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Autonomous vehicles are a hot topic in control theory and are utilised in different fields

such as industries, aerospace and robotics. Trajectory-tracking is one of the crucial

features of autonomous vehicles which involves two major steps: generating a reference

trajectory and tracking it. In many cases, the reference trajectory is generated by using

an objective function where we want vehicles to move towards the extremum (maxi-

mum/minimum) of the objective function which is a terminal position of the trajectory.

We performed some simulations and experiments using traditional controllers includ-

ing the Proportional-Derivative Controller (PDC), Model-Predictive Controller (MPC),

and Pure Pursuit Controller (PPC). These controllers while showing some degree of

desirable vs. undesirable behaviour, they are model-based controllers that require a

mathematical expression of an objective function. Additionally, they show difficulties

and they have other limitations. In this thesis, we make a case for the utilization of

extremum-seeking control (ESC) systems which are model-free, real-time, adaptive sys-

tems. We revisit some works that have been done regarding the classic ESC (C-ESC)

structure. The primary part of this thesis is where we provide the simulations and exper-

imental works using control-affine ESC (CA-ESC) systems which have been used rarely

in experimental environments in literature. Particularly, we utilized single-integrator

and unicycle dynamics CA-ESC structures and conducted simulations and experiments.

Additionally, we propose a novel amended CA-ESC design (for both single-integrator

and unicycle dynamics) by adopting some developments that took place in this area

in recent years. Our proposed design consists of a Geometric-Based Extended Kalman

Filter (GEKF) for gradient estimation and adaptation law for attenuation oscillations

and better convergence rate. We performed simulations to show the effectiveness of our

proposed design.
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Chapter 1

Introduction

1.1 Autonomous Vehicles

Autonomous vehicles have gained popularity due to their utilization in industries, aerospace,

and military robotics [1, 2]. Capable of moving from their current state to their desired

state, they are capable of navigating through environments that are dangerous for hu-

mans such as where toxic gases and high temperatures are present [3]. This technology

is a hot topic in control theory due to its potential to enhance the transportation sys-

tem’s efficiency by reducing the load from the driver, augmenting fuel efficiency, and

decreasing the chances of traffic-related casualties [4, 5].

One of the primary features of an autonomous vehicle/robot is to track a reference tra-

jectory. The trajectory-tracking method computes the control command that drives a

robot to follow the reference trajectory [6]. It involves two steps: generating a trajec-

tory and tracking it. The trajectory is characterized as either a sequence of consecu-

tive reference points or by a set of geometrical primitives like lines or curves [7]. The

trajectory-tracking problem has been a focal point of research for the last few decades.
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It is considered one of the important features of controlling the vehicle. It requires

gradient information in case of a pre-defined trajectory or real-time trajectory tracking.

Among the methods to conduct trajectory tracking, there are those that depend on

having access to kinematics for characterizing the trajectory and there are those that

build their characterization of the trajectory based on the geometry of the environment.

In this work, the particular path that we are concerned with is generated via the Lie-

Bracket System (LBS) [8–10]. While we explain LBS in chapter 2, we want the reader

here to know that LBSs are gradient-like systems in which they go from an initial point

to a terminal point of a path that is characterized by an objective function. The terminal

point is an extremum (maxima/minima) point of the objective function

1.2 Motivation

Figure 1.1: Depiction of trajectory tracking problem in xy plane. The black dotted is
the reference trajectory and the red is the actual trajectory tracked by the differential-

drive robot.
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Consider the figure 1.1, which demonstrates a trajectory-tracking scenario. In the figure,

a differential drive robot is presented which has body axes as (X,Y ), whereas global

axes as (x, y). The initial angle between the global and body axes is ϕ0. The generated

reference trajectory from point “O” to point “D1” is presented by the black dotted curve,

and the actual trajectory that is tracked by the robot is presented by the red dotted

curve. It can be observed from the figure that the controller drove the robot from its

initial point (O1) to its near-desired position (the actual final point is D2). However,

from the figure, we can explicitly observe that the controller is ineffective to compute

optimal control inputs for the robot so that it can follow the trajectory smoothly and

perfectly.

Numerous controllers have been deployed in the works mentioned in the literature to

address the trajectory tracking issue. Despite the efficiency demonstrated by the con-

trollers in resolving the problem, there are still some limitations that persist with them.

The limitations are discussed in the following points.

• Optimization: There are two steps in path-tracking: path planning, and path

tracking. Generating a trajectory for reference is a crucial step. There are different

techniques to generate it. However, generating an optimal path is important to

enhance the performance.

• Information: Traditional controllers need information about the reference tra-

jectory and a known mathematical expression of an objective function to compute

the control inputs for the robot to drive. However, there are some cases where

the objective function is unknown (i.e. sensor data), in such cases traditional

controllers are ineffective.
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• Computational Complexity: Some controllers are computationally complex.

For example, model predictive controller (MPC) [11] is considered one of the ad-

vanced controllers that not only minimizes the difference between the current states

of the robot, and the reference states but also solves online optimization problems.

Nevertheless, it is computationally complex which makes it less desirable.

• Flexibility: Traditional controllers may not be very flexible in some cases where

additional constraints are introduced. For instance, if there is an obstacle on the

path, to avoid it, the controller gives the command to the robot which may drive

it away from its reference trajectory and it may become hard to follow the desired

path back. Consequently, the accuracy of the controller reduces in tracking the

path.

• Model-based: Traditional controllers are model-based controllers which means

that their performance relies on the model. To be a highly efficient controller, the

model needs to be accurate. However, getting an accurate model is difficult to

obtain [4]. If the model is not accurate then it would have an adverse effect on the

performance of the controller.

To overcome the limitations of traditional controllers, we move forward to the use of

the extremum-seeking scheme. Extremum seeking control (ESC) system is a control

system that is used to determine and maintain the extremum (maximum/minimum) of

a function [12–15]. ESC is a model-free optimization technique, which estimates the

local gradient of an objective function without the explicit knowledge of mathematical

expression, however, there are other kinds of ESC that involve higher-order derivative

information (i.e. hessian) [16]. In fact, we are motivated in this thesis to revisit C-ESC
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experiments such as in [17], and conduct experiments with new concepts of CA-ESC

and recently developed techniques of attenuating oscillations [8, 9, 18–20]

1.3 Literature Review

1.3.1 Proportional – Integral – Derivative Controller (PIDC)

In the paper [3], the authors address the problem of trajectory tracking of the system

using the Particle Swarm Optimization PID (PSO-PID) controller. They use two PIDCs

to control the position and orientation of the system. PSO technique is utilized to get

optimal values of the tuning parameters of the controller (KP ,KD,KI) and it demon-

strates good results in a short time as compared to other optimization techniques. In

[7], a trajectory-tracking controller based on a robust PID algorithm is proposed by the

authors. They provide a method that uses a simple linearized model of the mobile robot

and demonstrates the performance and robustness of the controller experimentally. The

robust tuning of the controller is done using a simple and intuitive parameter, allowing

for a good compromise between performance and robustness. A special case of PIDC

(PI controller) is used to resolve two different tasks: ”going to target”, and ”Following a

trajectory”. in [21]. The authors consider the ”Khepera II” platform for the controller

to adjust the motor velocities. The provided method is efficient in accomplishing both

tasks, with a simple design and fewer tuning parameters. In the literature [22], a fuzzy-

PID controller is provided by the researchers to solve the trajectory-tracking problem.

The Fuzzy controller is utilized to find the optimal values of PID tuning parameters.

The comparative results between the fuzzy-PID controller and the classical PID show

that the fuzzy-PID controller has a better performance than the classical PID for a

mobile robot with high stability, and performance.
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1.3.2 Pure Pursuit Controller (PPC)

The authors in [6] mention a novel method that heuristically selects a look-ahead point

by considering the relationship between a vehicle and a path. By exploiting the look-

ahead point, the vehicle can stably converge to the desired path and track it effectively.

The results of the proposed method show that the vehicle tracks the desired path more

accurately than using standard PPC, and verify the effectiveness of the method ex-

perimentally using an autonomous vehicle [6]. In literature [23], the authors tackle the

problem of PPC ineffectiveness in tracking a path at high speeds. They propose a model

predictive active yaw control implementation of pure pursuit path tracking that accom-

modates the vehicle’s steady-state lateral dynamics to improve tracking performance

at high speeds. They conduct tests for three different paths from low to high speeds.

The results show that the idea of implementing a receding horizon strategy for pure

pursuit tracking improves their performance significantly [23]. The paper [24] provides

an algorithm to track a trajectory based on two fuzzy controllers to adjust the speed

and foresight distance in the pure pursuit method simultaneously. The effectiveness of

the proposed algorithm is illustrated by simulation and field experiments on different

trails and shows that the system tracked the trajectories of both continuous and dis-

continuous curvatures more effectively than the standard pure pursuit algorithm. On

the other side, field experiments indicate that the provided algorithm has very small

distance errors when tracking the reference path [24].
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1.3.3 Model Predictive Controller (MPC)

In [1], the authors propose a new solution to the trajectory tracking problem for input-

constrained differential-driver robots. The technique is designed by properly leveraging

two main ingredients: 1) a feedback linearization (FL) technique and 2) a Receding

Horizon Control (RHC) framework. The controller has a unique capability to deal with

state-dependent input constraints acting on the feedback linearized vehicle model while

ensuring recursive feasibility [1]. The controller’s effectiveness is validated experimen-

tally on a mobile robot by comparing the control performance with different schemes

[1]. In the literature [25], the authors tackle the problem of trajectory tracking by using

an Explicit-MPC. The MPC solution is calculated offline and expressed as a piece-wise

affine function of the current state of a differential-drive mobile robot. This approach is

restricted to a linear model. The simulation results show a good performance and veri-

fied it experimentally. [25]. In the work [26], authors present a framework for real-time,

full-state feedback, unconstrained, Nonlinear-MPC (N-MPC) that combines trajectory

optimization and tracking control in a single, unified approach. The method used an

iterative optimal control algorithm, known as Sequential Linear Quadratic (SLQ), in

a MPC setting to solve the underlying nonlinear control problem and simultaneously

derive the optimal feed-forward and feedback terms. The performance of the approach

is validated on two different hardware platforms: AscTec firefly hexacopter and the ball

balancing robot Razer [26]. The results show that the MPC problem can be solved in a

few milliseconds, even for time horizons of several seconds, indicating that the approach

can scale well to more complex systems [26].
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1.4 Thesis Contribution

Our contributions in this thesis are specified as follows -

• Investigate the performance of traditional controllers (a special form of PIDC

(PDC), PPC, and MPC) in addressing trajectory-tracking problems when the

trajectory is meant to take the system from a given point to an extremum of an

objective function and conducting simulations in MATLAB/Simulink. Reference

trajectory is generated using the concept of LBS as mentioned [8–10].

• Conduct experiments by deployment of a real-world robot (Turtlebot3 (TB3)) [27].

Deployment is done in real-time.

• Literature review and study of C-ESC then conduct simulations and experiments

for 1-D and 2-D cases using C-ESC with a known mathematical expression of

objective functions [17].

• Conduct an experiment by C-ESC for source-seeking for an unknown objective

function. For this experiment, a light source is used.

