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Abstract 

Harmful algae blooms in surface waters are a global environmental concern and threaten both 

human and environmental health. By outcompeting aquatic diversity, causing dissolved oxygen 

levels in surface waters to fall, and secreting toxins, algae blooms stress water treatment 

infrastructure and result in large economic losses. To control and manage the impact of harmful 

algae blooms, timely detection and monitoring is critical. However, current monitoring methods, 

such as permanent monitoring stations or water sampling, can be very costly or time-intensive, 

and require direct water access. The methods become dangerous or impractical in areas 

surrounded by cliffs or wetlands.  

In this study, a flexible, efficient, and cost-effective approach for monitoring surface water 

quality was developed by integrating water quality sensors and unmanned aerial vehicles (UAV). 

The integration platform was designed, constructed, and deployed through the summer of 2023 

to monitor chlorophyll, phycocyanin, and turbidity in William H. Harsha Lake of Clermont 

County, Ohio. The water quality parameters, used as an indicator of algae blooms, were then 

correlated to reflectance from Landsat 8 and 9 and Sentinel 2 satellites through single and 

multiple linear regressions. Multiple linear regressions using reflectance from Sentinel 2 

satellites yielded the highest correlations between reflectance and water quality, with R2 values 

of 0.70, 0.86, and 0.97 for chlorophyll, phycocyanin and turbidity, respectively. From the 

regressions, visible, near infrared, and red-edge bands were identified as useful for algae 

detection, and commercially available multispectral cameras capable of integration with UAVs 

were identified for future improvement of the UAV monitoring platform.  
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1. Introduction 

Harmful algae blooms (HABs) in surface waters are a global concern, threatening both human 

and environmental health. Often caused by overfertilization of waters with nutrients from human 

activities, algae blooms and cyanobacteria (also known as blue-green algae) can outcompete 

other aquatic diversity and cause oxygen levels in water to fall (Vincent 2018). Freshwater 

cyanobacteria can also secrete hepatoxins, lipopolysaccharide, and neurotoxins, all of which are 

dangerous to human health (Dittmann et al. 2013). People can be exposed to these toxins through 

ingestion of contaminated water, skin contact, consumption of contaminated seafood, or even 

inhalation of aerosolized toxins while swimming or boating. Consequences can be minor, such as 

skin or eye irritation, but exposure can also cause serious neurological or muscular conditions 

and even death (Igwaran et al. 2024). Beyond causing human health concerns, these toxins can 

also result in fish kills, and death or illness in other animals or livestock (Carmichael and Boyer 

2016).  

Because of these health risks, harmful algae blooms can have detrimental impacts on the safety 

and availability of drinking water, particularly from freshwater reservoirs. For example, 2014 

algae blooms in Lake Erie caused tap water to be unusable through Toledo, Ohio for two days 

(Watson et al. 2016). Disruptions to drinking water supplies and other activities have huge 

economic penalties, with annual costs ranging from $150 million to $6.5 billion in freshwater 

systems (Kudela et al. 2015). Furthermore, the incidence of HABs is increasing in frequency, 

magnitude, and duration globally, due to increases in nutrient pollution, rising atmospheric CO2 

concentrations and temperatures, and changing patterns of precipitation  (Huisman et al. 2018; 

Smucker et al. 2021).   
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In order to control the impact of harmful algae blooms, prevention, control, and mitigation 

strategies are often employed (Corcoran and Hunt 2021). Prevention strategies generally seek to 

reduce the incidence and severity of blooms, though actions such as nutrient reduction and 

management. Control techniques attempt to suppress the severity, extent, and duration of blooms, 

such as through harvest or algicidal bacteria. Finally, mitigation strategies seek to reduce the 

impact of blooms, and include efforts such as drinking water treatment or lake closures. 

Regardless of which control strategy is employed, timely detection of the HABs is always 

important, whether to identify action thresholds or evaluate the strategy effectiveness.  

To detect HABs in surface water, permanent monitoring stations equipped to measure 

chlorophyll or phycocyanin concentration as proxies for algae biomass are often used. However, 

establishing and maintaining the stations is a costly and labor-intensive endeavor. Chlorophyll 

data can also be gathered in the field using sensors or by collecting water samples, but these 

methods are time consuming and require direct access to the water. Both methods become 

dangerous and impractical in areas surrounded by cliffs or wetlands.  

To decrease the burden of collecting water quality data while still understanding algae dynamics 

over large areas, remote sensing is often employed. Remote sensing models can be used to derive 

chlorophyll concentrations, as the pigment has a reflectance peak in the near-infrared region of 

the visible spectrum. Satellites with higher spectral resolution could also be used to identify the 

narrow 620 nm peak associated with phycocyanin, the pigment in cyanobacteria (Keith et al. 

2018). However, the convenience of remote sensing models comes at the expense of high spatial 

and temporal resolutions, which are important to accurately map algae blooms that can change 

rapidly in response to varying environmental conditions (Egerton et al. 2014). In addition, 
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building remote sensing models still requires direct measurement of water quality, which can 

involve colossal efforts for data collection (Chaffin et al. 2021). 

These challenges in data collection and timely monitoring of algae blooms can be addressed by 

using Unmanned Aerial Vehicles (UAV). Here, a flexible, efficient, and cost-effective approach 

for monitoring surface water quality is developed using UAV and a water quality sensor. The 

platform is deployed to collect chlorophyll, phycocyanin, and turbidity data during six flights at 

Lake Harsha, Ohio. The collected data, supplemented with additional boat-collected data, is used 

in combination with Landsat 8 and 9 and Sentinel 2 satellite imagery to identify algorithms 

capable of expanding HAB monitoring over larger areas and time periods within the same body 

of water. Finally, the spectral bands identified as useful for monitoring algae blooms at Lake 

Harsha are used to evaluate multispectral cameras with the potential for UAV integration that 

could further improve accessibility, accuracy, and convenience of algae bloom monitoring in 

surface waters.  

