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ABSTRACT:

Project 1: ADC(Apparent Diffusion Co-efficient), a biomarker helping
in the diagnosis of tumors, is a measure based on the magnitude of diffusion
calculated with voxel level DW MRI(Diffusion-weighted Magnetic Resonance
Imaging). ADC is expressed as the exponent of the DW signals (Si) with a
product component of b values (fixed for 4 levels). Si = Ai ∗ e(−b ∗ADC) -
where Ai are initial signal values. Accounting the problem of limited data due
to constraining on the repetition of total body MR measurements, Bayesian
setup seemed appropriate. This has been previously done as a part of the
project in the lab using Rice distribution(expressed as a mixture of chi sq
and Poisson distribution) as likelihood and uniform prior - which I replicated
using different parameters. Thereafter I investigated the effect of ADC on
age on patients and controls as separate groups and also on an individual
basis. This results in quite a contrast - showing high ADC estimates for
controls as a group than CF patients but vice versa for some older patients.
This was the motivation behind regression analysis in two setups -

1) Bayesian Regression and

2) Simple Linear Regression.

Both the regression equations show similar trends and give a strong un-
derstanding of the contracting results observed which is also in sync with
the biological claim which suggests the ADC estimates are higher in older
patients due to microstructural damage caused by years of infections and
inflammation. Thus, leading to comparison of CF patients and healthy con-
trols.

Project 2: Using a similar data structural setup which is voxel MRI
data in the next project, the point of cessation was found for under sampling
of MR images. Using radial UTE(ultra-echo-time) sequences to overcome
some imaging limitations(rapid cardiac or respiratory movement, relatively
low lung tissue density, etc.) while acquiring an MRI of the lung leads to long
acquisition times. The norm often used in pulmonary imaging is to under
sample to reduce the acquisition time. That motivated me to investigate
to find the optimized level of under sampling where the information that
is specifically T ∗

2 mapping remains unaffected. The data that we received
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was accumulated in two different setups and the T ∗
2 has been computed.

The analysis conducted leads to finding the point of cessation to retain the
information in T ∗

2 .The two setups are described as follows:

1) One setup is the simulated data. The simulated data we have is the
Phantom dataset. It has been generated at three different 3D isotropic matrix
sizes:643 , 963 and 1283.

2) The other dataset used here is MRI on 14 real mice which has been
generated at the isotropic matrix size of 1283.

Now in these two setups, different techniques such as one sample Hotelling
t2 test and paired t-test have been used depending on the data to address our
question concerned. Thus, we conclude about attaining the tolerable level of
under-sampling has a nonsignificant effect on the parameter of interest that
is T ∗

2 .
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Chapter 1

Exordium :Project 1

ADC(Apparent Diffusion Coefficient) is well validated measure of alveolar
airspace size(Microstructural level) which is related to surface area. ADC is
not only a validated measure of lung micro-structure but assesses alveolar-
size changes due to normal aging and disease progression.

Figure 1.1: Visualization of MRI of a control patient.It shows ADC estimates
inside of lung measured in cm2/sec.

Figure 1.2: Visualization of MRI of a CF patient.It shows ADC estimates
inside of lung measured in cm2/sec.

We can see how the MRI of a CF patient looks distinctly different from
a healthy person.
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ADC is estimated from the Diffusion-weighted 129Xe MRI data assume -
the imaging signals were attenuated according to the Stejskal–Tanner model
(i.e., exponential decay).

S1 = S0 ∗ e(−bi ∗ ADC)

Taking log on both sides we get the following form of the equation:

ADC = 1
bi
∗ ln S0

S1

is the mathematical expression of ADC where S0

S1
signal intensity of diffu-

sion weighted image at different bi values(MR acquisition parameters) and S0

is the signal intensity at b = 0 . The b values reflect the strength and timing
of gradients used to generate diffusion weighted images. Now as explained
in the abstract Bayesian set up was used for ADC estimates. The method
for ADC estimates were carried out previously by Dr. Abdullah S Bdaiwi.I
replicated it using different parameters and method. We will discuss in de-
tail about the Bayesian set up used but the focal point of this project is to
regress the ADC against age , and the dummy binary variable indicating the
occurrence of disease and their interactions.

This regression has been carried out in two setups with the goal of com-
parison and attainment of more precise model.

1. First set up has been carried out in the simplest way possible - Getting
the estimates from and using those to model a simple regression model
with the variables mentioned above.

2. The next setup has been inspired from the Bayesian set up used for the
ADC estimates. In this set up the a two stage Bayesian Model has been
used to attain the regression model using the same Bayesian set up used
for ADC estimates and then using those estimates and incorporating
the same in a Bayesian regression set up with priors imposed on the
regression coefficients.

The projects end on a comparison note of the two models with many prospects
of future work.
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Chapter 2

Data Acquisition and Data
Explanation:

Data Acquisition:

Data is collected in a Hyperpolarized Xenon MRI setup.

Previously Helium (3He) was used but since 129Xe is more affordable and
abundantly available nowadays 129Xe is used more.

Hyper-polarized(Magnetized) (HP) 129Xe-MRI provides non-invasive struc-
ture(not requiring the introduction of instruments into the body) methods to
quantify lung function. The 129Xe apparent diffusion coefficient (ADC) be-
ing a well validated measure of alveolar airspace size. DW-MRI images from
38 healthy-controls (age: 18±9.7 year) and 39 CF patients (age: 14.7±7.9
year) with 5 b-values [0, 6.25, 12.5, 18.75 and 25 s/cm2] were acquired in the
Imaging Research Center at Cincinnati Children’s Hospital Medical Cen-
ter. Assuming - the imaging signals were attenuated according to the Ste-
jskal–Tanner model (i.e., exponential decay), it is expected that the image
noise follow the Rician distribution, which as expressed by a non-central χ2

– Poisson-hierarchical model, was used to describe the data distribution. A
uniform distribution was used for specifying the prior probability distribution
of ADC.
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Data Explanation:

Let us look at the data type and structure. The files are from matlab soft-
ware. Now let us see the structure of the data that we received: The data is
given in voxel to voxel level along with b values. Thus we have a 4 D array
where voxel has x, y and z(which reflects the number of slices in MRI) that
is 3 dimension and the b values adding on to the 4th dimension.

4D = [number in x axis , number in y axis , number of slices , b values]

The other component of the dataset is the mask which is a binary variable
that indicates if the voxel is inside the lung area or not. (This is a filter that
we use in image analysis).

The age of each patient has been noted in the dataset.

b values which are fixed values are noted down in the dataset.It is a
factor that reflects the strength and timing of the gradients used to generate
diffusion-weighted images. The higher the b-value, the stronger the diffusion
effects.

A dummy variable named CF has been created for indicating the cases
and controls.

The sigma matrix has been calculated for each patient - the dimension of
which differs from patient to patient.

nu0 is a parameter that is the signal intensity for b value 0. It has been
given for each patient.
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Chapter 3

Statistical Methods:

Likelihood:

In the project we use the likelihood of the voxel magnitude which follows
Rice distribution.

Let M1, M2, . . . . . . ,Mn be random sample from Rice distribution with

parameters γ0* exp(−α ∗ b) and ”σ2” where γ0 signal intensity for b = 0.

