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Abstract

Anomaly Detection in Irregular Time Series is an under-explored topic, especially in the

healthcare domain. An example of this is weight entry errors. Erroneous weight records

pose significant challenges to healthcare data quality, impacting clinical decision-making

and patient safety. Existing studies primarily utilize rule-based methods, achieving an

Area Under the Receiver Operating Characteristic Curve (AUROC) ranging from 0.546

to 0.620. This thesis introduces a two-module method, employing bi-directional Long

Short-Term Memory (bi-LSTM) with Attention Mechanism, for the prospective detection

of anomalous weight entries in electronic health records. The proposed method consists of

a predictor and a classifier module, both leveraging bi-LSTM and Attention Mechanism.

The predictor module learns the normal pattern of weight changes, and the classifier mod-

ule identifies anomalous weight entries. The performance of both modules was evaluated,

exhibiting a clear superiority over other methods in distinguishing normal from anomalous

data points. Notably, the proposed approach achieved an AUROC of 0.986 and a precision

of 9.28%, significantly outperforming other methods when calibrated for a similar sensitiv-

ity. This study contributes to the field of entry error detection in healthcare data, offering

a promising solution for real-time anomaly detection in electronic health records.
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Chapter 1

Introduction

1.1 Background and Motivation

Time series data is essential in various domains, providing valuable insights into temporal

information and supporting decision-making processes. While the detection of anomalies

in time series data has been extensively studied, the identification of incorrectly recorded

data entries has received limited attention. Detecting erroneous values in time series data

is a critical task that can have significant implications for data cleaning, analysis, and

decision-making processes.

One specific area where the detection of entry errors is of paramount importance is in

Electronic Health Records (EHRs), particularly in the context of pediatric healthcare. Er-

roneous data entries in EHRs can have severe consequences, potentially leading to incorrect

diagnoses, treatment plans, and patient outcomes. Inaccurate weight entries, for example,

can mislead healthcare providers into making incorrect and potentially life-threatening

judgments, particularly in weight-based dosing practices commonly employed in pediatric

care.

Addressing the challenge of detecting entry errors in time series data can offer valuable
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solutions for data cleaning and improving the integrity of medical records. Prospective

entry error detection, in particular, can pave the way for the development of real-time

alert systems at the point of data entry, prompting users to review and double-check their

input if the system detects implausible values. Such systems can significantly enhance data

accuracy and patient safety in healthcare settings.

While existing approaches in informatics have proposed rule-based methods to identify

abnormal values based on empirical thresholds, they often lack the required detection

capacity, particularly for complex time series data like weight growth charts. These rule-

based approaches rely on fixed thresholds and do not effectively capture the dynamic nature

of time series data. Therefore, there is a need for more sophisticated and accurate methods

that can capture the complex patterns and dynamics inherent in time series data.

By harnessing the advancements in deep learning and specifically employing bidirec-

tional Long Short-Term Memory (bi-LSTM) models with Attention Mechanism, this study

aims to develop an effective approach for detecting prospective entry errors in time series

data, with a particular focus on weight entries in pediatric EHRs. Both static patient

information, such as gender and age, and dynamic weight data will be leveraged to create

a comprehensive model capable of identifying erroneous entries at the time of data entry.

The significance of this research lies in the potential to improve the quality and re-

liability of time series data in healthcare. By accurately detecting and preventing entry

errors, data integrity and patient outcomes can be enhanced and improved. The proposed

approach has the potential to contribute to the fields of deep learning and patient safety

and make an impact on the healthcare industry.

1.2 Research Objectives

The main objective of this study is to detect prospective weight entry errors in pediatric

EHRs, with the aim of preventing erroneous data from being recorded. The specific research

2



objectives are as follows:

1. Develop a novel approach for detecting entry errors in time series data, focusing on

prospective and real-time error detection.

2. Design and implement a bidirectional Long Short-Term Memory (bi-LSTM) model

with Attention Mechanism and incorporating Self-Organizing Map - Minimum Quan-

tization Error (SOM-MQE) for detecting erroneous weight entries.

3. Investigate the effectiveness of combining static data, such as gender, with dynamic

time-varying data, like weight, for improved error detection performance.

4. Validate the proposed approach using a comprehensive dataset obtained from the

Cincinnati Children’s Hospital Medical Center (CCHMC), consisting of de-identified

pediatric weight entry data.

5. Assess the performance and effectiveness of the proposed approach through experi-

mentation and comparison with existing methods.

6. Provide insights into the potential implications and applications of the developed

approach in enhancing data quality and improving patient safety.

1.3 Structure of the Thesis

This thesis is organized into several chapters to provide a comprehensive understanding

of the research conducted and the contributions made. The structure of the thesis is as

follows:

• Chapter 1 Introduction

Presents the background, motivation, research objectives, and the thesis structure.

3



• Chapter 2 Literature Review

Provides an extensive review of related works in the fields of entry error detection,

time series analysis, deep learning, and other relevant methodologies. It explores

existing approaches, techniques, and challenges in anomaly detection in time series

data.

• Chapter 3 Methodology

Describes the dataset used in this study and provides a detailed explanation of the

proposed approach, including the predictor and classifier module using bidirectional

LSTM with Attention Mechanism and the SOM-MQE method for feature extraction.

It also discusses the rationale behind the design choices and the integration of static

and dynamic data.

• Chapter 4 Experiments

Presents the experimental setup and performance evaluation metrics. It includes a

comprehensive overview of the training process and parameters used.

• Chapter 5 Results

Provides a detailed presentation of the findings from the experiments. It includes

the quantitative results, performance metrics, relevant visualizations or statistical

analyses, and comparative results against existing methods.