2. Methods 

2.1 Drone Sonde Integration 

To begin the design of the drone-sonde integration platform, the water quality sensor payload 

was selected. The water quality sensor needed to have the capability to monitor algae 

concentrations in real time, locally store data, contain a power source, and have a minimal 

weight. To meet these criteria, a YSI EXO 3 Sonde was selected and used for all water quality 

data collection in the study. The YSI EXO 3 Sonde (hereby referred to as sonde) was customized 

to include a total algae sensor, turbidity sensor, and combined temperature and conductivity 

sensor. The sonde contains an internal power supply, and was configured to record water quality 
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data every 500 milliseconds during sampling. The sonde was also put into a rapid system-wide 

averaging mode during sampling, which is the manufacturer’s setting to be used in applications 

where the sonde is moving.  

The total algae sensor provides the capability to simultaneously measure chlorophyll, present in 

almost all algae, and phycocyanin, which is present in blue-green algae. Both parameters are 

measured using fluorescence, by emitting a blue light at 470 nm to excite chlorophyll, and a 

second orange bean at 590 nm to excite phycocyanin. The excited compounds then emit light at a 

higher wavelength than the initial excitation beam, which is filtered and detected by the probe. 

Separate datasets for chlorophyll and phycocyanin in relative fluorescence units (RFU) are 

reported, which can be correlated to the concentration of the respective pigments if necessary. 

Fluorescence signals from the measurement of chlorophyll and phycocyanin have also been 

shown to significantly correlate to algae density and biovolume and are often used alongside 

turbidity for the development of remote sensing models of algae blooms (Canfield Jr. et al. 2019; 

Johansen et al. 2019; Izydorczyk et al. 2005). However, in this study RFU measurements are 

used directly, which is strongly recommended by the manufacturer. The temperature and 

conductivity sensor is used to temperature-correct RFU readings by the algae sensor, and also 

provides a useful indicator of if the sensor is submerged in water. The turbidity sensor used also 

relies on light, emitting an 860nm beam with an LED. This light source is then scattered by 

particles, including algae, in the water, and a photodetector measures the light scattering at a 90˚ 

angle in accordance with ISO7027. From this measurement, turbidity is recorded in Formazin 

Nephelometric Unit (FNU). 

The second critical component of the drone-sonde integration is the drone itself. For this study, 

an existing drone created by the UAV MASTER Lab at the University of Cincinnati was utilized. 



5 
 

The drone features an integrated geographic positioning system, 1.4-meter diameter, 6 motors 

with 24-inch propellers, a 20-minute maximum flight time, and a 44-pound construction weight. 

This drone was selected because of its large size, which allows the drone to safely manage the 

sensor as a slug load while remaining stable in the air. The entire system, including the platform, 

sensor, and drone, was constrained to a maximum weight of 55 lbs. to be classified as a small 

UAV by the Federal Aviation Administration.  

The third component of the sonde-drone integration is a custom designed and built platform to 

connect the two. The solution needed to provide consistent underwater submergence depth, as 

water quality parameters can vary greatly with water column depth, but drones generally 

fluctuate in altitude by a meter or more even when attempting altitude locks. The solution also 

needed to have the ability to be flown though air and water, provide protection against in-water 

obstacles invisible to the pilot on land, and easy access to the sonde for cleaning a data 

collection. In addition, the sonde has sensitive internal electronics and weight-bearing 

connections or clams can warp the casing and risk water exposure, so the manufacturer suggests 

that no direct connections are made to the sonde.  

 

 

 

 

 

Figure 1: I: YSI Exo 3 Sonde. II: Sonde-

Drone Integration Platform, including 

(A) foam boards, (B) sonde containment, 

and (C) stabilizer. 

I 
A 

B 

C 

II 
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The initial platform design is shown in Figure 1, and is created using foam boards, PVC pipe, 

stainless steel bolts, and 3D-printed PLA, all low-cost and readily available materials. The 

closed-cell ethylene vinyl acetate (EVA) foam boards provide flotation, and completely support 

the weight of the sonde in the water. This decreases load for the drone, while ensuring that the 

sonde maintains a consistent submergence depth. The sonde itself is contained within the 4-inch 

diameter PVC pipe, which has a series of holes drilled to allow flow to the sensor. Stop bolts are 

placed at the top and bottom of the pipe, keeping the sonde secure and allowing enhanced flow at 

the bottom, without containing any direct attachment to the sonde. In addition, the top stop bolt 

can be easily removed to access the sonde for calibration and maintenance. Most of the weight of 

the sensor is carried below the board to increase the stability of the platform in the water, and the 

PVC pipe is able to protect the sensor against any invisible underwater obstacles. The foam 

boards and PVC pipe are secured using a custom printed black stabilizer piece, which also holds 

the containment at an angle to minimize drag and any spinning of the platform. The entire 

platform can be tied to the drone using paracord, connecting to the top stop bolt or U-bolt. The 

platform was modeled in Autodesk Inventor and evaluated under simulated stress-testing, 

fabricated at the University of Cincinnati 1819 Makerspace, tested in pool float tests, tested with 

a weighted sandbag in place of the sensor, and flight tested in an airfield before deployment for 

fieldwork above water.  