Consider a variable transformation: Ri =
M2

i

σ2 , where Ri follows a non-central

χ2 distribution with 2P + 2 degrees of freedom. P in the degrees of freedom

can be expressed as a Poisson distribution with mean γ.

Prior:

The prior information that has been used for ADC estimates is : The ADC
values range from 0 - 0.14 cm2/sec in the Xenon MRI set up (Even in other set
ups the ADC value are generally positive and small in magnitude.)Thus,the
prior of Uniform distribution with a and b parameters as 0 and 0.14 has been
used for finding the ADC estimates.

Posterior Distribution:

Now since both the likelihood and the prior are proper thus, the posterior
distribution exists.Due to the computational complexity of posterior distri-
bution rjags has been used to apply MCMC to generate the posterior means
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which helps us to estimate ADC. ”rjags” package in R either use Metropolis
Hastings or Gibbs Sampling.

Metropolis Hastings:

Metropolis-Hastings is a popular Markov chain Monte Carlo (MCMC) algo-
rithm used to generate sample from a probability distribution which is in
most cases are posterior distribution in Bayesian setup when it is difficult or
impossible to sample from it directly. The algorithm works by proposing a
new sample from a proposal distribution and then accepting or rejecting this
proposal based on the ratio or probability of the target distribution to the
proposal distribution at the proposed sample which is also called acceptance
probability.

The steps of the Metropolis-Hastings algorithm are as follows:

Result: Sequence of samples from the target distribution
Choosing an initial value for the Markov chain, x0; for i = 1, 2, 3, ...
do

We have to propose a new state, x′, from a proposal distribution,
q(x′|x); Then main part of the algorithm is to calculate the
acceptance ratio, A, given by A = min(1, α), where

α = p(x′)
p(x)

· q(x|x′)
q(x′|x) , where p(x) is the target probability density

function and q(x′|x) is the proposal density function for moving
from x to x′; Depending on the probability we will either accept
the proposal with probability A, otherwise retain the current
state x; Setting the current state to x′ or x depends on whether
the proposal was accepted or not;

end
Algorithm 1: Metropolis-Hastings Algorithm

The algorithm generates a sequence of samples that are drawn from the
posterior distribution. The samples are generally correlated with each other
since the algorithm depends on the previous generated sample, but the corre-
lation decreases as the number of iterations increases.That is an indication of
convergence.It is important to check if the MCMC algorithm has converged
or not. The algorithm requires some tuning of the proposal distribution to
ensure that it is neither too narrow nor too wide.
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Gibbs Sampling:

Gibbs Sampler is another Markov Chain Monte Carlo(MCMC) method which
helps in generating samples from a particular probability distribution. In
Bayesian set up it is generally posterior distribution. This is one of the
most common method of generating samples in Bayesian set up. In this
algorithm at each step, Gibbs sampler updates one variable(in a multivariate
setting) and get a sample of new value for the variable from its conditional
distribution. This process is repeated for each variable and the resulting
sample sequence converges to the said posterior distribution.

1. Input: First step is to initialize values for all variables x1, x2, . . . , xn,
number of iterations T , and conditional distributions p(xi|x−i) for each
variable xi

2. Output: Get samples x(1), x(2), . . . , x(T )

3. Then initialize x = (x1, x2, . . . , xn)

4. For t = 1 to T do

(a) For i = 1 to n do

i. For sample xi from p(xi|x(t)
−i)

ii. The algorithm updates x
(t)
−i with the new value of xi

(b) It saves the current values of x as x(t)

5. Return x(1), x(2), . . . , x(T )

Bayesian Regression:

In Bayesian regression, we start by specifying a prior distribution for the
parameters of the regression model. This prior distribution represents our
beliefs about the parameters before we observe any data. The choice of prior
distribution can have a significant impact on the posterior distribution that
we obtain, and it can also reflect any prior knowledge or assumptions that
we have about the parameters.

For example, in Bayesian linear regression with a single independent vari-
able, we might specify a prior distribution for the intercept and slope coeffi-
cients as follows:

7



β0 ∼ N (0, σ2
0)

β1 ∼ N (0, σ2
1)

Here, we are assuming that the intercept and slope coefficients follow
normal distributions with mean 0 and variances σ2

0 and σ2
1, respectively.

The choice of these prior variances can reflect our prior beliefs about the
likely range of values for the coefficients. For example, if we believe that
the coefficients are likely to be small, we might choose smaller values for the
prior variances.

Once we have specified the prior distribution, we can use Bayes’ theorem
to obtain the posterior distribution for the parameters, given the observed
data. Specifically, the posterior distribution is proportional to the likelihood
of the data, multiplied by the prior distribution:

P (β|y,X) ∝ P (y|X,β)P (β)

Here, β represents the vector of regression coefficients, y represents the
vector of observed dependent variable values, and X represents the matrix of
independent variable values. The likelihood of the data given the parameters
is given by the product of the individual data point likelihoods:

P (y|X,β) =
n∏

i=1

N (yi|β0 + β1xi1 + · · ·+ βpxip, σ
2)

Here, N represents the normal probability density function, and σ2 rep-
resents the variance of the dependent variable.

To obtain the posterior distribution, we can use MCMC (Markov Chain
Monte Carlo) methods to sample from the joint posterior distribution. This
allows us to estimate the posterior mean and credible intervals for the pa-
rameters, as well as to make predictions for new data points by integrating
over the posterior distribution.

In summary, Bayesian regression with priors allows us to incorporate prior
knowledge and assumptions into the analysis, and provides a way to quantify
uncertainty and make predictions based on the posterior distribution. The
choice of prior distribution can reflect our prior beliefs about the parameters,
and can have a significant impact on the posterior distribution. MCMC
methods can be used to obtain samples from the posterior distribution for
inference and prediction.
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Chapter 4

Experiment Setup:

Model:

The model with the likelihood of Rice distribution and prior of Uniform
distribution has been implemented as described above using MCMC to get
the ADC estimates. R software has been used and the package rjags has been
used for the analysis.”rjags” uses Gibbs sampling or Metropolis Hastings or
a combination of both depending on the set up of the experiment. The
following parameters were used for ”rjags”:

Using Metropolis Hastings (Using R-jags).

Number of runs : 10000

Burn-in period : 5000

Number of chain : 1

Thining parameter : 5

Posterior Sample: 1000

Convergence Diagnostic : Trace plot.

Although we are using ”rjags” but R codes for Metropolis Hastings or
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Gibbs sampling can be written.

REGRESSION:

SET UP 1: SIMPLE LINEAR REGRESSION

The ADC estimates are used to set up a simple linear regression using lm
function of R software.

SET UP 2: BAYESIAN LINEAR REGRESSION

In this model we have set a two stage Bayesian model: The first stage
remains the same as described above

In the second stage for ADC for within the lung area the desired model
was written down and the priors used are the ones generally used for Bayesian
regression model normal distribution with mean 0 and variance 100000. This
is was carried out within the same model set up of the ADC estimates. Now
the same set up have been used for the two stage Bayesian model. The
following are the parameters used:

Using Metropolis Hastings (Using R-jags).