• Chapter 6 Discussion

Presents a detailed discussion of the results obtained based on the observations for

individual components of the proposed method and addresses limitations.

• Chapter 7 Conclusion

Summarizes the conclusions based on the findings and contributions of the research.

It also outlines potential avenues for future research and development in the field of

detecting entry errors in time series data.
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Chapter 2

Literature Review

The detection of anomalous weight entries in electronic health records (EHRs) is an ongoing

challenge within the healthcare research community. Traditional approaches to addressing

this problem have predominantly relied on rule-based algorithms, with varying degrees of

success.

Daymont et al. (2017)[1] pioneered an innovative automated method for identifying

implausible pediatric growth data within EHRs. Their technique involved expressing each

measurement as a standard deviation score and then comparing it against a weighted

moving average of a child’s other measurements. Applied to a substantial dataset of over

2 million growth measurements from 280,610 patients aged between 1 to 21 years, this

method flagged 3.8% of weight and 4.5% of height values as implausible or otherwise

excluded.

Building on this foundational work, Liu et al. (2019)[2] ventured beyond rule-based

methods and instead leveraged machine learning and deep learning techniques to tackle this

challenge. Their innovative study applied a bidirectional Long Short-Term Memory (bi-

LSTM) model to identify abnormal weight entries within pediatric patient records. Tested

and validated on a comprehensive dataset of 15,000 pediatric patients from Cincinnati

Children’s Hospital Medical Center, Liu’s approach was an important milestone in its
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application of using bi-LSTM for anomaly detection within a healthcare context. However,

their use of bi-LSTM enables the model to observe both preceding and following data points

when making a prediction. Therefore, it can does not provide a solution to prospective

weight entry error detection.

Since the publication of ”Attention is all you need” by Vaswani et al.[3], Attention

Mechanism has seen widespread popularity in Deep Learning, particularly in Natural Lan-

guage Processing (NLP). Attention Mechanism is capable of interpreting sequential data

by paying more ”attention” to relevant information by assigning more weight to the most

helpful information. Attention Mechanism has three inputs, namely, Query (Q), Key (K),

and Value (V). Although primarily utilized in NLP, Attention Mechanism can also be uti-

lized for Time Series Analysis since Time Series can be considered a type of sequential

data. Fig 2.1 shows an Illustration of Multihead Attention described by Vaswani et al.

Figure 2.1: Illustration of Attention Mechanism

More recent research has further pushed the boundaries by exploring the potential of

machine learning technologies for anomaly detection. Kong et al. (2023)[4], for example,

proposed an integrated generative model that combined bi-LSTM and an Attention Mech-

anism. Primarily targeted at industrial anomaly detection, Kong’s model demonstrated an
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ability to accurately and promptly identify anomalies within time-series data, highlighting

the potential for such a model in a healthcare context.

Separately, Self-Organizing Map - Minimum Quantization Error (SOM-MQE) has been

established as a great indicator for anomaly detection tasks[5]. Due to its ability to rep-

resent known data, when trained using normal data only, the minimum quantization error

can serve as a great indication of how dissimilar a given data is to previously observed

data. Even though the value of SOM-MQE in anomaly detection tasks has been shown

extensively, it lacks the ability to incorporate temporal information. Consequently, on its

own, SOM-MQE can not match the performance of Deep Learning algorithms that can

interpret temporal information, such as LSTM.

Despite these advances, three key areas warranting further investigation were iden-

tified during the literature review. Firstly, while studies such as Kong’s[4] have shown

the potential of Attention Mechanisms in anomaly detection, there is currently a lack of

research exploring their integration within healthcare data. Secondly, the majority of ex-

isting studies focus predominantly on retrospective error detection, a process that uses

both preceding and following data points. This approach, although valuable in data clean-

ing, fails to address the need for real-time alerts that could prevent erroneous entries from

being recorded in the first place. Lastly, the utilization of SOM-MQE for anomaly detec-

tion in time-series data, specifically in electronic health records (EHRs), has not gained

widespread popularity.

To address these gaps, this study proposes a novel two-module method that integrates

bi-LSTM, Attention Mechanism, and SOM-MQE for the prospective detection of erro-

neous weight entries in EHRs. By incorporating bi-LSTM, which excels at embedding

temporal information, Attention Mechanism, which further focuses on specific parts of the

temporal information, and SOM-MQE, which provide valuable insight into the level of

abnormality of each data point, it is hypothesized that the resulting model can surpass

the performance of previous methods. The model is specifically designed for prospective
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entry error detection, which relies solely on preceding data points for anomaly detection.

By focusing on prospective error detection, this study aims to evaluate the performance

and practicality of deep learning models as real-time alert systems at the point of data

entry. Furthermore, by segregating the task into two distinct parts—learning the pattern

of weight changes and detecting anomalous entries—this study aims to create a model that

can provide the expected weight in addition to detecting prospective weight entry errors

with greater accuracy and sensitivity.
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Chapter 3

Methodology

The input data was first put thru Self-Organizing Map - Minimum Quantization Error

(SOM-MQE), where individual data points were analyzed and assigned an anomaly score,

and then organized into sequences for the deep learning modules. The two modules-

Predictor Module and Classifier Module-both utilizes bi-LSTM[6] with attention[3], which

takes in and interprets temporal data and puts focus on relevant information. The use of

bi-LSTM, however, inherently includes information both prospectively and retrospectively,

which conflicts with the aim of prospective error detection. Therefore, a real-time simula-

tion process was introduced to prohibit such information leaks. Fig 3.1 shows a diagram

of the proposed method.

