

Several authors have devised techniques for verification of synthesized designs. Verification methods

commonly used for verification of digital designs may be categorized as follows:

2.1 Transformation Based or Formal Synthesis Methods

Transformational approach to hardware synthesis has been pioneered by Johnson [30]. Vemuri
[64] and Feldbusch and Kumar [20] proposed converting RTL implementation into a normal form
where it can be compared with the behavior specification in a straight-forward manner. However,
transformation into normal form seems to be possible only for restricted classes of designs. Rajan
[61] addressed the same question using theorem proving by formalizing both the transformations
and their correctness in the PVS theorem prover. Eisnbiegler and Kumar [19] used tight integration
of high-level synthesis with theorem proving to perform synthesis and verification hand-in-hand.
McFarland [37] developed behavior ezpressions for abstract specification of behavior and described
how such expressions can be used to examine the correctness of behavioral transformations used
in the high-level synthesis system SAW [61]. Aagaard and Leeser [3] reported a formally verified
logic synthesis tool. Kropf et al. [35] presented a formal high-level synthesis approach in which the
target architecture, based on handshake processes, is produced using a few basic primitives. Proof
obligations are automatically generated during the synthesis process. The approach presented in
this paper has a similar goal, but aims to incorporate proof obligation generation within the context
of conventional target architectures used by traditional high-level synthesis tools. Narasimhan and
Vemuri [46, 45] systematically formulated the correctness properties for certain high-level synthesis
stages. They identified a set of assertions and invariants that should hold at various steps of high-
level synthesis process. These invariants were inserted in the high-level synthesis tool DSS [53] to

detect and isolate the errors in a specific run of the tool. Our verification technique follows the

17

same goal in a different approach and is also integrated with DsS.

2.2 Post-Design Verification Methods

Hunt [29] presented a formal specification and verification of the FM8501, a simple general purpose
microprocessor. In his verification exercise, a microcoded architecture is proved to implement an
instruction-level description of machine behavior. Srivas and Miller [57] reported the verification
of AAMPS5, a pipelined commercial microprocessor. They have formalized the macro-architecture
and micro-architecture in the logic of the PVS theorem prover [55]. Their correctness conditions
are based on comparing the micro-architecture with the macro-architecture at wvisible states, an
approach typical of processor verification efforts based on theorem proving [68]. The comparison
is carried out using the rewriting strategies in PVS. An abstraction function that returns the
macro-state corresponding to a micro-state is defined to aid the process of comparison. In our
method, the critical state binding, which may be viewed as the inverse of the abstraction function,
is automatically generated during synthesis. However, we have not yet applied our method to
pipelined structure synthesis. These two verification exercises are conducted manually. The verified

designs are far superior in terms of size and complexity to the automatically verifiable designs.

Devadas et al. [54] developed methods to verify equivalence between sequential machines at RTL
and logic levels. Their method depends on extracting state transition graphs from the two finite
automata exploiting don’t care information. Corella et al. [16] verified synthesized designs by back-
annotating the specification with clock statements according to the schedule. Claesen et al. [11, 12]
developed a method to compare implementations at register-transfer and switch levels against signal
flow graph specifications. Their method is based on partitioning the signal flow graph into disjoint
acyclic subgraphs formed by reference signal boundaries. Then both the subgraph specification
and the corresponding implementation fragment are symbolically simulated [7]. The resulting sym-
bolic expressions are compared using standard OBDD [8] techniques. The method of identifying
critical states used in this paper is comparable to SFG partitioning. However, our verification strat-
egy itself is based on automatically generating axiomatic definitions of the behavior specification
and RTL implementation and automatically generating proof scripts for theorem prover. Corella
[15, 14] focussed on control flow properties by using uninterpreted functions to represent data path
elements. Burch and Dill [9] used similar ideas to develop an efficient validity checker for a logic of
uninterpreted functions with equality and used it to verify the control logic in pipelined micropro-
cessors. The method discussed in this paper also uses uninterpreted functions and constants but
uses standard decision procedures in a high-order logic theorem prover. Our method is developed
in the context of and is fully integrated with a high-level synthesis system so that all formal models,

correctness conditions and proof scripts are automatically generated as a byproduct of the synthesis

18

process. Aagaard et al. [4] attempted hardware verification with smart tactics. They discovered
that in doing hardware proofs, the user follows the same reasoning repeatedly and aimed to capture
this reasoning. The verification system discussed in this paper uses the information generated by
synthesis tool for generating the verification tactics. It is similar to the smart tactics method in
that (1) it supports hardware verification that is used in higher order logic theorem proving, and
(2) automates the repetitive reasoning found in hardware proofs. It is different from smart tactics
in that (1) verification using smart tactics requires some interaction with the user, while our proofs
are carried out with no user interaction; (2) as part of the proof, smart tactics method maps the
design correctness goals into a set of simpler subgoals, but we decompose the main correctness goal
into a set of sub-lemmas that are proved independently; and (3) our verification system tailors the
proof for each individual design and can always prove the correctness of a design (if a proof exist),
but this is not the case with smart tactics. Windley [67] presented an engineering methodology for
verifying microprocessor designs and proposed the integration of verification tools with CAD tools

as the next step in research. The work presented in this paper conforms with this idea.

2.3 Symbolic Simulation Methods

Moore [42] discussed symbolic simulation of formally specified systems. He suggested that with a
symbolic simulation capability, an engineer can ‘run’ a design on certain kinds of in-determinant
data, thereby covering more cases with one test. He used the ACL2 theorem prover for formally
specifying the designs in his experiments. Also, in [25] Greve described how symbolic simulation
was applied in the development of JEM1, the world’s first JAVA processor. In his experiments on
the application of formal methods to the verification of microcoded microprocessors he discovered
that many of the errors that were ultimately detected in formal models were revealed during the
symbolic simulation of the microcode, rather than during equivalence checking with an abstract
specification. PVS is used for the specification of JEM1. Rajan [52] et al. studied various issues
in combining theorem proving and symbolic simulation. They experimented with specification and
verification of a bounded stack at differing levels of abstraction. They used HOL theorem proving
at higher abstraction levels, and VOSS symbolic trajectory evaluation at the switch level. Symbolic
simulation is a post-design verification approach. We categorized these methods separately since
they have common features. All these methods benefit from the expressive power of theorem
proving for formally specifying the designs, and by taking advantage of symbolic simulation, they

automate the proof effort.

19

2.4 Simulation-Based Methods

Bergamaschi and Raje [6] defined a notion of behavior-RTL equivalence compatible with the specifi-
cation’s simulation behavior. Their technique depends on generating additional hardware to raise a
synchronization signal at the points of comparison. These synchronization points, called observable
time windows, are identified based on a notion of equivalent states which is very similar to the one
used in this paper. However, in contrast to Bergamaschi’s approach targeted to simulation, our
method is targeted to fully-automated formal verification. No support hardware is necessary in our
method.

2.5 Discussion

In general, all the developed methods for formal verification of correctness of synthesized designs
take advantage of the features and limitations of the synthesis and optimization algorithms that
generate design structures in a particular style. These methods mostly resort to syntactic or
symbolic comparisons avoiding the combinatorial explosion problem involved in introducing more
general notion of correctness based on, for example, Boolean equivalence. Our method also takes
advantage of the nature of the high-level synthesis algorithms. In addition, our method is fully
integrated with a high-level synthesis tool such that both the correctness theorems and their proofs
are automatically produced as auxiliary outcomes of the synthesis process. These proofs are then

readily processed by a higher-order logic proof checker.

20

Chapter 3

Correctness

The design of a digital system starts from an abstract description of its behavior (specification).
This description specifies the operations that the system to be designed is required to perform
and a set of constraints that it should satisfy. The designer or the synthesis tool then generates
an architecture which realizes that behavior and meets the constraints (implementation). More
than one structure may realize a specification, therefore a specification may have more than one
implementation. The correctness of an implementation designed by a designer or generated through
synthesis is usually suspect and hence should be verified. The notion of correctness of designs is a

relative concept; a design is correct if it is faithful to its specification.

Various criteria for defining the correctness of a design exist, and consequently, various aspects of
a design may be verified. The efforts in verification of synthesized designs are mainly categorized
into two classes: performance verification efforts and functional verification efforts. While the cor-
rectness of performance of a design is verified with respect to its specified constraints, its functional

correctness is verified with respect to its specified behavior.

This work is focused on functional verification of digital designs. Functional verification algorithms
inspect if a design is faithful to its specified behavior. If the operation of a system satisfies its
specified behavior, it is considered to be functionally correct. Before discussing the subject of
functional correctness of the systems any further, we should precisely define the two terms “satisfy”

and “behavior”.

In Section 1.5 we mentioned that the notion of satisfaction is formalized by requiring that a certain
formal mathematical relation between the specification of a system and its implementation hold.
One such satisfaction relation is equivalence, i.e. the implementation of a system is considered
correct if it is equivalent to its behavioral specification: (Imp = Spec). We have adopted this

interpretation of the correctness as the basis of our formal verification approach. The equivalence

21

relations may be defined between any two designs, whether they are at the same or different levels
of abstraction, or whether they are both specifications, both implementations or else. However, in
this discussion we concentrate on defining the equivalence between specification of a design and its
implementation at a lower level of abstraction (even though the discussion may be easily extended

to the cases mentioned above).

In this chapter we introduce two different interpretations of equivalence: observation equivalence
and strong equivalence. Observation equivalence is defined based on the observable behavior or for
short behavior of a design. As opposed to that, strong equivalence of the designs is defined in terms
of their observable behavior as well as their internal function or internal behavior. Therefore, to
discuss various interpretations of equivalence, first the notion of behavior of a design should be

precisely defined.

3.1 Behavior

A precise notion of behavior is an essential part of a theory of complex systems. Behavior of a
system is nothing more or less than its entire capability of communication [41]. “The behavior of
a system is exactly what is observable, and to observe a system is exactly to communicate with

it” [41]. This is the central idea of observation equivalence.

In contrast to observable behavior or simply the behavior of a system which is defined entirely
in terms of its communication with environment, and independent from its internal structure and
operation, its internal behavior precisely involves those aspects. The internal behavior of a system
is defined by its temporal domain and its value holding elements (such as variables and registers).
We can consider an abstract notion of time for a system based on the changes in its internal state.
A change on the internal state of the system occurs when a new value is assigned to a value holding
element or when a change in flow of control takes place (e.g. a procedure is called, or a based on

the value of a variable a decision is made).

Each specification is viewed as a system. This system is internally defined by its set of value holding
elements (variables). The temporal domain of the specification system consists of all the various
states that the system goes through due to the operations on its variables. The internal state
transitions of the specification are transparent to an observer of its behavior. In fact only those
points of its temporal domain and those variables have significance in defining its behavior that at

those points and through those variables it communicates with its environment.

The implementations are also viewed as systems. The structural implementations generally consist
of a set of components and a control unit that determines the intercommunication of the compo-

nents. The implementations temporal domain consists of all distinct states of its controller. The

22

implementation is internally defined by its temporal domain and its components. The internal
details of the implementation are transparent to an observer of its behavior. Only those points of
its temporal domain and those value holding components have significance in defining its behavior

that at those points and through those components it communicates with its environment.

3.2 Equivalence

Informally, two systems are equivalent, if they have equivalent behaviors. If two systems have
equivalent observable behaviors they are said to be observation equivalent. If two systems have
equivalent internal behaviors they are strongly equivalent. The following defines the equivalence
between the two systems under the assumption that they start operation from equivalent internal

states:

Definition 3.1 Two systems are observation equivalent iff their communication with their

environment is in the same order and with the same values.

Definition 3.2 Two systems are strongly equivalent iff their cycle to cycle internal behaviors

are equivalent.

where the internal behavior of a system at each cycle involves its internal value holding elements

in addition to its communication with environment.

In high level synthesis domain the implementations are register transfer level architectures that
are generated from the algorithmic specifications. There is no assurance in correct function of
synthesis tool, therefore, the correctness of the implementations generated by this tool is also
under question. A synthesized RTL design is considered correct if its behavior is equivalent to its

specification’s behavior.

Consider a specification system S. The specification S may have multiple implementations. In
order to accept a system I as an implementation of the system S, it should be established that
they have the same behavior. An RTL implementation I consists of a control unit and a data-path
which is an interconnection of components. The components can be divided into value holding
components (registers), value passing components (multiplexers and buses) and functional units.
The registers are of two types architectural registers and temporary registers. An architectural
register physically represents a variable in specification. The temporary registers, on the other
hand, hold the intermediate results of register transfer operations and do not correspond to any

variable of specification.

23

We assume that a graph G represents the operation flow of S and a graph G; represents the
control flow of the operations specified by the controller of I. Also we assume that the behaviors
of S and I are mathematically formulated by the two tuples (Es, As) and (E;, \;), respectively. F
is a regular expression defined as Es; = (in + out)*. A, is a string of values that the variables in the
specification can assume, and is defined by A; = {val | val € D,}* and length(Es) = length(As)-
The expression E; and the string of values)\;, describing the behavior of I are similarly defined.
The elements of the expression E (E;) and the string A; (A;) respectively denote the direction
(input or output) of the communication of the system S (system I) with the environment and the
exchanged values in each communication. For example, given the k-th element of E; to be out and
the k-th element of A; to be valy then the k-th communication of the system I with its environment
is a write operation in which it outputs the value valy. Then under the Assumptions 3.1 and 3.2

given below the equivalence of the two systems S and I may be defined.

Assumption 3.1 The operation environments of S and I assure that the two systems have equiva-
lent initial internal states, i.e. the initial value of each variable in S is the same as its corresponding

architectural register in I.

Assumption 3.2 All the states of G, the operation flow graph of S, are reachable from its initial
state, and likewise, all the states of G;, the operation control flow graph of I, are reachable from its

initial state.

Definition 3.3 An implementation design I is observation equivalent to a specification S if the

terms (Es, \s) and (E;, \;) describing their behavior are syntactically equivalent.

The internal behavior of a system is usually defined in terms of the contents of its value holding
elements (e.g. variables, registers, ...) at each state and the effects of the operations and value
transfers on these values. In this discussion, we define the internal behavior of specification S at
each state, based on the values of the variables present in this description. Similarly, the contents
of the architectural registers of implementation I at each state, define its internal behavior. Then

the strong equivalence between S and I may be equivalently phrased as:

Definition 3.4 An implementation design I is strongly equivalent to a specification S, iff (1) 1
and S are observation equivalent, and (2) at the end of each operation cycle, each variable in S

and its representative architectural register in I hold equivalent values.

24

Discussion

When G, and G; are purely sequential graphs, verifying the observation equivalence of the specifi-
cation S and its implementation I consists of a syntactic comparison of the regular expressions Fj
and F; and the strings of values A; and A;. However, when iterative or conditional constructs are
present in G and/or G, extracting the regular expressions Es and E; is often difficult or infea-
sible. Consequently, the verification of observation equivalence between a behavioral specification
and an RTL design in general is considered an intractable problem. Verification of strong equiv-
alence between a behavioral specification and an RTL design is at least as difficult as verification
of observation equivalence between them. Therefore, this problem is in general intractable also.
However, for particular classes, of designs, or for designs with certain properties specific practical
solutions to the problems of observation equivalence verification or strong equivalence verification
may be found. In the following section we will discuss a specific case when the equivalence of the

two systems may be verified.

3.3 Equivalence Checking through Decomposition

Consider a system S a single process, asynchronous specification of the behavior of an RTL design.
We assume that S has m distinct variables, and its operation flow is defined by the operation
flow graph Gs. G5 may be decomposed into directed acyclic subgraphs (DAGS) gs,, Gsqs - -5 Gs,,
with overlapping initial and final states. The states across which G is divided consist of: (1) split-
merge points of a conditional construct, (2) enter-exit point of an iterative construct, or (3) transfer
points of a procedure. Such states only represent transfer of the control flow, and in a behavior
specification no operation occurs in these states (the values of the variables do not change in such
states). We can reconstruct a graph G’ from Gy by replacing each directed acyclic subgraph g,

with a box labeled g;,. Then, each box in the graph represents a hyper-state (Figure 3.1).

Now, consider a system S’ composed of n subsystems s1, s, .., s, (Figure 3.2) such that:

(1) Each sub-system s inherits the m variables of the specification S.

(2) The interface of each sub-system sy is defined as follows: (a) in operation flow graph G, if at
some state of the sub-graph g,, the system S reads/writes a value from/to an input/output,
then the main input/output of the sub-system sy, is directly connected to the input/output of
S'; (b) if in G} a subgraph g, exist such that there is a directed edge from g, to gs, , then si
has an array of m additional inputs ing[m]; (c) if in G§ a subgraph g, exist such that there

is a directed edge from g, to gs;, then s has an array of m additional outputs outy[m)].

(3) The interconnection of the sub-systems of S’ is defined by the interconnection of the hyper-

25

| . out

out

OO~

(a) G

Os2

Os3

Os4

Os5

Figure 3.1: Constructing G/ from Gq

26

out

out

states of the operation flow graph G%. If in the operation flow graph G¥ a directed edge from
gs; to gs; exist, then the outputs out;[m] of sub-system s; are connected to the inputs in;[m]

of the sub-system s;.

(4) At the sub-system level, the operation flow of each sub-system s is defined by a directed
acyclic sub-graph g;k. g;k is identical to the directed acyclic subgraph g,, in G except in
two ways: (1) if in G a subgraph g;; exist such that there is a directed edge from g, to gs,,
then g; is modified so that at its initial state, the values of all the m variables of s are read
from the inputs ing[m], and (2) if in GY a subgraph g, exist such that there is a directed
edge from g5, to gs,, then ggk is modified so that at its final state, the values of all the m

variables of sj are written to the outputs outg[m).

(5) At the system level the operation flow of S’ is defined by an operation flow graph G%. G’
is identical to G, except that each subgraph g5, of G is replaced by the slightly modified
sub-graph g;k described above.

It is straightforward to prove by construction that the two systems S and S’ are strongly equivalent.
Since equivalence is a transitive relation, for verifying the equivalence of a system S with a system
1, it is sufficient that the equivalence of S’ and I be verified. Following a similar reasoning a system

I' equivalent to I, the RTL implementation of S may be constructed.

We assume that I has m’ distinct architectural registers, and its operation flow is defined by an
operation flow graph G;. G; may be decomposed into directed acyclic subgraphs g;,, gi,, ---, gi ,
with overlapping initial and final states. Similar to the previous case, the states across which G;
is divided consist of: (1) split-merge points of a conditional construct, (2) enter-exit point of an
iterative construct, or (3) transfer points of a procedure. Such states only represent transfer of the
control flow, and in a behavior specification no operation occurs in these states (the values of the
variables do not change in such states). G} is constructed by replacing directed acyclic sub-graphs
of G;, exactly in the same way that G was constructed by replacing directed acyclic sub-graphs
of G.

Now, consider a system I’ composed of n’ communicating subsystems i1, %9, ..., i, (Figure 3.3)
such that:

(1) Each sub-system i inherits a replica of the data-path of I. Then assuming that the data-path
of I has m' distinct architectural registers, each subsystem i has also m' distinct architectural

registers.

(2) The interface of each sub-system iy is defined as follows: (a) in operation flow graph G, if at

some state of the sub-graph g;, the system I reads/writes a value from/to an input/output,

27

Os1 in sl
outl[m]
in2[m]
952 s2
out7[m]
out2[m]
97 out s7 out
in3[m] in4[m]
in7[m|
%3 %4 out s3 s4 out
out3[m] out4[m]
in5[m]
%5 s5
out5[m]
in6[m]
%6 s6
outé[m]
(a) G, (b) '

Figure 3.2: Composition of S’ from Communicating subsystems

28

then the main input/output of the sub-system iy, is directly connected to the input/output of
I'; (b) if in GY a subgraph g;; exist such that there is a directed edge from g;; to g;,, then iy
has an array of m’ additional inputs ing[m']; (c) if in G} a subgraph g;, exist such that there

is a directed edge from g;, to g;;, then i; has an array of m' additional outputs outy[m'].

(3) The interconnection of the sub-systems of I’ is defined by the interconnection of the hyper-
states of the operation flow graph GY. If in the operation flow graph GY a directed edge from
gi; to g;; exist, then the outputs out;[m'] of sub-system i; are connected to the inputs in;[m/]
of the sub-system i;.

(4) At the sub-system level, the operation flow of each sub-system iy is defined by a directed
acyclic sub-graph g; . g; is identical to the directed acyclic subgraph g;, in G} except in two
ways: (1) if in GY a subgraph gs; exist such that there is a directed edge from g, to g;,, then
gék is modified so that at its initial state, the contents of all the m' architectural registers of
i are read from the inputs ing[m'], and (2) if in G a subgraph g, exist such that there is
a directed edge from g;, to gs;, then gék is modified so that at its final state, the contents of

all m' architectural registers of iy, are written to the outputs outy[m/].

(5) At the system level the operation flow of I is defined by an operation flow graph G.. G
is identical to G} except that each subgraph g;, of GY is replaced by the slightly modified
sub-graph g; described above.

Like in the previous case, the two systems I and I’ are strongly equivalent. Due to transitivity of
the equivalence relation, instead of verifying the equivalence of a behavior specification S with its
RTL implementation I, it is sufficient that the equivalence of the systems S’ and I’, constructed as

described above, be verified.

As we mentioned before due to the presence of non-sequential constructs in G, and G}, extracting
the regular expressions representing the behavior of these systems, and therefore, verifying the
observation equivalence of S’ and I’ in most cases is an intractable problem. However, this problem

is solvable in special cases.

Consider the case where two following verification preconditions are met: (1) n = n/, i.e. the
mapping relation between the sub-systems of S’ and sub-systems of I’ is a bijection. (2) I’ is
implemented such that each sub-graph g;, of G’; uniquely represent the operations described by g,
of G',. This means that each sub-system i of I’ is the implementation of the sub-system s of S.
Then by verifying the observation equivalence of the pairs of sub-systems s; and i, the equivalence
of §" and I' may be verified. This notion of the equivalence between S’ and I’ is stronger than the

observation equivalence, but weaker then strong equivalence.

29

91

g

Y2
93 Gia
95

\
!

96

L]

(a) G

out

out

777777 out7[m’]| -------

=

in7[m’]

outé[m’]

(b) I

Figure 3.3: Composition of I’ from Communicating subsystems

30

out

out

Let’s assume that we can show that each pair of the sub-systems s; and i are observation equiva-

lent. If we denote the observation equivalence of two sub-systems by =, then:

Vi, 1<k<n : sy = i

That is to say:

(a) S" and I' communicate with the environment in the same order and with the same values,

then S’ is at least observation equivalent to I':

SI = II

(b) At the final states of each pair of operation graphs g, and g;, the values at the outputs
outy[m] of sy are the same as the values at the outputs outyg[m| of ix. This means that at
the final states of each pair of operation graphs gs, and g;, the corresponding pairs of the
variables of S’ and the architectural registers of I’ have the same values. In other words, when
the operation cycle of each corresponding pair of sub-systems s of S’ and i of I’ terminate,

S’" and I' have equivalent internal states.

Now, it becomes apparent that the equivalence between S’ and I' is stronger than observation
equivalence. Therefore, given the mentioned verification preconditions, and the decompositions
discussed by verifying observation equivalence at the sub-system level, a stronger equivalence rela-

tion at the system level may be verified.

It should be noted that in the proposed decomposition, each operation flow graph g;, and similarly
each operation flow graph g;, is a directed acyclic graph, therefore, the operation flow of each
sub-system of S’ or I’ is purely sequential. Then if a system S and its RTL implementation I sat-
isfy the mentioned verification preconditions, by decomposing the system as suggested, extracting
regular expressions describing the behavior of each sub-system s; or i, and therefore verification

of equivalence between S’ and I' (and consequently between S and I) is always feasible.

We consider observation equivalence checking under the above mentioned preconditions an invalu-
able verification exercise. In the following chapters we will show that even though the required
verification preconditions are very restrictive in general, they cover the verification of a broad class

of synthesized implementation.

It should be noted that by analyzing the properties of S and I it is not possible to determine if a

bijective mapping between the sequential sub-systems of S and I exist or not. The design properties

31

that may effectively exploited for verification purposes are usually a consequence of the construction
method, and not inherent in the design. Therefore, the study of the design construction methods

is more effective than the analyzing a design in identifying such properties.

The observation equivalence checking based on the proposed decomposition and under the men-
tioned verification preconditions is the basis of the verification methodology presented in this dis-
sertation. We will discuss the validity of this decomposition in a more formal setting and in more

detail in the following chapters.

32

Chapter 4

Formal Specification and Modeling

This chapter discusses formal modeling and formal specification of the behavior specification and its
RTL implementation. In previous chapters we introduced a notion of correctness for the implemen-
tation of an RTL design that is based on the observation equivalence of this implementation with its
behavior specification. In this process the (observable) behaviors of the algorithmic specification
and the RTL implementation are compared. In order for this comparison to be meaningful, their

behavior should be mathematically formulated.

This process involves (1) constructing suitable models of the behavior specification and RTL imple-
mentation that appropriately describe their behavior, (2) selecting a logic that is expressive enough
to mathematically specify the behavior of the designs, and (3) formulating the models of design in

the language of selected logic. The following sections discuss these steps in detail.

4.1 Modeling

In verification domain, the model of the system should capture those properties that are essential
for establishing the correctness of the design. At the same time, this model should abstract away
those details of the system that do not affect the correctness proof, and at the same add to the
complexity of proof generation task. Abstraction mechanisms may be used to eliminate unimportant
or irrelevant details of the design during the modeling process. In addition, the known properties
of the design may be expressed as premises, using the formal language of the adopted logic. These

premises may be utilized during the proof construction process.

The nature of abstract specification - that is a description of behavior - and the structural imple-
mentation - that is a physical realization of that behavior, are inherently different. The specification

of an RTL design is an algorithm-like description. Its implementation, on the other hand, is a de-

33

scription of an architecture. During the synthesis process, the behavioral specification goes through
many transformations, so that its RTL implementation that is the final result of synthesis, bears
little resemblance to it. In order to compare these two completely different entities, a common
ground for their comparison should be found. It is part of the modeling task to identify common

properties of these entities and provide the required common ground.

We have aimed at constructing models that specify a system as a relation between the sequence
of values on its inputs and outputs. This modeling is suitable for our verification purpose, since
it contains properties of the design that are essential for observation equivalence checking, while it

abstracts away those aspects of the design that bear no relevance to the verification exercise.

The behavior specification is actually nothing but a description of the sequence of the operations
that a correct design performs in their particular order. Some of these operations are conditional,

repetitive or - -+ which are specified using various behavior constructs.

The RTL design consists of a data-path and a controller. The register transfer operations performed
in the RTL implementation, as well as the order in which they are performed, are determined by

the controller. The controller of an RTL design is usually modeled by a finite state machine (FSM).

In Chapter 3 we mentioned that the flow of operations in a behavior specification may be captured
by an operation flow graph. Also, we mentioned that the control flow of the operations in an RTL
design may be captured by an operation control flow graph. This suggests that extended finite state
machines are good candidates for modeling the operation flow of these designs. In the specification
model, the finite state machine in conjunction with the set of statements define the behavior. In
the implementation model, the finite state machine in conjunction with the data-path define the

behavior. This is the reason they are referred to as extended finite state machines.

4.2 Specification

In high-level synthesis framework the behavior description of the design as well as the synthesized
RTL design are usually specified using a hardware description language (HDL) like Verilog or VHDL.
Also, the behavior of each component of high-level synthesis resource library is described in a
hardware description language. It is often not possible provide comprehensive formal semantics
definitions of the HDLs. Besides, it is often not possible to formally reason about the designs
specified in such languages. Therefore, to develop a successful verification exercise, it is necessary

to translate the HDL description of the design into a formal specification medium.

Formal specification is the use of mathematical logic as a notation for describing the systems

precisely. The main benefit of formally specifying a system is intangible - gaining a deeper under-

34

standing of the system being specified. It is only through this specification process that the design
engineers can evaluate and predict the behavior and performance of a system prior to its imple-
mentation and/or automatically synthesize implementations from those models. They also serve
as a tool for uncovering design flaws, inconsistencies, ambiguities and incompletenesses. Industrial
scale experiments have shown that formal specifications can aid in the overall improvement in the
quality of the products, a reduction in the number of design errors discovered, and earlier detection

of errors found in the design process.

A rigorous and descriptive formal language that can mathematically describe the behavior specifica-
tion and RTL design is a key element in development of a formal verification framework. In addition
to modeling the digital components, this language is used to specify various design properties of

hardware descriptions, and facilitates the synthesis and verification process.

4.3 Logical Framework

One of the first steps in a formal verification exercise is selecting a logical framework. The choice of
the logical framework to a great extent depends on the proof method, as well as design properties
that need to be verified. The logic of choice should accommodate formal specification of the design
as described above. This logic should have the expressive power to mathematically model the
behavior description and RTL design, and to correctly formulate the design properties that are
essential for proving the correctness. In addition, the set of inference rules of this logic should
be rich enough to allow construction of the proof of correctness, from the known facts about the

design, if one such proof exist.

In this work we have used higher order logic for modeling the RTL design and its behavior specifi-
cation and for proving that they are observation equivalent. Higher order logic can be used both
as a hardware description language and as a formalism for proving that designs meet their spec-
ifications [22]. Is has been demonstrated that higher-order logic is a formalism in which a wide
variety of behavior and structure can be specified [22]. Higher order logic makes the results of
general mathematics available, and this allows one to construct any mathematical tool needed for
the verification task in hand [39]. Its expressive power permits hardware behavior to be described
directly in logic; a specialized hardware description language is not needed. Besides, the inference
rules of the logic provide a secure basis for proofs of correctness; a specialized deductive calculus

for reasoning about hardware behavior is not required [39].

35

8

max <=0

sum <=0

variables max, sum, val, grt;

val <=read_input ()

max := 0;

’ sum <= sum + val
sum := (;
repeat grt <=val > max

val := read_input();

sum := sum -+ val;

a«@%ﬁ«a ©

grt := val > max; o

Q

if grt then max := val;

max <= val

forever;

a0,

(a) Algorithmic Specification (b) Behavioral Automaton

Figure 4.1: A Behavior Specification

36

‘ Sp ‘Next sb‘ max ‘ sum ‘ val ‘ grt ‘
bso| bs1 |'ZERO' sum(bsg) val(bsg) grt(bso)
bs1| bsy |max(bsy 'ZERO' val(bsy) grt(bsy)

)

)
bsy| bss |max(bse) sum/(bss) input(bsz) grt(bse
bsz| bss |max(bss)|sum(bss) + val(bss)| val(bss) grt(bss)
bsy| bss |max(bsy) sum(bss) val(bss) |(val(bss) > max(bss))
bss| bsg |mazx(bss) sum(bss) val(bss) grt(bss)
bss| bse |max(bss) sum/(bss) val(bss) grt(bss)
bsg| bse | val(bsg) sum(bsg) val(bsg) grt(bsg)

Table 4.1: The symbolic value function ¢
4.4 Behavior Model

A behavior automaton models the behavioral specification. This automaton is an extended finite
state machine that is represented as a five-tuple (Sy, SO0y, Rp, 9, 0). In this model Sy is the set
of the states of the automaton and S0, is the initial state of the automaton. A state may be
an assignment state or a conditional state. An assignment state is annotated with one or more
assignment statements and has exactly one outgoing transition to a next state. A conditional state
is not annotated with any assignment statements and has exactly two outgoing transitions, one of
which is labeled with the condition v and the other is labeled with the condition —wv, where v is a
specification variable. Ry = {rpy,,7p,, - ,Ts,, } is the set of the behavior registers or specification
variables. o is the next state or state transition function, that defines the next state in terms of
current state and condition flag. J is the value function, which symbolically defines the value of
each behavior register after each state transition. Each state of the behavior automaton is labeled
with a statement of the behavioral specification. The initial state has a particular significance in
verification, since the observation equivalence preconditions are defined in terms of the initial values

of variables at this state.

A simple behavioral specification and its representation as a behavioral automaton are shown in
Figures 4.1.a and 4.1.b respectively. In this example Sy = {bs, bs1, bsa, bss, bsa, bss, bsg}, S0, = bso,
Ry = {max, sum,val, grt}, and the functions &, and o} for this example, are shown in Tables 4.1

and 4.2 respectively.

37

C9 c1
Cc2 C4 C6 Tl |=T1cCs

J J J ou_cs—) oY J
SUM_CS MAX_CS VAL_CS - T2.CS c12
C1 C3 C5
C10
*c13 /1\c14 /1\c15 +t B2
B2 CS
GRT_cs—| GRT z INPUT

(a) Data Path

B2 C(1), SUM_CS, MAX_CS

:

O~~~)~~~

|

2_CS(2), VAL_CS

B1_CS(1), T1.CS

B1 CS(3), B2 CS(3)
SUM_CS

B1 CS(3), T1.CS

B1_CS(2), OU_CS,
B2 CS(3), GRT_CS

Igrt

gr

BLCS(3), T2.CS

DS8) B2_CS(4), MAX_CS

(b) Controller Automaton

Figure 4.2: Example of an RTL design generated by a high-level synthesis system

38

Current sb‘max‘sum‘val‘ grt ‘Next sb‘

bso - - |- - bsq
bs1 - - |- - bso
bso - - - - bss
bss - - |- - bsy
bsy - - |- - bss
bss - - | - | ONE | bsg
bss - - | - |[ZERO| bsy
bsg - - |- - bso

Table 4.2: The state transition function o

4.5 Design Model

An RTL implementation consists of a controller and a data-path. The controller is a finite state
machine that interacts with the data path through control signals and flags. The controller extended
finite state machine models the implementation. This automaton is represented with a five-tuple
(S4, 504, Rg,04,04). In this model Sy is the set of the states and S04 is the initial state of the
automaton. There are two types of states: assignment and conditional. An assignment state is
annotated with the control signals that must be asserted ‘high’ in that state and has exactly one
outgoing transition. We assume that the remaining control signals must be asserted ‘low’ in that
state. A conditional state has exactly two outgoing transitions; one of these transitions is annotated
with the condition f and the other is annotated with the condition —f, where f is a status flag
from the data path (the output signal of one of the data-path registers). * Conditional states have
no control signal annotations implying that all control signals must be held ‘low’. In particular,
this means that no data path register will be loaded in conditional states. Ry = {rq,,7dy," " ,’I‘dm,}
is the set of all design registers. o4, the next state or state transition function of the controller
defines the next state in terms of the current state and condition flags. d4 is the value function

that symbolically defines the value of the behavior registers after each state transition.

Figure 4.2 shows a register level design generated by a simplistic high-level synthesis system. This
design is obtained by a straightforward translation of the behavior constructs to basic structures
implementing them without performing any scheduling or register optimization during the trans-
lation. The data path consists of a number of registers, an ALU, two buses and a number of wires.

Each data path component may have one or more control signals. For registers, we assume that

In this discussion we assume conditional states with exactly two outgoing transitions in both the behavior
automaton and the RTL controller. This is easily generalizable to include conditional transitions based on multiple
flags.

39

the ‘load’ control is active ‘high.” This design is an implementation of the specification of Fig-
ure 4.1. In this example Sy = {dso, ds1,dsa,dss3,dss,dss,dsg,ds7,dss}, S04 = dsg, Ry = {MAX,
SUM,V AL,GRT?}, and the functions ¢4 and o4 are defined similar to d, and oy.

4.6 Formal Specification of the Behavior

We discussed that the behavior automaton is modeled as an extended finite state machine. Each
state of this finite state machine is either a conditional state, or an assignment state. A conditional
state of the behavior automaton has two outgoing transitions. No operations are performed at
a conditional state and only a decision about the transfer of control to one of the two possible
next states is made. Therefore, in a state transition from the conditional state sp, to sp; the all

specification variables maintain their values.

In an assignment statement s, that corresponds to a statement in the form of (r, = exp;) the
value of the expression exp is assigned to the variable ry. Then, in a transition from an assignment
statement sp, to sp; all variables except for r, maintain their values. The value of r, at state Sp; 18

defined by exp, where exp is a function of the values of the variables at sy, .

It can be noted that the behavior of the specification may be uniquely defined as a relation between
the values of the variables after each state transition and their values prior to the state transition.

It is straight forward to extract a relation between the outputs and inputs of the design.

Such relations may be extracted from the behavior automaton and translated into the predicates
of higher order logic. Consider the transition (BSs5, BSg) in the example of Figure 4.1. Since BS5
is a conditional state, in transition (BSs5, BSg) the values of all the variables are maintained. This

may be described by an axiom such as:

bss_bsg_trans_ax : transition(bss,bsg) = (Vi(val,bsg) = Vy(val,bss) A
Vi(mazx, bsg) = Vy(mazx, bss) A
Vi(sum, bsg) = Vi(sum, bss) A
Vi(grt, bsg) = Vi(grt, bss))

BS3 on the other hand, that corresponds to the statement sum < sum + val, is an assignment
state. Therefore, in a transition such as (BSs, BS4) the values of all variables except sum that at
state BS3 is the target of an assignment will remain the same. The value of sum is defined by the

expression assigned to it. This information may be translated to the following axiom:

40

bss_bsy_trans_ax : transition(bss, bss) = (Vp(val,bss) = Vy(val,bsz) A
Vo(mazx, bsy) = Vy(mazx, bss) A
Vi (sum, bsy) = sum(Vy(sum, bss), Vy(val, bss)) A
Vi(grt, bsy) = Vy(grt, bss))

4.7 Formal Specification of the Design

An RTL design consist of a data-path and a controller. The register transfer operations occur in
the data-path and are controlled by the controller. The controller and data-path communicate
through the control signals and flags. The data-path is an interconnection of basic components.
The control signals are the inputs to the control inputs of data-path components. At each state of
the controller a set of control signals are asserted high. As a result a part of data-path circuitry is

activated a some register transfer operations take place.

To formally describe the behavior of the RTL design, (1) the relational behavior of each RTL com-
ponent, (2) the type and interconnection of RTL components, (3) the flow of state transitions in the
controller, and (4) the control signals that are asserted high at each state should be formulated in

higher-order logic.

Register.ax: V (in: signal,
out : signal,
ld: bool _signal,
81 : RT L _state,
s : RTL_state) :

(register(in,ld,out) A transition(si,s2)) =
(Vd(ld, 31) = Vd(out, 82) = Vd(in, 31) A
_'Vd(ld’ 51) = Vd(OU’ta 52) = Vd(OU’ta 81))

Figure 4.3: Relational description of the behavior of register component

41

a2 : adder
PORT MAP (a2.inl, a2.in2, a2.out);

Figure 4.4: HDL description of the port-map of the multiplier component

4.7.1 RTL Component Specification

The behavior and port map of each component that may be used in synthesizing RTL designs is
described in a hardware description language in the high-level synthesis resource library. As part
of formal specification of the design the behavior of each component is translated into predicates
of higher-order logic. As an example, the behavior of a simplistic register component has been

formally described in Figure 4.3.

4.7.2 Type and Interconnection of RTL Components

High-level synthesis systems usually generate the RTL design as a data-path and a controller de-
scribed in a hardware description language. As part of the formal specification of the design
behavior, this description is translated into higher order logic. During this process, the type and
interconnection of the components are formally specified. For example, the port map of an adder
component and an instantiation of it in a pseudo-HDL language are given in Figure 4.4. The instan-
tiation of the port map of adder component given in this figure, describes the interface of an adder
component labeled ay in the data-path of the RTL design. The same information can be conveyed

more formally by the following predicate:

Ag_azx : adder(As.ini, As.ing, As.out)

4.7.3 RTL Controller

Two types of information can be extracted from the HDL description of the controller: the state
transition sequence and the control signals that are asserted at each state. This information can
be simply described by two functions nezxt_state and control_signal. The function next_state
represents the function o4 in implementation model. It defines the next state transition in terms of
the contents of critical registers at each state. control_signal maps each control line of the design
to a value ‘true’ or ‘false’ at each state. This in turn defines the values of the control inputs of a

component at each state. For example, the HDL description of the controller may define the values

42

of the control signals at a state dsz as a bit-stream where each bit represents the value of one

control line at state dss. This is translated into a conjunction of predicates such as the following:

Control_Signal(csg,dss) = “T”

Now let’s assume that csg is connected to the load signal of a register Rs. This is described by the

following axioms, in the formal description of the data path:

(1) register(Rs.in, Rs.ld, Rs.out)

(2) Rsld.ar : (Vsq: RTL_state : Vy(Rs.ld,sq) = Control_Signal(cse,sq))

Now let’s assume that based on the description of next_state we know that the next state of
dss is dss4 regardless of the values of the registers. This means that the transition (dss,dss) is

unconditional. This can be described by the following axiom:

(3) transition(dss,dsd) = “T”

Axioms (1), 2 and (3) together with the Register,z axiom given in Figure 4.3 infer the following:

Va(Rs.out,dss) = Vg(Rs.in, dss3)

During the process, similar inference rules are used in conjunction with the axioms such as the

above to prove various properties of the design.

4.8 Conclusion

In this chapter we showed how the behavior specification and the RTL implementation of a design
may be mathematically modeled. We saw that the control flow of the operations in behavior
specification and the RTL design may be modeled by finite state machines. These models as well as
the specification of the data-path of the RTL design and the behavior description of each data-path
component may be translated into axioms of higher-order logic. The behavioral and structural
descriptions of the design in higher-order logic can be used during the verification process. The

inference rules of this logic can be used in conjunction with these descriptions to prove various

43

properties of the design. In the following chapters we will show how these formal descriptions are

used to construct the proof of correctness of the design.

44

Chapter 5

Deploying Methodical Design
Construction Knowledge for

Identifying Design Properties

In this chapter we discuss how the knowledge of the construction method (synthesis process) can
be used to extract design properties that can be employed for verification purposes. With the
knowledge of the synthesis process, more information about the control and structural properties of
the design will be available to verification engineers than otherwise possible. These properties may
be supplied to the verification algorithm during the verification process in the form of assumptions

or premises. Such properties have a tangible impact on the outcome of the proof exercise.

A behavior specification may have numerous RTL implementations. A synthesized RTL design is
a transformed version of the behavior specification. Therefore, the relational properties of each
RTL implementation and the behavior specification are influenced by the specific transformations
and particular algorithms employed in synthesizing that implementation. Also, the structural and
control properties of each implementation are influenced by particular procedures employed in

generating it.

It is often the case that the designs that are generated followind the same synthesis steps have
common properties. Hence, the properties of an RTL synthesized design are determined by its
construction method, and we can learn more about these properties by a study of synthesis processes
rather than by analysis of the structure and operation flow of the design in isolation from synthesis.
We believe that the restrictions of most post-synthesis verification methods results from the fact
that not enough information about the design is available. To remedy this problem we have adopted

a synthesis aware post-design verification approach.

45

In the following sections, we present a detailed study of the high-level synthesis process that pro-
duces the synthesized designs at the register transfer level of abstraction from behavioral specifica-
tions. We will identify the control and architectural properties of the synthesized RTL designs and
the relational properties of such a design and its specification that may facilitate their verification

process.

5.1 An Overview of High-Level Synthesis Process

High-level synthesis systems generate register transfer level designs from behavior descriptions. !

In different stages of the synthesis process the behavior description goes through many transfor-
mations. Various methods for synthesizing RTL designs, and numerous synthesis algorithms and
transformations have been developed. The distinguishing characteristic of a synthesis system is the

type of the algorithms and transformations it employs.

The synthesis system generates a control-data flow graph (CDFG) from the behavior specification.
An abstract model of the behavior at the architecture level defines a set of operations and their
dependencies. In the synthesis jargon these operations are referred to as tasks. The operation
dependencies are due to several reasons: (1) availability of data - An input to an operation may
be the result of another. In this case the former operation depends on the latter. (2) serialization
constraints - A task may have to follow another regardless of data dependencies. An example is
loading the data on a bus and then raising a flag. (3) resource sharing - two tasks may need to

share the same resources, in which case one has to finish before the other starts.

The operations and their dependencies may be represented by a control-data flow graph. A cDFG
is a directed graph G(V, E) whose vertex set V is in one to one correspondence with the set of
tasks. The directed edge set E is in correspondence with the transfer of data from one operation

to another or other dependencies such as task serialization.

During the high-level synthesis process the operations(tasks) are bound to arithmetic/logic oper-
ators, the specification variables to registers and interconnect units and the vertices of the CDFG
to a control FSM which represents the control-unit. The classical High-level synthesis process
involves five tasks: module selection and scheduling, function unit allocation, register allocation,

interconnect allocation and controller generation.

A predominant concern in real high-level synthesis systems is resource sharing. The goal of high-

level synthesis is to determine constraint-satisfying sharing of ALUS, registers and interconnections.

'Resources [21, 17, 40, 63] have been a valuable source of information in preparing the material of this chapter. In
particular I have adopted the material for scheduling from [17] and used the discussions presented in [40] for preparing
the section on bit-level interconnect allocation.

46

To facilitate resource-sharing, high-level synthesis tool performs scheduling which permits time

sharing of resources whose life times do not overlap across the scheduled time-scale.

The scheduling process may be viewed as code motion across a time scale. Operations may be
scheduled at any time-step as long as the data and control dependencies are not violated. That
is, if an operator is data-dependent on a source operator, it can only be scheduled after the source
operator is scheduled. Similarly, if an operator is control dependent on a control operator then
it is not scheduled until after the control operator is scheduled. All scheduling algorithms in
high-level synthesis assume that control operators introduce sequential control flow points into the
CDFG being scheduled [21, 17, 61, 10, 66, 33]. For example, all operators inside a case statement
are scheduled only after the deciding expression has been scheduled. All statements following
the case statement are scheduled only after all the branches of the case statement are scheduled.
All statements inside a while statement are scheduled only after the deciding expression has been
scheduled and all statements following the while statement would be scheduled only after the body
of the while statement has been scheduled. This ensures that the control flow branches in the
behavior specification are preserved and no new control flow branches are introduced. Scheduling,
thus, is the process of implicit code motion possibly involving introduction of additional temporary
variables in order to explore the design-space to determine a constraint-satisfying time-area tradeoff

point.

The three tasks of function unit allocation, register allocation and interconnect allocation constitute
the resource allocation stage of synthesis. Resource binding refers to the final assignment of behav-
ioral operators, variables and data/control dependencies to RTL ALUSs, registers and interconnect
units at this stage. By maintaining links with the elements of the behavior specification throughout
the high-level synthesis process, the high-level synthesis tool can generate detailed binding infor-
mation. Operator, register and interconnect allocation algorithms perform no code motion and do
not alter the control flow.Operator, register and interconnect allocation algorithms, are typically
based on clique partitioning [62] or graph coloring [5] following life-cycle analysis of the scheduled
flow graph.

These tasks may be performed in different order in different synthesis tools. Also different synthesis
tools may use different algorithms with various level of complexity to perform each task. More
sophisticated synthesis algorithms perform more elaborate transformations. Consequently, the
final RTL implementation has very little in common with its specification. In such a case identifying

common points of comparison between the two designs requires great effort.

47

5.2 Impact of Scheduling on Verification Methodology

The inputs to the synthesis system are the CDFG, detailed description of the resources being used
(arithmetic and functional units, steering logic, storage elements and control logic) and a set of

constraints (area, latency, cycle-time).

Each operation in the CDFG has an execution delay. The start time of an operation is the time at
which the operation starts its execution. Scheduling® is the task of determining the start times,
subject to the precedence constraints specified by the CDFG. A scheduled control-data flow graph
is a vertex-weighted CDFG, where each vertex is labeled by its start time. A schedule may have
to satisfy timing and/or resource usage constraints. The goal of scheduling is to optimize the
scheduled CDFG by taking advantage of possible concurrency of the operations.

Scheduling algorithms can be divided into two groups: unconstrained scheduling and constrained
scheduling. In constrained scheduling the number of resources that can be concurrently used are
limited. In unconstrained scheduling, as the name suggests, there are no constraints on the number

of the resources that can be concurrently used.

Suppose G(V, E) is a scheduled ¢DFG. V = {v; : 1 <1i < n} is the vertex set which is in one-to-one
relation with the set of operations, £ = {(v;,v;) : 1 <i <n,1 < j < n} represent the dependencies,
and T = {t; : 1 < i < n} the start time for the operations, i.e. the cycles in which the operations
start. Suppose D = {d; : 1 <1 < n} is the set of operation ezecution delays, and suppose 7nes is
the number of resource types. Then the unconstrained scheduling problem can be formally defined

as:

Given V, FE and D, find an integer labeling of the operations L : V ~ Z7* such that
Vi, 7, ((vi,v;) € E) 1 t; = L(v;) AN (t; <tj+d;) A tp is minimum [17].

In the constrained scheduling, the number of resources of any given type is bounded from above
by a set of integers {ar : 1 < k < nyes}. Suppose we denote by function 77 : V — {1,2,- - nyes}
the unique resource type that implements an operation. Then the constrained scheduling problem

can be formally defined as:

Given V, E, D and upper bounds {ax : 1 < k < nyes}, find an integer labeling of the
operations L : V — Z* such that Vi, j, ((vi,v;) € E) : t; = L(v;) AN (t; < t; +d;) A
{vi : TT(v;) = kAt; <1 <t;+d;}| < ag for each operation type k and schedule step I A t,

is minimum [17].

*Part of the material in this section is directly adopted from [17].

48

CDFG is a hierarchical graph. It is composed of a hierarchy of four types of constructs, referred to
as blocks: (1) sequential construct that is a subgraph of CDFG where each vertex has one preceding
edge and/or one succeeding edge; (2) a conditional construct; (3) an iterative construct; and (4) a
procedure construct. Each block of the CDFG is in run composed of a hierarchy of these four types
of synthesis blocks. A block at the innermost level of the hierarchy is called a basic block and is one
of the following four types of constructs: (1) a sequential basic block, that is the largest subgraph
of the CDFG where each vertex has one preceding edge (except the first vertex of the block which
has no preceding edge) and one succeeding edge (except the last vertex of the block which has no
succeeding edge), (2) a conditional basic block, or a subgraph of CDFG that represents a conditional
construct of the behavior model. Each branch of a conditional basic block is a sequential basic
block, (3) an iterative basic block or a subgraph of CDFG that represents an iterative construct
of the behavior model. The body of an iterative basic block is a sequential basic block, or (4) a
procedure basic block, or a subgraph of CDFG representing a subprogram. The body of a procedure
basic block is a sequential basic block. A CDFG is considered non-hierarchical if all of its blocks are

basic blocks, otherwise it is considered hierarchical.

Numerous scheduling algorithms have been developed. The scheduling problem of the hierarchical
CDFGs is more complex than the scheduling problem of non-hierarchical cDFGs. The scheduling
of both non-hierarchical and hierarchical CDFGs involve the scheduling of the basic blocks. The

following sections discuss the scheduling of the basic blocks.

Sequential Basic Blocks - A sequential basic block is a sequence of consecutive operations,
and is usually represented by a directed acyclic subgraph, such as the one shown in Figure 5.1.
The scheduling of a sequential basic block consists of assigning time steps to the operations, by
placing the operations that are data and control independent from one another in the same time
step (parallel execution of the operations), in order to achieve the minimum execution delay across
the cDFG, while satisfying all possible constraints. In this process two no-operation vertices are
added to the block as the initial and final vertices of the block. The initial state is marked with
a ‘zero’ execution delay before the scheduling starts. After scheduling the block, parallel branches
may be generated, which represent the operations that can be executed concurrently. An edge is
placed from initial state of the block to the initial vertex of each concurrent branch and an edge
is placed from the final vertex of each concurrent branch to the final state of the block. If (v;,v;)
is an edge of a branch of the basic block, ¢; is the time-step assigned to v; and ¢; is the time-step
assigned to v, and the execution delay of the operation associated with v; is d;, then we can say
tj = t; + d;. The execution delay of the block is the time-step assigned to the final state of the

block and is the maximum time-step assigned to a vertex of the block.

For example, if we assume that in Figure 5.1 the operation OP, depends on the result of the

operation O P, the result of the operation OP; is an operand of the operation OP3, the operations

49

Figure 5.1: A Sequential Basic Block

OPy and OP;5 are independent from other operations, and the execution delay of the operations are

t1,t2,t3,t4 and t5, respectively, then a possible schedule for this block is as shown in Figure 5.2.

MAX ((t3 + d3), (t4 + dd) , (t5 + d5))

Figure 5.2: Scheduled Sequential Basic Block

Conditional Basic Block - A conditional basic block consists of an initial state, a number of
branches and a final state. No operation - and therefore no execution delay - is assigned to the
initial and final states of the block. The initial state is marked with a ‘zero’ execution delay before
the scheduling starts. Each branch of a conditional basic block is a sequential basic block. Each

branch is scheduled independently using a suitable scheduling algorithm, as explained above. Then,

50

the maximum execution delay among the branches is assigned to final state. Figure 5.3 shows a

scheduled conditional basic block.

MAX(tbq, tha, ... thp)

Figure 5.3: Scheduled Conditional Basic Block

Iterative Basic Block - The body of an iterative basic block is a sequential basic block. During
the scheduling process, a schedule of the body of the iterative block is generated first. The execution
delay of each iteration of an iterative basic block is equal to the execution delay of its body. Iterative
blocks are divided to two types. For the fist type, the number of the iterations of the loop is known
at the time of the scheduling. This type of the iterative block may be first unrolled into a sequential
basic block, and then scheduled, to optimize its execution delay. If the scheduling algorithm does
not unroll such an iterative block, its execution delay is defined as the execution delay of its and
times the number of iterations. The second type of the iterative block is one in which the number
of the iterations is not known in advance, and is determined during the execution of the loop. Also
in this case, the execution delay of the block is a multiple of the execution delay of its body, or

possibly ‘0’ if the loop condition is never ‘true’. Figure 5.4 shows a scheduled iterative basic block.

Procedure Basic Block - This basic block is a sequence of the operations that can be invoked
multiple times in the ¢DFG. The body of a procedure, is a sequential basic block. The scheduling
of a procedure basic block is the same as the scheduling of a sequential basic block. Figure 5.5

show a scheduled procedure basic block.

51

Figure 5.4: Scheduled Iterative Basic Block

5.2.1 Scheduling of Non-Hierarchical CDFGs

A non-hierarchical CDFG is a sequence of the basic blocks. The scheduling of a non-hierarchical
CDFG consists of scheduling each basic block independently, and then calculating the execution
delays of the vertices of the CDFG.

Procedure
Call

Figure 5.5: Scheduled Procedure Basic Block

Choosing a scheduling algorithm for non-hierarchical designs is a global decision and depends on

the design constraints and their type. There are well known scheduling algorithms which handle

52

different types of constraints. Once a scheduling algorithm is selected, it is used for scheduling all
basic blocks if the CDFG.

2

J tl+ta OP4 t4+tat?)v‘0-ta

i

i

! t2+t
I

'

\

!

\\

Y t3+t 5

@ MAX ((3+03) , (t4+04) , (15,05) + ta

7 (n0P) Mhax ((3499). (4304 (509 +ta

Figure 5.6: Control-step assignment to a sequential basic block during the global

scheduling of a non-hierarchical CDFG

The time-step assignment of a sequential basic block is as follows: The time step of the vertex
preceding the block is assigned to the first state of the block and the time-steps of the rest of the
vertices are adjusted accordingly (by adding the time-step of the initial step to the time-step of
each vertex). The time-step of the final vertex of the block is assigned to the vertex following it,
which is the initial state of another basic block. Figure 5.6 shows the time-step adjustment of the
basic block of Figure 5.2 in global scheduling of the CDFG.

During the scheduling of a non-hierarchical cDFG, the time-steps of conditional basic blocks are
assigned as follows: First the conditional block is scheduled independent from the rest of the CDFG
using a suitable scheduling algorithm, then its time-steps are adjusted to fit with the schedule of
the rest of cDFG. To make this adjustment, the time-step of the branching vertex is assigned to
the first vertex of the conditional block, and the time-steps of the rest of the vertices are adjusted
accordingly. The time-step of the final vertex of the conditional block is assigned to its succeeding
vertex during scheduling the next basic block in the sequence. Figure 5.3 shows the time-step
adjustment of the basic block of Figure 5.7 after global scheduling of the CDFG.

During the scheduling a non-hierarchical CDFG, the time-steps of iterative basic blocks are assigned
as follows: First the loop is scheduled independent from the rest of the CDFG using a suitable
scheduling algorithm, then its time-steps are adjusted to fit with the rest of the ¢cDFG. To make

53

MAX(thA*+ tg ,

H ‘/’t’b2+ta,
tbh+tg)
@ MAX(th 1+ tg ,

tho+tg,

thn+tg)

Figure 5.7: Control-step assignment to a conditional basic block during the global
scheduling of a non-hierarchical CDFG

this adjustment, the time-step of the first vertex of the iterative block is assigned to the first vertex
of the iterative block, and the time-steps of the rest of the vertices are adjusted accordingly. The
time-step (sequence of time-steps) of the final vertex of the loop is assigned to its succeeding vertex
during scheduling the next basic block in the sequence. Figure 5.4 shows the time-step adjustment
of the basic block of Figure 5.8 after global scheduling of the CcDFG.

During the scheduling of a non-hierarchical CDFG, the time-steps corresponding to a call to a pro-
cedure basic block are assigned as follows: first the procedure basic block is scheduled independent
from the rest of the CDFG using a suitable scheduling algorithm, and then its time-steps are ad-
justed to fit with the rest of the ¢cDFG. To make this adjustment, the time-step of the time-step
of vertex corresponding to the procedure call is assigned to the first vertex of the procedure basic
block, and the time-steps of the rest of the vertices are adjusted accordingly. The time step of the
final vertex of the procedure basic block is assigned to its succeeding vertex during scheduling the
next basic block in the sequence. Figure 5.5 shows the time-step adjustment of the basic block of
Figure 5.9 after global scheduling of the CDFG.

54

n*th+ty,...

Figure 5.8: Control-step assignment to an iterative basic block during the global schedul-
ing of a non-hierarchical CDFG

5.2.2 Scheduling of Hierarchical CDFGs

The unconstrained scheduling of the hierarchical CDFGs is straight forward, but this is not the case
with the constrained scheduling. Most scheduling algorithms do not allow resource sharing across
different blocks in the hierarchy to avoid difficulties of hierarchical scheduling. In this case, each
basic block is scheduled independently. Since the CDFG has a hierarchical structure, the scheduling
task is performed hierarchically in a bottom up fashion. The innermost blocks of the hierarchy
(the basic blocks) will be scheduled first and the time-steps of the vertices at each level will be
calculated in terms of the time-steps of the vertices of its immediate lower level in a manner similar
to what was explained for the non-hierarchical CDFGs. The structure of the generic blocks of the
hierarchical ¢DFGs is similar to the structure of the basic blocks, except that they are hierarchical
themselves. The same algorithms for assigning the time-steps from the top-level vertices to the
initial states of the basic blocks and from final states of the basic blocks to the preceding vertices

of the top-level can be applied in the hierarchical scheduling.

Different algorithms are used for scheduling of hierarchical and non-hierarchical ¢DFGs based on
the type of temporal or spatial constraints posed on the designs. ASAP (As Soon As Possible)
algorithm is usually used for unconstrained scheduling, ALAP (As Late As Possible) is used for
latency-constrained scheduling, Relative Scheduling is used when the relative timing constraints

are posed on the design, Hu’s algorithm is used for resource constrained scheduling, list scheduling

55

Procedure
Call

Figure 5.9: Control-step assignment to a procedure basic block as part of scheduling of
a non-hierarchical CDFG

and heuristic force directed scheduling algorithms are used to solve resource-constrained as well
as latency-constrained problems. These algorithms do not move the operations across the border

points of the basic blocks.

5.2.3 Discussion

The scheduling transformations are performed as part of the synthesis process. Due to transfor-
mations of the scheduling phase, each coarse grain behavior operation is transformed into a set of
finer grain register transfer operations (Figure 5.10.(a)). In addition, the order of the operations
in the implementation (Figure 5.10.(b)), their relative level of parallelism (Figure 5.10.(c)) or both
(Figure 5.10.(d)) are modified from those in specification. However, it should be noted that in
most HLS systems, even though the scheduling process modifies the order and the relative degree
of parallelism of operations, it preserves the basic specification constructs and their order. By
this statement we mean that when a specification is being transformed, the order of statements
and their relative degree of parallelism can be modified, but only within the border points of each
basic construct (iterative or conditional). As the discussions of the following chapters will reveal,
this restriction on allowable degree of code motion by high-level synthesis systems, is one of the
key factors in developing a fully automated method for verifying the designs generated by these

systems.

56

o e

— O1 j o3
osl1 [— Q o7
L= 02 j os
| o1
— 03 Q
os2 ol ™ 04 y o6
— 05 Q
— 06
} 02
o3 o137 | Q
L= O7
04

(@) (

Figure 5.10: The Effects of Scheduling

O
N—r

5.3 Impact of Operator Allocation on Verification Methodology

We mentioned before that most high-level synthesis algorithms are oblivious to the mathematical
properties of arithmetic and logic operators. This means that selection and sharing of the opera-
tors is done solely based on matching the uninterpreted function symbols and constants, e.g. an
‘adder’ functional unit of the component library is selected to perform the behavior operation ‘+’, a
‘multiplier’ to perform ‘*’, etc. This feature of high-level synthesis may be effectively used for veri-
fication purposes. Also, the domain of values for both specification variables, and RTL signals may
be left uninterpreted. The specification variables may be the operands of some operations and/or
may hold the results of some operations. The RTL signals are the input/output values of different
data-path components. The input/output signals of data-path functional units correspond to the
operands or results of behavior operations and therefore are assumed to have the same domain of

values.

By assuming an uninterpreted domain of values for specification variables and RTL signals, and
uninterpreted operation of behavior operators and RTL functional units, the comparison of the values
may be done through symbolic analysis and making use of rewriting strategies. Under the above
assumption, the bit widths of the variables or operators do not directly affect the verification time.

Consequently, the verification exercise may be conducted more efficiently than otherwise possible

57

and also the correctness of designs of reasonably large size may be verified. This observation
has been one of the key elements in developing the verification methodology presented in this

dissertation.

5.4 Impact of Register Allocation on Verification Methodology

The spatial properties of an RTL design are in as close connection with the register allocation
problem as its temporal properties with the scheduling problem. The choice of register allocation

and optimization schemes during the synthesis of a design directly influences its spatial properties.

In a simplistic synthesis process, with no register optimization task, each variable is bound to
a physical component - a register - representing it, and there is a one to one relation between
the specification variables and implementation design’s architectural registers (Figure 5.11). In
such a synthesis scheme a static binding function may be used to define the mapping between the
specification variables and implementation design’s architectural registers. This is not true when
register optimization is performed as part of the synthesis process, and in synthesis systems that

employ sophisticated register allocation algorithms.

Specification RTL Registers
Variables

Ve o T
v e[TG

[Varm |4 T

Figure 5.11: Mapping relation between specification variables and design registers when

no register optimization is performed

The goal of register optimization is to share registers whose lifetimes do not overlap across the

scheduled time-scale. This is done by life cycle analysis of the design registers. Each specification

58

variable has a lifetime that is in the form of a union of intervals [l;, u;]. Each interval is from the
variable’s birth l;, to its death u;, where the former is the latest time at which its value is generated
as an output of an operation and the latter is the latest time at which the variable is referenced
as an input to another operation. In some register allocation schemes, if two variables have non-
overlapping lifetimes, they are bound to the same register. In some other schemes, if two variables
hold equivalent values, they are bound to the same register. In either case the mapping relation

between the specification variables and design registers is no longer a bijection.

Two types of register allocation-optimization schemes are commonly found in high-level synthesis
tools: wvalue based and carrier based. When transformations based on these schemes are performed
during the synthesis process, the mapping relation between the specification variables and RTL
registers is no longer bijective. Since the definition of equivalence directly depends on the mapping
between the variables and registers, a precise definition of this relation in each case is necessary. In
what follows these common register allocation schemes are presented, and in each case the relation

between the specification variables and design registers is precisely defined.

5.4.1 Carrier Based Register Allocation

The carrier based register allocation scheme yields a mapping from the variables to the regis-
ters. FACET [62], HAL [50], and CHARM [69] use carrier-based techniques for register optimiza-
tion.Register optimization is only possible when two (or more) variables, have non-overlapping
lifetimes, in which case they are bound to the same register. Life-cycle analysis of variables is per-
formed to establish compatibility relation between pairs of variables. Then a compatibility graph
G+ (V,E), or a conflict graph G_(V, E) will be formed.

A compatibility graph G4 (V, E), has a vertex set V = {v; : 1 < i < ny¢y} which is in one to one
correspondence with the registers, and an edge set £ = {(v;,v;) : 1 <i <mnpeg and 1<j < mpey}
which denotes compatible registers (register pairs with non-overlapping lifetimes). The optimum
register sharing algorithm minimizes the number of registers by folding compatible registers. In the
compatibility graph, a group of mutually compatible registers correspond to a subset of mutually
connected edges, i.e. to a clique. Therefore a maximal set of mutually compatible registers is
represented by a maximal clique in the compatibility graph. Then the optimum register sharing
problem is equivalent to partitioning the graph into a minimum number of cliques. This problem

is solved by a clique partitioning algorithm.

A conflict graph G_(V,E), has a vertex set V = {v; : 1 < i < nyee} which is in one to one
correspondence with the registers, and an edge set £ = {(v;,v;) : 1 <i <mnpeg and 1<j < mpegy}
which denotes conflicting registers (register pairs with overlapping lifetimes). A set of mutually

compatible registers corresponds to a subset of vertices that are not connected by edges, referred

59

variables a, b, neq, grt;
a := read_input();

b := read_input();
neq := (a # b);

while neq do

grt := (a > b);

if grt then
a:=a- b

else
b:=b-a;

endif;

neq := (a # b);

enddo;

write_output(a);

|

@< @@ E~®

®

8

@)

ort 'grt

@

b

.

Figure 5.12: Specification of the Greatest Common Divisor Design

60

OUTPUT

I
=
I

N [

’ A ‘ ’ B ‘ Tl cs T2 cs
AJ_C\S } BJ_c\s } OUl cs — oul ouz
I ,, : =
B2 cs
NEQ_GRT INPUT

(NEQ_csOR GRT_cs) _A

flag

Figure 5.13: Example of the data-path of an RTL design generated by a high-level syn-
thesis system after scheduling and resource optimization

to the independent set of G_(V, FE). An optimum register sharing corresponds to a vertex coloring

with a minimum number of colors. This problem can be solved by a graph coloring algorithm.

Regardless of the algorithm used for register optimization, two or more variables are bound to
the same register as the result of register allocation (Figure 5.14). But, this is done by merging
registers who do not have overlapping lifetimes, i.e. only one of these registers is “live” across any
state and the other(s) is(are) dead. It is obvious that when register allocation is performed using
this scheme, there is not a one to one correspondence between the specification variables and any
subset of RTL registers. Now, the mapping between the variables and registers should be defined.
To define such the register mapping relation, it should be noted that a specification variable may
be alive at some states and dead at others. Therefore, the mapping relation between the variables
and registers changes from one state to the other. Then, the mapping relation at each state is
defined only between those variables that are alive at that state and the design registers. Then
the mapping relation is dynamically defined at each state. The dynamic mapping relation will be

discussed in following chapters.

Figure 5.12 shows the behavior specification of GCD, a circuit which finds the greatest common
divisor of two numbers. The data-path of the RTL design generated from this specification, by a
synthesis system that performs carrier based register optimization is shown in Figure 5.13. In this
example it can be noted that the two variables neq and grt have non-overlapping lifetimes and may

be subjected to register folding.