• We conduct a literature review and study CA-ESC. We also discuss the 2-D

navigation model of CA-ESC for single-integrator design and unicycle dynamics

[8, 9, 18, 28].

• We conduct simulations and experiments using both models (single-integrator and

unicycle dynamics models).

• We propose our novel proposed design (for both single-integrator and unicycle

dynamics models) with attenuating oscillations and a better convergence rate.

Said design is based on using the concept of Geometric-Based Extended Kalman

Filter (GEKF) and adaptation law for attenuating oscillations [19, 20].
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• We perform simulations using our proposed design to show the efficiency of our de-

signs in attenuating the oscillations by comparing its performance with traditional

single-integrator and unicycle dynamics designs mentioned in literature [8].

1.5 Thesis Layout

The work in this thesis is structured as follows: Chapter 2 introduces the concept of LBS

for generating a reference trajectory. In this chapter, we investigate the performance of

traditional controllers by performing simulations, and then verify it experimentally. In

Chapter 3, we do the literature review and study of C-ESC. We show the simulation

results and experimental results with known mathematical expressions of an objective

function and also perform a light source-seeking experiment in which we only have access

to light sensor measurement to show the effectiveness of the C-ESC design mentioned in

[17]. We study and do the literature review of CA-ESC in chapter 4. In this chapter, we

utilize the single-integrator and unicycle dynamics models with CA-ESC to conduct sim-

ulations and experiments in real-time. Moreover, we propose our novel single-integrator

and unicycle CA-ESC designs with attenuating oscillations and better convergence rate.

The designs are based on using the concepts of GEKF and adaptation law for attenuating

oscillations. Our proposed design consists of traditional CA-ESC coupled with GEKF

and adaptation law that guarantees the attenuation of oscillations. We summarise our

observations and talk about our next plans to proceed with our research in chapter 5.
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Chapter 2

Model-based Solutions with

Simulations and Experiments

2.1 Introduction

In this chapter, we investigate the performance of three different traditional controllers (

(a special form of Proportional-Integral-Derivative Controller (PD Controller (PDC))),

Pure Pursuit Controller (PPC), and Model Predictive Controller (MPC)) in addressing

the trajectory-tracking problem. Trajectory-tracking is considered one of the important

features of controlling the vehicle. It requires gradient information, however, it is one

of the challenges in control theory to drive the vehicle so that it follows the trajectory

with high accuracy. The efficiency of tracking it highly relies on the controller.

In this chapter, we have worked in two steps: in step 1, a reference trajectory is generated

by using LBS which is based on the gradient information (in terms of known mathe-

matical expression), and in step 2, we perform simulations on MATLAB/Simulink using

all controllers mentioned in the previous paragraph. Moreover, we conduct real-time
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experiments by deploying the controllers on real hardware TB3 to verify the simulation

results.

We present the path planning algorithm in section 2.2, using LBS. Differential-drivel

model is presented in section 2.3. Analysis and study of traditional controllers are

manifested in section 2.4. We discuss experimental setup, and results in sections 2.5, and

2.6. We provide a conclusion of this chapter based on the simulation and experimental

results in section 2.7.

2.2 Path Planning Under Consideration

Gradient systems play an important role in different areas of science since they are

utilized for analyzing the stability of the dynamical system, optimization, and control

theory in designing the controller to track a desired trajectory. A gradient system is

defined as the system’s dynamics in terms of gradient function. Mathematically, it can

be defined as [29–32]:

ẋ = −k∇V (x), (2.1)

where x ∈ Rn, which is a state variable of the system, k is any positive constant, V (x)

is the potential function that is continuous and twice differentiable, and ∇V (x) is the

gradient of the potential function. The negative sign indicates the system is moving

toward the minimum of the function V , which occurs when ∇V = 0 [30, 32]. The

trajectory follows the path of negative V . The stability of the system can be determined

by using the Lyapunov function. The condition for the system to be stable is that the
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dot product of the derivative of the state with the gradient of the potential function

should be negative [30, 32].

ẋ.∇V (x) < 0. (2.2)

From (2.1), and (2.2),

−k∇V (x).∇V (x) < 0, (2.3)

−k∇2V (x) < 0, (2.4)

from the above equation, we can say the Lyapunov stability criteria is satisfied.

A lie bracket can be defined as a mathematical operator that describes how one vector

field changes on the flow of another vector field. Let two vector fields g and f on the

manifold then lie derivative of g with respect to vector f can be defined as:

Lfg =
∂g

∂x
f − ∂f

∂x
g = [f ,g]. (2.5)

The expression Lfg represents the Lie bracket, ∂g
∂x f represents the flow of the gradient

of vector g in the direction of f . Similarly, ∂f
∂xg represents the gradient flow of vector f

in the direction of g.

Notice that if we replace the function V with an objective function f in (2.1), which we

want our robotics system to track, then the system becomes ascending or descending

based on the gradient. One can note that LBS works similarly to the gradient system
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(2.1). A gradient system can be written in terms of LBS. Using gradient information,

this system moves along a gradient to go from the initial point to the extremum (mini-

mum/maximum) of an objective function. For instance, consider an objective function

f and a scalar positive constant k. The lie derivative will be:

Lfk =
∂k

∂x
f − ∂f

∂x
k = [f, k], (2.6)

Lfk = −k∇f, (2.7)

from the above equation, we can essentially say that a gradient system equation (2.1)

can be written as a LBS. Note ∂k
∂xf = 0 since k is a positive constant.

Generating a trajectory for the vehicle to be followed using the controller is one of the es-

sential steps in the trajectory-tracking algorithm. Many factors can affect the trajectory-

tracking algorithm, such as curvature, obstacles, etc., which make the trajectory-tracking

algorithm challenging. We utilized the LBS from one of the significant literatures [8].

The authors addressed the multi-agent problem, in which they defined three different

objective functions for three different agents. The following objective functions are:

fa(x̄) = −1

2
(xa1 − 1)2 − 1

2
(xa2 − 1)2 + xb

2

1 + xb
2

2 − 10 + e(−xc2

1 −xc2

2 ), (2.8)

f b(x̄) = −1

2
(xb1 + 1)2 − 1

2
(xb2 + 1)2 − 10 + sin(xa1 + xa2), (2.9)
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f c(x̄) = −1

2
(xc1 + 1)2 − 3

2
(xc2 − 1)2 − 10, (2.10)

where the parameters xij represent the 2-D states (x and y) of the system, where i =

a, b, and c are the functions of the respective map and j = 1, or 2 represents the

system’s state. Here is one important point to mention that it is not mandatory to use

any specific objective function from the above equations, however for simulation and

experiments, we fixed the objective function provided by equation 2.8.

The corresponding LBS states are given as [8]:

żi1 =
1

2
(ciαi∇zi1

f i(z̄)− ci
2∇zi2

f i(z̄)(f i(z̄)− zieh)) (2.11)

żi2 =
1

2
(ciαi∇zi2

f i(z̄) + ci
2∇zi1

f i(z̄)(f i(z̄)− zieh)) (2.12)

żie = −ziehi + f i(z̄), (2.13)

z1, and z2 are states of the system, ze is the state of the filter, f is the objective function,

h is the high pass filter (HPF) value c, and α are the constants.

Consider figure 2.1, which depicts the LBS trajectories of all the objective functions

that we discussed. Trajectory 1 (in blue) corresponds to the objective function (2.8),

similarly trajectories 2 (in red), and 3 (in green) correspond to objective functions (2.9)

and (2.10). The initial conditions are [2,−2,−2, 2,−1, 2.5], and the final coordinates of

the trajectories are [1, 1,−1,−1,−1, 1]. Throughout the thesis, the “star” sign depicts
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Figure 2.1: Three different trajectories generated by LBS corresponding to the equa-
tions. The blue trajectory corresponds to map 1 (2.8), the red trajectory refers to map
2 (2.9), and the green trajectory is of (2.10). The“star” sign refers to the starting

position, and the “stop” sign refers to the terminal position.

the initial position of the system/robot, and the “end” sign corresponds to the terminal

or final point of the system/robot.

2.3 Differential-Drive Model for the Robot

Consider the figure 2.2, in which a differential-drive robot is presented, having linear,

and angular velocities as v, and ω. The global, and body axes are represented by (X,Y ),

and (XB, YB). The robot is orientated at an angle θ w.r.t the horizontal axis. The left,

and right wheel velocities are ϕ̇L and ϕ̇R.

The model of the differential drive robot is represented by the following equations [33, 34]:

ẋ = v cos θ, (2.14)
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ẏ = v sin θ, (2.15)

θ̇ = ω, (2.16)

where x, y, and θ are the states of the robot. The expressions for v and ω are given as:

v = (ϕ̇R + ϕ̇L)
r

2
, (2.17)

ω = (ϕ̇R − ϕ̇L)
r

b
, (2.18)

where r and b are the wheel radius and wheelbase of the robot, ϕ̇R is the right wheel

velocity, and ϕ̇L is the left wheel velocity.

Figure 2.2: A depiction of differential-drive robot in XY plane.

16



2.4 Controllers

2.4.1 Proportional-Integral-Derivative Controller (PIDC)

PIDC is one of the most robust and popular controllers in control systems. The con-

troller’s objective is to minimize the error between the reference value and the measured

value from the dynamical system and then gives the output [35, 36]. It ensures the

system remains as close as possible to the reference value. As its name suggests, it

has three components which are proportional, integral and derivative. The proportional

component develops an output signal that is proportional to the error. The integral term

creates a signal proportional to the accumulation of error measurements over the pre-

vious time intervals, and the derivative component creates a signal proportional to the

rate of change of an error [35, 36]. The PIDC is depicted in figure 2.3. The generalized

PID law is given by:

u(t) = Kpe(t) +Ki

∫ t

0
e(t)dt+Kd

de(t)

dt
, (2.19)

where the u(t) is the output, kp, ki kd are the gains. e(t) is the error in the system.

In our work, we have used a special form of PIDC, PDC. The error terms in the respective

states are provided by the equations 2.20, 2.21, and 2.22. Moreover, the control law of

the PDC is provided in the equation 2.23:

e(y) = y(r)− y, (2.20)

e(x) = x(r)− x, (2.21)
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Figure 2.3: PID control law design.

e(θ) = arctan
e(y)

e(x)
, (2.22)

u(θ) = Kpe(θ) + kd
d

dt
(e(θ)), (2.23)

where y(r) and x(r) are reference states at time t, whereas x and y are the true states

of the robot at time t. e(y), e(x) and e(θ) are the errors in the states of the robot. Note

that u(θ) is an error representation of the robot’s orientation.

2.4.2 Model Predictive Controller (MPC)

MPC is considered as one of the most successful and popular advanced control methods

that predict the future behavior of the controlled system over a finite time horizon and

computes an optimal control input by minimizing an objective function. MPC optimizes

the performance of the system with governing constraints, that represent physical, eco-

nomic, and environmental limits of the system [11]. It efficiently handles the system
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constraints and deals with Multiple Input and Multiple Output (MIMO) systems. The

comprehensive MPC design is depicted in fig 2.4.

Figure 2.4: MPC model design consists of reference path, optimizer, model, and a
feedback loop of current states of the system.