2.2 Satellite Data Collection 

To allow for the creation of remote sensing models based off water quality data collected with 

the drone-sonde integration, Landsat and Sentinel satellites were selected as image sources. Both 

Landsat and Sentinel satellites are currently in orbit and collecting images, with Sentinel 2A and 

2B satellites providing a combined revisit time of just 5 days, and Landsat 8 and 9 offset in orbit  
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Table 1: Spectral bands from Landsat 8 and 9, using the Operational Land Imager 2 (OLI-2) and 

Thermal Infrared Sensor 2 (TIRS-2) instruments. 

Landsat 8 & 9 Spectral Specifications 
Band # Name Center Wavelength (nm) Range (nm) Resolution (m) 

B1 Coastal/ Aerosol 443 433-453 30 
B2 Blue 482 450-515 30 
B3 Green 562 525-600 30 
B4 Red 655 630-680 30 
B5 NIR 865 845-885 30 
B6 SWIR 1 1610 1560-1660 30 
B7 SWRI 2 2200 2100-2300 30 
B8 Panchromatic 590 500-680 15 
B9 Cirrus 1375 1360-1390 30 

B10 Thermal 10800 10300-11300 100 
B11 Thermal 12000 11500-12500 100 

 

Table 2: Spectral bands from Sentinel 2, using the MulitSpectral Instrument (MSI) instruments.  

Sentinel 2 A & B Spectral Specifications 
Band # Name Center Wavelength (nm) Range (nm) Resolution (m) 

B1 Aerosol 443 423-463 60 
B2 Blue 493 428-558 10 
B3 Green 560 525-595 10 
B4 Red 665 635-695 10 
B5 Red Edge 1 704 690-718 20 
B6 Red Edge 2 740 726-754 20 
B7 Red Edge 3 783 764-802 20 
B8 NIR 833 728-938 10 

B8A NIR narrow 864 843-885 20 
B9 Water Vapour 945 926-964 60 

B10 Cirrus 1375 1346-1404 60 
B11 SWIR 1 1610 1520-1700 20 
B12 SWIR 2 2190 2011-2369 20 

 

to provide a combined revisit time of 8 days. As seen in the specifications in Tables 1 and 2, 

Landsat generally has a lower spatial resolution of 30 meters when compared to Sentinel 2’s 10-
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meter resolution. While Landsat satellites include two thermal bands, Sentinel Satellites include 

a narrow near infrared band and three red edge bands with centers ranging from 704nm to 783 

nm. 

Satellite pass times for the field collection site were predicted using the European space agency 

(ESA) acquisition calendar for Sentinel 2A and B, and United States Geological Survey (USGS) 

Landsat acquisition tool for Landsat 8 and 9. Once acquired, satellite imagery from all sources 

was accessed through the Google Earth Engine Data Catalog, and also visualized directly in 

Google Earth Engine (GEE). Level 2A orthorectified and atmospherically corrected surface 

reflectance from the ESA were used for all Sentinel 2 images, and comparably processed Level 

2, collection 2, tier 1 atmospherically corrected surface reflectance from the USGS was used for 

Landsat imagery.  

2.3 Water Quality Data Collection 

To test the drone-sonde integration platform for collection of water quality in surface waters, 5 

field tests were conducted from May to October of 2023. Lake Harsha, of Clermont County, 

Ohio, was selected for field studies. Lake Harsha is local to Cincinnati, and available for research 

activities through the Army Corp of Engineers. Lake Harsha is also known to be plagued by 

recurring harmful algae blooms. Toxic algae blooms caused recreational public health advisories 

at the main beach on the western half of the lake twice in 2016, once in 2020, and even caused a 

41-day long advisory in 2021. At the campground beach on the eastern half of the lake, there 

were three advisories in 2016, four advisories in 2021, and one in 2022. Lake Harsha is also a 

popular recreation site and supplies six million gallons of drinking water per day to citizens of 

Clermont County.  
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Sites were selected around the lake at areas with clear, flat surfaces conducive to safe drone take-

off and landing. For each data collection instance using a drone, personnel included the pilot, 

ground control, sensor manager, and water safety lookout. When collecting data by drone, the 

drone took off, flew over the water, dipped the platform for 10-15 seconds while remaining 

stationary, and then returned to the shore. To supplement data collected by drone, data was also 

collected by kayaking in two-person teams, one managing the sensor and a second acting as a 

water safety lookout. The integration system was still used for data collection by kayak, with the 

platform towed behind the boat. All sampling dates were organized to fall within 48 hours of a 

Landsat or Sentinel satellite passing over the area, with priority given to dates where both 

satellites passed over the lake.  

2.4 Data Preprocessing 

From the fieldwork, two distinct datasets were collected. The first is water quality, collected from 

the sonde. The collected data includes measurements of chlorophyll and phycocyanin 

concentrations in RFU, turbidity in the Formazin Nephelometric Unit (FNU), temperature, and 

conductivity. Each measurement is also correlated with a timestamp, and a general location note 

for the site of sampling. This data was accessed via YSI Kor software and exported as a csv file. 

Specific locations of the sampling are stored separately, as the sonde itself does not contain an 

internal GPS unit. When using a drone, time, latitude, and longitude are recorded by the drone’s 

GPS unit and accessed through the drone autopilot log as a .gpx file. When data was collected by 

kayak, cell phones were used to track location, which were be accessed by exporting .gpx files 

from the phones.  