61

Sﬁ)/ecification RTL Registers
ariables

[V oo

vary | |- [regy

- ~

I ;

7

redm

Figure 5.14: Mapping relation between specification variables and design registers in a
carrier-based register allocation scheme

5.4.2 Value Based Register Allocation

The value based register allocation scheme yields a mapping from the values to registers. Different
values can be assigned to the same specification variable in a behavioral description, therefore, a
specification variable can be mapped to several design registers. Many high-level synthesis systems
such as REAL [36], EMUCS [60] and EASY [58] are the systems which use value-based register

optimization techniques.

(S A:=B+1; @
(HA)C:=A+1 S
(SYA =B +2, @
(S8)C:=A+2; €3]

Figure 5.15: Example of a partial specification

62

ecification RTL Registers
ariables

VA oz reg
[Vl 5 L[Tegy

AR

BT A ey

Figure 5.16: Mapping relation between specification variables and design registers in a
value-based register allocation scheme

In value-based approach, register optimization is modeled as the problem of mapping data-values
produced and used by operations in a data flow graph representation of the specification into
registers. Register optimization is only possible when two (or more) operations use the same data
values. Consider the partial specification of Figure 5.15. A value based register allocation scheme
may assign register Ry, Ry, R3 and R4 to the values B+ 1, A+ 1, B 4+ 2 and A + 2 respectively.
Then, along the path [---, S3, S4, - - -], the specification variable A is mapped to the register R; and
along the path [---,S7,Ss,- -] it is mapped to Rj.

Left Edge Algorithm for interval graphs can be used for performing register optimization. The
register optimization problem is modeled as a channel routing problem; the life span of each value
is modeled as a net interval. The number of tracks determined by the left-edge algorithm then

corresponds to the number of registers needed.

It is clear that in this scheme also, there is not a one to one correspondence between the specification
variables and any subset of the data-path registers. The same variable may correspond to different
registers, and the same register may correspond to different variables (Figure 5.16). In this case
also, a static mapping relation from the variables to registers is not appropriate. Like the case of
carrier based register allocation, the mapping relation between the variables and registers at each

state is defined dynamically.

Since register optimization in this scheme consists of merging the design registers that hold the
same value, it is possible that more than one specification variable is mapped to the same design

register at a state. This does not introduce a new problem in defining the mapping relation.

63

5.5 Impact of Interconnect Allocation on Verification Methodol-

ogy

Two possible interconnect allocation schemes are found in high-level synthesis tools: point-to-
point interconnect allocation and bus allocation. Data-path interconnections represent data-flow
in behavior specification. Interconnect allocation (optimization) is a procedure similar to register
allocation (optimization). To allow sharing of the interconnections during the interconnect allo-
cation phase multiplexers may be introduced to the circuit. During the verification process, the
contents of different registers in terms of uninterpreted values are symbolically evaluated. During
this analysis, data-path components are traversed and all components, including the multiplexers
and buses are accounted for. In case of an error in synthesis of the steering logic, that results in
incorrect function of the design, the signal values are not correctly propagated and this error is

detected during the observation equivalence checking.

In our verification method, all values, constants and operators are left uninterpreted, and all signals
are assumed to have the same type. Also, the input and output values of all the combinational
and sequential components of the data-path are assumed to belong to the same uninterpreted
domain of values, too. The assumption of uninterpreted functions and values in our approach
has the underlying advantage of reducing the complexities associated with bit-vector signal types.
However, in the synthesis of RTL designs, there are situations when bit level effects should be dealt
with.

In high-level synthesis, the ratio of the signals that are split to smaller bit-vectors or are merged
into larger bit-vectors, compared to the total number of signals in the circuit, is often small.
Dealing with all signals at the bit-level to account for these special cases drastically increases the
complexity of the verification process, and is no an acceptable solution. To solve this problem, we
introduce two virtual components 'SPLIT’ and "MERGE’ to the set of synthesis resources. These
components allow to model all possible types of interconnections in the data-path of the RTL design.
These components allow for dealing with the problems at the bit level whenever necessary, while

maintaining the signals uninterpreted at all other times.

5.5.1 Bit-Level Interconnect Allocation
When the global interconnection pattern between execution units is decided upon, this pattern is

detailed to the bit-level. Bit-level effects, such as type casts and signal alignment, are considered
at this stage [40].

e Most descriptions contain relations between signals of different types. Some signals are con-

64

verted implicitly from one type to another by data path operators, e.g., a multiplier adds the
word lengths of the operands to deduce the word length of the result. This is called coercion.
For other signals, the designer explicitly changes the type, using a cast operation. Both kinds

of conversions are implemented on the chip.

e If data-path operators are multiplexed, an operator with a certain word length may operate
on signals of smaller word length. In this case, the operands are aligned either at the MSB
side of the registers or at the LSB side. As a consequence, the result of the operations is
also aligned MSB or LSB at the output of the execution unit. Some alignment requirements
originate from the code expansion macros. For instance, for a Booth-multiplication on an
ALU, both operands must be aligned at the LSB side. Other alignments can be selected
freely.

Even if the word length of signals corresponds with the functional unit operating on them, the
binary point position of the signals may vary. The bit-level interconnect strategies take these

alignment aspects into account.

The two virtual components 'SPLIT’ and 'MERGE’ are introduced to the set of synthesis resources,
to model all possible types of interconnections in the data-path of the RTL design. There are two
types of interconnections that, due to the assumption of an uninterpreted domain of values for the
signals, cannot be accounted for: (1) assigning a subrange of the bits of an output signal to the
input of another component with smaller bit-size. (2) merging the bits of two (or more) output
signals to produce an input signal for a component with larger bit-size. By using the 'SPLIT’ and
"MERGE’ virtual components, we do not introduce new components (extra hardware) to the circuit.
On the contrary, we offer a solution for modeling a phenomenon that already exist in the circuit,
but is not accounted for. Therefore, 'SPLIT’ and "MERGE’ are actually a formal modeling of these
two types of interconnections and aid us to define the bit-level properties of the interconnections

axiomatically.

SPLIT Operator

SPLIT is considered a synthesis functional resource. This component takes as input (1) a signal value
V AL which according to behavior description has n + 1 bits : VAL[n,0] (and is either an input
signal or the output of another component), and (2) a subrange of its bits [u,!] (0 <1 < u < n)

and returns a signal value by converting the bit vector VAL[u,l] into a signal. The operation of

65

SIGNAL / SIGNAL
> SIGNAL SIGNAL
——| SPLIT —> MERGE
upper bound SIGNAL
—_— —
lower bound \
(a) Split Component (b) Merge Component

Figure 5.17: Virtual Components : Accounting for Bit-Level Interconnections

SPLIT is presented schematically in Figure 5.18.

MERGE Operator

MERGE is considered a functional resource. This component takes two signal values VAL; and
V ALy as input which according to behavior description have n + 1 and m + 1 bits respectively
and merge them into a signal VAL which if represented as bit-vector has n + m + 2 bits. The
signal VAL may not have a specific relation with the signals VAL, and V ALy, but the bit-vector
representation of it val[n + m + 1,0] can be defined in terms of the bit-vector representation of its

input signals vali[n,0] and valz[m, 0] as follows:

valln +m+ 1,m + 1] = vali[n,0] and

val[m, 0] = vala[m, 0]

A detailed description of the MERGE component is presented graphically in Figure 5.19.

The behavior of the MERGE and SPLIT operations may be defined axiomatically. These axioms
are used to define particular bit-level properties of the design during the verification process. An
example is an axiom about merge operation, stating that given the signals VAL, and VAL, are
merged into a signal VAL, if VAL, is equal to zero then the value of signal VAL is equal to the
value of signal VALs. These axioms are useful when dealing with the bit-size effects discussed

before.

66

: " 3
| 1 !
VAL ———= " ;
3 u : l-u+1 |
! Decode hu :
! Encode ———>
u — !
w 0 ‘
! o —— 1

Figure 5.18: Detailed SPLIT Component

Figure 5.19: Detailed SPLIT Component

67

VAL’

Signal VAL
Signal VAL1

0<=1 <=

Signal VAL
Signal VAL1

Signal VAL2

u

Bit-Vector

Bit-Vector

<= n

Bit-Vector

Bit-Vector

Bit-Vector

val[n,0]

valllu-1+1,0]

val[n+m-1,0]
vall[n,0]

val2[m,0]

5.6 Impact of Controller Generation on Verification Methodology

At this stage of the synthesis process, the number of controller states, its inputs at each state (the
flags from the data-path) and its outputs at each state (the control signals) are known. With this
information the controller of the RTL design is synthesized. The incorrect design of the controller
results in generation of incorrect control signals. The incorrect control signals lead to incorrect RTL
data-transfers that result in incorrect values in registers. The incorrect register values are detected
during the equivalence checking process. Therefore, the implementation of the controller need not

be separately verified.

5.7 Conclusion

In this chapter we presented detailed discussions about various stages of high-level synthesis, and
explained how the algorithms and transformations employed at each stage, affect the elements of
verification. We believe that with the knowledge of synthesis process, synthesis aware verification
algorithms may be developed, and educated reasoning leading to effective verification can replace

the restricted, blind verification techniques.

In the course of this chapter we have identified a set of properties that are specific to synthesized

designs. These properties may be summarized as follows:

(1) Each basic block of the behavior specification is scheduled independently. That is to say
the RTL design may be partitioned into independently scheduled RTL modules, such that
each module represents a basic block of the behavior specification. Therefore, there is a
bijective mapping between the independently scheduled RTL modules and the basic blocks of

the behavior specification.

(2) The input/output signals of the RTL components are considered to to have uninterpreted

values, unless the bit-level properties of the design are of interest.

(3) When register optimization performed as part of synthesis, the mapping between the specifi-
cation variables and design register should be defined dynamically. As a result of a dynamic

mapping the relation between the variables and registers may be “many to many”.

(4) The errors in the controller that result in malfunction of the RTL design can be detected by

verifying the equivalence of the RTL design and its behavior description.

In the following chapters we will show how these properties may be exploited to develop an effective

verification method.

68

Chapter 6

Formalization of the Verification

Technique

Consider S to be a behavior specification, and I to be its synthesized RTL implementation. We
showed that S may be partitioned into a set of sub-systems s; where 1 < k < n. Each sub-system
of S is a partial behavior description whose operation flow is described by a directed acyclic sub-
graph of the operation flow graph of S. The system I is also partitioned into n sub-systems i; to
in, Where each sub-system i of I is an RTL unit that inherits the data-path of I, and its controller

is a directed acyclic sub-graph of the controller of 1.

Consider that for the designs S and I the following two conditions are true: (1) the two systems
have equivalent initial internal states, and (2) there is a bijective mapping between the sub-systems
of S and sub-systems of I, such that each sub-system of I is an implementation of a sub-system of
S. Now, let us assume that each sub-system of S (each synthesis basic block of S) is observation
equivalent to a sub-system of I (an RTL unit of). We claim that under the under these assumptions
we can prove that I is equivalent to S, and the equivalence relation between S and I is no weaker
than observation equivalence. In the following sections we offer a formal proof for this claim. The

following next sections present some formal definitions and notations.

6.1 Critical Verification Elements

In Chapter 3 the equivalence of each pair of sub-systems sy and i; was defined based on their obser-
vation equivalence. The observable behavior of s (or ix) was in turn defined in terms of two types
of communications, its communication with other sub-systems of S (or I), and its communication

with the environment of S (or I).

69

We explained that the behavior of each sub-system s;, is described by gy, , a directed acyclic sub-
graph of the operation flow graph of S, except that g, is modified so that at its initial state sy
reads the values of the specification variables from the inputs, and at its final state s, writes the
values of the specification variables. Even though these input/output operations are not observable

at the system level, at the sub-system level they define the behavior of sy.

The behavior of s; is formulated in terms of the states it communicates with its environment
and the values it communicates with its environment. Therefore, such states are referred to as
critical behavior states and, the variables holding such values are referred to as critical specification

variables.

Through an analogy, similar states of the controller of the RTL design and similar value holding

elements of each RTL unit are defined as critical design states and critical design registers.

Also, since the correctness of the design is defined based on the particular proposed decomposition
of the finite state machine models of the behavior specification and RTL implementation, each
directed acyclic sub-graph of the behavior automaton is referred to as a behavior critical path, and
each directed acyclic sub-graph of the controller automaton is referred to as a design critical path.
A critical path is path from one critical state to another without visiting any critical states in

between.

This suggests that the following states in behavior specification should be marked as critical states:
(1) conditional states — states with more than one outgoing transition; (2) join states — states with
more than one incoming transition; (3) input states — states that read from input ports; (4) output
states — states that write to output ports; (5) the procedure call states — states that call a procedure;
(6) the start state, and, (7) the final state. These states introduce control flow dependencies into
the ¢DFG and the HLS system never moves code across these states. Further, since, specification
code between a pair of these states is subject to scheduling and hence to possible code motion
during high-level synthesis, no other states can be marked as being critical. This imposes a lower
bound on the length of the critical paths: a critical path may not be shorter than a basic block,
except if it is joining a conditional state to another critical state, in which case it may not be shorter

than either of the conditional branches.

The following variables in the behavior specification should be marked as critical variables in the
specification: (1) input variables, (2) output variables, (3) any variable that has a live value across
a critical state !. The last category of critical variables are easily identified during life-time analysis
that precedes register allocation. All critical variables are preserved by the HLS tool and manifest in
the RTL design in the form of critical registers and all critical states in the behavior automaton are

preserved by the HLS tool and manifest in the form of critical states in the controller automaton.

!Note that these include any variable used as the deciding variable in transitioning from a conditional state.

70

Therefore, conditional, join, input, output, procedure call, start and final states in the controller
together form the critical states of the controller. We assume that all critical states are reachable
from the start states respectively in the behavior automaton and the RTL controller, that is, any
dead-code has been eliminated prior to high-level synthesis. We rely on the HLS tool to supply the
critical binding functions, i.e. the functions mapping the critical specification variables to critical
design registers, the critical behavior states to critical design states and behavior critical paths to
design critical paths. Now, a formalization of the problem based on the above definitions may be

presented.

6.2 Formalization

Let R be the set of all registers or all variables of the design. Let CR C R be the set of critical
registers. Let S be the set of states in the automaton and X be the set of transitions among these
states. Let S0 be the unique start state of the automaton. Let CS C S be the set of critical
states. We assume that every critical state is reachable from the start state. Let CP be the set of
critical paths among these critical states. For any critical path p € CP, F(p) and L(p) denote the

originating and terminating states of p.

Then in a behavioral specification, modeled as a behavior automaton, the following elements are
defined:

Ry, : the set of behavior registers or specification variables
CRy C Ry : the set of critical variables

Sp : the set of states in the behavioral automaton

Xp @ the set of transitions among behavior states

S0y : the unique start state of the behavioral automaton
CSp C Sp : the set of critical states

CPy : the set of critical paths among critical states

Fy(p) : the originating state of the behavior critical path p
Ly(p) : the terminating state of the behavior critical path p

Similarly, in an RTL design the following elements are defined:

R, : the set of registers in the register level data path
CRy4 C Ry : the set of critical registers in the data path
Sg : the set of states in the controller

X4 : the set of transitions among controller states

71

S04 : the unique start state of the controller

0S4 C Sy : the set of critical states in the controller

CPg : the set of critical paths among controller states
F4(p) : the originating state of the design critical path p
Ly(p) : the terminating state of the design critical path p

Following the previous discussion, we postulate that the high-level synthesis tool can produce, as
a byproduct of the synthesis process, the following two mappings (called bindings in the synthesis

terminology):

B, : CRy — CRy critical register binding
B : CSy — CSy critical state binding

The start state of the behavior is always mapped to the start state of the controller, that is:
Bs(sgb) = 504

From B; and B, we can easily derive another mapping B, : CP, — CPq4 that is the critical
path binding. A critical path p, € CPy is mapped to critical path py € CP4 if and only if their
originating and terminating states are mapped by B, and the transition conditions, if any, on the
outgoing transitions of their originating states match. More formally, if v (—wv) is the condition
variable annotation on the originating transition of the behavior critical path py, and f (—f) is the

condition flag of the design critical path p; then:

By(py) = ps <= Bs(Fy(ps)) = Fa(pa)
Bs(Ly(pb)) = La(pa)
f BT(U)

A
A

The proposition f = B,(v) formally states that if p, is annotated with the condition variable v,
then py is annotated with the condition flag B,(v). This ensures that if py is traversed in the

behavior, p; will be traversed in the RTL controller.

An ezecution path in the behavior is a finite sequence of critical states such that the first state in
the sequence is the start state and any two successive states in the sequence form a critical path,
that is:

72

Vey € EPy , ey = [31a527"'a5iasi+17"'] :
(81 = S0, N
(Vi>1,3p € CPy:s; = Fy(p) N sit1 = Lp(p)))

Where EP, denotes the set of all possible behavioral execution paths. Execution path in the RTL
controller is similarly defined and EP, denotes the set of all possible RTL execution paths. We can

construct an execution path binding, B, : EP, — EP; using the critical state binding as follows:

e={s1,52,"*+,8i,8i+1," "} = Be(e) ={Bs(s1),Bs(s2),+*+, Bs(5:), Bs(si11), -}

where e is an execution path in the behavior automaton, and Be(e) is its corresponding execution
path in the controller of RTL design. The last state in an execution path e is called the termination

state of e and denoted by Tj(e) for the behavior automaton and by Ty(e) for the RTL controller.

For the purposes of defining equivalence between the behavior and its RTL implementation, we
postulate an uninterpreted domain of values, V. These values can be ‘stored’ in behavioral variables
as well as RTL registers. We postulate two functions for assigning values to critical variables and

critical registers:

Vy: EPy x CRy — V.
Vig: EPyx CR4 —V

Vp determines the value of a critical variable r, when the behavioral automaton traversed the
execution path e, and reached the state Ty(ep). Vj is similarly defined. In the next section, we
show axiomatic definitions of V}, and V; suitable for symbolic manipulation, automatically generated

from behavioral specifications and RTL descriptions respectively.

We are now ready to define various equivalence relationships between the behavior and the RTL
design. We say that the initial state S0p in behavior automaton is equivalent to the initial state
S04 in the controller provided that when the two machines start operation, the value of each critical
specification variable is the same as the content of its corresponding critical register. The initial

state equivalence is denoted by S0, = S504:

S0, = S04 ¥r € CRy, Vy([S04),7) = Va([S04], B, (r)) |

We say that a critical state s in the behavior and B;(s), its corresponding RTL critical state are

equivalent provided if the behavior automaton and RTL design start operation from equivalent initial

73

states, and go through identical transition sequences that end at s and B;(s) respectively, then the
value of each critical specification variable and the content of its corresponding design register at

these states are equivalent. We denote state equivalence by s = B,(s):

Vs € CSy: s = By(s) &
(S0, = 504 =
(Ve € EPy,s = Ty(e),Vr € CRy :
Vo(e,7) = Va(Be(e), Br(r))))

State equivalence is defined only between initial states and between the terminating states of

identical pairs of behavior-design execution paths, therefore, it is obvious that s, = s4 only if
sq = Bs(ss)-

We say that a behavioral execution path e is equivalent to its corresponding RTL execution path
Be(e) provided any state of the behavior execution path is equivalent to its corresponding state
in the design execution path. Execution path equivalence is defined only between a behavior
execution path and the design execution path to which it is bound during the synthesis process,
and is denoted by e = Be(e):

‘ Ve € EPy : e = Be(e) < (S0, = S04 = Vs € e,s = By(s)) ‘

We say that the RTL design is equivalent to the behavior specification provided each possible

behavior execution path is equivalent to its corresponding design execution path:

My, =My (Ve € EPy: e = B(c)) |

My and My correspond to Behavior Automaton and Design Automaton, respectively.

We say a behavioral critical path p is equivalent to its corresponding RTL critical path Bp(p)
provided if starting from equivalent initial states, the two critical paths terminate in equivalent
states. The critical path equivalence is defined only between a behavior critical path and the
design critical path to which it is bound during the synthesis process and is denoted by p = By(p):

Vp € CPy : p = By(p) & (Fy(p) = Fa(Bp(p)) = Ly(p) = La(By(p)))

74

We claim that critical path equivalence implies execution path equivalence per the following theo-

rem:

Equivalence Theorem: If every critical path in the behavior is equivalent to the RTL critical
path to which it is bound during the synthesis process, then the RTL design is equivalent to the

behavior specification. Formally:

(Vp € CPy:p=By(p) = My =My

The proof of this statement is straight forward and follows from the original assumptions that the
initial states of the two machines are equivalent and that in both behavioral automaton and the
RTL controller, the critical states are reachable from the respective start states. In this proof it
is shown by induction on the length of the execution paths that critical path equivalence implies

execution path equivalence, that in turn implies the equivalence of the designs:

Vp € CPy : p = By(p) = Ve € EPy : e = Be(e))

The above theorem is one of the key components of this work and is the basis of our verification
technique. We verify a synthesized RTL design by proving its equivalence to its behavior specifica-
tion. The equivalence of the designs is established by proving the equivalence of each critical path

of the controller of the RTL design to its corresponding critical path in behavior automaton.

The proof of the theorem follows from the fact that, in both behavior automaton and RTL con-
troller, the critical states are reachable from the respective initial states. A detailed proof of the
theorem, based on induction on the length of behavior execution paths, concludes this chapter. A

mechanized version of this proof is given in Appendix A.

Induction Basis

Suppose that E Py is the set of all the behavior execution paths of length 1. We should prove that:

Vpe CP, : p=By(p) = Vee€ EP,; : e= Be(e)

75

Proof

1 S0,= 504 premise

2 VpeCP, : p= By(p) premise

3 e €EPy assumption

4 e ={SOy} 3, definition of execution path of length 1
5 e; = Bel(ey) 1, definition of equivalent execution paths
6 e € EPy = e; = Be(ey) 3-5 =-introduction

7 VYe€ EPy, : e= Bcle) 6 V-introduction

8 VpeCP : p=Byp) = 2, 7 =introduction

Ve € EPy : e = Be(e)
QED

Induction Hypothesis

Suppose that E P,y is the set of all behavior execution paths with the length less than or equal to
k. Then the induction hypothesis is as follows:

Vpe CPy, : p=DBy(p) = Ver, € EPy, : e, = Be(ey)

Inductive Step

Suppose that EPy, , is the set of all behavior execution paths with the length less than or equal
to k + 1. We should prove that:

Vp € CPy : p=DBy(p) = Vex1 € EPy ., exr1 = Be(ext1)

Proof

1 S0,= 504 premise

2 VpeCP, : p=By(p) =>Ve€ EPy, : e = B.(e) premise

3 VpeCP, : p=DBy(p) assumption

4 Vec EPy : e= Be(e) 2, 3 =-introduction

5 (ej41 ={SBo,bsa,---,bsj,bsj1}) € EPy, assumption

6 JecEP, : e={SBy,bsy, -,bs;} 5, definition of execution path

76

7 ej ={SBy,bsy,--,bs;} 6 J-elimination
8 e = Be(ej) 4 V-elimination
9 S0,= 504 = Vsp € ej:sp = Bs(sp) 8, definition of equivalent ezecution paths
10 Vsp € ej: sp = By(sp) 1, 9 =-elimination
11 Jp e CPy:p="Taily(ej4+1) 5, definition of critical path
12 p;j =Taily(ejq1) 11 3-elimination
13 pj = By(p)) 3 V-elimination
14 Fy(p;) = Fa(Bp(p;)) = Ly(p;) = La(Bp(p;)) 13, definition of equivalent critical paths
15 B(Fy(p;)) = Fa(Bp(pj)) A 13, definition of B,

Bs(Ly(pj)) = La(By(p;))
16 Bs(bsj) = Fa(Bp(pj)) A 12, 15 substitution

By(bsj+1) = La(By(p)))
17 Fy(pj) = Bs(bsj) = Ly(pj) = Bs(bsj+1) 16, 14 substitution
18 bs; = By(bsj) = bsji1 = By(bsjt1) 12, 17 substitution
19 bsj = Bg(bs;) 10 V-elimination
20 bsji1 = Bg(bsjy1) 18, 19 =-elimination
21 Vsb € ejqr: sy = Bs(sh) 10, 19
22 S0, = 504 = Vsb € ej11 : sb = By(sb) 1, 21 = -introduction
23 ejt1 = Be(ejy) 21, definition of equivalent execution paths
24 ej11 €EPRy,,, = ejy1 = Belejy) 5-22 = -introduction
25 Ve€ EPy, ., : e= Be) 24 Y-introduction
26 VpeCP : p=By(p) = 3-25 =-introduction

Ve € EPy, ., : €= Be(e)
QED

6.3 Dynamic Register Binding and Criticality Masking Technique

In previous discussions in this chapter, we assumed a static register binding between the critical
specification variables and critical design registers, i.e. during the operation of RTL design, exactly
one RTL register represents each behavior register. In such case, the register binding function is a

bijection.

However, as it was explained in section 5.4, when register optimization is performed as part of the
synthesis process, the critical register binding is no longer bijective. A register may represent a
variable at some state and a different variable at another state. Let’s consider two specification

variables 13, and ry,, and critical path py, (corresponding to sub-system sj). Before register opti-

7

mization is performed, two registers r4, and r4, are assigned to r, and ry,, respectively. Let’s also
assume that r4, and r4, have non-overlapping lifetimes. Then, during the register optimization
process, rqg, and r4, are merged into a single register r4. Now, even if the RTL design is correctly
implemented, when the observation equivalence of py, and its counterpart py, is examined, exactly

one of the following statements is true:

pa = Bp(ps) & (Fo(py) = Fa(Bp(ps)) = Vu(re,) = Va(ra))
pa = Bp(ps) < (Fo(py) = Fa(Bp(ps)) = Vi(re,) = Valra))

That means that the proof of the critical path lemma corresponding to p,, will fail. This failure of
the proof is not as a result of design errors. It is due to the fact that in the proposed formalization,
the register optimization properties of the design have not been accounted for. This problem can
be solved by defining a dynamic register binding function, and through a technique referred to as

criticality masking. A dynamic register binding function defines the register binding at each state:

B, : CRy, x CS5 — C8y

Also, since the set of critical registers vary from one state to next, we define the critical registers as
a function rather than a set. So, if we denote the set of all the critical registers by CR; and (CR),

in the case of design registers), then the critical registers at each state are defined by the function:

CRb : CS[, — {Tb | ’r'bECRé}

In a design such as described above, at the final state of the critical path pp, at most one of the
behavior registers r, or rp, is alive. The behavior of the design is defined by this register, the
contents of the other register does not influence the correct function of the design at this state.
Therefore to solve the register binding problem, at the final state of each critical path, the criticality

of any register that does not have a live value at this state is masked.

The critical registers at the initial state of the critical path py, is defined as the intersection of sets

of critical registers at the final states of the paths ending at that state:

CRy(Fy(pp,)) = N CRy(Lo(ps))
p€{p | PECP, A Ly(p)=Fy(py,,)}
CR4(Fu(pa,)) = N CRy(La(pa))

Pa€{p | pECPy A La(p)=Fu(pa,)}

78

Then for the correctness condition of the design to stay valid, we need to redefine the state equiv-

alence as follows:

Vs € CSy: s = By(s) &
(50, = S04 =
(Ve € EPy, s = Ty(e),Vr € CRy(s) :
Vi(e,r) = Va(B.(e), By (r, B.(5)))

This technique is called criticality masking technique, since if at a certain state, the content of
a register does not affect the correct function of the design, during the verification process, that
register and its content at that state are ignored, or in other words its criticality at that state is

masked.

6.4 Conclusion

In this chapter we presented the key elements of our verification approach in a formal setting.
We revisited the notion of correctness formally, and presented a mathematical formulation of the
problem decomposition discussed in Chapter 4. We presented a formal proof for correctness of the
proposed decomposition and showed that a set of smaller and simpler design correctness lemmas
can collectively capture the correctness condition of an RTL design. Based on this decomposition
the proof of correctness of a design is reduced to the proof of design correctness lemmas. Finally,
we presented extensions to our verification method to account for the verification of the designs
when register optimization is performed as part of the synthesis process. In the following chapter

we will explain how to automatically generate the proof of the design correctness lemmas.

79

Chapter 7

Proof Construction

In this chapter the construction of the proof of correctness for synthesized RTL designs is discussed.
In Chapter 3 we defined correctness as an equivalence relation between the RTL design and its
behavior specification. The correctness condition of the design can be defined based on this equiv-
alence relation, that may be formulated as a theorem in logic (Equivalence Theorem). Then, to

verify the correctness of the design a formal proof of this theorem should be generated.

As this theorem requires a very large proof - even for very small designs - constructing such a
proof is usually impractical. To deal with the complexity of the proof generation, we introduced
a decomposition for the RTL design and its specification. As a result of this decomposition, the
behavior specification is partitioned into a set of simpler partial behavior descriptions, such that
the operation flow of each partial behavior description is defined by a directed acyclic subgraph
of the operation flow graph of the original behavior specification referred to as a behavior critical
path. Also, as a result of this decomposition, the RTL design with the data-path D and controller
C is partitioned into a set of simpler communicating RTL units, so that each RTL unit inherits the
data-path D and its control flow is defined by a directed acyclic sub-graph of C called a design
critical path.

We showed that there is a bijective relation between the partial behavior descriptions and the RTL
units, such that each RTL unit is an implementation of a partial behavior description. Also, we
showed that the proof of correctness of the RTL design is reducible to the proof of correctness of the
RTL units. In this process, the equivalence of each RTL unit and the corresponding partial behavior
description is verified. That is to say, the correctness condition of the design is reduced to the

conjunction of a group of simpler correctness conditions - the critical path equivalence lemmas.

We saw that each correctness condition of the design corresponds to the equivalence of a pair of

behavior and design critical paths, and may be formulated as a theorem in logic. In this discussion

80

Proof Tactic 1

— Inference Rule / Axiom
Proof Tactic 2 — Proof Step 1
— Inference Rule / Axiom
Proof —— Proof Step 2
Strategy Proof Tactic 3 - :
) L Inference Rule / Axiom
. L__| Proof Stepm

Proof Tactic n

Figure 7.1: Hierarchical proof generation

such a theorem is referred to as a lemma. Now, the proof construction process consists of generating

the formal proof of correctness for each correctness condition lemma.

The proof of correctness of each lemma is generated by simplifying it into subgoals, then proving
each subgoal using the inference rules of logic, and the specific knowledge of the design. The
correctness proofs may be fully hand-crafted; constructed interactively (such that the general steps
are given by the verification engineer and the small steps are automatically generated); or they
may be carried out automatically. In our approach the process of proof generation is completely

automated.

Even though it will be a long while before the proof of arbitrary theorems of logic can be automat-
ically generated, for specific classes of the problems there is the possibility of automating the proof
effort, at least partially. In hardware verification domain as an example, if verification engineers
adopt a specific style for constructing the proof, they find that they do similar steps over and over
again [3]. By a careful study, those steps that are common to such proofs may be identified, and
an assessment of the amount of reasoning amenable to automation can be made. Then, engines for

automatic proof generation can be developed.

We have developed a completely automated engine for generating the proof of each correctness
condition of an RTL design (i.e. the proof of each critical path equivalence lemma). These proofs
consist of many repetitive steps. We have identified these steps and developed a general strategy

for proving the critical path lemmas. Each general proof strategy consists of a sequence of more

81

specific proof tactics. Each proof tactic may in turn consist of several proof steps (Figure 7.1).
Each proof step is composed by application of inference rules to the design axioms. A design axiom

captures part of our knowledge about the design or design properties.

It should be noted that there is always a tradeoff between the intricacy of proof constructs and the
possibility of automatically generating the proofs. Between the two criteria we have given preference
to the latter. Smart and sophisticated proofs may occasionally be generated automatically, however,
this is not usually the case. The primary goals of our proof generation algorithm have been to

generate ‘a’ proof for each critical path lemma and to construct this proof fully automatically.

To achieve this goal, we have aimed at very basic proof strategies and primitive proof tactics. This
is due to the fact that we have emphasized the completeness of the approach rather than elegance
of the proofs. Therefore, we can generate basic - and often very long - proofs for design correctness
conditions in each and every case, rather than generating elegant proofs for some of the correctness

conditions.

7.1 Proof Strategy

A strategy is a very high-level sketch of the proof without mentioning how the details are carried
out. For example, a strategy for proving the a design correctness conditions, or a critical path

equivalence lemma, may be as described by the following steps:

(1) extracting a relational formulation of the behavior of the specification,
(2) extracting a relational formulation of the RTL design,

(3) proving that both designs have equivalent behaviors.

Counsider the behavior and design critical paths p, and pg representing the operation flow of a
partial behavior description and an RTL unit, respectively. Let’s assume that the communication
of the of the partial behavior description with the environment is defined as follows:

o At the initial state of p, all the critical variables are read from appropriate inputs.

e At the final state of p, all the critical variables are written to appropriate outputs.

e If at a state s; of py that the behavior specification reads/writes a value from/to a variable
to/from the environment, at the state s, the partial behavior specification also reads/writes

the same value from/to the variable r, to/from the environment.

Similarly, the behavior of the RTL unit with controller p, is defined as:

82

e At the initial state of py all the critical registers are read from appropriate inputs.
o At the final state of py all the critical registers are written to appropriate outputs.

e If at a state sq of pg that the RTL design reads/writes a value from/to a critical register
rq to/from the environment, then at the state sq the RTL unit corresponding to pg also

reads/writes the same value from/to the critical register r4 to/from the environment.

As the first step in this proof strategy, the behavior of the partial behavior specification should be

formulated mathematically. Part of these formulations may be similar to the following:
Vo(CRy, L(ps)) = f(Vo(CRy, Fy(ps)))

Similarly, at the second step of the proof strategy, the behavior of the RTL unit should be mathe-

matically formulated:

Va(CRg, La(pa)) = 9(Va(C Ry, Fu(pa)))

Where the function V;, (or V3) is overloaded in these definitions to denote a vector version of itself.
Therefore, V,(CRy, bs) E: Va(C Ry, ds) should be interpreted as:

Vry € CRy, Vrqg € CRq : 14 = Br(ry) = Vi(rs,b5) = Vy(ra,ds)

As the third step of the proof strategy, we need to show that the outputs of the two design are in
the exact same relation with their inputs. Since we know that the inputs at the initial states of py
and py are equivalent, then the outputs are proven to be equivalent. As part of this proof we may

need to show:
Vry € CRy = f(Vo(re, Fy(pp))) = 9(Va(Br(s), Fa(pa)))

7.2 Proof Tactics

A proof strategy is an overall sketch of the proof, and does not offer any details. For example, the
strategy sketched above, does not explain how each of the three steps of the proof should be carried

out. Proof tactics simplify the general proof strategy into sub-goals.

83

2D Delay Multiplier ax: V (in; : signal,

ing : signal,

out : signal,

s1: RT L _state,
8ot RTL_state) :

(2D _delay_muliplier(in,ing, out) A
trans(si, s2) A
Vald(inl, 82) = Vald(inl, 81) A
Vald(z'ng, 82) = Vald(z'ng, 31)) =
Valg(out, s9) = mul(Valy(ing, s1), Valg(ing, s1))

Figure 7.2: Relational description of the multiplier component

For example for extracting a relational description of the behavior of specification (the first step in
proof strategy), a proof tactic may be to traverse the path of data-transfers from the inputs to each
output, and then extract the relational behavior of each component, then through term rewriting
and simplifications the outputs may be defined in terms of the inputs. Therefore, in this case
proof tactics may be to construct the relational behavior of the components from the description
of this design, or to extract the interconnection information of two components, and then extract

the following relation:

Va(CRg, La(pa)) = g(Va(C Ry, Fy(pa)))

7.3 Proof Steps

Consider the description of the multiplier given in Figure 7.2. This multiplier has a delay of about
2 cycles, such that the output of the multiplier at the end of the second cycle, is the product of
its two inputs at the first cycle. However, in order for the multiplier to function correctly, a few
conditions should be met. Among these conditions, are the following two that state that the inputs

of the multiplier in the two cycles of its operation should be stable:

(1) Va(ing,s2) = Vy(ing,s1)

84

|
T

0
tl
|]
T

M1
MUX3

Figure 7.3: Component interconnections as part of the data-path of an RTL design

(2) Valing, s2) = Vy(ing,s1)

A proof step may be as simple as proving one condition such as above. Let’s assume that the com-
ponent M; in Figure 7.3 is a multiplier whose behavior is described by the 2D _Delay_Multiplier_ax
axiom. Then a proof step during the verification of the design may consist of establishing that the
first condition for the correct operation of M; at the execution cycle [ds1, dss] is correct:

Va(M;i.ini,dse) = Vg(Mi.ing,dsy)

The proof of this condition is constructed from design axioms and the inference rules of higher
order logic. This proof step is as follows:

(63) Va(Mi.inl,ds1) = Va(MU Xs.0ut,ds1)

(64) V4(MUXs.0ut,ds1) = Vg(MU X5.in0, ds1)

(65) Va(MUXj3.in0,ds,) = V4(U-REG.out,ds)

(66) Va(My.inl,ds1) = Vy(U_REG.out,ds;) (63)-(65)
(67) Vg(My.inl,dss) = Vy(MU Xs.0ut, dss)

(68) Va(MU Xs.out,dss) = Vy(MU X5.in0, dss)

(69) Va(MUX5.in0,ds2) = Vag(U_REG.out,ds2)

(70) V4(U_REG.out,dss) = V4(U_REG.out,ds1)

85

ENTITY 2d_multiplier_8bit IS
PORT(inputl : IN bit_vector(7 downto 0);
input2 : IN bit_vector(7 downto 0);
prod : OUT bit_vector(15 downto 0)

END 2d_multiplier_8bit;

ml : 2d_multiplier_8bit
PORT MAP (mi1.ini1(7 downto 0), ml.in2(7 downto 0), mil.out(15 downto 0));

Figure 7.4: HDL description of the port-map of the multiplier component

(71) V4(U_REG.out,ds1) = Vy(Mj.inl,ds,) (66)
(72) Va(My.inl,dss) = Vg(My.inl,ds;) (67)-(71)

7.4 Inference Rules and Axioms

Axioms are the translation of our knowledge about the design and its specification into logical
formulas. For example, the port-map (interface) of a multiplier component of the RTL design, such
as M1 may be described as shown in Figure 7.4 in an HDL description of the data-path. During
the process of modeling and specification of the design, this piece of information is translated to

an axiom:

(1) Miax : 2D_Delay_Multiplier(M;.ini, My.ing, Mj.out)

The predicate 2D_Delay_Multiplier (Mj.iny, M;.ing, M;.out) asserts that M;j.ini, Mj.ing, and
Mj.out define the interface of a multiplier component of the type 2D _Delay_Multiplier. Note
that the bit sizes of the input and output signals are omitted as the values are uninterpreted in our
technique. Now let’s assume that the HDL decription of the controller may state that a transition

from the ds1 to dss occurs. This information may also be translated to an axiom:

(2) trans.dsi.dss_ax : transition(dsi,dss)

Now, let’s assume that the following conditions for the correct function of M; at the execution

cycle [ds1,dsg], have already been proved, in two separate proof steps:

86

(3) Va(Mji.in,dss) = Vy(My.inl,ds)
(4) Va(Mi.ing,dsy) = Vg(My.in2,ds)

During the verification of a design, the following sub-goal may be generated:

(5) Vd(Ml.out,dsz) = mul(Vd(Ml.inl,dsl), Vd(Ml.inZ,dsl)

The proof of this sub-goal may be generated in a proof step, from the axioms specifying the design,
previously proven goals, and inference rules of higher order logic. For example the V-elimination
inference rule may be applied to 2D _Delay_Multiplier_ax axiom, ini; may be bound to Mj.in{, ino

to Mj.ing, out to My.out, s1 to ds; and s to dsy. As a result the following tautology is generated:

(2D _delay_muliplier (M1.iny, Mi.ing, My.out) A
trans(dsy,dss)) =
((Vg(My.ing,dss) = Vg(My.ing,dsy) A
Va(Mj.ing, dse) = Vy(My.ing,ds1)) <
Va(Mj.out,dss) = mul(Vy(My.ing,dsy), Vg(Mi.ing,dsy)))

From the axioms (1) and (2), and the previously proven sub-goals (3) and (4) we know that the
antecedent of the above tautology is true. Then, by applying the =--elimination, the following

tautology is generated:

Va(M;.out,dse) = mul(Vg(My.inl,dsy), Vy(M;.in2,dsy)

This completes the proof of the sub-goal (5). The above example shows how during a proof step,

the proof of a sub-goal is constructed.

7.5 Conclusion

In this chapter we discussed the construction of the proof of correctness for synthesized RTL designs.
We showed that the correctness of an RTL design is established by verifying a set of critical-path
equivalence lemmas. The proof of correctness of each lemma is generated by simplifying it into

subgoals, then proving each subgoal using the inference rules of logic and design axioms. As the

87

proofs consist of many repetitive steps, we have developed a completely automated engine for
generating these proofs by constructing proof strategies consisting of repetitive proof steps. In the
following chapter we introduce CCG (correctness condition generator), a formal verification tool
based on the concepts presented in this dissertation. CCG has a proof construction engine that

generates proof scripts as discussed in this section.

88

Chapter 8

Correctness Condition Generation

This chapter introduces the Correctness Condition Generator CCG, our formal verification tool
that is built based on the principles discussed in previous chapters of this dissertation. CCG has
powerful engines that perform model extraction and specification, correctness condition generation,
and proof generation automatically. The resulting correctness proofs are further verified by an

independent proof checker.

CCG is tightly integrated with the high-level synthesis system DSs [53], and serves to verify the
correctness of the RTL designs generated by this system. We modified the high-level synthesis sys-
tem DSS to generate the three bindings B, B; and B),. These bindings along with the behavior
specification and the RTL design description are the inputs to the Correctness Condition Generator
(cca) shown in Figure 8.1. CCG processes the knowledge of RTL design and its behavior specifi-
cation and generates formal descriptions of the specification and the design, correctness conditions

of the design and their proof of correctness.

The proof is carried carried out in PvS theorem proving environment [48], and verified by Pvs proof
checker [56]. The choice of PVS came naturally to us, for two reasons: PVs specification language
[47] is based on higher-order logic, and PVS proof checker is powerful. PVS proof checker examines

the proof and detects the inconsistencies or violations of the inference rules, if they exist.

The failure of the proofs may be due to two reasons: logical errors in construction of the proof, or
design errors. In case of failure, the source of the error can be identified. During our experiments
we did not encounter errors of the former type. We believe that the use of primitive logic constructs

and basic inference rules in construction of the proof has considerably contributed to this fact.

CCQG is characterized by the ability to locate the errors in addition to detecting them. The imme-
diate implication of the failure of the (correctly constructed) proof of a critical path equivalence

lemma is that along that critical path the design has incorrect behavior. In such situation, the

89

Behavioral Specification Correctness Condition Generator

L))
" Behavior Axiom

Generation

! Data Path Axiom
High-Leve [—> DataPath ————3~
I

Generation
|
e RTL Design r - - - - - |
Synthesis I | Controller Axiom
31 Controller ————® o
System I !
| o — — — — —
Generation of

= critical path

Binding Br,Bs,Bp equivalence lemas

PVSProof T~

Generation of
Proof scripts

Figure 8.1: Stages of Correctness Condition Generation

control traces along which the design has erroneous behavior, and in each case the route of the
data transfers leading to error may be identified. Consequently, the circuitry involved in erroneous
operations is pointed out. Even though cCG cannot determine the exact point of error, it localizes
the neighborhood of the error in data-path. The localization of the error is invaluable in error

recovery.

The goal of our proof effort is to show that the behavior specification and RTL implementation
are equivalent. This is accomplished by decomposition of the proof of equivalence into proof of a
set of lemmas as discussed in previous chapter. The proof of these lemmas together complete the
proof of the equivalence of the two designs. Each lemma states that a critical path in the behavior
is equivalent to its corresponding critical path in the structure. We assume that the operating
environment of the designs ensures that S0, = S04. Typically, the environment ensures that all
the data and control registers are reset at the start states. We develop the proof by using symbolic

term rewriting in a higher-order logic theorem prover.

CCG has five five engines that each performs a part of the automated design verification effort.

Each of the following tasks is performed by one of the engines:

1. behavior axiom generation;
data path axiom generation;
controller axiom generation;

generation of critical path equivalence lemmas; and,

Ot o W N

proof generation.

90

equivalent_states : [beh_state,rtl_state -> bool]

beh_trans : TYPE+ = [# bsl : beh_state, bs2 : beh_state , bc : bool #]
beh_critical_path : TYPE+ = list[beh_trans]
Val_b : [spec_var, beh_state -> value]

flag : [rtl_state -> bool]

beh_transition : PRED[beh_trans]
source_beh_trans(t : beh_trans) : beh_state = bsi(t)
target_beh_trans(t : beh_trans) : beh_state = bs2(t)

B_s : [beh_state -> rtl_state]

B_r : [spec_var -> comp_out]

B_p : [beh_critical_path -> rtl_critical_path]

First_b(cp : beh_critical_path) : beh_state = source_beh_trans(car(cp))

Last_b(cp : beh_critical_path) : beh_state = target_beh_trans(car(reverse(cp)))
beh_transition_condition(cp : beh_critical_path) : bool = beh_transition(car(cp))
% similar declarations for RTL design go here.

Figure 8.2: Some Generic Declarations

Each of these tasks will be discussed in this chapter in details. We illustrate these tasks by showing
selected fragments of the PVs code produced by CCG.

8.1 Generic Axioms

CCG has a library of generic declarations. These declarations are the prototypes of various func-
tions, predicates, etc. that are used in the process of modeling and proof generation of all designs.
The axioms of this library are used by the proof generator engine to construct proofs. In addition
CCG has a library of synthesis resources axioms. These axioms formally describe the relational
behavior (the behavior as a relation between inputs and outputs) of each component in the library

of synthesis resources.

As the first step in axiom generation, CCG generates a set of design specific definitions. The latter
set of axioms include information about specification variables, the RTL component declaration,
critical path specification for behavior automaton and controller, and bindings B,, B and B,,.
Figures 8.2 and 8.3 show some of the generic declarations and some of the design-specific elements

of the PVS model, respectively.

8.2 Behavior Axiom Generation

The first engine of ccG performs the tasks at this stage. As the first step it extracts a finite state
machine model from the behavior specification, written in a simple subset of VHDL in our case. Then

it examines the state machine model of the behavior specification, and converts it into a series of

91

spec_var : TYPE+ = { max, sum, val, grt }
comp_out : TYPE+ = { MAX_out, SUM_out, VAL_out, GRT_out, Bl_out, B2_out,
0U_out, Ti_out, T2_out, Z_out, RTL_input }
btli : beh_trans = (# bsl := BSO , bs2 := BS1 , bc := TRUE #)
bt2 : beh_trans = (# bsl := BS1 , bs2 := BS2 , bc := TRUE #)
dtli : rtl_trans = (# dsl1 := DSO , ds2 := DS1 , dc := TRUE #)
dt2 : rtl_trans = (# dsl := DS1 , ds2 := DS2 , dc := TRUE #)
bep3 : beh_critical_path = (: bt7 :)
bcp4 : beh_critical_path = (: bt6, bt8 :)
dcp3 : rtl_critical_path = (: dt8 :)
dcp4 : rtl_critical_path = (: dt7, dt9, dt10 :)
Bs_BSO_ax : AXIOM B_s(BSO) = DSO
Bs_BS2_ax : AXIOM B_s(BS2) = DS1
Bs_BS5_ax : AXIOM B_s(BS5) = DS6
Br_max_ax : AXIOM B_r(max) = MAX_out
Br_sum_ax : AXIOM B_r(sum) = SUM_out
Br_val_ax : AXIOM B_r(val) = VAL_out
Br_grt_ax : AXIOM B_r(grt) = GRT_out
Bp_bcpl_ax : AXIOM B_p(bcpl) = dcpl
Bp_bcp2_ax : AXIOM B_p(bcp2) = dcp2
Bp_bcp3_ax : AXIOM B_p(bcp3) = dcp3
Bp_bcp4_ax : AXIOM B_p(bcp4) = dcp4
state_equivalence : AXIOM (FORALL (bs : beh_state, ds : rtl_state):
equivalent_states(bs,ds)
IFF
(ds = B_s(bs) AND
Val_b(max,bs) = Val_d(MAX_out,ds) AND
Val_b(sum,bs) = Val_d(SUM_out,ds) AND
Val_b(val,bs) = Val_d(VAL_out,ds) AND
Val_b(grt,bs) = Val_d(GRT_out,ds)))

Figure 8.3: Some Basic Design-Specific Definitions and Axioms

axioms that collectively specify the value transfers in the behavior. This second procedure is mainly
a compilation task. For each state transition in the behavior design one axiom is generated. This
axiom specifies the value of each specification variable after a transition, in terms of the values
of that and other specification variables prior to that transition. Note that these axioms offer an

implicit symbolic evaluation of specification variables after each transition.

Figure 8.4 shows the axioms for the critical path [BSs5, BSg, BSs]. This critical path consists of
two transitions t6 = (BSs, BSg) and t8 = (BSg, BS). For each transition, one axiom is generated.

Val_b corresponds to state transition function dj.

The axiom bss_bsg_ax for example, as the name suggests corresponds to behavior state transition
bts = (BS5, BSs). This axiom defines the value of the specification variables at state BSg, after
transition (BSs, BSe), in terms of their values at state BSs. This axiom is read: “In transition
bts, from behavior state BS5 to behavior state BSg, the values of all specification variables remain
unchanged”. The axiom bsg_bss_ax is read: “In a transition btg from behavior state BSg to behavior
state BS9, all specification variables preserve their values, except the specification variable maz,

that assumes the value of specification variable val prior to transition”.

92

trans_bs5_bs6_ax : AXIOM beh_transition(bt6) = (Val_b(grt,BS5) = ONE)

bs5_bs6_ax : AXIOM beh_transition(bt6)
IMPLIES

(Val_b(max,BS6) = Val_b(max,BS5) AND
Val_b(sum,BS6) = Val_b(sum,BS5) AND
Val_b(val,BS6) = Val_b(val,BS5) AND
Val_b(grt,BS6) = Val_b(grt,BS5))

bs6_bs2_ax : AXIOM beh_transition(bt8)
IMPLIES

(Val_b(max,BS2) = Val_b(val,BS6) AND
Val_b(sum,BS2) = Val_b(sum,BS6) AND
Val_b(val,BS2) = Val_b(val,BS6) AND
Val_b(grt,BS2) = Val_b(grt,BS6))

Figure 8.4: Axioms for Some Behavior Transitions

8.3 Data Path Axiom Generation

A pre-existing library of axioms defines the behavior of each type of RTL component. As it was
mentioned before, each axiom of this library formally describes the relational behavior of an RTL
component. The value at the output of a component at a particular state is defined in terms of the
data and control inputs of the component at that state, or its output at a previous state in the case
of sequential components. The input of a component can be the output of some other component
or a primary input. Figure 8.5 shows the axiomatic behavior descriptions for the register, ALU and
bus components. These axioms are not design specific, and are included as part of the specification

of all designs as necessary.

The second engine of correctness condition generator cCG, models the data-path of the synthesized
RTL design as a PVS theory [47]. For each component of the data-path, an axiom is generated,
that specifies its type, and its interface with the rest of the components. The data-path axioms
together with the axioms in the component library define the behavior and interface of each indi-
vidual component. Also, the interconnection of the control inputs of the RTL components with the
controller, and the interconnection of the flags from the data-path to the controller are specified in
this theory. Axiomatic specifications of some of the data-path components of our design example

are shown in Figure 8.6.

The axiom grt_az, for example, specifies the type and interface of the register GRT. This axiom
states that a register component belongs to the data path, whose input is connected to the output
of component By (the second bus), its output is GRT_out and its load signal is GRT_cs. The
predicate register with the parameters B2 out, GRT out and GRT cs asserts that these three

signals are the interface ports of a register as stated above.

The axiom flag_az specifies the interconnection of a controller flag to the data-path. This axiom

93

register : [comp_out, comp_out, signal[bool] -> bool]

alu : [comp_out, comp_out, comp_out, signal[bool] =-> bool]
bus : [arr[comp_out], comp_out, arr[signallbool]] -> booll
reg_ax : AXIOM (FORALL (c_in : comp_out,

c_out : comp_out,

load : signal[bool],

si : rtl_state,

s2 : rtl_state):
register(c_in,c_out,load) AND (s2 = next_state(sl)

IMPLIES

IF (load(s2)) THEN
Val_d(c_out,s2) = Val_d(c_in,s2)

ELSE
Val_d(c_out,s2) = Val_d(c_out,sl)
ENDIF))
alu_ax : AXIOM (FORALL (c_inl, c_in2, c_out : comp_out,
op_mode : signal[bool],
ds : rtl_state) :
alu(c_inl,c_in2,c_out,op_mode)
IMPLIES

IF (op_mode(ds)) THEN
Val_d(c_out,ds) = add(Val_d(c_inl,ds),Val_d(c_in2,ds))

ELSE
Val_d(c_out,ds) = gt(Val_d(c_inl,ds),Val_d(c_in2,ds))
ENDIF)
bus_ax : AXIOM (FORALL (c_ins : arr[comp_out],

c_out : comp_out,
wrs : arr[signal([bool]l],
ds : rtl_state,
index : nat) :

bus(c_ins,c_out, wrs)
IMPLIES
(wrs(index) (ds) => (Val_d(c_out,ds) = Val_d(c_ins(index),ds))))

Figure 8.5: Axioms for Some RTL Library Components

states that the controller flag named flag, is in fact the output of the data-path component GRT
(the register GRT).

The axiom gri_cs_ax specifies the interconnection of a control-signal and a data-path component’s
control input. This axiom states that the control input of the component GRT (the register load)

is connected to the controller signal csy.

These 3 axioms specify the interface of the register component GRT to the rest of the RTL design.
Also, the predicate register with three parameters Bo out, GRT_out and GRT_cs together with the
reg_ax axiom of the RTL component library, specify the behavior of the component GRT as a

relation between its inputs (data input By_out and control input GRT_cs) and its output GRT_out.

94

GRT_cs, SUM_cs, MAX_cs, VAL_cs, Ti_cs, T2_cs, QU_cs : signal[bool]

Bil_wrs : arr[signal[bool]]

Bi_ins : arr[comp_out]

grt_cs_ax : AXIOM (FORALL (s : rtl_state) : GRT_cs(s) = Control_Signal(s,0))
bi_wrs_ax1l : AXIOM (FORALL (s : rtl_state) : Bil_wrs(1)(s) = Control_Signal(s,7))
bil_ins_axl : AXIOM (Bi_ins(1) = SUM_out)

flag_ax : AXIOM (FORALL (s : rtl_state) : flag(s) IFF (Val_d(GRT_out,s) = ONE))

grt_ax : AXIOM register(B2_out,GRT_out,GRT_cs)
z_ax : AXIOM constant_register(Z_out,ZERO)
ou_ax : AXIOM alu(T1_out,Bl_out,0U_out,0U_cs)
bi_ax : AXIOM bus(Bi1_ins,Bl_out,Bl_wrs)

Figure 8.6: Axioms for Some Data Path Components

8.4 Controller Axiom Generation

At this step a constructive model of the RTL controller is generated. First, the third engine of
CCG extracts a finite state machine model of the conroller of the RTL design. Then, it extracts the
functions next_state, and Control_Signal from the finite state machine model of the controller,
and translates them to PVS descriptions. In function Control_Signal, the values of control signals
from the controller to data-path at each state of the controller are defined. In function next_state,
the next state of each state is determined, in terms of the current state and the values of the flags
from the data-path to the controller at that state. This function corresponds to the function o4 in
our implementation model. The function next_state and parts of the function Control_Signal, for

our design example are shown in Figure 8.7.

next_state(s: rtl_state) : rtl_state =
CASE%OS OF

DS1 : DS2,

DS2 : DS3,

DS3 : DS4,

DS4 : DS5,

DS5 : DS6,

DS6 : IF (flag(DS6)) THEN DS7
ELSE_DS1
ENDIF,

DS7 : DS8,

DS8 : DS1
ENDCASES
Control_Signal(s: rtl_state, id: index) : bool =
IF id=0 THEN
CASES s OF
S5 : TRUE
ELSE FALSE
ENDCASES
ELSE
FALSE
ENDIF

Figure 8.7: RTL Controller

95

eq_cp4_11 : LEMMA
(equivalent_states(First_b(bcp4) ,First_d(B_p(bcp4))) AND
beh_transition_condition(bcp4) AND
rtl_transition_condition(B_p(bcp4)))
IMPLIES
Val_b(max,Last_b(bcp4)) = Val_d(MAX_out,Last_d(B_p(bcp4)))
eq_cp4 : LEMMA
(equivalent_states(First_b(bcp4) ,First_d(B_p(bcp4))) AND
beh_transition_condition(bcp4) AND
rtl_transition_condition(B_p(bcp4)))
IMPLIES
equivalent_states(Last_b(bcp4),Last_d(B_p(bcp4)))

Figure 8.8: Some Critical Path Equivalence Lemmas

8.5 Generation of Critical Path Equivalence Lemmas

For each pair of the behavior-RTL critical paths which are bound by the function B, a set of
lemmas are generated. A main lemma states that if the initial states of the pair of the critical
paths are equivalent, their final states should be equivalent. An instance of such statement for
the behavior critical path bep, = [BSs, BSg, BS2] and its RTL counterpart dep, = Bp(bepy) =
[DS¢,DS7,DSg,DS1] is the lemma eq_cp4 in Figure 8.8. A set of sub-lemmas (one sub-lemma
for each specification variable v) state that if the initial states of the pair of critical paths are
equivalent, then the values stored in the specification variable v and its RTL counterpart B, (v) at
the final states of the critical paths are the same. The proof of these sub-lemmas together infer
the proof of the main lemma for the specific critical path. An instance of such a sub-lemma for
the specification variable maz, and critical paths (bcps, dcps) is the lemma eq_cp4 11 in Figure 8.8.
Similar sub-lemmas for other critical variables sum, val and grt are generated. These four sub-
lemmas are used for proving the main lemma, eq_cp4. The equivalence of the behavior specification
and the RTL design is established by proof of these lemmas for all critical paths of the designs.

8.6 Generation of Proof Scripts

The generation of the proof scripts is the most elaborate task of ccG. At this step all the information
about the RTL design and its behavioral specification is processed and the rules for proving the above

mentioned lemmas are produced. The proof generation process was discussed in detail in Chapter 7.

During the proof generation process, the values of the specification variables and the contents of
design registers are symbolically calculated. The symbolic values of specification variables after each
state transition are implicitly defined by behavior axioms. Therefore, by inclusion as proof rules, the
axioms corresponding to the behavior transitions belonging to the same critical path, the symbolic

values of the specification variables at the final state of the critical path are implicitly defined in

96

terms of their values at the initial state of the critical path. For example, the axiom bs5_bs6_ax
defines the values of specification variables at state BSg and after the transition (BSs, BSg) in
terms of their values at state BS5, and the axiom bs6_bs2_ax defines the values of the specification
variables at state BSy and after the transition (BSg, BS2) in terms of their values at state BSs,
therefore by including these two axioms as proof rules we have implicitly defined the values of
specification variables at state B.Ss, the final state of critical path bepy = [BS5, BSg, BSs], in terms
of their values at B.Ss, the initial state of bepy. The two following rules which are part of the proof

of the lemma eq_cp4_l1 serve this purpose:

(LEMMA “bs6_bs2_ax”)
(LEMMA “bs5_bs6_ax”)

By including the proper behavior state transition axioms, the value of the specification variables at
the final state of behavior critical paths are defined. Similarly, the values of the critical registers at
the final state of design critical paths should be defined. Then, by comparing these sets of values,

the equivalence of the critical paths of the designs can be verified.

The symbolic values of each critical register at the final state of a design critical path can be
defined by a complete symbolic evaluation of the output of that register, i.e. calculating its value
in terms of the value of the outputs of the critical design registers at the initial state of that critical
path. CCG performs this symbolic analysis and as proof rules includes proper axioms that define
the value of the output of components at desired state. For example, suppose we are interested
in calculating the value of the register MAX_REG at DS, the final state of the critical path
depys = [DSs,DS7,DSg,DS1]. Then CCG generates as a proof rule, an instance of the axiom
reg_ax in the RTL component library, for register M AX_REG at the state DSg. Therefore, the
value of this register at state DS is defined in terms of its input By _out at the current state DS,

and its output M AX _out at previous state DSj.

(LEMMA “reg_ax” (“c.in” “B2_out” “c_out” “MAX_out” “load” “MAX_cs” “s1” “DS8" “s2”
“DS]-”))
(ASSERT)

Since the load signal of M AX_REG at state DSy is asserted low, then the value of M AX out at
stateDS; is the same as its value at state DSg. Therefore cCG generates proof rules that specify
the values of the control signals at state DS; (to define M AX.; the load input of MAX_REG
at state DS;) and an instantiation of axiom reg_az of the RTL component library to define the
input-output relation of MAX_REG at state DSsg.

(EXPAND “Control_Signal”)
(ASSERT)
(LEMMA “reg_ax” (“c_in” “B2_out” “c_out” “MAX_out” “load” “MAX_cs” “s1” “DS8” “s2”

97

(AUTO-REWRITE-THEORY "des" :ALWAYS? T)
(FLATTEN)

(LEMMA "bs6_bs2_ax")

(LEMMA "bs5_bs6_ax")

(LEMMA " btc_bcp4_ax")

(PROP)

(LEMMA "Bp_bcp4_ax")

(REPLACE -1)

(EXPAND "beh_transition_condition")
(EXPAND "rtl_transition_condition")
(EXPAND "First_b")

(EXPAND "First_d4")

(EXPAND "Last_b")

(EXPAND "Last_d4")

(ASSERT)

(REPEAT (EXPAND "reverse"))

(REPEAT (EXPAND "append"))

(LEMMA "trans_ds6_ds7_ax")

(LEMMA "flag_ax" ("s" "DS6"))

(PROP)

(LEMMA "max_ax")

(LEMMA "reg_ax" ("c_in" "B2_out" "c_out" "MAX_out" "load" "MAX_cs" "si1" "DS8"
Ils2ll llDSlll))

(ASSERT)
(EXPAND "Control_Signal")
(ASSERT)
(ASSERT)
Figure 8.9: Proof Scripts for a Correctness Theorem
“DSl”))

This continues until the symbolic evaluation of M AX _out at DSg is complete. Proof scripts are

generated by making use of the axioms and definitions generated in the previous steps when neces-
sary. These proofs are then subjected to verification by the PVS proof checker. These proofs make

extensive use of symbolic rewriting, involving instantiation of definitions, axioms and other proven

lemmas. A portion of the proof script for the lemma eq_cp4_l1 is shown in Figure 8.9.

98

Chapter 9

Structural Pipelining in Design

Synthesis

Pipelining is used in circuit design to enhance the performance of systems. This technique can
be exploited for the implementation of a design that performs a particular sequence of operations
repeatedly. In such a design it is often possible to overlap the evaluation of operations in con-
secutive executions of the sequence. This can be achieved by partitioning the sequence of the
operations into sub-sequences (called stages) such that (a) hardware circuits can be designed to
execute the operations in each sub-sequence, (b) the outputs of the operations in each sub-sequence
are the inputs to the operations in the succeeding sub-sequence, (c) other than the exchange of
the inputs and outputs, there are no interrelationships between the operations in any two different
sub-sequences, (d) usually, the execution times of sub-sequences of the operations in corresponding
hardware circuits are approximately equal, and (e) the sequential evaluation of the sub-sequences

and the evaluation of the original sequence generate equivalent results [34].

Even though pipelining does not affect the latency of the evaluation of the original sequence of
operations A\, when this evaluation is performed repeatedly, it can increase the throughput dg, i-e.
the rate at which the results of consecutive iterations are computed. If a design repeatedly executes
a sequence of operations at the rate A, a pipeline design with N; stages can do the same at a rate
up to A\p = A\/Nj.

In synthesis of digital designs three different types of pipelining techniques may be used: structural
pipelining, functional pipelining and loop winding. In the following two chapters of this dissertation,
specific issues on synthesis of pipelined designs by exploiting these three techniques, and in each
case the verification of the resulting pipelined designs is discussed. This chapter concentrates on

structural pipelining, and the related topic of multi-cycle synthesis resources, and the following

99

chapter focuses on loop winding and functional pipelining.

In the next section we first explain the general issues in design synthesis with multi-cycle resources,
and then discuss the synthesis using pipelined resources (structural pipelining) that constitute a

special class of multi-cycle resources.

9.1 Multi-Cycle Resources

The propagation delays of the most combinational components in synthesis resources library are
much smaller than the clock cycles of synthesized designs. A set of values may be applied to the
inputs of a component and propagated to the outputs after a short delay during the same clock
cycle. For example, the behavior of a combinational multiplier that is used in a circuit with a

bigger clock cycle compared to its propagation delay may be described as:

multiplier_axiom : V(iny : signal,
ing : signal,
out : signal,
ds : state)

multiplier(iny, ing, out) = Vy(out,ds) = mul(Vy(ini,ds), Vy(ine,ds))

where multiplier is a predicate that is true iff in1, in9, and out are the interface of a combinational
multiplier such as described above. mul is the uninterpreted multiplication function, and V, is a
function that defines the values at the input/output ports of components at each state. From the
above description it is obvious that the output of this multiplier component replies to the input

stimuli instantaneously or at least in less than one clock cycle.

However, in some designs the propagation delay of some combinational components that perform
a certain operation may be longer than one clock cycle. Also, in some designs the user constraints
may enforce the use of application specific resources that are not purely combinational or have long
propagation delays for executing a particular operation. In either case, the delay associated with
execution of operation exceeds one clock cycle. Such resources are referred to as multi-cycle delay

resources.

The class of pipelined resources that will be discussed in detail in the following section is sequential
in nature and belongs to this group of synthesis resources. Pipelined resources are distinguished

from the other multi-cycle resources by the property that at the steady state of their operation

100

inl in2

Combinational
cl Logic

Sequential
Logic

-

Combinational
c2 Logic

Sequential
Logic

—

Combinational
c3 Logic

out

Figure 9.1: The stages of a multi-cycle component

they can consume values and produce results at every clock cycle. The non-pipelined multi-cycle
resources on the other hand, usually require that the inputs stay stable throughout their operation
cycle. A multi-cycle resource may perform an operation in several stages, where the duration of
each stage is a multiple of the clock cycle. At each stage some intermediate results are generated

and stored in sequential storage components.

An example of a non-pipelined multi-cycle resource with two inputs and one output is given in
Figure 9.1. In this figure, an operation O is performed in three stages. The execution cycle of this
component spans over three consecutive clock cycles, where each cycle corresponds to one stage
of the operation. Since in this example, the result of the operations at each stage (except the
first) depends on the result of the operation at the previous stage, as well as the input values, it
is obvious that the inputs should be held stable throughout the operation cycle of the component.

The stability of the inputs is a precondition for the correct function of the design.