Number of runs : 10000

Burn-in period : 5000

Number of chain : 1

Thining parameter : 5

Posterior Sample: 1000

Although we are using ”rjags” but R codes for Metropolis Hastings or
Gibbs sampling can be written.
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Chapter 5

Results:

The ADC estimates which are found in this setting are estimated as mean
of all voxels inside the lung area for each patients. A summary of the ADC
estimates(inside the lung area) with CF patients is given as follows:

CF Patients:

1. Mean : 0.03159

2. Median : 0.03091

3. Standard Deviation : 0.00365297

4. CI 95% : (0.02581033 , 0.03863896)

ADC estimates age
0.0341 23.30
0.0381 26.8
0.0379 31.6
0.0373 37.6

Table 5.1: Table showing the individual ADC estimates for some older CF
patients

NOTE:
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Just looking at the mean of all patients we can conclude that ADC for
CF patients are comparatively lower than that of controls which are listed
on Pg. 14.

But if we dive deep into individual estimates we will find some older CF
patient having higher ADC estimates than that of age matched controls. For
example if we look at the ADC estimate of patient with age 31.6 years we
see the ADC estimate is higher than that of a control of age 30.6.

Figure 5.1: Histogram with density of ADC estimates(inside the lung area)
of CF patients

12



Figure 5.2: Scatter plot of ADC estimates(inside the lung area) of CF pa-
tients vs age
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Control Patients:

1. Mean : 0.03162

2. Median : 0.03098

3. Standard Deviation : 0.003698021

4. CI 95% : (0.02578125 0.03866951)

ADC estimates age
0.0389 23.7
0.0310 27.6
0.0360 30.6
0.0326 39

Table 5.2: Table showing the individual ADC estimates for some older con-
trols

NOTE:

Just looking at the mean of controls we can conclude that ADC for con-
trols are comparatively higher than that of CF patients which are listed on
Pg. 11.Also apparent from the histogram for controls on Pg. 15 compared
to the histogram of CF patients on Pg. 12.

But if we dive deep into individual estimates we will find some older CF
patient having higher ADC estimates than that of age matched controls. For
example if we look at the ADC estimate of patient with age 31.6 years we
see the ADC estimate is higher than that of a control of age 30.6.
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Figure 5.3: Histogram with density of ADC estimates(inside the lung area)
of Controls
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Figure 5.4: Scatter plot of ADC estimates(inside the lung area) of Controls
vs age

Figure 5.5: Trace plot of one patient - Checking for convergence of MCMC
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Figure 5.6: Trace plot of another patient - Checking for convergence of
MCMC

Note: The trace plots does not show any visible patterns so we can con-
clude that the MCMC has converged.

We find that generally for CF patients the ADC value is lower than that
of healthy patients which supports the biological reasoning that CF lungs
are heavier than in healthy subjects, resulting in smaller ADC. But further
investigation considering age of individuals we see an interesting observation.
For older CF patients we observe higher ADC as compared to that of healthy
patients. This is interesting and it also supports the claim that is due to
micro structural damage caused by years of infections and inflammation.

This is the reason which inspired us to carry out the regression
of ADC estimates on age primarily.
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Regression Equation:

SET UP 1:

SIMPLE LINEAR REGRESSION

The dependent variable in the model is the ADC estimates within the lung
area.

The independent variables in the model used are age and a dummy vari-
able indicating the case and control patient.

The model also includes the interaction effects of all the independent
variables mentioned above.

The equation is as follows:

ADC = 0.02871+0.0002353∗Age−0.0007369∗CF−7.096e−07∗Age∗CF

Further analysis:

The variable sex was also included in the regression model.The ANOVA
table for the same is given below:

Variables p-values
(Intercept) <2.e16

Age 0.00209
CF 0.65962
Sex 0.61348

Age:CF 0.99170
Age: Sex 0.84796
CF : Sex 0.99180

Table 5.3: ANOVA table for Simple Linear Regression

From the ANOVA table, we can conclude that the significant variable is age.
So in the final model we only used age and the dummy variable CF so that
we get different equations for controls and CF patients.
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The equation for the CF patients:

Putting CF = 1 :

ADC = 0.0275574 + 0.0002431 ∗ Age

The equation for the Controls:

Putting CF = 0 :

ADC = 0.02834 + 0.0002422 ∗ Age

SET UP 2:

BAYESIAN LINEAR REGRESSION

With a connection from the simple linear regression we carried out the
Bayesian Regression with age and the dummy variable CF. The priors used
are explained in the experiment setup - Chapter 4.

The equation we get from the Bayesian Linear Regression is as follows:

ADC = 0.02863 + 0.0002379 ∗ Age − 0.000425326 ∗ CF + 0.00000077 ∗
Age ∗ CF

The equation for the CF patients:

Putting CF = 1 :

ADC = 0.02820 + 0.0002387 ∗ Age

The equation for the Controls:

Putting CF = 0 :

ADC = 0.02863 + 0.0002379 ∗ Age
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Conclusion:

From the results above we see that the equations we get from both setups
are quite similar. Again further research can be carried out for looking into
the error of the two setups for further comparison.

Again, if we look at the intercept in the regression line for control and
CF separately, we also observe that the coefficient for controls is higher than
that of CF.

If we look at the coefficients of the age in the regression line for control
and CF separately, we also observe that the coefficient for CF is higher than
that of Controls. We can also observe that for older people the age part of
the regression may increase giving those elevated results - that’s what we saw
in individual estimates.
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Chapter 6

Excursis and Future Work:

Excursis:

We can report the following results:

1. We can conclude that ADC estimates for the controls are higher than
that of the CF. (From histograms and means of all patients and controls
reported)

2. We also observe that for some older CF patients have elevated ADC
estimates than their age-matched control.

3. If we look at the intercept in the regression line for control and CF sep-
arately we also observe that the intercept is higher than that of CF and
it is also much higher compared to the coefficients of the independent
variable age.

4. Again, if we look at the coefficient of independent variable age for
control and CF separately we also observe that the coefficient for CF
is higher than that of controls .

Thus the observation of ADC estimates being higher for a CF patient
than a control patient of the same age is due to the higher co-efficient
for age variable gives higher ADC estimates but only for older patients

21



since the co-efficient for age variable is much less compared to the
intercept so this can only be observed for older patients.

Future Work:

This project opens up the scope of many future research. Some of the options
are noted below:

In terms of coding, instead of using jags , any other package like stan
or bugs can be used.Moreover, own code for metropolis hastings can also be
used.

A difficulty of MH algorithm in this setup is the time consumption. Ways
to improve the same can be explored.

The regression project can be carried out extensively by including many
other variables which have been collected during the experiment like height,
sex , lung volume etc.