The generalized form of MPC for a linear, and discrete-time system is given as:

x[k + 1] = x[k] + u[k], (2.24)

where x is the state vector, and u is the control action.

The objective of the MPC is to minimize the objective function:

J =

Np−1∑
k=0

x2[k] + ρu2[k] + x2[Np], (2.25)

where ρ > 0 is the weight, J is an objective function.

An unconstrained MPC problem gives an analytical solution, while a constrained prob-

lem is solved by a numerical solution, and the problem is stated as the discrete state

space:

The discrete state space equations are presented as [11]:
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xk+1 = Axk +Buk, (2.26)

yk = Cxk +Duk, (2.27)

the linear-quadratic objective function is given as:

J =

NP∑
k=0

(ŷ − r)TQ(ŷ − r) +∇uTR∇u, (2.28)

where r is the output reference value, ŷ is the predicted process output, ∇u is the

predicted change in the control value ∇u = uk − uk−1, Q is the output error weight

matrix, J is the objective function, and R is the control weight matrix.

The optimal future control input is achieved at ∂J
∂u = 0.

Figure 2.5: PPC.
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2.4.3 Pure Pursuit Controller (PPC)

A PPC is a geometric trajectory tracking controller that tracks the reference trajectory

using the geometry of the vehicle kinematics and the reference trajectory. This is known

as lateral vehicle control. PPC has only one tuning parameter which is look-ahead

distance. Look-ahead distance is how far away along the path the robot should look

from the current position to command the angular velocity [37]. The look-ahead point

can be far away, and the control input is computed in real-time, which makes it to work

efficiently in case of a non-smooth trajectory or when the trajectory is defined by using

waypoints [6]. It reduces the error between the heading and the lateral of the vehicle by

controlling the heading angle of the vehicle [24].

Figure 2.6, depicts a bicycle model in which the current position of the rear wheel axle

of the vehicle is at A (Ax, Ay) [24]. The target point is set at B (Bx, By). The distance

between the current position and the target point is look-ahead distance Ld. R represents

the radius around the instantaneous center of rotation (ICR) that is at O, and δ is the

steering angle [24].

In isosceles triangle ∆OAB:

ψ1 + ψ2 + ψ3 = 180◦, (2.29)

since OA, and OB are equal to R,

ψ2 = ψ3 = (π/2− θ), (2.30)

from equations 2.27, and 2.28,
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ψ1 = 2θ. (2.31)

Applying sine rule in ∆OAB:

AB/sin(ψ1) = OA/sin(ψ3), (2.32)

which yields to,

Ld/sin(2θ) = R/sin(π/2− θ), (2.33)

R = Ld/2 sin(θ), (2.34)

the curvature of the reference trajectory is given as:

c = 2 sin(θ)/Ld, (2.35)

for the case of simplified two-wheeled vehicle model, the steering angle is given as:

δ = arc tan(cL), (2.36)

δ = arc tan(2L sin θ/Ld), (2.37)

22



from the above equation of the steering angle, we can observe that the steering angle is

relying on the Ld. Therefore, Ld is a crucial parameter of PPC that should be tuned

carefully to drive the vehicle on the predefined trajectory effectively.

Figure 2.6: A detailed description of the PPC algorithm in which the green trajectory
represents the reference trajectory, and the differential-drive robot is in blue.

2.5 Experimental Setup

In this section, we discuss the hardware and software that we use to perform the exper-

iments. We perform all the experiments in our Modeling, Dynamics, and Control Lab

(MDCL) [38], the experimental setup is provided in figure 2.7.
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Figure 2.7: Modeling, Dynamics, and Control Lab (MDCL). 1. TB3 inside the testing
area, 2. A light source, 3. Motion capturing system (MCS).

2.5.1 Hardware

2.5.1.1 Turtlebot3 (TB3)

TB3 is a small, Robot Operating System (ROS)-based, differential drive robot [27]. It

is widely used for educational, and research purposes. It consists of Raspberry Pi 3B+

as its microcomputer, a LIDAR sensor to measure the distance, dynamixel motors to

drive the wheels, and OpenCR supplies power to the robot.

2.5.1.2 Motion Capturing System (MCS)

We exploit MCS to get the real-time data of TB3 to perform experiments. MCS detects

the rigid body (using at least three markers to create a rigid body), tracks its real-time

pose, and streams it to the local network [39, 40].
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Figure 2.8: A depiction of turtlebot3 (TB3) burger with its components: LIDAR,
Raspberry pi 3B+, OpenCR, Dynamixel motors.

2.5.2 Software

2.5.2.1 MATLAB

We develop controllers design on MATLAB/Simulink, to conduct simulations, and es-

tablish communication between the TB3, and MATLAB through a local network. To

carry out the experiments, we utilize different toolboxes -ROS toolbox to send control

input commands to TB3, Navigation toolbox to use PPC, Raspberry Pi support toolbox,

and OptitrackToolbox to collect the real-time pose of the robot from motive software

[41].

2.5.2.2 Motive

Motive software is a licensed software of optitrack. It works with cameras to track and

capture the motion of markers and sends the data to the network with high accuracy

25



[39].

2.6 Results

We present simulation and experimental results using the controllers mentioned above

in this chapter. We utilize MATLAB/Simulink software to conduct simulation results,

and then deploy the controllers on TB3 to perform real-time experiments.

2.6.1 Simulations

The generalized model design for all the controllers to conduct simulations is shown in fig

2.9. In the figure, the controller block represents the respective controller (PDC, PPC,

and MPC), the model corresponds to the dynamics of the system, and in the feedback

loop, we get the states of the system. For our work, we get the x, and y states in the

feedback. The initial value of the states is (2,−2), and the terminal point is (1, 1). The

linear velocity and angular velocity of the system are computed by the controller. The

wheel radius and wheelbase values are 0.033 m, and 0.178 m.

Figure 2.9: A generalized structure of trajectory-tracking model design for simula-
tions.
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2.6.1.1 Proportional-Derivative Controller (PDC)

The tuning parameters of the PDC are mentioned in table 2.1 (from 2.10 to 2.14), and

the simulation results are provided in figure 2.15. The planar trajectory of the system

is plotted in figure 2.14. The states of the system (x, y) are depicted in 2.10, and 2.11.

The control inputs (linear and angular velocities) are shown in 2.12, and 2.13. The

system’s trajectory is depicted in 2.14. From the states and trajectory graphs, it can

be explicitly observed that during the first 15 seconds, the PDC is unable to compute

the proper control inputs for the system to follow the trajectory, after which the system

starts to follow it as we can observe it from the states plots. Moreover, we have used

the upper bound (0.2 m/s) in linear velocity.

Parameters Values

Simulation time (seconds) 50

Kp 0.5

Kd 0.001

Table 2.1: PDC tuning parameters for simulations.
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Figure 2.10: (a) Figure 2.11: (b)

Figure 2.12: (c) Figure 2.13: (d)

Figure 2.14: (e)

Figure 2.15: Simulation results of PDC. (a) x state, (b) y state, (c) Linear velocity,
(d) Angular velocity, and (e) Trajectory of the system using PDC.
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2.6.1.2 Pure Pursuit Controller (PPC)

Parameters Values

Desired Linear Velocity (m/s) 0.15

Maximum Angular Velocity (rad/sec) 2.84

Look-ahead Distance 4.5

Table 2.2: PPC simulation tuning parameters.

The simulation parameters are provided in the table 2.4 and the plots of the simulation

results of the system using PPC are shown in figure 2.21 (from 2.16 to 2.20). States

graphs are shown in figures 2.16 and 2.17. Figure 2.20 depicts the planar trajectory

graph of the system. The control inputs in figures 2.18 and 2.19. From the trajectory

graph in 2.20, it is clear that the system doesn’t follow the trajectory well, especially

near the curvature as there is a significant difference between the trajectory of the system

and of the reference trajectory. From the states graph, PPC doesn’t look effective at all

in addressing the trajectory-tracking problem. PPC computes constant desired linear

velocity and computes angular velocity based on the error (difference between the states

of the system and the trajectory).
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Figure 2.16: (a) Figure 2.17: (b)

Figure 2.18: (c) Figure 2.19: (d)

Figure 2.20: (e)

Figure 2.21: Simulation results of PPC. (a) x state, (b) y state, (c) Linear velocity,
(d) Angular velocity, and (e) Trajectory of the system using PPC.
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2.6.1.3 Model Predictive Controller (MPC)

The simulation results are provided in figure 2.27 (from 2.22 to 2.26) and the tuning

parameters are given in the table 2.3. States plots are shown in figures 2.22, and 2.23.

The control inputs are plotted in figures 2.24, and 2.25. The system’s trajectory is

provided in 2.26. From the simulation results, we can observe that the MPC performed

well in addressing the trajectory-tracking problem and outperformed PDC and PPC.

From the trajectory plot, the system tracks the LBS trajectory with minimal deviation.

The effectiveness of the controller can be verified from the states graph, as the system’s

states follow the reference states well, however, there is a minute steady state error in

the x state.

Q =


xm 0 0

0 ym 0

0 0 θm

 (2.38)

R =

vm 0

0 ωm

 (2.39)

Parameters Values

P 20

xm 115

ym 300

θm 0

vm 10

ωm 300

Table 2.3: MPC simulation tuning parameters.
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Figure 2.22: (a) Figure 2.23: (b)

Figure 2.24: (c) Figure 2.25: (d)

Figure 2.26: (e)

Figure 2.27: Simulation results of PPC. (a) x state, (b) y state, (c) Linear velocity,
(d) Angular velocity, and (e) Trajectory of the system using MPC.
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2.6.2 Experiments

In this subsection, we discuss the experimental results of real-time trajectory-tracking

using the TB3 robot and then compare the performance of MPC, and PPC in terms of

their efficiency in tracking the trajectory. The real-time states (x, y) are obtained by

MCS and then sent to the controllers as feedback. For the feasibility of the experiments,

we maintain a constant linear velocity of 0.22 m/s.

2.6.2.1 Pure Pursuit Controller (PPC)

The experimental results of the controller are presented in figure 2.32 (from 2.28 to

2.31) and the tuning parameters are given in the table 2.4. The states graph is provided

in figures 2.28 and 2.29. The trajectory plot is shown in figure 2.30. The controller’s

output (angular velocity) is plotted in 2.31. As we have observed in the simulation

results using PPC, we got similar experimental results. From the trajectory graph, TB3

doesn’t follow the trajectory at the curvature. The states graph shows that the PPC

didn’t compute the prper control inputs for TB3.

Parameters Values

Desired Linear Velocity (m/s) 0.22

Maximum Angular Velocity (rad/sec) 2.84

Look-ahead Distance 3

Table 2.4: PPC tuning parameters (for experiment).

33



Figure 2.28: (a) Figure 2.29: (b)

Figure 2.30: (c) Figure 2.31: (d)

Figure 2.32: Experimental results of PPC. (a) x state, (b) y state, (c) Trajectory of
the TB3 using PPC and (d) Angular velocity.
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2.6.2.2 Model Predictive Controller (MPC)

The tuning parameters for the controller are provided in the table 2.5 and the exper-

imental results of the controller are presented in figure 2.37 (from 2.33 to 2.36). The

states of the robot are depicted in figures 2.33, and 2.34. Control input is depicted in

figure 2.36. From the trajectory plot, TB3 follows the LBS trajectory quite well with

some oscillations in its trajectory and in control input. However, the states plot depicts

that the states of the TB3 didn’t follow the reference states effectively. There are some

oscillations in the control input (angular velocity).