In high-level design synthesis, multi-cycle resources including pipelined resources need special treat-

ment. For example, when pipelined resources are used, the scheduling problem is more complex

101

and requires specific solutions, that are different from the case where resources are not pipelined.
However, we will show that in our verification method, the verification of designs with multi-cycle
resources is similar to verification of designs without multi-cycle resources. The multi-cycle char-
acteristic of a component is reflected in formal specification of its behavior. During the verification
process, special properties of these designs are accounted for through these formal specifications.
As an example, the multi-cycle resources may require some precondition to be met, in order to
function correctly. During the verification process, it should be additionally verified that these
preconditions hold. This notion can be further clarified through an example. The behavior of a

multi-cycle multiplier component with two cycle delay may be described as:

2D _Delay_Multiplier_az : V (ing : signal,
ing : signal,
out : signal,
dsy : RTL_state,
dsg : RTL _state) :

(2D _delay_muliplier(in,ing, out) A
transition(dsy,dss)) =
((Vy(ing,dss) = Vy(ing,ds1) A
Va(ing, dss) = Vy(ing,ds1)) <
Va(out, ds2) = mul(Vy(ing, ds1), Va(ing, ds1)))

In contrast to the simple combinational multiplier discussed in the previous section, the output
of the multi-cycle multiplier responds to the input stimuli after one clock cycle. In addition, the
precondition for correct function of this component is that its inputs be kept stable throughout
the two consecutive cycles of its operation. If this precondition is not met, the relation between
the output and inputs of the multiplier is no longer valid. This means that during the verification
process, before we can define the output at a state dse in terms of the inputs at the previous
state dsi, it should be verified that the two preconditions for correct operation of the multiplier are

valid, i.e.:

Va(ini,ds2) = Vg(ini,ds1) A
Vd(’ing, dSQ) = Vd(’inz, d81)

In the following discussions we compare the synthesis and verification issues of pipelined and non-

pipelined multi-cycle resources through examples. Given the same behavior specification we com-

102

tl = wu_war * dx_var;

j=l
»
—

~— e e e e e N

t2 = 3 * z_var;

o O
» »
w N

t3 = 3 x y_var;
td = t1 * t2;

t5
t6 = wu_var — t4;

uvar = t6 — tb;

o
V3
o~

dr_var x t3;

S oY O
» V) V)
~N O D

P~ o~ o~ o~ o~ o~ o~ o~

o
w
oo

Figure 9.2: Partial specification adopted from the Differential Equation benchmark

pare the implementation designs that are synthesized under different resource constraints and with
pipelined or non-pipelined multi-cycle resources. In these examples, we consider the partial behav-
ioral specification given in Figure 9.2 that is taken from a benchmark named Differential Equation.
A formal description of this partial behavior specification is given in Figure 9.3. Note that the
variables t1, t2, - - -, g in the complete Differential Equation Specification are not critical. However,
for the purpose of self-containment of our examples, in this specification segment of the Differential

Equation we consider them critical.

We have mentioned in previous discussions that one of the inputs to the synthesis tool is a set of user
constraints. Resource constraints are one class of such constraints. Synthesis can be performed with
or without resource constraints. In synthesis without resource constraints, the goal is that assuming
unlimited resources available, generate a schedule that satisfies particular timing constraints such
as an upper bound on latency. In synthesis with resource constraints, there is a limit on the number

of each type of resource available or the total area of the synthesized design.

bsy_bss_ax : transition(bsy, bss) = Vy(u_var,bsy) = Vy(u_var,bsy) A
Vo(z_var,bsy) = Vi(xz_var,bs1) A
Vio(y-var,bsg) = Vy(y-var,bsi) A
Vo(dz_var,bsy) = Vy(dz_var,bsy) A
(

Vo (t1,bs2) = mul(Vy(u_var,bs1) , Vy(dz_var,bs1)) A

103

bsa_bsg_ax : transition(bsy, bsz) =

bss_bsy_ax : transition(bss, bsy) =

bsy bss_ax : transition(bsy, bss) =

Vi(t2,bs2) = Vy(te,bs1) A
V;)(tg,bSQ) = V;,(tg,bsl) A
Vi (tg,bs2) = Vip(ts,bs1) A
%(t5,b82) = %(t5,b81) A
V;,(tﬁ,bSQ) = %(tﬁ,bSl)

Vo(u_var,bss) = Vy(u_var,bss) A
Vo(z_var,bss) = Vi(x_var,bss) A
Vi(y-var,bss) = Vy(y_var,bsg) A
Vo(dz_var,bss) = Vy(dz_var,bsa) A

%(tl,bs) = %(tl,bSQ)

Vi (to,bss) = mul(const(3), Vy(z_var,bss)) A
V;)(tg, ng) V;,(tg, b32)

V;,(t4,b83) V;,(t4,b32) N

%(t5,b83) %(t5,b82) A

%(tg, b83) V;,(te, b32)

Vi(u_var,bsy) = Vy(u_var,bss) A
Vo(z_var,bsy) = Vi(x_var,bss) A
Vo(y_var,bsy) = Vy(y_var,bss) A
Vo(dz_var,bsy) = Vy(dz_var,bsg) A
Vi(t1,bs1) = Vp(t1,bs3) A

Vi)(tQ, b84) == V;,(tg, b83) A

Vi (ts, bss) = mul(const(3), Vy(y-var,bss)) A
V;,(t4, b84) = V;,(t4, b33) A

V},(t5, b84) = V;,(t5, ng) A

Vi(ts,bsa) = Vi(te,bs3)

z_var, bss)

(

(

(

(dz_var, bss)
(tl,bs) = V;,
(=

(

(

(

tg, b85
t3,bss

t4ab35

SIS S

) =V
) =V,
) = mu
) =V,

t5, bss

104

u_var,bss) =

y-var,bss) =
=W (dw _var,bsy) A

Vo(u_var,bss) A

(
= Vy(z_var,bsy) A
Vi (

»(y_var, bsy) A

(t1,b54) A
(t2,bs4) A
(t3,bs4) A

(V;,(tl, 534) V;,(tg, b84)) A
(t5,bs4) A

%(t6a b35) =

bss_bsg_ax : transition(bss, bsg) =

Vo (z_var, bsg)
Vi (y-var, bsg)

t5, bse

(
(
(
(
(tl,bs)
(
(
(
(
(

16, bsg

bsg_bsy_ax : transition(bsg, bs7) =

z_var, bsy)

y_var, bsz)

Vi (u_var, bsg)

u_var, bsy)

%(t67b84)

= Vy(u_var,bss) A
= Vip(z_var,bss) A
= Viy(y-war,bss) A

dz_var,bsg) = Vy(dz_var,bss) A

(tl, b35)
(t2, bss)
= Vi(ts, bss)
= Vp(t4,bss)
= mul(Vy(dz_var,bss) , Vi(ts,bss)) A
= Vi(te, bss)

)
Vs
=V

A
A
A
A
»(u_var, bsg) A

Vi (
Vi(z var, bsg) A
Vi (y-var, bsg) A

dz_var,bs7) = Vy(dz_var,bsg) A

Vi(
Vi(
Vi(
Vi(
Vi(t1,bs7) =
Vi (to,bs7) =
Vi(
Vi(
Vi(
Vi(

bs7_bsg_ax : transition(bsz7, bsg) =

b(tla bSﬁ) A
Vi (t2, bse
= Vi(t3,bs6
= Vi(ta,bse
= Vi(ts5,bs6
= sub(Vy(u_var,bsg) , Vi(ts,bss))

) A
)A
)A
) A

b(‘/b(tﬁa b87)) %(t57 b37)) A

) = Viy(z_war,bsy) A

y-var,bsg) = Vy(y_var,bsz) A
dz_var,bsg) = Vy(dz_var,bs7) A

Figure 9.3: Formal description of the partial specification of Figure 9.2

105

9.1.1 Synthesis with Unconstrained Non-pipelined Multi-Cycle Resources

Figure 9.4 shows a possible schedule for synthesis of the partial behavior specification of Figure 9.2
under no resource constraints. Under this scheme, a latency of 6 cycles is achieved using 3 multi-
cycle multipliers (each with a delay of 2 clock cycles) and 1 subtractor. None of the resources in
this implementation are pipelined. The data-path and controller of the RTL design, synthesized

from the schedule of Figure 9.4, are given in Figures 9.5 and 9.6, respectively.

Figure 9.4: A possible unconstrained schedule for the partial specification of Figure 9.2

At each state of the controller, a set of control signals that activate some register transfer operations
in the data path are asserted high. In Figure 9.6 the control inputs of some data-path components
are listed close to each state. These are all the control inputs that are activated by control signals

at that particular state.

In the data-path of the RTL design three different types of components are used: 2 x 1 multiplexers,
subtractors and 2 cycle delay multipliers. The axiomatic descriptions of these components are given

in Figure 9.7.

Following our verification algorithm, correctness of this example synthesized design can be validated
if we can show that given the set of variables, the set of registers, and B,, the mapping from the
variables to registers, if at the initial states of the behavior and controller finite state machines,
and under the register binding B,, the set of critical variables and registers are equivalent, and
transitions from the initial states to final states occur, then at the final states of the two finite

state machines, and under the same register binding, the set of critical variables and registers are

106

2
5

T
T

.
0
1 MUX2
s
1
-
0
MUX3
1
Tﬁ/

U_REG
DX_REG
3
X_REG
Y_REG

MUX1

Figure 9.5: Data path of the design synthesized from the schedule of Figure 9.4

107

ds2

ds3

ds4

ds5

ds6

ds7

Ti_ld, T2_Id, T3_Id

MUX2_sl, MUX3_sl, MUX4_sl, MUX5_s|

MUX2_sl, MUX3_sl, MUX4_sl, MUX5_sl, T4_ld, T5_Id

T6_ld

MUX6_sl, MUX7_sl, U_REG_Id

Figure 9.6: Controller of the design synthesized from the schedule

108

of Figure 9.4

2D Delay Multiplier ax: V (ing :
ny :
out :
dsy :
dss :

(2D _delay_muliplier(ini,ing, out) A
trans(dsi,dss)) =

signal,
signal,
signal,

RTL _state,
RTL state) :

(Vd(i’nl,dSQ) = Vd(inl,dsl) A
Vd(’ing,dSQ) = Vd(ing,dsl)) =

2_to_1_Multiplexer_ax: V (ing:
Ny :
out :
sl:
ds :

multiplexer_2_1(ing,in1, sl,out) =

Vi(out,ds2) = mul(Vy(in1,ds1), Va(ing, ds1))

signal,
signal,
signal,

bool _signal,
RT L _state) :

(=Vy(sl,ds) = Vy(out,ds) = Vy(ing,ds) A
Va(sl,ds) = Vg(out,ds) = Vy(iny,ds))

Register_.ax: V (in: signal,
out : signal,
ld: bool_signal,
dsy : RTL_state,
dsg : RTL_state) :

(register(in,ld,out) A transition(dsy,dss)) =

(Va(ld,ds1) = Vg(out,ds2) = Vy(in,ds1) A
-Vy(ld,ds1) = Vy(out,dss) = Vy(out,ds1))

109

Subtractor.ax: V (ing : signal,

ing : signal,
out : signal,
ds : RTL_state) :

(subtractor(iny,ing,out) = Vy(out,ds) = sub(Vy(in1,ds), Vy(ing,ds))

Figure 9.7: Description of behavior of the components in the data-path of Figure 9.5

equivalent (It is understood without further explanation that in this discussion a mapping by Bs
between the initial and final states and a mapping by B, between the single critical paths of the

partial behavioral specification and the controller is assumed):

Theorem 9.1

ds1 = Bg(bs1) A ds7 = Bgs(bsg) A
inter_block_transition(bs1,bsg) A

inter_block_transition(dsi,dss) A
(Vo(CRy,bs1) Z Vy(CRgyds1))) = (Vo(CRy,bss) = Viy(CRy,dsq))

Before we continue with our discussion, we find it necessary to provide an explanation for the

notation used in Theorem 9.1.

1. The function V} (or V) is overloaded in the above theorem to denote a vector version of itself.

Therefore, V,(C Ry, bs) & Va(CRy,ds) should be interpreted as:

Vry € CRy, Vrq € CRq : 14 = Br(ry) = Vi(rs,b5) = Vy(ra,ds)

2. inter_block_transition(s;,sy) denotes the condition flag of the initial transition of the critical
path starting at the state s; and ending at state s (a critical path corresponds to the sequence
of transitions through a basic block, hence the naming inter_block_transition). As a critical
path consists of a sequence of state transitions, if its condition flag is true, then the condition

flag of all the state transitions composing the critical path will be true:

110

ibt_b_ax: inter_block_transition(bsi,bss) = (transition(bsi,bsy
transition(bss, bss

transition(bss, bsy

transition(bss, bsg

() A

() A

() A

transition(bsy, bss) A

() A

transition(bsg, bsr) A
()

transition(bsy,bssg))

ibt.d_ax: inter_block_transition(dsi,dsg) = (transition(dsi,dss) A
transition(dss, dss) A
transition(dss, dss) A
transition(dss,dss) A
transition(dss,dss) A
transition(dsg, ds7))
For this example the following is true:
CRy = {u_var,z_var,y_var,dz_var,ty,te,t3,ta, 5,6} (9.1)
CRy = {U_REG,X_REG,Y _REG,DX _REG, T, Ty, T3, Ty, Ts, Ts} (9.2)
B, = {uwar - U_REG, zwar — X _REG, ywvar — Y _REG, drwvar — DX _REQG,
t1—=>T1, to—=> T2, t3—=T3, t4— T4, t5—T5, tg— TG} (93)

e

Given the register mapping B, Equation 9.3, the expressions (V,(C Ry, bs1) Va(CRy,ds1)) and

r

(Vo(C Ry, bsg) & Va(CRg4,ds7)) in Theorem 9.1 may be expanded:

(Vo(C Ry, bs1) & Va(CRg4,ds1)) < (Vp(uwar,bs1) = V4(U_REG,ds1) A
Vi(z_var,bs1) = Vo(X_REG,ds1) A
Vo(yvar,bs1) = V3(Y_REG,ds1) A
Vo(dz_var,bs1) = V4(DX_REG,ds1) A
Vi(t1,bs1) = Vg(T1,ds1) A
Vi(t2,bs1) = Va(Ts,ds1) A
Vo(ts, bs1) = Va(Ts,ds1) A
Vo(ta, bs1) = Va(Ty, ds1) A
Vi(ts, bs1) = Va(Ts,ds1) A
Vi (e, bs1) = Vyg(Ts, ds1))

111

(Vo(CRy,bss) Z Vy(CRads7)) & (Vi(uvar,bss) = Va(U_REG, ds7) A
Vo(zvar,bsg) = V4(X_REG,ds7) A
Vo(y_var,bsg) = V4(Y_REG,ds7) A
Vp(dz_var,bsg) = Va(DX_REG,ds7) N
V},(tl,bs) Vd(Tl,d87) A
%(tg,ng) Vd(TQ,dS7) A
Vi(t3, bsg) = Va(T3,ds7) A
Vi(ta,bss) = Va(Tu,ds7) A
Vi(ts, bss) = Va(Ts,ds7) A
Vi(ts, bsg) = Va(Ts,ds7))

Therefore, Theorem 9.1 may be considered as a conjunction of 4 lemmas, that may be independently

verified. Below we show the proof of one of these lemmas and in the next section we will make a

comparison between the proof of this lemma and a similar lemma, when pipelined resources are

used in synthesis of this design.

Assumption 9.1

((bsy,bsg) 25 (ds1,dss)) A

inter_block _transition(bsy, bsg) A
inter_block_transition(dsi,dsg) A

(Vs(CRy, bs1) Va(CRy, ds1)))

B

Lemma 9.1

(Vo(u_var, bsg) = Vy(U_-REG, ds7)

112

Proof 9.1

W N

ot

AN AN AN AN AN SN A/
(=) =~
N’ N N N N N’ N

3

u_var, bsg

u_var, bss

S S S

A~ N N N A~ ~

u_var, bsy

(18) Vy(z-var,bsa)

(23) Vip(ts,bse)
(24) Vip(ta,bss)
(25) Vp(t4,bss)

()
()
()
transition(bsy, bss)
()
()
()

transition(bsy, bso
transition(bsa, bss

transition(bss, bsy

transition(bss, bsg
transition(bsg, bsy

transition(bsz, bsg

= Vy(u_var, bss
= Vy(u_var, bsy
u_var, bsz

= Vy(u_var, bso

= Vy(u_var, bsy

()
()
= Vi()
()
()
()

= Vy(u_var, bsy

= Vy(zwar, bsy)

= V;)(t4, b35)
= mul(Vy(t1,bs4), Vo (t2, bsa)
= mul (mul(Vy(u-var, bs1), Vs (dzyar, bsy)),

mul(const(3), Vo (z_var, bs1)))

113

(8)-(12)

(14)-(15)

(17),(22)

(26) Vi(ta,bss) = mul(mul(Vy(u_var, bsy), Vy(dzyar, bsy)),
mul (const(3), Vy(xz_var, bsy))) (23)-(25)

(27) Vi(ts, bsr) = sub(Vy(u-var, bsg), Vi (ta, bss))
(28) Vi(ts, bs7) = sub(Vy(u-var,bsy),
mul (mul(Vy(u_var, bs1), Vy(dz,ar, bsy)),
mul(const(3), Vy(z-var,bs1)))) (13),(26)

(29) Vy(dz_var,bss) = Vj()
(30) Vi() = Vu(dz_var, bss)
(31) V},(d:(; _var, b33) Vi(dz_var, bss)
(32) Vi) = Vil)
(33) Vil) =il)

Vp(dz _var, bsy

32) Vy(dz_var, bsy Vp(dz _var, bsq

33) Vy(dz_var,bss) = Vy(dx_var, bsy (29)-(32)
(34) Vy(y_war, bsg) = Vi(y_var, bss)
(35) Vi(y-var,bsy) = Vy(y-var,bsy)
(36) Vy(y-var,bss) = Vi (yvar, bs1) (34)-(35)
(37) Vip(ts, bss) = Vi (ts, bsa)
(38) Vi(t3,bss) = mul(const(3), V,(y-var, bss))
(39) Vi(ts, bss) = mul(const(3), Vi (y-var, bss)) (37)-(38)
(40) Vi (ts, bss) = mul(const(3), Vy(y-var, bsy)) (36)
(41) Vi(t5,bs7) = Vi(ts, bse)
(42) Vi(ts5,bs6) = mul(Vy(dz_var, bss), Vo(t3,bss))
(43) Vi (ts,bs7) = mul(Vy(dz_var, bss), Vy(ts, bss)) (41)-(42)
(44) Vi (ts, bs7) = mul(Vy(dz_var, bsy),

mul (const(3), Vy(y_var, bs1))) (33),(40)
(45) Vy(u_var,bsg) = sub(Vy(te, bsr), Vi(ts, bsr))
(46) Vy(u_var, bsg) = sub(sub(Vy(u_var,bsy),

mul (mul (V,(u_var, bsy),
Vi(dz_var, bsy)),
mul (const(3),
Vp(z_var,bs1)))),
mul(Vy(dz_var, bsy),
mul (const(3),
Vy(y-var, bs1)))) (28),(44)

114

* % % %X % %

transition(dsy, dso
transition(dse, dss
transition(dss, ds,

transition(dss, dsg

()
()
()
transition(dsy, dss)
()
transition(dsg, ds7)
_REG.out,dss

(U)
(U_REG.out,ds,)
(U_REG.out,ds3)
(U)
(U)

Va(U_REG.out,dsy)
Va(U_REG.out,ds3)
Va(U_REG.out,ds2)
()
()

_REG.out,dso
_REG.out,dss

Va(U_REG.out,ds,
Vio(U_REG.out,ds,

SESESESES

(53)-(56)

(S1.inl,dss) = Vg(MU Xg.out, dss)

(MU Xg.out,dss) = Vag(MU Xg.in0, dss)

(MU Xg.in0,dss) = V4(U_-REG.out, dss)
(U_REG.out,dss) = Va(U_REG.out,ds) (57)
(S1.inl,dss) = V4(U_-REG.out,ds) (58)-(61)

S S

(Mj.inl,ds1) = Va(MU Xs.0ut,ds)

(MUXs.0ut,ds1) = Vy(MUX5.in0,ds)
(MUX5.in0,ds1) = V4(U_REG.out,ds)

(Mj.inl,ds;) = V4(U_REG.out,ds1) (63)-(65)

SESESES

Va(My.inl,dsg) = Vy(MU X3.0ut, dsg)

Va(MU X3.0ut,ds2) = Vy(MUX5.in0, dsg)

Va(MU X5.in0,dss) = V4(U_REG.out,dss)
Va(U_REG.out,dse) = Va(U_REG.out, dsy)
Va(U-REG.out,ds) = Vg(M;.inl,ds;) (66)
Va(My.inl,dsg) = Vy(M;.inl, dsy) (67)-(71)
(Mj.in2,ds1) = V4(MU X3.0ut,ds)

(MU X3.0ut,ds1) = V4(MUX3.in0,ds1)
(MUX3.in0,ds1) = V4(DX _REG.out,ds;)
Va(My.in2,ds1) = Vg(DX _REG.out,ds;) (73)-(75)

NSNS

115

Va(My.in2,dsq) = Vg(MU X3.0ut, ds2)
Va(MU X3.0ut,dse) = Vg(MU X3.in0, ds3)
V(MU X3.in0, dss) = Vy(DX _REG.out, dss)
Vi(DX_REG.out,dse) = V(DX _REG.out,ds)
(
(

Va(DX_REG.out,ds1) = Vg(My.in2,ds1) (76)
Va(My.in2,dsq) = Vg(Mi.in2,ds;) (77)-(81)
V(T .out, ds3) = Vy(Ty.in, dss)

V(T in,dsy) = Va(M;.out, ds9)

Va(Mj.out,dss) = mul(Vg(My.inl,dsy), V4(My.in2,dsy)) (72),(82)
Va(My.out,dss) = mul(Vy(U_REG.out,ds1), V4(DX _REG.out,ds1)) (66),(76)
V(T .out, ds3) = mul(Va(U_REG.out,ds1), V(DX _REG.out,ds1)) (83)-(86)
Vd(M1 inl,dss) = Vy(MUXs.o0ut, ds3)

Va(MU Xz.0ut,ds3) = Vy(MUX3.inl,dss)

Va(MU X5.inl,ds3) = V4(Th.out, dss)

Va(My.inl,dss) = V(T .out, dss) (88)-(90)
Va(Ty.out,ds3) = mul(Vy(U_REG.out,ds,), Vg(DX _REG.out,dsy)) (87)
Va(My.inl,dss) = mul(V4(U_REG.out,ds1), V(DX _REG.out,dsy)) (91)-(92)
Va(My.inl,dsy) = Vg(MU Xs.0ut, dsy)

Va(MU X3.0ut,dss) = Vy(MUX5.in1,dsy)

d(MUXQ inl d54) Vd(Tl.Out, d84)

V(T .out, dsy) = Vy(Ty.out, dss)

V(T .out,ds3) = Vy(Mi.inl,dss) (91)
Va(Mi.inl,dss) = Vy(My.inl,dss) (94)-(98)
Vi(Msy.inl,dsy) = Vg(MU X4.out, dsq)

Va(MU X 4.0ut,ds1) = Vg(MUX4.in0,ds1)

Va(MU X4.in0,ds1) = const(3)

Va(Msy.inl,ds1) = const(3) (100)-(102)
* Va(Mz.inl,dsy) = Vg(MU X4.0ut, ds2)
*Va(MUX4.0ut,dsa) = Vi(MUX4.in0, ds2)
* Va(MUX4.in0, ds2) = const(3)
*Vy(Ms.inl,dse) = const(3) (104)-(106)
*Vy(Ms.inl,dsy) = const(3) (103)
* Vy(My.inl, dsy) = Vy(My.inl, ds,) (107),(108)

116

Va(My.in2,ds1) = Vg(MU X5.0ut, dsq)
V(MU X5.0ut,ds1) = Vy(MU X5.in0,ds1)
Va(MUX5.in0,ds1) = V4(X _REG.out,ds1)
Va(M3.in2,ds1) = V4(X _REG .out,ds1)

*Va(Ms.in2,dsg) = Vy(MU X5.0ut, dsg)

* Va(MU Xs.0ut, dsg) = V(MU X5.in0, ds2)
*Vy(MUX5.in0,dss) = Va(X_REG.out,ds2)
*Vy(X_REG.out,dss) = V4(X_REG.out,ds1)
* Va(My3.in2,dsq) = Vy(X _REG.out,ds;)

* Va(M3.in2,ds1) = V4(X_REG.out,ds1)
*Vi(Ms.in2,dse) = Vg(My.in2,ds;)

Va(Tz.out,ds3) = Vy(T.in, ds2)

(Tp.in,dsg) = Vy(Mz.out, dss)

(My.out,dss) = mul(Vy(Ms.inl, dsy), Vg(Ms.in2,dsy)
(Ms.out,dss) = mul(const(3), V4(X _REG.out,dsy))
(Tz.0ut, ds3) = mul(const(3), V4(X_REG.out,ds;))

NSNS

(M;.in2,dss) = Va(MU X3.0ut, dss)
(MU X3.0ut,ds3) = Vg(MU X3.inl,dss)
(MU X3.inl,dss) = Vg(T.out,ds3)
(M;.in2,dss3) = Vy(Ts.out,ds3)

(Ty.out,ds3) = mul(const(3), Vy(X _REG.out,ds1))
Va(My.in2,dss) = mul(const(3), Vao(X _REG.out, ds1))

NEXESENES

* Va(My.in2,dsy) = Vg(MU X3.0ut, dsy)
*Vy(MUXs3.0ut,dsy) = Vg(MUX3.inl,dsy)
*Va(MUX3.inl,dsy) = Vg(Ty.out, dsy)

* Va(Ta.out,dss) = Vg(Tz.out,dss)

* Va(My.in2,dss) = Vy(Ts.out, dss)

* Vy(My.in2,dss) = Vg(Ts.out, dss)
*Vy(My.in2,dsy) = Vg(My.in2,ds3)

Va(Ty.out,dss) = Vy(Ty.in,dsy)
Vd(T4.7ln, d84) = Vd(Ml.out, d84)

(110)-(112)

(114)-(117)
(113)
(118),(119)

(109),(120)
(103),(113)
(121)-(124)

(126)-(128)
(125)
(129)-(130)

(132)-(135)
(129)
(136),(137)

Vd(Ml.out, d84) = mul(Vd(Ml.inl, d83), Vd(Ml.iTLQ, d83)) (99),(138)

117

(142) Vg(M;.out,dss) = mul(mul(V4(U_REG.out,ds1), V4(DX _REG.out,ds1)),

mul(const(3), Vy(X _REG.out,dsy))), (93),(131)

(143) Vy(Ty-out,dss) = mul(mul(Va(U_REG.out,ds1), V4(DX _REG.out,ds1)),
mul(const(3), Va(X _REG.out,ds1))) (139)-(142)

(144) V4(S1.in2,dss) = Vg(MU X7.0ut,dss)

(145) V4(MUX7.out,dss) = Vg(MU X7.in0, dss)

(146) Vg(MU X7.in0,dss) = Vy(Ty.out,dss)

(147) Vg(Ty.out,dss) = mul(mul(Va(U_REG.out,ds1), V4(DX _REG.out,ds1)),
mul(const(3), V4(X_REG.out,ds1))) (143)

(148) V4(S1.in2,dss) = mul(mul(Vy(U_REG.out,ds), V4(DX _REG.out,dsy)),
mul(const(3), Vy(X _REG.out,ds1))) (144)-(147)

(149) Vy(Ts.out,dsg) = Vg(Ts-in,dss)

(150) Vy(T6.in,dss) = Vy(St.out,dss)

(151) V4(S1.out,dss) = sub(Vy(S1.inl,dss), V4(S1.in2,dss))

(152) V4(S1.0ut,dss) = sub(V4(U_REG.out,dsy),

mul(mul(Va(U_REG.out, ds),
Va(DX _REG.out,dsy)),
mul (const(3),
Va(X_REG.out,ds1)))) (62),(148)

(153) Vg(Ts.out,dsg) = sub(V4(U_REG.out,ds1),
mul (mul(Vy(U_REG .out,ds1),
Va(DX_REG.out,dsy)),

mul (const(3),
Vi(X_REG.out,ds1)))) (149)-(152)
(154) V4(S1.inl,dsg) = Va(MU Xg.out, dsg)
(155) V4(MU Xg.out,dss) = Vg(MU Xg.inl, dss)
(156) V43(MU Xg.inl,dsg) = Vy(Ts.out, dss)
(157) V4(Ts.out, dsg) = sub(Vy(U_REG.out,dsy),

mul (mul(Vy(U_REG .out,ds1),
Va(DX_REG.out,ds1)),

mul (const(3),

V4(X _REG.out,ds1)))) (153)

118

(158) V4(Si.inl,dsg) = sub(V4(U_REG.out,ds1),
mul (mul(Vg(U_REG.out,ds1),
Va(DX_REG.out,dsy)),
mul(const(3),
Viy(X _REG.out,ds1))))

(159) Vu(DX_REG.out,dss)
(160) V4(DX_REG.out,dss2)
(161) V4(DX_REG.out,dss)

Va(DX _REG.out,dss)
Va(DX_REG.out,ds)
Va(DX_REG.out,ds)

(162) Vyg(Ms.inl,ds3) = Vy(MUX4.out, dss)

(163) V(MU Xy.out,dss) = Va(MU Xy.inl, ds3)

(164) V4(MUX4y.inl,ds3) = Vy(DX_REG.out,ds3)
(165) Va(DX_REG.out,ds3) = Vy(DX_REG.out,ds)
(166) Vg(Msy.inl,ds3) = V4(DX_REG.out,dsy)

() * Vd(MQ.Z"nl, d84) = Vd(MUX4.0’U,t, d84)

(168) * Vg(MUX4.out,dsy) = Vy(MUX4.inl,dsy)

(169) * V4(MUX,.inl,dss) = V4(DX_REG.out,dsy)
(170) * V4(DX_REG.out,dss) = V3(DX_REG.out,ds1)
(171) * V3(Ms.inl,dsy) = Va(DX_REG.out,ds)

(172) * V4(My.inl,dss) = Vg(DX_REG.out,ds)

(173) * V4(Ma.inl,dss) = V4(Ms.inl,dss)

(174) V4(Ms.inl,ds;) = const(3)

(175) Va(Ms.inl,dsy) = const(3)
(176) Vd(Mg.Z"nl,dSQ) = Vd(Mg.z’nl,dsl)

(177) Vd(Mg.’in2, dsl) = Vd(Y_REG.O’U,t, dsl)

(178) * Vy(Ms.in2,ds2) = Vg(Y _REG.out, ds9)
(179) * V4(Y _REG.out,ds2) = V3(Y _REG.out, ds1)
(180) * V4(Ms.in2,ds2) = V(Y _REG .out,ds;)
(181) * V4(Ms.in2,ds;) = Vy(Y_REG.out,ds;)
(182) * Vy(Ms3.in2,dse) = Vy(Ms.in2,ds;)

119

(154)-(157)

(159)-(160)

(161)
(162)-(165)

(174),(175)

(178)-(179)
(177)
(180),(181)

—
el
w

—
Ne)
=~

—
=)
ot

—
el
(=]

—
Ne)
~J

—
©
oo

—
=]

=)
— N N N N N N SN

* % % % % % % %

AN AN AN AN AN AN AN~

[\
)
=)

Va(Ts.0ut, ds3) = Vy(Ts.in, dss)

Va(Ts.in,dsy) = Vy(Ms.out, ds9)

(Ms.0ut,ds2) = mul(Vg(Ms.inl,ds1), Vy(Ms.in2,ds1)) (176),(182)
(Ms.0ut,dss) = mul(const(3), V4(Y _REG.out,ds1)) (174),(177)
(T5.0ut,ds3) = mul(const(3), V4(Y _REG.out,dsy)) (183)-(186)

SESNES

(M3.in2,dss) = Vy(MU X5.0ut, dss)

(MU X5.0ut,dss) = Vy(MU X5.inl,dss)

(MU X5.in1,dss) = Vy(Ts.out, dss3)

(T3.0ut, dss) = mul(const(3), V4(Y _REG.out,ds1)) (187)
(M3.in2, dss) = mul(const(3), V4(Y _REG.out,ds1)) (188)-(191)

IS

Vi(My.in2,dsy) = Vg(MU X5.0ut, dsy)

Va(MU Xs.0ut,dss) = Vig(MUX5.inl,dss)

Va(MU X5.inl,dss) = V4(Ts.0ut,dsy)

Va(T3.0ut,dsy) = Vy(Ts.0ut,dss)

Va(T3.0ut, ds3) = mul(const(3), V4(Y _REG.out,ds1))

Va(Msy.in2,dss) = mul(const(3), Vy(Y _REG.out, ds;)) (193)-(197)
Va(Ms.in2,ds3) = mul(const(3), Vy(Y _.REG.out, ds1)) (192)
Vi(Msy.in2,dsy) = Vg(Ms.in2,ds3) (198),(199)

Va(Ts.out, dsg) = Vg(Ts.out,dss)

Va(Ts.out, dss) = Vy(Ts.in,dsa)

Va(Ts.in,dsy) = Va(Ms.out, dsy)

Va(Msy.out,dss) = mul(Vy(Ms.inl,dss), Vy(Ms.in2,dss)) (173),(200)
(

Va(Msy.out,dss) = mul(Vg(DX _REG.out,ds1),

mul (const(3),
V4(Y _REG.out,ds1))) (166),(192)
Va(Ts.0ut, dsg) = mul(Va(DX _REG.out,dsy),
mul(const(3),
Va(Y _REG.out, ds1))) (201)-(205)

Via(S1.1n2,dsg) = Vyg(MU X7.0ut, dsg)
Va(MU X7.0ut,dsg) = Vy(MUX7.inl,dsg)
Va(MU X7.inl,dsg) = V4(Ts.out, dsg)
Va(Ts.0ut, dsg) = mul(Vy(DX_REG.out,dsy),
mul (const(3),
Va(Y _REG.out,dsy))) (206)

120

(211) V4(S1.in2,dsg) = mul(V4(DX _REG.out,ds),
mul(const(3),
Va(Y _REG.out,ds1)))

U_REG.out,ds7) = V4(U_-REG.in,dsg)
U_REG.in,dss) = Vag(MUX; .out,dss)
MUX;.out,dsg) = Vy(MU X1.in0, dsg)
MU X;.in0,dsg) = Vy(S1.out,dsg)
Si.out,dsg) = sub(Vy(S1.inl,dse), V4(S1.in2, dsg)))
S1.out,dsg) = sub(sub(Vy(U_REG.out,ds1),
mul(mul(Vg(U_REG.out,ds),
Va(DX_REG.out,ds1)),
mul (const(3),
Va(X_REG.out,ds1)))),
mul(Vy(DX _REG.out,dsy)
mul (const(3),
Va(Y _REG.out,ds1))))
(218) V4(U-REG.in,ds7) = sub(sub(V4(U_-REG.out,ds,),

AN AN AN AN AN~
N
—_

~— — — ~— ~— ~—
IS

N N AN AN N N

mul(mul(Vg(U_REG.out,ds),
Va(DX_REG.out,ds1)),

mul (const(3),

Va(X_REG.out,ds1)))),

mul(Vy(DX _REG.out,ds)
mul (const(3),
Va(Y _REG.out, ds1))))

(219) Vy(u_var,bsy) = V4(U_REG.out, dss)
(220) Q.E.D.

Discussion

We saw that for proving the Lemma 9.1 the value of the variable u_var at state bsg and the content
of register U_RFEG at state dsg are symbolically calculated in terms of the values of the critical
specification variables at state bs; and the contents of the critical design registers at state dsi,
respectively. During these symbolic calculations the RTL operations are back traced in temporal as
well as spatial domain. This means that starting from the component U_RFEG and the state dsg
the output of each component is recursively calculated in terms of its input(s)/output at that or

a previous state. As part of this process, the output of the multi-cycle multiplier component A,

121

(207)-(210)

(158),(211)
(122),(157)

(212)-(217)

(46),(218)

of the Figure 9.5 at state ds4 is calculated in terms of its inputs at the previous state, ds3. By
instantiating the axiom 2D_Delay_Multiplier azx in Figure 9.7, the behavior of the multi-cycle M;
at states dss and ds, is described by:

(Vd(Ml.’inl,d84) = Vd(Ml.inl,d83) A
Vd(Ml.’ing,dS4) = Vd(Ml.Z"nz,dS;;)) -~
Vd(Ml.out, d$4) = mul(Vd(Ml.inl, d$3), Vd(Ml.’L"n/Q, ng))

We note that the relation:

Vd(Ml.out, d34) = mul(Vd(Ml.inl, d33), Vd(Ml.’ing, ng))

holds between the value at the output of My at the state dsy and the values of its inputs at state
dss3 (line 141 of the proof script), provided that the preconditions for the correct function of My at
states d3 and ds, are true, i.e.:

(Vd(Ml.inl, d84) = Vd(Ml.z'm, d33) A
Vd(Ml.’ing, d84) = Vd(Ml.z'ng, d83))
This is translated into additional proof steps required for verifying these preconditions (lines 94 —99
and 132 — 138 of the proof scripts). The additional proof steps required for verifying the precon-
ditions are marked by * in the proof script. It should be noted that if the purely combinational

multiplier described by multiplier_aziom is used in synthesizing the design, the input-output re-

lation of this component at state dsy would be simply defined by:

Va(Mi.out,dss) = mul(Vy(My.inl,dsys), Vi(My.ing, dss))

122

inl in2

Combinational
Logic

cl

Sequential
Logic

Combinational
Logic

@ |

Sequential
Logic

Combinational
Logic

@ |

Sequential
Logic

|

out

Figure 9.8: The stages of a pipelined component

9.2 Pipelined Resources

If a circuit is synthesized from a non-pipelined CDFG, but using pipelined resources, structural
pipelining is said to be present in the circuit. A pipelined resource can consume data faster than
it can process it. More formally, in a pipelined resource with the execution delay A, throughput
7, and the data introduction interval §y = 1/7, A = kdy where k € Z and k > 1. A non-pipelined

resource is the special case where k = 1.

Pipelined resources like other multi-cycle resources perform an operation in a few stages. The
inputs to the first stage are the main inputs to the component. The inputs to each following
stage are the outputs from the previous stage. Once an stage completes its operation it passes
the results to the following stage. Other than this exchange of inputs and outputs, there is no
interrelationship between the function of any two stages (Figure 9.8). As a result different stages

of a pipelined resource can operate on different sets of data. To be more precise, assuming that J

123

Figure 9.9: A possible unconstrained schedule with pipelined resources for the partial
specification of Figure 9.2

is the maximum delay through a stage of a pipelined resource, it can consume a new set of data at
every &g cycle. In this case, at no point in time two different stages of the pipeline operate on the
same set of data. This is a unique characteristic of the pipelined resources compared to the other

multi-cycle resources.

A typical example of a pipelined resource is a parallel multiplier with an execution delay A\ =
2 cycles [34, 17]. In the first cycle (or stage) a Wallace-tree reduction of the partial products
into two summands is done. In the second cycle (or stage) the final addition and rounding are
performed. By overlapping the computations at the two cycles (or stages), data can be produced

and consumed at each cycle, i.e. §p =1 cycle and 7 = 1/§p = 1 per cycle.

Figure 9.9 shows a second possible schedule for the partial behavior specification of Figure 9.2. Like
the previous schedule, this schedule has no resource constraints, but unlike that, it uses pipelined
resources: the two multipliers M7 and Ms. Due to the use of pipelined resources, this design can
be implemented with one less multiplier than the previous one. Under this scheme also, a latency

of 6 cycles is achieved.

Consider the Figure 9.9. Even though the latency of each pipelined multiplier in this design
is 2 cycles, it can consume and produce data at the rate of one per cycle. In this scheme, four
multiplication operations are scheduled and bound to a single multiplier, M;. These multiplications,
that each has a delay of 2 cycles, are initiated in 4 consecutive states. The result of the first

multiplication operation is produced after 2 cycles (the latency of the multiplier) and one result is

124

produced at each of the next 3 cycles. This is different from the multipliers used in the previous
design, in that, no new data can be input to the multipliers before it has completely processed a

previous set of data, or else incorrect results will be generated.

The controller of the design generates the necessary control signals at each state and activates the
appropriate register transfer operations in the data-path. The control input signals listed close to

each state in Figure 9.11 are the only signals that are asserted high at that state.

In the data-path of Figure 9.10 several different types of components have been used: 4 x 1 and
2 x 1 multiplexers, subtractors, 2 cycle delay pipelined multipliers and registers. The axiomatic

description of these components are given in Figure 9.12.

Since structural pipelining does not generate new operational dependencies between the operations
within a basic block of synthesis and operations out of that block, our verification algorithm may
be safely used for verification of the designs with pipelined resources. As before, a part of the
proof is constructed by following the register transfer operations of the design. In this process, the
formal specifications of Figure 9.2 are instantiated to describe the input-output behavior of various

components at different states.

Now, we will present the proof of the Lemma 9.1, for this second implementation of the behavior
description of Figure 9.2, where the design is synthesized from pipelined resources. The assumptions
in this case are as the previous case. Since both implementations are synthesized from identical
behavioral specifications, the first steps of the proofs of correctness of the Lemma 9.1, where the
behavior operations are analyzed, are the same as the previous proof (steps (1)-(46)). As always a
mapping by B, between the initial and final states and a mapping by B, between the single critical

paths of the partial behavioral specification and the controller is assumed.

The two inter-block transitions (bsy, bsg) and (ds1,ds7) along the critical paths c¢py and cpy consist

of a sequence of single state transitions:

ibt_b_ax: inter_block_transition(bsi,bss) = (transition(bsi,bsy
transition(bsg, bss

transition(bss, bsy

transition(bss, bsg

> > > > > >

transition(bsg, bsy

()
()
()
transition(bsy, bss)
()
()
transition(bsz, bsg))

ibt d_ax: inter_block_transition(dsi,ds;) = (transition(dsi,ds2) A

125

0
1
P MUX2
0
1
5 MUX3

U_REG
DX_REG
Jv_reG |
3
X_REG

MUX1

Figure 9.10: Data path of the design synthesized from the schedule of Figure 9.9

126

MUX2_sl0, MUX3_sl0, T1_ld, T2_Id

MUX2_sl1, MUX3_sl1, T3_Id

MUX2_sl1, MUX2_sl0, MUX3_sl1, MUX3_sl0, T4_ld, T5_Id

T5_1d, T6_Id

MUX4_sl, MUX5_sl, U_REG_d

Figure 9.11: Controller of the design synthesized from the schedule of Figure 9.9

127

2D _Pipelined_Multiplier_ax : V (ing : signal,

ing : signal,

out : signal,

rd : bool _signal,
dsy : RT L _state,
dso : RTL_state,
dss : RTL state) :

(2D _Pipelined_multiplier (inq, ing, rd, out) A
trans(dsi,dse) N trans(dss,ds3)) =
Va(out,dss) = mul(Vy(in1,ds1), Vg(ing, ds1)))

4 to_1_Multiplexer_ax : V (ing : signal,
mng: signal,
ing : signal,
ng: signal,
out : signal,
sl : bool _signal,
sly: bool _signal,
ds : RTL_state) :

multiplexer_4_1(ing,in1,ing, ing, sly, sly,out) =
((=Va(sly,ds) N =Vy(slp,ds)) = Vy(out,ds) = Vy(ing,ds)
(=Va(sly,ds) N Vy(slp,ds)) = Vy(out,ds) = Vy(i
(Va(sli,ds) N =Vg(slp,ds)) = Vy(out,ds) = Vy(i
(Va(sli,ds) N Vg(slp,ds) = Vy()

~ o~~~
~
3
N
QL
VA
~— ' ~—

Register_ax: V (in: signal,
out : signal,
ld: bool _signal,
dsy : RTL state,
dsg : RT L _state) :

128

(register(in,ld,out) A transition(dsi,dss)) =
(Va(ld,ds1) = Vg(out,dsy) = Vy(in,ds1) A
-Vy(ld,ds1) = Vy(out,dss) = Vy(out,dsy))

Subtractor.ax: V (ing : signal,
ing : signal,
out : signal,
ds : RTL_state) :

(subtractor(ini,ing,out) = Vy(out,ds) = sub(Vy(ini,ds), Vg(ing,ds))

Figure 9.12: Description of behavior of the components in the data-path of Figure 9.10

129

transition(dsa, dss) A

transition(dss, dss) A

transition(dss, dss) A

transition(dss, dss) A
()

transition(dsg, ds7))

For this example also, the following is true:

CRy = {u_war,z_var,y_var,dz_var,ty,to, t3, ts, t5,t6 }
CRy = {U.REG, X _REG,Y _REG,DX_REG,T:,Ts,Ts, To, T5, Ts}

B, = {uwar - U_REG, zwar — X_REG, ywvar — Y _REG, drwvar - DX _REQG,
t1 = T1, to > T2, t3—> T3, tgy— T4, t5— T5, tg+— T6}

Assumption 9.2

((bs1,bss) P8 (ds1,ds7)) A
inter_block_transition(bsy, bsg) A

inter_block_transition(dsi,ds7) A

(Vo(CRy,bs1) Z Vy(CRy,ds1)))

Lemma 9.2
(Vo(u_var, bsg) = Vay(U_-REG, ds7)

Proof 9.2

(1) transition(bsy, bss)
(2) transition(bsy, bs3)
(3) transition(bss,bss)
(4) transition(bsy, bss)
(5) transition(bss, bsg)
(6) transition(bsg,bsy)
(7) ()

7) transition(bsy, bsg

130

(8) Vip(uwar,bsg) = Vy(u_var, bss)
(9) Vip(uwar,bss) = Vy(u_var, bsy)
(10) Vy(u_var,bss) = Viy(u_var,bss)
(11) Vy(u-var,bs3) = Vy(u-var, bsa)
(12) Vi(u-var,bse) = Vy(u_var, bsy)
(13) Vi(u_var,bsg) = Vy(u_var,bsy)
14) Vy(t1,bs4) = Vp(t1,bs3)

15) Vi(t1,bss) = Vi(t1, bs2)

(18) Vy(z-var,bsa) = Vy(z_var,bsy)

(23) Vi (t4,bse)
(24) Vp(t4,bss)
(25) Vi (ta,bss)

(26) Vp(t4,bse)

— Vb(t47 b85)
= muz(‘/b(tla b34)7 ‘/b(tQa b84)

= mul (mul(Vy(u_var, bs1), Vy(dzyar, bs1)),

= mul (mul(Vy(u-var, bs1), Vy(dzyar, bsy)),

mul(const(3), Vy(z_var, bs1)))

mul (const(3), Vy(xz_var, bsy)))

(27) Vi(ts, bs7) = sub(Vy(u-var,bss), Vy(t4,bss))
(28) Vy(ts, bst) = sub(Vy(u_var, bsy),

33) Vy(dz_var, b35

»(dz_var, bss
dx_var,bsy

(29) Va()
(30) Vi()
(31) Vy(dz_var, bss)
(32) Vi()
(33) Vi()

mul (mul (Vy(u_var, bs1), Vy(dzyar, bsy)),
mul(const(3), Vy(z-var, bs1))))

Vi(dz _var, bsy

()
Vp(dz_var, bss)
Vi (dz_var, bsa)
()
()

Vi(dz _var, bsy

Vi(dz _var, bsy

131

(8)-(12)

(14)-(15)

(17),(22)

(23)-(25)

(13),(26)

(29)-(32)

(34) Vy(y-var, bs3) = Vy(y_var, bsy)
(35) Vi(y-var, bsy) = Vy(y-var, bsy)
(36) Vi(y-var,bs3) = Vy(y-var, bs1)

(37) Vi(ts,bss) = Vi(ts,bsa)

(38) Vi(ts,bss) = mul(const(3), Vy(y-var, bss))
(39) Vi(ts,bss) = mul(const(3), Vy(y-var, bss))
(40) Vi(t3,bss) = mul(const(3), V,(y-var, bsy))
(41) V;,(t5, b37) = V;,(tg,, b36)

(42) Vy(ts,bse) = mul(Vy(dz_var, bss), Vi (ts, bss))
(43) Vi(ts5,bs7) = mul(Vy(dz_var, bss), Vo(t3, bss))
(44) Vi (ts, bs7) = mul(Vy(dz_var, bsy)

(45) Vo(u-var,bsg) = sub(Vy(ts, bsr), Vo (ts, bs7))
(46) Vy(u_var, bsg) = sub(sub(Vy(u_var,bsy),

mul (mul(V,(u_var, bs),
Vo (dz_var, bsy)),
mul (const(3),
Vs(z-var, bs1)))),

mul(Vy(dz_var, bsy),

mul (const(3),

Vi(y-var, bs1))))

(47) transition(dsy,dsz)
(48) transition(dse,dss)
(49) transition(dss,dss)
(50) transition(dss,dss)
(51) transition(dss,dsg)
(52) ()

52) transition(dsg, dsy

93

(63) V4(U_-REG.out,dss) = V4(U_-REG.out,dss)
(54) Va(U-REG.out,ds,) = V4(U_REG.out, ds3)
(55) V4(U_REG.out,ds3) = V4(U_-REG.out,dss)
(56) V4(U_REG.out,dss) = V4(U_REG.out,ds1)

132

mul (const(3), Vs (y_var, bs1)))

(34)-(35)

(37)-(38)
(36)

(41)-(42)

(33),(40)

(28),(44)

(67) V4(U_REG.out,dss) = V4(U-REG.out,ds) (58)-(56)

(58) Vy4(S1.inl,dss) = Vag(MU X4.0ut,dss)

(59) V4(MUX4.0ut,dss) = Vg(MU X4.in0, dss)

(60) V4(MUX4.in0,dss) = Vg(U_REG.out,dss)

(61) V4(U-REG.out,dss) = V4(U-REG.out,ds) (57)
(62) V4(S1.inl,dss) = V4(U_-REG.out,ds1) (58)-(61)
(63) Va(Mi.inl,ds1) = Vg(MU Xs.o0ut,ds1)

(64) Vy(MU X3.0ut,ds;) = Vg(MU X5.in0, ds1)

(65) Va(MUX5.in0,ds1) = Vg(U_REG.out, ds)

(66) Vy(Mi.inl,ds1) = V4(U-REG.out,ds) (63)-(65)
(67) Vg(Mi.in2,ds1) = Vy(MU X3.0ut,ds1)

(68) Vy(MU X35.0ut,ds1) = Vi(MUX3.in0,ds1)

(69) Va(MUX3.in0,ds1) = V(DX _REG.out,ds)

(70) Vg(M;.in2,ds1) = Vy(DX _REG.out,ds1) (67)-(69)
(71) Vy4(Ty.out,ds3) = Vy4(T1.in,dso)

(72) V4(Th.in, ds2) = V4(M;.out,dss)

(73) Vi(M;.out,dse) = mul(Vg(My.inl,ds1), Vy(Mi.in2,ds1))

(74) V4(My.out,dse) = mul(Vy(U_REG.out,ds1), V4(DX _REG.out,ds1) (66),(70)
(75) Va(Th.out,ds3) = mul(V4(U_REG.out,ds1), V4(DX_REG.out,ds1) (71)-(74)
(76) Vy(Mj.inl,dss) = Vy(MU Xy.out, ds3)

(77) Va(MUX5.0ut,dss) = Vy(MU X5.in2,ds3)

(78) Va(MUX5.in2,dss) = Vy(T1.0ut, dss)

(79) Vy4(Ty.out,dss) = mul(Vy(U_-REG.out,ds1),Va(DX_REG.out,ds1)) (75)

(80) Vg(M;y.inl,ds3) = mul(V4(U_REG.out,ds1), V4(DX _REG.out,ds1)) (76)-(79)

(81) V4(Ms.inl,ds1) = const(3)
(82) Vy(Ms.in2,ds;) = V4(X _REG.out,ds:)
(83) Vy(Ty.out,dss) = Vg(Ty.in, dss)

(84) Vy(Ty.in, dsg) = Vy(Ms.out, dss)
(85) Vd(MQ.out, dSQ) = mul(Vd(Mz.inl, dsl), Vd(MQ.Z")’LQ, dsl)

133

(86) Vg(Ms.out,dss) = mul(const(3), Vg(X _REG.out,ds1)) (81),(82)

(87) Vu(Ty.out,dss) = mul(const(3), Vy(X _REG.out,ds1)) (83)-(86)

(88) Vu(M;j.in2,ds3) = V4(MU X3.0ut,dss3)

(89) Va(MUXj3.0ut,dss) = Vyg(MU X3.in2,ds3)

(90) V4(MUXs.in2,ds3) = Vy(Ty.out,dss)

(91) Vy(Ty.out,dss) = mul(const(3), Vay(X _REG.out,dsy)) (87)

(92) Vg(M;j.in2,ds3) = mul(const(3), V4(X_REG.out,ds1)) (88)-(91)

(93) Vy(Ty.out,dss) = Vy(Ty.in,dss)

(94) Vy(Ty.in,dss) = Vy(Mi.out,dss)

(95) Va(Mj.out,dss) = mul(Vy(M;.inl,dss), Va(M;.in2,dss))

(96) Vy(M;.out,dss) = mul(mul(Vy(U_REG.out,ds1), V4(DX _REG.out,ds1)),
mul(const(3), V(X _REG.out,ds1))), (80),(92)

(97) Vy(Ty.out,dss) = mul(mul(Vg(U_-REG.out,ds1), Vy(DX _REG.out,dsy)),
mul(const(3), Vy(X _REG.out,dsy))) (93)-(96)

(98) V4(S1.in2,dss) = Vg(MU X5.0ut,dss)

(99) Vyu(MUXs5.out,dss) = Vg(MU X5.in0, dss)

(100) Vg(MU X5.in0,dss) = Vy(Ty.out,dss)

(101) Vg(Ty.out,dss) = mul(mul(Va(U_REG.out,ds1),V4(DX _REG.out,ds1)),
mul(const(3), V4(X _REG.out,dsy))) (97)

(102) V4(S1.in2,dss) = mul(mul(Vy(U_-REG.out,ds1), V4(DX _REG.out,ds1)),
mul(const(3), Va(X_REG.out,ds1))) (98)-(101)

(103) Vy(Ts-out,dsg) = Vy(Ts.in,dss)

(104) Vy(Ts.in,dss) = V4(S1.0ut,dss)

(105) V4(S1.out,dss) = sub(Vy(S1.inl,dss), V4(S1.in2,dss))

(106) V4(S1.0ut,dss) = sub(V4(U_REG.out,ds1),

mul(mul(Vg(U_REG.out,ds),
Va(DX_REG.out,dsy)),
mul (const(3),
Va(X_REG.out,ds1)))) (62),(102)

134

(107) Vy(Ts.out,dsg) = sub(Vy(U_REG.out,ds1),
mul (mul(Vy(U_REG .out,ds1),
Va(DX_REG.out,ds1)),
mul (const(3),
Vi(X _REG.out,ds1)))) (103)-(106)

) Va(S1.inl,dsg) = Vg(MU X 4.out,dsg)
) Va(MUXy.0ut,dsg) = Vy(MUXy.inl,dsg)
) Va(MUXy.inl,dsg) = Vy(Tg.out, dsg)
111) Vy(Ts.out,dss) = sub(V4(U_-REG.out, ds1),
mul(mul(Vg(U_REG.out, ds),
Va(DX_REG.out,dsy)),
mul (const(3),
Va(X_REG.out,ds1)))) (107)
(112) V4(S1.inl,dsg) = sub(Vy(U_REG.out,ds;),
mul (mul(Va(U_REG .out,ds1),
Va(DX_REG.out,dsy)),
mul (const(3),

V4(X _REG.out,dsy)))) (108)-(111)

(113) Vg(DX_REG.out,dss) = Vg(DX_REG.out,dss3)
(114) V4(DX _REG.out,ds3) = V4(DX _REG.out,ds2)
(115) V4(DX_REG.out,ds2) = V4(DX_REG.out,ds1)
(116) V4(DX_REG.out,dss) = Vg(DX_REG.out,ds;) (113)-(115)

(117) V4(My.inl,dss) = Vag(MU X5.0ut, dss)

(118) V4(MUXs.out,dss) = Vg(MU X2.in3, ds4)

(119) V4(MU X5.in3,dss) = Vy(DX _REG.out, dsy)

(120) Vy(DX _REG.out,dss) = Va(DX_REG.out,ds,) (116)

(121) Vg(My.inl,dss) = Vy(DX_REG.out,ds1) (117)-(120)

M;.inl,dsg) = Vy(MUXs.o0ut, dss)
MU Xs.0out,dsy) = Vg(MU Xs.in1, ds2)
MUX5.inl,ds2) = const(3)

M, .inl,dsy) = const(3)

A~ A~ A~~~
—
[\
[N

~— ~— ' ~—
=

N N AN /S

135

(126) Vg(M;j.in2,dss) = V4(MU X3.0ut, ds2)

(127) Vg(MU X3.0ut,dse) = Vyg(MU X3.in1,ds2)

(128) Va(MU Xs.in1, dss) = Va(Y _REG.out, dss)

(129) V4(Y_REG.out,dsy) = V4(Y_REG.out,ds)

(130) Vg(M;y.in2,dss) = V4(Y_REG.out,ds) (126)-(129)

(131) Vy(Ts.0ut,dss) = Vy(Ts.in,dss)

(132) Vy(T5.in,dss) = Vy(My.out,dss)

(133) Vg(M;.out,dss) = mul(Vy(M;y.inl,dss), Va(Mi.in2,dss))

(134) Vy4(Mj.out,dss) = mul(const(3), V4(Y _REG.out,dsy)) (125),(130)
(135) Vy(Ts.0ut,dss) = mul(const(3), V4(Y _REG.out,ds1)) (131)-(134)

(136) Vg(M;i.in2,dss) = V4(MU X3.0ut,dsy)

(137) Va(MU X3.0ut,dss) = Vag(MU X3.in3, ds4)

(138) Vy(MUXs3.in3,dss) = Vy(Ts.0ut,dsy)

(139) V4(T3.0ut,dss) = mul(const(3), Vy(Y _REG.out, dsy)) (135)

(140) Vg(M;.in2,dss) = mul(const(3), V4(Y _REG.out,ds1)) (136)-(139)

(141) Vy(Ts.out,dsg) = Vy(Ts.in,dss)
(142) Vy(T5.in,dss) = Vy(My.out, dss)
(143) Vg(M;j.out,dss) = mul(Vy(My.inl,dsy), Vg(Mi.in2,dsys))
(144) Vg(Mi.out,dss) = mul(Vg(DX_REG.out,ds1),
mul(const(3),
Va(Y _REG.out,ds1))) (121),(140)
(145) Vy(Ts.0ut,dsg) = mul(V4(DX _REG.out,dsy),
mul(const(3),
Va(Y _REG.out,dsy))) (141)-(144)
(146) V4(S1.in2,dsg) = Va(MU X5.0ut,dsg)
(147) V4(MU X5.0ut, dsg) = Vg(MU X5.inl, dss)
(148) V4(MU X5.in1,dsg) = Vy(Ts.out, dsg)
(149) V4(Ts.0ut,dsg) = mul(V4(DX _REG.out,dsy),
mul(const(3),
Va(Y _REG.out,ds1))) (145)
(150) V4(S1.in2,dsg) = mul(Vg(DX _REG.out,ds;),
mul(const(3),
Va(Y _REG.out, ds1))) (146)-(149)

136

(151) V4(U_REG.out,dsy7) = V3(U_REG.in,dsg)

(152) V3(U-REG.in,ds¢) = V4(MUX;.out,dsg)

(153) Va(MUX,.out,dsg) = Vg(MU X.in0, dsg)

(154) V3(MUX,.in0,dsg) = V4(S1.out,dse)

(155) V4(S1.out,dsg) = sub(Vy(S1.inl, dsg), Vy(S1.in2,dsg)))
(156) V4(S1.out,dsg) = sub(sub(Vy(U_REG.out,ds1),

mul (mul(Va(U_REG.out,ds1),

Va(DX_REG.out,ds1)),

mul (const(3),
Va(X_REG.out,ds1)))),

mul(Vy(DX _REG.out,dsy)
mul (const(3),
Va(Y _REG.out,ds1))))
(157) Va(U_REG.out,ds7) = sub(sub(Vg(U_REG.out, ds1),

mul(mul(Vg(U_-REG.out,ds1),
Va(DX_REG.out,ds1)),

mul (const(3),

Vi(X_REG.out,ds1)))),

mul(Vy(DX _REG.out,ds)
mul (const(3),

Va(Y _REG.out, ds1))))

(158) Vy(u_var,bsg) = V4(U_-REG.out,ds7)
(159) Q.E.D.

Discussion

The main difference in verification of the designs with general and with pipelined multi-cycle re-
sources is due to the differences in the formal descriptions of these components. For a general
multi-cycle design to function correctly, the inputs should be held stable during the its operation
cycle. This is translated into verification preconditions that should be met for correct operation of
a multi-cycle resource. However, this is not required in the case of pipelined resources. During the

verification of a multi-cycle design, it needs to be proven that these preconditions are satisfied.

A pipelined multi-cycle component however, may consume multiple sets of data during its operation
cycle. There is simply a delay corresponding to the latency of the pipelined resource between the
time that a new set of data is input to the component and the time that the response of the

component to that set of data appears at the output of the component. Therefore, there are no

137

(112),(150)

(151)-(156)

(46),(157)

preconditions for the correct operation of a pipelined multi-cycle design. Due to this difference,
during the verification of pipelined and non-pipelined designs, different proof steps are taken. In
other words, different proof tactics are used for verification of designs with pipelined versus non-

pipelined multi-cycle resources, but the proof strategy remains the same.

In our particular example, the difference between the two implementations is mainly due to the
different multipliers that are used in synthesis of the two designs. When comparing the formal de-
scriptions of these multipliers in Figures 9.1.1 and 9.2, the difference in the functional preconditions
can be noted. When analyzing the register transfer operations in these designs, the output of the
pipelined multiplier at each state is simply the product of its input signals at the previous state.
However, for this to be true for the non-pipelined multiplier, it should be additionally verified that
the inputs have been stable throughout the 2 cycles of the operation of the multiplier. During
the verification process, this is translated into additional proof steps. These additional steps are

marked with *’s in the proof script.

9.3 Synthesis with Resource Constraints

When deriving schedules from behavioral specifications, there is a trade off between the area (num-
ber of resources used) and the latency that may be achieved. In scheduling with no resource
constraints, the goal is to generate a schedule with minimum number of resources, with a fixed
given latency. To achieve this there should be no limit on the number of the resources that may be
used during the synthesis of the design. In scheduling with resource constraints on the other hand,
the goal is to generate a schedule with the minimum latency, with a fixed number of resources.
For this to be possible, there is no limit on the latency of the design, or if there is, the scheduling
may not be possible. In synthesis with resource constraints also, non-pipelined and/or pipelined

resources may be used.

Figures 9.13 and 9.14 show two other possible schedules for the partial behavior specification of
Figure 9.2. In both these schedules, it is assumed that one multiplier and one subtractor are the only
resources available. Figure 9.13 corresponds to a schedule with non-pipelined resources. The formal
description of the resources used in this schedule are given in Figure 9.1.1. Figure 9.14 corresponds
to a schedule with the same constraints but with pipelined resources. The formal description of
the resources used in this schedule are given in Figure 9.2. The advantages of pipelined resources is
more evident in the case of scheduling with resource constraints: the schedule with non-pipelined
resources has a latency of 11 cycles, while with the same number of pipelined resources a latency

of 7 cycles may be achieved in this example.

When resource constraints are present during the synthesis, the schedules are longer in order not to

138

Figure 9.13: A possible schedule with constrained non-pipelined resources for the partial

specification of Figure 9.2

violate data dependencies. However, scheduling with resource constraints does not introduce new
dependencies between the operations within a synthesis basic block and the operations outside the
border points of the block. Consequently, our verification method can be safely used for verification
of designs with resource constraints. The verification of the designs with non-pipelined constrained
resources is similar to the verification of the designs with non-pipelined unconstrained resources,
and verification of the designs with pipelined constrained resources is similar to the verification of
the designs with pipelined unconstrained resources. Since in the case of the designs with resource
constraints, the latency is longer, during the verification process, the number of the states at which
the register transfer operations should be analyzed increases and consequently, the correctness

proofs will be longer.

139

Figure 9.14: A possible schedule with constrained pipelined resources for the partial
specification of Figure 9.2

9.4 Conclusion

In this chapter we discussed the class of multi-cycle synthesis resources and in particular pipelined
multi-cycle resources. Unlike purely combinational synthesis resources that operate on each set of
data in a fraction of a clock cycle, the operation of multi-cycle resources spans over multiple clock
cycles. We showed that our verification method can be extended to accommodate verification of
RTL designs that are synthesized from multi-cycle pipelined or non-pipelined resources. This may be
simply done when developing the library of formal descriptions of synthesis resources. The formal
descriptions of these components are written such that they capture their particular behavior. This
particular behavior is reflected during the verification exercise when the formal descriptions of these

components are instantiated.

140

Chapter 10

Loop Winding and Functional
Pipelining

The focus of this chapter is a design technique named loop winding or loop folding, and special
issues in verification of designs that have been synthesized using this technique. Loop winding is
used to optimize the execution delay of a loop. When loop winding is performed the consecutive
iterations of a loop may execute concurrently. Therefore, the synthesis and verification of such a
loop is different from the synthesis and verification of a non-pipelined loop. Loop winding deserves
detailed analysis since it is also the basis of functional pipelining of the designs. But, before we

discuss this subject we present the related topic of verification of general loop implementations.

10.1 Verification of Non-Pipelined Loops

In previous chapters we discussed that the correctness of a synthesized RTL design with respect to
its behavior specification may be verified by proving the equivalence of the corresponding pairs of
behavior-design critical paths. We claim that under the condition that no code motion across the
border points of basic blocks is performed during the synthesis, the equivalence of corresponding
pairs of critical path also implies that each iterative block of the controller of the RTL design along
with its data-path correctly implement its corresponding iterative block in the behavior. That is
to say in one pass through the body of each iterative block of RTL design, its correctness with
respect to its specification may be verified. Let’s first consider the non-hierarchical iterative blocks

or iterative basic blocks.

Consider the Figure 10.1 representing an iterative block of the controller of a synthesized design,

with the condition flag [4. In this figure, the loop is entered with a single state transition from the

141

-
B
,
-
g/

Figure 10.1: A simple loop basic block

state dsenter, and it is exited with a single transition to the state dsegit. dsinit and dsfinq are the
initial and final states of the body of the loop, respectively. Note that the curved line connecting
dsinit and ds finq in Figure 10.1 means that ds;ns; and dsfine are in fact the same state (the initial
and final states of a loop are the same). We have assigned two different labels to this state to
distinguish between the case when it the is the initial state of an iteration and the case when it is
the final state of the same iteration. This loop is an implementation of a loop with a similar control
structure in the behavior specification. We define the states bsenter, bSinits 08 finar and bsegs of the
loop specification similar to their counterparts in the controller, and denote the condition variable
of the specification loop by l;. The following nomenclature summarizes the elements of the loop

specification:

Iy : loop specification condition variable

succy(sp) : the state succeeding s in the body of the loop
bsinit : the initial state of the loop at each iteration
bSenter : the state preceding the initial state of the loop
bs finar : the final state of the body of the loop

bsegit : the state following the final state of the loop

V,'f(rb, sp) : the value function representing the value of variable 7, at state s, of iteration 4

142

The following nomenclature summarizes the elements of the loop implementation:

lg : loop implementation condition flag

succq(sq) : the state succeeding sy in the body of the loop

bsinit : the initial state of the loop at each iteration

bSenter : the state preceding the initial state of the loop

bsfinat @ the final state of the body of the loop

bserit : the state following the final state of the loop

Vj(rd, sq) : the value function representing the value of register r; at state sq4 of iteration i

When verifying the loop implementation, we assume that just upon a state transition from dsepter
to dsinit, the initial state of the loop, the critical registers of the design have correct values. If the
loop is correctly implemented, these registers will have correct values at the end of each iteration
(correctness condition (2) below) and also just prior to the control exiting the loop (correctness
condition (8) below). In addition, the loop will be repeated the same number of times as its
behavioral specification (correctness condition (1) below). Then assuming that the initial states
and final states of the specification of the loop and its implementation are bound together by the
state binding function, this may be translated to the following three correctness conditions, for

each iteration 7 of the loop:

1 Va(lg,dsinit) = Vi(lp, bsinit)
2 (Va(CRy,dsinit) = Vi(CRy,bsinit)) = (Va(CRy,dsfina) = Vo(CRb, bsfinal))
8 Vp(ly,bsinit) = (Va(CRg,dseeit) = Vo(C Ry, bsegit))

Unlike the case of sequential basic blocks, in iterative basic blocks the content of each register along
the critical path corresponding to the block is not simply a function of the states of the path, but
it is also a function of the iteration count of the loop, i.e. if bs; (ds;) is a state and i is an iteration
(where 1 < i < n;) of an iterative basic block then V,(CRy,bs;) = fo(i) (Va(CRy,ds;) = fa(i))-
To be able to address all possible instances of variables at each state of a loop we introduce a
superscript to the function Vj, (or V). Vi (or V) has three arguments: two explicit arguments
that are the name of a variable (or register), and a behavior state (or a design state) and an
implicit argument 4 that is the iteration count of a loop. Then Vj(ry, sp) (or Vi(rg,sq) stands for
the symbolic value of the variable 7, (or register r4) at state s (or sg4) at i-th iteration of the loop.