While doing so it is also important to keep in mind that some of the
variables are correlated with others upto a certain point, for example, our key
variable age is correlated with both height and lung volume up to a certain
point. Incorporating those is very important for having a sound model.
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Chapter 7

Exordium:Project 2

Limitations of relatively low lung tissue density, rapid cardiac and respi-
ratory motion and rapid transverse relaxation (T ∗

2 ) faced while conducting
MRI of the lung are largely overcome by radial ultra-short echo-time (UTE)
sequences. But this solution can sometimes lead to long acquisition times
relative to the conventional Cartesian sequences due to the fact requirement
of using additional radial projections from inefficiently sampling k-space.
Therefore the norm often used in pulmonary imaging is to under sample
to reduce the acquisition time. But again this solution introduced some
biases – reduction of SNR(Signal-to-noise ratio), the introduction of image
artifacts and degrade true image resolution. Here it is investigated to see to
which level of under sampling the information that is specifically T ∗

2 mapping
remains unaffected and their difference (taken from the full sampled image)
is statistically significant. The investigation has been carried out on the data
collected by R. Stecker, in the context of mouse imaging and Shepp-Logan
Phantom data is also used to investigate the trends. Detailed discussion is
carried out on how much under-sampling of images can be conducted keeping
in mind the metric T ∗

2 from a statistical point of view.
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Chapter 8

Data Acquisition:

C57BL/6J mice (Jackson Laboratory, Bar Harbor, ME) (N = 14) were
housed at Cincinnati Children’s Hospital. Imaging was performed on a 7
T horizontal, 30-cm bore, small animal scanner (Bruker BioSpec, Billerica,
MA) with a home-built quadrature transmit/receive birdcage coil (inner di-
ameter = 35 mm; length = 50 mm). Before experiments, the scanner fre-
quency, shim settings, and animal position were determined using Bruker’s
built-in routines. During experiments, free-breathing mice were anesthetized
with 1-3% isoflurane (mixed with air) and imaged head-first and supine at
the magnet isocenter. After imaging, mice recovered in an isolated heated
cage, set to 36◦C, and returned to the barrier room until fully recovered from
anesthesia.

ACQUISITION OF FULLY-SAMPLED IMAGE

Fully-sampled, free induction decay (FID) data were acquired using a 3D
radial sequence with five interleaved echo times (TE). Following are some of
the parameters used for image acquisition:A flip angle of α = 6.3◦; 4.3 µs RF
block pulse; 51,472 radial projections per image; 128 points on free induction
decay (FID); field-of-view (FOV) = 32 Ö 32 Ö 64 (mm3 ); image matrix size
= 128 Ö 128 Ö 128 (voxels3 ); receiver bandwidth (BW) = 277 kHz; TEs =
[0.08, 0.25, 0.50, 1.25, and 2.50] ms;and TR = 8.24 ms. The total acquisition
time for each multi-TE scan was 90 minutes.
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UNDER SAMPLING OF RAW k-SPACE DATA:

Under sampling was done by randomly removing FIDs (Free Induction
Decay) from fully sampled k-space data for all echo time images. Each FID
was assigned a unique index ranging from 1 to the total number of radial
projections, and a specified percentage of these indices was selected for re-
moval by a Mersenne Twister random number generator. The fraction of
unique FIDs–and thus k-space trajectories–removed from the fully-sampled
data increased in increments of 10% (i.e., 90%, 80%, 70%. . . to 10% sam-
pled). This was iterated 10 times for each fully sampled image for 14 mice
at each echo time and level of sampling. For every iteration and each level
of Nyquist sampling the random number generator seed was changed to the
date and time of execution for each iteration to maintain unique sets. A total
of 1,260 distinct under-sampled and 14 fully-sampled multi-TE sets (5 TE
images per set) were generated.

SIMULATION OF SHEPP-LOGAN PHANTOM
WITH GOLDEN ANGLE SAMPLING:

Multi-TE simulations were performed in MATLAB using digital 3D Shepp-
Logan phantoms that were modified to include additional ellipsoids to mimic
mouse lung vasculature. The phantom signal intensity was chosen to match
the one observed in the mice lung dataset. A T ∗

2 of 0.4 ms was assigned to
the simulated lung parenchyma and a T ∗

2 of 3.16 ms for the simulated lung
vasculature. Simulated radial k-space data were sampled similarly to in mice
data using golden angle sampling, with TEs = [0.08, 0.25, 0.50, 1.25, and
2.50] ms; TR = 7 ms. K-space data were then gridded by rounding to the
nearest Cartesian grid point to reduce the time for phantom simulations. The
phantom was generated at three different 3D isotropic matrix sizes: 643, 963,
and 1283. The total radial projections for each matrix size image were:12,868
for 643, 28,953 for 963, and 51,472 radial projections for 1283.
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CALCULATION OF T ∗
2 :

Binary masks of the thoracic cavity from the fully sampled mice images
were automatically segmented using a deep-learning algorithm (based on the
model of U-Net Convolution Neural Network). This analysis was confined
to the parenchymal tissues by drawing a region-of-interest (ROI) of the fully
sampled images and the mean of this ROI has been used to weigh the signal
values within the lung mask. Voxels with weighted signal falling below the
threshold value of 0.8(were treated as lung parenchyma) were used for cal-
culation of SNR and T ∗

2 . SNR was calculated from TE = 0.08 ms image by
averaging,a non-weighted, lung parenchyma signal and dividing by the stan-
dard deviation of the signal within an R01 drawn outside the mouse body
in a region free from obvious image artifacts. T ∗

2 was estimated voxel-by-
voxel via iterative nonlinear least squares fitting of the signal intensity as a
function of TE to

S1 = S0 exp
−TE
T∗
2 +c

,where c is a constant representing the non-zero noise floor.
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Chapter 9

Statistical Methods:

One sample Hotelling t2 test:

The Phantom simulations and the vivo mice datasets have several itera-
tions. To incorporate all the iterations in the dataset the statistical test has
been conducted in a multivariate setup where each iteration has been looked
at as a variable. The null hypothesis being tested here is the mean of each
iteration is equal to 0.

H0 : (µ1, µ2, µ3, µ4, . . . , µn) = (0, 0, 0, 0, . . . , 0)
H1 : (µ1, µ2, µ3, µ4, . . . , µn) ̸= (0, 0, 0, 0, . . . , 0)

The level of significance is 0.05. This test is known as one sample Hotelling
t2.Here the n depends on the number of iterations in each data set-up which
is 10 for each isotropic matrix size phantom data and 7 for each real mouse.
The Hotelling t2 statistic is

t2 = n(X̄ − µ0)
′S−1(X̄ − µ0)

where X̄ is the multivariate sample mean and

S is the sample covariance variance matrix and

µ0 is the vector we want to test for here in our case µ0 is 0 vector.
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The statistic represents the distance between the sample mean and µ0.
Thus, the statistic is expected to have low value if X̄ is near µ0 high value if
they are different.

Under the null hypothesis, the test statistic follows F distribution with
parameters p and n – p.

t2 ∼ T 2
p,n−1 =

p(n−1)
n−p

· Fp,n−p

Again, if X̄ is near µ0 which is 0 is our then p-value is expected to be
greater than 0.05 and if they are different then the p-value should be less
than 0.05.

In this situation, the parameters used are:

1. µ0 is the 0 vector.

2. X̄ is the sample mean vector across all the iterations of the calculated
T 2.

3. S is calculated by taking the variance and covariance matrix across all
the iterations of the calculated T 2.

The p-value of all these tests are noted down and listed in tables in the
Results chapter(Page number can be found from List of Tables)

Why Hotelling T 2:

To incorporate all these small variabilities it is better to have a multi-
variate setup than a univariate setup like taking the mean of all iterations
and comparing it to fully sampled MRI by a paired t test. Since the itera-
tions are repeatedly taken on the same mouse so they cannot be said to be
independent to each other. So taking into account the covariance between
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the iterations will give us some information. But to cross-check the results
of Hotelling T ∗

2 , paired t-test was also carried out.