Parameters Values

P 10

xm 50

ym 100

θm -0.8

vm 50

ωm 75

Table 2.5: MPC tuning parameters (experiment).
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Figure 2.33: (a) Figure 2.34: (b)

Figure 2.35: (c) Figure 2.36: (d)

Figure 2.37: Experimental results of MPC. (a) x state, (b) y state, (c) Trajectory of
the TB3 using MPC, and (d) Angular velocity.

36



2.7 Conclusion

In this chapter, we attempted to address the problem of trajectory-tracking using three

different traditional controllers: PDC, PPC, and MPC. We introduced the concept of

LBS and generated the reference trajectory using it for the system/robot to follow. We

performed some simulations using the traditional controllers mentioned above to conduct

a comparative study of their performance. From the simulation results, it is clear that the

PDC and PPC were quite ineffective in driving the system on the reference trajectory,

especially near the curvature of the lie bracket trajectory. On the other side, MPC

outperformed PPC and PDC significantly. Additionally, we conducted experiments in

real-time to verify our simulation results of PPC and MPC. In the experiment also,

MPC outperformed the PPC as we observed from the experimental results.
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Chapter 3

Revisiting Model-Free Source

Seeking in Robots via Classical

Extremum Seeking

3.1 Introduction

In this chapter, we discuss extremum-seeking control (ESC) systems and their applica-

tion. Moreover, we go through its classic form (C-ESC), and how it works. We perform

simulations and experiments using C-ESC. We conduct the simulation for the 1-D case

in which we have a tuning parameter (θ) and then we move to the 2-D navigation case

where we have tuning parameters (x, y). Using the 2-D model design, we conduct sim-

ulations and experiments in real-time. For the experiment, we show the results using

a known objective function and discuss the source-seeking experiment that we perform

using a light source, in which we do not have access to the mathematical expression of

an objective function, however, we do have access to its measurements.

38



This chapter covers the introduction of the ESC systems in 3.2. Then, we discuss C-ESC

structure 3.2.1. Following that, we perform and talk about simulation, and experimental

results under the section 3.3. In the end, we collect all the observations and conclude

the chapter in section 3.4.

3.2 Extremum Seeking Control (ESC) System

ESC systems are adaptive control systems that aim to optimize the input-output map

of a nonlinear dynamical system by estimating the gradient of an unknown objective

function [12, 14, 42, 43]. ESC systems do not require any mathematical expression of

the objective function, just access to its measurements is sufficient [20]. They operate in

real-time. Different schemes of ESC systems have been proposed to address optimization

problems [44, 45], and recently, interest is growing in solving extremum-seeking problems

with constraints [45]. ESC schemes utilize the measurement of an objective function

relying on the real-time value of the objective function, perturbation incurred by time-

varying excitation signal on the system. This allows the ESC scheme to extract the

information to estimate the gradient [18].

Autonomous vehicles are equipped with Global Positioning System (GPS) or Inertial

Navigation System (INS). However, they are not reliable. GPS doesn’t work in many

areas including under ice, water, and in caves, on the other hand, the INS systems’ cost

is high [46]. On the other side, ESC systems are capable of working in different and

challenging environments effectively and they can solve the seeking problem based on

the local measurements of the signal, and it doesn’t require any mathematical expression

of the signal.
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Traditional controllers (PDC, PPC, and MPC) have been widely used in different appli-

cations mentioned in the literature, however, in some cases, they possess some limitations

which affect their effectiveness or make them undesirable. Some of them are mentioned

in the table 3.1.

Traditional Controllers
(PDC, PPC, MPC)

ESC System

Information: Mathe-
matical expression of
an objective function

Required Not necessary (access to
measurements is enough)

Computation Com-
plexity and real-time

Some are computationally
complex

Generally not computa-
tionally complex

Model-Based Required Model-free

Table 3.1: Comparison between traditional Controllers and ESC.

A simple picture that explains how the ESC scheme works is presented in [47] is provided

in the figure 3.1.

Figure 3.1: Simplified ESC system diagram consisting of blocks of Perturbation signal,
System, and objective function.

ESC systems are not new in literature, it has been used for a very long time [45]. In

literature [48], the authors used ESC to maintain the maximum power transfer from an

electrical transmission line to a tram car. During World War 2, there was significant

research activity in Russia using ES [49]. ESC systems were a hot research topic in the

1950s and 1960s [45]. The first assessment of the stability of a classic extremum-seeking

feedback scheme was provided by Krstic and Wang [50].
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ESC systems have a wide range of applications. In bioinspiration work [51], the authors

provide a link between dynamic soaring (flight technique of birds for long- duration with

very little energy as wind is utilized to gain lift), and ESC. ESC in this paper captures

the biological behavior of soaring birds. In [52, 53], authors used ESC with Kalman filter

(KF) to get the optimal position of the follower aircraft with respect to leading aircraft

to reduce the drag in formation flight. In [54] authors present the experimental results

with extremum-seeking adaptive algorithms to control combustion instability suitable

for the reduction of acoustic pressure oscillations in gas turbines over a large range of

operating conditions.

3.2.1 Classical Extremum-Seeking Control (C-ESC)

The most common structure of ESC in literature is C-ESC [15]. It is generally utilized

for a nonlinear dynamical system subjected to a time-invariant objective function. The

design of C-ESC is shown in figure 3.2. The parameter θ is what C-ESC updates to reach

the extremum of the objective function. C-ESC structure consists of four primary steps

[55]. In the first step, which is the modulation step, a perturbation signal- generally a

sinusoidal signal- is added to the nominal value of the tuning parameter θ̂ (θ estimate).

We initiate with a guess value of θ. The updated or generated value of θ is fed to the

system dynamics ẋ = f(x, a(x, θ)). In the second step, the system responds based on

the signal and it causes a change in an objective function (leads to a new measurement).

In the third step, the measurement of the objective is multiplied with a demodulation

signal (again generally a sinusoidal signal is used). The output of the demodulation

signal decides whether to increase or decrease the θ̂. In the final step, the demodulated

value is integrated and updates the tuning parameter θ̂. The High Pass Filter (HPF)
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and Low Pass Filter (LPF) are optional filters and can be used or discarded based on

the requirements or application.

The corresponding equations for C-ESC are as follows:

ẋ = f(x, a(x, θ))

J = g(x, θ)

θ = θ̂ + a sin (ωt)

˙̂
θ = Kξ

ξ̇ = −ωlξ + ωl(J − η)b sin (ωt− ϕphase)

η̇ = −ωhη + ωhJ

(3.1)
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Figure 3.2: Generalized representation of the classical structure of extremum seeking
controller (C-ESC). This structure of ESC consists of four major steps. First is the
modulation step in which a perturbation signal is added to a nominal value of the
tuning parameter. In the second step, the system responds and it leads to a change in
an objective function (leads to a new measurement). In the third step, the measurement
of the objective function gets multiplied with a demodulation signal and in the final

step, the demodulation is integrated and updates the tuning parameter.
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3.3 Results

We introduce a modified C-ESC design from [17] for slow sensors and we replicate their

simulation results. For the extension of our work, we perform some experiments with

known and unknown objective functions (we only have access to the measurements of

the objective function) to verify the design in real-time.

3.3.1 Simulation Results

3.3.1.1 1-D Scheme

The generalized and modified C-ESC for the one-dimensional case is represented in figure

3.3. This design works with very slow sensors. These sensors are used to determine the

hazardous gases and their dynamics are governed by a first-order system [17]:

Gsensor(s) =
b

s+ ϵ
, (3.2)

where b, and ϵ are the constants that depend on the sensor.

The transformation of generalized to modified C-ESC is done by swapping the integrator

and the multiplication by sin(ωt). This is carried out by using the integration by parts

[17]:

∫ t

0
η(τ) sin(ωτ) dτ = sin(ωt)

∫ t

0
η(τ) dτ − ω

∫ t

0
cos(ωτ)

∫ τ

0
η(σ) dσ dτ. (3.3)
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By utilizing this observation, the authors transform the generalized C-ESC design to the

modified C-ESC, where the guiding idea is the sensor is a pure integrator when ϵ = 0,

and the modified version also works for ϵ > 0. The mathematical expression of the

objective function for the simulation is given as:

f(θ) =
δ∗

1 + Pθ(θ − θ∗)2
, (3.4)

where Pθ is a constant having value 0.5, δ∗ = 250. From the equation 3.4, the maximum

value of the nonlinear objective function (J∗) is 250 at θ = θ∗ where θ∗ = 0. The values

of b, and ϵ are 0.037 and 0.046. The ESC parameters are given in the table 3.2.

ESC Parameters Values

a 0.2

ω 30

k 10

h 1

Table 3.2: ESC parameters for one-dimensional case.

The simulation results for the one-dimensional case are represented in figure 3.8 (from

3.4 to 3.7). The objective function graph is depicted in figure 3.4. Figure 3.5 represents

the position estimate (θ̂) of the gas leak. The sensor reading and HPF plots are plotted

in 3.6, and 3.7. The objective function (f(θ)) converges to its extremum (maximum) as

position estimate (θ̂) moves to θ⋆.
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Figure 3.3: (a) Generalized and modified designs C-ESC. The generalized C-ESC is
the top figure, and the modified C-ESC design is the bottom figure which works well
with both cases: in the case of a slow sensor (ϵ > 0) and the case of a pure integrator

when ϵ = 0.
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Figure 3.4: (a) Figure 3.5: (b)

Figure 3.6: (c) Figure 3.7: (d)

Figure 3.8: Simulation results of modified C-ESC with slow sensor dynamics. (a)
Objective function, (b) Position estimate of the leak, (c) Sensor reading, and (d) HPF.
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3.3.1.2 2-D Navigation

In this section, we discuss a vehicle modeled as a 2D point mass with a slow sensor

as per provided in literature [17]. The C-ESC design is presented in figure 3.9. In the

design, two ESC laws are used for each state (x, y). Both laws have the phase difference

of 90◦. [17, 56]. To get an integrator at the input of the objective function, a term

= s
s is inserted between the gain and the perturbation signal. The term = 1

s is moved

downstream in the signal flow direction and after the perturbation input, which results

in a differentiation of perturbation, and an integrator has appeared at the input of

the objective function. The differentiator term s from the term s
s is replaced with an

approximate differentiator, i.e., a washout filter s
s+d [17].

The control inputs for the vehicle are:

ẋ(t) = ux(t), (3.5)

ẏ(t) = uy(t), (3.6)

where ux(t) and uy(t) are the two control inputs and the control laws are:

ux(t) = aωcos(ωt) +Kxξx, (3.7)

uy(t) = −aωsin(ωt) +Kyξy, (3.8)
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The mathematical expression of the objective function for the simulation is given as:

f(x, y) =
δ∗

1 + px(x− x∗)2 + py(y − y∗)2
, (3.9)

where px, and py are constants with values of 1 and 0.5, δ∗ = 250, initial position of the

vehicle is at (1, 1), and (x∗, y∗) = (0, 0). The values of b, and ϵ of slow sensor dynamics

are 0.037 and 0.046. The ESC parameters are provided in the table 3.3.