Please note that we have overloaded the term V' (or V{¥) to a vector version of itself so that:

143

‘/;)i({afla ag,- - 7a’n}a Sb) — <‘/bi(a'173b)7 %i(a'Qa 317)7 e ,%i(an,Sb)>

Now, the loop correctness condition may be restated as follows:

Theorem 10.1 The loop implementation is correct iff:

(dsinit = Bs(bsinit) A
demal = BS (bsfinal) A
le (CRda dsim't) = V;)l (CR(), bsinit, 1)) =

(Vi, i € NT 2 (Vi(lp, bsinit) = Vi(la, dsinit)) A
(Vi(lgsdsinit) = (Vi(CRg,dsfina) = Vi (CRy, bsfina))) A
(=Vi(lasdsinit) = (Vij(CRg,dsezit) = Vi (CRy, bsesit))))

Then, the correctness of the loop may be stated as the conjunction of three correctness conditions
that should be met at each iteration of the loop. One approach to verification of the loops is to
unroll the loop and verify the correctness conditions at each iteration by instantiating i. Unrolling
is referred to the process of replacing a loop that has a fixed number of iterations n;, with a sequence
of n; copies of it (Figure 10.2). Unrolling a loop simplifies its analysis considerably, but verification
of the loops through this approach is not attractive. The reason is that it is not applicable to the
cases where the number of iterations of the loop is not known before its execution (e.g. a while loop
in which the loop control variable is read from the input during the execution of the loop), even
though this type of loops comprises a big percentage of the loops in the controller of synthesized
designs in general. Besides, even for verification of the loops with fixed number of iterations, this

approach is not efficient.

We believe that more efficient approaches for verification of a loop exist. Let’s first consider a
non-hierarchical non-pipelined iterative block. Various iterations of such a loop have symmetrical
control flow. ! This symmetry may be efficiently utilized for verification of the loop. We claim
that due to the control flow symmetry, the loop may be verified by just one single pass through
its body. The implementation of the loop is considered correct, if under the same assumptions as
above, and assuming that the design registers have correct (symbolic) values at the initial state of
an arbitrary iteration of the loop, we can prove that at the final state of that iteration they have
correct (symbolic) values too. More formally the correctness condition of the loop may be states

as follows:

!Since there is no nesting of iterative and conditional basic blocks within each other, and no overlap in execution
of different iterations of a loop, at each iteration of the loop the exact same register transfer operations occur.

144

Figure 10.2: The unrolling of a simple loop basic block

Theorem 10.2 The loop implementation is correct iff for an arbitrary iteration k € NT of the

loop we have:

(dsinit = Bs(bsinit) A
dsfz'nal = Bs(bsfinal) A
VHCR4,dsinit) = V' (CRy,bsinit)) =

(Vi(la,dsinit) =
de(CRdadsim't) = ka(CRbabsim't) = (de(CRdadsfmal) = %k(CRbabeinal)))

In order to show that Theorem 10.2 is a valid definition for the correctness of the loop, we need
to prove that each of the three correctness conditions of the loop mentioned in Theorem 10.1 is
a direct implication of that. Since both theorems are implications with the same antecedent, to
prove the above implication it is enough to show that the consequent of Theorem 10.1 is a direct
consequence of the consequent of Theorem 10.2, or that each of the three correctness conditions
of the loop is a direct implication of the consequent of the Theorem 10.2. Before presenting this

proof, we need to mention a few helpful properties of a loop in the form of premises:

Premise 10.1 Vi(lg,dsinit) = Vi *(la, dSinit)

145

Explanation: Iteration ¢ only occurs if the iteration ¢ — 1 has occurred.

Premise 10.2 Vi (CRy,bsinit) = V' ' (CRp, bsfina) and VE(CRg,dsinit) = V™' (CRa, ds fina)-

Explanation: Based on definition bs;,;; at iteration ¢ is the same as bsyfnq at iteration 7 — 1,

and dsjp;; at iteration 4 is the same as dsyi,q at iteration 4 — 1.

Premise 10.3 (Im, m e Nt :
VI (g, dsinit) = “T” A
Vit (lg, dSinit) = “F”)
= (Vi, i€ NT, i>m:
Vi(la, dsinit) = V" (la, dsinit) A
Vi(CRy,dsinit) = Vi*(CRa, dsinit))

Explanation: It is obvious that once the loop is exited, the iteration condition variable of the

loop will remain false. The Premise 10.4 is an immediate implication of the Premise 10.3.

Premise 10.4 Vdi(ld,dsimt) = “F” = Vdi+1(ld,d8mit) = “F".

Premise 10.5 V;((bsinit) =4 = (V},(CRb,bsemit) = V;j(CRb,bsim,g)) and
Vi({dsinit) = “F* = (Va(CRy,dSezit) = Vj(C Ry, dSinit))

Explanation: There are no behavior or register transfer operations corresponding to the initial
state of a loop, therefore, the variables and registers preserve their values in a transfer from the

initial state of the loop to the state following the loop.

Now we show through formal proof that the Theorem 10.1 is a direct consequence of the Theorem

10.2. The proof is based on the following premise.

Premise- We assume that it has been successfully proven that for an arbitrary iteration of the
loop, if the registers have correct values at the initial state then they have correct values at the

final state.

146

Then proof steps may be informally stated as follows: At the initial state of the first iteration of the
loop, the registers hold correct values. Based on the above premise, the registers hold correct values
at the final state of the first iteration of the loop. The contents of registers at the final state of the
first iteration of the loop, is the same as their contents at the initial state of the second iteration of
the loop. Among these registers is a register that its output is the control signal serving as the loop
control flag. Then the content of this register will be the same as the value of its corresponding loop
variable in the specification of the loop. This means that either both loops go through a second
iteration or they both terminate. In the first case based on the above premise at the final state
of the second iteration and consequently at the initial state of the third iteration of the loop, the
registers hold correct values. In the second case, in both loops transitions to the state following the
loops (bSegit Or dSegit) Ooccur. Since no operation corresponds to the initial state of the loop, then
the contents of the variables and registers in a state transition from the initial state of the loop to
the state following the loop is preserved (bsegit Or dSegit).- This means that at the state at which
the loop is exited the registers hold correct values, also. The argument for the next iterations of
the loop is similar. Therefore, the proof of the theorem is completed. The following steps present

these proof steps more formally.

Assumption 10.1

For an arbitrary iteration k of the loop, where kK € NT the following is true:

(Vi(laydsinit) N (VE(CRy,bsinit) = VE(CRg,dsinit))) =
(VY (CRy, bspinat) = Vi(CRq,dsinal))

Lemma 10.1

(Vi, 7€]\7+ : V;Ji(lb,bsinit) = Vj(ld,dSim't) A
Villa,dsinit) = V3 (CRy,bsfina) = Vij(CRg,dsfina) N
Vi(la,dsinit) = Va(CRp,bseqit) = Vi(CRy,dSexit))

Proof 10.1

Stepl - As the first step, we prove that assuming registers have correct values at the initial
state of the first iteration of the loop, then if the loop goes through an iteration (if the loop

147

condition flag of a particular iteration has true value) then the registers will have correct
values at the initial state of the following iteration of the loop. This statement is the basis
of the Sub-lemma 10.1 given below. A proof of this sub-lemma through the induction on the

number of iterations of the loop follows.

Sub Lemma 10.1 Assuming that (Vbl(CRb,bsinit) = le(CRd,dsmit)), then:
Vie Nt ViTl(lg,dsinis) = (Vi(CRy,bsinit) = Vji(CRy,dsinit))
induction basis: It is obvious that for ¢ = 1 the above proposition holds:
VE((a,dsinit) = (V' (CRp, bsinit) = Vg (CRa, dsinir))

Even though Vdo(ld,dsmit) is ‘false’, since the consequent of the above proposition is ‘true’,

the proposition will be ‘true’.

induction hypothesis:

Vi laydsinit) = (ViF(CRy,bsinit) = Vi (CRy,dsinit))

inductive step: We need to show that:

VE(a dsinit) = (VT CRy,bsinit) = Vi (CRy,dsinit))

Proof:
assumption Vi(lg, dsinit) (1)
Premise 10.1 Vi (14, dsinit) (2)
induction hypothesis & (2) VF(CRy,bsinit) = VF(CRa,dsinit) (3)
Theorem 10.2 & (1) & (3) VF(CRy,bs finat) = VF(CRa4,dsfinal) (4)
Premise 10.1 V;)k+1(CRba bsinit) = deH(CRda dsinit) (5)
(1) & (5) VE(lg, dsinit) =
(VEYY(CRy, bsinit) = Vi (CRa,dsinit)) (6)
Q.E.D. (7)

148

The Sub-lemma 10.2 can be immediately deduced from the Assumption 10.1 and the Sub-

lemma 10.1:

Sub Lemma 10.2
Vi, i € N* @ Vi(lg,dsinit) = Vj(CRa,ds finat) = Vi (CRp, bs finat)

Step2 - As the second step of the proof we need to show that the implementation and
specification of the loop always repeat the same number of times, or in other words at the
beginning of each iteration the value of the condition flag of the loop implementation is
the same as the value of the condition variable of its specification. This is stated as the
Sub-Lemma 10.3.

Sub Lemma 10.3
Vi,i € N Vi(lp,bsinit) = Vil dsinit)
Proof - Let’s first consider the case where ¢ = 1. We know that Vbl(C'Rb,bsim-t) =

le (CRyg,dsinit), and since 4 is one of the critical registers, then Vb1 (Ip, bSinit) = le (14, dSinit)-

Now we need to prove the lemma when i # 1. We consider this in two separate cases, the
case where Vdi(ld,dsmit) = “T” and the case where le(ld,dsimt) = “F”. Let’s first assume
that 4 # 1 and Vdi(ld, dsinit) = “T”. Then the proof for this case is as follows:

assumption Vi(la,dsinit) = “T” (1)
assumption i#£1 (2)
Premise 10.1 Vi, jEN*, j<i : VI(g dsimi) = “T" (3)
Sub-Lemma 10.2 Vi, j €Nt j<i : VI(CRypbsfina) = VI(CRaydsfina) (4)
substituting 7 — 1 for j I/bi_l(C’Rb, bs final) = Vdi_l(CRd, ds finat) (5)
Premise 10.2 VH(CRy,bsinit) = Vi(CRy,dsinit) (5)
lg € CRy Vi(la,dsinit) = Vi (I, bsinit) (6)

Q.E.D. (7)

In the final case 1 # 1 and Vdi(ld, dsinit) = “F”. In this case, if le(ld, dsinit) = “F”, then we
know that V;!(lp, bsinit) = “F” also (at the initial state of the first iteration, all the registers

including [; have correct values), and based on the Premise 10.4 we have:

149

Vi >1 2 Vi(lg,dsinit) = “F" A Vi (ly,bsinit) = “F”
and since ¢ > 1, 7 may be substituted in the above formula for j:
Villa,dsinit) = “F" A Vi (lp, bsinit) = “F”

However, if le(ld,dsimt) = “T” but Vdi(ld,dsmit) = “F” (the loop is executed at least
once), then at some iteration the value of the condition flag [; should have been changed

from ‘true’ to ‘false’, i.e.:

IJm,m € Nt A m<i : V™(g,dsii) = “F" A Vdm_l(ld,dsimt) = “T7
From the above statement and Premise 10.1 it can be concluded:
Vi<m : V(g dsini) = “T”
Then based on Sub-Lemma 10.1:
Vji<m : VITHCRy,dsinit) = VT (CRy,bsinit)

(m — 1) may be substituted for j in the above formula, that results in:

VI (CRy,dsinit) = Vy"(CRy,bSinit) (10.1)
and since [; € CRy, then:

V" (lay dsinit) = Vi (lp, bSinit) = “F”
Then based on the Premise 10.3 the following is true:

Vi>m : Vdj_ (CR4,dsinit) = Vi (CRa, dsinit) A
V;JJ (CRy, bsinit) = V;,m(CRba bsinit, ™)

substituting ¢ for 7 in the above formula:

150

VJ(CRd, dsinit) = Vdm(CRd, dsim't,m) AN
ViH(C Ry, bsinit) = Vi™(C Ry, bsinit)

and from the Equation 10.1 we have:
Vi(CRa,dsinit) = Vi (CRy,bsinit)
Since Iz € CRy:
Vi (las dsinit) = Vi (I, bsinit)

Hence, the proof of Sub-Lemma 10.3 is completed.

Step3 - At this step we prove that under the given assumptions when the loop is exited,
the registers hold correct values. This is stated as the Sub-Lemma 10.4 and its proof is given

below.

Sub Lemma 10.4

Vi, i € NT: <Vi(lg,dsinit) = Va(CRaydsegit) = Vi(CRp,bsegit)

But we know that:
Vi,i € NT: =Vi(lg,dsinit) = Va(CRy,dsezit) = Vi(CRy, dsinit)
Vi, i € N1 2 =Vi(ly, bsinit) = Vio(CRyp, bsewit) = Vi (CRy, bsinit)

Also from the proof of the previous lemma we know that:
“Vi(lasdsinit) = V3 (I, bsinat)
Then:

Vi,i € NT : =Vi(lg,dsinit) = (Va(CRq,dSeqit) = Vi (CRg,dSinit) A
V;)(CR[), bsezit) = VZ(CR(), bsinit))

151

So, to prove the Sub-Lemma 10.4, it is enough to show that:

V’i,i S N+ : —|Vdi(ld,d8,'m¢) = Vdi(CRd,dSinit) = Vbz(CRb, bSim’t)

The proof is very similar to the last part of the proof of the previous Sub-Lemma. Let’s first
consider the case when the loop does not execute at all, and the loop condition flag is false

at the initial state of the first iteration of the loop. In this case:

Vi (la, dsinit) = “F”

but we know that:

Vi (CR4,dsinit) = Vi (CRy,bsinit) (10.2)
and since l; € CRy, then:

Vi (la, dsinit) = Vi Iy, bsinit) = “F”
Then based on the Premise 10.3 the following is true:

Vj >1 : Vj(CRd,dSinit) = le(CRd;dsinit) A\
V) (CRy, bsinit) = Vi (CRy, bsinit)

substituting ¢ for 7 in the above formula:

VHCRg, dsinit) = V; (CRq,dsinit) A
Vi (C Ry, bsinit) = Vi (C Ry, bSinit)

and from the Equation 10.2 we have:

Vi(CRy,dsinit) = Vi (CRy,bsinit)

This means that:

(Vi e Nt o =V (lg,dsinit) N —~Vi(la,dsinit) = Vi(CRg,dsinit) = Vi(CRy,bsinit))

152

However, if le(ld,dsmit) = “T” but Vdi(ld,dsmit) = “F” (the loop is executed at least
once), then at some iteration the value of the condition flag [; should have been changed

from ‘true’ to ‘false’, i.e.:

Im,meNT A m<i : V(g dsinit,m) = “F” A VI Yy, dsinit) = “T”

From the above statement and Premise 10.1 it can be concluded:
Vi<m : VI(gdsimi) = “T"
Then based on Sub-Lemma 10.1:
Vi<m : Vi*"(CRa,dsinit) = V{"(CRy, bsinit)

(m — 1) may be substituted for j in the above formula, that results in:

VI (CRg,dsinit) = Vy"(CRy,bsinit) (10.3)
and since l; € CRy, then:

Vi (la, dsinit) = V" (lp, bsinit) = “F”
Then based on the Premise 10.3 the following is true:

Vj>m : V](CRgdsinit) = V" (CRa, dsinit) A
V7 (CRy, bsinit) = V™ (C Ry, bSinit)

substituting ¢ for 7 in the above formula:

VHCRg,dsinit) = VI (CRa,dsinit) A
VS CRy, bsinit) = V" (C Ry, bsinit)

and from the Equation 10.3 we have:

153

V{(CR4,dsinit) = Vy(CRy,bsinit)

This means that:

(V’iEN+ : le(ldad'sinita 1) N —lVdi(ld,dSmit) = Vdi(CRd,dSinit) = V;)i(CRb,bsimt))

This completes the proof of the last sub-lemma. The proof of these three sub-lemmas col-
lectively is a proof of the main lemma. This means that the non-pipelined non-hierarchical

loops may be verified by one single pass through the body of the loop.

With a similar reasoning the correctness of an arbitrary non-pipeline iterative block (hierarchical
or non-hierarchical) may be verified, if under the same assumptions as before we can show that
in every iteration of the loop, if the critical registers have correct values at the initial state of the
iteration, then at the end of the iteration they have correct values, too. Since in a hierarchical loop
there is no control flow symmetry among the iterations, in this case it is not enough to prove this

property for an arbitrary iteration, but in fact it has to be proven for each iteration of the loop:

(Vi€ N* 1 Vj(CRy,dsinit) = Vi (CRp,bsinit) = Vi(CRa,dsfina) = Vi (CRyp,bs final))

However, if each basic block of the RTL design correctly implement a basic block of the behavior
specification, it is straight forward to show that for an arbitrary non-pipelined iterative block the
above property holds. This may be done in a bottom up fashion. An iterative block at each level
of hierarchy is a sequence of synthesis blocks at the lower level. The iterative blocks at the lowest
level of hierarchy are basic blocks. At the second lowest level of hierarchy, each iterative block is
composed of a sequence of basic blocks. At this level, if each basic block is correctly implemented,
then it is obvious that if the registers have correct values at the initial state of each iteration, they
will have correct values at the final state of that iteration, too. This reasoning may be recursively
applied to the iterative blocks at higher levels of hierarchy. Therefore, by one pass through the
control flow graph of each iterative block its correctness may be verified. In the next section we

will present a discussion on verification of pipelined non-hierarchical iterative blocks.

154

10.1.1 Pipelined Loops

To optimize the execution delay of a loop a technique named loop winding or loop folding is used.
During the scheduling of a loop, it is usually assumed that the execution of one iteration should
start only when the execution of the previous iteration terminates. If pipelining is performed during
the scheduling of a loop, the execution of one iteration of the loop partially overlaps the execution
of previous and/or next iterations [17]. The implementation of a loop with a fixed number of
iterations n;, has a total delay of A x mn;. If the same loop has a pipelined implementation with a
data introduction interval of dy, then its total delay is A + (n; — 1) X g, where §y < A. Note that a

non-pipelined loop is the special case where dy = A.

Consider Figure 10.3 showing an iterative basic block. This block has been divided into six sub-
blocks that are executed consecutively. Each sub-block corresponds to a subset of operations in the

body of the loop, and the order of the loop operations is maintained within the sub-blocks.

nm e meE~—J o 0 —] @ " >

I

Figure 10.3: An iterative basic block

Let’s assume the following data-dependencies between the operations of the loop: {4; — C;, B; —
D;, D;_y — C;, E;_1 — E;}. These dependencies are shown in Figure 10.4. A directed arrow
from a sub-block b; to a sub-block b; indicates that the operations in b; consume the results of the
operations in b;, or that b; is data-dependent on b;. Also, for simplicity of discussion, we assume

that each block represents the operations in a single statement of the behavior specification.

155

Figure 10.4: Sub-block dependencies

During the scheduling of the loop, the execution delay of the loop body is optimized in two ways:
(1) The operations that are not data-dependent on each other may be scheduled to execute con-
currently. This will improve the execution delay of each iteration of the loop A, and consequently,
the overall execution delay of the loop), is improved. For example, in the loop of Figure 10.3
there are no data-dependencies between the sub-blocks A and B and between the sub-blocks D
and F, therefore, A may be executed in parallel to B and D in parallel to E. (2) As much as
data-dependencies permit, the execution of consecutive iterations of the loop may be scheduled
with partial overlaps, i.e. an iteration starts execution before the execution of its previous itera-
tion terminates. For example, the execution of a new iteration of the loop in Figure 10.3 may be
initiated at the same time as the third sub-block (sub-block C) of the previous iteration, without
violating any of the above mentioned data-dependencies. Even though in this optimization scheme,
the execution delay of each iteration of the loop stays the same, the overall execution delay of
the loop may significantly improve. This latter scheme for performance optimization of a loop
introduces the idea behind the loop winding technique or pipelining the implementation of a loop.

Figure 10.5 shows a possible pipelined implementation of the loop of Figure 10.3.

In a pipelined loop, the loop initiation interval §; is defined as the number of cycles between the
initiations of two consecutive iterations of the pipelined loop. For a loop with execution delay A,
the maximum number of stages in the pipeline is defined as ng; = [A/§;]. This number is also the

maximum number of iterations that may execute concurrently.

When the implementation of a loop is pipelined, the control flow symmetry among different it-
erations of the loop no longer exists. Each pipelined loop has three phases of operation (Figure
10.6): prologue or the cycles between the time the loop starts execution and the time the pipeline
is filled; steady phase or the cycles at which the pipeline is operating in full capacity (ns iterations
of the loop execute concurrently); and epilogue or the cycles between the time the new iterations
stop entering the pipeline and the cycle when the last operation of the final iteration of the loop
completes its execution (the pipeline is flushed). There is no symmetry between two iterations

starting at different phases. Also, there is no symmetry between any two iterations starting at the

156

L -~

Figure 10.5: A possible pipelined version of the loop of Figure 10.3

prologue phase or ending at the epilogue phase.

Due to lack of operational symmetry, that is the basis of our one pass verification approach of the
loops, this method is not applicable to the verification of pipelined loops, where different operations
are performed in different iterations of a loop. One method of verification of a pipelined loop is
to analyze the cycle to cycle behavior of the loop from start to finish to verify its correctness.
However, this is only possible for the loops in which the number of iterations is known before the
execution of the loop (e.g. for loops). Verification of the general loops (such as while loops with
unknown number of iterations in which the loop variable is updated at each iteration) is not possible
through these methods. Even in the cases where the pipelined loops can be verified, this method
is inefficient. It is reasonable to demand more inclusive and efficient solutions for the problem of

verification of pipelined loops.

157

¢ c6 ¢7 c8 c¢9 cl0 cll cl2 c13 cl4 cl15 cl6 cl7 cl1l8 .cl19 c20 c21 c22 .

URTRTEIN LSRNV U U U N N S S S S SO S S S
L0 A2 B2 1C2,1D2, 1E2, (F2, 0 1L L
.10 1 IA3 B3 :1C3 D3 1E3 (F3, 1 1L
C0 00 v 0 IA4 B4 1C4, 1D4 LE4 IFA L L L L L
! 1 1 | ! | | | VA5 |B5 . C5, D5, 1 E5 |F5 | 1 1 1 ! | | | !
L. . 4= 'p6 !B6 !C6 D6 1E6 IF6 ;110
L0 0L nnun v n v A7 !B7 iC7,.D7, (E7, (F7,0

L0 0. vy v v .. ' . ' !p8 'B8 !C8 !D8 | E8 ! F8 | | !
Lo TA9 1B9 1 C9 DY | E9 F9 |
EHPrologue 3 Steady 3 Epilogue *’3

Figure 10.6: A pipelined implementation of the loop

10.1.2 Verification of Pipelined Loops

As it was mentioned in the previous section, in a pipelined loop the execution of two consecutive
iterations are scheduled §; cycles apart. The loop goes through three phases during its execution,
and n; iterations of the loop are executed throughout these phases. The three phases of a pipelined

loop are:

1. Prologue - The iterations 1 to ns — 1 start at this phase (cycles ¢; to ¢4 in Figure 10.6).
The first iteration starts at the first cycle and a new iteration starts at every d; cycles then after.
For a loop with the execution delay of A, the loop initiation interval §;, and number of stages ng,
the prologue phase consists of the first A — ¢; first cycles of the execution of the loop. There is no
operational symmetry between any two iterations starting at this phase. When the first iteration
starts, there is no concurrency. After §; cycles, when the second iteration starts, two iterations
execute concurrently. After 2 x §; cycles when the third iteration starts, three iterations execute
concurrently. This continues until after (ns — 1) X §; cycles from the first cycle, when ng iterations
execute concurrently, at which time the prologue phase terminates and the steady state or pipeline
phase starts. There is no operational symmetry between any pair of the first n; — 1 iterations.
Therefore, the correctness of the operations in each iteration starting at this phase should be

individually verified.

2. Steady Phase - The Steady state of a pipelined loop starts (ns; — 1) x §; cycles after the first
cycle, and continues until (ns — 1) x §; cycles before the final cycle (cycles c5 to ¢ig in Figure 10.6).
A new iteration starts execution every §; cycles. In this phase the maximum number of iterations
(ns) execute concurrently. There is operational symmetry between any two iterations that both

start and complete their execution at this phase. Therefore, the verification of the behavior of the

158

loop at this phase is similar to verification of the non-pipelined loops. To fully verify the operation
of a loop at its steady state, it is enough to verify an arbitrary iteration that both starts and
terminates at this phase. Due to the operational symmetry the control flow of the operation of
the loop at this phase may be captured by the control flow graph of an arbitrary iteration of the
loop at this phase. Besides, since in the steady state the loop goes through only §; distinct states,
an iterative block of ¢; distinct states and n; — (ns — 1) iterations (Figure 10.9). At each state of
either control flow graph up to ny sets of operations (one set of operations for each of the iterations
executing concurrently) may be executed in parallel. Figure 10.7 shows the ¢; distinct states of the

control graph of the steady phase for out example pipelined loop.

sl s2
_ 'Ei2, ! Fiz,
'=3 ¢y, Dy, |
to | | |
i—g A B

Figure 10.7: Control flow graph of the pipelined loop at the steady state

3. Epilogue - This phase corresponds to the time when the pipeline starts flushing, i.e. the
last A — §; cycles of the execution of the loop (cycles cig to ¢o2 in Figure 10.6). At this phase, no
new iterations are initiated and only the execution of the last nys — 1 final iterations of the loop,
initiating in the steady phase continue to completion. There are ns — 1 iterations of the loop that
start in the steady state and terminate in this phase. There is no operational symmetry between
any pair of iterations from these last ng — 1 iterations. At the last ¢; cycles of the loop only the
final iteration of the loop executes. In the period from 2 x §; to J; cycles before the last, the final
2 iterations of the loop execute, and so on. Due to lack of operational symmetry, to verify the
functional correctness of the pipelined loop at the epilogue phase, the correctness of each of the

ng — 1 final iterations terminating at this phase should be individually verified.

Now, we will prove that a pipelined loop can be fully verified in 2 X ny — 1 passes through its body,
that is one pass for each iteration with a distinctive control flow graph. The distinctive iterations of
a pipelined loop comprise of the ng; — 1 iterations starting in prologue phase, an arbitrary iteration
both starting and ending at the steady phase, and ns — 1 iterations terminating at the epilogue
phase. Figure 10.8 shows the 5 distinctive iterations of our example pipelined loop. Considering
the fact that pipelining is a tradeoff between the throughput and area (resources), it only make

sense to pipeline a loop when n;, the number of iterations of the loop, is relatively large compared

159

Al !Bl :C1, 'D1, ' El, IF1, : 'C1, 'D1, 'E1, 'F1, : 1
Prologue: i=1 | | VA2 B2 [C2, D2, | i=2 A2 B2, |C2, D2, |E2, |F2, |
I VS T iasies caios
| | | | 1 A4 1 B4 |
cl c2 c3 c4 c5 c6
i—3 1Ei2.iFiz.) | | | |
Steady to 'Cixy 1Digy 1 Ejay i Figy : :
State: i=7 A B Gy Dy B R
3 1 Aisr 1Bia 1A 1B
| | | | ' Cirz 1Disz
cl c2 ¢33 ¢4 c5 ¢c6 cl c2 ¢3 «c4 <c5 c6
' C7, 1 D7, | E7, | F7, : : ' C8, 1 D8, ' E8, I F8, : :
Epilogue: i=8 A8 !BS8, 'C8, |DS8, E8, |F8 | i=9 A9 !B9, !C9 !D9 'E9 |F9 !
3 : :Ag iBg icg 3 3 I I I I I I I

Figure 10.8: All the iterations of the pipelined loop with distinctive Cras

to the number of additional sets of resources (n; > ns). In such a case verification in 2 x ng; — 1
passes is considerably more efficient compared to a cycle by cycle verification approach (an effort
equivalent to n;/ns passes through the body of the loop).

When verifying the implementation of a loop, we need to show that at the end of each iteration of
the loop, the registers hold correct values, under the condition (assumption) that they have correct

values at the initial state of the initial iteration of the loop:

(ViH(CRy, bsinit) = V}(CRg,dsinit)) =
Vi, 1<i<mn; : VH(CRpybstina) = V4(CR4,dSfinal))

In previous section, we introduced a strategy for verification of non-pipelined loops, under the given
assumption, and based on the above definition of the correctness for the loops. We proved that

based on the definition of correctness, to verify a non-pipelined loop, it is enough to show that if at

160

A — 9, states Prologue
Prologue
Steady
51 states Steady n- (rlS - 1) iterations
n- (n - 1) iterations
S
Epilogue A— 6, states Epilogue

e

Figure 10.9: The control graph of a pipelined loop

the initial state of each iteration the registers have correct values, then at the end of the iteration

they have correct values too:

(Vi (CRy, bsinit) = Vi(CRq,dsini)) =
Vi, 1<i<n
Vi (CRy,bsinit) = VE(CRy,dsinit) = Vi(CRp,bsfina) = VEH(CR4,dsfinat))

This new definition of the correctness of the loops was the basis of our strategy for verification of
non-pipelined loops. During the verification process, we try to prove that at the final states of the
specification and implementation loops the content of each register is the same as the value of its
specification variable, under the assumption that each register has the same value as its specification
variable at the initial states of the loops. Given a behavioral specification of the loop, the value

of each specification variable at the final state of each iteration may be symbolically calculated in

161

terms of the values of the specification variables at the initial state of the loop. In a non-pipelined
implementation of the loop, the content of each critical register at the final state of each iteration
may be evaluated in terms of the values of the critical implementation registers at the initial state
of that iteration. Then a comparison between these values can be made, and by exploiting the
assumption on the equality of the initial values, a conclusion about the correctness of the final
values, and consequently, the correctness of implementation of the loop can be drawn. This is not

possible in the case of a pipelined loop.

Let’s assume it is possible to extract an ng stage pipelined implementation of the loop. The control
graph of a pipelined loop is partitioned into blocks with d; cycles, each corresponding to one stage
of the pipeline. An iteration of the loop consists of n, stages and therefore, is spread over ng such
partitions (Figure 10.10). Two consecutive iterations are spread over ns + 1 partitions (when the
steady phase begins, one iteration terminates at the end of each partition and two consecutive
iterations share (ns; — 1) of the partitions). The value of a register at the final cycle of the partition
i+ (ns — 1) (at the final stage of the i-th iteration of the pipelined loop) corresponds to the value
of its specification variable at the final state of iteration ¢ of the specification loop, and its value at
a similar cycle of the next partition corresponds to the value of its specification variable at the end
of iteration ¢ + 1 of the specification loop. Based on the definition of the correctness of the loop,
it is the validity of these final values of the registers that at the end of each iteration of the loop

should be verified (with respect to the final values of the specification variables).

partition i partition i+1 partition i+2 partition i+(ng-1) partition i +ng
iteration i - Stage 1 Stage 2 Stage 3 . e Stage n,
iteration i+1 - Stage I | | | Stage 2 | cen | Stage ng1| || Stage ng

Figure 10.10: The life span of two consecutive iterations of a pipelined loop

In each iteration of the loop a set of variables (registers) AR, C CRy (AR4y C CR,) assume new
values. These variables (registers) are referred to as active variables of the loop (active registers).
Active variables are those critical variables that are the target of at least one assignment at each
iteration of the loop. Active registers are those critical registers that are bound to an active
variable of the loop. Consider the specification variable r, € ARy, that assumes a new value in
every iteration of a non-hierarchical loop. In a non-pipelined non-hierarchical implementation of

the loop, iterations of the loop execute one at a time and throughout the execution of the loop

162

exactly one register r; € AR, corresponds to 7. In a pipelined implementation of the same loop on
the other hand, each iteration executes in parallel with up to ns — 1 other iterations. This means
that the pipelined design should accommodate simultaneous storage of up to ngs different values
of r, (one corresponding to each concurrently executing iteration if necessary). 2 Therefore, in
place of register r; € ARy of a non-pipelined design, there is a queue of up to n, registers r4[1]
to r4[ns] in a pipelined design. During the execution of each iteration of the loop, each register
rqlj] (1 < j < ng) holds the value of r); at one stage of the pipeline, and r4 = r4[n,] holds the
value of 7/, at the final stage of the pipeline, i.e. 74[1] corresponds to the value of r), at the first
stage of the iteration, r4[2] corresponds to the value of 7, at the second stage of the iteration, ...,
and r4 = 74[n;s] corresponds to the value of 7, at the final (ns-th) stage of the iteration. Of all
the registers r4[1] to r4[ns], only rq = rg4[ns] is a critical register and the rest of the registers are
temporaries. During all stages of the life span of an iteration of a pipelined loop but the last, each
active critical register may hold a value corresponding to the final stage of some previous iteration
of the loop. It is apparent from this discussion that at any given iteration of the pipelined loop,
it is only at the final stage that the contents of critical registers of the design are representative of
the values of the critical specification variables at that iteration. So, it is only at the final stage of
an iteration of a pipelined loop that the values held by critical registers of the design are valid and
may be compared to the values of the specification variables at that iteration.

In a pipelined implementation of the loop, at the initial state of each iteration, the execution of
the previous iteration is not completed yet, and some of critical registers do not hold valid values.
Therefore, unlike the case of the non-pipelined implementations, we cannot assume that at the
beginning of each iteration, the critical registers hold correct values; in the contrary, we know that
they don’t. Also, the contents of the critical registers at the final state of an iteration are defined by
the contents of the critical registers and/or temporary registers at the initial state of the loop. It is
usually not possible to evaluate the contents of the critical registers at the final state of an iteration
solely in terms of the contents of critical registers at the initial state of an iteration. Since the
strategy we adopted for verification of the non-pipelined loops is based on calculating the contents
of critical registers at the final state of an iteration in terms of their contents at the initial state of

that iteration. Apparently, this strategy cannot be used for verification of pipelined designs.

The pipelined loop implementations are verified through a new strategy that is based on a slightly
different, but equivalent formulation of correctness. We explained in previous sections that the
only valid reasoning about the value of a critical register in a particular iteration of a pipelined
implementation of a loop is limited to this value at the final stage of that iteration. Therefore,
we should construct a formulation of the correctness that is solely based on the contents of the

registers at the final state of each iteration. Let’s consider the definition of correctness one more

2 A more detailed discussion of the exact number of these temporary registers will be presented later in this chapter.

163

time:

(ViH(CRy, bsinit) = V}(CRg,dsinit)) =
Vi, 1<i<mn : VH(CRp,bstina) = V;(CR4,dStinal))

Since it is the assumption that in a pipelined implementation of the loop, the antecedent of the
above proposition or (V},l(CRb, bsinit) = le(CRd,dsmit)) is true, then to prove the correctness

of the loop we need to show that under this assumption the following proposition is true:

B;

(Vi, 1<i<mn; : Vj/(CRu,bsfina) Vi(CRy,dsfina))

It can be shown by induction on iteration count of the loop %, that the above proposition is

equivalent to the conjunction of the following two propositions.

(1) VHCRy,bsfinat) = Vi (CRa,dsfinal)
(2) Vi,1<i<m—1:
W(CRbabsfinal) = Vdi(CRdadsfinal) = ‘/bi+1(CRbab3final) = Vdi—l—l(CRdadeinal)

Then to prove the correctness of the pipelined implementation of a loop, it is enough to prove the
validity of the above propositions for that particular loop. This new formulation of correctness is

the basis of our strategy for verification of the pipelined loop.

The proof of the first proposition is straight forward. Since we know that (V,'}(CRb,bsmit) =
V}(CRg,dsinit)) is true, then to prove the first proposition we show that:

(Vy (CRy, bsinit) = Vi (CRy,dsinit)) = (V,'(CRy,bsfina) = V4 (CRy,dsginar))

At the first iteration, the contents of the temporaries are loaded with the initial values of the
critical registers (the contents of the critical registers at the initial state of the first iteration of
the loop). Then, at the first iteration the contents of the temporaries may be calculated in terms
of the contents of critical registers at the initial state. At the final state of the first iteration, the
contents of the critical registers may be calculated in terms of the contents of the critical registers
and temporaries. This means that at the final state of the first iteration, the contents of the critical

registers may be calculated solely in terms of the contents of critical registers at the initial state.

164

Now, a comparison between the values of the specification variables and critical registers at the
final states can be made (exactly in the same way as in the case of a non-pipelined implementation
of the loop).

The proof of the second proposition is done in three steps. The second proposition is equivalent
to the conjunction of three other propositions. At each step of the proof the correctness of one of

these propositions is verified:

(2—a) Vi, 1<i<mg:
‘/I)i(CRbabsfinal) = Vdi(CRdadsfinal) = ‘/bi—l—l(CRbabsfinal) = Vdi+1(CRdad3final)

(2=b) Vi, ns <i<my—ng:
‘/;;i(CRbabsfinal) = Vdi(CRdadeinal) = %Z—l—l(CRbabsfinal) = de—l—l(CRdadeinal)

2—c¢) Vi,np—ng<i<mn —1:
VH(CRy, bsfinat) = Vi(CRaydspina) = ViT(CRy,bspina) = VT (CRa,dsfing)

The construction of the proof in all the three cases is done using the same tactics. Then the ex-
planation below applies to construction of the proof in each of these cases. Consider an arbitrary
iteration ¢ of a pipelined loop, and its consecutive iteration i+ 1. The lifetime of these two iterations
together spans over (ns+ 1) out of the n;+ (ns — 1) stages of the lifetime of the loop (Figure 10.10).
To prove the correctness conditions of the loop, it should be established through mathematical
proof that if the contents of the critical registers at the final state of the iteration i have correct
values, then at the final state of iteration ¢ 4+ 1 they have correct values too. Let’s assume that the

contents of the critical registers at the final state of iteration ¢ are correct:

Vry € CRy, Yrqg € CRy : 14 = Br(rs) = (Vi(rp,bspinat) = Vi(ra,dsfina)) (10.4)

and since we know that (V}(ry, bs final) = (V}f“(rb, bSinit), then:

Vry € CRy, ¥rg € CRy ¢ rq=By(ry) = (V7™ (rv,b8init) = Vi(ra, ds fina))

This means that the contents of the specification variables at the initial state of the iteration ¢ + 1
may be defined in terms of the contents of critical registers at the final state of the iteration i.

Also, we know that the values of the specification variables at the final state of iteration ¢ + 1 are

165

defined in terms of the values of these variables at the initial state of iteration 7 + 1:
3f + ViTCRy,bspina) = f(Vi(CRy, b final)

Then, the values of the specification variables at the final state of the iteration ¢+ 1 may be defined

in terms of the contents of critical registers at the final state of iteration i:
Vit (CRy,bsfinat) = f(Vi(CRa, dsfinat)
Then to prove the correctness of the loop implementation, we should show that:
Vit (CRy,dsfinat) = [f(Vi(CRa,dsfinat)) (10.5)

To construct this proof the contents of the critical registers at the final state of the iteration 7 4 1
should be somehow calculated in terms of the contents of the registers at the final state of the
iteration ¢. The value of a register at the final state of the iteration i+ 1 may be calculated in terms
of the values of the non-active critical registers as well as temporaries at the initial state of this
iteration. Then the values of the non-active critical registers and temporaries at the beginning of
iteration ¢ + 1 should be calculated in terms of the values of the critical registers at the final state
of the iteration 7 + 1.

The values of non-active critical registers remain the same from one iteration to the next. There-
fore, the values of non-active critical registers at iteration ¢ + 1 may be calculated in terms of their

values at the final state of iteration i:

VdS,V’I“d S CR(,, Td QE AR Vdi(’l‘d,ds) = Vj(rdadsfinal)
VdS,V’f‘d € CRb, Td Q_ﬁ AR Vdi+1(7‘d,d8) = Vdi('rdadsfinal)

Now it remains to find a tactic for evaluating the contents of temporaries at the initial state of
iteration ¢ 4+ 1 in terms of the contents of the critical registers at the final state of iteration ;. We
know that the values of temporary registers at initial state of iteration ¢+ + 1 may be calculated
in terms of the values of temporary registers at the initial state of iteration 7. Now, the problem
may be restated as given Vj(C’Rd, ds fina1), the values of the critical registers at the final state of
iteration 7, calculate the contents of the temporary registers from the final state of that iteration

back to the initial state of iteration in terms of the contents of critical registers at the final state

166

of iteration . We know that the opposite is possible and the value of a critical register at the final
state of the iteration 7, may be calculated in terms of the critical registers and temporaries at the
initial state of iteration ¢. Given the values of the critical registers at the final state of iteration i,
the contents of the temporaries may be calculated from the final state of iteration 7 back to initial

state of that iteration through a procedure called backward value propagation.

Backward value propagation is used when the values at the output registers of a circuit at a certain
state are known and it is desirable to calculate the values at the input registers at that state or at
a previous state. So, the backward propagation of values may be in spatial or temporal domain of
a design, or both. It is not always possible to calculate the values at the inputs and outputs of all
the registers in terms of the values of the output registers. The backward propagation of values is
usually most successful when a sequence of registers are chained together. Usually, when the input
of a registers is connected to an ALU unit, the backward traversal stops. The backward propagation
is done through a procedure that takes five parameters as input: (1) a state s; when the backward
traversal starts, (2) a register r where the backward traversal starts, (3) a value v that appears at
the output of the register r.out at state sg, (4) the set of registers whose output values need to be
evaluated, C, and (5) the state when the backward propagation terminates. The Backward value

propagation algorithm is given in Figure 10.11.

The critical registers are desirable candidates for backward value propagation. In the case of critical
registers (specifically in the case of the active critical registers), we know that there is a chain of
temporaries that define the content of an active critical register at a particular state. Then, this
value may be easily propagated backward up to the temporary registers. Then the values of the
temporary registers at the iteration ¢ may be calculated in terms of the final values of critical reg-
isters at this iteration through backward value propagation. These values may then be propagated
forward to calculate the values of the temporaries at the iteration ¢+ 1, and finally to calculate the

contents of the active critical registers at the final state of this iteration:
39 : VyTHCRy,bsfina) = 9(Viy(CRy, bs finat) (10.6)

Then comparing the Equations 10.5 and 10.6 the correctness of the contents of critical registers at
the final state of iteration ¢ + 1 may be verified, by investigating that the two functions f and g
map each critical register to the same values. As we have mentioned before this process has to be
repeated once for each iteration with a distinct control flow graph and one for all the iteration with

a symmetrical control flow graphs.

Verification of the pipelined loops through the above mentioned strategy, and in 2 X ngy — 1 passes
is considerably more efficient than verification through unrolling the specification loop. Intuitively,

this new approach may seem the most efficient possible for verification of the pipelined loop. In

167

propagate back (ry : REGISTER,
s;i : RTL.STATE,
v : VALUE,
R : {r|r : REGISTER},
s; : RTL_STATE)

{
if (rq € R)
add_known _values (r4.0ut, s4, c);
else
return;
if (s; = sy)
return;
if (=Vy(rq.ld, pred(sq))
propagate_back (rq4, pred(sq), ¢, R, sy);
else /¥ Va(rqld, pred(sq) */
if (Vg (rin,pred(sq)) = Vy (r).out, pred(sq))
propagate_back (1), pred(sq), ¢, R, sf);
return;
}

Figure 10.11: Backward Value Propagation Algorithm

what follows we present a modification of our method that offers an even better solution to the

problem.

168

10.1.3 Verification of Pipelined Loops : An Alternative Approach

The behavior graph (specification) of a pipelined loop may be transformed into an equivalent graph
with ng partitions, where each partition represents one stage of the pipelined loop (the equivalence
of the original behavior graph and the transformed behavior graph may be verified through our
observation equivalence checking approach discussed earlier). Now, each partition of the behavior
graph may be considered a critical path and the correctness of the pipelined implementation of the
loop may be verified through comparing the operation of each behavior partition (critical path)

and its corresponding stage of the pipelined loop.

A set of operations are performed at each iteration of the loop. The results of these operations are
accumulated in some temporary registers at each stage of the execution of the loop, and before the
execution of the final stage (stage ns) of an iteration terminates, the final results of the operations

are assigned to appropriate critical registers of the design.

Definitions

We define the active variables of stage j as the set of all the critical specification variables that
assume a new value at the stage j of a pipelined loop. ARZ denotes the set of active variables
of stage j of the loop. The active registers of the stage j of a pipelined loop ARfi., are those
registers that correspond to an active variable at stage j. In a non-pipelined implementation of a
(non-hierarchical) loop, exactly one register represents each specification variable throughout the
execution of the loop. As it was explained before, this is not true in the case of a pipelined loop.

Consider the i-th and (¢ + 1)-th iterations of the loop as before. Suppose 7, € AR}i is an active
register of the stage 1 in a non-pipelined implementation of the loop. In a pipelined implementation
of the loop, a temporary register ¢4[1] is introduced to the circuit in place of 7). The temporary
register tq[1] represents r}, at the first stage of iteration 7. All the operations performed on 7/ at
the first stage of iteration 7 are performed on #4[1] in a pipelined implementation of the loop. Since
a total of ny = |AR}| such registers are active at stage 1, a total of ni temporary registers are
required in place of the active critical registers of the first stage. These registers are the temporary
registers of the first stage and are denoted by Ty4[1]. At any time during the execution of a pipelined

loop, these registers are assigned to the iteration executing at its first stage.

When iteration ¢ of the pipelined loop starts the registers in Ty[1] are assigned to this iteration
and hold the results of the operations at the first stage of this iteration. But, when iteration %
enters its second stage, the iteration 7 + 1 starts its first stage and the registers Ty[1] should be
assigned to iteration 7 + 1 (Figure 10.12. Therefore, n; = |Ty[1]| other temporary registers should

exist in the circuit to hold the previously calculated values of Ty[1] corresponding to the first stage

169

stage 2 ‘ T[1).2 ‘ ‘ T[2).2 ‘ T[2]

stage 3 ‘ T[1].3 ‘ ‘ T2).3 ‘ ‘ T3]3 ‘ T(3]

stage ns1 ‘ T[1].(ng-1) ‘ ‘ T[2].(ng-1) ‘ ‘ T[3].(ng-1) ‘ - @ T[ng -1]

stage ng ‘ T].ng ‘ ‘ T[2l.ng ‘ ‘ T[1].ng ‘ ‘ Ting-1].ng ‘ Tingl.ng | | ARy

Figure 10.12: Register assignment in a pipelined implementation of a loop

of iteration %, as these values may be consumed at the succeeding stages of that iteration. Besides,
at stage 2 of iteration 7 some more operations are performed. At a non-pipelined implementation
of the loop, the results of these operations are assigned to the active registers of the second stage,
AR?I. Then, in the pipelined implementation of the loop, some more temporary registers should
be introduced to the circuit to represent the active registers of the second stage, AR(%. Therefore,
a total of ng = |Ty[l] U AR%| = |AR} U AR?| temporary registers are assigned to an iteration
executing at its second stage of operation. These are the temporary registers of stage 2 and are
denoted by Ty[2]. With a similar analogy we can show that a total of n; = | Ui:l ARE| temporary
registers are assigned to an iteration executing at its j-th stage, where 1 < 5 < ng. These are
the temporary registers of stage j and are denoted by T,[j]. At the final stage of execution of an
iteration, the operations are performed on the critical registers of the design and Ty[n;] = ARy.
Since the non-active critical registers are not the target of an assignment operation, and their values
remain the same throughout the execution of the loop, only read operations may be performed on
them. Therefore, the contents of these registers may be directly read from the output of these

registers and no temporary registers are needed in place of these registers.

Just after the execution of a particular iteration at the stage j terminates, and before that iteration

170

enters its (j + 1)-th stage of execution, the contents of the temporary registers Ty[j] are written to
the appropriate temporary registers of stage 7 + 1. This means that at the beginning of stage 7 +1
the following is true:

Vk, 1<k <n; : tqj +1][k] = talj][k]

where (n; = | Ui:l ARE)).

A = 9§, states Prologue
Prologue
Steady
51 states Steady nl - (nS - 1) iterations
n -(n -1) iterations
1 B
Epilogue A = 9, states Epilogue

.

Figure 10.13: The control graph of a pipelined loop revisited

Verification Method

In this section we will show that the pipelined implementation of the loop may be verified through

criticality masking technique and by defining a dynamic register binding function. We first consider

171

the verification of the behavior of the pipelined loop at the steady state. As we mentioned before
the behavior graph of the loop-body cpy is partitioned into ns subgraphs cpy[1], ¢pp[2], ..., cpp[ns),
so that each subgraph cpy[j] corresponds to a state j of the pipelined loop. Then, in place of the
single critical path of the non-pipelined design, the non-pipelined design has n critical paths. We
know that for an arbitrary iteration ¢ of the loop that both starts and terminates in the steady
phase (i.e. (ns—1) <14 < (n;— (ns—1))), the verification is performed in ng steps. In each step,

the functional correctness of the pipelined loop at one phase of its operation is verified.

We know that in a pipelined implementation of the loop up to n; iterations may execute concur-
rently. Also, we know that the values of the registers at one iteration of the loop, depends on
the values of the registers at the previous iteration. That is to say an iteration executing at stage
j may consume the contents of some of the temporary registers at stage 7 + 1. If the pipelined
loop is correctly implemented, the concurrent execution of n, iterations should not have any other
side-effects. This means that the result of the execution of an iteration 7 in parallel with up to

ns — 1 other iterations should be the same as the execution of the iteration ¢ alone.

Also, if the loop is correctly implemented, at the end of the first stage of the execution of iteration ¢
the temporary registers Ty[1] have correct values, and at the end of the second stage of the execution
of iteration 7 the temporary registers Ty[2] have correct values. With the same analogy at the end
of the j-th stage of the execution of iteration ¢ the temporary registers Ty[j] have correct values,
where 1 < j < n,. This ensures that at the end of the n,-th stage of the execution of iteration

the temporary registers Ty[ns] = ARy have correct values (Figure 10.14).

The non-active or passive variables (registers) of the loop are denoted by PRy, (PRy), where PRy, =
CRy — ARy (PRy = CRy; — AR4) and we know that:

Vbs, Vi, 1<i<mn; : Vi(ARpy,bsinit) = Vi (ARp,bsinit)

In our verification approach, at a particular iteration 7 of the pipelined loop, the criticality of the
registers ARy (ARy) at all the stages of the pipeline except the last (n;) is masked. At each stage
Jj of an iteration i, these registers are critical for a concurrently executing iteration i — (ns — j) (if
it exist). The critical variables along each critical path cpy[j] are CRy[j] = UiZIAR’j U PRy, and
the critical registers at the stage j of iteration 7 are CRy4[j] = Ty[j] U PR,4. This means that for the

critical path cp,,, the critical variables are defined as:

Ns
CRyns) = | J ARf UPR, = AR, U PR, = CR, (10.7)
k=1

and the critical registers at the stage ng of iteration ¢ are defined as:

172

iteration 1 iteration i+1 iteration i+2 iteration i+ng-3 iteration i+ns-2 iteration i+ns-1

stage 1 Ty [1]
stage 2 T, [2] T 1]
stage 3 Ty [3] Ty [2] Ty [1]

stage ng- 2 Ty [ns - 2] Ty [ng - 3] Ty [ng - 4] Ty [1]
stageng-1 Ty [ng-1] Ty [ng-2] Ty [ng- 3] Ty [2] T[]
stage ng AR, Ty [ng -1] Ty [ng -2] Ty [3] Ty [2] Ty [1]

Figure 10.14: Critical registers at each stage of execution of an iteration i

CRy[ns) = Ty[ns] U PRy = AR; U PRy = CRy (10.8)

Now we revisit the definition of the correctness once again and give a new interpretation of it, as
a conjunction of three correctness conditions. In the previous sections, the correctness of the loop

was defined by the following proposition:

(Vi (CRy, bsinit) = V}(CRg,dsinit)) =
Vi, 1<i<n : VJ(CRp,bspina) = Vi(CR4,dsfinal))

Since it is the assumption that in a pipelined implementation of the loop, the antecedent of the
above proposition or (Vbl(CRb, bSinit) = le(CRd, dsinit)) is true, then correctness condition of a

loop is reduced to the following proposition:

173

Vi, 1<i<mn : VH(CRp,bsfina) = Vi(CR4,dSfinal))

In what follows three new correctness conditions for a pipelined loop are presented. We will show
that these three correctness conditions collectively imply the above correctness condition of the
loop. Each of three correctness conditions assures the functional correctness of the loop at one of

the three phases of its operation.

Prologue Correctness Condition

Informally, this condition states that if the critical registers have correct values at the initial state
of the first iteration of the loop, then, at the final state of the prologue phase the critical registers
CRy, and temporary registers of this phase Ty = UZS:IITd[k], have correct values, too:

(Vo (CRy, bsinit) = Vi (CRa,dsinit)) =
(V- (CRy[ng — 1], bs pinar[ns — 1]) Vi (CRg[ns — 1], ds finai[ns — 1))
VI)2(CRb nsg — 2], bsfinal[ns - 2]) = le(CRd[ns - 2], dsfinal [ns - 1])

A
A

—_—

Vy e 2 (ORy[2),bs pinal2]) = ViH(CRa[2),dsfinailns — 1])
Vbns_l(CRb[l]a beinal[l]) = le(CRd[l],demal[’l’Ls —1])
Vbl(CRb,bSinit) = le(CRd,dsfinal))

A
A

By considering the Equations 10.7 and 10.8 and the assumption that (VI'JI(CR,,, bSinit) = le(C’Rd,

dsinit)), then prologue correctness condition is reduced to:

cC,

(V,H(CRy[ns — 1], b finar[ns — 1]) VHCRins — 1], ds fina[ns — 1]) A
VZ(CRy[ns — 2),bs pinai[ns —2]) = V}(CRy[ns — 2], dsfina[ns — 1]) A

V;Jns_2(CRb[2]ab3final[2]) = le(Cde]’dsfinal[ns =1 A

Ve T (CR[1],bs finat[1]) = VFHCR4[1],ds pinar[ns — 1]) A
Vi (CRy, bsinit) = Vi (CRa,dsinar))

The prologue correctness condition ensures that when the steady phase starts the critical registers

of each of each stage have correct values, and also that the contents of critical registers have not

174

changed. That is to say, each iteration ¢ from the first (ns — 1) iterations, up to its (ns — 7)-th stage

of operation, is functionally correct.

Steady Correctness Condition

We mentioned before that the behavior graph of the loop may be partitioned into n, critical paths
cpp[l], epp[2], - .., cpp[ns]- Each of these critical paths corresponds to on stage of operation of the
loop at each of its iterations.

The control flow graph of the steady phase of the pipelined implementation of the loop is also a loop
with n; — (ns — 1) iterations, ¢; distinct states and n, parallel branches (Figure 10.9). Therefore,
at each iteration of the loop of the steady phase ng stages of the loop are executed concurrently.
In other words, at each one of the ¢§; states of the control graph of the steady phase ng different
operations, each corresponding to one stage of the loop are executed simultaneously. Each set of
the temporary registers T[j] is assigned to a branch j of the steady phase. At the end of each
iteration ¢ of the control graph of the steady phase, the iteration ¢ of the pipelined loop is also
completed. Since the final state of the iteration 4 of the loop dsfinqi[ns] and the final state of the

iteration 7 of the steady phase are the same, we denote both these states by ds finq;-

The steady correctness condition ensures that at the end of each iteration of the control flow graph
of the steady phase the registers have correct values (stage ns in Figure 10.14 corresponds to one
iteration of the control flow graph of the steady phase). Since at the end of each iteration of the
control flow graph of the steady phase, one iteration of the loop terminates, this ensures that at
the end of each iteration terminating at the steady phase, the critical registers have correct values.
The steady correctness condition states that at each arbitrary iteration 7 of the loop, that both
starts and end at the steady phase, if the values of the registers at the end of stage 5 — 1 of the
iteration are correct, then at the end of the next stage (stage j) of the iteration i they are correct,

too.

Vi,1 <i<n;— (ns—1)

(Vi NORfn) bsginailns]) = Vi (CRulna],ds finat) A
I/;)Z.(CRb[ns — 1], bsfinai[ns — 1)) = V;_I.(CRd[nS — 1];ds pinat) A
I/I-)H—l(C’.Rb[ns - 2]7 bemal [ns - 2]) = VC;_I(CRd[nS - 2]’ dsfinal) A
Vy "V (OR2 bspinal2]) = Vi H(CRa[2],dsfinat) A
VO CR 1] bspinall]) = Vi (CRlL), ds finat) A

175

VH(PRy,bsinit) = Vi "(PR4,dsfina)) =

(V{CRy[ns], bspinalns]) = Vi(CRalns], ds finat) A

Vy " (CRylns — 1), bsfinailns — 1)) = V{(CRalns — 1], dsfinat) A
Vit(CRyfng — 2, bsfinailns = 2)) = Vi(CRalns — 2], ds fina) N
Vit (ORy (2], bs finail2]) = VI(CR4[2],ds finat) A
V'bH(”S_I)(CRb[l],bez'nal[l]) = VH(CR4[1],ds finat) A

VH(CRy, bsinit) = Vi(CRa,ds finat))

that considering Equations 10.7 and 10.8 may be reduced to:

CCs : Vi,1<i<mn—(ns—1)

(Vs (CRobspinat) = Vi (CRaydspinat) A
Vi (CRylns — 1], bs pinarlns —1]) = Vi (CRalny = 1), dsinat) 1
VI (CRy[ns — 2], b8 finai[ns — 2]) = Vi Y(CRans — 2),ds finar) A

Vo T (CRy[2),bs finail2)) = Vi (CRal2), ds pinat) A
V;)Z_F(nSiQ) (CRb[l]absfinal[l]) = V(;il(CRd[l],demal)) =

(Vi (CRy,bspina) = V(CRg,dsfina) N

Vbl.+1(CRb[’l’Ls —1], bsfinal[ns -1]) = VdZ(CRd['n,s — l]adsfinal) A
‘/;JZ+2(CRb[nS - 2]a bsfz'nal [ns - 2]) = VdZ(CRd[ns - 2], dsfinal) A
Vi (ORy[2), bs pinal2]) = Vi(CRal2), s pinat) A

VD (ORy[1], bs pina[l]) = VE(CR4[1],ds inat))

Please note that throughout this discussion V,)(C Ry[ns], bs finai[ns]) refers to Vi (CRy, bsinit) and
VY (CRy[ns), dsfinar[ns)) refers to V} (C Ry, dsinit), and these terms are used interchangeably through-
out the text to denote the values of the critical variables prior to the execution of the first iteration
of the loop.

176

Epilogue Correctness Condition

Of ny iterations of the loop, n; — (ns — 1) iterations end at the steady phase of execution of the loop.
The prologue and steady correctness conditions ensure that at the end of each of these iterations,
the critical registers have correct values. The epilogue correctness condition ensures that at the
end of each of the remaining (ns — 1) iteration of the loop, that end at epilogue phase, the critical

registers have correct values too:

V(O Ry [ng), bs finailns]) = V" T (CRylng), dsfinat)) A
VD (O Ry — 1], bs pinar[ns — 11)) = VI~ " (CRyn, — 1], ds pinat)) A
VT (O Ry — 20, b fimalns — 2)) = VI ™ T (CRylng — 20, ds finat)) A

VD (CRf2], bspinal2) = V™ (CRal2], ds finat)) A

Vi (CR[1], bs finaill]) = V'~ (CRa[L], ds inat)) A
Vbl(PRb,bSmit) = Vdm_(ns_l)(PRdadsfinal[l])) =

Vi, ng— (ns —2) <i<mny : VHCRy,bsfinalns) = Vi"(CRg,dsfinalns — (ni —1)])))
that considering Equations 10.7 and 10.8 may be reduced to:

CC, : (V" ™ D(CRy, bspina) = V' ™V (CRy, ds finat)) A
—(ns—2 . —(ng—1
VD (ORyng — 1], b8 pinailns — 1)) = VI~ (CRylng — 11, ds finar)) A
(Vi D (ORy[ng — 2,0 finailns —2)) = V" D (CRylng — 20, ds finat)) A

(V" CR 2, bsginatl2) = V™™ (CR[2], ds inat)) A
(V" (CR[1)bspinall) = V'™ D (CRl1), dsfinar)) =

(Vi, m— (ns—2) <i<my : VJ(CRy,bspinalns]) = Vi"(CRy,dsfinalns — (m —19)]))
Validation of the Verification Method
This approach to verification of pipelined loops is correct, if we can prove that the three correctness

conditions that are the basis of this method collectively imply the original correctness condition of

the loop:

177

Vi, 1<i<mn : Vi(CRybspina) = f(Vi(CRa4,dsina)

This proof is done in two steps. At the first step we will show that the prologue and steady
correctness conditions guarantee that the pipelined implementation of the loop at its first (n; —
(ns—1)) initial iterations (that all end at the steady phase of the operation of the loop) is functionally

correct:

By

Vi, 1<i< (n—(ns—1)) : Vi(CRy,bsfina) Vi(CRa,ds final)

Then, at the second step we will show that the functional correctness of the loop at the prologue
and steady phases of its operation, together with epilogue correctness conditions guarantee that
the pipelined implementation of the loop at its last (ns — 1) final iterations (that all end at the

epilogue phase of the operation of the loop) is functionally correct:

Vi, (ni—(ns—1)) <i<m : VA(CRybspina) 2=

de (CRda dsfinal)
Step 1: For brevity we use the following denotations in the steady phase correctness condition:

CCy = (Wi, 1<i<(n—(ns—1)) : CCui) = CCu(4))

where CC, (1) is the antecedent of the steady correctness condition, and CC,(%) is the consequent

of the steady correctness condition. Now, as the first step of the proof, we show that:

Vi, 1<i<n —(ns—1) : CC.(i)

This proof is by induction on i the iteration count of the loop, and it goes as follows:

Induction Basis

We mentioned before that VbO(CRb[ns],beiml[ns]) refers to Vbl(CRb, bsinit) and VdO(CRd[ns],
ds final[ns)) refers to V. (CRy, dsinit) then, CCp = CCq(1). Then, the proof goes as follows:

178

premise cay
premise cCs
expanding (2) Vi, 1<i<(m—(ns—1)) : CCu(1) = CC.(i)
substituting 1 for 4 CCp = CC,(1)
(1) & (4) 0 (1)
V-elimination (3) CC.(1)
Q.E.D.

Induction Hypothesis

Vi, 1<k<n —(ns—1) : CC.k)

Inductive Step
At this step we will show that:

Vk, 1<k<m—(ns—1) : CC.k) = CCu(k+1)

premise CC.(k)
premise CcCs
expanding (2) Vi, 1<i<(m—(ns—1)) : CCL(31) = CC.(i)

substituting (k + 1) for 4 CCu(k+1) = CC.(k+1)

(1) & (4) substitution ca,
(3) & (5) =-elimination CcC,

This completes the proof that:

Vi, 1<i<mn —(ns—1) : CC.(i)

By investigation of CC,(7) it is obvious that:

Vi, CC.(i) = Vi (CRy,bstinat) = Vi(CRa,dsfinar)

179

w N

A~ N N A~ A/~ A/~
(%3]

D
— M ~— ~—— "

W N

ot Ot

N AN AN AN AN AN A
(=2} i)
— O e N~ e N

(10.9)

(10.10)

Then, the propositions 10.9 and 10.10 imply that:

Vi, 1<i<(ng—(ns—1)) : Vi (CRy,bsfinat) = Vj(CRq,dsfinal)
and therefore, the first step of the proof is completed.
Step 2: At this step we will assume that the epilogue correctness condition is valid:

CC, = “T'rue”

In addition, we will use the proof of the Step 1 and show that:

Vi, (n— (ns—1)) <i<mn : Vi (CRp,bstina) = Vi(CRa,dsfinar)
Let’s consider the proposition 10.9 that was proved to be valid in previous section:

Vi, 1<i<n—(ns—1) : CC.(i)

By substituting n; — (ns; — 1) for 4, we know that the following is true:

CCi(n; — (ns — 1)) = “T'rue”

(10.11)

(10.12)

Since CC,.(n; — (ns — 1)) is the antecedent of the epilogue correctness condition and considering

that CC is valid, it is a valid conclusion that the consequent of the epilogue correctness condition

is valid, i.e.:

V’i, ny — (ns — 2) S) S ny - %i(CRb,bemal[ns]) = Vdnl(CRd,demal[ns - (’I’Ll - ’L)])

(10.13)

However, we know that the state dsfina[ns — (n; — 7)] at iteration n; is the same as the state

dsfinai[ns) = dsfina at iteration i, therefore, the proposition 10.13 is the same as:

180

Vi, n; — (’I’LS - 2) S 1 S ny W(CRb,bemal) = Vdi(CRd,demal) (10.14)

The propositions 10.11 and 10.14 imply that:

Vi, 1<i<mn; : Vi(CRpbspina) = Vi(CRa,dsfina) (10.15)

This means that the three correctness conditions imply the general correctness condition of the

design and our verification method is correct.

10.1.4 Discussion

When the loop-unfolding technique is used to verify the implementation of the pipelined loops, the
values of n = |CR; = ARqU PRy| registers at each of the n; iterations of the loop are computed (in
the cases where the approach can be used). Therefore, the complexity of this verification algorithm
is O1(n;) = n x n.

In our verification technique based on backward value propagation, the values of n = |CRy; =
AR4U PRy| registers at 2ng iterations of the loop are computed (these iterations consist of (ns; — 1)
iterations starting in prologue phase, (ns — 1) iterations ending in epilogue phase, an arbitrary
iteration ¢ both starting and ending in steady phase, where the values are propagated backwards,
and its consecutive iteration where the values are propagated forward. Therefore, the complexity
of this verification algorithm is defined by O2(n;) = 2n, X n. It is apparent that the complexity of
this algorithm is a constant for a loop, regardless of its number of iterations n;.

In our verification technique introduced in previous section (based on criticality masking technique),
the complexity of the verification algorithm is also a constant and is not affected by the number
of loop iteration n;. However, even the worse case complexity of this method is better than the

verification technique based on backward propagation.

Consider the proofs of the prologue correctness condition C'C}, and epilogue correctness condition
CCe. As the first step in proving C'C,, the correctness of the values of the critical registers at the
end of the first iteration of the loop should be calculated, so, all the n, stages of the loop are
considered in the verification exercise. For the second iteration the values of the n,,_; = |T'[ns—1]|
(ns—1 < n) at the end of stage ns— 1 should be calculated and so the first (n; — 1) stages of the loop
are considered in the verification exercise, For the third iteration the values of n,,_s = [T[ns — 2]|
at the end of stage ns — 2 should be calculated, so the first (ns —2) stages of the loop are considered
in verification exercise. This trend continues so that for the ns-th iteration of the loop, only the

first stage of the loop is considered in verification exercise.