Paired T Test:

Apart from the Hotelling T ∗
2 , paired t-test has also been carried out. The

null hypothesis being tested here is as follows:

H0 : µU = µF

H1 : µU ̸= µF

where µU and µF stand for the mean of the under-sampled MR images
over all iterations and the mean of fully sampled MR images over all iter-
ations. Paired t-test are carried out for each level of under-sampled MR
Images. Thus, 9 paired t-test has been carried out for each mouse. In total,
126 paired t-test has been carried out.

Outliers:

If any calculated T ∗
2 is greater than 10ms then those voxels are ignored.

The steps used to carry out the identification and ignorance of the voxels are
as follows

Step 1 - Summary of all iterations of each level of under-sampling and
even fully sampled of all iterations are carried out to identify which level of
under-sampled images have voxels of more than 10ms of calculated T ∗

2 .

Step 2 - Following step 1, a counter has been setup to see how many
voxels have T ∗

2 greater than 10ms for those levels of under-sampled images.

Step 3 - Next, the locations of those voxels are taken into account which
have the T ∗

2 values greater than 10ms for those levels of under-sampled im-
ages.
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Step 4 - Following this step, those voxels are ignored for all iterations
which have values greater than 10ms for those level of under-sampled images.

Step 5- Thereafter the Hotelling t2 test and paired t-test has been con-
ducted.

Intraclass Correlation Co-efficient[ICC]:

The intraclass correlation coefficient (ICC),is a descriptive statistic that can
be used when quantitative measurements are made on units that are orga-
nized into groups.It describes how strongly units in the same group resemble
each other.

In other words, it is a statistical measure used to assess the reliability or
consistency of measurements made by different raters or observers, or by the
same rater on different occasions. ICC measures the proportion of the total
variability in the data that can be attributed to between-group differences,
relative to the total variability. In other words, it quantifies the degree to
which observations within a group are similar, compared to the variation
between different groups.

ICC values range from 0 to 1, with higher values indicating greater relia-
bility or consistency in the measurements. A value of 0 indicates that there
is no agreement between the raters or observers, while a value of 1 indicates
perfect agreement.

ICC is commonly used in various fields such as psychology, medicine, and
education where it is important to ensure that measurements are consistent
and accurate. ICC can help researchers determine whether their data is
sufficiently reliable to draw valid conclusions. It can also be used to identify
sources of measurement error or variability and to guide improvements in
measurement procedures.

The formula for calculating ICC is:

ICC =
MSb −MSw

MSb + (k − 1)×MSw

(9.1)

where MSb is the between-group mean square, MSw is the within-group
mean square, and k is the number of raters or measurement occasions.
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In our case for the Phantom dataset setup : The calculated ICC
reflects how organized are the units within the 10 iterations of every level of
under-sampling.

Vivo mice dataset setup : The calculated ICC reflects how the iter-
ations for each level of under-sampling for each mouse resemble each other.

So in our case, the within-group mean squares are the ones within each
iteration and the between-group are the ones between the iterations.

R packages pshyc and irr have been used for calculation and cross-checking.
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Chapter 10

Experiment Setup:

Experimental Setup:

Phantom Simulations:

As previously mentioned Phantom dataset used here has 10 iterations
and the corresponding calculation of the T ∗

2 for total radial projection of
12,868 for 643 , 28,953 for 963 , and 51,472 radial projections for 1283 for
the fully sampled and also the under-sampled data set with decrements of
10from the fully sampled at each stage that is 90% sampled, 80% sampled,
70% sampled, 60% sampled, 50% sampled, 40% sampled, 30% sampled, 20%
sampled and 10% sampled. None of the levels of under sampled images have
outliers in the calculated T ∗

2 . Now apart from the investigations carried out
in the manuscript, some statistical tests were also conducted to scrutinize
the statistical significance of such under-sampling on the parameter in con-
text T ∗

2 .We are carrying out Hotelling t2 test. The hypothesis being tested
has been explained in detail previously. The mathematical expression is as
follows:

H0 : (µ1, µ2, µ3, µ4, . . . , µn) = (0, 0, 0, 0, . . . , 0)
H1 : (µ1, µ2, µ3, µ4, . . . , µn) ̸= (0, 0, 0, 0, . . . , 0)

The steps below are followed to carry out Hotelling t2 test:

Step 1: The first step carried out to do this was to multiply the binary
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mask with the calculated T ∗
2 to incorporate the region of interest (ROI)

images on a voxel to voxel level for all the three dataset 12,868 for 643 ,
28,953 for 963 , and 51,472 radial projections for 1283 and also for each of 10
iterations.

Step 2: Now since only the region in the lung is the priority in this
experiment - only the voxels with nonzero voxels were taken into account
after the multiplication with the binary mask for all the three dataset 643 ,
963 , and 1283 voxels and also for each of 10 iterations.

Step 3: The non-zero T ∗
2 measurements were 1066 out of 643 ,4522 out

of 963 , and 11950 out of 1283 voxels and also for each of 10 iterations.

Step 4: Therefore, differences of calculated T ∗
2 for each under-sampled

image were taken from fully sampled images (like 100% sampled - 90% sam-
pled: 100% sampled – 80% sampled and so on) on a voxel to voxel level basis
but only for the non-zero weighted T ∗

2 after multiplication with the binary
mask - that is T ∗

2 difference were taken for 1066 out of 643 , 4522 out of 963

, and 11950 out of 1283 voxels and also for each of 10 iterations.

Step 5: To investigate the dependence of the under-sampling on T ∗
2

the parameter of interest is the mean of T ∗
2 differences calculated for each

iteration for 1066 out of 643 , 4522 out of 963 , and 11950 out 1283 voxels.

Step 6: Now after all the calculations left with 10 different means are
left corresponding to each iteration for each level of under-sampling. Math-
ematically speaking we have:
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Number of means Level of T ∗
2 differences

10 (one for each iteration) 100% sampled – 90% sampled
10 (one for each iteration) 90% sampled – 80% sampled
10 (one for each iteration) 80% sampled – 70% sampled
10 (one for each iteration) 70% sampled – 60% sampled
10 (one for each iteration) 60% sampled – 50% sampled
10 (one for each iteration) 50% sampled – 40% sampled
10 (one for each iteration) 40% sampled – 30% sampled
10 (one for each iteration) 30% sampled – 20% sampled
10 (one for each iteration) 20% sampled – 10% sampled

Table 10.1: A table showing the number of means for each level of difference
for Phantom Dataset

So there are 10 means for each of three datasets -1066 out of 643 , 4522 out
of 963 , and 11950 out 1283

The set-up is therefore in a multivariate format for each dataset. There-
fore to look into the effect of T ∗

2 due to under-sampling one possible way is
to look compare the means of the T ∗

2 differences. voxels.

Step 7: Comparison of means of T ∗
2 differences in multivariate setup can

be done by Hotelling t2 test where we test the means of each variable or
column(in a matrix setup) is equal to zero or not.

Step 8: Thus, Hotelling t2 test was carried out for each level of T ∗
2

difference based on of 10 iterations taken as each variable.

Step 9: So 9 Hotelling t2 tests were carried out for each dataset 1066
out of 643 , 4522 out of 963 and 11950 out of 1283 voxels, so in total 27 tests
were carried out.