ESC Parameters Values

ω 20

a 0.1

kx 0.75

ky 0.75

dx 0.2

dy 0.2

h 0.5

Table 3.3: ESC parameters for 2D navigation scheme (simulation).

The results of the 2D navigation simulation are shown in figure 3.18 (from 3.10 to 3.17).

Figure 3.10 represents the objective function (f(x, y)) plot. The trajectory of the system

is given in figure 3.11. The HPF and sensor reading graphs are provided in the figures

3.12, and 3.13. The states (x, y) of the vehicle vs time are plotted in figures 3.14, and

3.15. Control inputs for both states are provided in figures 3.16 and 3.17

The objective function converges to its maximum value in approximately 40 seconds.

The states move towards (x⋆, y⋆) and then oscillate around it. The system converges to

the extremum from its initial position and then revolves around it.
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Figure 3.9: ES design for 2-D navigation with slow sensor
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Figure 3.10: (a) Figure 3.11: (b)

Figure 3.12: (c) Figure 3.13: (d)

Figure 3.14: (e) Figure 3.15: (f)

Figure 3.16: (g) Figure 3.17: (h)

Figure 3.18: Simulation results of modified C-ESC for 2-D navigation with slow
sensor. (a) Objective function, (b) Planar trajectory of the system (c) HPF, (d) Sensor
reading, (e) x state (f) y state, and (g) Control input for x state (h) Control input for

y state.
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3.3.2 Experimental Results

3.3.2.1 With known Objective Function

We present the experimental results that we performed by deploying the C-ESC 2D

scheme on TB3 in real-time.

For the experiment, we utilized the same mathematical expression of the objective func-

tion as for the simulation of 2D navigation given in (3.9). The initial position of TB3 is

(2.4,−1). The values of the parameters in the objective function are as px = 1, py = 1,

δ∗ = 250, and (x∗, y∗) = (1, 1). The control inputs to the TB3 are linear velocity (v)

and angular velocity (ω). We kept the constant linear velocity 0.22 m/s, which is its

maximum linear velocity. The ESC parameters are mentioned in the table 3.4.

ESC Parameters Values

ω 30

a 1.5

kx 0.5

ky 0.5

dx 1

dy 1

h 1

Table 3.4: ESC parameters for 2D navigation scheme (experiment).

The experimental results are shown in figure 3.25 (from 3.19 to 3.24). The objective

function (f(x, y)) is plotted in the figure 3.19. The planar graph that depicts the tra-

jectory of TB3 is presented in 3.20. The states of the TB3 are presented in figures 3.21,

and 3.22. The HPF and control input are shown in figures 3.23, and 3.24. The objective

function converges to its maximum value in around 240 seconds, as the states (x, y) of

the TB3 move towards (x⋆, y⋆). From the trajectory plot, it is clear that after reaching

the extremum position, TB3 revolves around it. The experimental video is provided in

[57].
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Figure 3.19: (a) Figure 3.20: (b)

Figure 3.21: (e) Figure 3.22: (d)

Figure 3.23: (e) Figure 3.24: (f)

Figure 3.25: Experimental results of modified C-ESC for 2-D navigation for known
objective function. (a) Objective function, (b) Planar trajectory of TB3, (c)x state (d)

y state, (e) HPF, and (f) Angular velocity.
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3.3.2.2 With unknown Objective Function (Light Source-Seeking)

Here we discuss the 2nd experiment in which we conduct a source-seeking experiment,

using a light source. The source represents the maximum intensity of the signal. For

the light sensor experiment, we fixed a light sensor on the TB3, and two arduinos - one

is connected to TB3, and the other is connected to the Simulink system - are utilized to

stream the light sensor data from the robot to Simulink through a local network. The

C-ESC parameters are provided in the table 3.5. The experimental video is provided in

[58].

ESC Parameters Values

ω 30

a 2.5

kx 1

ky 1

dx 1

dy 1

h 1

Table 3.5: ESC parameters for 2D navigation scheme (source seeking experiment)
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Figure 3.26: (a) Figure 3.27: (b)

Figure 3.28: (c) Figure 3.29: (d)

Figure 3.30: Source Seeking Experiment using a light source.
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3.4 Conclusion

In this chapter, we revisited C-ESC structure using robotics in literature [17]. We utilized

the modified C-ESC structure from [17], and replicated their simulation results for the

1-D scheme and 2-D navigation scheme. We verified the effectiveness of the design by

conducting real-time experiments on real hardware (TB3 robot). In the first experiment,

we utilized the mathematical expression of the objective function and performed real-

time experiment. In the second experiment, we performed a source-seeking experiment,

in which we used light as a source, TB3 detected the light source using a light sensor

and sought the source.
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Chapter 4

Model-free Source Seeking by a

Robot: The Case of Control

Affine-ESC (CA-ESC)

4.1 Introduction

In this chapter, we study the control affine structure of ESC (CA-ESC). In literature,

there are two forms of ESC systems based on the linearity of control input in the struc-

ture: (a) the classic structure (C-ESC), and (b) the control-affine structure (CA-ESC),

however, most experimental works utilized the C-ESC, and very few experimental works

used the CA-ESC. CA-ESC systems often deal with problems expressed in control-affine

formulation [20]. In control-affine form, the objective function is not modulated but it

gets multiplied by the input signal, resulting in the objective function being comprised

within the vector fields of the CA-ESC system [20].
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The chapter is organized as follows: in section 4.2, we study the CA-ESC systems.

We present the simulations and experimental results for unicycle and single-integrator

dynamics in sections 4.3.1 and 4.3.2. In section 4.4 we propose a novel amended CA-ESC

design for attenuation of oscillations and a better convergence rate using the concept of

Geometric-Based Extended Kalman Filter (GEKF) for gradient estimation. We show

the effectiveness of our proposed design by conducting simulations in the section 4.6.

4.2 Control Affine Extremum-Seeking Control (CA-ESC)

The generalized CA-ESC systems can be defined by the state space representation as

[8, 20]:

ẋ = bd(t,x) +

m∑
i=1

bi(t,x)
√
ωui(t, ωt) (4.1)

where x(t0) = x0 ∈ Rn and ω ∈ (0,∞). x is the state space vector, bd is the drift vector

field, ui are the control inputs, m is the number of control inputs, while the vector bi

are the control vector fields. The CA-ESC system in (4.1) can be approximated and

characterized by LBS [8, 20]:

ż = bd(t, z) +

m∑
i=1

j=i+1

[bi,bj](t, z)νj,i(t), (4.2)

where

νj,i(t) =
1

T

∫ T

0
uj(t, θ)

∫ θ

0
ui(t, τ)dτdθ. (4.3)
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The operation [·, ·] donates Lie bracket operation applied to two vector fields bi,bj :

R× Rn → Rn with bi(t, ·),bj(t, ·) being continuously differentiable, and is defined as:

[bi,bj](t,x) :=
∂bj(t,x)

∂x
bi(t, x)−

∂bi(t,x)

∂x
bj(t,x). (4.4)

To ensure the well-posedness of the systems described by equations 4.1 and 4.2 and

to accurately approximate the ESC system with the corresponding LBS presented in

[8, 28], certain assumptions must be adopted. The assumptions for 4.1 and 4.2 are:

A1. bi ∈ C2 : R× Rn → Rn, i = 0, ...,m.

A2. For every compact set C ⊆ Rn, there exist A1, ..., A6 ∈ [0,∞) such that |bi(t,x)|≤

A1, |∂bi(t,x)
∂t |

≤ A2, |∂bi(t,x)
∂x |≤ A3, |

∂2bj(t,x)
∂t∂x |≤ A4,

|∂[bj,bk](t,x)
∂x |≤ A5, |

∂[bj,bk](t,x)
∂t |≤ A6 for all x ∈ C , t ∈ R, i = 0, ...,m; j = 1, ...,m; k =

j, ...,m.

A3. ui : R × R → R, i = 1, ...,m are measurable functions. Moreover, for every i =

1, ...,m there exist constants Ni,Mi ∈ (0,∞) such that |ui(t1, θ)− ui(t2, θ)| ≤

Ni|t1 − t2| for all t1, t2 ∈ R and such that supt,θ∈R|ui(t, θ)|≤Mi. Similarly, ui(t, ·)

is T-periodic, i.e. ui(t, θ+T ) = ui(t, θ), and has zero average, i.e.
∫ T
0 ui(t, τ)dτ = 0,

with T ∈ (0,∞) for all t, θ ∈ R, i = 1, ...,m.

These assumptions are essential for the analysis and existence of solutions for the ESC

system 4.1. A1 ensures the smoothness of the system’s vector fields, including those

involving the objective function. A2 guarantees the boundedness of the expressions

involving the vector fields bi (i = 1, ...,m). A3 ensures T-periodicity and zero average
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Figure 4.1: The generalized CA-ESC design

for the control inputs. The simplified CA-ESC structure is provided in the figure 4.1.

In the figure, we have two control inputs (û1(ωt), and û2(ωt)), two control vector fields

(b1 and b2), and bd = 0.

4.3 Results

In this section, we discuss the CA-ESC (with unicycle and single-integrator dynamics)

structure mentioned in [8]. Moreover, we perform simulations and experiments.

4.3.1 Unicycle Dynamics

Consider the figure 4.2. In the figure, we have the unicycle dynamics with CA-ESC. For

the simulations and experiments, the control input (linear velocity v) is computed from

the CA-ESC, whereas the angular velocity is constant [8]. We have used a sinusoidal

wave as a perturbation signal. Moreover, there is a HPF in the design to reduce noise.

The dynamics of the unicycle are given as:

ẋ = u cos(θ(t)), (4.5)
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ẏ = u sin(θ(t)), (4.6)

θ̇ = v, (4.7)

where the u is the forward velocity computed from the ESC,

u = (c(f(x, y)− xeh))
√
ωsin(ωt) + a

√
ωcos(ωt). (4.8)

From equations 4.5, 4.6, 4.7, and 4.8, the control law for each state and HPF are provided

as:

ẋ = ((c(f(x, y)− xeh))
√
ωsin(ωt) + a

√
ωcos(ωt))cos(Ωt) (4.9)

ẏ = ((c(f(x, y)− xeh))
√
ωsin(ωt) + a

√
ωcos(ωt))sin(Ωt) (4.10)

ẋe = −xeh+ f(x, y), (4.11)

where θ(t) = Ωt.

4.3.1.1 Simulation Results

For the simulations, the expression of objective function J(x, y) is chosen as:
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Figure 4.2: Unicycle Dynamics CA-ESC Structure.

J(x, y) = 10− 0.5(x− x∗)2 − 1.5(y − y∗)2. (4.12)

,

It is clear from the equation 4.12, the maximum value of the objective function (J(x, y))

is 10, at (x∗, y∗). The value of (x∗, y∗) is (1, 1).