181

For proving the correctness of CC, on the other hand, at iteration (n; — (ns — 1), we know that the
values of the temporaries prior to the final stage of that iteration are correct and based on that we
need to show that at the end of the final stage of this iteration critical registers have correct values.
Therefore, for iteration (n; — (ngs — 1) only stage n,s of the loop is considered in the verification
exercise. For iteration (n; — (ns; — 2) the last two stages of the loop is considered in the verification
exercise. This trend continues so that for iteration n; — 1 all the stages of the loop but the first
two, and for iteration n; all the stages of the loop but the first are considered in the verification
exercise. This means that the complexity of the verification algorithm for prologue and epilogue
phases combined is smaller than (1 + (ns; —1)/2) x n = (ns +1)/2 x n.

At the steady phase, the operation of each stage of the loop is considered once. At each stage
J < ms, the values of n; = |T'[j]| (where n; < n) registers are computed, and at the stage n, the
values of all the registers are calculated, therefore, the complexity of the steady phase verification
algorithm is less than 1 x n. Then, the complexity of the algorithm for complete verification of
the loop is defined as O3(n;) < (ns + 3)/2 x n. We know that pipelining is used when the number
of loop iterations n; is relatively large (at least in the order of hundred). While for pipelined
designs the optimal number of stages is defined to be in the range [4,8], and so n, << n; [26]. 3
Considering these facts, it is apparent that the verification techniques presented in this chapter,

offer considerable improvements in the time required for verification of pipelined designs.

10.1.5 Concluding Remarks

We considered the verification of pipelined loops in detail, since it is the basis of verification of
functionally pipelined designs that is the subject of next section. In functional pipelining a global
data introduction interval d;y is assumed for the circuit. This means that the initial state of the
control flow graph of the design S0, is executed (fired) once every dy cycles. If we assume an
outer loop for the control flow graph of this design, the problem is the same as loop winding where

d; = b9 Functional pipelining will be discussed in more detail in the next section.

341t is a fallacy that increasing the number of pipeline stages always increases the performance. Pipelining increases
the throughput - the number of operations completed per unit of time - but it does not reduce the execution time
of each operation. In fact it usually slightly increases the execution time of each operation due to overhead in the
control of the pipeline. The increase in throughput lowers the total execution time, even though no single operation
is executed faster. The fact that the execution time of each operation and consequently, the overall execution delay
of one iteration does not decrease puts limits on the practical depth of a pipeline. The performance flattens out when
the number of pipeline stages reaches 4 and actually drops when the execution portion is pipelined 16 deep”. [26]

182

10.2 Functional Pipelining in Design Synthesis

In the case of functional pipelining, the sequencing graph is generated under the assumption of a
global data introduction interval (o) constraint [17]. This means that there is a dy interval between
two consecutive executions of the operations corresponding to each state of the controller. In a
pipelined design, the data introduction interval ¢y is smaller than the latency A. In the case of a

non-pipelined design, the data introduction interval is equal to the latency: g = A.

The synthesis of the pipelined circuits is very complicated and is considerably more restricted
than the manual design of pipelined circuits. In what follows, we consider the verification of the
class of functionally pipelined designs that may be generated through synthesis. Throughout this
discussion, we assume that out of order execution is permitted only under the condition that it

doesn’t result in out of order completion.

10.2.1 Sequential Specifications

In this section we consider the functional pipelining of sequential specifications. A sequential spec-
ification consists of a single critical path, and no iterative or conditional constructs are embedded

in its flow graph.

Now let’s consider a loop that its body consists of a single critical path of the above specification,
and which is repeated indefinitely (n; = co). Implementation of a sequential specification such of
this kind, with execution delay A and data introduction interval §g, is synthesized under the same
rule as a pipelined implementation of a loop such as above with the loop initiation interval d; = dg.
It is obvious that the problem of synthesis and verification of functionally pipelined sequential

blocks is the same as the problem of synthesis and verification of a pipelined loop.

10.2.2 Specifications with Conditional Constructs

This section discusses the functional pipelining of the specifications that are composed of sequential
or conditional constructs (the iterative blocks are not allowed). Before presenting more detailed

explanation on synthesis and verification of these specifications, a few definitions are necessary.

Definition 10.1 Balancing A Conditional Basic Block A conditional block is said to
be balanced if there are equal number of states in the two branches of that block. Even when a

conditional block is not balanced, it may be transformed into one.

Figure 10.15 shows a conditional basic block. ¢ is the condition variable, and we represent the
states of the ‘true’ branch by c.ds; to c.ds; and the states of the ‘false’ branch by ¢.dsy

183

(a) An unbalanced conditional construct (b) A balanced conditional construct

Figure 10.15: Balancing a Conditional Basic Block where (i < j)

184

to ¢.ds; to emphasize that these states are executed conditionally. If CTL is the set of all
control signal lines from the controller to the control inputs of the components in the data-path,
then c.csy C CTL listed besides the state c.dsy (€.dsg) is the set of all control signals that are
asserted high at that state.

If j <4 (i < j), then to balance the conditional basic block, the balancing states ¢.ds;y1 to
C.ds; (C.dsit1 to C.dsj) should be added at the end of ‘false’ (‘true’) branch, where for j < k <4
(i < k < j) the labels of these states c.csp =0 (¢.csy =0). This means that at the balancing

states no register transfer operations occur.

Definition 10.2 Merging the Conditional Branches One of the synthesis transformations
is merging the conditional branches of a balanced conditional block. In this procedure the two
conditional branches are merged into one. The operations of the ’true’ and ’false’ branches are
executed simultaneously, and at the final state of the branch the results of the operations are
assigned to appropriate registers, conditionally. This transformation affects the flow of the operation
of the controller, as well as the structure of the data-path, but maintains the overall functionality
of the circuit the same. This transformation is possible under the condition that the conditional

block is balanced (if not it has to be transformed into one).

The execution of the branches of a conditional block is a mutually exclusive process, therefore,
in synthesis of the conditional blocks resources may be shared between the two branches. When
merging the branches, the operations of the two branches are assigned to concurrent execution
cycles, therefore, exclusive sets of resources should be dedicated to each branch. This is especially

true in the case of the design registers.

Let’s assume that AR; C CRy is the set of active registers of the conditional block (the active
registers of a conditional block are defined similar to the active registers of an iterative block. The
active registers of a conditional block are those registers that are loaded at least in once within
the conditional block they are loaded with new values. Corresponding to each active register rq
of a control block, two new temporary registers c.ry and ¢.ry are introduced to the circuit. These
two registers assume the contents of r4 at the initial state of the control block. In all the register
transfer operations in the ’true’ branch of the conditional block c.r4, and in the ’false’ branch ¢.ry
replaces r4. At the final state of the block the contents of the temporary registers are conditionally
transfered to the critical registers. If the value of ¢ at the initial state of the block is true then the
'true’ set of the temporary registers and otherwise the ’false’ set of temporary registers are written

to the critical registers.

Merging the branches of a conditional block is a transformation that is performed in synthesis of

a pipelined implementation [49], because at the initial state of a conditional block the value of the

185

condition flag ¢ may not be known (execution of the previous iteration is not terminated, and the
initial values of the registers in current iteration are not yet available). Then the operations of the
two branches are concurrently performed and at the final state of the block, when the value of the

condition flag is surely available, the appropriate values are written to the registers.

After merging the branches of all the conditional blocks, a specification with conditional blocks is
transformed into a sequential specification. The synthesis and verification of a functionally pipelined

implementation of such a specification is as discussed in the case of sequential blocks.

10.2.3 Specifications with Conditional and Iterative Constructs

The synthesis of functionally pipelined implementations of the specifications with iterative con-
structs is a hard problem. Most synthesis systems restrict the iterative constructs in the specifica-
tion of pipelined circuits to those with known number of iterations (such as for loops). Prior to the
synthesis the iterative blocks are unrolled, and then, the sequencing graph is subjected to schedul-
ing [49]. After merging the branches of all the conditional blocks and unrolling all the iterative
constructs, a specification with conditional and iterative blocks is transformed into a sequential
specification. The synthesis and verification of a functionally pipelined implementation of such a

specification are as discussed in the case of sequential blocks.

10.3 Conclusion

In this chapter we presented the verification of synthesized implementations of iterative constructs
in general, and pipelined iterative constructs, in particular. We discussed loop-winding, a design
technique used to optimize the execution delay of a loop, and on that basis functional pipelining,
a design technique used to optimize the overall execution of a general design. We showed that
synthesis and therefore verification of pipelined designs are different from synthesis and verification
of non-pipelined designs. We pointed out these differences through a detailed analysis, and pre-
sented extensions of our verification method to account for loop-winding and functional pipelining
in a synthesized designs. Finally, we presented a set of three correctness conditions for pipelined
synthesized designs, and proved that these three correctness conditions are sufficient for verifying

these deigns.

186

Chapter 11
Implementation and Results

The method discussed in the previous sections has been implemented in a correctness condition
generator module integrated with the ASSERTA high level synthesis system. ASSERTA has been in
development for several years and is relatively mature. ASSERTA accepts behavioral specifications
in an intermediate HDL format (that is directly extracted from behavioral VHDL) and generates RTL
designs also in an intermediate HDL format (that is directly translated into structural vEDL). Using
parallel synthesis algorithms, ASSERTA searches through vast regions of design space [18]. ASSERTA
uses enhancements of force-directed list scheduling [24, 23] and a hierarchical clique partitioning
algorithm for register allocation [32]. ASSERTA has been used to generate numerous designs
both in the university and industry and has been thoroughly tested using systematic benchmark
development, test generation and simulation [65]. In addition, as a byproduct of the synthesis
process, ASSERTA automatically generates control flow properties in CTL logic [13, 43] for verification
by the sMv model checker [38].

Figure 8.1 shows the integration of the correctness condition generator (ccG) with the ASSERTA
system as explained in the previous section. The CCG component of ASSERTA has helped us to
determine how much of the verification effort can be automated. A limitation of the verification
condition generator currently is that it can handle a smaller subset of VHDL than that can be
synthesized by ASSERTA. !

The modified ASSERTA system with this generator produces a PVS file containing declarative spec-

! ASSERTA algorithms are capable of handling delta-delayed signal assignments, interacting multiple processes,
wait statements and resolution functions. Proper handling of these constructs requires generation of a controller
containing multiple interacting finite state machines [44]. The controller embodies not only the explicit control flow
in the behavior specification but also the implicit control low due to VHDL semantics. We are currently investigating
methods to include correctness conditions to handle such control flow within the framework of the technique discussed

in this dissertation.

187

Design Critical|Spec|RTL| Beh | RTL |Axioms|Lemmas|PG Time|TC Time|Proof Time
Name Paths |Vars|Regs|States|States to Prove| (sec) (sec) (mins)
MAX & SUM| 5 5 4 11 18 87 14 0.04 12.39 1.22
Stack 9 10 | 8 27 32 188 24 0.11 16.91 5.16
Compress 18 10 | 3 19 42 244 20 0.08 4.40 3.09
Decompress 18 10| 3 22 40 258 29 0.07 12.22 6.53
Move 8 13| 6 20 40 276 50 0.11 26.77 12.96
Video Mom 3 151 9 33 58 168 6 0.19 43.24 17.19
Find 14 23 9 38 90 433 93 0.43 14.40 24.54
TLC 18 19 | 8 50 70 395 94 0.33 84.07 58.98
DCT 7 37 | 8 | 115 | 146 256 80 0.48| 794.42 97.94

Table 11.1: Experimental Results

ifications of the behavior and data path and formal specification of the controller. In addition, it
produces all of the critical path equivalence lemmas and proof scripts to prove these lemmas. The
PVs theories generated are not necessarily very elegant, but are amenable to completely automated
verification. PVS system is used to execute these scripts automatically. No manual interaction is

necessary to conduct the proof and inspection is necessary only in the event of a failure.

Table 11.1 shows results pertaining to several verification exercises using the ASSERTA synthesis
system and the PVs proof checker. ? All of these exercises were successful in verifying the corre-
sponding designs. Note that behavior states are formed by assuming one assignment or conditional
statement per state. In some instances RTL controller may have fewer states than the behavior
automaton due to parallelization of operations during synthesis. Also, note that the ASSERTA exe-

3

cution time for generating the designs is a few minutes and the CCG execution time ° is under one

minute for each of these examples. Figures 11.1 to 11.4 show the proof time of each example design

as a function of various design parameters.

11.1 Discussion

During our experiments we made the following observations:

1. The time of generating the proof scripts is negligible compared to the time required for

2These exercises were conducted on a SUN SPARC5 with OS 5.5.1.
3Note that this is the execution time of ccG for generating the proof scripts, and the times presented in the table

are the Pvs execution times for verifying the proofs.

188

Proof Time (mins)

100

90

80

70

60

50

40

30

20

10

Critical Paths

Figure 11.1: Proof Time as Function of the Number of Critical Paths

189

Proof Time (mins)

100

90

80

70

60

50

40

30

20

10

5 6 7 8

Critical Registers

Figure 11.2: Proof Time as Function of the Number of Critical Registers

190

Proof Time (mins)

100

90

80

70

60

50

40

30

20

10

50 100 150 200 250
Total States

Figure 11.3: Proof Time as Function of the Total Number of States

191

300

Proof Time (mins)

100

90

80

70

60

50

40

30

20

10

10 20 30 40 50 60 70 80
Lemmas to Prove

Figure 11.4: Proof Time as Function of the Number of Lemmas

192

90

100

verifying the proofs by the proof checker.

. The cpuU time reported by pPvs for verifying each proof is minimal. However, the actual time
spent on verifying the proofs is dominated by the memory management (garbage collection)

algorithms of Pvs, that is more significant in comparison to the proof processing time.

. The verification time is independent from the bit size of variables and registers. This means
that for any given design, we can arbitrarily increase the size of the variables and registers

without affecting the proof processing time.

Several researchers [27] have noted that spatial abstraction methods can be effectively ex-
ploited to improve the efficiency of the verification algorithms. However, the degree of bit-
level reduction that can be achieved in a data-abstraction method is limited. As data-path
abstraction is usually used in conjunction with model checking, even the abstracted models

may not be verifiable due to the state explosion problem.

However, in our method that relies on analysis of uninterpreted values, the bit-sizes of all
signals (variables or registers) are implicitly abstracted away. This is the best result achievable

by any spatial-abstraction algorithm.

. Our experiments are not indicative of a direct relation between any single parameter and the
proof time (Figures 11.1 to 11.4). However, the follwoing observations/conclusions should be

pointed out.

The number of the equivalence lemmas corresponding to a particular critical path is the same
as the number of critical registers across that path. Therefore, the time for proving the
correctness of a given critical path is directly proportional to the number of critical registers
across that path. As the number of the critical registers differ from one critical path of a
design to the other, the proof time of a given design may not be simply defined in terms of

the number of critical registers or the critical paths of that design.

For a design that is composed of critical paths of comparable size (i.e. critical paths comprising
similar number of states), the processing time is directly proportional to the number of critical
paths. However, we noticed a nonlinear dependency between the proof processing time and
the number of states in a critical path (Figures 11.5, 11.6, and 11.7). We observed that proof

time increases nonlinearly as the number of states in a critical path increases.

It can be directly concluded from this dependency that in our verification approach, the
limiting factor is not the size of the design, rather, it is the maximum number of the states
in a critical path of the design. This means that the designs of arbitrarily large size may be
verified through the approach presented in this dissertation as long as no critical path with

unusually large number of states belong to the control flow graph of the design.

193

17 T T T

T
decompress —+—

Average Proof time (sec.)

of RTL States

Figure 11.5: Average Proof Time of DECOMPRESS Equivalence Lemmas as Function
of the Number of States per Path

194

60 T T T T T T

T
tlc ——

Average Proof Time (sec.)

of RTL States

Figure 11.6: Average Proof Time of TLC Equivalence Lemmas as Function of the Num-
ber of States per Path

195

80 T T T T T

T
move ——+—

70 - -

50 -

40 | §

Average Proof time (sec.)

30 -

| | | |
2 4 6 8 10 12 14 16
of RTL States

10

Figure 11.7: Average Proof Time of MOVE Equivalence Lemmas as Function of the
Number of States per Path

196

The observations mentioned above indicate that our method is very effective in verification of
the designs with wide data-paths. Also, the verification method is very effective in verification
of control-intensive designs. The data-intensive designs can be successfully verified through our

verification method as long as the critical paths of the design are not excessively large.

197

Chapter 12

Conclusion and Future Work

In this chapter, we conclude the dissertation with some final remarks. We reiterate our thesis on
formal verification of synthesized register transfer level designs, present a summary of the scope

and limitations of our approach and take a glance at paths for future research.

12.1 Discussion

The advent of highly sophisticated synthesis systems in recent years has provided the potential for
generating synthesized designs of unprecedented size and complexity. As the degree of intricacy of
synthesized systems has improved, it has become increasingly difficult to ensure that they won’t
malfunction due to design errors. This problem can assert as a restraining factor on synthesis
systems gaining widespread acceptance. Therefore, a sense of urgency has been raised in computer

aided design research community to address the verification of synthesized designs.

Conventional testing methods were commonly used for verification of synthesized designs. However,
these techniques do not scale well and are limited in their application domain. As more advanced
synthesis systems were employed to generate larger, more sophisticated designs, the necessity of
alternative, more systematic approaches to verification became apparent. Besides, in order not to
forfeit the benefits of automatic design synthesis, a verification approach used in conjunction with
a synthesis system should be susceptible to automation. Formal methods currently offers the most

promising vehicle to achieve this goal.

Several researchers have developed formal methods based on theorem proving for verification of
synthesized designs. Formal synthesis methods (transformation-based synthesis, incremental verifi-
cation, etc) have been used to generate designs that are correct by construction. Although effective,

these methods are tedious and time consuming and cannot be automated. Post-design formal veri-

198

fication methods have also been applied to verify synthesized designs. Even-though these methods
that are mainly based on model checking render to automation, they are limited by the size of the

designs they can verify.

In this dissertation, we presented an effective approach for formal verification of synthesized regis-
ter transfer level designs. Our approach, that is based on theorem proving, effectively exploits the
common characteristics of high-level synthesis algorithms to achieve efficient verification. Widely
used algorithms in high-level synthesis tools retain the overall control flow structure of the be-
havioral specification allowing code motion only within basic blocks. Further, high-level synthesis
algorithms are in general oblivious to the mathematical properties of arithmetic and logic opera-
tors, selecting and sharing RTL library modules solely based on matching uninterpreted function
symbols and constants. Many researchers have noted that these features of high-level synthesis
algorithms can be exploited to develop eflicient verification strategies for synthesized designs. We
have effectively exploited these features in a verification methodology that achieves efficient and

fully automated verification of synthesized designs.

It should be noted that a similar approach can be applied for the purpose of software verification,
provided that no optimizations based on code-motion or interpretation of the functions or variables

are performed. However, this may restrict the application of the method for verifying the software.

12.2 Future Work

In what follows we summarize the scope and limitations of our work.

e The application of the method presented in this dissertation is limited to verification of
the synthesized designs generated through synthesis processes that perform restricted code
motion. In such a synthesis process, the set of all operations within a behavioral synthesis
basic block is mapped into the set of operations scheduled in a single block of the controller
of the RTL design. However, while performing primitive and restricted code motion that
respect the operational dependencies, some synthesis transformations used in certain high-
level synthesis tools, violate the restriction of code motion within the boundaries of basic
blocks. Currently, our verification tool cannot account for such transformations. For this
reason, some correct designs generated by this class of synthesis tools may not be verifiable

through our method.

e Our verification method is based on, and limited to the analysis of symbolic and uninter-
preted values of the variables and uninterpreted contents of registers. Certain properties of a
synthesized design may depend on bit-level characteristics of its signals besides their uninter-

preted values. At its present state, our verification tool is not capable to reasoning about such

199

properties, and we are limited to verification of the synthesized designs that can be verified

solely by reasoning about their uninterpreted signals and functional units.

We foresee a number of enhancements that can significantly improve the effectiveness of our method
and expand its application domain. These enhancements, that address the above problem, present
interesting topics for future research within the framework of the verification approach presented

in this dissertation:

1. Extension of the methodology should be considered to accommodate verification of synthe-
sized designs generated through synthesis processes that utilize scheduling transformations
that perform code motion across the border points of the basis blocks. This will considerably
expand the intersection of the set of synthesized designs and the class of the synthesized

designs that are verifiable through this approach.

2. Verification of synthesized designs that require bit-level analysis should be addressed. This
can possibly be achieved by integrating the verification tool with a model-checker, where the
general lemmas are proven as discussed in this work, and the limited set of bit-level properties
are verified through model-checking. In this way the verification of RTL design in its entirety

is ensured.

3. The verification methodology presented in this dissertation was developed to target the ver-
ification of the RTL designs that are synthesized from single process behavior descriptions.
Extending the scope of this approach to encompass the RTL designs that are synthesized from
multiple (possibly communicating processes) presents a challenging topic for research.

4. One of our goals in developing this methodology was to remedy the deficiencies of existing
methods in dealing with verification of medium to large sized synthesized RTL designs, where
the time and memory requirements grow exponentially with increasing size. During our
experiments, we noticed that our verification practice is not limited by the time and memory
resources available, rather by the memory management (garbage collection) algorithms of the

PVS theorem proving system.

Regardless of the amount of available memory during the verification, the upper-bound of the
utilized memory is defined by pvs. This upper-bound is often considerably smaller than the
available memory. Also, the memory management algorithms present a considerable overhead
on the real time required for verifying the proofs. This overhead is the dominant factor in the
overall processing time of the proofs. We believe that alternative theorem proving systems
may offer more suitable environments for our verification exercise, by utilizing the resources

more efficiently.

200

12.3 Summary of Contributions

The following are the key contributions of this dissertation:

(1)

Introduction of the notion of synthesis aware post-synthesis verification. Presenting discus-
sions on how to apply the knowledge of methodical design to identify system properties that
are the consequence of the construction methods, and to exploit these properties for the

purpose of verification.

Formalization and Formulation in higher order logic in a theorem proving environment math-
ematical models for the register transfer level synthesized designs and their behavior specifi-

cations, and a set of sufficient correctness conditions for these designs.

Introduction of a formal approach for functional verification of RTL designs, and presenting
a notion of correctness of the systems in general, and RTL designs in particular based on

observation equivalence of the synthesized design and its behavior specification.

Implementation of the formal verification approach in a verification tool integrated with a
high-level synthesis system that performs model extraction, correctness condition generation

and proof generation automatically and without user interaction.

Development of a formal method for verifying RTL design that is independent of the bit-size of
variables and registers. As a result of considering uninterpreted values for variables (registers)
and operators (functional units) in this approach, the bit-size of all design elements may be

increased arbitrarily without affecting the verification time.

Development of formal methods for verification of implementations of special behavior con-
structs such as loops and less conventional structurally or functionally pipelined designs, and

identification of a set of sufficient correctness conditions for pipelined designs.

201

Appendix A

PVS Specification and Proof of

Equivalence Theorem

EQUIV : THEQRY
BEGIN
BehState : TYPE+

BehCPath : TYPE+
BehEPath : TYPE+ = list[BehState]

RTLCPath : TYPE+
RTLEPath : TYPE+
RTLState : TYPE+

IMPORTING LISTS[BehState]

First_b : [BehCPath->BehState]
Last_b : [BehCPath->BehState]
SO0_b : BehState

B_s : [BehState =-> RTLState]
B_p [BehCPath -> RTLCPath]
B_e [BehEPath -> RTLEPath]

equivalent : [BehEPath,RTLEPath -> bool]
equivalent_paths : [BehCPath,RTLCPath -> bool]
equivalent_states : [BehState,RTLState -> bool]
CorrectEPath : PRED[BehEPath]

c_path_equivalence : AXIOM
(FORALL (p_b: BehCPath)
equivalent_paths(p_b,B_p(p_b))
IMPLIES
(equivalent_states(First_b(p_b),B_s(First_b(p_b))) AND
equivalent_states(Last_b(p_b),B_s(Last_b(p_b)))))
e_path_nonempty : AXIOM
(FORALL (e_b: BehEPath) : NOT(null?(e_b)))
e_path_equivalence : AXIOM
(FORALL (e_b: BehEPath) :
(equivalent_states(car(e_b),B_s(car(e_b))) AND
(null?(cdr(e_b)) OR equivalent(cdr(e_b),B_e(cdr(e_b))))) IFF
equivalent(e_b,B_e(e_b)))
c_path_existence : AXIOM
(FORALL (s_b: BehState, e_b: BehEPath, e_b2: BehEPath)
e_b = cons(s_b, e_b2) =>
(EXISTS (p_b: BehCPath)
First_b(p_b) = car(e_b2) AND Last_b(p_b) = s_b))
e_path_correct : AXIOM
(FORALL (e_b: BehEPath) :
equivalent(e_b,B_e(e_b)) = CorrectEPath(e_b))

202

initial_state_equivalence : AXIOM
equivalent_states(S0_b,B_s(SO_b))
initial_state : AXIOM
(FORALL (s_b: BehState, e_b: BehEPath)
e_b = cons(s_b,null) => (s_b = SO_b))
path_equivalence : THEOREM
(FORALL (p_b: BehCPath) : equivalent_paths(p_b,B_p(p_b)))
IMPLIES
(FORALL (e_b: BehEPath) : equivalent(e_b,B_e(e_b)))

END EQUIV

Figure A.1: Execution Path Equivalence Theory

LISTSLT : TYPE+] : THEORY

BEGIN

list_induction : AXIOM
(FORALL (P: PRED[1list[T]]) :
(((FORALL (t: T, 1: 1list[T]) : (1 = cons(t,null)) => P(1l)) and

(FORALL (t : T, 1 : 1ist[T]) : P(1) => P(cons(t,1)))) =>
FORALL (1 : 1list[T]) : P(1)))
END LISTS

Figure A.2: List Induction Theory

203

(EQUIV
(|base_path_equivalence| "" (SKOLEM!)
(("" (FLATTEN)
(("" (LEMMA "initial_state" ("s_b" "s_b!1" "e_b" "e_b!1"))
(("" (PROP)
(("" (REPLACE -1 (-2) LR)
(("" (LEMMA "e_path_equivalence" ("e_b" "e_b!1"))
(("" (REPLACE -3 (-1) LR)
(("" (ASSERT)
(("" (LEMMA "initial_state_equivalence")
(("" (LEMMA "null_path_equivalence")
(("" (LEMMA "e_path_correct" ("e_b" "e_b!i"))
(("" (REPLACE -6 (-4) RL)
(("" (REPLACE -1 (-4) LR) (("" (PROP) NIL NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL)
(linductive_path_equivalence| "" (SKOLEM!)
(("" (FLATTEN)
(("" (LEMMA "e_path_correct" ("e_b" "e_b!1i"))
(("" (REPLACE -1 (-2) RL)
(("" (LEMMA "e_path_equivalence" ("e_b" "e_b!1"))
(" (PROP) (("" (POSTPONE) NIL NIL)) NIL)) NIL))
NIL))
NIL))
NIL))
NIL)
(|path_equivalence| "" (FLATTEN)
(("" (SKOLEM!)
(("" (LEMMA "list_induction" ("P" "CorrectEPath"))
(("" (SPLIT)
(("1" (INST -1 "e_b!1i")
(("1" (LEMMA "e_path_correct" ("e_b" "e_b!1"))
(("1" (REPLACE -1 (-2) RL) (("1i" (PROPAX) NIL NIL)) NIL))
NIL))

NIL)
("2"" (HIDE 2)
(("2" (SKOLEM 1 ("s_b!2" "e_b!2"))
(("2" (FLATTEN)
((“2“
(LEMMA "initial_state" ("s_b" "s_b!2" "e_b" "e_b!2"))
(("2" (PROP)
(("2" (REPLACE -1 (-2) LR)
(("2" (LEMMA "e_path_equivalence" ("e_b" "e_b!2"))
(("2" (REPLACE -3 (-1) LR)
(("2" (ASSERT)
(("2" (LEMMA "initial_state_equivalence")

((u2u
(LEMMA "e_path_correct" ("e_b" "e_b!2"))
((u2u
(REPLACE -5 (-3) RL)
((11211
(PROP)
((Il2ll
(REPLACE -3 (-2) LR)
(("2" (PROPAX) NIL NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL)

204

("3" (SKOLEM 1 ("s_b!2" "e_b!2"))
((2%:3SFLATTEN)

(LEMMA "c_path_existence"

("s_b" "s_b!2" "e_b" "cons(s_b!2, e_b!2)" "e_b2"

“e_b!2"))
(("3" (PROP)

(("3" (SKOLEM!)

(("3" (INST -3 "p_b!1")
(("3" (LEMMA "c_path_equivalence" ("p_b" "p_b!1"))
(("3" (PROP)
(("3" (REPLACE -4 (-2) LR)
II3II

(LEMMA "e_path_equivalence"
("e_b" "cons(s_b!2, e_b!2)"))
(37 (ASSERT)
((IIBII
(LEMMA
"e_path_correct"
("e_b" "cons(s_b!2, e_b!2)"))
((ll3ll
(REPLACE -1 (-2) LR)
((ll3ll
(LEMMA
"e_path_correct"
(“e_b“ ue_b!zu))
((nsn
(REPLACE -1 (-8) RL)
(("3" (PROP) NIL NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL))
NIL))

Figure A.3: PVS Proof of Execution Path Equivalence Theorem

205

Appendix B

A Comprehensive Example

This chapter presents a design example that is fully verified by the verification system cca. The
design describes the behavior of a traffic light controller (TLC). The original behavior description
of the design in VHDL is given in Figure B.1. Before the synthesis process begins, this description
is translated into an intermediate HDL format called Basic Block Intermediate Format as given in
Figure B.2. The synthesis tool generates a register transfer level implementation of the behavior
in the Basic Block Intermediate Format as given in Figure B.3. Also as a by product of synthesis
the binding information between the behavior variables and design registers, between the behavior
states and design states, and between the behavior critical paths and design critical paths are

produced.

CCG generates formal descriptions of the behavior of TLC, the RTL implementation of TLC, and
the binding relations between the two using the specification language of the PVS system. The
axioms describing the behavior of the TLC are given in Figure B.6. The data path of the RTL
design is described by the axioms given in Figure B.7 and its controller by the axioms given in
Figure B.8. Formal descriptions of the behavior of the components used in synthesis of TLC are
given in Figure B.9. The set of all lemmas required for proving the correctness of the TLC is
given in Figure B.10. Finally, as examples, the proofs of the critical path equivalence lemmas

eq_cpo-st_lemma and eq_cpi_hl lemma are given in Figures B.11 and B.12, respectively.

206

-- Traffic Light Controller (TLC)
-- Source: Hardware C version written by David Ku on June 8, 1988 at Stanford

-- VHDL Benchmark author Champaka Ramachandran
- University O0f California, Irvine, CA 92717
== champaka@balboa.eng.uci.edu

-- Developed on Aug 11, 1992

-- Verification Information:

- Verified By whom? Date Simulator
-- Syntax yes Champaka Ramachandran Aug 11, 92 ZYCAD
-- Functionality yes Champaka Ramachandran Aug 11, 92 ZYCAD

-- Modified By Naren and Nand Kumar: August 20, 1993

entity TLC is

port (
COF_in: in std_logic;
TOL_in : in std_logic;
TOS_in : in std_logic;
ST_out : out std_logic;
HL_out : out std_logic_vector(l downto 0);
FL_out : out std_logic_vector(l downto 0));
end TLC;
architecture TLC of TLC is
begin
process

variable state: std_logic_vector(l downto 0);

variable COF, TOL, TOS: std_logic;

variable ST: std_logic;

variable HL, FL: std_logic_vector(l downto 0);
begin
-- wait on COF_in, TOL_in, TO0S_in;

COF := COF_in; TOL := TOL_in; TOS := TO0S_in;

IF (state = "00") THEN

HL := "10"; :

= "qqn;
if (COF = ’1’) and (TOL = ’1’) then
state := "10"; 17,
else
state := "00"; ST := ’0’;
end if;
ELSIF (state = "10") THEN
HL := "01"; FL := "11";
if (TOS = ’1’) then
state := "01"; ST := ’1’;
else
state := "10"; ST := ’0’;
end if;
ELSIF (state = "Q1") THEN
= "11"; FL := "10";
1f (COF = ’0) or (TUL ’1’) then
state :="11"; ST 2175
else
state := "01"; ST := ’0’;
end if;
ELSIF (state = "11") THEN
HL = II11II; L .= II01I|
if (TOS = ’1?) th
state := "00"; ST =217
else
state := "11"; ST := ’0’;
end if;
END IF;

ST_out <= ST; HL_out <= HL; FL_out <= FL;

end process ;
end TLC;

Figure B.1: VHDL Behavioral Description of a Traffic Light Controller

207

% Basic Block Intermediate Format (BBIF)
(SPEC tlc)

(INPORT (cof_in 1) (tol_in 1) (tos_in 1))
(OUTPORT (st_out 1) (hl_out 2) (fl_out 2))

(BLOCKS Blk_1 Blk_2 Blk_3 Blk_4 Blk_5 Blk_6 Blk_7 Blk_8 Blk_9 Blk_10 Blk_11 Blk_12 Blk_13
Blk_14 Blk_15 Blk_16 Blk_17 Blk_18 Blk_19)

(STARTBLK Blk_2)

(BB Blk_2 ((state 2) (st 1) (hl 2) (f1 2))
(LOCAL (cof 1) (tol 1) (tos 1))

1 (GET_PORT (cof_in) (cof)) ()

2 (GET_PORT (tol_in) (tol)) ()

3 (GET_PORT (tos_in) (tos)) O

§TRUE_BRANCH Blk_3(state cof tol tos st hl f1))

(BB Blk_3 ((state 2) (cof 1) (tol 1) (tos 1) (st 1) (hl 2) (f1 2))
(LOCAL (t18 1))
(CONSTANT (c17 2 00))
4 (bb_eq (state c17) (t18)) O
(t18 Blk_4(cof tol) Blk_7(state cof tol tos st hl f1) Blk_19)

(BB Blk_4 ((cof 1) (tol 1))
(LOCAL (hl 2) (f1 2) (t23 1) (t24 1) (t25 1))
(CONSTANT (c20 2 10) (c21 2 11) (c22 1 1))

6 (TRANSFER (c20) (hl1l)) ()

7 (TRANSFER (c21) (£f1)) ()

8 (bb_eq (cof c22) (t23)) ()

9 (bb_eg (tol ¢22) (t24)) (O

10 (bb_plus (t23 t24) (t25)) Q)

)(t25 Blk_5(hl f1) Blk_6(hl f1) Blk_19)

(BB Blk_5 ((hl 2) (f1 2))
(LOCAL (state 2) (st 1))
(CONSTANT (c20 2 10) (c22 1 1))
11 (TRANSFER (c20) (state)) ()
12 (TRANSFER (c22) (st)) O
§TRUE_BRANCH Blk_19(state st hl f1))

(BB Blk_6 ((hl 2) (f1 2))
(LOCAL (state 2) (st 1))
(CONSTANT (c17 2 00) (c27 1 0))
13 (TRANSFER (c17) (state)) QO
14 (TRANSFER (c27) (st)) QO
(TRUE_BRANCH Blk_19(state st hl f1))
)

(BB Blk_7 ((state 2) (cof 1) (tol 1) (tos 1) (st 1) (hl 2) (£f1 2))
(LOCAL (t28 1))
(CONSTANT (c20 2 10))

15 (bb_eq (state c20) (t28)) ()

)(t28 Blk_8(tos) Blk_11(state cof tol tos st hl f1) Blk_19)

(BB Blk_8 ((tos 1))
(LOCAL (hl 2) (f1 2) (t30 1))
(CONSTANT (c29 2 01) (c21 2 11) (c22 1 1))
16 (TRANSFER (c29) (hl1l)) Q)
17 (TRANSFER (c21) (£f1)) O
18 (bb_eq (tos c22) (t30)) O
(t30 Blk_9(hl f1) Blk_10(hl f1) Blk_19)
)

(BB Blk_9 ((hl 2) (f1 2))
(LOCAL (state 2) (st 1))
(CONSTANT (c29 2 01) (c22 1 1))
19 (TRANSFER (c29) (state)) O
20 (TRANSFER (c22) (st)) O
(TRUE_BRANCH Blk_19(state st hl f1))
)

(BB Blk_10 ((hl 2) (f1 2))
(LOCAL (state 2) (st 1))
(CONSTANT (c20 2 10) (c27 1 0))
21 (TRANSFER (c20) (state)) ()
22 (TRANSFER (c27) (st)) O
(TRUE_BRANCH Blk_19(state st hl f1))
)

208

(BB Blk_11 ((state 2) (cof 1) (tol 1) (tos 1) (st 1) (hl 2) (f1 2))
(LOCAL (t31 1))
(CONSTANT (c29 2 01))

23 (bb_eq (state c29) (t31)) (O

)(t31 Blk_12(cof tol) Blk_15(state tos st hl f1) Blk_19)

(BB Blk_12 ((cof 1) (tol 1))
(LOCAL (hl 2) (f1 2) (t32 1) (t33 1) (t34 1))
(CONSTANT (c21 2 11) (c20 2 10) (c27 1 0) (c22 1 1))

24 (TRANSFER (c21) (hl)) Q)

25 (TRANSFER (c20) (f1)) O

26 (bb_eq (cof c27) (t32)) O

27 (bb_eq (tol c22) (t33)) O

28 (bb_plus (t32 t33) (t34)) ()

(t34 Blk_13(hl f1) Blk_14(hl f1) Blk_19)

(BB Blk_13 ((hl 2) (f1 2))
(LOCAL (state 2) (st 1))
(CONSTANT (c21 2 11) (c22 1 1))
29 (TRANSFER (c21) (state)) O
30 (TRANSFER (c22) (st)) O
(TRUE_BRANCH Blk_19(state st hl f1))
)

(BB Blk_14 ((hl 2) (f1 2))
(LOCAL (state 2) (st 1))
(CONSTANT (c29 2 01) (c27 1 0))
31 (TRANSFER (c29) (state)) O
32 (TRANSFER (c27) (st)) O
(TRUE_BRANCH Blk_19(state st hl f1))
)

(BB Blk_15 ((state 2) (tos 1) (st 1) (hl 2) (f1 2))
(LOCAL (t35 1))
(CONSTANT (c21 2 11))

33 (bb_eq (state c21) (t35)) ()

)(t35 Blk_16(tos) Blk_19(state st hl f1) Blk_19)

(BB Blk_16 ((tos 1))
(LOCAL (hl 2) (f1 2) (t36 1))
(CONSTANT (c21 2 11) (c29 2 01) (c22 1 1))
34 (TRANSFER (c21) (hl)) ()
35 (TRANSFER (c29) (f1)) O
36 (bb_eq (tos c22) (t36)) ()
)(t36 Blk_17(hl f1) Blk_18(hl f1) Blk_19)

(BB Blk_17 ((hl 2) (f1 2))
(LOCAL (state 2) (st 1))
(CONSTANT (c17 2 00) (c22 1 1))
37 (TRANSFER (c17) (state)) O
38 (TRANSFER (c22) (st)) O
(TRUE_BRANCH Blk_19(state st hl f1))
)

(BB Blk_18 ((hl 2) (f1 2))
(LOCAL (state 2) (st 1))
(CONSTANT (c21 2 11) (c27 1 0))
39 (TRANSFER (c21) (state)) O
40 (TRANSFER (c27) (st)) O
(TRUE_BRANCH Blk_19(state st hl £1))
)

(BB Blk_19 ((state 2) (st 1) (hl 2) (£f1 2))
42 (PUT_PORT (st st_out) ()) ()
44 (PUT_PORT (hl hl_out) () O
46 (PUT_PORT (f1 fl_out) ()) ()
t hl 1))

(TRUE_BRANCH Blk_2(state s
)

Figure B.2: Intermediate Behavioral HDL Description of the Traffic Light Controller

209

% Synthesized RTL Design from Asserta

(DESIGN tlc)

(INPORTS (cof_in 1) (tol_in 1) (tos_in 1))
(OUTPORTS (st_out 1) (hl_out 2) (fl_out 2))

(CONTROL_WORD 37)
(STARTBLK Blk_2_1)

%%% RTL Component Declarations %%%

% Comp Name
asserta_eq
asserta_eq
asserta_eq
asserta_adder
asserta_adder
asserta_register
asserta_register
asserta_register
asserta_register
asserta_register
asserta_register
asserta_register
asserta_register
asserta_mux
asserta_mux
asserta_mux
asserta_mux
asserta_mux
asserta_mux
asserta_mux
asserta_mux
asserta_mux

#RTL Block Description

(Blk_2_1

(% StmtId: 1 Function:
[2 (PAD_X 1) (cof_in 1)]

asserta_mux_b
asserta_register_5

)
(% StmtId: 2 Function:
[2 (PAD_X 1) (tol_in 1)]

asserta_mux_6
asserta_register_6

)
(% StmtId: 3 Function:

asserta_mux_7 [1
asserta_register_7

)
BRANCH

Blk_2_Blk_3_0

(% StmtId: branch Function: actual-formal interconnect
[4 (asserta_register_5_outl 2)]

asserta_mux_2
asserta_register_2

(% StmtId: branch Function: actual-formal interconnect
[4 (asserta_register_6_outl 2)]

asserta_mux_3
asserta_register_3

(% StmtId: branch Function: actual-formal interconnect
[2 (asserta_register_7_outl 2)]

asserta_mux_4
asserta_register_4

(% StmtId: branch Function: actual-formal interconnect
[3 (asserta_register_2_outl 2)]

asserta_mux_b
asserta_register_5

(% StmtId: branch Function: actual-formal interconnect
[3 (asserta_register_3_outl 2)]

asserta_mux_6
asserta_register_6

)

(PAD_X 1) (tos_in 1)]

)
(
) (TRUE (Blk_2_Blk_3_0))
(

Instance Name
asserta_eq_0
asserta_eq_1
asserta_eq_2
asserta_adder_3
asserta_adder_4
asserta_register_1
asserta_register_2
asserta_register_3
asserta_register_4
asserta_register_5
asserta_register_6
asserta_register_ 7
asserta_register_8
asserta_mux_1
asserta_mux_2
asserta_mux_3
asserta_mux_4
asserta_mux_5
asserta_mux_6
asserta_mux_7

asserta_mux_8
asserta_mux_9

GET_PORT

[1 (asserta_mux_5_outl 2)]
GET_PORT

[1 (asserta_mux_6_outl 2)]
GET_PORT

[1 (asserta_mux_7_outl 2)]

[1 (asserta_mux_2_outl 2)]
[1 (asserta_mux_3_outl 2)]
[1 (asserta_mux_4_outl 2)]
[1 (asserta_mux_5_outl 2)]

[1 (asserta_mux_6_outl 2)]

210

ParametersControl (pos, size)

[1 (asserta_mux_5_outl 2)] 01

[1 (asserta_register_5_outl

[1 (asserta_mux_6_outl 2)] 01

[1 (asserta_register_6_outl

[1 (asserta_mux_7_outl 2)] 0

[1 (asserta_register_7_outl

[1 (asserta_mux_2_outl 2)]
[1 (asserta_register_2_outl

[1 (asserta_mux_3_outl 2)]
[1 (asserta_register_3_outl

[1 (asserta_mux_4_outl 2)]
[1 (asserta_register_4_outl

[1 (asserta_mux_5_outl 2)]
[1 (asserta_register_5_outl

[1 (asserta_mux_6_outl 2)]
[1 (asserta_register_6_outl

(2)

(1)

(1)

(1)

(1)

(2) (02)
(2) (22)
(2) (42)
(2) (62)
(2) (82)
(2) (102)
(2) (122)
(1) (14 2)
(14 23) (16
(14 23) (19
(2224) (22
(16 23) (26
(622) (29
(622) (31
(421) (33
(822) (34
(211) (36

ENENN
(SIS

w b ww
N

2) 1

2) 1

2) 1

011
2) 1

0011
2) 1

001
2) 1

10
2) 1

10
2) 1

01

01

01

01

01

01

01

01

(% StmtId: branch Function: actual-formal interconnect

asserta_mux_7 [2 (asserta_register_4_outl 2)] [1 (asserta_mux_7_outl 2)] 1
asserta_register_7 [1 (asserta_mux_7_outl 2)] [1 (asserta_register_7_outl 2)] 01
)

)

(BRANCH

, (TRUE (Blk_3_1))

(Blk_3_1
(% StmtId: 4 Function: bb_eq
asserta_mux_§8 [1 (00 2) 1] [1 (asserta_mux_8_outl 2)] 00
asserta_eq_0 [1 (asserta_register_1_outl 2)] [2 (asserta_mux_8_outl 2)] [1 (asserta_eq_

O_outl 1)]

asserta_register_8 [1 (asserta_eq_O_outl 1)] [1 (asserta_register_8_outl 1)] 01
)

)
(BRANCH

(asserta_register_8_outl (Blk_3_Blk_4_0)(Blk_7_1))
)
(

Blk_3_Blk_4_0
(% StmtId: branch Function: actual-formal interconnect

asserta_mux_1 [4 (asserta_register_2_outl 2)] [1 (asserta_mux_1_outl 2)] 011
asserta_register_1 [1 (asserta_mux_1_outl 2)] [1 (asserta_register_1_outl 2)] 01
(% StmtId: branch Function: actual-formal interconnect

asserta_mux_2 [1 (asserta_register_3_outl 2)] [1 (asserta_mux_2_outl 2)] 000
asserta_register_2 [1 (asserta_mux_2_outl 2)] [1 (asserta_register_2_outl 2)] 01

)

)

(BRANCH
, (TRUE (Blk_4_1))
(

Blk_4_1
(% StmtId: 6 Function: TRANSFER
asserta_mux_1 [6 (10 2)] [1 (asserta_mux_1_outl 2)] 100
asserta_register_1 [1 (asserta_mux_1_outl 2)] [1 (asserta_register_1_outl 2)] 01
)
(% StmtId: 7 Function: TRANSFER
asserta_mux_2 [2 (11 2)] [1 (asserta_mux_2_outl 2)] 001
asserta_register_2 [1 (asserta_mux_2_outl 2)] [1 (asserta_register_2_outl 2)] 01

)
(% StmtId: 8 Function: bb_eq

asserta_mux_9 [1 (11)] [1 (asserta_mux_9_outl 1)] 0

asserta_eq_1 [1 (asserta_register_1_outl 1)] [2 (asserta_mux_9_outl 1)] [1 (asserta_eq_
1_outl 1)]

asserta_mux_3 [2 (PAD_X 1) (asserta_eq_1_outl 1)] [1 (asserta_mux_3_outl 2)] 0001

asserta_register_3 [1 (asserta_mux_3_outl 2)] [1 (asserta_register_3_outl 2)] 01

)
(% StmtId: 9 Function: bb_eq

asserta_eq_2 [1 (asserta_register_2 outl 1)] [2 (1 1)] [1 (asserta_eq_2_outl 1)]
asserta_mux_4 [3 (PAD_X 1) (asserta_eq_2_outl 1)] [1 (asserta_mux_4_outl 2)] 010
asserta_register_4 [1 (asserta_mux_4_outl 2)] [1 (asserta_register_4_outl 2)] 01
)
)
(BRANCH
(TRUE (Blk_4_2))
)
(Blk_4_2
(% StmtId: 10 Function: bb_and
asserta_adder_3 [1 (asserta_register_3_outl 1)] [2 (asserta_register_4_outl 1)] [1 (as
serta_adder_3_outl 1)]
asserta_mux_3 [1 (PAD_X 1) (asserta_adder_3_outl 1)] [1 (asserta_mux_3_outl 2)] 0000
asserta_register_3 [1 (asserta_mux_3_outl 2)] [1 (asserta_register_3_outl 2)] 01
(BRANCH
(asserta_register_3_outl (Blk_5_1)(Blk_6_1))
)
(Blk_5_1
(% StmtId: 11 Function: TRANSFER
asserta_mux_3 [5 (10 2) 1] [1 (asserta_mux_3_outl 2)] 0100
asserta_register_3 [1 (asserta_mux_3_outl 2)] [1 (asserta_register_3_outl 2)] 01

)
(% StmtId: 12 Function: TRANSFER
asserta_mux_4 [4 (PAD_X 1) (1 1)] [1 (asserta_mux_4_outl 2)] 011

211

asserta_register_4 [1 (asserta_mux_4_outl 2)] [1 (asserta_register_4_outl 2)] 01
)
(BRANCH
(TRUE (Blk_5_Blk_19_0))
)
(

Blk_5_Blk_19_0
(% StmtId: branch Function: actual-formal interconnect

asserta_mux_1 [7 (asserta_register_3_outl 2)] [1 (asserta_mux_1_outl 2)] 110
asserta_register_1 [1 (asserta_mux_1_outl 2)] [1 (asserta_register_1_outl 2)] 01
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_2 [6 (asserta_register_4_outl 2)] [1 (asserta_mux_2_outl 2)] 101
asserta_register_2 [1 (asserta_mux_2_outl 2)] [1 (asserta_register_2_outl 2)] 01
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_3 [10 (asserta_register_1_outl 2)] [1 (asserta_mux_3_outl 2)] 1001
asserta_register_3 [1 (asserta_mux_3_outl 2)] [1 (asserta_register_3_outl 2)] 01
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_4 [7 (asserta_register_2_outl 2)] [1 (asserta_mux_4_outl 2)] 110
asserta_register_4 [1 (asserta_mux_4_outl 2)] [1 (asserta_register_4_outl 2)] 01
)

)

(BRANCH
(TRUE (B1lk_19_1))

)

(B1lk_6
% StmtId 13 Function: TRANSFER
asserta_mux_3 [3 (00 2)] [1 (asserta_mux_3_outl 2)] 0010
asserta_register_3 [1 (asserta_mux_3_outl 2)] [1 (asserta_register_3_outl 2)] 01
)
(% StmtId: 14 Function: TRANSFER
asserta_mux_4 [5 (PAD_X 1) (0 1)] [1 (asserta_mux_4_outl 2)] 100
asserta_register_4 [1 (asserta_mux_4_outl 2)] [1 (asserta_register_4_outl 2)] 01

)

)

(BRANCH
, (TRUE (Blk_6_Blk_19_0))
(

Blk_6_Blk_19_0
(% StmtId: branch Function: actual-formal interconnect

asserta_mux_1 [7 (asserta_register_3_outl 2)] [1 (asserta_mux_1_outl 2)] 110
asserta_register_1 [1 (asserta_mux_1_outl 2)] [1 (asserta_register_1_outl 2)] 01
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_2 [6 (asserta_register_4_outl 2)] [1 (asserta_mux_2_outl 2)] 101
asserta_register_2 [1 (asserta_mux_2_outl 2)] [1 (asserta_register_2_outl 2)] 01
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_3 [10 (asserta_register_1_outl 2)] [1 (asserta_mux_3_outl 2)] 1001
asserta_register_3 [1 (asserta_mux_3_outl 2)] [1 (asserta_register_3_outl 2)] 01
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_4 [7 (asserta_register_2_outl 2)] [1 (asserta_mux_4_outl 2)] 110
asserta_register_4 [1 (asserta_mux_4_outl 2)] [1 (asserta_register_4_outl 2)] 01
)

)

(BRANCH
(TRUE (Blk_19_1))

)

(Blk_7
% StmtId 15 Function: bb_eq
asserta_mux_8 [2 (10 2)] [1 (asserta_mux_8_outl 2)] 01
asserta_eq_0 [1 (asserta_register_1_outl 2)] [2 (asserta_mux_8_outl 2)] [1 (asserta_eq_

O_outl 1)]

asserta_register_8 [1 (asserta_eq_O_outl 1)] [1 (asserta_register_8_outl 1)] 01
)

)
(BRANCH

(asserta_register_8_outl (Blk_7_Blk_8_0)(Blk_11_1))
)
(

Blk_7_Blk_8_0
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_1 [1 (asserta_register_4_outl 2)] [1 (asserta_mux_1_outl 2)] 000

212

asserta_register_1 [1 (asserta_mux_1_outl 2)]

)
(BRANCH

) (TRUE (Blk_8_1))
(

Blk_8_1
(% StmtId:
asserta_mux_1
asserta_register_1

16 Function: TRANSFER
[2 (01 2)] [1 (asserta_mux_1_out
[1 (asserta_mux_1_outl 2)]

)

(% StmtId:
asserta_mux_2
asserta_register_2

17 Function: TRANSFER
[2 (11 2)] [1 (asserta_mux_2_out
[1 (asserta_mux_2_outl 2)]

)

(% StmtId: 18 Function: bb_eq

asserta_mux_9 [1 (11)]

asserta_eq_1 [1 (asserta_register_1_outl 1)]
1_outl 1)]

[1 (asserta_mux_9_outl
[2

[1 (asserta_register_1_outl 2)]

12)] 001
[1 (asserta_register_1_outl 2)]

12)] 001
[1 (asserta_register_2_outl 2)]

1)1 0
(asserta_mux_9_outl 1)]

01

01

01

[1 (asserta_eq_

asserta_mux_3 [2 (PAD_X 1) (asserta_eq_1_outl 1)] [1 (asserta_mux_3_outl 2)] 0001
asserta_register_3 [1 (asserta_mux_3_outl 2)] [1 (asserta_register_3_outl 2)] 01
)

(BRANCH
(asserta_register_3_outl (Blk_9_1)(Blk_10_1))

)

(Blk_9_1
(% StmtId: 19 Function: TRANSFER
asserta_mux_3 [6 (01 2)] [1 (asserta_mux_3_outl 2)] 0101
asserta_register_3 [1 (asserta_mux_3_outl 2)] [1 (asserta_register_3_outl 2)] 01
)
(% StmtId: 20 Function: TRANSFER
asserta_mux_4 [4 (PAD_X 1) (1 1)] [1 (asserta_mux_4_outl 2)] 011
asserta_register_4 [1 (asserta_mux_4_outl 2)] [1 (asserta_register_4_outl 2)] 01
)

)

(BRANCH
(TRUE (Blk_9_B1lk_19_0))

)

(Blk_9_Blk_19_0
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_1 [7 (asserta_register_3_outl 2)] [1 (asserta_mux_1_outl 2)] 110
asserta_register_1 [1 (asserta_mux_1_outl 2)] [1 (asserta_register_1_outl 2)] 01
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_2 [6 (asserta_register_4_outl 2)] [1 (asserta_mux_2_outl 2)] 101
asserta_register_2 [1 (asserta_mux_2_outl 2)] [1 (asserta_register_2_outl 2)] 01
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_3 [10 (asserta_register_1_outl 2)] [1 (asserta_mux_3_outl 2)] 1001
asserta_register_3 [1 (asserta_mux_3_outl 2)] [1 (asserta_register_3_outl 2)] 01
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_4 [7 (asserta_register_2_outl 2)] [1 (asserta_mux_4_outl 2)] 110
asserta_register_4 [1 (asserta_mux_4_outl 2)] [1 (asserta_register_4_outl 2)] 01
)

)

(BRANCH
(TRUE (Blk_19_1))

)

(Blk_10_1
(% StmtId: 21 Function: TRANSFER
asserta_mux_3 [5 (10 2) 1] [1 (asserta_mux_3_outl 2)] 0100
asserta_register_3 [1 (asserta_mux_3_outl 2)] [1 (asserta_register_3_outl 2)] 01
)
(% StmtId: 22 Function: TRANSFER
asserta_mux_4 [5 (PAD_X 1) (0 1) 1] [1 (asserta_mux_4_outl 2)] 100
asserta_register_4 [1 (asserta_mux_4_outl 2)] [1 (asserta_register_4_outl 2)] 01

)
(BRANCH
(TRUE (Blk_10_Blk_19_0))
)
(Blk_10_B1k_19_0
(% StmtId: branch Function: actual-formal interconnect

213

asserta_mux_1
asserta_register_1

[7 (asserta_register_3_outl 2)]
[1 (asserta_mux_1_outl 2)]

(% StmtId: branch Function: actual-formal interconnect

asserta_mux_2
asserta_register_2

[6 (asserta_register_4_outl 2)]
[1 (asserta_mux_2_outl 2)]

(% StmtId: branch Function: actual-formal interconnect

asserta_mux_3
asserta_register_3

[10 (asserta_register_1_outl 2)]
[1 (asserta_mux_3_outl 2)]

(% StmtId: branch Function: actual-formal interconnect

asserta_mux_4
asserta_register_4

)

BRANCH

)
(
) (TRUE (Blk_19_1))
(

Blk_11_1

[7 (asserta_register_2_outl 2)]
[1 (asserta_mux_4_outl 2)]

(% StmtId: 23 Function: bb_eq

asserta_mux_8
asserta_eq_0
_O_outl 1)]

[3 (01 2)]

[1 (asserta_register_1_outl 2)]

[1 (asserta_mux_8_outl 2)]

[1 (asserta_mux_1_outl 2)] 110

[1 (asserta_register_1_outl 2)] 01
[1 (asserta_mux_2_outl 2)] 101

[1 (asserta_register_2_outl 2)] 01
[1 (asserta_mux_3_outl 2)] 1001
[1 (asserta_register_3_outl 2)] 01
[1 (asserta_mux_4_outl 2)] 110

[1 (asserta_register_4_outl 2)] 01

10

[2 (asserta_mux_8_outl 2)] [1 (asserta_eq

asserta_register_8 [1 (asserta_eq_O_outl 1)] [1 (asserta_register_8_outl 1)] 01
)

)

(BRANCH
(asserta_register_8_outl (Blk_11_Blk_12_0)(Blk_11_Blk_15_0))

)

(Blk_11_Blk_12_0
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_1 [4 (asserta_register_2_outl 2)] [1 (asserta_mux_1_outl 2)] 011
asserta_register_1 [1 (asserta_mux_1_outl 2)] [1 (asserta_register_1_outl 2)] 01
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_2 [1 (asserta_register_3_outl 2)] [1 (asserta_mux_2_outl 2)] 000
asserta_register_2 [1 (asserta_mux_2_outl 2)] [1 (asserta_register_2_outl 2)] 01
)

)

(BRANCH
(TRUE (Blk_12_1))

)

(Blk_11_Blk_15_0
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_2 [6 (asserta_register_4_outl 2)] [1 (asserta_mux_2_outl 2)] 101
asserta_register_2 [1 (asserta_mux_2_outl 2)] [1 (asserta_register_2_outl 2)] 01
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_3 [9 (asserta_register_5_outl 2)] [1 (asserta_mux_3_outl 2)] 1000
asserta_register_3 [1 (asserta_mux_3_outl 2)] [1 (asserta_register_3_outl 2)] 01
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_4 [6 (asserta_register_6_outl 2)] [1 (asserta_mux_4_outl 2)] 101
asserta_register_4 [1 (asserta_mux_4_outl 2)] [1 (asserta_register_4_outl 2)] 01
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_5 [1 (asserta_register_7_outl 2)] [1 (asserta_mux_5_outl 2)] 00
asserta_register_5 [1 (asserta_mux_5_outl 2)] [1 (asserta_register_5_outl 2)] 01
)

)

(BRANCH
(TRUE (Blk_15_1))

)

(Blk_12_1
(% StmtId: 24 Function: TRANSFER
asserta_mux_1 [6 (11 2)] [1 (asserta_mux_1_outl 2)] 101
asserta_register_1 [1 (asserta_mux_1_outl 2)] [1 (asserta_register_1_outl 2)] 01
)
(% StmtId: 25 Function: TRANSFER
asserta_mux_2 [5 (10 2)] [1 (asserta_mux_2_outl 2)] 100
asserta_register_2 [1 (asserta_mux_2_outl 2)] [1 (asserta_register_2_outl 2)] 01

214

(% StmtId: 26 Function: bb_eq
asserta_mux_9 [2 (0 1)]
asserta_eq_1 [1 (asserta_register_1_outl 1)]
_1_outl 1)]
asserta_mux_3
asserta_register_3 [1 (asserta_mux_3_outl 2)]

)
(% StmtId: 27 Function: bb_eq

asserta_eq_2 [1 (asserta_register_2 outl 1) J [2 (1 1)] [1 (asserta_eq_2_outl 1)]
asserta_mux_4 [3 (PAD_X 1) (asserta_eq_2_outl 1)] [1 (asserta_mux_4_outl 2)] 010
asserta_register_4 [1 (asserta_mux_4_outl 2)] [1 (asserta_register_4_outl 2)] 01
)
(BRANCH
(TRUE (Blk_12_2))
)
(Blk_12_2
(% StmtId: 28 Function: bb_or
asserta_adder_4 [1 (asserta_register_3_outl 1)] [2 (asserta_register_4_outl 1)] [1 (as
serta_adder_4_outl 1)]
asserta_mux_3 [7 (PAD_X 1) (asserta_adder_4_outl 1)] [1 (asserta_mux_3_outl 2)] 0110
asserta_register_3 [1 (asserta_mux_3_outl 2)] [1 (asserta_register_3_outl 2)] 01
)
)
(BRANCH
(asserta_register_3_outl (Blk_13_1)(Blk_14_1))
)
(Blk_13_1
(% StmtId: 29 Function: TRANSFER
asserta_mux_3 [8 (11 2)] [1 (asserta_mux_3_outl 2)] 0111
asserta_register_3 [1 (asserta_mux_3_outl 2)] [1 (asserta_register_3_outl 2)] 01
)
(% StmtId: 30 Function: TRANSFER
asserta_mux_4 [4 (PAD X 1) (1 1)] [1 (asserta_mux_4_outl 2)] 011
asserta_register_4 [1 (asserta_mux_4_outl 2)] [1 (asserta_register_4_outl 2)] 01
)
)
(BRANCH
(TRUE (B1lk_13_B1k_19_0))
)
(Blk_13_B1lk_19_0
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_1 [7 (asserta_register_3_outl 2)] [1 (asserta_mux_1_outl 2)] 110
asserta_register_1 [1 (asserta_mux_1_outl 2)] [1 (asserta_register_1_outl 2)] 01
)
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_2 [6 (asserta_register_4_outl 2)] [1 (asserta_mux_2_outl 2)] 101
asserta_register_2 [1 (asserta_mux_2_outl 2)] [1 (asserta_register_2_outl 2)] 01
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_3 [10 (asserta_register_1_outl 2) 1] [1 (asserta_mux_3_outl 2)] 1001
asserta_register_3 [1 (asserta_mux_3_outl 2)] [1 (asserta_register_3_outl 2)] 01
)
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_4 [7 (asserta_register_2_outl 2)] [1 (asserta_mux_4_outl 2)] 110
asserta_register_4 [1 (asserta_mux_4_outl 2)] [1 (asserta_register_4_outl 2)] 01
)
(BRANCH
(TRUE (Blk_19_1))
)
(Blk_14_1
(% StmtId: 31 Function: TRANSFER
asserta_mux_3 [6 (01 2)] [1 (asserta_mux_3_outl 2)] 0101
asserta_register_S [1 (asserta_mux_3_outl 2)] [1 (asserta_register_3_outl 2)] 01
)
(% StmtId: 32 Function: TRANSFER
asserta_mux_4 [5 (PAD_X 1) (0 1) 1] [1 (asserta_mux_4_outl 2)] 100
asserta_register_4 [1 (asserta_mux_4_outl 2)] [1 (asserta_register_4_outl 2)] 01

)
(BRANCH
(TRUE (Blk_14_Blk_19_0))

215

[1 (asserta_mux_9_outl 1)]

[2 (PAD_X 1) (asserta_eq_1_outl 1)]

1

[2 (asserta_mux_9_outl 1)] [1 (asser
[1 (asserta_mux_3_outl 2)] 000
[1 (asserta_register_3_outl 2)] 01

ta_eq

1

(Blk_14_Blk_19_0
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_1 [7 (asserta_register_3_outl 2)]

[1 (asserta_mux_1_outl 2)] 110

asserta_register_1 [1 (asserta_mux_1_outl 2)] [1 (asserta_register_1_outl 2)] 01
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_2 [6 (asserta_register_4_outl 2)] [1 (asserta_mux_2_outl 2)] 101
asserta_register_2 [1 (asserta_mux_2_outl 2)] [1 (asserta_register_2 outl 2)] 01
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_3 [10 (asserta_register_1_outl 2)] [1 (asserta_mux_3_outl 2)] 1001
asserta_register_3 [1 (asserta_mux_3_outl 2)] [1 (asserta_register_3_outl 2)] 01
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_4 [7 (asserta_register_2_outl 2)] [1 (asserta_mux_4_outl 2)] 110
asserta_register_4 [1 (asserta_mux_4_outl 2)] [1 (asserta_register_4_outl 2)] 01
)
)
(BRANCH
(TRUE (Blk_19_1))
)
(Blk_15_1
(% StmtId: 33 Function: bb_eq
asserta_mux_8 [4 (11 2)] [1 (asserta_mux_8_outl 2)] 11
asserta_eq_0 [1 (asserta_register_1_outl 2)] [2 (asserta_mux_8_outl 2)] [1 (as
serta_eq_O_outl 1)]
asserta_mux_6 [1 (PAD_X 1) (asserta_eq_0O_outl 1)] [1 (asserta_mux_6_outl 2)] 00
asserta_register_6 [1 (asserta_mux_6_outl 2)] [1 (asserta_register_6_outl 2)] 01
)
)
(BRANCH
(asserta_register_6_outl (Blk_15_Blk_16_0)(Blk_15_Blk_19_0))
)
(Blk_15_Blk_16_0
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_1 [4 (asserta_register_2_outl 2)] [1 (asserta_mux_1_outl 2)] 011
asserta_register_1 [1 (asserta_mux_1_outl 2)] [1 (asserta_register_1_outl 2)] 01
)
)
(BRANCH
(TRUE (Blk_16_1))
)
(Blk_15_Blk_19_0
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_2 [1 (asserta_register_3_outl 2)] [1 (asserta_mux_2_outl 2)] 000
asserta_register_2 [1 (asserta_mux_2_outl 2)] [1 (asserta_register_2_outl 2)] 01
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_3 [11 (asserta_register_4_outl 2)] [1 (asserta_mux_3_outl 2)] 1010
asserta_register_3 [1 (asserta_mux_3_outl 2)] [1 (asserta_register_3_outl 2)] 01
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_4 [8 (asserta_register_5_outl 2)] [1 (asserta_mux_4_outl 2)] 111
asserta_register_4 [1 (asserta_mux_4_outl 2)] [1 (asserta_register_4_outl 2)] 01
)
(BRANCH
(TRUE (Blk_19_1))
)
(Blk_16_1
(% StmtId: 34 Function: TRANSFER
asserta_mux_1 [6 (11 2) 1] [1 (asserta_mux_1_outl 2)] 101
asserta_register_1 [1 (asserta_mux_1_outl 2)] [1 (asserta_register_1_outl 2)] 01
)
(% StmtId: 35 Function: TRANSFER
asserta_mux_2 [7 (01 2) 1] [1 (asserta_mux_2_outl 2)] 110
asserta_register_2 [1 (asserta_mux_2_outl 2)] [1 (asserta_register_2 outl 2)] 01

)

(% StmtId: 36 Function: bb_eq

asserta_mux_9 [1 (11)]1]

asserta_eq_1 [1 (asserta_register_1_outl 1)]
1_outl 1)]

asserta_mux_3

asserta_register_3

)
)

[1 (asserta_mux_3_outl 2)]

216

[2 (PAD_X 1) (asserta_eq_1_outl 1)]

[1 (asserta_mux_9_outl 1)] 0
[2 (asserta_mux_9_outl 1)]

[1 (asserta_eq_

0001
01

[1 (asserta_mux_3_outl 2)]
[1 (asserta_register_3_outl 2)]

(BRANCH

(asserta_register_3_outl (Blk_17_1)(Blk_18_1))
)
(Blk_17_1

(% StmtId: 37 Function: TRANSFER

asserta_mux_3 [3 (00 2)] [1 (asserta_mux_3_outl 2)] 0010
[1 (asserta_register_3_outl 2)] 01

asserta_register_3 [1 (asserta_mux_3_outl 2)]

)
(% StmtId: 38 Function: TRANSFER

asserta_mux_4 [4 (PAD_X 1) (1 1)] [1 (asserta_
asserta_register_4 [1 (asserta_mux_4_outl 2)]
)