Step 10: Similarly, we also perform paired t-test in the same setup and
compare and contrast the results.
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Paired T Test setup:

As previously mentioned Phantom dataset used here has 10 iteration
and the corresponding calculation of the T ∗

2 for total radial projection of
12,868 for 643 , 28,953 for 963 and 51,472 radial projections for 1283 for the
fully sampled and also the under-sampled data set with a decrement of 10%
from the fully sampled at each stage that is 90% sampled, 80% sampled,
70% sampled, 60% sampled, 50% sampled, 40% sampled, 30% sampled, 20%
sampled and 10% sampled. None of the levels of under-sampled images have
outliers in the calculated T ∗

2 .

Now apart from carrying out Hoteling t2 , some other statistical tests like
paired t-test were also conducted to scrutinize the statistical significance of
such under-sampling on the parameter in context T ∗

2 . The hypothesis being
tested has been mentioned before.

The steps that are followed to calculate the paired t-test are as follows:

Step 1: Reading calculated T ∗
2 under-sampled and fully sampled MR

Images.

Step 2: Next these images were multiplied with the binary mask to get
those voxels that are inside the periphery of the lungs.

Step 3:The following step was the check for any outliers. Any calculated
T ∗
2 greater than 10ms was ignored.

Step 4: Next step was to calculate the mean of all the iterations at each
level of under-sampling (such as 10%, 20%, and so on) on a voxel to voxel
basis (considering the voxels inside the periphery of the lung).

Step 5: Then the equality of the means (µU and µF ) is checked by con-
ducting a paired t using the R software.
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Experimental Setup:

Vivo Mice Data:

As previously mentioned data are collected from 14 mice at Cincinnati
Children Hospital Medical Centre and 10 iterations are taken for each mice.
But it is to be remembered that the data on vivo mice has the parameter of
1283 voxel size only. Thus, the corresponding calculation of the T ∗

2 has been
carried on 1283 voxels for the fully sampled and also the under-sampled data
set with a decrement of 10% from the fully sampled at each stage that is
90% sampled, 80% sampled, 70% sampled, 60% sampled, 50% sampled, 40%
sampled, 30% sampled, 20% sampled and 10% sampled.

Now apart from the investigations carried out in the manuscript, some
statistical tests were also conducted to scrutinize the statistical significance
of such under-sampling on the parameter in context T ∗

2 . In terms of data
structure - the data structure of each real mouse is the same as that of 3D
isotropic matrix size of 1283 of Phantom data.Thus, the calculation is carried
out in an exact similar manner as described for Phantom simulations for each
of the 14 mice.

Using the steps described in the outlier section we find the following:

Mice 3 have outliers at 90%, 80% and 70% sampled images. Mice 5
have outliers at 90% sampled images. Mice 10 have outliers at 90% sampled
images.

These voxels have been ignored while carrying on the following calcula-
tion:

Step 1: As described in Phantom Simulation data first step carried out to
do this was to multiply the binary mask with the calculated T ∗

2 to incorporate
the region of interest (ROI) images on a voxel to voxel level for all the 14
mice dataset of 1283 separately and also for each of 7 iterations for each level
of sampled under-sampling.

36



Step 2: Now since only the region in the lung is the priority in this
experiment - only the voxels with nonzero voxels were taken into account
after the multiplication with the binary mask for all the 14 mice dataset of
1283.

Step 3: The non-zero T ∗
2 measurements varied from 5000-8000 out of

1283 voxels depending on the shape and size of the lungs of 14 mice and also
for each of 7 iterations of each level of sampled under-sampling.

Step 4: Therefore, differences of calculated T ∗
2 for each under-sampled

images were taken from fully sampled images on a voxel to voxel level basis
but only for the non-zero weighted T ∗

2 after multiplication with the binary
mask - that is T ∗

2 difference was taken for those 5000-8000 voxels out of
1283 voxels and also for each of 7 iterations of each level of sampled under-
sampling.

Step 5:To investigate the dependence of the under-sampling on T ∗
2 the

parameter of interest is the mean of T ∗
2 differences calculated for each itera-

tion for those 5000-8000 voxels out of 1283 voxels.

Step 6: Now after all the calculations 7 different means depending on
the number of unique iterations are left corresponding to each iteration for
each level of under-sampling. Mathematically speaking we have the following
for each of the 14 mice:
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Number of means Level of T ∗
2 differences

7 (one for each iteration) 100% sampled – 90% sampled
7 (one for each iteration) 90% sampled – 80% sampled
7 (one for each iteration) 80% sampled – 70% sampled
7 (one for each iteration) 70% sampled – 60% sampled
7 (one for each iteration) 60% sampled – 50% sampled
7 (one for each iteration) 50% sampled – 40% sampled
7 (one for each iteration) 40% sampled – 30% sampled
7 (one for each iteration) 30% sampled – 20% sampled
7 (one for each iteration) 20% sampled – 10% sampled

Table 10.2: A table showing the number of means for each level of difference
for Vivo real mice data

So there are either 7 means for each of 14 datasets - for those 5000-8000
voxels(those inside lung area) out of 1283 voxels. The set-up is therefore in
a multivariate format for each dataset. Therefore to look into the effect of
T ∗
2 due to under-sampling one possible way is to look compare the means of

the T ∗
2 differences.

Step 7: In the case of vivo real data set we observe that paired t-test
are working better than Hotelling t2.

Step 8: Comparison of means of T ∗
2 differences in multivariate setup can

be done by Hotelling t2 test where we test the means of each variable or
column(in a matrix setup) is equal to zero or not.

Step 9: Thus, Hotelling t2 test was carried out for each level of T ∗
2 the

difference based on of either 7 iterations taken as each variable.

Step 10: So 9 Hotelling t2 tests were carried out for each mouse on those
5000-8000 voxels(inside the lung area) out of 1283 voxels and doe the three
isotropic size for Phantom data, so in total 153 tests were carried out.

Paired T-Test setup:
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As previously mentioned in vivo real mice dataset used here has 7 itera-
tions for each of the 14 mice and the corresponding calculation of the T ∗

2 for
the fully sampled and also the under-sampled data set with a decrement of
10% from the fully sampled at each stage that is 90% sampled, 80% sampled,
70% sampled, 60% sampled, 50% sampled, 40% sampled, 30% sampled, 20%
sampled and 10% sampled. None of the levels of under-sampled images have
outliers in the calculated T ∗

2 .

Now apart from carrying out Hoteling t2 , some other statistical tests like
paired t-test were also conducted to scrutinize the statistical significance of
such under-sampling on the parameter in context T ∗

2 . The hypothesis being
tested has been mentioned before.

The steps that are followed to calculate the paired t-test are as follows:

Step 1:The first step was to read the calculated T ∗
2 under-sampled and

fully sampled MR Images.

Step 2: Next these images were multiplied with the binary mask to get
those voxels that are inside the periphery of the lungs.

Step 3: The following step was the check for any outliers. Any calculated
T ∗
2 greater than 10ms was ignored.

Step 4:Next step was to calculate the mean of all the iterations at each
level of under-sampling (such as 10$, 20% and so on) on a voxel to voxel
basis (considering the voxels inside the periphery of the lung).