In order to analyze the satellite reflectance at the points with collected water quality, the water 

quality data and position data first had to be correlated. This was done for each date of sampling, 
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to facilitate later reflectance collection from satellite imagery. Python was chosen as the core 

programming language to achieve this correlation, because of its capability to manage and 

process large datasets using the pandas library. To begin, water quality data was transferred into 

python from the sonde .csv file. While the sonde constantly records readings, only those recorded 

when the sonde was submerged in water are of interest. The conductivity parameter is useful to 

identify this, as there is a sharp cutoff when the sonde is in air versus in water. Therefore, the 

water quality datasets were first trimmed to include only points with a conductivity above 100 

µS/cm. In addition, water quality readings are recorded every 500 ms, yielding two readings per 

second. In contrast, location datapoints are recorded to a precision of whole seconds. Therefore, 

to avoid duplicated records water quality readings were averaged within the same second. At this 

point, for each date of sampling there was a pandas dataframe including water quality parameters 

and associated time.  

To correlate to positions, .gpx files of timestamped locations were read into python dataframes 

using the convenient gpx_converter package for python. For location data from both the drone 

and kayak, the timestamps were adjusted to be in Eastern Daylight Time. In the case of the drone 

position data collected on September 11th, conductivity and stationary positions did not initially 

align, as seen in Figure 2. This is likely because the sonde adjusts its time to the laptop it was 

deployed with, while the drone time stamp is generated based off the last system reboot and 

connected to a different computer. In this case, the data was manually analyzed and aligned, 

using a 2.75-minute time offset on the drone timestamp.  

Using the time-corrected position datasets and timestamped water quality datasets, a merge 

function with an inner join was performed to find save only the rows with records from each 

dataset. At this point, each sampling date had a position-quality dataframe containing datetime, 
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latitude, longitude, general site name, chlorophyll, conductivity, phycocyanin, turbidity, and 

temperature. Latitude and longitude points were exported into a shapefile for analysis of satellite 

imagery. 

 

Figure 2: Quality and Position data alignment. Blue points correspond to water conductivity 

readings and indicate time frames when the sonde is submerged. Horizontal segments of the pink 

latitude points indicate that the drone was hovering at a stationary point while dipping the 

sonde. The top graph shows mismatched data before manual alignment, while the bottom shows 

time-offset position data used for continued analysis.  
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At this point, reflectance was gathered using google earth engine, which is better suited to spatial 

image analysis. Shapefiles of collected data for each date were imported as assets into the 

project, and then used as the input for both Landsat and Sentinel analysis. Satellite images from 

the google earth engine catalog were searched for images of Lake Harsha withing 48 hours of the 

sample date, loaded, and masked for cloud cover. From these images, reflectance values for all 

available bands at each water sampling point were extracted and exported as a .csv file back into 

python. 

The reflectance and position-quality datasets were then merged using both the latitude and 

longitude columns as keys, including only the rows contained in both data frames. Some data is 

lost at this point, due to cloud cover. After the merge, there are cases where identical reflectance 

values for all bands are associated with multiple water quality values, which occurs when water 

quality readings were collected within a pixel of the satellite imagery. To achieve a one-to-one 

correlation of the reflectance matrix to water quality, any rows with identical values for every 

reflectance band were combined by averaging the water quality readings for those rows.  

At the end of pre-processing there was a quality-reflectance dataset for the May 4th sampling 

using Sentinel reflectance, a dataset from July 27th using Landsat reflectance, and two datasets 

each for September 2nd, September 11th, and October 10th using either Sentinel and Landsat 

reflectance. The coastal/ aerosol, cirrus, water vapor, and thermal targeted bands were not 

considered in analysis for either data set.  

2.5 Single Linear Regressions 

To begin regressions correlating reflectance to water quality, data across all dates was combined 

for the Sentinel derived reflectance sets, and separately for Landsat derived reflectance sets. 
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Then, indexes, or algebraic combinations of reflectance bands, were calculated for each row of 

data with associated water quality. Indexes were calculated with three general formulae for 

independent combination of bands: band ratios (equation 1), normalized differences (equation 2) 

and additive combinations (equation 3). 

𝑏𝑎𝑛𝑑 𝐴

𝑏𝑎𝑛𝑑 𝐵
                                                                      (1) 

𝑏𝑎𝑛𝑑 𝐴 − 𝑏𝑎𝑛𝑑 𝐵

𝑏𝑎𝑛𝑑 𝐴 + 𝑏𝑎𝑛𝑑 𝐵
                                                             (2) 

𝑏𝑎𝑛𝑑 𝐴

𝑏𝑎𝑛𝑑 𝐵 + 𝑏𝑎𝑛𝑑 𝐶
                                                            (3) 

For the Landsat datasets, this resulted in 6 reflectance bands, 15 reflectance band ratios, 15 

normalized differences and 47 additive combinations. For the Sentinel datasets, this resulted in 

10 reflectance bands, 45 reflectance band ratios, 45 normalized differences, and 362 additive 

combinations.  

For each water quality parameter of chlorophyll, phycocyanin, and turbidity, a linear regression 

was run using every band using the Scipy.stats.linregress package. For each regression, a slope, 

intercept, R2 value, root mean squared error (RSME), and p-value were recorded, which are all 

direct outputs from the regression package. The p-value is that of a hypothesis test whose null 

hypothesis is that the slope is 0, using a Wald Test with a t-distribution of the test statistic.  