(BRANCH

(TRUE (Blk_17_B1lk_19_0))
)

(Blk_17_B1k_19_0
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_1 [7 (asserta_register_3_outl 2)]
asserta_register_1 [1 (asserta_mux_1_outl 2)]

(% StmtId: branch Function: actual-formal interconnect
asserta_mux_2 [6 (asserta_register_4_outl 2)]
asserta_register_2 [1 (asserta_mux_2_outl 2)]

(% StmtId: branch Function: actual-formal interconnect
asserta_mux_3 [10 (asserta_register_1_outl 2)]
asserta_register_3 [1 (asserta_mux_3_outl 2)]

(% StmtId: branch Function: actual-formal interconnect
asserta_mux_4 [7 (asserta_register_2_outl 2)]
asserta_register_4 [1 (asserta_mux_4_outl 2)]

)

)
(BRANCH

) (TRUE (Blk_19_1))
(

mux_4_outl 2)] 011
[1 (asserta_register_4_outl

[1 (asserta_mux_1_outl 2)]
[1 (asserta_register_1_outl

[1 (asserta_mux_2_outl 2)]
[1 (asserta_register_2_outl

[1 (asserta_mux_3_outl 2)]

[1 (asserta_register_3_outl

[1 (asserta_mux_4_outl 2)]
[1 (asserta_register_4_outl

Blk_18_1
(% StmtId: 39 Function: TRANSFER
asserta_mux_3 [8 (11 2) 1] [1 (asserta_mux_3_outl 2)] 0111
asserta_register_3 [1 (asserta_mux_3_outl 2)] [1 (asserta_register_3_outl

)
(% StmtId: 40 Function: TRANSFER

asserta_mux_4 [5 (PAD_X 1) (0 1) 1] [1 (asserta_mux_4_outl 2)] 100

asserta_register_4 [1 (asserta_mux_4_outl 2)]

)

(BRANCH

; (TRUE (Blk_18_Blk_19_0))

(Blk_18_Blk_19_0
(% StmtId: branch Function: actual-formal interconnect
asserta_mux_1 [7 (asserta_register_3_outl 2)]
asserta_register_1 [1 (asserta_mux_1_outl 2)]

(% StmtId: branch Function: actual-formal interconnect
asserta_mux_2 [6 (asserta_register_4_outl 2)]
asserta_register_2 [1 (asserta_mux_2_outl 2)]

(% StmtId: branch Function: actual-formal interconnect
asserta_mux_3 [10 (asserta_register_1_outl 2)]
asserta_register_3 [1 (asserta_mux_3_outl 2)]

(% StmtId: branch Function: actual-formal interconnect

asserta_mux_4 [7 (asserta_register_2_outl 2)]
asserta_register_4 [1 (asserta_mux_4_outl 2)]
)

(BRANCH

(TRUE (B1lk_19_1))

217

[1 (asserta_register_4_outl

[1 (asserta_mux_1_outl 2)]
[1 (asserta_register_1_outl

[1 (asserta_mux_2_outl 2)]
[1 (asserta_register_2_outl

[1 (asserta_mux_3_outl 2)]

[1 (asserta_register_3_outl

[1 (asserta_mux_4_outl 2)]
[1 (asserta_register_4_outl

2) 1 o1
110
2)] o1
101
2) 1 o1
1001
2) 1 o1
110
2) 1 o1
2)] o1
2)] o1
110
2)] o1
101
2) 1 o1
1001
2)] o1
110
2) 1 o1

(Blk_19_1
(% StmtId: 42 Function: PUT_PORT

WIRE [1 (asserta_register_2_outl 1)] [1 (st_out 1)]
)

(% StmtId: 44 Function: PUT_PORT

WIRE [1 (asserta_register_3_outl 2)] [1 (hl_out 2)]
)

(% StmtId: 46 Function: PUT_PORT

WIRE [1 (asserta_register_4_outl 2)] [1 (fl_out 2)]
)

(BRANCH

(TRUE (Blk_2_1))

Figure B.3: Intermediate Structural HDL Description of the Traffic Light Controller

218

(Blk_2_1
(asserta_register_5
(asserta_register_6
(asserta_register_7

(Blk_2_Blk_3_0
(asserta_register_2
(asserta_register_3
(asserta_register_4
(asserta_register_5
(asserta_register_6
(asserta_register_7

)

(Blk_3_1
(asserta_register_8

)

(Blk_3_Blk_4_0
(asserta_register_1
(asserta_register_2

)

(Blk_4_1
(asserta_register_1
(asserta_register_2
(asserta_register_3
(asserta_register_4

)

(Blk_4_2
(asserta_register_3
)

(Blk_5_1
(asserta_register_3
(asserta_register_4

)

(Blk_5_Blk_19_0
(asserta_register_1
(asserta_register_2
(asserta_register_3
(asserta_register_4

)

(Blk_6_1
(asserta_register_3
(asserta_register_4

)

(Blk_6_Blk_19_0
(asserta_register_1
(asserta_register_2
(asserta_register_3
(asserta_register_4

)
(Blk_7_1

cof)
tol)
tos)

cof)
tol)
tos)
st)
hl)
£1)

£18)

cof)
tol)

h1)
£1)
£23)
£24)

t25)

state)
st)

state)
st)
hl)
£1)

state)
st)

state)
st)
h1)
£1)

(asserta_register_8 t28)

)

(Blk_7_Blk_8_0
(asserta_register_1
)

(Blk_8_1
(asserta_register_1
(asserta_register_2
(asserta_register_3

)

(Blk_9_1
(asserta_register_3
(asserta_register_4

)

(Blk_9_Blk_19_0
(asserta_register_1
(asserta_register_2
(asserta_register_3
(asserta_register_4

)

tos)

h1)
£1)
t30)

state)
st)

state)
st)
hl)
£1)

219

(Blk_10_1
(asserta_register_3
(asserta_register_4

)

(Blk_10_Blk_19_0
(asserta_register_1
(asserta_register_2
(asserta_register_3
(asserta_register_4

)

(Blk_11_1
(asserta_register_8

(Blk_11_Blk_12_0
(asserta_register_1
(asserta_register_2

)

(Blk_11_Blk_15_0
(asserta_register_2
(asserta_register_3
(asserta_register_4
(asserta_register_5

)

(Blk_12_1
(asserta_register_1
(asserta_register_2
(asserta_register_3
(asserta_register_4

)

(Blk_12_2
(asserta_register_3

)

(Blk_13_1
(asserta_register_3
(asserta_register_4

)

(Blk_13_Blk_19_0
(asserta_register_1
(asserta_register_2
(asserta_register_3
(asserta_register_4

)

(Blk_14_1
(asserta_register_3
(asserta_register_4

)

(Blk_14_Blk_19_0
(asserta_register_1
(asserta_register_2
(asserta_register_3
(asserta_register_4

)

(Blk_15_1
(asserta_register_6

)

(Blk_15_Blk_16_0
(asserta_register_1

(Blk_15_Blk_19_0
(asserta_register_2
(asserta_register_3
(asserta_register_4

)

(Blk_16_1
(asserta_register_1
(asserta_register_2
(asserta_register_3

)

state)
st)

state)
st)
hl)
£1)

t31)

£1)
tol)

tos)
st)
hl)
£1)

hl)
£1)
t32)
t33)

t34)

state)
st)

state)
st)
hl)
£1)

state)
st)

state)
st)
hl)
£1)

t35)

tos)

st)
hl)
£1)

hl)
£1)
t36)

220

(Blk_17_1
(asserta_register_3 state)
(asserta_register_4 st)

)

(Blk_17_Blk_19_0
(asserta_register_1 state)
(asserta_register_2 st)
(asserta_register_3 hl)
(asserta_register_4 f1)

)

(Blk_18_1
(asserta_register_3 state)
(asserta_register_4 st)

)

(Blk_18_Blk_19_0
(asserta_register_1 state)
(asserta_register_2 st)
(asserta_register_3 hl)
(asserta_register_4 f1)

)

(Blk_19_1

AN
]

Figure B.4: Register Binding Information of TLC

221

Critical Register Binding:

Critical Path O :
asserta_register_2 cof 3)
(asserta_register_3 tol 3)
(asserta_register_4 tos 3)
(asserta_register_5 st 3)
(asserta_register_6 hl 3)
(asserta_register_7 f1 3)
(asserta_register_8 t18 5)
Critical Path 1
(asserta_register_1 hl 9)
(asserta_register_2 f1 9)
(asserta_register_3 t25 11)
(asserta_register_4 t24 9)
Critical Path 2 :
asserta_register_1 state 15)
asserta_register_2 st 15)
asserta_register_3 hl 15)
asserta_register_4 fl 15)
asserta_register_5 cof 1)
asserta_register_6 tol 1)
asserta_register_7 tos 1)
ical Path 3 :
asserta_register_1 state 1
asserta_register_2 st 19)
asserta_register_3 hl 19)
asserta_register_4 fl 19)
)
)
)

Cri

~t A~~~ A~AAA~AA

9)

asserta_register_5 cof 1
asserta_register_6 tol 1
asserta_register_7 tos 1
Critical Path 4 :
asserta_register_8 t28 21)
Critical Path 5 :
(asserta_register_1 hl 25)
(asserta_register_2 f1 25)
(asserta_register_3 t30 25)
Critical Path 6 :
asserta_register_1 state 29)
asserta_register_2 st 29
asserta_register_3 hl 29
asserta_register_4 f1 29
asserta_register_5 cof 1
asserta_register_6 tol 1
asserta_register_7 tos 1
ical Path 7 :
asserta_register_1 state 3
asserta_register_2 st 33)
asserta_register_3 hl 33)
asserta_register_4 f1l 33)
)
)
)

~A~A~AA~AA~A

(ARG

Cri

~t A~~~ AA~AA~A

3)

asserta_register_5 cof 1
asserta_register_6 tol 1
asserta_register_7 tos 1
Critical Path 8 :

(asserta_register_8 t31 35)
Critical Path 9 :

(asserta_register_1 hl 41)

(asserta_register_2 f1 41)

(asserta_register_3 t34 43)

(asserta_register_4 t33 41)
Critical Path 10 :
asserta_register_1 state 47)
asserta_register_2 st 47)
asserta_register_3 hl 47)
asserta_register_4 fl 47)
asserta_register_5 cof 1)
asserta_register_6 tol 1)
asserta_register_7 tos 1)

~A~NA~AA~A

NAAA~AAAAA

222

Critical Path 11 :
asserta_register_1 state 51)
asserta_register_2 st 51)
asserta_register_3 hl 51)
asserta_register_4 fl 51)
asserta_register_5 cof 1)
asserta_register_6 tol 1)
asserta_register_7 tos 1)
ical Path 12 :
asserta_register_2 tos 39)

(asserta_register_3 st 39)

(asserta_register_4 hl 39)

(asserta_register_5 f1 39)

(asserta_register_6 t35 53)
Critical Path 13 :

(asserta_register_1 hl 59)

(asserta_register_2 f1 59)

(asserta_register_3 t36 59)
Critical Path 14 :
asserta_register_1 state 63)
asserta_register_2 st 63
asserta_register_3 hl 63
asserta_register_4 f1 63
asserta_register_5 cof 1
asserta_register_6 tol 1
asserta_register_7 tos 1
Critical Path 15 :
asserta_register_1 state
asserta_register_2 st 67
(asserta_register_3 hl 67
(asserta_register_4 fl 67
(
(

Cri

~t ~A~~A~~A~~

~~

(
(
(
(

~
(RN R R RNEN]

~~

asserta_register_5 cof 1
asserta_register_6 tol 1
asserta_register_7 tos 1
Critical Path 16 :
asserta_register_2 st 57
asserta_register_3 hl 57
asserta_register_4 f1 57
asserta_register_5 cof 1
asserta_register_6 tol 1
asserta_register_7 tos 1
Critical Path 17 :

(asserta_register_5 cof 1)

(asserta_register_6 tol 1)

(asserta_register_7 tos 1)

~
NN O

~A~AA~NA~AAA
(RN R RS AN

Figure B.5: Critical Register Binding for TLC

223

% Behavior Axioms

bsi_bs2_ax: AXIOM beh_transition(bt1l)
IMPLIES

bs2_bs3_ax:
IMPLIES

bs3_bs4_ax:
IMPLIES

(Val_b(state,bs2) = Val_b(state,bsl) AND
Val_b(st,bs2) = Val_b(st,bsl) AND

Val_b(hl,bs2)

Val_b(fl,bs2)

Val_b(cof,bs2)
Val_b(tol,bs2)
Val_b(tos,bs2)
Val_b(t18,bs2)
Val_b(t23,bs2)
Val_b(t24,bs2)
Val_b(t25,bs2)
Val_b(t28,bs2)
Val_b(t30,bs2)
Val_b(t31,bs2)
Val_b(t32,bs2)
Val_b(t33,bs2)
Val_b(t34,bs2)
Val_b(t35,bs2)
Val_b(t36,bs2)

Val_b(hl,bsl) AND

Val_b(fl,bs1) AND

cof_inQ AND

Val_b(tol,bsl) AND
Val_b(tos,bsl) AND
Val_b(t18,bs1) AND
Val_b(t23,bs1) AND
Val_b(t24,bs1) AND
Val_b(t25,bs1) AND
Val_b(t28,bsl) AND
Val_b(t30,bs1) AND
Val_b(t31,bsl) AND
Val _b(t32,bs1) AND
Val_b(t33,bsi) AND
Val_b(t34,bsl) AND
Val_b(t35,bs1) AND
Val_b(t36,bsl))

AXIOM beh_transition(bt2)

(Val_b(state,bs3) = Val_b(state,bs2) AND
Val_b(st,bs3) = Val_b(st,bs2) AND

Val_b(hl,bs3)

Val_b(fl,bs3)

Val_b(cof,bs3)
Val_b(tol,bs3)
Val_b(tos,bs3)
Val_b(t18,bs3)
Val_b(t23,bs3)
Val_b(t24,bs3)
Val_b(t25,bs3)
Val_b(t28,bs3)
Val_b(t30,bs3)
Val_b(t31,bs3)
Val_b(t32,bs3)
Val_b(t33,bs3)
Val_b(t34,bs3)
Val_b(t35,bs3)
Val_b(t36,bs3)

Val_b(hl,bs2) AND
Val_b(f1l,bs2) AND
Val_b(cof,bs2) AND
tol_inl AND
Val_b(tos,bs2) AND
Val_b(t18,bs2) AND
Val_b(t23,bs2) AND
Val_b(t24,bs2) AND
Val_b(t25,bs2) AND
Val_b(t28,bs2) AND
Val_b(t30,bs2) AND
Val_b(t31,bs2) AND
Val_b(t32,bs2) AND
Val_b(t33,bs2) AND
Val_b(t34,bs2) AND
Val_b(t35,bs2) AND
Val_b(t36,bs2))

AXIOM beh_transition(bt3)

(Val_b(state,bs4) = Val_b(state,bs3) AND
Val_b(st,bs4) = Val_b(st,bs3) AND

Val_b(hl,bs4)

Val_b(fl,bs4)

Val_b(cof,bs4)
Val_b(tol,bs4)
Val_b(tos,bs4)
Val_b(t18,bs4)
Val_b(t23,bs4)
Val_b(t24,bs4)
Val_b(t25,bs4)
Val_b(t28,bs4)
Val_b(t30,bs4)
Val_b(t31,bs4)
Val_b(t32,bs4)
Val_b(t33,bs4)
Val_b(t34,bs4)
Val_b(t35,bs4)
Val_b(t36,bs4)

Val_b(hl,bs3) AND
Val_b(fl,bs3) AND
Val_b(cof,bs3) AND
Val_b(tol,bs3) AND
tos_in2 AND
Val_b(t18,bs3) AND
Val_b(t23,bs3) AND
Val_b(t24,bs3) AND
Val_b(t25,bs3) AND
Val_b(t28,bs3) AND
Val_b(t30,bs3) AND
Val_b(t31,bs3) AND
Val_b(t32,bs3) AND
Val_b(t33,bs3) AND
Val_b(t34,bs3) AND
Val_b(t35,bs3) AND
Val_b(t36,bs3))

bs4_bs1004_ax: AXIOM beh_transition(bt4)
IMPLIES

(Val_b(state,bs1004) = Val_b(state,bs4) AND
Val_b(st,bs1004) = Val_b(st,bs4) AND
Val_b(hl,bs1004) = Val_b(hl,bs4) AND
Val_b(fl,bs1004) = Val_b(fl,bs4) AND
Val_b(cof,bs1004) Val_b(cof,bs4) AND
Val_b(tol,bs1004) Val_b(tol,bs4) AND
Val_b(tos,bs1004) Val_b(tos,bs4) AND
Val_b(t18,bs1004) bb_eq(Val_b(state,bs4),CONST_0) AND
Val_b(t23,bs1004) Val_b(t23,bs4) AND
Val_b(t24,bs1004) Val_b(t24,bs4) AND
Val_b(t25,bs1004) Val_b(t25,bs4) AND
Val_b(t28,bs1004) Val_b(t28,bs4) AND

224

bs1004
IMPL

bs6_bs7_ax:
IMPLIES

bs8_bs9_ax:
IMPLIES

Val_b(t30,bs1004)
Val_b(t31,bs1004)
Val_b(t32,bs1004)
Val_b(t33,bs1004)
Val_b(t34,bs1004)
Val_b(t35,bs1004)
Val_b(t36,bs1004)

Val_b(t30,bs4)
Val_b(t31,bs4)
Val_b(t32,bs4)
Val_b(t33,bs4)
Val_b(t34,bs4)
Val_b(t35,bs4)
Val_b(t36,bs4))

_bgG_ax: AXIOM beh_transition(btb)
IE

AND
AND
AND
AND
AND
AND

(Val_b(state,bs6) = Val_b(state,bs1004)

Val_b(st,bs6) =
Val_b(hl,bs6) =
Val_b(fl,bs6) =
Val_b(cof,bs6)
Val_b(tol,bs6)
Val_b(tos,bs6)
Val_b(t18,bs6)
Val_b(t23,bs6)
Val_b(t24,bs6)
Val_b(t25,bs6)
Val_b(t28,bs6)
Val_b(t30,bs6)
Val_b(t31,bs6)
Val_b(t32,bs6)
Val_b(t33,bs6)
Val_b(t34,bs6)
Val_b(t35,bs6)
Val_b(t36,bs6)

AXIOM beh_

Val_b(cof,bs1004)
Val_b(tol,bs1004)
Val_b(tos,bs1004)
Val_b(t18,bs1004)
Val_b(t23,bs1004)
Val_b(t24,bs1004)
Val_b(t25,bs1004)
Val_b(t28,bs1004)
Val_b(t30,bs1004)
Val_b(t31,bs1004)
Val_b(t32,bs1004)
Val_b(t33,bs1004)
Val_b(t34,bs1004)
Val_b(t35,bs1004)
Val_b(t36,bs1004))

transition(bt6)

Val_b(st,bs1004) AND
Val_b(hl,bs1004) AND
Val_b(fl,bs1004) AND

AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND

(Val_b(state,bs7) = Val_b(state,bs6) AND

Val_b(st,bs7) =
Val_b(hl,bs7) =
Val_b(fl,bs7) =
Val_b(cof,bs7)
Val_b(tol,bs7)
Val_b(tos,bs7)
Val_b(t18,bs7)
Val_b(t23,bs7)
Val_b(t24,bs7)
Val_b(t25,bs7)
Val_b(t28,bs7)
Val_b(t30,bs7)
Val_b(t31,bs7)
Val_b(t32,bs7)
Val_b(t33,bs7)
Val_b(t34,bs7)
Val_b(t35,bs7)
Val_b(t36,bs7)

bs7_bs8_ax: AXIOM beh_
IMPLIES

(Val_b(state,bs8)

= Val_b(st,bs6) AND
CONST_O AND
Val_b(fl,bs6) AND

AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND

Val_b(cof,bs6)
Val_b(tol,bs6)
Val_b(tos,bs6)
Val_b(t18,bs6)
Val_b(t23,bs6)
Val_b(t24,bs6)
Val_b(t25,bs6)
Val_b(t28,bs6)
Val_b(t30,bs6)
Val_b(t31,bs6)
Val_b(t32,bs6)
Val_b(t33,bs6)
Val_b(t34,bs6)
Val_b(t35,bs6)
Val_b(t36,bs6))

transition(bt7)
= Val_b(state,bs7)

Val_b(st,bs8) = Val_b(st,bs7) AND

Val_b(hl,bs8) =
Val_b(fl,bs8) =
Val_b(cof,bs8)
Val_b(tol,bs8)
Val_b(tos,bs8)
Val_b(t18,bs8)
Val_b(t23,bs8)
Val_b(t24,bs8)
Val_b(t25,bs8)
Val_b(t28,bs8)
Val_b(t30,bs8)
Val_b(t31,bs8)
Val_b(t32,bs8)
Val_b(t33,bs8)
Val_b(t34,bs8)
Val_b(t35,bs8)
Val_b(t36,bs8)

AXIOM beh_

(Val_b(state,bs9)
Val_b(st,bs9) =

C

Val_b(hl,bs7) AND

ONST_O AND

Val_b(cof,bs7)
Val_b(tol,bs7)
Val_b(tos,bs7)
Val_b(t18,bs7)
Val_b(t23,bs7)
Val_b(t24,bs7)
Val_b(t25,bs7)
Val_b(t28,bs7)
Val_b(t30,bs7)
Val_b(t31,bs7)
Val_b(t32,bs7)
Val_b(t33,bs7)
Val_b(t34,bs7)
Val_b(t35,bs7)
Val_b(t36,bs7))

transition(bt8)

= Val_b(state,bs8)
al_b(st,bs8) AND

AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND

=V
Val_b(hl,bs9) = Val_b(hl,bs8) AND
=V

Val_b(fl,bs9)
Val_b(cof,bs9) =

al_b(fl,bs8) AND
Val_b(cof,bs8) AND

AND

AND

AND

225

bs9_bs1
IMPL
(Val_b(state,bs10) = Val_b(state,bs9) AND

bs10

Val_b(tol,bs9)
Val_b(tos,bs9)
Val_b(t18,bs9)
Val_b(t23,bs9)
Val_b(t24,bs9)
Val_b(t25,bs9)
Val_b(t28,bs9)
Val_b(t30,bs9)
Val_b(t31,bs9)
Val_b(t32,bs9)
Val_b(t33,bs9)
Val_b(t34,bs9)
Val_b(t35,bs9)
Val_b(t36,bs9)

IES

Val_b(st,bs10)
Val_b(hl,bs10)
Val_b(f1l,bs10)

_bs

Val_b(cof,bs10)
Val_b(tol,bs10)
Val_b(tos,bs10)
Val_b(t18,bs10)
Val_b(t23,bs10)
Val_b(t24,bs10)
Val_b(t25,bs10)
Val_b(t28,bs10)
Val_b(t30,bs10)
Val_b(t31,bs10)
Val_b(t32,bs10)
Val_b(t33,bs10)
Val_b(t34,bs10)
Val_b(t35,bs10)
Val_b(t36,bs10)

IMPLIES
(Val_b(state,bs1010) = Val_b(state,bs10) AND

Val_b(st,bs1010)

Val_b(hl,bs1010)

Val_b(fl,bs1010)

Val_b(cof,bs1010)
Val_b(tol,bs1010)
Val_b(tos,bs1010)
Val_b(t18,bs1010)
Val_b(t23,bs1010)
Val_b(t24,bs1010)
Val_b(t25,bs1010)
Val_b(t28,bs1010)
Val_b(t30,bs1010)
Val_b(t31,bs1010)
Val_b(t32,bs1010)
Val_b(t33,bs1010)
Val_b(t34,bs1010)
Val_b(t35,bs1010)
Val_b(t36,bs1010)

Val_b(tol,bs8) AND
Val_b(tos,bs8) AND
Val_b(t18,bs8) AND

bb_eq(Val_b(cof,bs8),CONST_0) AND

Val_b(t24,bs8)
Val_b(t25,bs8)
Val_b(t28,bs8)
Val_b(t30,bs8)
Val_b(t31,bs8)
Val_b(t32,bs8)
Val_b(t33,bs8)
Val_b(t34,bs8)
Val_b(t35,bs8)
Val_b(t36,bs8))

AND
AND
AND
AND
AND
AND
AND
AND
AND

0_ax: AXIOM beh_transition(bt9)
E

Val_b(st,bs9) AND

Val_b(hl,bs9) AND

Val_b(£1,bs9) AND
Val_b(cof,bs9) AND
Val_b(tol,bs9) AND
Val_b(tos,bs9) AND
Val_b(t18,bs9) AND
Val_b(t23,bs9) AND

bb_eq(Val_b(tol,bs9),CONST_0) AND

Val_b(t25,bs9)
Val_b(t28,bs9)
Val_b(t30,bs9)
Val_b(t31,bs9)
Val_b(t32,bs9)
Val_b(t33,bs9)
Val_b(t34,bs9)
Val_b(t35,bs9)
Val_b(t36,bs9))

AND
AND
AND
AND
AND
AND
AND
AND

Val_b(st,bs10) AND
Val_b(hl,bs10) AND
Val_b(fl,bs10) AND

1010_ax: AXIOM beh_transition(bt10)
E

Val_b(cof,bs10)
Val_b(tol,bs10)
Val_b(tos,bs10)
Val_b(t18,bs10)
Val_b(t23,bs10)
Val_b(t24,bs10)

Val_b(t28,bs10)
Val_b(t30,bs10)
Val_b(t31,bs10)
Val_b(t32,bs10)
Val_b(t33,bs10)
Val_b(t34,bs10)
Val_b(t35,bs10)
Val_b(t36,bs10))

AND
AND
AND
AND
AND
AND

AND
AND
AND
AND
AND
AND
AND

bs1010_bs11_ax: AXIOM beh_transition(btil)

IMPL

IES

(Val_b(state,bs11l) = Val_b(state,bs1010)
Val_b(st,bs1010) AND
Val_b(hl,bs1010) AND
Val_b(f1l,bs1010) AND

Val_b(st,bsll)

Val_b(hl,bsil)

Val_b(fl,bs1l)

Val_b(cof,bs1l)
Val_b(tol,bs1l)
Val_b(tos,bsll)
Val_b(t18,bs11)
Val_b(t23,bs11)
Val_b(t24,bs11)
Val_b(t25,bs11)
Val_b(t28,bs11)
Val_b(t30,bs11)
Val_b(t31,bs1l)
Val_b(t32,bs1l)
Val_b(t33,bs11)
Val_b(t34,bs11)
Val_b(t35,bs11)
Val_b(t36,bs11)

Val_b(cof,bs1010)
Val_b(tol,bs1010)
Val_b(tos,bs1010)
Val_b(t18,bs1010)
Val_b(t23,bs1010)
Val_b(t24,bs1010)
Val_b(t25,bs1010)
Val_b(t28,bs1010)
Val_b(t30,bs1010)
Val_b(t31,bs1010)
Val_b(t32,bs1010)
Val_b(t33,bs1010)
Val_b(t34,bs1010)
Val_b(t35,bs1010)
Val_b(t36,bs1010))

AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND

bb_plus(Val_b(t23,bs10),Val_b(t24,bs10)) AND

AND

226

bs11_
IMP.

bs12_ax: AXIOM beh_transition(bti2)
LIES

(Val_b(state,bs12) = CONST_O AND

Val_b(st,bs12)

Val_b(hl,bs12)

Val_b(fl,bs12)

Val_b(cof,bs12)
Val_b(tol,bs12)
Val_b(tos,bs12)
Val_b(t18,bs12)
Val_b(t23,bs12)
Val_b(t24,bs12)
Val_b(t25,bs12)
Val_b(t28,bs12)
Val_b(t30,bs12)
Val_b(t31,bs12)
Val_b(t32,bs12)
Val_b(t33,bs12)
Val_b(t34,bs12)
Val_b(t35,bs12)
Val_b(t36,bs12)

Val_b(st,bs11) AND
Val_b(hl,bs11) AND
Val_b(fl,bs11) AND
Val_b(cof,bsil) AND
Val_b(tol,bsi1l) AND
Val_b(tos,bs11) AND
Val_b(t18,bs11) AND
Val_b(t23,bs11) AND
Val_b(t24,bs11) AND
Val_b(t25,bs11) AND
Val_b(t28,bs11) AND
Val_b(t30,bs11) AND
Val_b(t31,bs11) AND
Val_b(t32,bs11) AND
Val_b(t33,bs11) AND
Val_b(t34,bs11) AND
Val_b(t35,bs11) AND
Val_b(t36,bs11))

bs12_bs42_ax: AXIOM beh_transition(bt13)
IMPLIES

(Val_b(state,bs42) = Val_b(state,bs12)

Val_b(st,bs42)

Val_b(hl,bs42)

Val_b(fl,bs42)

Val_b(cof,bs42)
Val_b(tol,bs42)
Val_b(tos,bs42)
Val_b(t18,bs42)
Val_b(t23,bs42)
Val_b(t24,bs42)
Val_b(t25,bs42)
Val_b(t28,bs42)
Val_b(t30,bs42)
Val_b(t31,bs42)
Val_b(t32,bs42)
Val_b(t33,bs42)
Val_b(t34,bs42)
Val_b(t35,bs42)
Val_b(t36,bs42)

CONST_O AND
Val_b(hl,bs12) AND
Val_b(fl,bs12) AND
Val_b(cof,bs12) AND
Val_b(tol,bs12) AND
Val_b(tos,bs12) AND
Val_b(t18,bs12) AND
Val_b(t23,bs12) AND
Val_b(t24,bs12) AND
Val_b(t25,bs12) AND
Val_b(t28,bs12) AND
Val_b(t30,bs12) AND
Val_b(t31,bs12) AND
Val_b(t32,bs12) AND
Val_b(t33,bs12) AND
Val_b(t34,bs12) AND
Val_b(t35,bs12) AND
Val_b(t36,bs12))

bs42_bs44_ax: AXIOM beh_transition(bti14)
IMPLIES

(Val_b(state,bs44) = Val_b(state,bs42)

Val_b(st,bs44)

Val_b(hl,bs44)

Val_b(fl,bs44)

Val_b(cof,bs44)
Val_b(tol,bs44)
Val_b(tos,bs44)
Val_b(t18,bs44)
Val_b(t23,bs44)
Val_b(t24,bs44)
Val_b(t25,bs44)
Val_b(t28,bs44)
Val_b(t30,bs44)
Val_b(t31,bs44)
Val_b(t32,bs44)
Val_b(t33,bs44)
Val_b(t34,bs44)
Val_b(t35,bs44)
Val_b(t36,bs44)

Val_b(st,bs42) AND
Val_b(hl,bs42) AND
Val_b(fl,bs42) AND
Val_b(cof,bs42) AND
Val_b(tol,bs42) AND
Val_b(tos,bs42) AND
Val_b(t18,bs42) AND
Val_b(t23,bs42) AND
Val_b(t24,bs42) AND
Val_b(t25,bs42) AND
Val_b(t28,bs42) AND
Val_b(t30,bs42) AND
Val_b(t31,bs42) AND
Val_b(t32,bs42) AND
Val_b(t33,bs42) AND
Val_b(t34,bs42) AND
Val_b(t35,bs42) AND
Val_b(t36,bs42))

bs44_bs46_ax: AXIOM beh_transition(bti15)
IMPLIES

(Val_b(state,bs46) = Val_b(state,bs44)
Val_b(st,bs46) = Val_b(st,bs44) AND

Val_b(hl,bs46)

Val_b(fl,bs46)

Val_b(cof,bs46)
Val_b(tol,bs46)
Val_b(tos,bs46)
Val_b(t18,bs46)
Val_b(t23,bs46)
Val_b(t24,bs46)
Val_b(t25,bs46)
Val_b(t28,bs46)
Val_b(t30,bs46)

Val_b(hl,bs44) AND

Val_b(fl,bs44) AND

Val_b(cof,bs44) AND
Val_b(tol,bs44) AND
Val_b(tos,bs44) AND
Val_b(t18,bs44) AND
Val_b(t23,bs44) AND
Val_b(t24,bs44) AND
Val_b(t25,bs44) AND
Val_b(t28,bs44) AND
Val_b(t30,bs44) AND

AND

AND

AND

227

bs1010_bs13_ax:
IMPLIES
(Val_b(state,bs13) = Val_b(state,bs1010) AND

bs13_b
IMPL

Val_b(t31,bs46)
Val_b(t32,bs46)
Val_b(t33,bs46)
Val_b(t34,bs46)
Val_b(t35,bs46)
Val_b(t36,bs46)

_bsl_ax: AXIOM beh
PLIES

Val_b(t31,bs44)
Val_b(t32,bs44)
Val_b(t33,bs44)
Val_b(t34,bs44)
Val_b(t35,bs44)
Val_b(t36,bs44)

AND

AND

AND

AND

AND
)

_transition(bt16)

(Val_b(state,bsl) = Val_b(state,bs46) AND

Val_b(st,bsl) =
Val_b(hl,bsl) =
Val_b(fl,bs1) =
Val_b(cof,bsl)
Val_b(tol,bsl)
Val_b(tos,bsl)
Val_b(t18,bsl)
Val_b(t23,bs1)
Val_b(t24,bsl)
Val_b(t25,bs1)
Val_b(t28,bs1)
Val_b(t30,bs1)
Val_b(t31,bsl)
Val_b(t32,bsl)
Val_b(t33,bsl)
Val_b(t34,bs1)
Val_b(t35,bs1)
Val_b(t36,bsl)

AXIO0

M

= Val_b(st,bs46) AND

Val_b(hl,bs46) AND
Val_b(fl,bs46) AND

Val_b(cof,bs46)
Val_b(tol,bs46)
Val_b(tos,bs46)
Val_b(t18,bs46)
Val_b(t23,bs46)
Val_b(t24,bs46)
Val_b(t25,bs46)
Val_b(t28,bs46)
Val_b(t30,bs46)
Val_b(t31,bs46)
Val_b(t32,bs46)
Val_b(t33,bs46)
Val_b(t34,bs46)
Val_b(t35,bs46)
Val_b(t36,bs46))

AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND

beh_transition(bt17)

Val_b(st,bs13) = Val_b(st,bs1010) AND

Val_b(hl,bs13)

Val_b(fl,bs13)

Val_b(cof,bs13)
Val_b(tol,bs13)
Val_b(tos,bs13)
Val_b(t18,bs13)
Val_b(t23,bs13)
Val_b(t24,bs13)
Val_b(t25,bs13)
Val_b(t28,bs13)
Val_b(t30,bs13)
Val_b(t31,bs13)
Val_b(t32,bs13)
Val_b(t33,bs13)
Val_b(t34,bs13)
Val_b(t35,bs13)
Val_b(t36,bs13)

Val_b(hl,bs1010)
Val_b(f1,bs1010)

Val_b(cof,bs1010)
Val_b(tol,bs1010)
Val_b(tos,bs1010)
Val_b(t18,bs1010)
Val_b(t23,bs1010)
Val_b(t24,bs1010)
Val_b(t25,bs1010)
Val_b(t28,bs1010)
Val_b(t30,bs1010)
Val_b(t31,bs1010)
Val_b(t32,bs1010)
Val_b(t33,bs1010)
Val_b(t34,bs1010)
Val_b(t35,bs1010)

AND

AND

AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND

Val_b(t36,bs1010))

(Val_b(state,bs14) = CONST_O AND
Val_b(st,bs13) AND
Val_b(hl,bs13) AND
Val_b(f1l,bs13) AND

Val_b(st,bs14)

Val_b(hl,bs14)

Val_b(fl,bs14)

Val_b(cof,bs14)
Val_b(tol,bs14)
Val_b(tos,bs14)
Val_b(t18,bs14)
Val_b(t23,bs14)
Val_b(t24,bs14)
Val_b(t25,bs14)
Val_b(t28,bs14)
Val_b(t30,bs14)
Val_b(t31,bs14)
Val_b(t32,bs14)
Val_b(t33,bs14)
Val_b(t34,bs14)
Val_b(t35,bs14)
Val_b(t36,bs14)

Val_b(st,bs42)
Val_b(hl,bs42)
Val_b(fl,bs42)
Val_b(cof,bs42)
Val_b(tol,bs42)
Val_b(tos,bs42)

Val_b(cof,bs13)
Val_b(tol,bs13)
Val_b(tos,bs13)
Val_b(t18,bs13)
Val_b(t23,bs13)
Val_b(t24,bs13)
Val_b(t25,bs13)
Val_b(t28,bs13)
Val_b(t30,bs13)
Val_b(t31,bs13)
Val_b(t32,bs13)
Val_b(t33,bs13)
Val_b(t34,bs13)
Val_b(t35,bs13)
Val_b(t36,bs13)

CONST_O AND

slg_ax: AXIOM beh_transition(bti18)
IE

AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
)

bs14_bs42_ax: AXIOM beh_transition(bt19)
IMPLIES
(Val_b(state,bs42) = Val_b(state,bsi4d)

AND

Val_b(hl,bs14) AND
Val_b(fl,bs14) AND

Val_b(cof,bs14)
Val_b(tol,bs14)
Val_b(tos,bs14)

AND
AND
AND

228

Val_b(t18,bs42)
Val_b(t23,bs42)
Val_b(t24,bs42)
Val_b(t25,bs42)
Val_b(t28,bs42)
Val_b(t30,bs42)
Val_b(t31,bs42)
Val_b(t32,bs42)
Val_b(t33,bs42)
Val_b(t34,bs42)
Val_b(t35,bs42)
Val_b(t36,bs42)

bs1004_bs15_ax: AXIOM
IMPLIES

Val_b(t18,bs14) AND
Val_b(t23,bs14) AND
Val_b(t24,bs14) AND
Val_b(t25,bs14) AND
Val_b(t28,bs14) AND
Val_b(t30,bs14) AND
Val_b(t31,bs14) AND
Val_b(t32,bs14) AND
Val_b(t33,bs14) AND
Val_b(t34,bs14) AND
Val_b(t35,bs14) AND
Val_b(t36,bs14))

beh_transition(bt20)

(Val_b(state,bs15) = Val_b(state,bs1004) AND

Val_b(st,bsl5) =
Val_b(hl,bs15) =
Val_b(fl,bs1b) =
Val_b(cof,bs15)
Val_b(tol,bs15)
Val_b(tos,bs15)
Val_b(t18,bs15)
Val_b(t23,bs15)
Val_b(t24,bs15)
Val_b(t25,bs15)
Val_b(t28,bs15)
Val_b(t30,bs15)
Val_b(t31,bs15)
Val_b(t32,bs15)
Val_b(t33,bs15)
Val_b(t34,bs15)
Val_b(t35,bs15)
Val_b(t36,bs15)

bs15_bs1015_ax: AXIOM
IMPLIES

Val_b(st,bs1004) AND
Val_b(hl,bs1004) AND
Val_b(f1l,bs1004) AND
Val_b(cof,bs1004) AND
Val_b(tol,bs1004) AND
Val_b(tos,bs1004) AND
Val_b(t18,bs1004) AND
Val_b(t23,bs1004) AND
Val_b(t24,bs1004) AND
Val_b(t25,bs1004) AND
Val_b(t28,bs1004) AND
Val_b(t30,bs1004) AND
Val_b(t31,bs1004) AND
Val_b(t32,bs1004) AND
Val_b(t33,bs1004) AND
Val_b(t34,bs1004) AND
Val_b(t35,bs1004) AND
Val_b(t36,bs1004))

beh_transition(bt21)

(Val_b(state,bs1015) = Val_b(state,bs15)

Val_b(st,bs1015)

Val_b(hl,bs1015)

Val_b(fl,bs1015)

Val_b(cof,bs1015)
Val_b(tol,bs1015)
Val_b(tos,bs1015)
Val_b(t18,bs1015)
Val_b(t23,bs1015)
Val_b(t24,bs1015)
Val_b(t25,bs1015)
Val_b(t28,bs1015)
Val_b(t30,bs1015)
Val_b(t31,bs1015)
Val_b(t32,bs1015)
Val_b(t33,bs1015)
Val_b(t34,bs1015)
Val_b(t35,bs1015)
Val_b(t36,bs1015)

bs1015_bs16_ax: AXIOM
IMPLIES

(Val_b(state,bs16)
Val_b(st,bsl6) =
Val_b(hl,bs16) =
Val_b(fl,bs16) =
Val_b(cof,bs16)
Val_b(tol,bs16)
Val_b(tos,bs16)
Val_b(t18,bs16)
Val_b(t23,bs16)
Val_b(t24,bs16)
Val_b(t25,bs16)
Val_b(t28,bs16)
Val_b(t30,bs16)
Val_b(t31,bs16)
Val_b(t32,bs16)
Val_b(t33,bs16)
Val_b(t34,bs16)
Val_b(t35,bs16)
Val_b(t36,bs16)

= Val_b(st,bs15) AND

= Val_b(hl,bs15) AND

= Val_b(fl,bs15) AND

Val_b(cof,bs15) AND
Val_b(tol,bs15) AND
Val_b(tos,bs15) AND
Val_b(t18,bs15) AND
Val_b(t23,bs15) AND
Val_b(t24,bs15) AND
Val_b(t25,bs15) AND

Val_b(t30,bs15) AND
Val_b(t31,bs15) AND
Val_b(t32,bs15) AND
Val_b(t33,bs15) AND
Val_b(t34,bs15) AND
Val_b(t35,bs15) AND
Val_b(t36,bs15))

beh_transition(bt22)

= Val_b(state,bs1015)
Val_b(st,bs1015) AND
Val_b(hl,bs1015) AND
Val_b(f1l,bs1015) AND
Val_b(cof,bs1015) AND
Val_b(tol,bs1015) AND
Val_b(tos,bs1015) AND
Val_b(t18,bs1015) AND
Val_b(t23,bs1015) AND
Val_b(t24,bs1015) AND
Val_b(t25,bs1015) AND
Val_b(t28,bs1015) AND
Val_b(t30,bs1015) AND
Val_b(t31,bs1015) AND
Val_b(t32,bs1015) AND
Val_b(t33,bs1015) AND
Val_b(t34,bs1015) AND
Val_b(t35,bs1015) AND
Val_b(t36,bs1015))

AND

AND

bb_eq(Val_b(state,bs15),CONST_0) AND

229

bs16_bs17_ax: AXIOM beh_transition(bt23)
LIES

IMP.

(Val_b(state,bs17) = Val_b(state,bs16) AND

Val_b(st,bs17)
Val_b(hl,bs17)
Val_b(f1l,bs17)

Val_b(st,bs16) AND
CONST_O AND
Val_b(fl,bs16) AND

Val_b(cof,bsl17) = Val_b(cof,bs16) AND
Val_b(tol,bs17) = Val_b(tol,bs16) AND
Val_b(tos,bs17) = Val_b(tos,bs16) AND
Val_b(t18,bs17) = Val_b(t18,bs16) AND
Val_b(t23,bs17) = Val_b(t23,bs16) AND
Val_b(t24,bs17) = Val_b(t24,bs16) AND
Val_b(t25,bs17) = Val_b(t25,bs16) AND
Val_b(t28,bs17) = Val_b(t28,bs16) AND
Val_b(t30,bs17) = Val_b(t30,bs16) AND
Val_b(t31,bsl17) = Val_b(t31,bs16) AND
Val_b(t32,bs17) = Val_b(t32,bs16) AND
Val_b(t33,bs17) = Val_b(t33,bs16) AND
Val_b(t34,bs17) = Val_b(t34,bs16) AND
Val_b(t35,bs17) = Val_b(t35,bs16) AND

Val_b(t36,bs17)

Val_b(t36,bs16))

bsl?_bsés_ax: AXIOM beh_transition(bt24)

IMPLIES
(Val_b(state,bs18) = Val_b(state,bs17) AND
Val_b(st,bs18) = Val_b(st,bs17) AND
Val_b(hl,bs18) = Val_b(hl,bs17) AND
Val_b(fl,bs18) = CONST_O AND
Val_b(cof,bs18) = Val_b(cof,bs17) AND
Val_b(tol,bs18) = Val_b(tol,bs17) AND
Val_b(tos,bs18) = Val_b(tos,bs17) AND
Val_b(t18,bs18) = Val_b(t18,bs17) AND
Val_b(t23,bs18) = Val_b(t23,bs17) AND
Val_b(t24,bs18) = Val_b(t24,bs17) AND
Val_b(t25,bs18) = Val_b(t25,bs17) AND
Val_b(t28,bs18) = Val_b(t28,bs17) AND
Val_b(t30,bs18) = Val_b(t30,bs17) AND
Val_b(t31,bs18) = Val_b(t31,bsl17) AND
Val_b(t32,bs18) = Val_b(t32,bs17) AND
Val_b(t33,bs18) = Val_b(t33,bs17) AND
Val_b(t34,bs18) = Val_b(t34,bs17) AND
Val_b(t35,bs18) = Val_b(t35,bs17) AND

Val_b(t36,bs18)

Val_b(t36,bs17))

bslS_bséOiS_ax: AXIOM beh_transition(bt25)

IMPLIES

(Val_b(state,bs1018) = Val_b(state,bs18) AND

bs1018_bs19_ax:

Val_b(st,bs1018)

Val_b(hl,bs1018)

Val_b(fl,bs1018)

Val_b(cof,bs1018)
Val_b(tol,bs1018)
Val_b(tos,bs1018)
Val_b(t18,bs1018)
Val_b(t23,bs1018)
Val_b(t24,bs1018)
Val_b(t25,bs1018)
Val_b(t28,bs1018)
Val_b(t30,bs1018)
Val_b(t31,bs1018)
Val_b(t32,bs1018)
Val_b(t33,bs1018)
Val_b(t34,bs1018)
Val_b(t35,bs1018)
Val_b(t36,bs1018)

IMPLIES
(Val_b(state,bs19) = Val_b(state,bs1018)

Val_b(st,bs18) AND

Val_b(hl,bs18) AND

Val_b(fl,bs18) AND

Val_b(cof,bs18) AND
Val_b(tol,bs18) AND
Val_b(tos,bs18) AND
Val_b(t18,bs18) AND
Val_b(t23,bs18) AND
Val_b(t24,bs18) AND
Val_b(t25,bs18) AND
Val_b(t28,bs18) AND

bb_eq(Val_b(tos,bs18),CONST_0) AND

Val_b(t31,bs18) AND
Val_b(t32,bs18) AND
Val_b(t33,bs18) AND
Val_b(t34,bs18) AND
Val_b(t35,bs18) AND
Val_b(t36,bs18))

AXIOM beh_transition(bt26)

AND

Val_b(st,bs19) =
Val_b(hl,bs19) =
Val_b(fl,bs19) =

Val_b(st,bs1018) AND
Val_b(hl,bs1018) AND
Val_b(f1l,bs1018) AND

Val_b(cof,bs19) = Val_b(cof,bs1018) AND
Val_b(tol,bs19) = Val_b(tol,bs1018) AND
Val_b(tos,bs19) = Val_b(tos,bs1018) AND
Val_b(t18,bs19) = Val_b(t18,bs1018) AND
Val_b(t23,bs19) = Val_b(t23,bs1018) AND
Val_b(t24,bs19) = Val_b(t24,bs1018) AND
Val_b(t25,bs19) = Val_b(t25,bs1018) AND
Val_b(t28,bs19) = Val_b(t28,bs1018) AND
Val_b(t30,bs19) = Val_b(t30,bs1018) AND

230

bs1018

Val_b(t31,bs19)

Val_b(t32,bs19)

Val_b(t33,bs19)

Val_b(t34,bs19)

Val_b(t35,bs19)

Val_b(t36,bs19)
bs19_bs20_ax: AXIOM
IMPLIES

Val_b(t31,bs1018) AND
Val_b(t32,bs1018) AND
Val_b(t33,bs1018) AND
Val_b(t34,bs1018) AND
Val_b(t35,bs1018) AND
Val_b(t36,bs1018))

beh_transition(bt27)

(Val_b(state,bs20) = CONST_O AND

Val_b(st,bs20)

Val_b(hl,bs20)

Val_b(f1l,bs20)

Val_b(cof,bs20)
Val_b(tol,bs20)
Val_b(tos,bs20)
Val_b(t18,bs20)
Val_b(t23,bs20)
Val_b(t24,bs20)
Val_b(t25,bs20)
Val_b(t28,bs20)
Val_b(t30,bs20)
Val_b(t31,bs20)
Val_b(t32,bs20)
Val_b(t33,bs20)
Val_b(t34,bs20)
Val_b(t35,bs20)
Val_b(t36,bs20)

bs20_bs42_ax: AXIOM

IMPLIES

= Val_b(st,bs19) AND

= Val_b(hl,bs19) AND

= Val_b(f1l,bs19) AND
Val_b(cof,bs19) AND
Val_b(tol,bs19) AND
Val_b(tos,bs19) AND
Val_b(t18,bs19) AND
Val_b(t23,bs19) AND
Val_b(t24,bs19) AND
Val_b(t25,bs19) AND
Val_b(t28,bs19) AND
Val_b(t30,bs19) AND
Val_b(t31,bs19) AND
Val_b(t32,bs19) AND
Val_b(t33,bs19) AND
Val_b(t34,bs19) AND
Val_b(t35,bs19) AND
Val_b(t36,bs19))

beh_transition(bt28)

(Val_b(state,bs42) = Val_b(state,bs20) AND

Val_b(st,bs42)

Val_b(hl,bs42)

Val_b(fl,bs42)

Val_b(cof,bs42)
Val_b(tol,bs42)
Val_b(tos,bs42)
Val_b(t18,bs42)
Val_b(t23,bs42)
Val_b(t24,bs42)
Val_b(t25,bs42)
Val_b(t28,bs42)
Val_b(t30,bs42)
Val_b(t31,bs42)
Val_b(t32,bs42)
Val_b(t33,bs42)
Val_b(t34,bs42)
Val_b(t35,bs42)
Val_b(t36,bs42)

IMPL

= CONST_O AND

= Val_b(hl,bs20) AND

= Val_b(f1l,bs20) AND
Val_b(cof,bs20) AND
Val_b(tol,bs20) AND
Val_b(tos,bs20) AND
Val_b(t18,bs20) AND
Val_b(t23,bs20) AND
Val_b(t24,bs20) AND
Val_b(t25,bs20) AND
Val_b(t28,bs20) AND
Val_b(t30,bs20) AND
Val_b(t31,bs20) AND
Val_b(t32,bs20) AND
Val_b(t33,bs20) AND
Val_b(t34,bs20) AND
Val_b(t35,bs20) AND
Val_b(t36,bs20))

TEg21_ax: AXIOM beh_transition(bt29)

(Val_b(state,bs21) = Val_b(state,bs1018) AND

Val_b(st,bs21)

Val_b(hl,bs21)

Val_b(fl,bs21)

Val_b(cof,bs21)
Val_b(tol,bs21)
Val_b(tos,bs21)
Val_b(t18,bs21)
Val_b(t23,bs21)
Val_b(t24,bs21)
Val_b(t25,bs21)
Val_b(t28,bs21)
Val_b(t30,bs21)
Val_b(t31,bs21)
Val_b(t32,bs21)
Val_b(t33,bs21)
Val_b(t34,bs21)
Val_b(t35,bs21)
Val_b(t36,bs21)

bs21_bs22_ax: AXIOM

IMPLIES

= Val_b(st,bs1018) AND

= Val_b(hl,bs1018) AND

= Val_b(£f1l,bs1018) AND
Val_b(cof,bs1018) AND
Val_b(tol,bs1018) AND
Val_b(tos,bs1018) AND
Val_b(t18,bs1018) AND
Val_b(t23,bs1018) AND
Val_b(t24,bs1018) AND
Val_b(t25,bs1018) AND
Val_b(t28,bs1018) AND
Val_b(t30,bs1018) AND
Val_b(t31,bs1018) AND
Val_b(t32,bs1018) AND
Val_b(t33,bs1018) AND
Val_b(t34,bs1018) AND
Val_b(t35,bs1018) AND
Val_b(t36,bs1018))

beh_transition(bt30)

(Val_b(state,bs22) = CONST_0 AND

Val_b(st,bs22)
Val_b(hl,bs22)
Val_b(fl,bs22)
Val_b(cof,bs22)
Val_b(tol,bs22)
Val_b(tos,bs22)

= Val_b(st,bs21) AND
= Val_b(hl,bs21) AND
= Val_b(f1,bs21) AND
Val_b(cof,bs21) AND
Val_b(tol,bs21) AND
Val_b(tos,bs21) AND

231

Val_b(t18,bs22)
Val_b(t23,bs22)
Val_b(t24,bs22)
Val_b(t25,bs22)
Val_b(t28,bs22)
Val_b(t30,bs22)
Val_b(t31,bs22)
Val_b(t32,bs22)
Val_b(t33,bs22)
Val_b(t34,bs22)
Val_b(t35,bs22)
Val_b(t36,bs22)

Val_b(t18,bs21) AND
Val_b(t23,bs21) AND
Val_b(t24,bs21) AND
Val_b(t25,bs21) AND
Val_b(t28,bs21) AND
Val_b(t30,bs21) AND
Val_b(t31,bs21) AND
Val_b(t32,bs21) AND
Val_b(t33,bs21) AND
Val_b(t34,bs21) AND
Val_b(t35,bs21) AND
Val_b(t36,bs21))

bs22_bs42_ax: AXIOM beh_transition(bt31)
IMPLIES

Val_b(st,bs42) = C
Val_b(hl,bs42) =V
Val_b(fl,bs42) =V
Val_b(cof,bs42)
Val_b(tol,bs42)
Val_b(tos,bs42)
Val_b(t18,bs42)
Val_b(t23,bs42)
Val_b(t24,bs42)
Val_b(t25,bs42)
Val_b(t28,bs42)
Val_b(t30,bs42)
Val_b(t31,bs42)
Val_b(t32,bs42)
Val_b(t33,bs42)
Val_b(t34,bs42)
Val_b(t35,bs42)
Val_b(t36,bs42)

(Val_b(state,bs42) = Val_b(state,bs22) AND

ONST_O AND
al_b(hl,bs22) AND
al_b(fl,bs22) AND
Val_b(cof,bs22) AND
Val_b(tol,bs22) AND
Val_b(tos,bs22) AND
Val_b(t18,bs22) AND
Val_b(t23,bs22) AND
Val_b(t24,bs22) AND
Val_b(t25,bs22) AND
Val_b(t28,bs22) AND
Val_b(t30,bs22) AND
Val_b(t31,bs22) AND
Val_b(t32,bs22) AND
Val_b(t33,bs22) AND
Val_b(t34,bs22) AND
Val_b(t35,bs22) AND
Val_b(t36,bs22))

bs1015_bs23_ax: AXIOM beh_transition(bt32)
IMPLIES

Val_b(st,bs23) =V
Val_b(hl,bs23) =V
Val_b(fl,bs23) =V
Val_b(cof,bs23)
Val_b(tol,bs23)
Val_b(tos,bs23)
Val_b(t18,bs23)
Val_b(t23,bs23)
Val_b(t24,bs23)
Val_b(t25,bs23)
Val_b(t28,bs23)
Val_b(t30,bs23)
Val_b(t31,bs23)
Val_b(t32,bs23)
Val_b(t33,bs23)
Val_b(t34,bs23)
Val_b(t35,bs23)
Val_b(t36,bs23)

bs23_bs1023_ax: AXIOM b
IMPLIES

Val_b(st,bs1023) =
Val_b(hl,bs1023) =
Val_b(fl,bs1023) =
Val_b(cof,bs1023)
Val_b(tol,bs1023)
Val_b(tos,bs1023)
Val_b(t18,bs1023)
Val_b(t23,bs1023)
Val_b(t24,bs1023)
Val_b(t25,bs1023)
Val_b(t28,bs1023)
Val_b(t30,bs1023)
Val_b(t31,bs1023)
Val_b(t32,bs1023)
Val_b(t33,bs1023)
Val_b(t34,bs1023)
Val_b(t35,bs1023)
Val_b(t36,bs1023)

(Val_b(state,bs23) = Val_b(state,bs1015) AND

al_b(st,bs1015) AND
al_b(hl,bs1015) AND
al_b(fl,bs1015) AND
Val_b(cof,bs1015) AND
Val_b(tol,bs1015) AND
Val_b(tos,bs1015) AND
Val_b(t18,bs1015) AND
Val_b(t23,bs1015) AND
Val_b(t24,bs1015) AND
Val_b(t25,bs1015) AND
Val_b(t28,bs1015) AND
Val_b(t30,bs1015) AND
Val_b(t31,bs1015) AND
Val_b(t32,bs1015) AND
Val_b(t33,bs1015) AND
Val_b(t34,bs1015) AND
Val_b(t35,bs1015) AND
Val_b(t36,bs1015))

eh_transition(bt33)

(Val_b(state,bs1023) = Val_b(state,bs23) AND

Val_b(st,bs23) AND
Val_b(hl,bs23) AND
Val_b(fl,bs23) AND
Val_b(cof,bs23) AND
Val_b(tol,bs23) AND
Val_b(tos,bs23) AND
Val_b(t18,bs23) AND
Val_b(t23,bs23) AND
Val_b(t24,bs23) AND
Val_b(t25,bs23) AND
Val_b(t28,bs23) AND
Val_b(t30,bs23) AND
bb_eq(Val_b(state,bs23),CONST_0) AND
Val_b(t32,bs23) AND
Val_b(t33,bs23) AND
Val_b(t34,bs23) AND
Val_b(t35,bs23) AND
Val_b(t36,bs23))

232

bs24_
IMP

bs25_ax: AXIOM beh_transition(bt35)
LIES

(Val_b(state,bs25) = Val_b(state,bs24) AND

Val_b(st,bs25)

Val_b(hl,bs25)

Val_b(fl,bs25)

Val_b(cof,bs25)
Val_b(tol,bs25)
Val_b(tos,bs25)
Val_b(t18,bs25)
Val_b(t23,bs25)
Val_b(t24,bs25)
Val_b(t25,bs25)
Val_b(t28,bs25)
Val_b(t30,bs25)
Val_b(t31,bs25)
Val_b(t32,bs25)
Val_b(t33,bs25)
Val_b(t34,bs25)
Val_b(t35,bs25)
Val_b(t36,bs25)

Val_b(st,bs24) AND
CONST_O AND
Val_b(fl,bs24) AND
Val_b(cof,bs24) AND
Val_b(tol,bs24) AND
Val_b(tos,bs24) AND
Val_b(t18,bs24) AND
Val_b(t23,bs24) AND
Val_b(t24,bs24) AND
Val_b(t25,bs24) AND
Val_b(t28,bs24) AND
Val_b(t30,bs24) AND
Val_b(t31,bs24) AND
Val_b(t32,bs24) AND
Val_b(t33,bs24) AND
Val_b(t34,bs24) AND
Val_b(t35,bs24) AND
Val_b(t36,bs24))

bs25_bs26_ax: AXIOM beh_transition(bt36)
IMPLIES

(Val_b(state,bs26) = Val_b(state,bs25)

Val_b(st,bs26)

Val_b(hl,bs26)

Val_b(fl,bs28)

Val_b(cof,bs26)
Val_b(tol,bs26)
Val_b(tos,bs26)
Val_b(t18,bs26)
Val_b(t23,bs26)
Val_b(t24,bs26)
Val_b(t25,bs26)
Val_b(t28,bs26)
Val_b(t30,bs26)
Val_b(t31,bs26)
Val_b(t32,bs26)
Val_b(t33,bs26)
Val_b(t34,bs26)
Val_b(t35,bs26)
Val_b(t36,bs26)

Val_b(st,bs25) AND
Val_b(hl,bs25) AND
CONST_O AND
Val_b(cof,bs25) AND
Val_b(tol,bs25) AND
Val_b(tos,bs25) AND
Val_b(t18,bs25) AND
Val_b(t23,bs25) AND
Val_b(t24,bs25) AND
Val_b(t25,bs25) AND
Val_b(t28,bs25) AND
Val_b(t30,bs25) AND
Val_b(t31,bs25) AND
Val_b(t32,bs25) AND
Val_b(t33,bs25) AND
Val_b(t34,bs25) AND
Val_b(t35,bs25) AND
Val_b(t36,bs25))

bs26_bs27_ax: AXIOM beh_transition(bt37)
IMPLIES

(Val_b(state,bs27) = Val_b(state,bs26)

Val_b(st,bs27)

Val_b(hl,bs27)

Val_b(fl,bs27)

Val_b(cof,bs27)
Val_b(tol,bs27)
Val_b(tos,bs27)
Val_b(t18,bs27)
Val_b(t23,bs27)
Val_b(t24,bs27)
Val_b(t25,bs27)
Val_b(t28,bs27)
Val_b(t30,bs27)
Val_b(t31,bs27)
Val_b(t32,bs27)
Val_b(t33,bs27)
Val_b(t34,bs27)
Val_b(t35,bs27)
Val_b(t36,bs27)

Val_b(st,bs26) AND

Val_b(hl,bs26) AND

Val_b(f1l,bs26) AND

Val_b(cof,bs26) AND
Val_b(tol,bs26) AND
Val_b(tos,bs26) AND
Val_b(t18,bs26) AND
Val_b(t23,bs26) AND
Val_b(t24,bs26) AND
Val_b(t25,bs26) AND
Val_b(t28,bs26) AND
Val_b(t30,bs26) AND
Val_b(t31,bs26) AND

bb_eq(Val_b(cof,bs26),CONST_0) AND

Val_b(t33,bs26) AND
Val_b(t34,bs26) AND
Val_b(t35,bs26) AND
Val_b(t36,bs26))

bs27_bs28_ax: AXIOM beh_transition(bt38)
IMPLIES

(Val_b(state,bs28) = Val_b(state,bs27)

Val_b(st,bs28)

Val_b(hl,bs28)

Val_b(f1,bs28)

Val_b(cof,bs28)
Val_b(tol,bs28)
Val_b(tos,bs28)
Val_b(t18,bs28)
Val_b(t23,bs28)
Val_b(t24,bs28)
Val_b(t25,bs28)
Val_b(t28,bs28)
Val_b(t30,bs28)

Val_b(st,bs27) AND

Val_b(hl,bs27) AND

Val_b(f1l,bs27) AND

Val_b(cof,bs27) AND
Val_b(tol,bs27) AND
Val_b(tos,bs27) AND
Val_b(t18,bs27) AND
Val_b(t23,bs27) AND
Val_b(t24,bs27) AND
Val_b(t25,bs27) AND
Val_b(t28,bs27) AND
Val_b(t30,bs27) AND

AND

AND

AND

233

Val_b(t31,bs28)
Val_b(t32,bs28)
Val_b(t33,bs28)
Val_b(t34,bs28)
Val_b(t35,bs28)
Val_b(t36,bs28)

Val_b(t31,bs27) AND
Val_b(t32,bs27) AND
bb_eq(Val_b(tol,bs27),CONST_0) AND
Val_b(t34,bs27) AND
Val_b(t35,bs27) AND
Val_b(t36,bs27))

bs28_bs1028_ax: AXIOM beh_transition(bt39)

IMPL

IES

(Val_b(state,bs1028) = Val_b(state,bs28) AND

Val_b(st,bs1028)

Val_b(hl,bs1028)

Val_b(fl,bs1028)

Val_b(cof,bs1028)
Val_b(tol,bs1028)
Val_b(tos,bs1028)
Val_b(t18,bs1028)
Val_b(t23,bs1028)
Val_b(t24,bs1028)
Val_b(t25,bs1028)
Val_b(t28,bs1028)
Val_b(t30,bs1028)
Val_b(t31,bs1028)
Val_b(t32,bs1028)
Val_b(t33,bs1028)
Val_b(t34,bs1028)
Val_b(t35,bs1028)
Val_b(t36,bs1028)

Val_b(st,bs28) AND
Val_b(hl,bs28) AND
Val_b(fl,bs28) AND
Val_b(cof,bs28) AND
Val_b(tol,bs28) AND
Val_b(tos,bs28) AND
Val_b(t18,bs28) AND
Val_b(t23,bs28) AND
Val_b(t24,bs28) AND
Val_b(t25,bs28) AND
Val_b(t28,bs28) AND
Val_b(t30,bs28) AND
Val_b(t31,bs28) AND
Val_b(t32,bs28) AND
Val_b(t33,bs28) AND
bb_plus(Val_b(t32,bs28),Val_b(t33,bs28)) AND
Val_b(t35,bs28) AND
Val_b(t36,bs28))

bs1028_bs29_ax: AXIOM beh_transition(bt40)
IMPLIES
(Val_b(state,bs29) = Val_b(state,bs1028) AND

Val_b(st,bs29) =
Val_b(hl,bs29) =
Val_b(fl,bs29) =
Val_b(cof,bs29) =
Val_b(tol,bs29) =
Val_b(tos,bs29) =
Val_b(t18,bs29) =
Val_b(t23,bs29) =
Val_b(t24,bs29) =
Val_b(t25,bs29) =
Val_b(t28,bs29) =
Val_b(t30,bs29) =
Val_b(t31,bs29) =
Val_b(t32,bs29) =
Val_b(t33,bs29) =
Val_b(t34,bs29) =
Val_b(t35,bs29) =

\
\
\

al_b(st,bs1028) AND

al_b(hl,bs1028) AND

al_b(fl,bs1028) AND

Val_b(cof,bs1028) AND
Val_b(tol,bs1028) AND
Val_b(tos,bs1028) AND
Val_b(t18,bs1028) AND
Val_b(t23,bs1028) AND
Val_b(t24,bs1028) AND
Val_b(t25,bs1028) AND
Val_b(t28,bs1028) AND
Val_b(t30,bs1028) AND
Val_b(t31,bs1028) AND
Val_b(t32,bs1028) AND
Val_b(t33,bs1028) AND
Val_b(t34,bs1028) AND
Val_b(t35,bs1028) AND

Val_b(t36,bs29)

bs29_bs30_ax: AXIOM
IMPLIES

Val_b(t36,bs1028))
beh_transition(bt41)

(Val_b(state,bs30) = CONST_0 AND

Val_b(st,bs30)
Val_b(hl,bs30)
Val_b(f1l,bs30)
Val_b(cof,bs30)
Val_b(tol,bs30)
Val_b(tos,bs30)
Val_b(t18,bs30)
Val_b(t23,bs30)
Val_b(t24,bs30)
Val_b(t25,bs30)
Val_b(t28,bs30)
Val_b(t30,bs30)
Val_b(t31,bs30)
Val_b(t32,bs30)
Val_b(t33,bs30)
Val_b(t34,bs30)
Val_b(t35,bs30)
Val_b(t36,bs30)
bs30_bs42_ax: AXIOM
IMPLIES

= Val_b(st,bs29) AND

= Val_b(hl,bs29) AND

= Val_b(f1l,bs29) AND
Val_b(cof,bs29) AND
Val_b(tol,bs29) AND
Val_b(tos,bs29) AND
Val_b(t18,bs29) AND
Val_b(t23,bs29) AND
Val_b(t24,bs29) AND
Val_b(t25,bs29) AND
Val_b(t28,bs29) AND
Val_b(t30,bs29) AND
Val_b(t31,bs29) AND
Val_b(t32,bs29) AND
Val_b(t33,bs29) AND
Val_b(t34,bs29) AND
Val_b(t35,bs29) AND
Val_b(t36,bs29))

beh_transition(bt42)

(Val_b(state,bs42) = Val_b(state,bs30) AND

Val_b(st,bs42)
Val_b(hl,bs42)
Val_b(fl,bs42)
Val_b(cof,bs42)
Val_b(tol,bs42)
Val_b(tos,bs42)

= CONST_O AND

= Val_b(hl,bs30) AND

= Val_b(f1l,bs30) AND
Val_b(cof,bs30) AND
Val_b(tol,bs30) AND
Val_b(tos,bs30) AND