The simulation results of unicycle dynamics are shown 4.9 (from 4.3 to 4.8) and the

CA-ESC parameters value are provided in the table 4.1. The states (x, y) graphs are 4.3

and 4.4. The objective function is provided in figure 4.5. The trajectory of the system

is 4.6. The high pass filter (HPF), and the control input (linear velocity) plots, are in

the figures 4.7 and 4.8.

From the objective function plot, the J(x, y) reaches its extremum (maximum) value

in around 50 seconds as states converge to (x∗, y∗) and then oscillate around it. From

the trajectory of the system, we can observe that as the system reaches its extremum

position, it revolves around it. The angular velocity for this simulation is set at 3

rad/sec.

62



Parameters Values

ω 80

c 0.3

a 1

h 1

Table 4.1: CA-ESC parameters (for simulation).

Figure 4.3: (a) Figure 4.4: (b)

Figure 4.5: (c) Figure 4.6: (d)

Figure 4.7: (e) Figure 4.8: (f)

Figure 4.9: Simulation results of unicycle dynamics using a known mathematical
expression of the objective function to access the measurements: (a) x state, (b) y
state, (c) Objective function (d) Planar trajectory of the system, (e) HPF, and (f)

Linear velocity.
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4.3.1.2 Experimental Result

4.3.1.3 With Known Objective Function

In this section, we discuss the observations of the experiment that we conducted using

unicycle dynamics. For this experiment, we have access to the mathematical expression

of the objective function. For feasibility, we used the same objective function as in the

simulation which is given as:

J(x, y) = 10− 0.5(x− x∗)2 − 1.5(y − y∗)2, (4.13)

where (x∗, y∗) is set as (1, 1).

The experimental results are provided in figure 4.16 (from 4.10 to 4.15) and the CA-ESC

parameters are provided in the table 4.2. The states (x, y) vs time plots are plotted in

4.10 and 4.11. The objective function graph is presented in 4.12. The trajectory of TB3

is depicted in 4.13. The HPF and control input (linear velocity) graphs are shown in

4.14 and 4.15.

From the objective function graph, the value of J(x, y) reaches its extremum (maximum)

in around 1900 seconds. The states graph shows that the states of TB3 converge to

(x∗, y∗) and then oscillate around it. TB3 starts from its initial position (2, 2) and

moves to its terminal position which is the extremum of the objective function. The

experimental video is provided in [59].
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Parameters Values

ω 80

c 5

a 1

h 1

Table 4.2: CA-ESC parameters (for known objective function experiment).

Figure 4.10: (a) Figure 4.11: (b)

Figure 4.12: (c) Figure 4.13: (d)

Figure 4.14: (e) Figure 4.15: (f)

Figure 4.16: Experimental results of unicycle dynamics using a known mathematical
expression of the objective function to access the measurements: (a) x state, (b) y state,
(c) Objective function (d) Planar trajectory of the system, (e) HPF, and (f) Angular

velocity.
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4.3.1.4 With unknown Objective Function

In this subsection, we discuss the light source-seeking experiment using unicycle dynam-

ics. For this experiment, we used the same setup as in the experiment using C-ESC.

The experimental results are provided in figure 4.20 (from 4.17 to 4.19) and the tuning

parameters are given in the table 4.3. The states graphs are presented in figures 4.17

and 4.18. The trajectory of TB3 is shown in figure 4.19.

The initial position of TB3 is (1.6, 0.5) and the maximum intensity of the light in the

plane is approximately at (1, 1.7). From the trajectory plot, we can observe that TB3

moves towards the extremum position (maximum intensity). The states of the TB3

converge close to their (x∗, y∗) and then oscillate around it. The experimental video is

provided in [60].

Parameters Values

ω 100

c 1

a 0.55

h 6

Table 4.3: CA-ESC parameters (for light source seeking experiment).
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Figure 4.17: (a) Figure 4.18: (b)

Figure 4.19: (c)

Figure 4.20: Light source seeking experimental results using unicycle design. (a) x
state (b) y state and (c) Trajectory of TB3.
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4.3.2 Single-Integrator Dynamics

Here, we have a similar situation as in 4.3.1. Figure 4.21 represents the single-integrator

dynamics CA-ESC structure. There are two ESC loops for each state (x, and y).

The dynamics of the system are:

ẋ = cx(f(x, y)− xeh)
√
ωsin(ωt) + ax

√
ωcos(ωt), (4.14)

ẏ = −cy(f(x, y)− xeh)
√
ωcos(ωt) + ay

√
ωsin(ωt), (4.15)

ẋe = −xeh+ f(x, y) (4.16)

Figure 4.21: Single-Integrator Dynamics CA-ESC Structure.
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4.3.2.1 Simulation Results

We chose the same objective function as in the unicycle dynamics case provided:

J(x, y) = 10− 0.5(x− x∗)2 − 1.5(y − y∗)2, (4.17)

,

where (x∗, y∗) is equal to (1, 1).

The simulation results are provided in figure 4.29 (from 4.22 to 4.28) and the CA-ESC

parameters are given in the table 4.4. The states plots are presented in 4.22 and 4.23.

The objective function and the system trajectory are shown in figures 4.24 and 4.25.

The control inputs for each state are provided in 4.26 and 4.27. The HPF graph is

shown in figure 4.28.

From the objective function plot, the J(x, y) converges to its maximum value in around

40 seconds as the states of the system converge to (x∗, y∗) and then oscillate around

it. The trajectory of the system shows that the system revolves around its extremum

position once it reaches there.

Parameters Values

ω 80

c 0.3

ax 1

ay 1

h 1

Table 4.4: CA-ESC parameters (for simulation).
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Figure 4.22: (a) Figure 4.23: (b)

Figure 4.24: (c) Figure 4.25: (d)

Figure 4.26: (e) Figure 4.27: (f)

Figure 4.28: (f)

Figure 4.29: Simulation results of single-integrator dynamics using a known mathe-
matical expression of the objective function to access the measurements: (a) x state,
(b) y state, (c) Objective function (d) Planar trajectory of the system, (e) and (f)

Represent the control input in the respective states and (g) HPF.
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4.3.2.2 Experimental Results

4.3.2.3 With Known Objective Function

Here, we discuss the results of the experiment we performed using single-integrator

dynamics. For this experiment, we utilize the same mathematical expression as we have

used earlier in simulations and experiments, which is given by:

J(x, y) = 10− 0.5(x− x∗)2 − 1.5(y − y∗)2, (4.18)

where (x∗, y∗) is equal to (1, 1).

The experimental results are presented in figure 4.36 (from 4.30 to 4.35) and the CA-ESC

parameter values are given in the table 4.5. The objective function and the trajectory

of TB3 are shown in figures 4.32 and 4.33. The HPF and angular velocity are plotted in

figures 4.34 and 4.35. For the experiment, we used constant linear velocity with a value

of 0.22 m/s.

The objective function (J(x, y)) converges to its maximum value in around 2800 seconds.

TB3 reaches its extremum position and revolves around it. The states of the TB3 reach

(x∗, y∗) and then oscillate around it. The video is provided in [61].

Parameters Values

ω 30

c 0.5

a 0.137

h 0.005

Table 4.5: CA-ESC parameters (for known objective function experiment).
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Figure 4.30: (a) Figure 4.31: (b)

Figure 4.32: (c) Figure 4.33: (d)

Figure 4.34: (e) Figure 4.35: (f)

Figure 4.36: Experimental results of single-integrator dynamics using a known math-
ematical expression of the objective function to access the measurements: (a) x state,
(b) y state, (c) Objective function (d) Planar trajectory of TB3, (e) HPF, and (f) An-

gular velocity.
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4.3.2.4 Light Source-Seeking with Single-Integrator Dynamics

We perform a light source-seeking experiment using single-integrator dynamics with

CA-ESC structure. We have only access to the measurement of the light intensity.

The experimental results are provided in figure 4.40 (from 4.37 to 4.39) and the CA-ESC

parameters are provided in the table 4.6. The states graphs are presented in figures 4.37

and 4.38. The trajectory of TB3 is shown in figure 4.39.

The initial position of TB3 is (0, 3), and the maximum light intensity is at approximately

(1.3, 1). From the trajectory graph, it is observable that despite the presence of noises

and sensitivities to the environment, TB3 moves towards the extremum (here towards

maximum light intensity). The states of the TB3 converge close to (1.3, 1) and then

oscillate around it. The experimental video is provided in [62].

Parameters Values

ω 30

c 1

a 0.027

h 1.5

Table 4.6: CA-ESC parameters (for light source seeking experiment).
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Figure 4.37: (a) Figure 4.38: (b)

Figure 4.39: (c)

Figure 4.40: Light source seeking experimental results using single-integrator design.
(a) x state (b) y state and (c) Trajectory of TB3.
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4.4 Improving Convergence Rate and Attenuating Oscil-

lations by Geometric-Based Extended Kalman Filter

In previous sections, we have discussed the CA-ESC systems and performed some sim-

ulations and experiments using single-integrator and unicycle dynamics. Even though

CA-ESC performed well in driving the system/TB3 towards the extremum of the ob-

jective function, there are persisting oscillations in the system/robot after reaching the

extremum which is undesirable in some applications.

To address this issue, we provide the method to attenuate the oscillations of the sys-

tem by using the concept of GEKF [28], to get the estimation of the gradient of an

objective function. Additionally, we propose our amended CA-ESC design comprised

of generalized simple CA-ESC, GEKF, and adaptation law to attenuate the oscillation

and then we perform some simulations (using single-integrator and unicycle dynamics)

to demonstrate the effectiveness of our proposed design.

4.4.0.1 Chen-Fliess Functional Expansion

The Chen-Fliess functional expansion [63] offers a representation of the input-output

behavior of a nonlinear system governed by control-affine differential equation (4.1)

and the associated output function y = h(x), y ∈ R. Before discussing the Chen-Fliess

expansion, we first need to define the concept of the iterated integral of a set of functions.

Consider a fixed time value T and real-valued piecewise continuous functions u1, ..., um

defined on the interval [0, T]. Now, iterated integral for each multi-index (ik, ..., i0) is

defined as ∫ t

0
dξik ...dξi0 =

∫ t

0
dξik(τ)

∫ t

0
dξik−1

...

∫ t

0
dξi0 , (4.19)

75



where 0 ≤ t ≤ T ; ξ0(t) = t; ξi(t) =
∫ t
0 ui(τ)dτ for 1 ≤ i ≤ m. Now, Chen-Fliess

expansion (4.20) provides the evolution of the output y(t) for a short time t ∈ [0, T ] as

y(t) = h(x0) +

∞∑
k=0

m∑
i0,...,ik=0

Lbi0
...Lbik

h(x0)

∫ t

0
dξik ...dξi0 , (4.20)

where Lbh is the Lie derivative of h along b, i.e. Lbh = ∇h · b.