Figure 3.1: Overview of Proposed Method
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3.1 SOM-MQE

The Self-Organizing Map (SOM), introduced by Teuvo Kohonen[7], is a type of artificial

neural network trained using unsupervised learning to produce a low-dimensional, dis-

cretized representation of the input space of the training samples, and is widely used for

clustering and visualization. SOMs operate through competition among neurons. During

the training process, SOM iteratively adjusts the weight vectors of neurons to resemble the

input vectors.

The weight update rule in SOM can be mathematically represented as:

wj(t+ 1) = wj(t) + α(t) · hji(t) · (x(t)− wj(t)) (3.1)

where wj is the weight vector of the jth neuron, α(t) is the learning rate at time t, x(t)

is the input vector, and hji(t) is the neighborhood function at time t.

The neuron whose weight vector is most similar to the input vector is termed the Best

Matching Unit (BMU). The BMU’s weight is adjusted to be more similar to the input

vector.

In this study, Self-Organizing Map - Minimum Quantization Error (SOM-MQE) is

used to capture the representation error of each weight data sample. MQE quantifies the

distance between a given sample and the weight of its Best Matching Unit (BMU) in the

SOM. High MQE values indicate that the data sample is not well-represented by the map,

and thus it can be considered as an anomaly.

Mathematically, the MQE of a data sample x is given by:

MQE(x) = ∥x− wBMU∥ (3.2)

where wBMU is the weight vector of the BMU for the data sample x, and ∥·∥ represents the
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Euclidean distance.

MQE values serve as additional features that provide insights into how dissimilar each

data sample is to the typical patterns in the dataset, which can be instrumental in effec-

tively identifying anomalous weight records.

3.2 Real-Time Simulation

A real-time simulation procedure was implemented to generate the dataset used for training

and evaluation. The primary aim of this process is to simulate the scenario where previous

weight entries were recorded correctly over time, establishing a baseline for each patient,

and examining a potentially erroneous new entry as it is being recorded.

During this process, the records were divided into multiple sequences using a sliding

window of size five. Each sequence is composed of five weight entries, with the fifth

entry being the one whose correctness is to be predicted. The selection criteria for the

entries depends on the module being trained: for the classifier module, the last entry of

a generated sequence can be either normal or abnormal weight entries, whereas, for the

predictor module, all weights in the generated sequence must be normal.

By simulating real-time weight entries, the model can be trained to detect erroneous

weight values at the time of entry, which provides an opportunity to prevent incorrect data

from being recorded. This real-time simulation approach enhances the practical application

of the proposed method in detecting and preventing entry errors in time-series data. This

real-time simulation process also enables the use of bidirectional Long Short-Term Memory

without temporal data leakage, as the model is always predicting the correctness of the

last entry in the sequence.

The process of generating the sequences for the real-time simulation is shown in Algo-

rithm 1 for the classifier module, and in Algorithm 2 for the predictor module.
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Algorithm 1 Real-Time Simulation Sequence Generation

Input: Patient records records, Window size window size
Output: Sequences of patient records

1: sequences← ∅
2: normal records← ∅
3: for each record in records in order do
4: if number of normal records = window size− 1 then
5: create sequence with normal records and current record
6: append sequence to sequences
7: remove the oldest record from normal records
8: end if
9: if record.label = normal then
10: append record to normal records
11: end if
12: end for
13: return sequences

Algorithm 2 Real-Time Simulation Sequence Generation for Predictor Module

Input: Patient records records, Window size window size
Output: Sequences of patient records

1: sequences← ∅
2: normal records← ∅
3: for each record in records in order do
4: if record.label = normal then
5: append record to normal records
6: end if
7: if number of normal records = window size then
8: create sequence with normal records
9: append sequence to sequences

10: remove the oldest record from normal records
11: end if
12: end for
13: return sequences
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3.3 Model Architecture

3.3.1 Predictor Module

The Predictor Module is responsible for predicting the weight of a patient based on input

features such as age and historical weight data. This module utilizes a single-layer bidirec-

tional LSTM network, coupled with Attention Mechanism, to capture sequential patterns

and temporal dependencies in the data for accurate weight prediction.

The architecture of the Predictor Module includes the following components:

• Bidirectional LSTM Layer: The module employs a single layer bidirectional

LSTM with a hidden size of 256. This results in an output dimension of 512 due to

bidirectionality. The bi-LSTM layer captures temporal dependencies in the data and

encodes this sequential information.

• Batch Normalization: After the LSTM layer, batch normalization[8] is applied to

improve the stability and generalization of the model by normalizing the activations

within each mini-batch.

• Age Embedding: The age of the patient is embedded into a higher-dimensional

representation using a single linear layer, allowing it to be passed to the Multihead

Attention.

• Multihead Attention: A multihead attention[3] with 4 heads is utilized. The

embedded age is passed as the query, and the LSTM output is passed as the key and

value to the attention mechanism, allowing the model to focus on relevant information

by weighting different parts of the input data.

• Dropout: Dropout regularization[9] is employed with a rate of 0.5 to prevent over-

fitting by randomly setting a fraction of input units to 0 during training.
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• Linear Layers: Two linear layers with activation functions process the combined

information from the attention output. The output dimensions are 20 and 1, respec-

tively. The first layer uses a Leaky ReLU activation function and the second layer

employs an identity function, outputting the estimated weight.

• Layer Normalization: Layer normalization[10] is applied after the first linear layer

to normalize activations across the feature dimension, which aids in model generaliza-

tion. This is used in conjunction with dropout and batch normalization to improve

the model’s generalization.

By employing bi-LSTM, Attention Mechanism, and subsequent linear layers, the Pre-

dictor Module estimates the weight of a patient by capturing the relevant temporal patterns

and dependencies in the input data.