The results were then ranked by R2 value for each water quality parameter to identify the index 

best correlated to that water quality parameter, and the regression using the best index visualized.  
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2.6 Multiple Linear Regressions 

To test more complex models, multiple linear regressions using more than one index 

concurrently were also evaluated. In this case, overfitting was a concern, so data was split into 

testing and training sets, with 30% used for the testing of all data. In addition, highly correlated 

indexes used within the same model are undesirable, so multilinear regressions were evaluated 

for each water quality parameter with four separate groups of feature inputs: reflectance bands, 

band ratios, normalized differences, and additive combinations.  

To minimize overfitting and the number of features used within each model, an ElasticNet 

regression strategy from the sklearn package was used. ElasticNet regression is a combination of 

ridge and lasso regressions, which are methods of multiple linear regressions that act to 

regularize models and decrease variance. Ridge regression seeks to minimize the sum of squared 

residuals and some lambda multiplied by the slope squared. Lasso regression is extremely 

similar, but uses an added penalty of a lambda multiplied by the absolute value of the slope 

instead of the slope squared. ElasticNet regression is able to identify and reduce the number of 

parameters by including both penalties and is useful for situations where there may be correlated 

parameters. For each model, the parameters for the ElasticNet regression were tuned using a grid 

search with l1 ratios of 0.1, 0.5, 0.8, 0.9, 0.95, 0.99, and 1, and alphas of 0.05, 0.1, 0.15, 0.3, 0.5, 

and 0.7.  

Once trained, a R2 value and root mean squared error (RSME) value from the predicted testing 

and training data and compared. The testing and training data was then recombined to calculate 

overall metrics and fit a regression line through the predicted and actual water quality parameters 

before visualizing. This yielded 4 multilinear models for each water quality parameter for each 

satellite reflectance source, for 24 models total.  
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3. Results and Discussion 

3.1 Drone Sonde Integration 

The drone platform designed and built in this study was able to successfully collect water quality 

data on six different flights and three locations at Lake Harsha, seen in Figure 3. On each flight, 

the drone took off from the shore, flew over obstacles to the water, dipped the sensor into the 

water while hovering for 10-15 seconds, repeated dips at 5-8 locations, and returned to the 

takeoff location. The platform supported the weight of the sonde while in the water, ensuring a 

consistent submergence at all sampling points. The platform also has the added benefit of 

increasing visibility for the pilot, as the paracord and sensor are difficult to see.  

When compared to sampling by boat, sampling by 

drone does require a larger team and trained pilots to 

fly. However, the sampling takes less time than by 

boat, is less strenuous, and allows the sampling to be 

more flexible in location. The integration platform 

itself is also extremely affordable, costing less than 

$75 in materials. It is also easy to construct with low 

skill and common tools, the most advanced of which 

being a 3D printer which are found at many 

universities and public libraries. Using this integration 

platform could allow water quality sampling in hard-to-reach areas such as water bodies 

surrounded by cliffs or wetlands and allow a greater understanding of algae blooms or other 

water quality parameters to be developed in these areas. In addition, the YSI sonde central to the 

Figure 3: Drone-sonde integration in use 

at Lake Harsha 
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integration has a flexible system with replaceable sensors, which could allow monitoring of 

water quality parameters beyond algae and turbidity.  

However, the platform could still be improved. This integration lacked a GPS sensor integrated 

into the water quality sensor itself, which resulted in extensive preprocessing required to map 

water quality to specific locations. Matching timestamps from separate water quality and 

location datasets was used to do so, but undoubtedly introduced error into analysis, as the data 

sources use different time systems and sources of “truth”. This was exemplified in the data 

collected by drone on September 11th, where the water quality data and location data were clearly 

mismatched and had to be offset by over 2 minutes. In addition, there is some position offset 

between the drone and the platform, as they are not always perfectly vertically aligned. When 

collecting by kayak, this error is likely even greater, as the kayak and associated GPS is 

consistently ahead of the sensor platform. The location accuracy could be improved by adding a 

GPS directly onto the platform, and by recording the timestamp from both data sources 

instantaneously at the start of sampling. Alternatively, if a multispectral camera was attached to 

the drone and imaged at the same time as the water quality, the position of the platform could be 

derived from the image knowing the exact location and altitude of the drone. 

While the drone was able to successfully dip the platform to collect data, it was not able to tow 

the platform through the water. Although the platform sits level in the water while still, the nose 

begins to dip when in motion, greatly increasing drag and stress on the drone. This severely 

limits the amount of data that the drone was able to collect, and prevents the use of the platform 

in rivers with strong currents. To attempt to address this problem, a second iteration of the design 

was completed and constructed with a center of mass further back on the platform, and the 

connection point was adjusted to attach to the front bottom edge of the platform. While this 
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improved the performance, the drag was still too large for the drone to safely manage. A design 

that allows successful towing of the platform would need to be extremely smooth, as the risk is 

very high for testing the drone above water. In future designs, the platform could be made longer, 

with a sloped bottom to prevent the nose from submerging. In addition, drag could also be 

reduced by optimizing the angle, hole pattern, and diameter of the pipe used to contain the 

sensor. While the pipe design and hole pattern were recommended by YSI for dock deployments, 

a sensitivity analysis of the pipe color and flow patterns could also be conducted experimentally 

to increase confidence in the accuracy of collected water quality. 

3.2 Water Quality Data 

From the combined drone and kayak sampling, chlorophyll, phycocyanin, and turbidity data was 

collected across Lake Harsha over five dates. Sampling sites were distributed across the lake and 

included areas near the dam on the west side of the lake as well as the eastern half. Data was 

preprocessed using both Sentinel and Landsat imagery for each date to acquire a correlated water 

quality dataset, resulting in slightly different datasets each satellite source due to cloud cover and 

image availability.  