4.5 Main Results

In this section, we go through the method to attenuate oscillation in the CA-ESC systems

explained in [28]. The method involves the estimation of the gradient, for which we use

GEKF presented in literature [28]. The generalized class we consider is similar to the

one discussed in [9], encompassing most of the significant CA-ESC systems documented

in literatures [8, 9, 64–67]. This generalized structure represents a drift-less system that

consists of two control inputs or dither signals, governed by a generalized dynamical

equation expressed as follows:

ẋ =

n∑
i=1

(
b1i(f(x))

√
ωu1i + b2i(f(x))

√
ωu2i

)
ei, (4.21)

where f ∈ C2 : Rn → R is the objective function, ei denotes the ith unit vector in Rn,

b1i and b2i are the vector fields associated with control inputs u1i and u2i, and ω is the

frequency of input signal . The corresponding LBS for this multi-variable case, similar

to [9], can be found as

ż = −
n∑

i=1

ν2i,1i
∂f(z)

∂zi
bfi(f(z))ei, (4.22)

with some bfi : R → R.
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4.5.1 Method for Attenuation of Oscillations for ESC systems

The LBS provided in equation 4.22 gives an approximation that captures and character-

izes the behavior of the ESC system in 4.21. It is evident that, except for the gradient

components, the LBS derived in 4.22 can be obtained by utilizing measurements of the

objective function f(x). Consequently, the estimation of the LBS relies on the gradient

of the objective function. This leads to the concept of the estimated LBS, denoted as ẑ,

which can be defined as follows:

˙̂z = −
n∑

i=1

(ν2i,1i
∂f(z)

∂zi
b0i(f(z)) + ηi(t))ei = J(t, z). (4.23)

The estimated LBS in 4.23 is similar to 4.22 but with the addition of an error term

ηi(t) that accounts for the inaccuracies introduced during the estimation process. In

literature [28], an additional assumption imposed on ηi(t):

A4. ηi(t) : R → R, i = 1, ..., n is measurable function and there exist constants θ0, ϵ0 ∈

(0,∞) such that |ηi(t2)−ηi(t1)|≤ θ0|t2− t1| for all t1, t2 ∈ R and supt∈R|ηi(t)|≤ ϵ0.

Furthermore, limt→∞ ηi(t) = 0.

We now utilize an ESC structure that couples the control-affine ESC in 4.21 with an

adaptation law for the amplitude of the control input which depends on the estimated

LBS as:

ẋ =

n∑
i=1

(
b1i(f(x))

√
ωai(t)û1i + b2i(f(x))

√
ωai(t)û2i

)
ei, (4.24)

ȧ =

n∑
i=1

(−λi(ai(t)− Ji(t,x))) ei, (4.25)
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where ai ∈ R is the amplitude of the input signal, λi > 0 ∈ R is a tuning parameter, and

ui = aiûi. The design proposed in [28] is shown in figure 4.41. The unshaded area is the

same as the generalized CA-ESC system (bd = 0) in [9]. The above-mentioned result for

Figure 4.41: CA-ESC structure with GEKF and adaptation law.

attenuation of oscillation in this subsection depends on the knowledge of the estimated

LBS. So, in the next subsection, we describe the method to obtain the estimated LBS

using a Geometric-based Kalman Filter (GEKF).

4.5.2 Geometric-Based Extended Kalman Filter (GEKF) for gradient

and Lie Bracket Estimation in Control Affine Extremum-Seeking

Control (CA-ESC) Systems

The use of estimation theory tools for estimating the gradient of an unknown objective

function is a well-defined concept in the literature on ESC. Since the system’s gradient

changes over time, the states of the estimation model need to be updated. The Kalman

Filter (KF) works well for this purpose, as they propagate over time [28]. However,

these methods are confined to traditional ESC structures like C-ESC, for more details,

refer to the literature [28]. The KF cannot be applied accurately to CA-ESC systems
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since it is not natural to them. Here, we introduce a GEKF which is a natural technique

that accurately approximates the gradient of an objective function of CA-ESC systems.

This technique depends on the Chen-Fliess series. To show the utility of the Chen-fliess

series, we rewrite the equation 4.21 as:

ẋ = b1ū1 + b2ū2, (4.26)

with ū1 =
√
ωu1 and ū2 =

√
ωu2. We set the output of the system 4.26 as the objective

function y = f(x). Then, writing the Chen-Fliess series expansion 4.20 for the output

y|t2 and truncating after first-order terms, we get

y|t2= y|t1+Lb1y|t1
∫ t2

t1

ū1dτ + Lb2y|t1
∫ t2

t1

ū2dτ +O(∆t2), (4.27)

where t2 = t1 +∆t, ∆t is a short time period/step, and O(∆t2) is the remainder of the

expansion. The symbol (·)|t denotes the evaluation of a given term at time t. As per the

Chen-Fliess series 4.20, the assumptions A1-A4 guarantee the mathematical posedness

of 4.27. Recall from 4.21 that b1 and/or b2 are functions of the output y = f(x). While

any control input satisfying assumptions A3 can be used here, we consider a sinusoidal

input control-affine ESC system such that u1 = cos(ωt) and u2 = sin(ωt). Then,

∫ t2

t1

ū1dτ =

∫ t2

t1

√
ω cos(ωt)dτ =

1√
ω
(sin(ωt2)− sin(ωt1))

=
2√
ω
cos(ωt) sin

(
ω∆t

2

)
= K cos(ωt),

(4.28)
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where t = (t1 + t2)/2 and K = (2/
√
ω) sin(ω∆t/2). Similarly,

∫ t2

t1

ū2dτ =

∫ t2

t1

√
ω sin(ωt)dτ = − 1√

ω
(cos(ωt2)− cos(ωt1))

=
2√
ω
sin(ωt) sin

(
ω∆t

2

)
= K sin(ωt).

(4.29)

So, the equation 4.27 can be presented as:

y|t2 = y|t1+Lb1y|t1K cos(ωt) + Lb2y|t1K sin(ωt) +O(∆t2).
(4.30)

Here, the expression describes how the objective function value can be calculated at

future time t2, depending on the control inputs, objective function value and Lie deriva-

tives of the objective function calculated at given time t2.

Now, we utilize the equation 4.30 and continuous-discrete extended KF to formulate

GEKF mentioned in [28] which applies to CA-ESC systems. GEKF effectively works

in real-time and is considered as a discrete-continuous extended KF that requires: (i)

a measurement equation, which is the discrete part that relates the parameter to be

estimated (i.e., the gradient of the objective function, ∇f(x, y) in our case) with mea-

surements, we have access to (e.g., measurements of the objective function f(x, y) in our

case); and (ii) the propagation model, which is the continuous part that governs the filter

propagation continuously with time between the measurements [28, 47]. As discussed

earlier, LBSs are approximations of the CA-ESC systems and they are formulated in

terms of gradient. The states of the GEKF are given as [28]:
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X̄ =


[x̄1]n×1

[x̄2]n×1

[x̄3]1×1

 =



−
n∑

i=1
αiν2i,1i

∂f(x)
∂xi

bfi(f(x))ei

˙̄x1

f(x)|t1


, (4.31)

where x̄1 is proportional to the right hand side of the LBS 4.22 and αi is a proportionality

constant. Between every two successive measurements, we assume x̄1 has a constant

derivative given by x̄2. In addition, the state x̄3 is taken as the measured value of the

objective function which is updated during the measurement update. The propagation

equation for the state X̄ is given by:

˙̄X =


x̄2

0n×1

0

+Ω, (4.32)

where Ω represents the process noise. It is assumed to be Gaussian white noise, Ω ∼

N(0,Q). The Jacobian matrix A associated with the state dynamics can be obtained

using the equation 4.32 as:

A =


0n×n In×n 0n×1

0n×n 0n×n 0n×1

01×n 01×n 01×1

 , (4.33)

where 0n×n and In×n represent a zero matrix and an identity matrix of size n×n, respec-

tively. Now, the measurement update, 4.30, obtained using the Chen-Fliess expansion,
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can be written as:

y|t2 = h(X̄) + ν(t)

= y|t1+Lb1y|t1K cos(ωt) + Lb2y|t1K sin(ωt) + ν(t)

= f(x)|t1+(∇f(x) · b1)|t1K cos(ωt) + (∇f(x) · b2)|t1K sin(ωt) + ν(t)

(4.34)

where the remainder terms are assumed Gaussian measurement noise ν(t) ∼ N(0, r).

Furthermore, the process noise and the measurement noise are assumed to be uncorre-

lated. The algorithm of GEKF is provided in Algorithm 1.

Algorithm 1 Geometric-based Continuous-discrete Extended Kalman Filter

Initialize X̄ with some initial values.
choose a sample rate as an output Tout less than the sensors rates (used for measure-
ments).
For each sample time Tout:
for i = 1 to N do (Prediction Step)

X̄ = X̄+ (Tout/N) ˙̄X
P = P+ Tout

N (AP+PA+Q),
once the measurement is received i then
(Measurement step)
C = ∂h

∂X(X̄)
L = PCT (R+CPCT )−1

P = (I− LC)P
X̄ = X̄+ L(y[n]− h(X̄))

end if

4.6 Simulation Results

4.6.1 Unicycle Dynamics

In this section, we propose our novel and amended design of the simple unicycle CA-ESC

structure case depicted in figure 4.42 with the following control law similar to [8]:
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ẋ = f(x)
√
ωu1(t) + a

√
ωu2(t) (4.35)

where x ∈ R is the state vector, u1 is sin (ωt), and u2 is cos (ωt). The LBS corresponding

to equation 4.35 is given as:

ż =
[f, 1]

2
= −δf

δz
= J (4.36)

For the purpose of simulation, the objective function is given as:

J(x, y) = 10− 0.5(x− x∗)2 − 1.5(y − y∗)2, (4.37)

where x∗, and y∗ are constants with values (1, 1). The states of the filter are given as:

X̄ =


x̄1

x̄2

x̄3

 =



−α∇f(x)|t1
2

˙̄x1

f(x)|t1


, (4.38)

where α is constant and α = K = (2
√
ω)sin(ω∆t/2). Now, the propagation equation as

per 4.32 is given as:

˙̄X =


x̄2

0

0

+Ω, (4.39)
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and the Jacobian matrix A associated with the propagation equation can be obtained

following 4.33

A =


0 1 0

0 0 0

0 0 0

 . (4.40)

Now, we utilize 4.34 for measurement update, we and find the Lie derivatives as Lb1 |t1 =

(∆f(x)f(x))|t1 , Lb2 |t1 = (α∆f(x))|t1 . The measurement update equation can be pre-

sented as:

f(x)

∣∣∣∣
t2

= f(x)

∣∣∣∣
t1

+ (∆f(x)f(x))

∣∣∣∣
t1

K cos(ωt) + (α∆f(x))

∣∣∣∣
t1

K sin(ωt) + ν(t)

= x̄3 − 2x̄3x̄1 cos(ωt)− 2ax̄1 sin(ωt) + ν(t)

(4.41)

Our proposed design consists of simple CA-ESC, GEKF for gradient estimation, and

adaptation law for attenuating oscillations and a better convergence rate is provided in

figure 4.42. In the design, HPF is an optional filter, and it can be avoided in the design.

The control law for each state and HPF are provided as:

ẋ = ((cf(x, y)− xeh)
√
ωsin(ωt) + a

√
ωcos(ωt))cos(Ωt) (4.42)

ẏ = ((cf(x, y)− xeh)
√
ωsin(ωt) + a

√
ωcos(ωt))sin(Ωt) (4.43)
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ẋe = −xeh+ f(x, y), (4.44)

These state equations are the same as that we discussed in the subsection 4.3.1. The

adaptation law is given as:

ȧ = −λ(a− J(t, x, y)) (4.45)

In equation 4.45, the λ is a tuning parameter, J(t, x, y) is the estimation of the RHS of

LBS, and a is the amplitude of the modulation signal.