3.3.2 Classifier Module

The Classifier Module is responsible for making the final prediction of weight abnormality

based on the inputs and features extracted from the dataset. This module utilizes a two-

layer bidirectional LSTM with an attention architecture to capture sequential patterns and

incorporate contextual information for accurate classification.

The architecture of the Classifier Module includes the following components:

• Bidirectional LSTM Layer: The module begins with two layers of bidirectional

LSTM that process the sequential input data. Each layer has a hidden size of 256,

resulting in an output dimension of 512 due to bidirectionality. These layers cap-

ture temporal dependencies and encode the sequential information into a meaningful

representation.

• Batch Normalization: Batch normalization[8] is applied after the LSTM layers to

improve the stability and generalization of the model. It normalizes the activations
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Figure 3.2: Architecture of the Predictor Module
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of the hidden units within each mini-batch, reducing the internal covariate shift and

speeding up the training process. This is used in conjunction with dropout and layer

normalization to improve the model’s generalization.

• Age and Weight Embedding: The age and both the entered and predicted weight

from the Predictor Module are embedded into higher-dimensional representations,

which can then be passed to the attention mechanism.

• Multihead Attention: The Classifier Module also utilizes a four-headed attention

mechanism[3]. The embedded age, LSTM output, and embedded weight are passed

as query, key, and value, respectively, to the attention mechanism. This allows the

module to focus on relevant information and assign different weights to different parts

of the input data based on their importance.

• Dropout: Dropout regularization[9] is applied to mitigate overfitting. A dropout

rate of 0.9 is used in the attention mechanism, 0.7 after the first linear layer, and 0.5

after the second linear layer.

• Linear Layers: Three linear layers with activation functions are employed after the

attention mechanism. These layers have shrinking output dimensions from 200, 20,

to 2. Leaky ReLU is used for the activation function of the first two linear layers.

Layer normalization is used after each of the first two linear layers. The final layer

uses a sigmoid activation function to provide probabilistic outputs for the two classes:

normal and abnormal.

• Layer Normalization: Layer normalization[10] normalizes the activations of the

hidden units across the feature dimension and is applied after each linear layer except

the output layer.

By utilizing two layers of bidirectional LSTM, attention mechanism, and subsequent

linear layers, the Classifier Module effectively captures sequential patterns, attends to
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relevant information, and produces probabilistic predictions of weight abnormality. The

combination of these components enables the module to make reliable predictions based

on the given input data.

17



Figure 3.3: Architecture of the Classifier Module
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Chapter 4

Experiments

4.1 Dataset

4.1.1 Main Dataset

Data Collection

The Main dataset was obtained from the Electronic Health Records (EHRs) of Cincinnati

Children’s Hospital Medical Center (CCHMC) for the period between 2010 and 2018 as

part of the previous study by Liu et al.[2]. In that study, 4.3 million weight points were

collected for 347,056 patients.

In the previous study[2], certain criteria were applied to exclude data points:

1. Weight points documented within the 2 years of age.

2. Weight points recorded after 20 years of age.

3. All weight points from patients with less than four weight measurements.

A secondary polynomial regression model was applied to the remaining data to identify

charts with potentially abnormal weight values. This regression model identified 107,336
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candidate charts, from which 15,000 charts were randomly sampled to create what was

referred to as the MAIN dataset[2].

Annotation Process

In the previous study[2], 18 domain experts were recruited to annotate the 15,000 weight

charts for abnormal weight values. The annotation guidelines stipulated that weight points

should be evaluated retrospectively, and labeled as abnormal based on clinical importance

and potential risk to the patient.

A scoring system was employed where abnormal weight points with high clinical im-

portance scored two, potentially abnormal weight points scored one, and normal weight

points scored zero. A weight point was classified as abnormal if the sum of scores from

three annotators exceeded two[2]. The annotation process was performed as part of the

previous work, and the annotations were utilized as-is in this study.

4.1.2 Auto Dataset

In addition to the main dataset described in 4.1.1, a user-corrected weight dataset from

the year 2019 was collected from the CCHMC EHRs (206,330 charts). Each record in

this dataset came with a binary flag indicating if the weight of this record was edited

by the user who entered it. Other than the addition of the flag and the absence of the

expert annotation, the user-corrected dataset contained the same variable as the expert-

annotated dataset. Entries that were changed to a weight that’s different from the original

value entered are considered erroneous. Other entries were considered normal.

4.1.3 Dataset Statistics

The dataset resulting from the real-time simulation process described in Section 3.2 and

the original dataset have different distributions of the number of charts containing errors.
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Table 4.1 presents the breakdown of the number of charts containing varying numbers

of errors, as well as the total number of charts for the datasets with and without the

application of real-time simulation.

Dataset Real-
time

Simula-
tion

#charts
with no
error

#charts
with 1
error

#charts
with 2
errors

#charts
with 3
errors

#charts
with 4
errors

Total
#charts

Main No 13,432 1,294 102 13 3 14,844
Main Yes 197,169 978 0 0 0 198,147
Auto No 204,580 1,677 63 10 0 206,330
Auto Yes 172,912 748 0 0 0 173,660

Table 4.1: Statistical Summary of Datasets

4.1.4 Feature Extraction

Feature extraction is an essential step in the data processing pipeline, which involves

converting raw data into a set of features or attributes that can be effectively utilized

by machine learning algorithms.