The sample spatial distributions are visualized in Figure 4. For the May 4th sampling, shown in 

dark orange in Figure 4, only Sentinel imagery was available. For the second sampling on July 

27th, both satellites took images, but those from Sentinel were completely obscured by clouds for 

all sampling locations and yielded no usable data. Sampling completed on September 2nd had 

both Sentinel and Landsat imagery available, although cloud cover in the Landsat imagery 

obscured some sampling points at the swim beach and Reisinger. For the final two sampling 

dates by drone, both satellite sources were available, but much smaller quantities of data were 

collected due to the dipping technique used by the drone.  
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Figure 4: Water quality-reflectance dataset locations by date, location, and satellite source. 

As algae blooms can develop rapidly over time, the time difference between sampling and the 

satellite image capture was examined and is presented in Table 3. Images were only considered if 

they were within 2 days of the water quality sampling, and both satellites fly over Lake Harsha in 

the morning or just after noon. As sampling was also conducted in the morning, many datapoints 

were collected within four hours of sampling if on the same day. However, other data was 

collected as far as 26 hours after the water quality sampling. Not including the July 27 th sampling 

with no usable data, the time lag between the Sentinel sampling and satellite image capture was 

an average of 7.68 hours, while that of Landsat was 12.54 hours, much larger.  
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Table 3: Time difference between water quality sampling and satellite image capture. 

 

Overall, 848 datapoints with water quality and reflectance across the sampling dates were 

collected for the Sentinel dataset, and 3108 datapoints were collected using Landsat reflectance 

values. The distribution of each water quality parameter is visualized in stacked histograms in 

   Sentinel 2A or 2B Landsat 8 or 9 

Method Location 
Sample 

Date Time 
Image 

Capture 
Difference 

(hours) 
Image 

Capture 
Difference 

(hours) 

Kayak 

Reisinger 
5/4/23 
11:30 5/4/23 

9:27 

2 N/A N/A 

Dam 
5/4/23 
13:30 

4 N/A N/A 

Reisinger 
7/27/23 

9:00 
7/28/23 

9:20 (full 
clouds) 

24.25 

7/26/23 
12:10 

20.75 

Campground 
7/27/23 
10:00 

23.25 21.75 

Dam 
7/27/23 
12:15 

21 24 

Reisinger 
9/2/23 
10:00 

9/1/23 
9:24 

0.5 

9/3/23 12:17 

26.25 

Campground 
9/2/23 
10:45 

1.25 25.5 

Dam 
9/2/23 
13:30 

4 22.75 

Swim Beach 
9/2/23 
14:00 

4.5 22.25 

Drone 

Reisinger 
9/11/23 
10:00 

9/11/23 
9:31 

0.5 

9/11/23 
12:17 

2.25 

Campground 
9/11/23 
11:15 

1.75 1 

Dam 
9/11/23 
12:30 

3 0.25 

Reisinger 
10/5/23 
11:00 

10/6/23 
9:25 

22.5 

10/5/23 
12:17 

1.25 

Campground 
10/5/23 
10:00 

23.5 2.25 

Dam 
10/5/23 

8:45 
24.75 3.5 
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Figure 5. Measured chlorophyll RFU had the most normal distribution, and ranged from 0.75 

RFU to 11.33 RFU for Sentinel and from 1.23 RFU to 13.12 RFU for Landsat. Phycocyanin has 

multiple distinct peaks for both datasets, and ranged from 0.01 RFU to 4.375 for Sentinel and 

from 1.61 to 7.26 for Landsat. The distinct points observed in the phycocyanin and turbidity 

datasets are largely due to the different locations sampled even on the same day, which have 

different water quality. Turbidity data ranged from 3.74 FNU to 28.7 FNU for the Sentinel 

dataset, and from 3.99 FNU to 27.05 FNU for the Landsat dataset. Across all the distributions, 

data collected on the first three sampling dates makes up the majority of the points, as a kayak 

was used with continuous collection.  

 

 

Figure 5: Distribution of collected chlorophyll, phycocyanin, and turbidity data. 
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3.3 Remote Sensing of Water Quality 

To examine the potential indexes or bands most useful for algae bloom detection, single linear 

regressions were first utilized on all the bands and band combinations. The top five best 

performing indexes, ranked by their R2 and RSME vales, are tabulated for each model in Figure 

6. Every model identified in this top group had p-values much smaller than 0.0001, indicating 

that relationships between the indexes and water quality parameters are significant.  

When using the same satellite source, very similar bands or band combinations were most highly 

correlated to all three water quality parameters, as seen when examining the tabulated indexes in 

each column of Figure 6. This trend is supported logically, as cyanobacteria contain both 

phycocyanin and chlorophyll, so these two parameters should be highly correlated. Although 

turbidity can be from several factors, it too can be impacted by algae growth. In addition, highly 

turbid water due to erosion can indicate higher levels of nitrogen or phosphorus in the water, 

which fuel algae growth.  

In Landsat models, short wave infrared bands (SWIR) 1 and 2, as well as the near infrared band 

(NIR) were most highly correlated with chlorophyll, phycocyanin, and turbidity. The 

identification of the SWIR / NIR ratio align with the results of Rivani et al, who also found that a 

ratio of SWIR 1 to NIR bands were the most correlated to chlorophyll in Maninjau lake  (A. 