Step 5:Then the equality of the means (µU and µF ) is checked by con-
ducting a paired t using the R software.
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Chapter 11

Results:

Hotelling t2 Test Results:

Phantom Dataset:

For 963 and 1283 voxel datasets, we see that in most cases the p-value keeps on
increasing steadily through the levels of T ∗

2 differences from the less sampled
images to the more sampled images.

1. FOR 643 voxels

We see that from the level of T ∗
2 difference of 100% sampled and 20%

sampled onwards all the levels of T ∗
2 difference (that is 100% sampled

– 30% sampled, 100% sampled – 40% sampled and so on till 100%
sampled -90% sampled) have p-value greater than 0.05. The hypothesis
being tested here is the means of the 10 iterations are equal to 0 or not.
We can conclude that till 20% sampled images the metric in context
T ∗
2 is not significantly affected by the under-sampling process.

2. FOR 963 voxels
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We see that from the level of T ∗
2 difference of 100% sampled and 40%

sampled onwards all the levels of T ∗
2 difference (that is 100% sampled

– 50% sampled, 100% sampled – 60% sampled and so on till 100%
sampled -90% sampled) have p-value greater than 0.05. The hypothesis
being tested here is the means of the 10 iterations are equal to 0 or not.
We can conclude that till 50% sampled images the metric in context
T ∗
2 is not significantly affected by the under-sampling process.

3. FOR 1283 voxels

We see that from the level of T ∗
2 difference of 100% sampled and 70%

sampled onwards all the levels of T ∗
2 difference (that is 100% sampled

- 80% sampled and 100% sampled -90% sampled) have p-value greater
than 0.05. The hypothesis being tested here was is the means of the 10
iterations are equal to 0 or not. Till 80% sampled images the metric in
context T ∗

2 is not significantly affected by the under-sampling process
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Summarized Results:

Hotelling t2 Test and Paired t Test

100%-%Sampled Hotelling t2 Paired t ICC
100-10 0.0369 0.2606 0.67
100-20 0.6449 0.2088 0.5
100-30 0.2776 0.9086 0.39
100-40 0.7865 0.9756 0.3
100-50 0.2039 0.9269 0.17
100-60 0.4145 0.9403 0.14
100-70 0.2815 0.7372 0.05
100-80 0.2736 0.6447 0.019
100-90 0.4891 0.4267 -0.0001

Table 11.1: A table p-values of Hoteling t2 , Paired t and ICC for 643

100%-%Sampled Hotelling t2 Paired t ICC
100-10 <0.0001 <0.0001 0.49
100-20 <0.0001 <0.0001 0.32
100-30 <0.0001 <0.0001 0.17
100-40 <0.0001 0.1625 0.07
100-50 0.1220 0.8429 0.029
100-60 0.0981 0.8919 0.011
100-70 0.1117 0.6947 0.02
100-80 0.4905 0.4880 -0.0006
100-90 0.1708 0.6369 0.007

Table 11.2: A table p-values of Hoteling t2 , Paired t and ICC for 963
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100%-%Sampled Hotelling t2 Paired t ICC
100-10 <0.0001 <0.0001 0.43
100-20 <0.0001 <0.0001 0.25
100-30 <0.0001 <0.0001 0.14
100-40 <0.0001 0.0008 0.10
100-50 <0.0001 0.0012 0.057
100-60 0.0003 0.0046 0.029
100-70 0.0180 0.0264 0.0099
100-80 0.1304 0.0195 -2.9e-16
100-90 0.0868 0.0163 -5.6e-07

Table 11.3: A table p-values of Hoteling t2 , Paired t and ICC for 1283

NOTE: It is observed that the ICC (Intraclass Correlation) among 10 iter-
ations are low especially 50% sampled onwards. Negative ICC can be inter-
preted as really low value of ICC. In the above table we see that the negative
ICCs are very close to 0. This suggests that the iterations especially from
the difference of 100% sampled and 50% sampled onwards, the iterations are
heterogeneous. Thus, we can see that Hotelling t2 test is working better for
the phantom simulations compared to the paired t-test since the Hotelling t2

can capture all the variability across the iterations and even in between them
as it takes into account the variance-covariance matrix of the iterations.
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Figure 11.1: Visualization of pvalue of Hotelling t2
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NOTE: The horizontal red line represents the 5% significance level.All
the points plotted above it give nonsignificant results.

Thus, for the cyan colored plot(showing the plot of phantom data of
3D isotropic size 643 20% sampled or 80% under-sampled doesn’t affect the
calculation of T ∗

2 .

Similarly, for the blue colored plot(showing the plot of phantom data of
3D isotropic size 963 50% sampled or 50% under-sampled doesn’t affect the
calculation of T ∗

2 .

Lastly,for the yellow colored plot(showing the plot of phantom data of

3D isotropic size 1283 80% sampled or 20% under-sampled doesn’t affect the

calculation of T ∗
2 .

Paired t Test Results:

Vivo Real Mice Dataset:

The p-value keeps on increasing steadily through the levels of T ∗
2 from the

less sampled images to the more sampled images. The null hypothesis being
tested here is: the mean T ∗

2 across all iterations for a particular level of under
sampled images is equal to the mean across all iterations of fully sampled
images. We see three categories of observations across all 14 mice. The ob-
servations are mentioned below in 3 categories along with the mouse number
which has the same observations:

1. FOR MICE 1,2,6,7,8,9,12 and 14: 8 mice in total

It has been observed that all p-values are less than 0.05 across all levels
of T ∗

2 though it increases steadily as the level of sampling of MR images
increases from 10% sampled to 90% sampled. The null hypothesis being
tested here was if the mean of the iterations of a certain level of under
sampling is equal the mean of the iterations of a certain level of fully
sampled MR images. Thus, from the paired t-test we can conclude

45



that all levels T ∗
2 differences are significant that is the under-sampling

is affecting the calculated T ∗
2 .

2. FOR Mice 3,5 ,10,11 and 13: 5 mice in total

It has been observed that 90% sampled MR images have a p-value
that is greater than 0.05. Thus, it can be concluded that for 90%
sampled MR image calculated T ∗

2 is not affected by the result of 10%
under sampling whereas calculated T ∗

2 of all other level of sampling
10%-80% sampled images have been affected by the under sampling
process. Thus the cutoff point here is 90%. It has also been observed
that in most cases the p-value increases steadily as the level of sampling
of MR images increases from 10% sampled to 90% sampled.

NOTE: Mice 3, 5 and 10 had 1 outlier each which have been ignored
while carrying out the t-test.