In the previous study[2], nine variables were extracted for each weight data point to

capture weight characteristics and growth dynamics:

1. Subject weight in kilograms

2. Subject age in years

3. Subject sex

4. The Box-Cox transformation, median, and generalized coefficient of variation-based

z-score according to subject sex and age, denoted as Z-Score

5. Modified LMS-based z-score using the weight-for-age data from a reference popu-

lation provided by Centers for Disease Control (CDC) to identify extreme weight

values, denoted as Modified Z-Score
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6. Percentage of the population below a weight value, or percentile

7. Absolute age difference from the immediate previous weight point

8. Absolute weight difference from the immediate previous weight point

9. Absolute z-score difference from the immediate previous weight point

In this study, features 1-6 from the previous study were used. Features 7-9 were ex-

cluded as LSTM networks employed in this study can inherently capture temporal infor-

mation, such as differences over time. However, the weight value and age at the previous

measurement were extracted and utilized.

4.2 Preprocessing

Data preprocessing is a crucial step in machine learning pipelines. It involves transforming

raw data into a format that can be effectively processed by machine learning algorithms.

In this study, the preprocessing steps included one-hot encoding for categorical variables

and standardization for numerical features.

One-hot encoding

Categorical features such as gender are non-numeric, and most machine learning algorithms

require numerical input. Additionally, using a single numerical value to represent categories

can imply ordinal relationships that may not exist among categories. To avoid these issues,

one-hot encoding was used to convert the categorical variables into a format that can be

better understood by the algorithms.

In one-hot encoding, each category of a categorical feature is converted into a new

binary feature (0 or 1). For example, the gender feature, which has categories ’male’ and

’female’, is represented using two binary features: ’gender male’ and ’gender female’.
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Standard Scaling

Standardization of numerical features is important for ensuring that they are on the same

scale. This is particularly critical for algorithms that are sensitive to the scale of the

input features, such as distance-based methods and methods that use gradient descent

for optimization. The standard scaling process is a common practice for this task, where

numerical features are standardized to have a mean of zero and a standard deviation of

one. The standard scaling process is mathematically represented as:

z =
x− µ

σ
(4.1)

where z is the standardized value, x is the original value, µ is the mean of the feature,

and σ is the standard deviation of the feature.

This process ensures that the numerical features have comparable scales, which can

improve the convergence speed of the learning algorithm and potentially lead to better

model performance. However, this approach has an inherent downside of being sensitive

to outliers, as outliers can dramatically change both the mean and the standard deviation.

Robust Scaling

In this study, robust scaling was used instead of standard scaling described in 4.2 to

minimize the effects of outliers. Robust scaling uses the Interquartile Range (IQR), which

is more robust to outliers than the mean and standard deviation used in standard scaling.

Xrobust =
X −Q1(X)

Q3(X)−Q1(X)
(4.2)

Where Xrobust is the robustly scaled feature, X is the original feature, Q1(X) is the

first quartile of the feature, and Q3(X) is the third quartile of the feature.
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4.3 Training

4.3.1 SOM

The Self-Organizing Map (SOM) is utilized in this study as a feature extraction method.

It was trained using normal data points and implemented using the MiniSom Python

library[11].

• Initialization: Principal Component Analysis (PCA)[12] initialization was used to

set the initial weights of the neurons in the SOM. This method projects the input

data into the principal components space to set the initial positions of the neurons,

leading to faster convergence compared to random initialization.

• Competitive Learning: The training process involves competitive learning. For

each input vector, the neuron with weights most similar to the input is identified

as the Best Matching Unit (BMU). The weights of the BMU and its neighbors are

adjusted towards the input vector.

• Learning Rate: An initial learning rate of 0.5 was used, which decays over time

according to the formula:

learning rate(t) =
learning rate

1 + t
T

(4.3)

where t is the iteration number, and T is half the number of iterations.

• Neighborhood Size: An initial sigma value of 1.0 was used to control the size of

the neighborhood around the BMU, which also decays over time, similarly to the

learning rate. The neighborhood size is given by:

neighborhood size(t) =
neighborhood size

1 + t
T

(4.4)
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where t is the iteration number, and T is half the number of iterations.

• Neighborhood Function: The Gaussian neighborhood function is used. The Gaus-

sian neighborhood function is given by:

hij(t) = exp

(
−

d2ij
2σ2(t)

)
(4.5)

where hij(t) is the neighborhood function, dij is the distance between the BMU and

neuron j, and σ(t) is the width of the neighborhood at iteration t. In the case where

Euclidean distance is used, dij is equivalent to ||rj − ri||, where rj and ri are the

positions of neurons j and i respectively[13].

• Topology: A rectangular topology was used for arranging the neurons in the SOM.

In a rectangular topology, the neurons are arranged in a grid, where each neuron is

connected to its adjacent neighbors in the grid.

• Distance Function: The Euclidean distance was used to calculate the activation

distance between input vectors and neuron weights.

• Convergence: The SOM was trained for 100,000 iterations to ensure convergence.

The training process of SOM involves three main stages: competition, cooperation, and

adaptation.

• Competition: Each input vector is presented to the SOM, and the neurons in the

network compete to be the best matching unit (BMU). The BMU is the neuron whose

weight vector is closest to the input vector in terms of Euclidean distance.

• Cooperation: After the BMU is determined, a neighborhood around the BMU

is established. The Gaussian neighborhood function is utilized to determine the

extent to which neighboring neurons participate in the learning process based on

their distance from the BMU.
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• Adaptation: The weights of the BMU and its neighboring neurons are updated to

be more similar to the input vector, effectively adapting the network to the data.

4.3.2 Predictor Module

The predictor module was trained using normal data points, with each step of the sequence

containing the gender and age at the measurement of the patient, along with the age and

weight of the previous measurement.

• Optimizer: The AdamW optimizer[14] was used, with a learning rate of 5 × 10−5

and weight decay of 1× 10−1.

• Warmup: An exponential warmup described by Ma et al[15] with a warmup period

of 15 epochs was implemented using the pytorch warmup Python library[16]. The

warmup period allows the learning rate to gradually reach its intended value, reducing

the chance of divergence at the start of training.