234

Val_b(t18,bs42)
Val_b(t23,bs42)
Val_b(t24,bs42)
Val_b(t25,bs42)
Val_b(t28,bs42)
Val_b(t30,bs42)
Val_b(t31,bs42)
Val_b(t32,bs42)
Val_b(t33,bs42)
Val_b(t34,bs42)
Val_b(t35,bs42)
Val_b(t36,bs42)

Val_b(t18,bs30) AND
Val_b(t23,bs30) AND
Val_b(t24,bs30) AND
Val_b(t25,bs30) AND
Val_b(t28,bs30) AND
Val_b(t30,bs30) AND
Val_b(t31,bs30) AND
Val_b(t32,bs30) AND
Val_b(t33,bs30) AND
Val_b(t34,bs30) AND
Val_b(t35,bs30) AND
Val_b(t36,bs30))

bs1028_bs31_ax: AXIOM beh_transition(bt43)
IMPLIES

(Val_b(state,bs31) = Val_b(state,bs1028) AND
Val_b(st,bs31) = Val_b(st,bs1028) AND

Val_b(hl,bs31)

Val_b(fl,bs31)

Val_b(cof,bs31)
Val_b(tol,bs31)
Val_b(tos,bs31)
Val_b(t18,bs31)
Val_b(t23,bs31)
Val_b(t24,bs31)
Val_b(t25,bs31)
Val_b(t28,bs31)
Val_b(t30,bs31)
Val_b(t31,bs31)
Val_b(t32,bs31)
Val_b(t33,bs31)
Val_b(t34,bs31)
Val_b(t35,bs31)
Val_b(t36,bs31)

Val_b(hl,bs1028) AND
Val_b(f1l,bs1028) AND
Val_b(cof,bs1028) AND
Val_b(tol,bs1028) AND
Val_b(tos,bs1028) AND
Val_b(t18,bs1028) AND
Val_b(t23,bs1028) AND
Val_b(t24,bs1028) AND
Val_b(t25,bs1028) AND
Val_b(t28,bs1028) AND
Val_b(t30,bs1028) AND
Val_b(t31,bs1028) AND
Val_b(t32,bs1028) AND
Val_b(t33,bs1028) AND
Val_b(t34,bs1028) AND
Val_b(t35,bs1028) AND
Val_b(t36,bs1028))

bs31_bs32_ax: AXIOM beh_transition(bt44)
IMPLIES

(Val_b(state,bs32) = CONST_O AND
Val_b(st,bs32) = Val_b(st,bs31) AND

Val_b(hl,bs32)

Val_b(fl,bs32)

Val_b(cof,bs32)
Val_b(tol,bs32)
Val_b(tos,bs32)
Val_b(t18,bs32)
Val_b(t23,bs32)
Val_b(t24,bs32)
Val_b(t25,bs32)
Val_b(t28,bs32)
Val_b(t30,bs32)
Val_b(t31,bs32)
Val_b(t32,bs32)
Val_b(t33,bs32)
Val_b(t34,bs32)
Val_b(t35,bs32)
Val_b(t36,bs32)

Val_b(hl,bs31) AND
Val_b(f1l,bs31) AND
Val_b(cof,bs31) AND
Val_b(tol,bs31) AND
Val_b(tos,bs31) AND
Val_b(t18,bs31) AND
Val_b(t23,bs31) AND
Val_b(t24,bs31) AND
Val_b(t25,bs31) AND
Val_b(t28,bs31) AND
Val_b(t30,bs31) AND
Val_b(t31,bs31) AND
Val_b(t32,bs31) AND
Val_b(t33,bs31) AND
Val_b(t34,bs31) AND
Val_b(t35,bs31) AND
Val_b(t36,bs31))

bs32_bs42_ax: AXIOM beh_transition(bt45)
IMPLIES

(Val_b(state,bs42) = Val_b(state,bs32) AND
Val_b(st,bs42) = CONST_O AND

Val_b(hl,bs42)

Val_b(fl,bs42)

Val_b(cof,bs42)
Val_b(tol,bs42)
Val_b(tos,bs42)
Val_b(t18,bs42)
Val_b(t23,bs42)
Val_b(t24,bs42)
Val_b(t25,bs42)
Val_b(t28,bs42)
Val_b(t30,bs42)
Val_b(t31,bs42)
Val_b(t32,bs42)
Val_b(t33,bs42)
Val_b(t34,bs42)
Val_b(t35,bs42)
Val_b(t36,bs42)

Val_b(hl,bs32) AND
Val_b(f1l,bs32) AND
Val_b(cof,bs32) AND
Val_b(tol,bs32) AND
Val_b(tos,bs32) AND
Val_b(t18,bs32) AND
Val_b(t23,bs32) AND
Val_b(t24,bs32) AND
Val_b(t25,bs32) AND
Val_b(t28,bs32) AND
Val_b(t30,bs32) AND
Val_b(t31,bs32) AND
Val_b(t32,bs32) AND
Val_b(t33,bs32) AND
Val_b(t34,bs32) AND
Val_b(t35,bs32) AND
Val_b(t36,bs32))

235

bs1023
IMPL

bs33_bs

_b§33_ax: AXIOM beh_transition(bt46)
IE

(Val_b(state,bs33) = Val_b(state,bs1023) AND
Val_b(st,bs1023) AND
Val_b(hl,bs1023) AND
Val_b(f1l,bs1023) AND

Val_b(st,bs33)

Val_b(hl,bs33)

Val_b(f1l,bs33)

Val_b(cof,bs33)
Val_b(tol,bs33)
Val_b(tos,bs33)
Val_b(t18,bs33)
Val_b(t23,bs33)
Val_b(t24,bs33)
Val_b(t25,bs33)
Val_b(t28,bs33)
Val_b(t30,bs33)
Val_b(t31,bs33)
Val_b(t32,bs33)
Val_b(t33,bs33)
Val_b(t34,bs33)
Val_b(t35,bs33)
Val_b(t36,bs33)

IMPLIES
(Val_b(state,bs1033) = Val_b(state,bs33)
Val_b(st,bs1033) = Val_b(st,bs33) AND
Val_b(hl,bs33) AND
Val_b(f1l,bs33) AND

bs1033
IMPL

Val_b(hl,bs1033)

Val_b(£f1,bs1033)

Val_b(cof,bs1033)
Val_b(tol,bs1033)
Val_b(tos,bs1033)
Val_b(t18,bs1033)
Val_b(t23,bs1033)
Val_b(t24,bs1033)
Val_b(t25,bs1033)
Val_b(t28,bs1033)
Val_b(t30,bs1033)
Val_b(t31,bs1033)
Val_b(t32,bs1033)
Val_b(t33,bs1033)
Val_b(t34,bs1033)
Val_b(t35,bs1033)
Val_b(t36,bs1033)

Val_b(cof,bs1023)
Val_b(tol,bs1023)
Val_b(tos,bs1023)
Val_b(t18,bs1023)
Val_b(t23,bs1023)
Val_b(t24,bs1023)
Val_b(t25,bs1023)
Val_b(t28,bs1023)
Val_b(t30,bs1023)
Val_b(t31,bs1023)
Val_b(t32,bs1023)
Val_b(t33,bs1023)
Val_b(t34,bs1023)
Val_b(t35,bs1023)

Val_b(t36,bs1023))
1033_ax: AXIOM beh_transition(bt47)
E

Val_b(cof,bs33)
Val_b(tol,bs33)
Val_b(tos,bs33)
Val_b(t18,bs33)
Val_b(t23,bs33)
Val_b(t24,bs33)
Val_b(t25,bs33)
Val_b(t28,bs33)
Val_b(t30,bs33)
Val_b(t31,bs33)
Val_b(t32,bs33)
Val_b(t33,bs33)
Val_b(t34,bs33)

AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND

AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND

AND

(Val_b(state,bs34) = Val_b(state,bs1033) AND
Val_b(st,bs1033) AND
Val_b(hl,bs1033) AND
Val_b(f1l,bs1033) AND

Val_b(st,bs34) =
Val_b(hl,bs34) =
Val_b(fl,bs34) =
Val_b(cof,bs34)
Val_b(tol,bs34)
Val_b(tos,bs34)
Val_b(t18,bs34)
Val_b(t23,bs34)
Val_b(t24,bs34)
Val_b(t25,bs34)
Val_b(t28,bs34)
Val_b(t30,bs34)
Val_b(t31,bs34)
Val_b(t32,bs34)
Val_b(t33,bs34)
Val_b(t34,bs34)
Val_b(t35,bs34)
Val_b(t36,bs34)

Val_b(cof,bs1033)
Val_b(tol,bs1033)
Val_b(tos,bs1033)
Val_b(t18,bs1033)
Val_b(t23,bs1033)
Val_b(t24,bs1033)
Val_b(t25,bs1033)
Val_b(t28,bs1033)
Val_b(t30,bs1033)
Val_b(t31,bs1033)
Val_b(t32,bs1033)
Val_b(t33,bs1033)
Val_b(t34,bs1033)
Val_b(t35,bs1033)

Val_b(t36,bs1033))

bs34_bs35_ax: AXIOM beh_transition(bt49)
IMPLIES
(Val_b(state,bs35) = Val_b(state,bs34) AND

Val_b(st,bs35) =
Val_b(hl,bs35) =
Val_b(fl,bs35) =
Val_b(cof,bs35)
Val_b(tol,bs35)
Val_b(tos,bs35)
Val_b(t18,bs35)
Val_b(t23,bs35)
Val_b(t24,bs35)
Val_b(t25,bs35)
Val_b(t28,bs35)
Val_b(t30,bs35)

Val_b(st,bs34) AND

C

Val_b(f1,bs34) AND

AND
AND
AND
AND
AND
AND
AND
AND
AND

ONST_O AND

Val_b(cof,bs34)
Val_b(tol,bs34)
Val_b(tos,bs34)
Val_b(t18,bs34)
Val_b(t23,bs34)
Val_b(t24,bs34)
Val_b(t25,bs34)
Val_b(t28,bs34)
Val_b(t30,bs34)

AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND

bb_eq(Val_b(state,bs33),CONST_0) AND
Val_b(t36,bs33))

_b§34_ax: AXIOM beh_transition(bt48)
IE

236

bs35_
IMP

bs1036
IMPL

bs37_bs
IMPLIES

Val_b(t31,bs35)
Val_b(t32,bs35)
Val_b(t33,bs35)
Val_b(t34,bs35)
Val_b(t35,bs35)
Val_b(t36,bs35)

Val_b(t31,bs34) AND
Val_b(t32,bs34) AND
Val_b(t33,bs34) AND
Val_b(t34,bs34) AND
Val_b(t35,bs34) AND
Val_b(t36,bs34))

bs36_ax: AXIOM beh_transition(bt50)
LIES

(Val_b(state,bs36) = Val_b(state,bs35) AND

Val_b(st,bs36) =
Val_b(hl,bs36) =
Val_b(fl,bs36) =
Val_b(cof,bs36)
Val_b(tol,bs36)
Val_b(tos,bs36)
Val_b(t18,bs36)
Val_b(t23,bs36)
Val_b(t24,bs36)
Val_b(t25,bs36)
Val_b(t28,bs36)
Val_b(t30,bs36)
Val_b(t31,bs36)
Val_b(t32,bs36)
Val_b(t33,bs36)
Val_b(t34,bs36)
Val_b(t35,bs36)
Val_b(t36,bs36)

v
\
C

al_b(st,bs35) AND
al_b(hl,bs35) AND
ONST_O AND
Val_b(cof,bs35) AND
Val_b(tol,bs35) AND
Val_b(tos,bs35) AND
Val_b(t18,bs35) AND
Val_b(t23,bs35) AND
Val_b(t24,bs35) AND
Val_b(t25,bs35) AND
Val_b(t28,bs35) AND
Val_b(t30,bs35) AND
Val_b(t31,bs35) AND
Val_b(t32,bs35) AND
Val_b(t33,bs35) AND
Val_b(t34,bs35) AND
Val_b(t35,bs35) AND
Val_b(t36,bs35))

bs36_bs1036_ax: AXIOM beh_transition(bt51)
IMPLIES

(Val_b(state,bs1036) = Val_b(state,bs36) AND

Val_b(st,bs1036)

Val_b(hl,bs1036)

Val_b(f1,bs1036)

Val_b(cof,bs1036)
Val_b(tol,bs1036)
Val_b(tos,bs1036)
Val_b(t18,bs1036)
Val_b(t23,bs1036)
Val_b(t24,bs1036)
Val_b(t25,bs1036)
Val_b(t28,bs1036)
Val_b(t30,bs1036)
Val_b(t31,bs1036)
Val_b(t32,bs1036)
Val_b(t33,bs1036)
Val_b(t34,bs1036)
Val_b(t35,bs1036)
Val_b(t36,bs1036)

Val_b(st,bs36) AND
Val_b(hl,bs36) AND
Val_b(fl,bs36) AND
Val_b(cof,bs36) AND
Val_b(tol,bs36) AND
Val_b(tos,bs36) AND
Val_b(t18,bs36) AND
Val_b(t23,bs36) AND
Val_b(t24,bs36) AND
Val_b(t25,bs36) AND
Val_b(t28,bs36) AND
Val_b(t30,bs36) AND
Val_b(t31,bs36) AND
Val_b(t32,bs36) AND
Val_b(t33,bs36) AND
Val_b(t34,bs36) AND
Val_b(t35,bs36) AND
bb_eq(Val_b(tos,bs36),CONST_0))

_b§37_ax: AXIOM beh_transition(bt52)
IE

(Val_b(state,bs37) = Val_b(state,bs1036) AND

Val_b(st,bs37) =
Val_b(hl,bs37) =
Val_b(fl,bs37) =
Val_b(cof,bs37)
Val_b(tol,bs37)
Val_b(tos,bs37)
Val_b(t18,bs37)
Val_b(t23,bs37)
Val_b(t24,bs37)
Val_b(t25,bs37)
Val_b(t28,bs37)
Val_b(t30,bs37)
Val_b(t31,bs37)
Val_b(t32,bs37)
Val_b(t33,bs37)
Val_b(t34,bs37)
Val_b(t35,bs37)
Val_b(t36,bs37)

\
\
\

al_b(st,bs1036) AND
al_b(hl,bs1036) AND
al_b(fl,bs1036) AND
Val_b(cof,bs1036) AND
Val_b(tol,bs1036) AND
Val_b(tos,bs1036) AND
Val_b(t18,bs1036) AND
Val_b(t23,bs1036) AND
Val_b(t24,bs1036) AND
Val_b(t25,bs1036) AND
Val_b(t28,bs1036) AND
Val_b(t30,bs1036) AND
Val_b(t31,bs1036) AND
Val_b(t32,bs1036) AND
Val_b(t33,bs1036) AND
Val_b(t34,bs1036) AND
Val_b(t35,bs1036) AND
Val_b(t36,bs1036))

38_ax: AXIOM beh_transition(bt53)
E

(Val_b(state,bs38) = CONST_0 AND

Val_b(st,bs38) =
Val_b(hl,bs38) =
Val_b(fl,bs38) =
Val_b(cof,bs38)
Val_b(tol,bs38)
Val_b(tos,bs38)

\
\
A\

al_b(st,bs37) AND
al_b(hl,bs37) AND
al_b(f1l,bs37) AND
Val_b(cof,bs37) AND
Val_b(tol,bs37) AND
Val_b(tos,bs37) AND

237

Val_b(t18,bs38)
Val_b(t23,bs38)
Val_b(t24,bs38)
Val_b(t25,bs38)
Val_b(t28,bs38)
Val_b(t30,bs38)
Val_b(t31,bs38)
Val_b(t32,bs38)
Val_b(t33,bs38)
Val_b(t34,bs38)
Val_b(t35,bs38)
Val_b(t36,bs38)

Val_b(t18,bs37) AND
Val_b(t23,bs37) AND
Val_b(t24,bs37) AND
Val_b(t25,bs37) AND
Val_b(t28,bs37) AND
Val_b(t30,bs37) AND
Val_b(t31,bs37) AND
Val_b(t32,bs37) AND
Val_b(t33,bs37) AND
Val_b(t34,bs37) AND
Val_b(t35,bs37) AND
Val_b(t36,bs37))

bs38_bs42_ax: AXIOM beh_transition(bt54)
IMPLIES

(Val_b(state,bs42) = Val_b(state,bs38) AND

Val_b(st,bs42)

Val_b(hl,bs42)

Val_b(fl,bs42)

Val_b(cof,bs42)
Val_b(tol,bs42)
Val_b(tos,bs42)
Val_b(t18,bs42)
Val_b(t23,bs42)
Val_b(t24,bs42)
Val_b(t25,bs42)
Val_b(t28,bs42)
Val_b(t30,bs42)
Val_b(t31,bs42)
Val_b(t32,bs42)
Val_b(t33,bs42)
Val_b(t34,bs42)
Val_b(t35,bs42)
Val_b(t36,bs42)

CONST_O AND
Val_b(hl,bs38) AND
Val_b(f1l,bs38) AND
Val_b(cof,bs38) AND
Val_b(tol,bs38) AND
Val_b(tos,bs38) AND
Val_b(t18,bs38) AND
Val_b(t23,bs38) AND
Val_b(t24,bs38) AND
Val_b(t25,bs38) AND
Val_b(t28,bs38) AND
Val_b(t30,bs38) AND
Val_b(t31,bs38) AND
Val_b(t32,bs38) AND
Val_b(t33,bs38) AND
Val_b(t34,bs38) AND
Val_b(t35,bs38) AND
Val_b(t36,bs38))

bs1036_bs39_ax: AXIOM beh_transition(bt55)
IMPLIES

(Val_b(state,bs39) = Val_b(state,bs1036) AND

Val_b(st,bs39)

Val_b(hl,bs39)

Val_b(f1l,bs39)

Val_b(cof,bs39)
Val_b(tol,bs39)
Val_b(tos,bs39)
Val_b(t18,bs39)
Val_b(t23,bs39)
Val_b(t24,bs39)
Val_b(t25,bs39)
Val_b(t28,bs39)
Val_b(t30,bs39)
Val_b(t31,bs39)
Val_b(t32,bs39)
Val_b(t33,bs39)
Val_b(t34,bs39)
Val_b(t35,bs39)
Val_b(t36,bs39)

Val_b(st,bs1036) AND
Val_b(hl,bs1036) AND
Val_b(f1l,bs1036) AND
Val_b(cof,bs1036) AND
Val_b(tol,bs1036) AND
Val_b(tos,bs1036) AND
Val_b(t18,bs1036) AND
Val_b(t23,bs1036) AND
Val_b(t24,bs1036) AND
Val_b(t25,bs1036) AND
Val_b(t28,bs1036) AND
Val_b(t30,bs1036) AND
Val_b(t31,bs1036) AND
Val_b(t32,bs1036) AND
Val_b(t33,bs1036) AND
Val_b(t34,bs1036) AND
Val_b(t35,bs1036) AND
Val_b(t36,bs1036))

bs39_bs40_ax: AXIOM beh_transition(bt56)
IMPLIES

(Val_b(state,bs40) = CONST_O AND
Val_b(st,bs40) = Val_b(st,bs39) AND

Val_b(hl,bs40)

Val_b(fl,bs40)

Val_b(cof,bs40)
Val_b(tol,bs40)
Val_b(tos,bs40)
Val_b(t18,bs40)
Val_b(t23,bs40)
Val_b(t24,bs40)
Val_b(t25,bs40)
Val_b(t28,bs40)
Val_b(t30,bs40)
Val_b(t31,bs40)
Val_b(t32,bs40)
Val_b(t33,bs40)
Val_b(t34,bs40)
Val_b(t35,bs40)
Val_b(t36,bs40)

Val_b(hl,bs39) AND
Val_b(£f1l,bs39) AND
Val_b(cof,bs39) AND
Val_b(tol,bs39) AND
Val_b(tos,bs39) AND
Val_b(t18,bs39) AND
Val_b(t23,bs39) AND
Val_b(t24,bs39) AND
Val_b(t25,bs39) AND
Val_b(t28,bs39) AND
Val_b(t30,bs39) AND
Val_b(t31,bs39) AND
Val_b(t32,bs39) AND
Val_b(t33,bs39) AND
Val_b(t34,bs39) AND
Val_b(t35,bs39) AND
Val_b(t36,bs39))

238

bs40_

bs1033

IMP

bs42_ax: AXIOM beh_transition(bt57)
LIES

(Val_b(state,bs42) = Val_b(state,bs40) AND

Val_b(st,bs42)

Val_b(hl,bs42)

Val_b(fl,bs42)

Val_b(cof,bs42)
Val_b(tol,bs42)
Val_b(tos,bs42)
Val_b(t18,bs42)
Val_b(t23,bs42)
Val_b(t24,bs42)
Val_b(t25,bs42)
Val_b(t28,bs42)
Val_b(t30,bs42)
Val_b(t31,bs42)
Val_b(t32,bs42)
Val_b(t33,bs42)
Val_b(t34,bs42)
Val_b(t35,bs42)
Val_b(t36,bs42)

IMPL

CONST_O AND
Val_b(hl,bs40) AND
Val_b(f1l,bs40) AND
Val_b(cof,bs40) AND
Val_b(tol,bs40) AND
Val_b(tos,bs40) AND
Val_b(t18,bs40) AND
Val_b(t23,bs40) AND
Val_b(t24,bs40) AND
Val_b(t25,bs40) AND
Val_b(t28,bs40) AND
Val_b(t30,bs40) AND
Val_b(t31,bs40) AND
Val_b(t32,bs40) AND
Val_b(t33,bs40) AND
Val_b(t34,bs40) AND
Val_b(t35,bs40) AND
Val_b(t36,bs40))

TEg42_ax: AXIOM beh_transition(bt58)

(Val_b(state,bs42) = Val_b(state,bs1033) AND

Val_b(st,bs42)

Val_b(hl,bs42)

Val_b(fl,bs42)

Val_b(cof,bs42)
Val_b(tol,bs42)
Val_b(tos,bs42)
Val_b(t18,bs42)
Val_b(t23,bs42)
Val_b(t24,bs42)
Val_b(t25,bs42)
Val_b(t28,bs42)
Val_b(t30,bs42)
Val_b(t31,bs42)
Val_b(t32,bs42)
Val_b(t33,bs42)
Val_b(t34,bs42)
Val_b(t35,bs42)
Val_b(t36,bs42)

Val_b(st,bs1033) AND
Val_b(hl,bs1033) AND
Val_b(f1l,bs1033) AND
Val_b(cof,bs1033) AND
Val_b(tol,bs1033) AND
Val_b(tos,bs1033) AND
Val_b(t18,bs1033) AND
Val_b(t23,bs1033) AND
Val_b(t24,bs1033) AND
Val_b(t25,bs1033) AND
Val_b(t28,bs1033) AND
Val_b(t30,bs1033) AND
Val_b(t31,bs1033) AND
Val_b(t32,bs1033) AND
Val_b(t33,bs1033) AND
Val_b(t34,bs1033) AND
Val_b(t35,bs1033) AND
Val_b(t36,bs1033))

Figure B.6: TLC Behavior Axioms

239

% Data=-Path Axioms

asserta_register_1_1d
asserta_register_2_1d
asserta_register_3_1d
asserta_register_4_1d
asserta_register_5_1d
asserta_register_6_1d
asserta_register_7_1d
asserta_register_8_1d

: PRED

: PRED[rtl_state]
: PRED[rtl_state]
: PRED[rtl_statel]
: PRED[rtl_state]
: PRED[rtl_state]
: PRED[rtl_state]
: PRED[rtl_state]

PRED[rtl_state]

asserta_mux_1_sel_0 [rtl_state]
asserta_mux_1_sel_1 : PRED[rtl_state]
asserta_mux_1_sel_2 : PRED[rtl_state]
asserta_mux_2_sel_0 : PRED[rtl_state]

asserta_mux_2_sel_1
asserta_mux_2_sel_2

: PRED[rtl_state]
: PRED[rtl_state]

asserta_mux_3_sel_0 : PRED[rtl_state]
asserta_mux_3_sel_1 : PRED[rtl_state]
asserta_mux_3_sel_2 : PRED[rtl_state]
asserta_mux_3_sel_3 : PRED[rtl_state]
asserta_mux_4_sel_0 : PRED[rtl_state]
asserta_mux_4_sel_1 : PRED[rtl_state]
asserta_mux_4_sel_2 : PRED[rtl_state]
asserta_mux_5_sel_0 : PRED[rtl_state]

asserta_mux_5_sel_1
asserta_mux_6_sel_0

: PRED[rtl_state]
: PRED[rtl_state]

asserta_mux_6_sel_1 : PRED[rtl_state]
asserta_mux_7_sel_0 : PRED[rtl_state]
asserta_mux_8_sel_0 : PRED[rtl_state]
asserta_mux_8_sel_1 : PRED[rtl_state]

asserta_mux_9_sel_0

asserta_register_1_ld_ax

: AXIOM

asserta_register_2_1d_ax
asserta_register_3_1d_ax
asserta_register_4_ld_ax
asserta_register_5_1d_ax
asserta_register_6_ld_ax
asserta_register_7_1d_ax
asserta_register_8_ld_ax
asserta_mux_1_sel_0_ax
asserta_mux_1_sel_0(s) =
asserta_mux_1_sel_1_ax
asserta_mux_1_sel_2_ax
asserta_mux_2_sel_0_ax

asserta_mux_2_sel_0(s) =

(FORALL (s
= Control_Signal(s,20))

(FORALL (s

asserta_mux_2_sel_1_ax

asserta_mux_2_sel_2_ax
asserta_mux_2_sel_2(s) =

asserta_mux_3_sel_0O_ax
asserta_mux_3_sel_1_ax

asserta_mux_3_sel_2_ax
asserta_mux_3_sel_2(s) =

asserta_mux_3_sel_3_ax
asserta_mux_3_sel_3(s) =

asserta_mux_4_sel_0_ax (FORALL (s

asserta_mux_4_sel_0(s) =

asserta_mux_4_sel_1_ax
asserta_mux_4_sel_1(s) =

asserta_register_1_1d(s)
asserta_register_2_1d(s)
asserta_register_3_1d(s)
asserta_register_4_1d(s)
asserta_register_5_1d(s)
asserta_register_6_1d(s)
asserta_register_7_1d(s)

asserta_register_8_1d(s)
: AXIOM

: AXIOM
asserta_mux_1_sel_1(s)

: AXIOM
asserta_mux_1_sel_2(s)

: AXIOM

: AXIOM
asserta_mux_2_sel_1(s)

: AXIOM
: AXIOM

asserta_mux_3_sel_0(s)
: AXIOM

asserta_mux_3_sel_1(s)
: AXIOM
: AXIOM
: AXIOM

: AXIOM

: AXIOM
: AXIOM
: AXIOM
: AXIOM
: AXIOM
: AXIOM
: AXIOM
(FORALL (s
(FORALL (s

= Control_Signal(s,17))

(FORALL (s
= Control_Signal(s,16))

(FORALL (s

(FORALL (s
= Control_Signal(s,25))

(FORALL (s
= Control_Signal(s,24))
(FORALL (s

(FORALL (s

(FORALL (s

: PRED[rtl_state]

(FORALL (s : rtl_state)
= Control_Signal(s,1))
(FORALL (s : rtl_state)
= Control_Signal(s,3))
(FORALL (s : rtl_state)
= Control_Signal(s,5))

(FORALL (s : rtl_state)
= Control_Signal(s,7))
(FORALL (s : rtl_state)
= Control_Signal(s,9))

(FORALL (s : rtl_state)
= Control_Signal(s,11))

(FORALL (s : rtl_state)
= Control_Signal(s,13))

(FORALL (s : rtl_state)
= Control_Signal(s,15))

: rtl_state)
Control_Signal(s,18))

: rtl_state)
: rtl_state)

: rtl_state)
Control_Signal(s,21))

: rtl_state)

: rtl_state)
Control_Signal(s,19))

: rtl_state)
: rtl_state)

: rtl_state)
Control_Signal(s,23))

: rtl_state)
Control_Signal(s,22))

: rtl_state)
Control_Signal(s,28))

: rtl_state)
Control_Signal(s,27))

240

asserta_

asserta_

asserta_

asserta_

asserta_

asserta_

asserta_

asserta_

mux_4_sel_2_ax : AXIOM
asserta_mux_4_sel_2(s)
mux_5_sel_O_ax : AXIOM
asserta_mux_5_sel_0(s)
mux_5_sel_1_ax : AXIOM
asserta_mux_5_sel_1(s)
mux_6_sel_O_ax : AXIOM
asserta_mux_6_sel_0(s)
mux_6_sel_1_ax : AXIOM
asserta_mux_6_sel_1(s)
mux_7_sel_0O_ax : AXIOM
asserta_mux_7_sel_0(s)
mux_8_sel_0_ax : AXIOM
asserta_mux_8_sel_0(s)

mux_8_sel_1_ax : AXIOM
asserta_mux_8_sel_1(s)

(FORALL (s : rtl_state)
= Control_Signal(s,26))

(FORALL (s : rtl_state)
= Control_Signal(s,30))
(FORALL (s : rtl_state)
= Control_Signal(s,29))
(FORALL (s : rtl_state)
= Control_Signal(s,32))
(FORALL (s : rtl_state)
= Control_Signal(s,31))
(FORALL (s : rtl_state)
= Control_Signal(s,33))
(FORALL (s : rtl_state)
= Control_Signal(s,35))

(FORALL (s : rtl_state)
= Control_Signal(s,34))

asserta_mux_9_sel_O_ax : AXIOM (FORALL (s : rtl_state)
asserta_mux_9_sel_0(s) = Control_Signal(s,36))
asserta_eq_O_ax

AXIOM asserta_eq(asserta_register_1_outl,asserta_mux_8_outl,asserta_eq_O_outl)

asserta_eq_1_ax

AXIOM asserta_eq(asserta_register_1_outl,asserta_mux_9_outl,asserta_eq_1_outl)

asserta_eq_2_ax

AXIOM asserta_eq(asserta_register_2_outl,asserta_constreg_0_outl,asserta_eq_2_outl)

asserta_adder_3_ax :

AXIOM asserta_adder(asserta_register_3_outl,asserta_register_4_outl,asserta_adder_3_outl)

asserta_adder_4_ax

AXIOM asserta_adder(asserta_register_3_out1,asserta_register_4_out1,asserta_adder_4_out1)

asserta_register_1_ax

AXIOM asserta_register(asserta_mux_l_outi,asserta_register_i_ld,asserta_register_l_outl)

asserta_register_2_ax

AXIOM asserta_register(asserta_mux_Q_outi,asserta_register_2_ld,asserta_register_2_out1)

asserta_register_3_ax

AXIOM asserta_register(asserta_mux_3_outl,asserta_register_3_ld,asserta_register_3_outl)

asserta_register_4_ax

AXIOM asserta_register(asserta_mux_4_outl,asserta_register_4_ld,asserta_register_4_outl)

asserta_register_s_ax

AXIOM asserta_register(asserta_mux_5_outl,asserta_register_5_ld,asserta_register_5_outl)

asserta_register_6_ax

AXIOM asserta_register(asserta_mux_6_outl,asserta_register_6_ld,asserta_register_6_outl)

asserta_register_7_ax

AXIOM asserta_register(asserta_mux_7_outl,asserta_register_7_ld,asserta_register_7_outl)

asserta_register_8_ax

AXIOM asserta_register(asserta_eq_0_outl,asserta_register_8_ld,asserta_register_8_outl)

asserta_mux_1_ax :

AXIOM asserta_mux_8_1(asserta_register_4_outl,asserta_constreg_O_outl,UNCONNECTED,
asserta_register_2_outl,asserta_constreg_O_outl,asserta_constreg_O_outl,
asserta_register_3_outl,UNCONNECTED,asserta_mux_1_sel_0,
asserta_mux_1_sel_1,asserta_mux_1_sel_2,asserta_mux_1_outl)

asserta_mux_2_ax :

AXIOM asserta_mux_8_1(asserta_register_3_outl,asserta_constreg_O_outl,UNCONNECTED,
asserta_register_5_outl,asserta_constreg _O_outl,asserta_register_4_outl,
asserta_constreg_0_outl,UNCONNECTED,asserta_mux_2_sel_0,
asserta_mux_2_sel_1,asserta_mux_2_sel_2,asserta_mux_2_outl)

asserta_mux_3_ax :

AXIOM asserta_mux_16_1(asserta_adder_3_outl,asserta_eq_1_outl,asserta_constreg_O_outl,
asserta_register_6_outl,asserta_constreg_O_outl,asserta_constreg_O_outl,
asserta_adder_4_outl,asserta_constreg_O_outl,asserta_register_5_outl,
asserta_register_1_outl,asserta_register_4_outl,UNCONNECTED,UNCONNECTED,
UNCONNECTED ,UNCONNECTED ,UNCONNECTED, asserta_mux_3_sel_0,asserta_mux_3_sel_1,
asserta_mux_3_sel_2,asserta_mux_3_sel_3,asserta_mux_3_outl)

asserta_mux_4_ax :

AXIOM asserta_mux_8_1(UNCONNECTED,asserta_register_7_outl,asserta_eq_2_outl,asserta_constreg_O_outl,
asserta_constreg_0_outl,asserta_register_6_outl,asserta_register_2_outl,
asserta_register_5_outl,asserta_mux_4_sel_0,asserta_mux_4_sel_1,
asserta_mux_4_sel_2,asserta_mux_4_outl)

asserta_mux_5_ax :

AXIOM asserta_mux_4_1(asserta_register_7_outl,asserta_constreg_cof_inO_outl,asserta_register_2_outl,

UNCONNECTED,asserta_mux_5_sel_0,asserta_mux_5_sel_1,asserta_mux_5_outl)

241

asserta_mux_6_ax :
AXIOM asserta_mux_4_1(asserta_eq_O_outl,asserta_constreg_tol_inl_outl,asserta_register_3_outl,

UNCONNECTED,asserta_mux_6_sel_0,asserta_mux_6_sel_1,asserta_mux_6_outl)
asserta_mux_7_ax :
AXIOM asserta_mux_2_1(asserta_constreg_tos_in2_outl,asserta_register_4_outl,asserta_mux_7_sel_0,
asserta_mux_7_outl)
asserta_mux_8_ax :
AXIOM asserta_mux_4_1(asserta_constreg_o_outl,asserta_constreg_o_outl,asserta_constreg_O_outi,
asserta_constreg_0_outl,asserta_mux_8_sel_0,asserta_mux_8_sel_1,

asserta_mux_8_outl)
asserta_mux_9_ax :
AXIOM asserta_mux_2_1(asserta_constreg_o_outl,asserta_constreg_o_outl,asserta_mux_g_sel_o,

asserta_mux_9_outl)

asserta_constreg_cof_in0_ax

AXIOM asserta_constreg(cof_in0O,asserta_constreg_cof_inO_outl)
asserta_constreg_tol_inl_ax

AXIOM asserta_constreg(tol_inl,asserta_constreg_tol_inil_outl)
asserta_constreg_tos_in2_ax

AXIOM asserta_constreg(tos_in2,asserta_constreg_tos_in2_outl)
asserta_constreg_0_ax

AXIOM asserta_constreg(CONST_0,asserta_constreg_0_outl)

Figure B.7: TLC Data-Path Axioms

242

tlc_control : THEORY
BEGIN
IMPORTING tlc_state, tlc_dcls

Control_Signal(s: rtl_state, id: index)
IF id=0 THEN FALSE

ELSIF (id =F1) THEN

CASES s 0
ds7 : TRUE,
ds9 : TRUE,
dsi5 : TRUE,
ds19 : TRUE,
ds23 : TRUE,
ds25 : TRUE,
ds29 : TRUE,
ds33 : TRUE,
ds37 : TRUE,
ds41 : TRUE,
ds47 : TRUE,
dsb1 : TRUE,
dsb5 : TRUE,
ds59 : TRUE,
ds63 : TRUE,
ds67 : TRUE
ELSE FALSE

ENDCASES

ELSIF (id = 2) THEN FALSE
ELSIF (id = 3) THEN

CASES s OF
ds3 : TRUE,
ds7 : TRUE,
ds9 : TRUE,
ds15 : TRUE,
ds19 : TRUE,
ds25 TRUE,
ds29 TRUE,
ds33 TRUE,
ds37 TRUE,
ds39 TRUE,
ds41 TRUE,
ds47 TRUE,
dsb1 TRUE,
dsb7 TRUE,
dsb9 TRUE,
ds63 TRUE,
ds67 RUE

ALSE

ELSE " F
ENDCASES

ELSIF (id = 4) THEN FALSE
ELSIF (id = 5) THEN
CASES s OF
ds3 : TRUE,
ds9 : TRUE,
dsi1 : TRUE,
ds13 : TRUE,
ds15 : TRUE,
ds17 : TRUE,
ds19 : TRUE,
ds25 : TRUE,
ds27 : TRUE,
ds29 : TRUE,
ds31 : TRUE,
ds33 : TRUE,
ds39 : TRUE,
ds41 : TRUE,
ds43 TRUE,
ds45 TRUE,
ds47 TRUE,
ds49 TRUE,
dsb1 TRUE,
dsb7 TRUE,
dsb9 TRUE,
ds61 TRUE,
ds63 TRUE,
ds65 TRUE,
ds67 TRUE
ALSE

ELSE ~ F
ENDCASES

ELSIF (id

ELSIF (id
CASES s
ds3

= 6) THEN FALSE

= 7) THEN
OF

: TRUE,

: bool =

243

ds9 : TRUE,

ds13 TRUE,
dsi5 : TRUE,
ds17 : TRUE,
ds19 : TRUE,

ds27 : TRUE,
ds29 : TRUE,
ds31 : TRUE,
ds33 : TRUE,
ds39 : TRUE,
ds41 : TRUE,
ds45 : TRUE,
ds47 : TRUE,

ds49 : TRUE,
dsb1 : TRUE,
dsb7 : TRUE,
ds61 : TRUE,
ds63 : TRUE,
ds65 : TRUE,
ds67 : UE

ALSE

ELSE ' F
ENDCASES
ELSIF (id = 8) THEN FALSE

ELSIF (id = 9) THEN
CASES s OF
dsl : T

RUE,
ds3 : TRUE,
ds39 : TRUE
ELSE FALSE

ENDCASES

ELSIF (id = 10) THEN FALSE
ELSIF (id = 11) THEN

CASES s OF
dsl : TRUE,
ds3 : TRUE,
dsb3 : TRUE
ELSE FALSE
ENDCASES

ELSIF (id = 12) THEN FALSE
ELSIF (id = 13) THEN

CASES s OF
dsl : TRUE,
ds3_ : TRUE
ELSE FALSE
ENDCASES
ELSIF (id = 14) THEN FALSE
ELSIF (id = 15) THEN
CASES s OF
ds5 : TRUE,
ds21 : TRUE,
ds3 TRU
ELSE FALSE
ENDCASES
ELSIF (id = 16) THEN
CASES s OF
ds9 : TRUE,
ds15 : TRUE,
ds19 : TRUE,
ds29 : TRUE,
ds33 : TRUE,

ds41 : TRUE,
ds47 : TRUE,

dsb1 : TRUE,
dsb9 : TRUE,
ds63 : TRUE,
ds67 UE

ALSE

ELSE " F
ENDCASES
ELSIF (id = 17) THEN
CASES s OF

ds7 : T

RUE,
ds15 : TRUE,
ds19 : TRUE,
ds29 : TRUE,

ds33 : TRUE,
ds37 : TRUE,
ds47 : TRUE,
dsb1 : TRUE,
dsb5 : TRUE,
ds63 : TRUE,

244

ds67 : TRUE
ELSE FALSE
ENDCASES

ELSIF (id = 18) THEN
CASES s OF

ds7 : TRUE,
ds25 : TRUE,
ds37 : TRUE,
ds41 : TRUE,
dsb5 : TRUE,

dsb9 : TRUE
ELSE FALSE
ENDCASES
ELSIF 19) THEN

(id =
CASES s OF
ds15 : TRUE,
ds19 : TRUE,
ds29 : TRUE,
ds33 : TRUE,
ds39 : TRUE,
ds41 : TRUE,

ds47 : TRUE,
dsb1 : TRUE,
ds59 : TRUE,
ds63 : TRUE,
ds67 : UE

LSE

ELSE ~ FA
ENDCASES
ELSIF (id = 20) THEN
CAgES s OF
S

3 : TRUE,
dsb9 : TRUE
ELSE FALSE

ENDCASES
ELSIF (id = 21) THEN
CASES s OF
ds3 : TRUE,
ds9 : TRUE,
ds15 : TRUE,
ds19 : TRUE,

ds25 : TRUE,
ds29 : TRUE,
ds33 : TRUE,
ds39 : TRUE,
ds47 : TRUE,
dsb1 : TRUE,
ds63 : TRUE,

ds67 UE
ELSE ALSE
ENDCASES
ELSIF (id = 22) THEN
CASES s OF
ds15 : TRUE,
ds19 : TRUE,

ds29 : TRUE,
ds33 : TRUE,
ds39 : TRUE,
ds47 : TRUE,

dsb1 : TRUE,
dsb7 : TRUE,
ds63 : TRUE,
ds67 : TRUE
ELSE ALSE
ENDCASES
ELSIF (id = 23) THEN
CASES s OF
ds13 : TRUE,
ds27 : TRUE,

ds31 : TRUE,
ds43 : TRUE,
ds45 : TRUE,
ds49 : TRUE,

ds65 UE
ELSE ALSE
ENDCASES
ELSIF (id = 24) THEN
CASES s OF
ds3 : TRUE,
ds17 : TRUE,

ds43 : TRUE,
ds45 : TRUE,

dsb7 : TRUE,
ds61 : TRUE,
ds65 : TRUE
ELSE FALSE
ENDCASES

245

ELSIF (id = 25) THEN
CAEES s OF
s

3 : TRUE,
ds9 : TRUE,
dsi5 : TRUE,
ds19 : TRUE,
ds25 : TRUE,

ds27 : TRUE,
ds29 : TRUE,
ds33 : TRUE,
ds41 : TRUE,
ds45 : TRUE,
ds47 : TRUE,
ds49 : TRUE,
dsb1 : TRUE,
dsb9 : TRUE,
ds63 : TRUE,
ds65 : TRUE,

ds67 UE
ELSE ALSE
ENDCASES
ELSIF (id = 26) THEN
CASES s OF
dsi5 : TRUE,
ds17 : TRUE,

ds19 : TRUE,
ds29 : TRUE,
ds31 : TRUE,
ds33 : TRUE,
ds39 : TRUE,
ds47 : TRUE,
ds49 : TRUE,
dsb1 : TRUE,

ds57 : TRUE,
ds63 : TRUE,
ds65 : TRUE,
ds67 : TRUE
ELSE LSE
ENDCASES
ELSIF (id = 27) THEN
CASES s OF
ds9 : TRUE,
ds13 : TRUE,
ds15 : TRUE,

ds19 : TRUE,
ds27 : TRUE,
ds29 : TRUE,

ds33 : TRUE,
ds41l : TRUE,
ds45 : TRUE,
ds47 : TRUE,
dsb1 : TRUE,
ds57 : TRUE,
ds61 : TRUE,
ds63 : TRUE,
ds67 UE

ALSE

ELSE ' F
ENDCASES
ELSIF (id = 28) THEN

CASES s OF
ds3 : TRUE,
ds13 : TRUE,
ds27 : TRUE,
ds39 : TRUE,
ds45 : TRUE,

dsb7 : TRUE,
ds61 : TRUE

ELSE FALSE
ENDCASES
ELSIF (id = 29) THEN
CASES s OF
ds3 TRUE
ELSE FALSE
ENDCASES
ELSIF (id = 30) THEN
CASES s OF
dsl : TRUE
ELSE FALSE
ENDCASES
ELSIF (id = 31) THEN
CASES s OF
ds3 : TRUE
ELSE FALSE
ENDCASES

246

ELSIF (id = 32) THEN
CASES s OF

dsl : TRUE
ELSE FALSE
ENDCASES
ELSIF (id = 33) THEN
CASES s OF
ds3 : TRUE
ELSE FALSE
ENDCASES
ELSIF (id = 34) THEN
CASES s OF
ds35 : TRUE,
dsb3 : TRUE
ELSE FALSE
ENDCASES

ELSIF (id = 35) THEN
CASES s OF

ds2ls : TRUE,
dsb3 : TRUE
ELSE FALSE
ENDCASES
ELSIF (id = 36) THEN
CASES s OF
ds41l : TRUE
ELSE FALSE
ENDCASES

ELSE
FALSE
ENDIF
END tlc_control

Figure B.8: Description of the Controller of the RTL Design

247

% TLC RTL Component Axioms

asserta_register_ax
AXIOM (FORALL (input
1d
output
s1
s2

(asserta_register(input, 1d, ou

IMPLIES
((1d(s1) IMPLIES Val_d(output,s
(NOT 1d(s1) IMPLIES Val_d(outpu

asserta_constreg_ax :
AXIOM (FORALL (val
output
s

(asserta_constreg(val,output)
IMPLIES
(Val_d(output,s) = val)))

asserta_adder_ax :

AXIOM (FORALL (inputl
input2
output
s

asserta_adder(inputl, input2, o
IMPLIES
Val_d(output,s) = bb_plus(Val_d

asserta_subtractor_ax :
AXIOM (FORALL (inputl
input2
output
s

asserta_subtractor(inputl, inpu
IMPLIES

: signal,

: PRED[rtl_state],
: signal,

: rtl_state,

: rtl_state)

tput) AND rtl_transition((# SOURCE := si ,

2) = Val_d(input,s1)) AND
t,s2) = Val_d(output,si)))))

: value,
: signal,
: rtl_state)

: signal,
: signal,
: signal,
: rtl_state)

utput)
(inputil,s), Val_d(input2,s)))

: signal,
: signal,
: signal,
: rtl_state)

t2, output)

Val_d(output,s) = bb_minus(Val_d(inputil,s), Val_d(input2,s)))

asserta_multiplier_ax

AXIOM (FORALL (inputil

input2

output

s :
asserta_multiplier(inputl, inpu

IMPLIES
Val_d(output,s) = bb_mult(Val_d

asserta_divider_ax

AXIOM (FORALL (inputi

input?2

output

s :
asserta_divider(inputl, input2,

IMPLIES
Val_d(output,s) = bb_div(Val_d(

asserta_eq_ax :

AXIOM (FORALL (inputil
input2
output
s

asserta_eq(inputl, input2, outp
IMPLIES

: signal,
: signal,
: signal,
: rtl_state)

t2, output)
(inputi,s), Val_d(input2,s)))

: signal,
: signal,
: signal,
: rtl_state)

output)
inputi,s), Val_d(input2,s)))

: signal,
: signal,
: signal,
: rtl_state)

ut)

Val_d(output,s) = bb_eq(Val_d(inputl,s), Val_d(input2,s)))

c_and_ax :
AXIOM (FORALL (inputl

input2

output

s

c_and(inputl, input2, output)

IMPLIES
Val_d(output,s) = bb_and(Val_d(

: signal,
: signal,
: signal,
: rtl_state)

inputi,s), Val_d(input2,s)))

248

TARGET :

s2 #))

c_or_ax :

AXIOM (FORALL (inputil : signal,
input2 : signal,
output : signal,

s : rtl_state)

c_or(inputl, input2, output)
IMPLIES

Val_d(output,s) = bb_or(Val_d(inputl,s), Val_d(input2,s)))

asserta_greatthan_ax

AXIOM (FORALL (inputil : signal,
input2 : signal,
output : signal,

s : rtl_state)

asserta_greatthan(inputl, input2

IMPLIES

, output)

Val_d(output,s) = bb_gt(Val_d(inputl,s), Val_d(input2,s)))

asserta_mux_2_1_ax :
(inputil

AXIOM (FORALL : signal,
input2 : signal,
sel0 : PRED[rtl_state],
output : signal,
s : rtl_state)

asserta_mux_2_1(inputl, input2,

sel0, output)

IMPLIES
((sel0(s) IMPLIES Val_d(output,s) = Val_d(input2,s)) AND
(NOT selO(s) IMPLIES Val_d(output,s) = Val_d(inputi,s))))

asserta_mux_4_1_ax :
AXIOM (FORALL (inputl
input2
input3
inputé

sel0

sell
output
s :
asserta_mux_4_1(inputl, input2,

IMPLIES

(((selO(s) AND seli(s)) IMPLIES Val_d(output,s)
((NOT selO(s) AND seli(s)) IMPLIES Val_d(output,s)
((sel0(s) AND NOT seli(s)) IMPLIES Val_d(output,s)

((NOT selO(s) AND NOT seli(s))

asserta_mux_8_1_ax

AXIOM (FORALL (inputl
input2
input3
input4
inputb
input6
input?7
input8
sel0
sell
sel2
output
s

asserta_mux_8_1(inputl, input2,
output)

: signal,

: signal,

: signal,

: signal,

: PRED[rtl_state],
: PRED[rtl_state],
: signal,

: rtl_state)

input3, input4, selO, sell, output)

= Val_d(input4,s)) AND
Val_d(input3,s)) AND
Val_d(input2,s)) AND
IMPLIES Val_d(output,s) = Val_d(inputi,s))))

: signal,

: signal,

: signal,

: signal,

: signal,

: signal,

: signal,

: signal,

: PRED[rtl_state],
: PRED[rtl_state],
: PRED[rtl_state],
: signal,

: rtl_state)

input3, input4, inputb5, input6, input?7, input8, selO,

IMPLIES
(((sel0(s) AND selil(s) AND sel2(s)) IMPLIES Val_d(output,s) = Val_d(input8,s)) AND

((NOT selO(s)
((sel0(s) AND
((NOT sel0O(s)
((sel0(s) AND
((NOT selO(s)
((sel0(s) AND
((NOT selO(s)

AND selil(s) AND
NOT seli(s) AND
AND NOT selil(s)
selli(s) AND NOT
AND seli(s) AND
NOT seli(s) AND
AND NOT seli(s)

asserta_mux_16_1_ax
AXIOM (FORALL (inputl
input2
input3
input4
inputb

sel2(s)) IMPLIES Val_d(output,s)
sel2(s)) IMPLIES Val_d(output,s)
AND sel2(s)) IMPLIES Val_d(output,s) = Val_d(input5,s))
sel2(s)) IMPLIES Val_d(output,s) = Val_d(input4,s)) AND
NOT sel2(s)) IMPLIES Val_d(output,s)
NOT sel2(s)) IMPLIES Val_d(output,s)
AND NOT sel2(s)) IMPLIES Val_d(output,s) = Val_d(inputl,

Val_d(input7,s)) AND
Val_d(input6,s)) AND

Val_d(input3,s))
Val_d(input2,s))

: signal,
: signal,
: signal,
: signal,
: signal,

249

sell, sel2,

AND

AND
AND
s))))

input6 : signal,

input? : signal,

input8 : signal,

input9 : signal,

input10 : signal,

inputil : signal,

inputi2 : signal,

inputi13 : signal,

inputi4 : signal,

inputlb : signal,

inputi16é : signal,

sel0 : PRED[rtl_state],
sell : PRED[rtl_state],
sel2 : PRED[rtl_state],
sel3 : PRED[rtl_state],
output : signal,

s : rtl_state)

asserta_mux_16_1(inputl, input2, input3, input4, inputb5, input6, input7, input8, input9, inputloO,
inputll, inputl2, inputl3, inputi4, inputlb, inputl6, sell, sell, sel2, sel3,
output)
IMPLIES
(((sel0(s) AND seli(s) AND sel2(s) AND sel3(s)) IMPLIES
Val_d(output,s) = Val_d(input16,s)) AND
((NOT selO(s) AND seli(s) AND sel2(s) AND sel3(s)) IMPLIES
Val_d(output,s) = Val_d(inputi5,s)) AND
((selO(s) AND NOT seli(s) AND sel2(s) AND sel3(s)) IMPLIES
Val_d(output,s) = Val_d(inputié4,s)) AND
((NOT selO(s) AND NOT seli(s) AND sel2(s) AND sel3(s)) IMPLIES
Val_d(output,s) = Val_d(inputi3,s)) AND
((sel0(s) AND seli(s) AND NOT sel2(s) AND sel3(s)) IMPLIES
Val_d(output,s) = Val_d(inputi2,s)) AND
((NOT selO(s) AND sell(s) AND NOT sel2(s) AND sel3(s)) IMPLIES
Val_d(output,s) = Val_d(inputil,s)) AND
((selO(s) AND NOT seli(s) AND NOT sel2(s) AND sel3(s)) IMPLIES
Val_d(output,s) = Val_d(input10,s)) AND
((NOT selO(s) AND NOT seli(s) AND NOT sel2(s) AND sel3(s)) IMPLIES
Val_d(output,s) = Val_d(input9,s)) AND
((sel0(s) AND seli(s) AND sel2(s) AND NOT sel3(s)) IMPLIES
Val_d(output,s) = Val_d(input8,s)) AND
((NOT selO(s) AND seli(s) AND sel2(s) AND NOT
Val_d(output,s) = Val_d(input7,s)) AND
((sel0(s) AND NOT seli(s) AND sel2(s) AND NOT
Val_d(output,s) = Val_d(input6é,s)) AND
((NOT selO(s) AND NOT selil(s) AND sel2(s) AND
Val_d(output,s) = Val_d(input5,s)) AND
((sel0(s) AND selil(s) AND NOT sel2(s) AND NOT
Val_d(output,s) = Val_d(input4,s)) AND
((NOT selO(s) AND seli(s) AND NOT sel2(s) AND
Val_d(output,s) = Val_d(input3,s)) AND
((selO(s) AND NOT seli(s) AND NOT sel2(s) AND
Val_d(output,s) = Val_d(input2,s)) AND
((NOT selO(s) AND NOT seli(s) AND NOT sel2(s)
Val_d(output,s) = Val_d(inputi,s))))

sel3(s)) IMPLIES
sel3(s)) IMPLIES
NOT sel3(s)) IMPLIES
sel3(s)) IMPLIES
NOT sel3(s)) IMPLIES
NOT sel3(s)) IMPLIES

AND NOT sel3(s)) IMPLIES

asserta_mux_32_1_ax

AXIOM (FORALL (inputl : signal,
input2 : signal,
input3 : signal,
inputé : signal,
inputb : signal,
input6 : signal,
input?7 : signal,
input8 : signal,
input9 : signal,
input10 : signal,
inputil : signal,
inputi2 : signal,
inputi13 : signal,
inputi4 : signal,
inputi1b : signal,
input16 : signal,
inputl?7 : signal,
inputi8 : signal,
inputl19 : signal,
input20 : signal,
input21 : signal,
input22 : signal,

250

input22 : signal,

input23 : signal,

input24 : signal,

input25 : signal,

input26 : signal,

input27 : signal,

input28 : signal,

input29 : signal,

input30 : signal,

input31 : signal,

input32 : signal,

sel0 : PRED[rtl_state],
sell : PRED[rtl_state],
sel2 : PRED[rtl_state],
sel3 : PRED[rtl_state],
seld : PRED[rtl_state],
output : signal,

s : rtl_state)

asserta_mux_32_1(inputl, input2, input3, input4, inputb, input6, input7, input8, input9, inputilo,

inputll, inputl2, inputl3, inputl4, inputlb, inputl6, inputl?7, inputl8, inputl9,
input20, input21l, input22, input23, input24, input25, input26, input27, input28,
input29, input30, input31, input32, sell, sell, sel2, sel3, sel4, output)
IMPLIES
(((sel0(s) AND seli(s) AND sel2(s) AND sel3(s) AND sel4(s)) IMPLIES

Val_d(output,s) = Val_d(input16,s)) AND
((NOT selO(s) AND seli(s) AND sel2(s) AND sel3(s) AND sel4(s)) IMPLIES

Val_d(output,s) = Val_d(inputi5,s)) AND

((selO(s) AND NOT seli(s) AND sel2(s) AND sel3(s) AND
Val_d(output,s) = Val_d(inputi4,s)) AND

((NOT selO(s) AND NOT sell(s) AND sel2(s) AND sel3(s)
Val_d(output,s) = Val_d(inputl3,s)) AND

((selO(s) AND seli(s) AND NOT sel2(s) AND sel3(s) AND
Val_d(output,s) = Val_d(inputi2,s)) AND

((NOT selO(s) AND seli(s) AND NOT sel2(s) AND sel3(s)
Val_d(output,s) = Val_d(inputil,s)) AND

((selO(s) AND NOT seli(s) AND NOT sel2(s) AND sel3(s)
Val_d(output,s) = Val_d(input10,s)) AND

((NOT selO(s) AND NOT sell(s) AND NOT sel2(s) AND sel3(s)
Val_d(output,s) = Val_d(input9,s)) AND

AND

AND
AND

sel4(s)) IMPLIES

sel4(s)) IMPLIES

sel4(s)) IMPLIES

sel4(s)) IMPLIES
sel4(s)) IMPLIES

AND sel4(s)) IMPLIES

((selO(s) AND seli(s) AND sel2(s) AND NOT sel3(s) AND sel4(s))

IMPLIES Val_d(output,s) = Val_d(input8,s)) AND

((NOT selO(s) AND seli(s) AND sel2(s) AND NOT sel3(s) AND
IMPLIES Val_d(output,s) = Val_d(input7,s)) AND

((selO(s) AND NOT seli(s) AND sel2(s) AND NOT sel3(s) AND
IMPLIES Val_d(output,s) = Val_d(input6,s)) AND

((NOT selO(s) AND NOT seli(s) AND sel2(s) AND NOT sel3(s)
IMPLIES Val_d(output,s) = Val_d(inputb,s)) AND

((selO(s) AND seli(s) AND NOT sel2(s) AND NOT sel3(s) AND
IMPLIES Val_d(output,s) = Val_d(inputé4,s)) AND

((NOT selO(s) AND seli(s) AND NOT sel2(s) AND NOT sel3(s)
IMPLIES Val_d(output,s) = Val_d(input3,s)) AND

((selO(s) AND NOT seli(s) AND NOT sel2(s) AND NOT sel3(s)
IMPLIES Val_d(output,s) = Val_d(input2,s)) AND

seld(s))
seld(s))
AND sel4(s))
seld(s))
AND sel4(s))

AND sel4(s))

((NOT selO(s) AND NOT seli(s) AND NOT sel2(s) AND NOT sel3(s) AND sel4(s))

IMPLIES Val_d(output,s) = Val_d(inputl,s)) AND
((selO(s) AND seli(s) AND sel2(s) AND sel3(s) AND NOT
IMPLIES Val_d(output,s) = Val_d(inputi6,s)) AND
((NOT selO(s) AND seli(s) AND sel2(s) AND sel3(s) AND
IMPLIES Val_d(output,s) = Val_d(inputib,s)) AND
((selO(s) AND NOT seli(s) AND sel2(s) AND sel3(s) AND
IMPLIES Val_d(output,s) = Val_d(inputi4,s)) AND
((NOT selO(s) AND NOT selil(s) AND sel2(s) AND sel3(s)
IMPLIES Val_d(output,s) = Val_d(inputi3,s)) AND
((selO(s) AND seli(s) AND NOT sel2(s) AND sel3(s) AND
IMPLIES Val_d(output,s) = Val_d(inputi2,s)) AND
((NOT selO(s) AND seli(s) AND NOT sel2(s) AND sel3(s)
IMPLIES Val_d(output,s) = Val_d(inputil,s)) AND
((selO(s) AND NOT seli(s) AND NOT sel2(s) AND sel3(s) AND
IMPLIES Val_d(output,s) = Val_d(input10,s)) AND
((NOT selO(s) AND NOT seli(s) AND NOT sel2(s) AND sel3(s)
IMPLIES Val_d(output,s) = Val_d(input9,s)) AND
((sel0(s) AND seli(s) AND sel2(s) AND NOT sel3(s) AND NOT
IMPLIES Val_d(output,s) = Val_d(input8,s)) AND
((NOT selO(s) AND seli(s) AND sel2(s) AND NOT sel3(s) AND
IMPLIES Val_d(output,s) = Val_d(input7,s)) AND
((selO(s) AND NOT seli(s) AND sel2(s) AND NOT sel3(s) AND
IMPLIES Val_d(output,s) = Val_d(input6,s)) AND

NOT
NOT
AND
NOT

AND

251

sel4d(s))

seld(s))
sel4(s))

NOT sel4(s))
seld(s))

NOT sel4(s))

NOT sel4(s))

AND NOT sel4(s))
seld(s))

NOT sel4(s))

NOT sel4(s))

((NOT selO(s) AND NOT seli(s) AND sel2(s) AND NOT sel3(s) AND NOT sel4(s))
IMPLIES Val_d(output,s) = Val_d(input5,s)) AND

((selO(s) AND seli(s) AND NOT sel2(s) AND NOT sel3(s) AND NOT sel4(s))
IMPLIES Val_d(output,s) = Val_d(input4,s)) AND

((NOT selO(s) AND seli(s) AND NOT sel2(s) AND NOT sel3(s) AND NOT sel4(s))
IMPLIES Val_d(output,s) = Val_d(input3,s)) AND

((sel0(s) AND NOT seli(s) AND NOT sel2(s) AND NOT sel3(s) AND NOT sel4(s))
IMPLIES Val_d(output,s) = Val_d(input2,s)) AND

((NOT selO(s) AND NOT seli(s) AND NOT sel2(s) AND NOT sel3(s) AND NOT sel4(s))
IMPLIES Val_d(output,s) = Val_d(inputi,s))))

Figure B.9: Behavior Description of the Components used in Synthesis of TLC

252

% TLC Lemmas
eq_cpO_st_lemma

eq_cpO_hl_lemma

eq_cpO_fl_lemma

eq_cpO_cof_lemma

eq_cpO_tol_lemma

eq_cpO_tos_lemma

eq_cp0_t18_lemma

eq_cpl_hl_lemma

eq_cpl_fl_lemma

eq_cpl_t24_lemma

eq_cpl_t25_lemma

eq_cp2_state_lemma

eq_cp2_st_lemma

: LEMMA (equivalent_states(First_b(bcpO),First_d(B_p(bcp0))) AND

beh_transition_condition(bcp0) AND
rtl_transition_condition(B_p(bcp0)))
IMPLIES
Val_b(st,Last_b(bcp0)) = Val_d(asserta_register_5_outl,Last_d(B_p(bcp0)))

: LEMMA (equivalent_states(First_b(bcpO),First_d(B_p(bcp0))) AND

beh_transition_condition(bcpO) AND
rtl_transition_condition(B_p(bcp0)))

IMPLIES
Val_b(hl,Last_b(bcp0)) = Val_d(asserta_register_6_outi,Last_d(B_p(bcp0)))

: LEMMA (equivalent_states(First_b(bcp0),First_d(B_p(bcp0))) AND

beh_transition_condition(bcpO) AND
rtl_transition_condition(B_p(bcp0)))

IMPLIES
Val_b(fl,Last_b(bcp0)) = Val_d(asserta_register_7_outl,Last_d(B_p(bcp0)))

: LEMMA (equivalent_states(First_b(bcp0),First_d(B_p(bcp0))) AND

beh_transition_condition(bcp0) AND
rtl_transition_condition(B_p(bcp0)))

IMPLIES
Val_b(cof,Last_b(bcp0)) = Val_d(asserta_register_2_outl,Last_d(B_p(bcp0)))

: LEMMA (equivalent_states(First_b(bcp0),First_d(B_p(bcp0))) AND

beh_transition_condition(bcp0) AND
rtl_transition_condition(B_p(bcp0)))

IMPLIES
Val_b(tol,Last_b(bcp0)) = Val_d(asserta_register_3_outl,Last_d(B_p(bcp0)))

: LEMMA (equivalent_states(First_b(bcp0) ,First_d(B_p(bcp0))) AND

beh_transition_condition(bcp0) AND
rtl_transition_condition(B_p(bcp0)))
IMPLIES
Val_b(tos,Last_b(bcp0)) = Val_d(asserta_register_4_outl,Last_d(B_p(bcp0)))

: LEMMA (equivalent_states(First_b(bcp0) ,First_d(B_p(bcp0))) AND

beh_transition_condition(bcp0) AND
rtl_transition_condition(B_p(bcp0)))
IMPLIES
Val_b(t18,Last_b(bcp0)) = Val_d(asserta_register_8_outl,Last_d(B_p(bcp0)))

: LEMMA (equivalent_states(First_b(bcpl),First_d(B_p(bcpl))) AND

beh_transition_condition(bcpl) AND
rtl_transition_condition(B_p(bcpl)))

IMPLIES
Val_b(hl,Last_b(bcpl)) = Val_d(asserta_register_1_outl,Last_d(B_p(bcp1l)))

: LEMMA (equivalent_states(First_b(bcpl),First_d(B_p(bcpl))) AND

beh_transition_condition(bcpl) AND
rtl_transition_condition(B_p(bcpl)))

IMPLIES
Val_b(fl,Last_b(bcpl)) = Val_d(asserta_register_2_outl,Last_d(B_p(bcp1)))

: LEMMA (equivalent_states(First_b(bcpl) ,First_d(B_p(bcpl))) AND

beh_transition_condition(bcpl) AND
rtl_transition_condition(B_p(bcpl)))

IMPLIES
Val_b(t24,Last_b(bcpl)) = Val_d(asserta_register_4_outl,Last_d(B_p(bcpl)))

: LEMMA (equivalent_states(First_b(bcpl),First_d(B_p(bcp1l))) AND

beh_transition_condition(bcpl) AND
rtl_transition_condition(B_p(bcpl)))

IMPLIES
Val_b(t25,Last_b(bcpl)) = Val_d(asserta_register_3_outl,Last_d(B_p(bcpl)))

: LEMMA (equivalent_states(First_b(bcp2),First_d(B_p(bcp2))) AND
beh_transition_condition(bcp2) AND
rtl_transition_condition(B_p(bcp2)))

IMPLIES

Val_b(state,Last_b(bcp2)) = Val_d(asserta_register_1i_outl,Last_d(B_p(bcp2)))
: LEMMA (equivalent_states(First_b(bcp2),First_d(B_p(bcp2))) AND

beh_transition_condition(bcp2) AND
rtl_transition_condition(B_p(bcp2)))
IMPLIES
Val_b(st,Last_b(bcp2)) = Val_d(asserta_register_2_outl,Last_d(B_p(bcp2)))

253

eq_cp2_hl_lemma

eq_cp2_fl_lemma

eq_cp2_cof_lemma

eq_cp2_tol_lemma

eq_cp2_tos_lemma

eq_cp3_st_lemma

eq_cp3_hl_lemma

eq_cp3_fl_lemma

eq_cp3_cof_lemma

eq_cp3_tol_lemma

eq_cp3_tos_lemma

eq_cp4_t28_lemma

eq_cp5_hl_lemma

: LEMMA (equivalent_states(First_b(bcp2),First_d(B_p(bcp2))) AND

beh_transition_condition(bcp2) AND
rtl_transition_condition(B_p(bcp2)))
IMPLIES
Val_b(hl,Last_b(bcp2)) = Val_d(asserta_register_3_outl,Last_d(B_p(bcp2)))

: LEMMA (equivalent_states(First_b(bcp2),First_d(B_p(bcp2))) AND

beh_transition_condition(bcp2) AND
rtl_transition_condition(B_p(bcp2)))

IMPLIES
Val_b(fl,Last_b(bcp2)) = Val_d(asserta_register_4_outil,Last_d(B_p(bcp2)))

: LEMMA (equivalent_states(First_b(bcp2),First_d(B_p(bcp2))) AND

beh_transition_condition(bcp2) AND
rtl_transition_condition(B_p(bcp2)))
IMPLIES
Val_b(cof,Last_b(bcp2)) = Val_d(asserta_register_5_outl,Last_d(B_p(bcp2)))

: LEMMA (equivalent_states(First_b(bcp2),First_d(B_p(bcp2))) AND

beh_transition_condition(bcp2) AND
rtl_transition_condition(B_p(bcp2)))