3. FOR Mouse 4:

It has been observed that 80% sampled and 90% sampled MR images
have a p-value that is greater than 0.05. Thus, it can be concluded
that for 80% sampled MR image calculated T ∗

2 is not affected by the
result of 10% under-sampling whereas calculated T ∗

2 of all other level
of sampling 10%-80% sampled image have been affected by the under-
sampling process. Thus the cutoff point here is 80%. It has also been
observed that the pvalues do not follow any trend like increasing or
decreasing like the other mice.
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Summarized Results:

Paired t Test ,Hotelling t2 and ICC :

100%-%Sampled 1 2 3 4 5 6 7
100-10 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
100-20 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
100-30 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
100-40 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
100-50 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
100-60 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
100-70 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
100-80 0.0008 <0.0001 0.0106 0.4046 <0.0001 <0.0001 <0.0001
100-90 0.0047 0.0003 0.1312 0.4596 0.0713 0.0001 0.0002

Table 11.4: A table demonstrating p-values of Paired t for Mice 1 - 7

100%-%Sampled 8 9 10 11 12 13 14
100-10 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
100-20 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
100-30 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
100-40 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
100-50 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
100-60 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
100-70 <0.0001 <0.0005 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
100-80 0.0077 0.0004 0.0004 0.0012 0.0007 <0.0001 0.0055
100-90 0.0018 0.0358 0.1058 0.2123 <0.0001 0.3541 0.0271

Table 11.5: A table demonstrating p-values of Paired t for Mice 7 - 14
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100%-%Sampled 8 9 10 11 12 13 14
100-10 0.66 0.63 0.59 0.64 0.65 0.17 0.63
100-20 0.62 0.59 0.55 0.60 0.58 0.18 0.61
100-30 0.58 0.53 0.48 0.56 0.52 0.18 0.56
100-40 0.49 0.46 0.39 0.49 0.40 0.45 0.51
100-50 0.43 0.41 0.33 0.09 0.32 0.34 0.46
100-60 0.36 0.34 0.23 0.06 0.25 0.27 0.42
100-70 0.28 0.25 0.22 0.04 0.20 0.24 0.38
100-80 0.28 0.21 0.17 0.02 0.18 0.16 0.37
100-90 0.27 0.21 0.16 0.01 0.17 0.15 0.34

Table 11.6: A table showing ICC for Mice 1 - 7

100%-%Sampled 8 9 10 11 12 13 14
100-10 0.62 0.67 0.64 0.68 0.67 0.7 0.67
100-20 0.56 0.59 0.54 0.61 0.62 0.67 0.62
100-30 0.5 0.54 0.47 0.55 0.57 0.6 0.58
100-40 0.43 0.46 0.46 0.48 0.55 0.53 0.53
100-50 0.39 0.40 0.39 0.44 0.48 0.49 0.47
100-60 0.36 0.38 0.38 0.39 0.50 0.43 0.43
100-70 0.34 0.34 0.36 0.34 0.47 0.41 0.44
100-80 0.33 0.34 0.35 0.32 0.52 0.41 0.43
100-90 0.32 0.33 0.33 0.31 0.50 0.43 0.46

Table 11.7: A table showing ICC for Mice 7-14

Hotelling t2 p-values were all <0.05.
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NOTE:

It is observed that the ICCs (Intraclass Correlation) across the iterations
are not as low as that compared to the Phantom simulation dataset. In fact in
most cases except the difference of 100% sampled and 90% sampled, the ICC
is much greater than 0. This suggests that the iterations are much homoge-
nous in nature compared to the ones in Phantom simulations. Thus, we can
see that paired t test is working better for the real mice datasets compared
to the Hotelling t2 test since there is not much variability to capture.

Figure 11.2: Visualization of pvalue of Paired t test
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NOTE: The horizontal red line represents the 5% significance level.All
the points plotted above it give nonsignificant results. The vertical red line
shows the minimum level of under-sampling which is giving non-significant
result.

We see for 6 mice the points are above the red line.

Out of those 6, plots for 5 mice(grey, blue, yellow, orange and tangerine-
colored plots) show that 90% sampled doesn’t affect calculation of T ∗

2 .

Lastly,one mouse(the cyan-colored plot) shows 80% sampled or 20% under
sampled doesn’t affect calculations of T ∗

2 .
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Chapter 12

Excursis and Future Work:

Excursis:

Phantom Dataset:

From the results we see in the results chapter(Chapter 11) we can go
ahead and conclude the following for the Phantom dataset:

1. For 643 voxel MRIs, it can be said that for upto only 20% sampled
images that are 80% undersampled MRIs the metric in context, T ∗

2 is
not significantly affected by the under-sampling process. That is a very
interesting result. under-sampling upto 80% can bring down the cost
and time significantly.

2. For 963 voxel MRIs it can be said that for upto 50% sampled images
that are 50% undersampled MRIs the metric in context T ∗

2 is not sig-
nificantly affected by the under-sampling process.

3. For 1283 voxel MRIs it can be said that for upto 80% sampled im-
ages that are 20% undersampled MRIs the metric in context T ∗

2 is not
significantly affected by the under-sampling process.

In conclusion, we do observe that the significant level of under-sampling
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is inversely proportional to the number of voxels in the MRI that is as
the number of voxels increases the level of significant under-sampling
decreases.

NOTE:

As observed before it is very important to remember that since we see
that ICC indicates very less correlations between the iterations of the
Phantom data so to capture the vast variability Hotelling t2 test works
better here compared to paired t-test. So all the above conclusions
have been drawn by observing the p-values derived from Hotelling t2

test.

Vivo Real Mice Dataset:

From the results we see in the results chapter we can go ahead and conclude
the following for the Vivo real mice dataset:

1. For mice 1,2,6,7,8,9,12 and 14(8 mice) we see from the p-values of
the paired t-test that none of the levels of under-sampling gives as
significant results that are in conclusion for these mice under-sampling
even 10% is affecting the T ∗

2 results.

2. For mice 3,5,10,11 and 13(5 mice) we can conclude the cutoff point here
is 90% sampled that is only 10% under-sampling do not significantly
affect the parameter of interest T ∗

2 .

3. For mice 4 it can be concluded that for 80% sampled MR image cal-
culated T ∗

2 is not affected by the result of 20% under-sampling. Thus
in conclusion taking all the events into account it can be said that in
most cases 20% under-sampling can be carried out.
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NOTE:

As observed before it is very important to remember that since we see
that ICC indicates considerably higher correlations between the iterations of
the vivo real mice data,especially when compared to the Phantom data there
is not much variability among the iterations to capture so paired t test works
better than Hotelling t2 test. So all the above conclusions have been drawn
by observing the p-values derived from Hotelling t2 test.

Summarized Conclusion: From both Phantom Dataset
and Vivo Real Mice Dataset

Keeping in mind that the vivo real mice dataset MRI has been conducted in
a 1283 setup we will be comparing the results of 1283 voxel of the Phantom
dataset with the vivo real mice dataset.We observed that even if the
results have been obtained in two different test setups due to the
observed ICC but the results are synonymous that is in both cases
80% sampled that is same as 20% under sampling has been obtained
as the cutoff point. In other words, 20% under sampling does
not disrupt the information obtained by the parameter of interest
which is T ∗

2
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Future Work:

There are quite a few scopes for future work in this project.

1. To get a much better understanding of the cessation point the same
experiment can be carried out for MRI with isotropic sizes 643 and 963.

2. Doing the same will also allow us to venture into the relationship be-
tween the voxel sizes and the cessation point of the under-sampling.

3. Other approaches based on distance can be used especially on a voxel
by voxel level can be carried out at different levels of under-sampling
to find the significant level of under-sampling.

4. The study can be extended to human MRI which will be great in terms
of optimization of time and expense.
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Boğaziçi University 2001

7. Estimation of optimal b-value sets for obtaining apparent diffusion co-
efficient free from perfusion in non-small cell lung cancer.

Kishor Karki,Geoffrey D. Hugo,John C. Ford,Kathryn M. Olsen, Sid-
dharth Saraiya,Robert Groves, and Elisabeth Weiss

Phys Med Biol. Author manuscript; available in PMC 2016 Oct 21.

56