• Learning Rate Scheduler: After the warmup period, an exponential learning

rate scheduler was implemented using the ExponentialLR module from PyTorch’s[17]

optim library with a gamma of 0.85. This scheduler gradually reduces the learning

rate over time, providing a form of learning rate annealing that helps improve the

stability of the training process and the performance of the model[18]. Through trial

and error, it was found that the combination of warmup and exponential learning

rate decrease improved the model’s performance and stability during training.

• Batch Size and Epochs: The model was trained for 30 epochs with a batch size

of 1000. The use of a relatively large batch size enables the efficient use of GPU

resources, while the number of epochs was chosen to balance the training time and

performance.
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• Loss Function: The Mean Squared Error (MSE)[19] loss function was used for the

predictor module to measure the difference between the predicted and actual weight

values.

• Model Selection: At the end of each epoch, a checkpoint of the model was saved.

The final model was selected from these checkpoints based on the best test set Mean

Squared Error (MSE).

4.3.3 Classifier Module

The classifier module was trained using normal and anomalous data points, with each step

of the sequence containing the gender and age at the measurement of the patient, along

with the age and weight of the previous measurement.

• Data Sampling: Due to the highly imbalanced nature of the dataset, weighted

random sampling was implemented during training. Each class was weighted by the

inverse of its prevalence, ensuring that the model was trained with approximately

equal numbers of normal and abnormal samples. This strategy ensured that the

classifier was not overwhelmed by the majority class and had a balanced view of the

classes during training.

• Optimizer: Similar to the predictor module, the AdamW optimizer was used. How-

ever, the learning rate was set to 1 × 10−3 while the weight decay remained at

1× 10−1[14].

• Warmup: As with the predictor module, an exponential warm up was implemented,

but with a warm up period of 20 epoches.

• Learning Rate Scheduler: After the warmup period, an exponential learning rate

scheduler was implemented with a gamma of 0.75. This scheduler gradually reduces
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the learning rate over time, similar to the predictor module, though with a different

gamma value.

• Batch Size and Epochs: The model was trained for 30 epochs with a batch size

of 1000, same as the predictor module.

• Loss Function: The Cross-Entropy[20] loss function was used for the classifier

module to differentiate between normal and anomalous data points.

• Model Selection: At the end of each epoch, a checkpoint of the model was saved.

The final model was selected from these checkpoints based on the best test set Area

Under the Receiver Operating Characteristic Curve (AUROC)[21].

4.3.4 Evaluation

For the evaluation of the proposed method, several performance metrics were employed.

The primary metric was the Area Under the Receiver Operating Characteristic Curve

(AUROC)[21], which is especially useful for binary classification problems. It provides an

aggregate measure of performance across all possible classification thresholds regardless of

sensitivity and specificity.

In addition to AUROC, precision and recall were also reported. Precision, or the

positive predictive value, quantifies the number of correct positive predictions made, while

recall, also known as sensitivity, measures how many actual positives the model correctly

captured. In clinical settings, sensitivity is usually considered to be much more important

than precision, as an illness not diagnosed creates way more risk for the patient compared

to a healthy patient incorrectly diagnosed to have it. Therefore, Liu et al.[2] manually set

sensitivity to 90% or higher, which is considered the requirement for practical use [22].

Additionally, to evaluate the effectiveness of SOM-MQE, AUROC using only the MQE

value was reported and compared to other features. For the evaluation of the predictor
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module, the Mean Square Error is reported.

For cross-validation, a stratified train-test split was performed, with 70% of the data

used for training the model and the remaining 30% used for testing. This approach ensures

that the proportion of normal and anomalous data points is consistent in both the training

and test sets, facilitating a more fair and reliable evaluation.

4.4 Hardware Configuration

The proposed approach was implemented on a computer system with the following hard-

ware configuration:

• CPU: Intel i7-13700k

• GPU: NVIDIA RTX 2080 Ti (11GB GDDR6)

• RAM: 32GB DDR5

• OS: Windows 11
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Chapter 5

Result

5.1 Main Data

5.1.1 SOM-MQE

The AUROC of the MQE values was noticeably higher than that of Z-Score, Modified

Z-Score, and Percentile. The value is shown in Table 5.1.

Z-Score Modified Z-Score Percentile SOM-MQE
AUROC 0.5139 0.5140 0.5139 0.5446

Table 5.1: AUROC of extracted features.

5.1.2 Predictor Module

For the predictor module, the mean squared error (MSE) across all data points in the

test set was 9.97× 10−5. Notably, there was a significant difference between the MSE for

normal data points (1.04 × 10−4) and the MSE for anomalous data points (1.31 × 10−3).

The difference between the predicted weight and the weight record was also compared. For

this regression comparison, the output of the Predictor Module went through the inverse of
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the scaling described in 4.2, effectively restoring the values back to kilograms. A histogram

of these difference is shown in 5.1. A significant tendency of abnormal weight records to

produce bigger differences can be observed. This indicates that normal and abnormal data

points have different patterns. This information can help the classifier module to better

differentiate the two, as the difference between the predicted weight and the actual weight

entered will be much bigger for abnormal data points.

Figure 5.1: Differences between predicted weight and weight recorded.

5.1.3 Classifier Module

Figure 5.2 shows the Cross Entopy Loss of the classifier module during training. The loss

decreases over epoch, showing good convergence. The Area Under the Receiver Operating

Characteristic Curve (AUROC) during training is shown in Figure 5.3, with the epoch

where max AUROC was achieved marked. The Receiver Operating Characteristic Curve

and Precision Recall Curve are shown in Figure 5.4 and Figure 5.5, respectively.