IMPLIES
Val_b(tol,Last_b(bcp2)) = Val_d(asserta_register_6_outl,Last_d(B_p(bcp2)))

: LEMMA (equivalent_states(First_b(bcp2),First_d(B_p(bcp2))) AND

beh_transition_condition(bcp2) AND
rtl_transition_condition(B_p(bcp2)))
IMPLIES
Val_b(tos,Last_b(bcp2)) = Val_d(asserta_register_7_outl,Last_d(B_p(bcp2)))

: LEMMA (equivalent_states(First_b(bcp3),First_d(B_p(bcp3))) AND

beh_transition_condition(bcp3) AND
rtl_transition_condition(B_p(bcp3)))
IMPLIES
Val_b(st,Last_b(bcp3)) = Val_d(asserta_register_2_outl,Last_d(B_p(bcp3)))

: LEMMA (equivalent_states(First_b(bcp3),First_d(B_p(bcp3))) AND

beh_transition_condition(bcp3) AND
rtl_transition_condition(B_p(bcp3)))
IMPLIES
Val_b(hl,Last_b(bcp3)) = Val_d(asserta_register_3_outil,Last_d(B_p(bcp3)))

: LEMMA (equivalent_states(First_b(bcp3),First_d(B_p(bcp3))) AND

beh_transition_condition(bcp3) AND
rtl_transition_condition(B_p(bcp3)))

IMPLIES
Val_b(fl,Last_b(bcp3)) = Val_d(asserta_register_4_outl,Last_d(B_p(bcp3)))

: LEMMA (equivalent_states(First_b(bcp3),First_d(B_p(bcp3))) AND

beh_transition_condition(bcp3) AND
rtl_transition_condition(B_p(bcp3)))
IMPLIES
Val_b(cof,Last_b(bcp3)) = Val_d(asserta_register_5_outl,Last_d(B_p(bcp3)))

: LEMMA (equivalent_states(First_b(bcp3),First_d(B_p(bcp3))) AND

beh_transition_condition(bcp3) AND
rtl_transition_condition(B_p(bcp3)))

IMPLIES
Val_b(tol,Last_b(bcp3)) = Val_d(asserta_register_6_outl,Last_d(B_p(bcp3)))

: LEMMA (equivalent_states(First_b(bcp3) ,First_d(B_p(bcp3))) AND

beh_transition_condition(bcp3) AND
rtl_transition_condition(B_p(bcp3)))
IMPLIES
Val_b(tos,Last_b(bcp3)) = Val_d(asserta_register_7_outl,Last_d(B_p(bcp3)))

: LEMMA (equivalent_states(First_b(bcp4),First_d(B_p(bcp4))) AND

beh_transition_condition(bcp4) AND
rtl_transition_condition(B_p(bcp4)))

IMPLIES
Val_b(t28,Last_b(bcp4)) = Val_d(asserta_register_8_outl,Last_d(B_p(bcp4)))

: LEMMA (equivalent_states(First_b(bcp5),First_d(B_p(bcp5))) AND

beh_transition_condition(bcp5) AND
rtl_transition_condition(B_p(bcp5)))
IMPLIES
Val_b(hl,Last_b(bcp5)) = Val_d(asserta_register_1_outl,Last_d(B_p(bcp5)))

254

eq_cp5_fl_lemma

eq_cp5_t30_lemma

eq_cpb_state_lemma

eq_cp6_st_lemma

eq_cp6_hl_lemma

eq_cp6_fl_lemma

eq_cpb_cof_lemma

eq_cpb_tol_lemma

eq_cpb_tos_lemma

eq_cp7_state_lemma

eq_cp7_st_lemma

eq_cp7_hl_lemma

eq_cp7_fl_lemma

: LEMMA (equivalent_states(First_b(bcp5),First_d(B_p(bcp5))) AND

beh_transition_condition(bcp5) AND
rtl_transition_condition(B_p(bcp5)))
IMPLIES
Val_b(fl,Last_b(bcp5)) = Val_d(asserta_register_2_outl,Last_d(B_p(bcp5)))

: LEMMA (equivalent_states(First_b(bcp5) ,First_d(B_p(bcp5))) AND

beh_transition_condition(bcp5) AND
rtl_transition_condition(B_p(bcp5)))

IMPLIES
Val_b(t30,Last_b(bcp5)) = Val_d(asserta_register_3_outl,Last_d(B_p(bcp5)))

: LEMMA (equivalent_states(First_b(bcp6),First_d(B_p(bcp8))) AND
beh_transition_condition(bcp6) AND
rtl_transition_condition(B_p(bcp6)))
IMPLIES
Val_b(state,Last_b(bcp6)) = Val_d(asserta_register_1_outl,Last_d(B_p(bcp6)))

: LEMMA (equivalent_states(First_b(bcp8) ,First_d(B_p(bcp6))) AND

beh_transition_condition(bcp6) AND
rtl_transition_condition(B_p(bcp8)))

IMPLIES
Val_b(st,Last_b(bcp6)) = Val_d(asserta_register_2_outl,Last_d(B_p(bcp6)))

: LEMMA (equivalent_states(First_b(bcp8),First_d(B_p(bcp6))) AND

beh_transition_condition(bcp6) AND
rtl_transition_condition(B_p(bcp8)))

IMPLIES
Val_b(hl,Last_b(bcp6)) = Val_d(asserta_register_3_outl,Last_d(B_p(bcp6)))

: LEMMA (equivalent_states(First_b(bcp6),First_d(B_p(bcp6))) AND

beh_transition_condition(bcp6) AND
rtl_transition_condition(B_p(bcp8)))

IMPLIES
Val_b(fl,Last_b(bcp6)) = Val_d(asserta_register_4_outl,Last_d(B_p(bcp6)))

: LEMMA (equivalent_states(First_b(bcp6) ,First_d(B_p(bcp8))) AND

beh_transition_condition(bcp6) AND
rtl_transition_condition(B_p(bcp6)))
IMPLIES
Val_b(cof,Last_b(bcp6)) = Val_d(asserta_register_5_outl,Last_d(B_p(bcp8é)))

: LEMMA (equivalent_states(First_b(bcp6) ,First_d(B_p(bcp8))) AND

beh_transition_condition(bcp6) AND
rtl_transition_condition(B_p(bcp6)))

IMPLIES
Val_b(tol,Last_b(bcp6)) = Val_d(asserta_register_6_outl,Last_d(B_p(bcpé)))

: LEMMA (equivalent_states(First_b(bcp6),First_d(B_p(bcp6))) AND

beh_transition_condition(bcp6) AND
rtl_transition_condition(B_p(bcp8)))
IMPLIES
Val_b(tos,Last_b(bcp6)) = Val_d(asserta_register_7_outl,Last_d(B_p(bcpé)))

: LEMMA (equivalent_states(First_b(bcp7),First_d(B_p(bcp7))) AND
beh_transition_condition(bcp7) AND
rtl_transition_condition(B_p(bcp7)))
IMPLIES
Val_b(state,Last_b(bcp7)) = Val_d(asserta_register_1_outl,Last_d(B_p(bcp7)))

: LEMMA (equivalent_states(First_b(bcp7),First_d(B_p(bcp7))) AND

beh_transition_condition(bcp7) AND
rtl_transition_condition(B_p(bcp7)))
IMPLIES
Val_b(st,Last_b(bcp7)) = Val_d(asserta_register_2_outl,Last_d(B_p(bcp7)))

: LEMMA (equivalent_states(First_b(bcp7),First_d(B_p(bcp7))) AND

beh_transition_condition(bcp7) AND
rtl_transition_condition(B_p(bcp7)))
IMPLIES
Val_b(hl,Last_b(bcp7)) = Val_d(asserta_register_3_outil,Last_d(B_p(bcp7)))

: LEMMA (equivalent_states(First_b(bcp7),First_d(B_p(bcp7))) AND

beh_transition_condition(bcp7) AND
rtl_transition_condition(B_p(bcp7)))
IMPLIES
Val_b(fl,Last_b(bcp7)) = Val_d(asserta_register_4_outl,Last_d(B_p(bcp7)))

255

eq_cp7_cof_lemma : LEMMA (equivalent_states(First_b(bcp7),First_d(B_p(bcp7))) AND
beh_transition_condition(bcp7) AND
rtl_transition_condition(B_p(bcp7)))
IMPLIES
Val_b(cof,Last_b(bcp7)) = Val_d(asserta_register_5_outl,Last_d(B_p(bcp7)))

eq_cp7_tol_lemma : LEMMA (equivalent_states(First_b(bcp7),First_d(B_p(bcp7))) AND
beh_transition_condition(bcp7) AND
rtl_transition_condition(B_p(bcp7)))
IMPLIES
Val_b(tol,Last_b(bcp7)) = Val_d(asserta_register_6_outl,Last_d(B_p(bcp7)))

eq_cp7_tos_lemma : LEMMA (equivalent_states(First_b(bcp7),First_d(B_p(bcp7))) AND
beh_transition_condition(bcp7) AND
rtl_transition_condition(B_p(bcp7)))
IMPLIES
Val_b(tos,Last_b(bcp7)) = Val_d(asserta_register_7_outl,Last_d(B_p(bcp7)))

eq_cp8_t31_lemma : LEMMA (equivalent_states(First_b(bcp8),First_d(B_p(bcp8))) AND
beh_transition_condition(bcp8) AND
rtl_transition_condition(B_p(bcp8)))

IMPLIES
Val_b(t31,Last_b(bcp8)) = Val_d(asserta_register_8_outl,Last_d(B_p(bcp8)))

eq_cp9_hl_lemma : LEMMA (equivalent_states(First_b(bcp9),First_d(B_p(bcp9))) AND
beh_transition_condition(bcp9) AND
rtl_transition_condition(B_p(bcp9)))

IMPLIES
Val_b(hl,Last_b(bcp9)) = Val_d(asserta_register_1_outl,Last_d(B_p(bcp9)))

eq_cp9_fl_lemma : LEMMA (equivalent_states(First_b(bcp9),First_d(B_p(bcp9))) AND
beh_transition_condition(bcp9) AND
rtl_transition_condition(B_p(bcp9)))

IMPLIES
Val_b(fl,Last_b(bcp9)) = Val_d(asserta_register_2_outl,Last_d(B_p(bcp9)))

eq_cp9_t33_lemma : LEMMA (equivalent_states(First_b(bcp9),First_d(B_p(bcp9))) AND
beh_transition_condition(bcp9) AND
rtl_transition_condition(B_p(bcp9)))
IMPLIES
Val_b(t33,Last_b(bcp9)) = Val_d(asserta_register_4_outl,Last_d(B_p(bcp9)))

eq_cp9_t34_lemma : LEMMA (equivalent_states(First_b(bcp9),First_d(B_p(bcp9))) AND
beh_transition_condition(bcp9) AND
rtl_transition_condition(B_p(bcp9)))

IMPLIES
Val_b(t34,Last_b(bcp9)) = Val_d(asserta_register_3_outl,Last_d(B_p(bcp9)))

eq_cplO_state_lemma : LEMMA (equivalent_states(First_b(bcp10),First_d(B_p(bcp10))) AND
beh_transition_condition(bcp10) AND
rtl_transition_condition(B_p(bcp10)))
IMPLIES
Val_b(state,Last_b(bcpl0)) =Val_d(asserta_register_1_outl,Last_d(B_p(bcp10)))

eq_cplO_st_lemma : LEMMA (equivalent_states(First_b(bcpl0),First_d(B_p(bcp10))) AND
beh_transition_condition(bcp10) AND
rtl_transition_condition(B_p(bcpl10)))

IMPLIES
Val_b(st,Last_b(bcp10)) = Val_d(asserta_register_2_outl,Last_d(B_p(bcp10)))

eq_cplO_hl_lemma : LEMMA (equivalent_states(First_b(bcp10),First_d(B_p(bcp10))) AND
beh_transition_condition(bcp10) AND
rtl_transition_condition(B_p(bcpl10)))

IMPLIES
Val_b(hl,Last_b(bcp10)) = Val_d(asserta_register_3_outl,Last_d(B_p(bcp10)))

eq_cpl0_fl_lemma : LEMMA (equivalent_states(First_b(bcp10),First_d(B_p(bcp10))) AND
beh_transition_condition(bcp10) AND
rtl_transition_condition(B_p(bcp10)))
IMPLIES
Val_b(fl,Last_b(bcp10)) = Val_d(asserta_register_4_outl,Last_d(B_p(bcp10)))

eq_cplO_cof_lemma : LEMMA (equivalent_states(First_b(bcp10),First_d(B_p(bcp10))) AND
beh_transition_condition(bcp10) AND
rtl_transition_condition(B_p(bcp10)))
IMPLIES
Val_b(cof,Last_b(bcpl0)) = Val_d(asserta_register_5_outl,Last_d(B_p(bcp10)))

256

eq_cplO_tol_lemma

eq_cplO_tos_lemma

eq_cpll_state_lemma

eq_cpll_st_lemma :

eq_cpli_hl_lemma :

eq_cpll_f1_lemma

eq_cpll_cof_lemma

eq_cpll_tol_lemma

eq_cpll_tos_lemma

eq_cpl2_st_lemma :

eq_cpl2_hl_lemma :

eq_cpl2_f1_lemma :

eq_cpl2_tos_lemma

: LEMMA

: LEMMA

(equivalent_states(First_b(bcp10),First_d(B_p(bcp10))) AND
beh_transition_condition(bcp10) AND
rtl_transition_condition(B_p(bcp10)))
IMPLIES
Val_b(tol,Last_b(bcpl0)) = Val_d(asserta_register_6_outl,Last_d(B_p(bcp10)))

(equivalent_states(First_b(bcp10),First_d(B_p(bcp10))) AND
beh_transition_condition(bcp10) AND
rtl_transition_condition(B_p(bcp10)))
IMPLIES
Val_b(tos,Last_b(bcpl0)) = Val_d(asserta_register_7_outl,Last_d(B_p(bcp10)))

: LEMMA (equivalent_states(First_b(bcpil),First_d(B_p(bcpil))) AND

beh_transition_condition(bcpil) AND
rtl_transition_condition(B_p(bcpil)))
IMPLIES
Val_b(state,Last_b(bcpll)) =Val_d(asserta_register_1i_outl,Last_d(B_p(bcpil)))

LEMMA (equivalent_states(First_b(bcpll),First_d(B_p(bcp11))) AND

beh_transition_condition(bcpil) AND
rtl_transition_condition(B_p(bcpll)))

IMPLIES
Val_b(st,Last_b(bcpll)) = Val_d(asserta_register_2_outl,Last_d(B_p(bcpil)))

LEMMA (equivalent_states(First_b(bcpll),First_d(B_p(bcp11))) AND

: LEMMA

: LEMMA

: LEMMA

beh_transition_condition(bcpil) AND
rtl_transition_condition(B_p(bcpll)))

IMPLIES
Val_b(hl,Last_b(bcpll)) = Val_d(asserta_register_3_outl,Last_d(B_p(bcpil)))

: LEMMA (equivalent_states(First_b(bcpll),First_d(B_p(bcpil))) AND

beh_transition_condition(bcpil) AND
rtl_transition_condition(B_p(bcpll)))

IMPLIES
Val_b(fl,Last_b(bcpll)) = Val_d(asserta_register_4_outl,Last_d(B_p(bcp11)))

(equivalent_states(First_b(bcpll),First_d(B_p(bcpil))) AND
beh_transition_condition(bcpil) AND
rtl_transition_condition(B_p(bcpil)))
IMPLIES
Val_b(cof,Last_b(bcpll)) = Val_d(asserta_register_5_outl,Last_d(B_p(bcpll)))

(equivalent_states(First_b(bcpll),First_d(B_p(bcpil))) AND
beh_transition_condition(bcpil) AND
rtl_transition_condition(B_p(bcpil)))

IMPLIES
Val_b(tol,Last_b(bcpll)) = Val_d(asserta_register_6_outl,Last_d(B_p(bcpll)))

(equivalent_states(First_b(bcpll),First_d(B_p(bcpil))) AND
beh_transition_condition(bcpil) AND
rtl_transition_condition(B_p(bcpll)))
IMPLIES
Val_b(tos,Last_b(bcpll)) = Val_d(asserta_register_7_outl,Last_d(B_p(bcpll)))

LEMMA (equivalent_states(First_b(bcp12),First_d(B_p(bcp12))) AND

beh_transition_condition(bcpi2) AND
rtl_transition_condition(B_p(bcpl2)))

IMPLIES
Val_b(st,Last_b(bcp12)) = Val_d(asserta_register_3_outl,Last_d(B_p(bcp12)))

LEMMA (equivalent_states(First_b(bcpl2),First_d(B_p(bcpi12))) AND

beh_transition_condition(bcpi2) AND
rtl_transition_condition(B_p(bcpl2)))

IMPLIES
Val_b(hl,Last_b(bcp12)) = Val_d(asserta_register_4_outl,Last_d(B_p(bcp12)))

LEMMA (equivalent_states(First_b(bcp12),First_d(B_p(bcp12))) AND

: LEMMA

beh_transition_condition(bcpl2) AND
rtl_transition_condition(B_p(bcpl2)))
IMPLIES
Val_b(fl,Last_b(bcp12)) = Val_d(asserta_register_5_outl,Last_d(B_p(bcpi2)))

(equivalent_states(First_b(bcp12),First_d(B_p(bcpl2))) AND
beh_transition_condition(bcpi2) AND
rtl_transition_condition(B_p(bcpl2)))
IMPLIES
Val_b(tos,Last_b(bcpl2)) = Val_d(asserta_register_2_outl,Last_d(B_p(bcpl2)))

257

eq_cpl2_t35_lemma

eq_cpl3_hl_lemma :

eq_cpl3_fl_lemma :

eq_cpl3_t36_lemma

eq_cplé_state_lemma

eq_cplé_st_lemma :

eq_cpl4_hl_lemma :

eq_cpl4_f1_lemma :

eq_cplé_cof_lemma

eq_cplé_tol_lemma

eq_cplé_tos_lemma

eq_cplb_state_lemma

eq_cplb_st_lemma :

: LEMMA (equivalent_states(First_b(bcp12),First_d(B_p(bcp12))) AND

beh_transition_condition(bcpi2) AND
rtl_transition_condition(B_p(bcpl2)))
IMPLIES
Val_b(t35,Last_b(bcpl2)) = Val_d(asserta_register_6_outl,Last_d(B_p(bcp12)))

LEMMA (equivalent_states(First_b(bcpl3),First_d(B_p(bcp13))) AND
beh_transition_condition(bcp13) AND
rtl_transition_condition(B_p(bcp13)))

IMPLIES
Val_b(hl,Last_b(bcp13)) = Val_d(asserta_register_1i_outi,Last_d(B_p(bcpi3)))

LEMMA (equivalent_states(First_b(bcpl3),First_d(B_p(bcp13))) AND
beh_transition_condition(bcp13) AND
rtl_transition_condition(B_p(bcp13)))

IMPLIES
Val_b(fl,Last_b(bcpl13)) = Val_d(asserta_register_2_outl,Last_d(B_p(bcpi3)))

: LEMMA (equivalent_states(First_b(bcp13),First_d(B_p(bcp13))) AND

beh_transition_condition(bcp13) AND
rtl_transition_condition(B_p(bcp13)))

IMPLIES
Val_b(t36,Last_b(bcpl3)) = Val_d(asserta_register_3_outl,Last_d(B_p(bcp13)))

: LEMMA (equivalent_states(First_b(bcpl4),First_d(B_p(bcp14))) AND
beh_transition_condition(bcpi4) AND
rtl_transition_condition(B_p(bcpl4)))
IMPLIES
Val_b(state,Last_b(bcpl4)) =Val_d(asserta_register_1_outl,Last_d(B_p(bcpi4)))

LEMMA (equivalent_states(First_b(bcpl4),First_d(B_p(bcpil4))) AND
beh_transition_condition(bcpi4) AND
rtl_transition_condition(B_p(bcpl4)))
IMPLIES
Val_b(st,Last_b(bcpl4)) = Val_d(asserta_register_2_outl,Last_d(B_p(bcp14)))

LEMMA (equivalent_states(First_b(bcpl4),First_d(B_p(bcpl4))) AND
beh_transition_condition(bcpi4) AND
rtl_transition_condition(B_p(bcpi4)))
IMPLIES
Val_b(hl,Last_b(bcpl4)) = Val_d(asserta_register_3_outil,Last_d(B_p(bcpi4)))

LEMMA (equivalent_states(First_b(bcpl4),First_d(B_p(bcpl4))) AND
beh_transition_condition(bcpi4) AND
rtl_transition_condition(B_p(bcpi4)))

IMPLIES
Val_b(fl,Last_b(bcpl4)) = Val_d(asserta_register_4_outl,Last_d(B_p(bcpi4)))

: LEMMA (equivalent_states(First_b(bcpl4),First_d(B_p(bcpl4))) AND

beh_transition_condition(bcpi4) AND
rtl_transition_condition(B_p(bcpl4)))
IMPLIES
Val_b(cof,Last_b(bcpl4)) = Val_d(asserta_register_5_outl,Last_d(B_p(bcpl4)))

: LEMMA (equivalent_states(First_b(bcp14),First_d(B_p(bcpl4))) AND

beh_transition_condition(bcpi4) AND
rtl_transition_condition(B_p(bcpl4)))

IMPLIES
Val_b(tol,Last_b(bcpl4)) = Val_d(asserta_register_6_outl,Last_d(B_p(bcp14)))

: LEMMA (equivalent_states(First_b(bcp14),First_d(B_p(bcp14))) AND

beh_transition_condition(bcpi4) AND
rtl_transition_condition(B_p(bcpl4)))
IMPLIES
Val_b(tos,Last_b(bcpl4)) = Val_d(asserta_register_7_outl,Last_d(B_p(bcpi4)))

: LEMMA (equivalent_states(First_b(bcp15),First_d(B_p(bcp15))) AND
beh_transition_condition(bcpib) AND
rtl_transition_condition(B_p(bcp15)))
IMPLIES
Val_b(state,Last_b(bcpl5)) =Val_d(asserta_register_1_outl,Last_d(B_p(bcpi5)))

LEMMA (equivalent_states(First_b(bcpl5),First_d(B_p(bcp15))) AND
beh_transition_condition(bcpi5) AND
rtl_transition_condition(B_p(bcp15)))
IMPLIES
Val_b(st,Last_b(bcpl5)) = Val_d(asserta_register_2_outl,Last_d(B_p(bcpl5)))

258

eq_cpl5_hl_lemma :

eq_cpl5_fl_lemma :

eq_cplb_cof_lemma :

eq_cplb_tol_lemma

eq_cplb_tos_lemma

eq_cpl6_st_lemma :

eq_cpl6_hl_lemma :

eq_cpl6_fl_lemma :

eq_cpl6_cof_lemma

eq_cpl6_tol_lemma

eq_cpl6_tos_lemma

eq_cpl7_cof_lemma

eq_cpl7_tol_lemma

LEMMA (equivalent_states(First_b(bcpl5),First_d(B_p(bcpil5))) AND

beh_transition_condition(bcpi5) AND
rtl_transition_condition(B_p(bcpl5)))
IMPLIES
Val_b(hl,Last_b(bcpl5)) = Val_d(asserta_register_3_outl,Last_d(B_p(bcp15)))

LEMMA (equivalent_states(First_b(bcpl5),First_d(B_p(bcpl5))) AND

LEMMA

: LEMMA

: LEMMA

beh_transition_condition(bcpi5) AND
rtl_transition_condition(B_p(bcp15)))

IMPLIES
Val_b(fl,Last_b(bcpl5)) = Val_d(asserta_register_4_outil,Last_d(B_p(bcpi5)))

(equivalent_states(First_b(bcp15),First_d(B_p(bcpl5))) AND
beh_transition_condition(bcpi5) AND
rtl_transition_condition(B_p(bcp15)))

IMPLIES
Val_b(cof,Last_b(bcpl5)) = Val_d(asserta_register_5_outl,Last_d(B_p(bcpl5)))

(equivalent_states(First_b(bcp1b) ,First_d(B_p(bcplb))) AND
beh_transition_condition(bcpi5) AND
rtl_transition_condition(B_p(bcpl5)))

IMPLIES
Val_b(tol,Last_b(bcpl5)) = Val_d(asserta_register_6_outl,Last_d(B_p(bcpl5)))

(equivalent_states(First_b(bcp1b) ,First_d(B_p(bcplb))) AND
beh_transition_condition(bcpli5) AND
rtl_transition_condition(B_p(bcpl5)))
IMPLIES
Val_b(tos,Last_b(bcpl5)) = Val_d(asserta_register_7_outl,Last_d(B_p(bcp15)))

LEMMA (equivalent_states(First_b(bcpl6),First_d(B_p(bcp16))) AND

beh_transition_condition(bcpi6) AND
rtl_transition_condition(B_p(bcpl6)))
IMPLIES
Val_b(st,Last_b(bcp16)) = Val_d(asserta_register_2_outl,Last_d(B_p(bcp16)))

LEMMA (equivalent_states(First_b(bcpl6),First_d(B_p(bcpl16))) AND

beh_transition_condition(bcp16) AND
rtl_transition_condition(B_p(bcp16)))
IMPLIES
Val_b(hl,Last_b(bcp16)) = Val_d(asserta_register_3_outil,Last_d(B_p(bcpi8)))

LEMMA (equivalent_states(First_b(bcpl6),First_d(B_p(bcp16))) AND

: LEMMA

: LEMMA

: LEMMA

: LEMMA

: LEMMA

beh_transition_condition(bcp16) AND
rtl_transition_condition(B_p(bcp16)))

IMPLIES
Val_b(fl,Last_b(bcpl6)) = Val_d(asserta_register_4_outl,Last_d(B_p(bcpi8)))

(equivalent_states(First_b(bcp16) ,First_d(B_p(bcp16))) AND
beh_transition_condition(bcp16) AND
rtl_transition_condition(B_p(bcp16)))
IMPLIES
Val_b(cof,Last_b(bcpl6)) = Val_d(asserta_register_5_outl,Last_d(B_p(bcp16)))

(equivalent_states(First_b(bcp16) ,First_d(B_p(bcp16))) AND
beh_transition_condition(bcp16) AND
rtl_transition_condition(B_p(bcpl6)))

IMPLIES
Val_b(tol,Last_b(bcpl6)) = Val_d(asserta_register_6_outl,Last_d(B_p(bcp16)))

(equivalent_states(First_b(bcp16),First_d(B_p(bcp16))) AND
beh_transition_condition(bcpi6) AND
rtl_transition_condition(B_p(bcpl6)))
IMPLIES
Val_b(tos,Last_b(bcpl6)) = Val_d(asserta_register_7_outl,Last_d(B_p(bcp16)))

(equivalent_states(First_b(bcpl7),First_d(B_p(bcpl7))) AND
beh_transition_condition(bcpl7) AND
rtl_transition_condition(B_p(bcpl7)))
IMPLIES
Val_b(cof,Last_b(bcpl7)) = Val_d(asserta_register_5_outl,Last_d(B_p(bcpl7)))

(equivalent_states(First_b(bcpl7),First_d(B_p(bcpl7))) AND
beh_transition_condition(bcpl7) AND
rtl_transition_condition(B_p(bcpl7)))
IMPLIES
Val_b(tol,Last_b(bcpl7)) = Val_d(asserta_register_6_outl,Last_d(B_p(bcpl7)))

259

eq_cpl7_tos_lemma : LEMMA (equivalent_states(First_b(bcp17),First_d(B_p(bcpl7))) AND
beh_transition_condition(bcpl7) AND
rtl_transition_condition(B_p(bcpl7)))
IMPLIES
Val_b(tos,Last_b(bcpl7)) = Val_d(asserta_register_7_outl,Last_d(B_p(bcpl7)))

Figure B.10: TLC Critical Path Equivalence Lemmas

260

261

(AUTO-REWRITE-THEORY "tlc" :ALWAYS? T)

(AUTO-REWRITE-THEORY "tlc_control" :ALWAYS? T)

(FLATTEN)

(LEMMA "bsl_bs2_ax")

(LEMMA "bs2_bs3_ax")

(LEMMA "bs3_bs4_ax")

(LEMMA "bs4_bs1004_ax")

(LEMMA "btc_bcpO_ax")

(BDDSIMP)

(LEMMA "Bp_bcpO_ax")

(REPLACE -1)

(EXPAND "beh_transition_condition")

(EXPAND "rtl_transition_condition")

(EXPAND "First_b")

(EXPAND "First_d4")

(EXPAND "Last_b")

(EXPAND "Last_d")

(ASSERT)

(REPEAT (EXPAND "reverse"))

(REPEAT (EXPAND "append"))

(LEMMA "equivalent_states_bsl_dsl_ax)

(LEMMA "equivalent_states_bs1004_ds6_ax)

(BDDSIMP)

(LEMMA "dtc_dcpO_ax")

(ASSERT)

(BDDSIMP)

(LEMMA "asserta_register_5_ax")

(LEMMA "asserta_register_ax" ("input" "asserta_mux_5_outl" "output" "asserta_register_5_outl" "1d"
"asserta_register_5_1d" "si" "dsb" "s2" "ds6"))

(EXPAND "Control_Signal")

(ASSERT)

(LEMMA "asserta_register_ax" ("input" "asserta_mux_5_outl" "output" "asserta_register_5_outl" "1d"
"asserta_register_5_1d" "s1" "ds4" "s2" "ds5"))

(EXPAND "Control_Signal")

(ASSERT)

(LEMMA "asserta_register_ax" ("input" "asserta_mux_5_outl" "output" "asserta_register_5_outl" "14"
"asserta_register_5_1d" "si" "ds3" "s2" "ds4"))

(EXPAND "Control_Signal")

(ASSERT)

(LEMMA "asserta_mux_5_ax")

(LEMMA "asserta_mux_4_1_ax" ("inputl" "asserta_register_7_outl" "input2" "asserta_constreg_cof_in0O_outl"
"input3" '"asserta_register_2_outl" "input4" "UNCONNECTED" "selQO" "asserta_mux_5_sel_0""sell"
"asserta_mux_b5_sel_1" "output" "asserta_mux_5_outl" "s" "ds3"))

(EXPAND "Control_Signal")

(ASSERT)

(LEMMA "asserta_register_2_ax")

(LEMMA "asserta_register_ax" ("input" "asserta_mux_2_outl" "output" "asserta_register_2_outl" "1d"
"asserta_register_2_1d" "si" "ds2" "s2" "ds3"))

(EXPAND "Control_Signal")

(ASSERT)

(LEMMA "asserta_register_ax" ("input" "asserta_mux_2_outl" "output" "asserta_register_2_outl" "1d"
"asserta_register_2_1d" "si" "ds1" "s2" "ds2"))

(EXPAND "Control_Signal")

(ASSERT)

(ASSERT)

(PROP)

(ASSERT)

Figure B.11: Proof Script for Lemma eq_cp0_st_lemma

262

(AUTO-REWRITE-THEORY "tlc" :ALWAYS? T)

(AUTO-REWRITE-THEORY "tlc_control" :ALWAYS? T)

(FLATTEN)

(LEMMA "bs1004_bs6_ax")

(LEMMA "bs6_bs7_ax")

(LEMMA "bs7_bs8_ax")

(LEMMA "bs8_bs9_ax")

(LEMMA "bs9_bs10_ax")

(LEMMA "bs10_bs1010_ax")

(LEMMA "btc_bcpl_ax")

(BDDSIMP)

(LEMMA "Bp_bcpl_ax")

(REPLACE -1)

(EXPAND "beh_transition_condition")

(EXPAND "rtl_transition_condition")

(EXPAND "First_b")

(EXPAND "First_d")

(EXPAND "Last_b")

(EXPAND "Last_d4")

(ASSERT)

(REPEAT (EXPAND "reverse"))

(REPEAT (EXPAND "append"))

(LEMMA "equivalent_states_bs1004_ds6_ax)

(LEMMA "equivalent_states_bs1010_ds12_ax)

(BDDSIMP)

(LEMMA "dtc_dcpl_ax")

(ASSERT)

(BDDSIMP)

(LEMMA "asserta_register_1_ax")

(LEMMA "asserta_register_ax" ("input" "asserta_mux_1_outl" "output" "asserta_register_1i_outl" "14"
"asserta_register_1_1d" "si1" "dsii" "s2" "ds12"))

(EXPAND "Control_Signal")

(ASSERT)

(LEMMA "asserta_register_ax" ("input" "asserta_mux_1_outl" "output" "asserta_register_1_outl" "1d"
"asserta_register_1_1d" "s1" "ds10" "s2" "dsi1"))

(EXPAND "Control_Signal")

(ASSERT)

(LEMMA "asserta_register_ax" ("input" "asserta_mux_1_outl" "output" "asserta_register_1i_outl" "1d"
"asserta_register_1_1d" "si1" "ds9" "s2" "ds10"))

(EXPAND "Control_Signal")

(ASSERT)

(LEMMA "asserta_mux_1_ax")

(LEMMA "asserta_mux_8_1_ax" ("inputl" "asserta_register_4_outl" "input2" "asserta_constreg_3_outl"
"input3" "UNCONNECTED" "input4" ‘"asserta_register_2_ outl" "input5" "asserta_constreg_1_outl"

"input6" '"asserta_constreg_3_outl" "input7" "asserta_register_3_outl" "input8" "UNCONNECTED"
"selO" "asserta_mux_1_sel_0""sell" "asserta_mux_1_sel_1""sel2" "asserta_mux_1_sel_2" "output"
"asserta_mux_1_outl" "s" "ds9"))

(EXPAND "Control_Signal")

(ASSERT)

(LEMMA "asserta_constreg_1_ax")

(LEMMA "asserta_constreg_ax" ("val" "CONST_10" "output" "asserta_constreg_1_outl" "s" "ds9"))

(PROP)

(ASSERT)

(PROP)

(ASSERT)

Figure B.12: Proof Script for Lemma eq_cpl_hl lemma

263

Appendix C

Symbolic Analysis of Specifications

and Implementations

In the previous chapters, the equivalence between a behavior specification and its register transfer
level implementation was formally defined, and a verification approach based on this definition of
equivalence was presented. In this approach, certain states of the behavior automaton are selected
as check points or points of comparison of the two designs (specification and implementation). These
states are referred to as critical behavior states. Controller states equivalent to the behavior critical
states (which are identified by the synthesis tool), are the critical states of the implementation
design. Certain (or sometimes all) specification variables are critical. These variables are critical,
since they hold the results of the behavior operations, and the correct function of the design is
defined in terms of the values they hold at critical states. The RTL registers, that are the physical
representation of the critical specification variables, are the critical registers of the implementation
design. The register binding information provided by the high-level synthesis system is used to
identify the critical RTL registers. The critical paths were defined as state transition paths between
the critical states (for the exact definition refer to section 6.1). Informally, the verification process
consists of establishing that if at the initial states of corresponding pairs of behavior-controller
critical paths, critical variables and critical registers have equal values, then at the final states of
those paths they have equal values, too. Then, to prove the equivalence, a set of lemmas - one
lemma, for each critical variable along each critical path - should be proven.

In Chapter 7, we mentioned that these proofs are constructed hierarchically. As part of proof
construction at the lowest level, behavior operations and register transfer operations are analyzed
and symbolic values for the behavior variables and design registers are calculated. We use symbolic
analysis for performing these calculation and providing the proofs. Symbolic analysis is used as the

behavior operations and RTL functional units in our models are uninterpreted. We will see in the

264

following sections that when assuming uninterpreted domain of values for behavior variables and
design registers, symbolic evaluation of the variables and symbolic analysis of the effects of register
transfer operations are suitable and sufficient for constructing the proof of equivalence. This is not
the case if we consider the real values of the specification variables or the implementation registers.
When using symbolic methods, the lemmas are proved independent from the specific values of the
variables or registers at the initial states of the critical paths. The proofs hold for all possible
values of the critical variables and registers at the initial or final states of the paths. However, if
we want to prove the same lemmas by interpreting the operations and observing their effects on
the real values of the variables and registers, then all possible values of the variables and registers
at the initial states of the critical paths, as well as all possible combinations of these values should
be considered. In such a case complexity of the verification algorithm increases dramatically. In
this situation, model checking or simulation (that each has its obvious draw backs) should be used

in place of symbolic methods, in order to establish equivalence exhaustively.

The descriptions of the behavior(specification) and structure(implementation) of a design define
the relation of the output values to the input values. In other words, they specify how the outputs
of each component respond to the values arriving at its inputs. We noticed that even though these
descriptions define relations between the inputs and outputs, and do not depend on specific input
or output values, they can be used for predicting and comparing the behavior of the specification
and implementation designs. For example, it may not be possible to calculate the exact value
of a specification variable, upon the exit from a loop; but, we can still derive a relation between
the value of that variable at the beginning and its value at the end of each iteration of the loop.
Similarly, the relation between the content of a register at the beginning and its content at the
end of each iteration of loop constructs of the controller may be derived. This style of analysis is
often sufficient for proving interesting properties of the implementation design. For example, with
an analysis such as above, we can prove that a particular input-output pair of the implementation
description have the exact same relation as their corresponding input-out pair in the behavior
description. These proofs can be conducted through symbolic analysis of the values of the variables
in the specification description and the contents of the registers of the implementation design, when
they are both formally specified by models like those presented in the previous chapters. Symbolic
analysis is a means for verifying that the ‘satisfaction’ or ‘correctness’ between the specification

and implementation holds.

Symbolic evaluation is simply calculating the values of a set of variables or the contents of a set of
registers after a sequence of state transitions in terms of their values or their contents prior to those
state transitions. In the following sections the symbolic analysis of the specification expressions,
and symbolic analysis of the data-path operations will be discussed. Examples are provided to

clarify the concepts.

265

C.1 Specification Variables

The value of each specification variable after a sequence of behavior state transitions can be calcu-
lated in terms of the value of that as well as other specification variables prior to that transition
sequence. If many conditional transitions are present in the sequence then the symbolic expression
representing the values may be very complex. In such cases, the same states may be revisited mul-
tiple times, or some states may be visited conditionally. Therefore, the same variable can assume
multiple values at the same state, and the values of the variables cannot be uniquely defined. In
symbolic analysis of the specification variables in this application, the longest transition sequence is
a critical path. No cycles are present in a critical path, therefore, at most one conditional transition
is present in the sequence and the symbolic values of the variables at each state can be defined

unambiguously.

In the following sections, we will explain the symbolic evaluation of the mathematical and logical
expressions. Symbolic evaluation is a process in which the symbolic value of the expression is cal-
culated in terms of the symbolic values of its subexpressions. Symbolic evaluation is therefore a
recursive process, where the evaluation of an expression is reduced to evaluation of its subexpres-
sions, and this continues recursively until all the subexpressions are simple terms or expressions,

and their symbolic values do not require further calculation.

C.1.1 Mathematical and Logical Expressions

Given the set of the specification variables (ry, 752, -, 7o), and (vali,vala, - -, valy,), their sym-
bolic values at a state sp,, the values of mathematical and logical expressions of the behavioral

specification at state s, can be evaluated in terms of these symbolic values.

Suppose f is a mathematical (+,-,- - -), logical (A, V, ---) or a relational (<, =, >, ---) function. A
behavior expression can have three different forms. The symbolic evaluation of these expressions is

as follow:

1. ezp=c:

sym_eval(ea:p, 3b¢)|((rb1,rb2,---,rbn) := (waly wala,waly)) = €

2. exp =rpk :

sym_eval(exp, Sbi)‘((rbl,rbg,---,rbn) = (val1,vala,valy)) — valy,

266

3. exp = f(Tp1,Tb2, ", Tbn) :

sym_eval(exp, sbi)‘((rbl;'";"'bn> = (valy,walp)) =
Sym—eva'l(f(rbla b2,y a'rbn)a Sbi)‘((rbl,---,rbn) = (valy,waly)) =
f(sym_eval (ro1|((ryy oosrpn) = (valy valn))s 5b;)s
SYM_eval (162 |((ry, - rpn) == (val1,waln))> Sb;)
sYM_eval (Ton |((ryy o rpn) = (valy -valy))s Sb;)) =
f(valy,vals,- - -, valy,)

C.1.2 Statements in the Specifications

In the formal model of the specification, each behavior state corresponds to a statement of the
behavior description. Behavior statements define design operations. Each operation may affect
the value of a specification variable. By symbolic analysis of these statements we can calculate
new symbolic values for the specification variables in a transition from one state to the other.
As mentioned before each state is either conditional or non-conditional. The conditional states
correspond to conditional statements such as if and while statements. Non-conditional states
correspond to assignment statements. Suppose (vary,vars,---,vary,) are the specification variables,
(vali,valy,-- - ,valy) is the value set of these variables at a state s, and (sp, s}) is a state transition.
The symbolic values of the specification variables at s;, the target of state transition sj, can be
calculated in terms of (valyi,vals,- - -, valy,), the symbolic values of the specification variables at the

source of the state transition s, according to the following rules:

unconditional state transitions - As mentioned in section 4.4 the statement corresponding
to sp, the source of an unconditional state transition (s, s}) is an assignment statement. If

sp corresponds to a statement of the form:
I'pk ‘= €Xp;

where 7y, is one of the specification variables and ezp a mathematical or logical expression,
then (val},val),---,vall), the set of symbolic values of the variables at state s, after the

transition (sp, s3) is defined as:

val; (1 # k)

Vi,lgign:valgz{)
Sym_eval(e$p, Sb)‘((rblyrb25"'7rbn> = (vall,valg,---,valn)) (Z = k)

267

Behavior State| 1t | listli] | listj] | temp |

bs4 (list[j](bsg) < list[j)(bss)|list[i](bs3)|list[j](bs3) [temp(bss)
bss 1t(bsa) list[i](bsa) |list[j](bs4) |temp(bsa)
bse 1t(bss) list[i](bss) |list[j](bss) |list[j] (bs5)
bs7 1t(bsg) list[i](bsg) | list[i](bse) |temp(bsg)
bss 1t(bs7) temp(bsy) list[j](bse) |temp(bs7)

Table C.1: Symbolic Evaluation of Specification Variables after State Transitions

This can easily be extended to the case where a multidimensional variable is the target of an

assignment, e.g. if the statement corresponding to the state s} is of the form:

I'bk, [rbkz] ‘= exp;

in which 7y, is an array with m elements then (vall,vall,---,vall) is defined as follows:

Vivj, (1<i<n) A (1<j<m)

val; (i # k1)
val; = ¢ wal;[val;] (G=kiNj#ks)
sym_eval(e:vp, Sb)l((rbl,rbg,---,rbn) := (vali,vala,-valy)) (Z =k Nj= k2)
conditional state transitions - According to the discussion of section 4.4, the state-

ment corresponding to s, the source of a conditional state transition (sp,s};) is a conditional
statement. A conditional statement is a statement like “if (conditional_exp) then” or
“while (conditional_exp) do” , etc. The conditional_exp can be of the form f(ry,7p9,
-+ +,Tp,) Which can be symbolically evaluated. No operation is performed at the state s, so
the value of each specification variable at the state s} is the same as its value at the state sj.

(val,valy, - - ,vall,), the value set of specification variables at state s} is defined as follows:

Vi,1<i<mn : wval, =val; (C.1)

Example - Figure C.1 shows a partial behavior description corresponding to Bubble-Sort algo-

rithm. There are five specification variables and five behavior states in this partial description. The

symbolic evaluation of the specification variables after each state transition is given in Table C.1.

C.1.3 Specification Variables and Transition Sequences

The above procedure helps us, to calculate the values of the specification variables at the state that

is the target of a state transition in terms of the values (or symbolic values) of the specification

268

(bs3) 1t := (list(j) < list(i));

(bs4) if (lt) then

(bss) temp := list(j);
(bsg) list(j) <= list(i);
(bs7) list(i) <= temp;
endif;

b85
b87

(ng)

Figure C.1: Partial Behavioral Specification of Bubble-Sort

269

variables at the state that is the source of that state transition. The same concept applies when we
want to calculate the values of the specification variables at the final state (target) of a sequence
of state transitions in terms of the values (or symbolic values) of the specification variables at
the initial state (source) of the sequence of state transitions. The new symbolic values, after the
first transition in the sequence, are calculated as it was explained in previous section, then, the
symbolic values after the second transition are calculated in terms of the symbolic values after
the first transition and these calculations are continued successively until the final state of the
sequence is reached. This method of evaluating symbolic values by forward traversal of the critical
paths of the behavior automaton is used in our verification process to calculate the values of the
specification variables at the final state of each critical path in terms of their values at the initial
state of the critical path. We believe that symbolic evaluation is one of the key factors in relatively
low verification time associated with this approach. By performing symbolic analysis, a decision
about the equivalence of the specification and implementation descriptions can be made without

any calculations with real values (exhaustive calculations).

Example - In Figure C.1, the transition sequence {(bsy, bss), (bss, bss), (bse, bs7), (bs7,bss)} cor-
responds to a critical path. The value of the specification variables at bsg the final state of the
path, can be symbolically evaluated in terms of their values at bsy the initial state of the path, as

given in Table C.2.

C.2 Register Transfer Operations

By analysis of the register transfer operations in the data-path, we can trace the flow of the data
in the RTL design and provide information about the contents of the data-path registers. In our
verification exercise, the value transfers are analyzed by considering symbolic values for registers
instead of real values. Therefore, we refer to this process as symbolic analysis of the register transfer
operations. During the verification process, the equivalence of the specification and implementation
is established by comparing the values of the critical variables with contents of critical registers. As
we considered symbolic values for the critical variables, the contents of critical registers should also
be calculated symbolically. These values can only be obtained by the knowledge of the data-path
structure and by analysis of the operations performed at each state by following the controller
commands. The symbolic evaluation of the contents of the registers in the data-path is done
through backward traversal of the data-path components, backward trace of the sequence of the
state transitions of the controller or both. The goal is to calculate the contents of each critical
register at s);, the state that is the target of a specific controller state transition (sq, s);), in terms
of the values of that or some other critical registers at sq4, the state that is the source of the state

transition. The value of a critical register at the controller state s/, is either equal to its value at

270

Behavior State| 1t | listli] | listj] | temp |

bsy 1t(bs4) |list[i](bsa4) |list[j](bs4) |temp(bs4)
bss 1t(bs4) |list[i](bsa) |list[j](bs4) |temp(bsa)
bse 1t(bs4) |list[i](bsa) |list[j](bsa4) |list[j] (bsa)
bs7 1t(bsy) |list[i](bsy) |list[i](bs4) | list[j] (bs4)
bsg 1t(bsa) |list[j](bs4)|list[i](bsa) |list[j](bsa)

Table C.2: Symbolic Evaluation of Specification Variables along A Critical Path

the previous state sg, or is the same as the value at its input at the current state s!, which is the
output of another component. To calculate this value in the first case, the value of the register at
the previous state, and in the second case, the value of some other component’s output at current
state should be calculated. In both situations, we need to continue this backward traversal until
the symbolic content of the register can be calculated in terms of the symbolic contents of critical
components at a critical state, in which case the evaluation is complete. In the following sections,

the symbolic analysis of the data transfers in an RTL design will be discussed in detail.

C.3 Combinational and Sequential Components

Let’s assume that (rq1, 742, -+, 7an) is the set of critical design registers, and (sg, s¢) is a state tran-
sition of the controller. Also, assume that (datai,datasy,- -, data,) and (data’,datal,- - -, datal)
are the symbolic values of the critical registers at states s; and sy, respectively. The symbolic

analysis of the data-transfers from the input to the output of different components are as follows:

¢ Basic Combinational Components - The value (real or symbolic) at the output of a
combinational component at each state, can be calculated in terms of the values (real or
symbolic) of its inputs at that state. Assume a component C, with n; inputs and n, outputs.
This component performs the operations fi, fo, --- and f, on the set of inputs C_in[1],
Cin[2], --- and C_in[n;] to generate the output values C_out[1], C_out[2], - -- and C_out[n,]
respectively. The output C_out[k] may be symbolically evaluated in terms of the inputs

according to the following rule:

sym_eval(C_outlk], sq) =
sym_eval(fr(C_in[l],C_in[2],---,Can[n;]), sq) =
Jr(sym_eval(C -n[1], s4), sym_eval(C_in[2], sq), - - - , sym_eval(C in[n;], s4))

An example of a combinational component is a multiplier. A multiplier (shown in Figure

271

MUL _inl

MUL
MUL_in2

. MUL_out

Figure C.2: Multiplier Component

C.2) has two inputs and one output. The output of the multiplier can be evaluated in terms

of its inputs as follows:

sym_eval (MU L_out, sq) = sym_eval(mul(MUL_in,, MU L_iny), s4)

or

sym_eval (MU L_out, sq) = mul(sym_eval(MUL_in1, sq), sym_eval (MU L_ing, s4))

¢ Basic Sequential Components - The value (real or symbolic) at the output of a sequential

component at each state, may be calculated in terms of the values (real or symbolic) of its

inputs at that state, or its output at a previous state. If the value (real or symbolic) of an

output C_out of a sequential component C, at the state s, is a function f of its inputs C_in[1],

Can[2], ---, C_in[n;] at the state s}, or its value at sq, the previous state of s/, then C_out

can be symbolically evaluated as follows:

sym_eval (C_out, s))

f(sym_eval(f1(C-in[l],Cun[2],- -, C_in[n;]), s}), sym_eval(f2(C_-out), sq) =

7(f: (sym_eval (C_inf1], &),
sym_eval(C4n[2],s)),
sym_eval(C_in[n;], s)),

fa(sym_eval (C_out, s4)))

The rules of symbolic evaluation for two basic sequential components, Register and RAM

are given below.

1. REG : Suppose 1 <14 <n (n is the number of critical registers at state s};), then:

data;

Id=0A (3i: REG = ry)

sym_eval(REG_out, si)) = { sym_eval(REG_out,sq) ld =0A (i : REG = rg)
sym_eval(REG_in,s)) ld=1

272

REG_ in — REG - » REG_ out

REG_Id A

Figure C.3: Register Component

RAM

RAM data in —— m
(@] = ram_ou

RAM_address in ——= .

RAM rd 4A
RAM wr

Figure C.4: Random Access Memory Component

2. RAM : Suppose 1 < i <mn and 1 < j < m, where n is the number of critical registers

at state 3:1 and m is the number of elements of RAM. Then :

address = sym_eval(RAM _address_in, s;)

sym_eval(RAM[j], sl)) =

sym_eval(RAM][j], s4) wr = 0N Ai: RAM = ry
data;[j] wr =0A(Ji: RAM = ry
sym_eval(RAM _data_input,s)) wr =1A(3j: address = j)

sym_eval(RAM _out, s);) =

sym_eval(RAM [sym_eval(RAM _address_in,)], s}) rd=1
sym_eval(RAM _out, sq) rd=20

273

C.3.1 Data Transfers in an RTL Design

In the previous section, we discussed the evaluation of symbolic values of the outputs of some basic
RTL components at certain controller states, in terms of the symbolic values of their inputs at that
state, or the symbolic values of their outputs at the previous state. The data-path of an RTL design
is an interconnection of different basic components. The rules presented in the previous section
can be used to evaluate the symbolic values of the outputs of different data-path components at
different states. In these evaluations, the interconnections of the components and the data transfers
through these interconnections should be taken into account. To see how the interconnections of
the components should be taken into account, consider the simple example of Figure C.5, where

C1, Cy and C3 are combinational components.

C1 out
Clin — Ci1 =

C3.inl
—>

C3 - C3 out
H
C3.in2

C2.in —= C2

C2 out

Figure C.5: Example of Interconnection of the Data-Path Components

The output of each component can be symbolically evaluated in terms of its inputs:

sym_eval (Cy_out, sq) = f1(sym_eval(C -in, sq))
sym_eval (Cy_out, sq) = fo(sym_eval(Cy_in, sq))
sym_eval (C3_out, sq) = f3(sym_eval(Cs_ini, sq), sym_eval(C3_ing, sq))

Considering the interconnections between the components and the fact that:

Cs5.2ny = Ciout and
Cg_ing = CQ_O’U,t

and that:

Vsq € Sq:
sym_eval(Cs_iny, sq) = sym_eval(Cy_out,sy) and

sym_eval(C3_ing, sq) = sym_eval(Cy_out, sq)

274

the symbolic value of the output of C5 can be rewritten as:
sym_eval (Cs_out, sq) = f3(f1(sym_eval(C1in, sq)), f2(sym_eval(Ca_in, s4)))

A similar approach is used in evaluating the output values of different RTL components in general
(combinational or sequential). The symbolic evaluation of the outputs of components is done by
(1) backward traversal of the data-path (by calculating the output of a component in terms of its
inputs, that in turn are calculated in terms of primary inputs or the outputs of other components
(that are calculated in terms of - --), and/or (2) back-tracing the sequence of state transitions of
the controller of the RTL design, in the case of the sequential components, where the output of a
component at a certain state sg4, of the controller may be the same as its output at the previous
state of sq. We are not interested in arbitrarily calculating the output of a component in terms of
its inputs that are the outputs of some other components, at possibly a different state. Our goal is
to calculate these values solely in terms of the values of the critical registers at critical states We

want to do a complete symbolic analysis of the output values.

Consider an implementation model of an RTL design. Suppose Ry = {rq1,742, ", Tan} is the set of
critical registers of this design. Now, suppose that ¢p = {(sai, Sdi+1), (Sdi+1, Sdi+2),*** > (Sdj—1, Sdj) }
is a critical path of the controller, and that the symbolic values of the critical registers at sg4i, the

initial state of the cp is defined as:

sym_eval ((rq1,Td2, "+, Tan), Sdi) = (datay,datag, - - -, datay,)

The symbolic evaluation of the output of a data-path component at the final state of the critical
path sgq;, is complete if its symbolic value is defined only in terms of (datai, datas,- - -, data,) or

constant values, but no other symbolic values.

Example - Figure C.6 shows a part of the data-path and controller of an RTL design. The sequence
of states {dsg, ds7,dss,dsg,ds1p} is a critical path of the design and dsg and dsyg are critical states,
and REG, REGy, REG, and REGS5 are among critical design registers. REG3 is not a critical
register. In this example we are interested in performing a complete symbolic evaluation of the
output of REG5 at state dsig, i.e. calculating the output of REG5 at state dsig in terms of the
outputs of the critical design registers at state dsg. We explained before, that this can be done by
a backward traversal of the data-path or/and back-trace of controller state transitions as follows:

REGs5_out(ds19) = REG5_out(dsy)
REG5_out(dsg) = MU X4 _out(dss)
MU X5 out(dss) = ADD _out(dss)
ADD _out(dsg) = CONS_REG _out(dsg) + REG3_out(dss)
REG3_out(dsg) = MUX; _out(ds7)

275

MUX; out(ds7) = REG: _out(ds7)
REG; -out(ds7) = REG1 _out(dsg)

By performing the necessary substitutions the symbolic value of REG5 is obtained:
REGS5_out(ds1g) = CONS_REG out(dsg) + REG; _out(dsg)

which means:

REG5_out(ds19) = C + REG out(dsg)

and therefore, the symbolic evaluation of the output of REGj5 is complete.

C.3.2 Application of Symbolic Analysis in Verification of Synthesized RTL De-
signs

In constructing the proof of correctness of RTL designs, we rely on establishing that certain relations
between the contents of registers (the values of variables) at some state, and their contents (their
values) at some other state exist. We mechanically extract such relations by backward traversal of
the data path and/or back-trace of the controller state transitions (forward traversal of the behavior
automaton), and use them in our proofs. During the proof checking, the proof checker processes the
design descriptions and verifies if such relations may be deduced from the formal descriptions of the
RTL design (the behavior specification). The errors in the implementation, as well as any relations

that may not be inferred from the design descriptions are detected during the proof checking.

276

REG,_in
—

REG,_cs

REG, _in

REG linut
REG ¢

MUX 1_inl

MUX 4_in2
REG2

RE62 _out

REG, _cs

MUX ;_sel

REG4 _cs

REG1 cs

REG3_cs

REG5
MUX

N
% 3

@)~

CONS REG
©

REG4 _out
REG,4 _in —— REG,
REG, s} MUX , _inl
MUX , _in2
ADD_in1 —
ADD REGg _cs
ADD_in2 ADD_out
> MUX , _sdl
REG3_<Jut

REG3

REGg

REG 5 _out
-

Figure C.6: Parts of Controller and Data-Path of an RTL Design

277

Bibliography

1]
2]

3]

[10]

[11]

Guidelines for Formal Verification Systems. National Computer Security Center, 1989.

What is Formal Methods? Nasa Langley Research Center: Formal Methods Program;
http://shemesh.larc.nasa.gov/fm/fm-what.html, 2000.

M. Aagaard and M. Leeser, “A Formally Verified System for Logic Synthesis”, Proceedings of
1991 IEEE International Conference on Computer Design, 1991.

M. Aagaard, M. Leeser, and P. Windley, “Towards a Super Duper Hardware Tactic”, HOL
Theorem Proving System and its Applications, 1993.

S. Basse, “Computer Algorithms”, Addison- Wesley, 1978.

R. A. Bergamaschi and S. Raje, “Observable Time Windows: Verifying The Results of High-
Level Synthesis”, IEEE Design & Test of Computers, 1997.

R. E. Bryant, “Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams”,
Technical Report CMU-CS-92-160,School of Computer Science, Carnegie Mellon University,
1992.

R. E. Bryant, “Binary Decision Diagrams and Beyond: Emnabling Technologies for Formal
Verification”, Embedded tutorial at International Conference on Computer-Aided Design, 1995.

J. R. Burch and D. L. Dill, “Automatic Verification of Pipelined Microprocessor Control”,
Proceedings of Computer-Aided Verification, 1994.

R. Camposano and W. Wolf, “High-Level VLSI Synthesis”, Kluwer Academic Publishers, 1991.

L. Claesen, M. Genoe, E. Verlind, F. Proesmans, and H. D. Man, “SFG-Tracing: A Method-
ology of Design for Verifiability”, Proceedings of Advanced Workshop on Correct Hardware
Design Methodologies, 1991.

278

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

L. Claesen, F. Proesmans, E. Verlind, and H. D. Man, “SFG-Tracing: A Methodology for the
Automatic Verification of MOS Transistor Level Implementations from High-Level Behavioral
Specifications”, Proceedings of International Workshop on Formal Methods in VLSI Design,
1991.

E. Clarke, E. Emerson, and A. Sistla, “Automatic Verification of Finite-State Concurrent

Systems using Temporal Logic Specifications”, ACM Transactions on Prog. Lang. Syst., 1986.

F. Corella, “Automated Verification of Behavioral Equivalence for Microprocessors”, Research
Report, IBM Research division, T.J. Watson Research Center, 1992.

F. Corella, “Automated High-Level Verification Against Clocked Algorithmic Specifications”,
Proceedings of Computer Hardware Description Languages and Their Applications, 1993.

F. Corella, R. Camposano, R. Bergamaschi, and M. Payer, “Verification of Synchronous
Sequential Circuits Obtained from Algorithmic Specifications”, Proceedings of International
Workshop on Formal Methods in VLSI Design, 1991.

G. De-Micheli, “Synthesis and Optimization of Digital Circuits”, McGraw-Hill, 1994.

R. Dutta, J. Roy, and R. Vemuri, “Distributed Design Space Exploration for High-Level Syn-
thesis Systems”, 29th Design Automation Conference, 1992.

D. Eisnbiegler and R. Kumar, “Formally Embedding Existing High Level Synthesis Algo-
rithms”, Correct Hardware Design and Verification Methods, 1995.

F. Feldbusch and R. Kumar, “Verification of Synthesized Circuits at Register Transfer Level
with Flow Graphs”, Proceedings of IEEE European Design Automation Conference, 1991.

D. Gajski, N. Dutt, A. Wu, and S. Lin, “High-Level Synthesis, Introduction to Chip and
System Design”, Kluwer Academic Publishers, 1992.

M. Gordon, Lecture Notes on Specification and Verification. University of Cambridge Computer
Laboratory, 1999.

S. Govindarajan and R. Vemuri, “Cone-Based Clustering Heuristic for List Scheduling Algo-
rithms”, Proceedings of the European Design and Test Conference, 1997.

S. Govindarajan and R. Vemuri, “Dynamic Bounding of Successor Force Computations in
the Force Directed List Scheduling Algorithm”, Proceedings of International Conference on

Computer Design, 1997.

D. Greve, “Symbolic Simulation of the JEM1 Microprocessor”, Proceedings of the 2nd Inter-

national Conference on Formal Methods in Computer-Aided Design, November 1998.

279

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

J. L. Hennessy and D. A. Patterson, Computer Architecture A Quantitative Approach. Morgan
Kaufmann Publishers, INC., 1996.

R. Hojati and R. K. Brayton, “Automatic Datapath Abstraction In Hardware Systems”, Pro-
ceedings of Computer Aided Verification, 1995.

A. J. Hu, Techniques for Efficient Formal Verification Using Binary Decision Diagrams. Stan-
ford University, 1995.

W. Hunt, FM8501: A Verified Microprocessor. 1994.
S. Johnson, “Synthesis of Digital Designs from Recursion Equations”, MIT Press, 1984.

S. D. Johnson, W. P. Alexander, S.-K. Chin, and G. Gopalakrishnan, “Report on the 21st
Century Engineering Consortium Workshop”, 1998.

S. Katkoori, J. Roy, and R. Vemuri, “A Hierarchical Register Optimization Algorithm for
Behavioral Synthesis”, Proceedings of International Conference on VLSI Design, 1996.

D. W. Knapp, “Behavioral synthesis : digital system design using the Synopsys Behavioral
Compiler””, Prentice Hall, 1996.

P. M. Kogge, The Architecture of Pipelined Computers. McGraw-Hill Book Company, 1981.

T. Kropf, K. Schneider, and R. Kumar, “A Formal Framework for High Level Synthesis”,

Theorem Provers in Circuit Design, 1994.

F. Kurdahi and A. Parker, “REAL: A Program for REgister ALlocation”, 2/th Design Au-

tomation Conference, 1987.

M. McFarland, “An Abstract Model of Behavior for Hardware Descriptions”, IEEE Transac-

tions on Computers, 1983.

K. L. McMillan, “Symbolic Model Checking: An Approach to the State Explosion Problem”,
Carnegie Mellon University, 1992.

T. L. Melham, Higher Order Logic and Hardware Verification. Cambridge University Press,
1993.

P. Michel, U. Lauther, and P. Duzy, The Synthesis Approach to Digital System Design. Kluwar
Academic Publishers, 1992.

R. Milner, Communication and Concurrency. Prentice Hall International Series in Computer
Science, 1989.

280

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

J. S. Moore, “Symbolic Simulation : An ACL2 Approach”, Proceedings of the 2nd International
Conference on Formal Methods in Computer-Aided Design, November 1998.

N. Narasimhan and R. Vemuri, “Specification of Control Flow Properties for Verification of
Synthesized VHDL Designs”, Proceedings of International Conference in Formal Methods in
Computer Aided Design, 1996.

N. Narasimhan and R. Vemuri, “Synchronous Controller Models for Synthesis from Commu-
nicating VHDL Processes”, Ninth International Conference on VLSI Design, 1996.

N. Narasimhan and R. Vemuri, “On the Effectiveness of Theorem Proving Guided Discovery of
Formal Assertions for a Register Allocator in a High-Level Synthesis System”, Proceedings of
11th Conference on Theorem Proving in Higher Or der Logics (TPHOL’98), September 1998.

N. Narasimhan, E. Teica, R. Radhakrishnan, S. Govindarajan, and R. Vemuri, “Theorem Prov-
ing Guided Development of Formal Assertions in a R esource-Constrained Scheduler for High-
Level Synthesis”, Proceedings of International Conference on Computer Design (ICCD’98),
pp- 392-399, October 1998.

S. Owre, N. Shankar, J. Rushby, and D. Stringer-Calvert, “PVS Language Reference”, SRI
International, September 1999.

S. Owre, N. Shankar, J. Rushby, and D. Stringer-Calvert, “PVS System Guide”, SRI Interna-
tional, September 1999.

N. Park and A. C. Parker, “Sehwa: A Software Package for Synthesis of Pipelines from Be-
havioral Specifications”, IEEE Transactions on Computer Aided Design, 1988.

P. Pualin, J. Knight, and E. Girczyc, “HAL: A Multi-Paradigm Approach to Automatic Data
Path Synthesis”, Proceedindgs of the 24th ACM/IEEE Desgin Automation Conference, 1986.

S. Rajan, “‘Correctness Transformations in High Level Synthesis: Formal Verification”, Pro-

ceedings of the International Conference on Computer Hardware Description Languages, 1995.

S. Rajan, J. Joyce, and C. Seger, “From Abstract Data Types to Shift Registers : A Case
Study in Formal Specification and Verification at Differing Levels of Abstraction using The-
orem Proving and Symbolic Simulation”, 6th International Workshop on Higher Order Logic
Theorem Proving and Its Applications, 1993.

J. Roy, N. Kumar, R. Dutta, and R. Vemuri, “DSS: A Distributed High-Level Synthesis
System”, IEEE Design and Test of Computers, 1992.

R. N. S. Devadas, H. T. Ma, “On Verification of Sequential Machines at Differing Levels of
Abstraction”, IEEE Transactions on Computer-Aided Design, 1988.

281

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

N. Shankar, S. Owre, and J. M. Rushby, “The PVS Proof Checker: A Reference Manual (Beta
Release)”, 1993.

N. Shankar, S. Owre, J. Rushby, and D. Stringer-Calvert, “PVS Prover Guide”, SRI Interna-
tional, September 1999.

M. K. Srivas and S. P. Miller, “Formal Verification of the AAMP5 Microprocessor”, Industrial
Applications of Formal Verification.

L. Stok and R. V. D. Born, “EASY: Multiprocessor Architecture Optimiztion”, Proceedings of
International Workshop on Logic and Architecture Synthesis for Silicon Compilers, 1998.

D. E. Thomas, R. L. Blackburn, and J. V. Rajan, “Linking the Behavioral and Structural
Domains of Representation for Digital System Design”, IEEE Transactions on Computer Aided
Design, 1987.

D. Thomas, C. Y. H. III, T. Kowalski, J. Rajan, and A. Walker, “Automatic Data Path
Synthesis”, IEEE Transactions on Computers, 1983.

D. Thomas, E. Lagnese, R. Walker, J. Nestor, J. Rajan, and R. Blackburn, “Algorithmic and
Register Transfer Level Synthesis: The System Architect’s Workbench”, Kluwer Academic
Publishers, 1990.

C. Tseng and D. P. Siewiorek, “Facet : A Procedure for the Automated Synthesis of Digital
Systems”, Proceedings of 20th ACM/IEEE Design Automation Conference, 1983.

J. Vanhoof, K. V. Rompaey, I. Bolsens, G. Goossens, and H. D. Man, Hih-Level Synthesis for
Real-Time Digital Signal Processing. Kluwar Academic Publishers, 1993.

R. Vemuri, “On the Notion of Normal Form Register-Level Structures and Its Applications
in Design-Space Exploration”, Proceedings of IEEE European Design Automation Conference,
1990.

R. Vemuri, P. Mamtora, P. Sinha, N. Kumar, and J. R. R. Vutukuru, “Experiences in Func-
tional Validation of a High Level Synthesis System”, Proceedings of 30th ACM/IEEE Design

Automation Conference, 1993.

R. Walker and R. Camposano, “A Survey of High-Level Synthesis Systems”, Kluwer Academic
Publishers, 1990.

P. Windley, “The practical verification of microprocessor designs”, Compcon, 1991.

P. J. Windley, “Verifying Pipelined Microprocessors”, Proceedings of the International Con-

ference on Computer Hardware Description Languages, 1995.

282

[69] N. Woo, “A Global, Dymanic Register Allocation and Binding for Data Path Synthesis Sys-
tem”, Proceedings of the 27th ACM/IEEE Design Automation Conference, 1990.

283