Figure 4.42: Proposed Design of CAESC with GEKF and Adaptation law for unicycle
dynamics

The simulation results for Unicycle dynamics are provided in figure 4.48, and the CA-

ESC parameters are provided in the table 4.7. For the unicycle case, we set the angular

velocity (Ω) of the system as 3 rad/sec, and linear velocity is computed from the CA-

ESC. The GEKF parameters are set as process noise (Q = 0.005I), measurement noise

(R = 0.01), and sample time Ts = 0.1 seconds. The λ is set as 0.008, and the initial

value of a is set as 1.
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Parameters Values

ω 80

c 0.3

a 1

Ω 3

h 1

Table 4.7: CA-ESC simulation parameters for unicycle dynamics.

Here we present the simulation results of our proposed design in figure 4.48 (from 4.43

to 4.47). To show the effectiveness of our proposed design in killing the oscillations and

a better convergence rate, we plotted the two results (our proposed design is in red, and

the design mentioned in [8] is in blue) for comparison. The states of the system are

plotted in figures 4.43 and 4.44. The objective function is shown in figure 4.45. The

trajectory of the system is provided in figure 4.47. The control input (linear velocity) is

shown in figures and 4.46.

From the trajectory plot, there are attenuating oscillations in the trajectory of the

system by using our proposed design (in red), while there are persisting oscillations in

the system by using the design (in blue) mentioned in literature [8]. We can observe

the same from the states and control input plots. States of the system converge to their

optimal point with attenuating oscillations by using the proposed design. The control

input converges to zero with reducing oscillations by using our proposed design (in red),

on the other side there are continuous oscillations in the control input by using the

design (in blue) mentioned in the literature [8].
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Figure 4.43: (a) Figure 4.44: (b)

Figure 4.45: (c) Figure 4.46: (d)

Figure 4.47: (e)

Figure 4.48: Simulation results of our proposed design with unicycle dynamics us-
ing a known mathematical expression of the objective function in which the blue one
represents the results using traditional single-integrator design found in the literature,
and red one represents results using our design: (a) x state, (b) y state, (c) Objective

function (d) Angular velocity and (e) Trajectory of the system.
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4.6.2 Single-Integrator Dynamics

In this subsection, we present our novel and amended design of a simple single-integrator

CA-ESC structure which stabilizes a system/TB3 about the extremum with attenuated

oscillations. In literature, single-integrator designs have been used (i.e., [8]). We in-

troduce a novel single-integrator design based on the design mentioned in [20]. Our

proposed design of a single-integrator CA-ESC with attenuating oscillations is shown in

figure 4.49. The proposed design which operates in a planar mode (x and y coordinates)

can be defined as:

ẋ = cx f(x, y)
√
ωaxu1(ωt) +

√
ωu2(ωt), (4.46)

ẏ = −cy f(x, y)
√
ωayu2(ωt) +

√
ωu1(ωt), (4.47)

ȧx = −λx(ax − Jx(x, y)), (4.48)

ȧy = −λy(ay − Jy(x, y)), (4.49)

where control inputs are u1(ωt) = sin(ωt), u2(ωt) = cos(ωt), f(x, y) is the objective

function, ω, cx and y are the frequency and gains, the amplitude of the input signals for

x and y states are ax, ay ∈ R, respectively, λx, λy > 0 ∈ R are the tuning parameters

of adaptation law, and Jx(x, y) and Jy(x, y) are the estimation of the right-hand side of

LBS such that [20]:
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Jx(x, y) = α1∇zxf(x, y) + η1(t), (4.50)

Jy(x, y) = α2∇zxf(x, y) + η2(t), (4.51)

with α1, α2 are constants and η1, η2 are the estimation errors of Jx, Jy respectively.

Figure 4.49: Proposed Design of CAESC with GEKF and Adaptation law

The GEKF states are formulated as follows:

X̄ =



x̄1

x̄2

x̄3

x̄4

x̄5


=



K
2 ∇xf(x, y)|t1

K
2 ∇yf(x, y)|t1

˙̄x1

˙̄x2

f(x, y)|t1


5×1

, (4.52)
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where x̄1 and x̄2 are proportional to the gradient components we are estimating. Follow-

ing the guidelines provided in [20], we take K = 2/
√
ω sin(ω∆t/2) where ∆t is a short

time step between the measurements. Now, following a constant velocity propagation

model similar to [20], we get:

˙̄X =



x̄3

x̄4

0

0

0


5×1

+Ω, (4.53)

where Ω represents the process noise as a random variable, Q is the covariance matrix

for process noise (system noise) and the Jacobian matrix A associated with the state

dynamics is obtained as

A =



0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


5×5

. (4.54)

For the measurement updates, The Chen-Flies series expansion that we discussed earlier

in 4.4.0.1 and also provided in [20]. The Chen-Flies expansion can be written as follows:
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f(x,y)|t2= f(x,y)|t1+(∇f(x,y) · b1)|t1K cos(ωt)

+(∇f(x,y) · b2)|t1K sin(ωt) + ν(t),

(4.55)

where

b1 =

[
cx
√
ωf(x, y); ax

√
ω

]
, (4.56)

b2 =

[
−cy

√
ωf(x, y); ay

√
ω

]
. (4.57)

where t2 = t1+∆t. The remaining terms follow a Gaussian distribution as measurement

noise denoted as ν(t) ∼ N(0, R), and R is the covariance matrix associated with noise

measurement. It is further assumed that the process noise and the measurement noise

are uncorrelated. Now, the measurement update equation is [47]:

f(x,y)|t2= h(X̄) + ν(t)

= f(x,y)|t1

+
(
cxf(x,y)∇xf(x,y) + ax∇yf(x,y)

)
K cos(ωt)

+
(
ay∇xf(x,y)− cyf(x,y)∇yf(x,y)

)
K sin(ωt)

+ ν(t)

= x̄5 + 2cxx̄1x̄5 cos(ωt) + 2ax̄2 cos(ωt)

+ 2ax̄1 sin(ωt)− 2cyx̄2x̄5 sin(ωt) + ν(t),

(4.58)
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where t = (t1 + t2)/2. The Jacobian matrix associated with the measurement update

equation is given by C matrix:

C =



2cx̄5 cos(ωt) + 2ay sin(ωt)

2ax cos(ωt)− 2cx̄5 sin(ωt)

0

0

1 + 2cx̄1 cos(ωt)− 2cx̄2 sin(ωt)


5×1

(4.59)

The simulation results using our proposed design and the design mentioned in the lit-

erature [8] are provided in figure 4.56 (from 4.50 to 4.55), and the tuning parameters

are provided in the table 4.8. The trajectory and the objective functions are plotted in

figures 4.52 and 4.53. The states of the system are provided in figures 4.50 and 4.51.

The control inputs (linear and angular velocities) are depicted in figures 4.54 and 4.55.

Parameters Values

ω 30

c 0.3

ax 1

ay 1

λx 0.015

λy 0.0995

h1 1

h1 1

Q 0.05I

R 0.5

,

Table 4.8: ESC and adaptation law parameters for simulations.

The utilized mathematical expression of the objective function for the simulation is given

as:
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f(x, y) = 10− 1

2
(x− 1)2 − 3

2
(y − 1)2 (4.60)

where an extremum (maximum) is f∗ = 10 at (x, y) = (1, 1).

From the trajectory plot, we can observe that as the system moves towards the extremum

of the objective function, there is a significant reduction in the oscillations by using our

proposed design (in red), while there are persistent oscillations in the system by using

the design mentioned in the literature [8]. We can verify the effectiveness of our proposed

design in attenuating the oscillations from the states and control inputs graphs. As the

states of the system converge to (1, 1), the oscillations in the states reduce. The control

input also converges nearly zero with attenuating oscillations, on the other side, there

are continuous oscillations in the control input (in blue) by using the design mentioned

in the literature.
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Figure 4.50: (a) Figure 4.51: (b)

Figure 4.52: (c) Figure 4.53: (d)

Figure 4.54: (e) Figure 4.55: (f)

Figure 4.56: Simulation results of our proposed design using a known mathematical
expression of the objective function to access the measurements, in which the blue
one represents the results using traditional single-integrator design mentioned in the
literature, and red one represents results using our design: (a) x state, (b) y state,
(c) Planar trajectory of the system (d) Objective function, (e) and (f) Represent the

control input in the respective states.
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4.7 Conclusion

In this chapter, we discuss the CA-ESC systems. We conducted simulations using CA-

ESC structure with unicycle and single-integrator dynamics presented in [8]. To verify

the effectiveness of CA-ESC systems, we performed real-time experiments. We carried

out two types of experiments: one in which we utilized the mathematical expression of

an objective function and in second which was light source seeking in which we had only

access to the measurement of an unknown objective function. We had some observations

based on the simulations and experimental results. One of the aspects of ESC is the

persistence of oscillations despite the system reaching its extremum (maximum/mini-

mum) which is sometimes undesirable in real applications. We then introduced our novel

proposed CA-ESC design with GEKF and adaptation law to attenuate the oscillations

as the system converges to the extremum. We showed the efficiency of our proposed

amended CA-ESC design by conducting simulations using both single-integrator and

unicycle dynamics and then compared the results with the design presented in [8]. From

the results, we concluded that our proposed design is significantly efficient in attenuating

the oscillations and with a better convergence rate.
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Chapter 5

Summary and Future Work

In this thesis, in chapter 2 we addressed the trajectory-tracking problem using traditional

controllers: PDC, PPC, and MPC. For the reference trajectory, we used the LBS which

generates the optimal trajectory by utilizing the gradient of an objective function. We

discussed the ESC system and its classic form (C-ESC) in chapter 3. We conducted

simulations and experiments (for both known and unknown objective functions). We

discussed the CA-ESC in chapter 4 and performed some simulations and experiments

based on the design provided in [8]. Moreover, we introduced our novel CA-ESC design

with GEKF and adaptation law for attenuating the oscillations in the system.

5.1 Future Work

The simulation of our proposed design showed promising results. Now, we explore the

potential of our proposed CA-ESC design in real applications. We performed exper-

iments using our design for single-integrator dynamics and the results are promising,

even our work [47] got accepted in the European Control Conference (ECC) 2024 [47].
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Our design performed well in both experiments (with a mathematical expression of an

objective function and light source seeking). In the light source-seeking experiment,

although there were more noises and sensitivities to the environment, our design per-

formed well. Currently, we are performing experiments using our design with unicycle

dynamics. Moreover, a theoretical analysis is required to provide crucial conditions and

proof that the utilization of GEKF with CA-ESC systems improves the convergence rate.

We will implement a Low Pass Filter (LPF) in our design to improve the performance of

our design and then we will use our design to demonstrate its effectiveness in addressing

the multi-agent problem. Additionally, we will incorporate the object avoidance algo-

rithm in our proposed design. We will then implement our design on different systems

including UAVs, flapper drones, etc.
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