31



Figure 5.2: Loss over Epoch of the Classifier Module

Figure 5.3: AUROC over Epoch of the Classifier Module

The classifier module, with the help of the predictor module, achieved an AUROC of

0.986, indicating excellent performance. The precision, or positive predictive value, was

9.28%. The confusion matrix is shown in Figure 5.6. Due to the big number of samples, a

percentage-based confusion matrix is also shown in 5.7.

For comparison, the performance of several rule-based baseline approaches and Machine

Learning-based approaches reported by Liu et al.[2] are included. As mentioned in 4.3.4,

Figure 5.4: Receiver Operating Characteristic Curve
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Figure 5.5: Precision Recall Curve

Figure 5.6: Confusion Matrix Figure 5.7: Percentage Confusion Matrix

all methods presented were calibrated to achieve a sensitivity of 90% or higher. The results

are summarized in Table 5.2.

Type of Approach Method AUROC Precision (%) Sensitivity (%)

Baseline
CDC[2] 0.546 0.52 90.11
RED[2] 0.578 0.52 90.08
CHOP[2] 0.620 0.64 90.11

Machine Learning
LSTM[2] 0.938 3.47 90.11

Random Forest[2] 0.961 4.66 90.11
Proposed Approach 0.986 9.28 90.36

Table 5.2: Performance of the proposed approach compared to other methods.

The proposed approach demonstrates high performance across several metrics, espe-

cially in terms of precision. Compared to other methods, the proposed approach shows a

clear advantage in distinguishing between normal and anomalous data points.
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5.2 Auto Data

5.2.1 SOM-MQE

Similarly to the result of the Main Data shown in Section 5.1.1, the AUROC of the MQE

value was significantly higher than that of Z-Score, Modified Z-Score, and Percentile. How-

ever, the overall AUROCs are lower, indicating that Auto Data may be a more challenging

dataset. The value is shown in Table 5.3.

Z-Score Modified Z-Score Percentile SOM-MQE
AUROC 0.4632 0.4590 0.4633 0.5175

Table 5.3: AUROC of extracted features in Auto Data.

5.2.2 Predictor Module

The mean squared error (MSE) across all data points in the test set was 9.03 × 10−5.

Although a meaningful difference between the MSE for normal data points (9.05 × 10−5)

and the MSE for anomalous data points (4.36 × 10−4) was observed, it was noticeably

smaller than what was obtained from Main Data. A histogram of the difference between

the predicted weight and the weight record is shown in 5.8. Compared to the result observed

in Main Data, there was considerably less tendency for the abnormal data points to have

a bigger discrepancy.

5.2.3 Classifier Module

Figure 5.9 shows the Cross Entopy Loss of the classifier module during training. The

loss decreases over epoch, indicating convergence. The AUROC during training is shown

in Figure 5.10, with the epoch where max AUROC was achieved marked. The Receiver

Operating Characteristic Curve and Precision Recall Curve are shown in Figure 5.4 and

Figure 5.5, respectively.
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Figure 5.8: Differences between predicted weight and weight recorded in Auto Data.

The proposed approach achieved an AUROC of 0.675 in Auto Data, inferior to the

performance in Main Data. The precision of 0.498% is also less ideal. The confusion

matrix and percentage-based confusion matrix are shown in Figure 5.13 and Figure 5.14,

respectively.

Several Machine Learning algorithms were trained on the same data set for comparison.

All methods were calibrated to achieve a sensitivity of 90% or higher as described in 4.3.4.

The results are summarized in Table 5.4.

Figure 5.9: Loss over Epoch of the Classifier Module in Auto Data
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Figure 5.10: AUROC over Epoch of the Classifier Module in Auto Data

Figure 5.11: Receiver Operating Characteristic Curve in Auto Data

Although the performance of the proposed approach in Auto Data is less impressive

compared to the performance in Main Data, it is still clearly advantageous to Machine

Learning algorithms, showing the value of the bi-LSTM with Attention approach.

Method AUROC Precision (%) Sensitivity (%)
Decision Tree 0.540 0.427 97.30

Logistic Regression 0.558 0.422 90.27
Gradient Boosting 0.585 0.427 90.27
Random Forest 0.617 0.441 90.27

Proposed Approach 0.675 0.498 90.37

Table 5.4: Performance of the proposed approach compared to other methods.
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Figure 5.12: Precision Recall Curve in Auto Data

Figure 5.13: Confusion Matrix in Auto
Data

Figure 5.14: Percentage Confusion Ma-
trix in Auto Data

37



Chapter 6

Discussion

The SOM-MQE proved to be a very effective feature extraction method in the task of

prospective weight entry error detection. As shown in Table 5.1 and Table 5.3, when used

individually, the MQE values yielded meaningfully higher AUROC than all of the other

extracted features. In fact, in the case of the Main Data, the MQE values alone can

already achieve AUROC very close to the CDC method reported by Liu et al.[2]. This

result provides evidence that SOM-MQE can provide valuable information for Anomaly

Detection in the medical domain.

The predictor module showed to be competent in predicting the weight of patients.

More importantly, it produced a clear level of difference between normal and abnormal

data points in how much the predicted weight differs from the actual weight entered,

although this difference is mainly observed in the Main Data. It is likely that some data

points in the Auto Data with big differences in predicted and entered weight are, in fact,

erroneous but were not caught by the people who entered them. Therefore, they were not

edited and subsequently labeled as normal data.