Rivani and P. Wicaksono 2018).  However, the coefficient of determination values for the 

chlorophyll and phycocyanin regressions were low for the Landsat models, at only 0.37 and 0.45, 

indicating that they are not highly reliable models. In addition, the visualization of the 

chlorophyll regression, in Figure 6a, shows a strong pattern of horizontal lines, which may 

indicate that other unidentified features could be important in identification of chlorophyll.  
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Sentinel models for chlorophyll and phycocyanin, visualized in Figure 6b and 6d, had improved 

coefficients of determination, at 0.53 and 0.78, respectively. In both cases, band combinations 

including the red and red edge 1 bands were most highly correlated, aligning with the work of 

Meng et al. monitoring chlorophyll in another inland reservoir  (Meng et al. 2022). This red to 

red edge band ratio is also commonly used to monitor coastal algae blooms, where it is also 

among the most effective remote monitoring techniques  (Rodríguez-Benito et al. 2020; 

Caballero et al. 2020; Jordan et al. 2021). 

Turbidity correlations from Landsat models, visualized in Figure 6e, relied on the same NIR, 

SWIR 1, and SWIR 2 bands used for the phycocyanin and chlorophyll regressions. This is 

unusual and could be a result of strong correlation between algae and turbidity and in the dataset. 

In contrast, the Sentinel regressions shown in Figure 6f utilized red, blue, and green bands found 

as common predictors of turbidity in literature  (Rodríguez-López et al. 2021). 

By using multiple linear regression and including more than one feature at a time, the model 

accuracy for all water quality parameters were able to be improved, as shown in figure 7. Linear 

regression combinations using either reflectance, band ratios, normalized differences, or additive 

combinations were considered for all water quality parameters, using an ElasticNet regression to 

minimize features. Data was also split into testing and training sets to evaluate potential 

overfitting. Although some models still use up to 100 features, the RSME and R2 values were 

still very similar between testing and training datasets, with differences of less than 0.09 RFU for 

RSME and less than 0.04 for R2 in for the largest model. This indicates that the models are not 

overfit, as overfit models would yield much better coefficients of determination and lower errors 

in training data than in test data.  
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Figure 6: Best performing indexes for prediction of water quality parameters with single linear 

regression.  
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For each multiple linear regression model, the features with the largest coefficients, which are 

the most important, were ranked. For the best Landsat chlorophyll model, visualized in Figure 

7a, which used additive band combinations to achieve an in R2 value of 0.43, the [red / (green + 

blue)] index had the highest coefficient, with [red / (blue + SWIR 2)] and [red / (green + NIR)] 

following as the next most important indexes in the model. This is interesting, because the [red / 

(green + blue)] index was not identified as a highly correlated ratio in the single linear 

regressions. However, ratios using red, green, and blue bands to identify chlorophyll do appear in 

literature  (Boucher et al. 2018). The most indexes with the highest coefficients for the multiple 

linear regression of phycocyanin, shown in Figure 7c, also included red, blue, and green bands, 

but in relation to the SWIR 1 and SWIR 2 bands identified in the linear regressions. Importantly, 

the indexes were different than those for the chlorophyll regressions, showing that more complex 

models with multiple features may be able to better differentiate between chlorophyll and 

phycocyanin.  

In Sentinel models, chlorophyll was also predicted with blue, green, and red bands, but also 

incorporated the important red edge band seen in single linear regressions, as well as short wave 

infrared bands. The best model in this case achieved an R2 of 0.70, shown in Figure 7b. Again, 

phycocyanin models used similar bands, also including red, green, blue, and red edge bands, but 

in different combinations. The best model for phycocyanin utilized additive combinations of 

bands and achieved an R2 of 0.86, visualized in Figure 7d. In this case, the improvement over the 

Landsat model is likely partially due to the difference in phycocyanin distributions input into the 

models. The Landsat model had a wider distribution of phycocyanin, but the model fails to 

correctly predict phycocyanin at higher RFU values, and underpredicts these high values. In  
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Figure 7: Best performing indexes for prediction of water quality parameters with multiple 

linear regression. Statistics are calculated using combined testing and training data after 

training. 
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contrast, the Sentinel dataset lacked these higher values above 6 RFU and still performs well in 

the low RFU range.  

In the Landsat turbidity model, the most effective multilinear regression also used additive 

combinations of bands, with an R2 of 0.85 visualized in Figure 7e. With multiple features, green, 

red, and NIR bands were among the most common in indexes with high coefficients, which 

aligns more with literature than the single linear regressions. For the Sentinel turbidity model, 

shown in Figure 7f, a model with only the reflectance bands was able to predict turbidity as well 

as models with additive combinations. Although the reflectance band model has a slightly higher 

error, it uses many times less features, making it more attractive. With single reflectance bands, 

red had by far the highest coefficient, and 6 of the 10 available features were used in the final 

model.  

In nearly every model tested, reflectance values derived from Sentinel outperform those from 

Landsat. There are several contributing factors that could be the case in these two datasets. The 

first is simply the spatial resolution of the two satellites. Most Landsat bands have a spatial 

resolution of 30 meters, while Sentinel bands have spatial resolutions of 10 and 20 meters. This 

means that water quality within the grids can be more closely matched to reflectance values, and 

better models can be created. Secondly, in this dataset there was a larger time lag between the 

water quality sampling and images captured by Landsat, as established in Table 3. As algae 

blooms can develop rapidly over days, and move due to wind or precipitation patterns, these time 

lags could be causing substantial differences in the water quality over time. However, the 

difference in model performance could also be due to the different bands available for use. 

Landsat does not have any red edge bands, which were among the most important in the Sentinel 
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models. This indicates that expanding the available spectral bands can lead to more complex 

models that are able to more accurately predict algae concentrations.  