The hyperparameters were determined by trial and error using the Main Data, which

were then applied to the Auto Data with no additional hyperparameter tuning. This has

likely contributed to the relatively low performance of Auto Data.
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Limitations

This study is limited to the quality of the annotations. In the case of the Main Data,

although data points were manually annotated by domain experts, the annotation process

is still susceptible to human errors and the subjectivity of the annotators. The Fleiss’

Kappa of 0.644 that Liu et al.[2] reported for inter-rater agreement of the Main Data

indicates that annotators do not completely agree with each other. Furthermore, the

proposed real-time simulation procedure imposes a requirement for at least four correct

preceding weight entries. This requirement can also be compromised by incorrectly labeled

data points, especially in the case of Auto Data. Additionally, the two datasets may not

be enough to evaluate the effectiveness of the proposed approach and evaluation on more

datasets is desired. The result of this study may potentially be overly optimistic due to

the lack of a validation set for hyperparameter tuning and model checkpointing.
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Chapter 7

Conclusion

This study proposed a two-module method utilizing bi-LSTM and Attention Mechanism

for the prospective detection of anomalous weight entries in electronic health records. The

proposed approach, consisting of a predictor and a classifier module, showed a clear advan-

tage in distinguishing between normal and anomalous data points compared to previous

methods.

The predictor module’s performance, indicated by the low value of MSE, shows the

feasibility of the proposed method. Moreover, the difference between the predicted weight

and the actual weight entered was much bigger for abnormal data points, further indicating

that the predictor module can provide valuable information for distinguishing erroneous

weight entries.

The classifier module’s performance was evaluated using several metrics, with a notable

AUROC of 0.986 and a precision of 9.28% in Main Data, both superior to the previous

methods. The proposed method hence provides a promising solution to the critical problem

of detecting anomalous weight records in real-time in a healthcare setting.

The inferior performance in Auto Data compared to Main Data suggests that properly

annotated datasets may still be critical in anomaly detection in irregular time series. Using
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the expert-annotated Main Data, the proposed approach showed significantly better per-

formance. This performance difference is also observed in other Machine Learning-based

methods.

This study contributes to the research on utilizing machine learning for error detection

in healthcare data. For future work, this method can be applied to and evaluated on other

types of healthcare data, and additional ways to improve its performance can be explored.

Designs other than bi-LSTM can be experimented with. Including other features, such

as height, can enable better performance. Incorporating a validation set will also allow a

more accurate evaluation of the proposed approach. Furthermore, integrating this method

with electronic health record systems can further assist healthcare providers in ensuring

data quality and patient safety.
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Appendix A

Example of Growth Chart with

Model Prediction

A.1 False Positive
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Figure A.1: False Positive Example 1

Figure A.2: False Positive Example 2
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Figure A.3: False Positive Example 3

Figure A.4: False Positive Example 4
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Figure A.5: False Positive Example 5

Figure A.6: False Positive Example 6
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Figure A.7: False Positive Example 7

Figure A.8: False Positive Example 8
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Figure A.9: False Positive Example 9

Figure A.10: False Positive Example 10
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Figure A.11: False Positive Example 11

Figure A.12: False Positive Example 12
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Figure A.13: False Positive Example 13

Figure A.14: False Positive Example 14
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Figure A.15: False Positive Example 15

Figure A.16: False Positive Example 16

54



Figure A.17: False Positive Example 17

Figure A.18: False Positive Example 18
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Figure A.19: False Positive Example 19

Figure A.20: False Positive Example 20
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A.2 False Negative
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Figure A.21: False Negative Example 1

Figure A.22: False Negative Example 2
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Figure A.23: False Negative Example 3

Figure A.24: False Negative Example 4
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Figure A.25: False Negative Example 5

Figure A.26: False Negative Example 6
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Figure A.27: False Negative Example 7

Figure A.28: False Negative Example 8
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Figure A.29: False Negative Example 9

Figure A.30: False Negative Example 10
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Figure A.31: False Negative Example 11

Figure A.32: False Negative Example 12
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Figure A.33: False Negative Example 13

Figure A.34: False Negative Example 14
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Figure A.35: False Negative Example 15

Figure A.36: False Negative Example 16

65



Figure A.37: False Negative Example 17

Figure A.38: False Negative Example 18
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Figure A.39: False Negative Example 19

Figure A.40: False Negative Example 20
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A.3 True Positive
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Figure A.41: True Positive Example 1

Figure A.42: True Positive Example 2
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Figure A.43: True Positive Example 3

Figure A.44: True Positive Example 4
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Figure A.45: True Positive Example 5

Figure A.46: True Positive Example 6
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Figure A.47: True Positive Example 7

Figure A.48: True Positive Example 8
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Figure A.49: True Positive Example 9

Figure A.50: True Positive Example 10
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Figure A.51: True Positive Example 11

Figure A.52: True Positive Example 12
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Figure A.53: True Positive Example 13

Figure A.54: True Positive Example 14
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Figure A.55: True Positive Example 15

Figure A.56: True Positive Example 16
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Figure A.57: True Positive Example 17

Figure A.58: True Positive Example 18
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Figure A.59: True Positive Example 19

Figure A.60: True Positive Example 20
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A.4 True Negative
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Figure A.61: True Negative Example 1

Figure A.62: True Negative Example 2
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Figure A.63: True Negative Example 3

Figure A.64: True Negative Example 4
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Figure A.65: True Negative Example 5

Figure A.66: True Negative Example 6
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Figure A.67: True Negative Example 7

Figure A.68: True Negative Example 8
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Figure A.69: True Negative Example 9

Figure A.70: True Negative Example 10
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Figure A.71: True Negative Example 11

Figure A.72: True Negative Example 12
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Figure A.73: True Negative Example 13

Figure A.74: True Negative Example 14
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Figure A.75: True Negative Example 15

Figure A.76: True Negative Example 16
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Figure A.77: True Negative Example 17

Figure A.78: True Negative Example 18

88



Figure A.79: True Negative Example 19

Figure A.80: True Negative Example 20
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