In this study, only simple single and multiple linear regressions were used to predict algae 

blooms, although more advanced machine learning models are used elsewhere (C. Yang et al. 

2023). While machine learning models shine in scenarios with large amounts of data balanced 

over a wide range, the data collected in this study is relatively small in scale and range, and 

therefore not well suited to advance machine learning strategies. However, with larger amounts 

of data collection over longer time periods, machine learning techniques could be applied.  

It is worth noting that chlorophyll and phycocyanin are proxy pigments, and although they can 

be correlated to algae biomass or cell counts with field measurements at specific sites, they 

cannot be used to quantify toxicity (Bastien et al. 2011). Even among cyanobacteria, it is 

estimated that only 25% to 75% of cyanobacteria blooms are toxic (Bláha et al. 2009). There are 

also many different cyanobacterias, such as Microcystis, Schizotrix, and Cylindrospermopis, 

which produce different toxins that are dangerous at different levels of cyanobacterial biomass. 

So, while remote sensing models can be useful as early-warning systems to determine the 

location and extent of harmful algae blooms, water samples and more advanced analytical 

techniques are still needed to quantify toxicity (Stumpf et al. 2016). With this purpose in mind, 

simple, affordable models still retain value as useful tools for early-warning systems and can be 

more accessible to analysts and decision makers. The models presented here, especially using the 

Sentinel satellite, are accurate enough to be used as an early warning system to prompt more 

rigorous analytical testing as needed to make decisions to control the impact of algae blooms.  
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3.4 Application to Camera-based Drone Monitoring Systems  

One of the major difficulties with satellite-based monitoring is the low temporal and spatial 

resolutions. These limitations make it difficult to track the development of algae blooms over 

time, or collect timely data if needed urgently, such as by a water municipality managing a water 

intake. While the drone-sonde integration can increase accessibility to gather water quality data 

in hard-to-reach areas and then be used to develop satellite-based remote sensing models, it also 

has extremely high potential to be used with imagers carried by drones. If the drone carrying the 

sonde is also equipped with a multispectral or hyperspectral imager, images can be taken at the 

same time as water quality data collection, minimizing error due to time lags and low spatial 

resolution and eliminate lost data from cloud cover, without requiring larger teams of personnel 

than water quality data collection alone.  

Today, many commercially available multispectral cameras are available that can either be easily 

mounted to or are already integrated with UAVs, and are presented in Table 4. Many of these 

drones are intended for agricultural purposes, but include the red, red edge, and NIR bands that 

can be useful for monitoring algae blooms with the same indexes as those used by Sentinel 2 

satellites. However, these cameras have the added benefit of much higher spatial resolutions. For 

example, the Sentera 6X Multispectral Sensor has a 1-foot ground sampling distance when flown 

at a height of 200 ft. With this resolution, chlorophyll and phycocyanin concentrations could be 

mapped much more closely to the image reflectance.  

In addition, more advanced multispectral and hyperspectral cameras with a wider range of 

available reflectance bands are becoming available. Examples include the MapIR Kernal 2, 

currently under development, which will allow purchasers to select 6 specific 
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Table 4: Commercially available multispectral cameras with potential for UAV-based HAB 

monitoring. Spectral bands as listed as the band center x the full width at half maximum 

(FWHM). 

  
  Spectral Band Centers 

Camera 
# of 

Bands 
Blue Green Red Red Edge NIR 

Sentera 6X Multispectral Sensor 5 475 x 30 550 x 20 670 x 30 715 x 10 840 x 20 

Parrot Sequoia+ Multispectral Sensor 4   550 x 40 660 x 40 735 x 10 790 x 40 

DJI Mavic 3M 4   560 x 16 650 x 16 730 x 16 860 x 26 

DJI P4 Multispectral 5 450 x 16 560 x 16 650 x 16 730 x 16 840 x 26 

MapIR Kernal 2 6 342-915 (x 15) 

Cubert Ultris 5 Hyperspectral 51 540-850 (x 26) 

 

wavelengths. This could be extremely beneficial for algae monitoring, as the users could reap the 

benefits of hyperspectral monitoring with targeted features such as 620 nm for detection of 

phycocyanin, without paying the cost of a hyperspectral camera. Another option is the Cubert 

Ultris 5 hyperspectral camera, which is the smallest of those listed, and uses a snapshot image 

capture to simultaneously capture 51 spectral bands ranging from 540-850nm. The large amount 

of data collected by this camera could make it an excellent candidate for the development of 

advanced machine learning algorithms. 

4. Conclusion 

In this thesis, a new technique to monitor algae blooms using integrated unmanned aerial 

vehicles and water quality sensors was designed, tested, and deployed. The platform was 

successfully utilized to collect chlorophyll, phycocyanin, and turbidity data in Lake Harsha, Ohio 

through the summer of 2023. Data was correlated with Landsat 8 and 9 and Sentinel 2 imagery, 

and the improved capabilities of Sentinel to monitor harmful algae blooms due to higher spatial 
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resolution and the availability of narrow red-edge bands from 704nm to 783nm was 

demonstrated. Useful bands were identified, and commercially available multispectral cameras 

capable of integration with UAV were evaluated. By applying improved monitoring techniques 

for HABs that utilize unmanned aerial vehicles, researchers and water quality managers can 

build an understanding of the larger patterns of algae blooms in surface waters with less 

resources. This can enable more effective and timely control of algae bloom impacts, and protect 

surface water as safe sites of outdoor recreation and critical drinking water supply.  
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