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Abstract

Liver cancer is a significant public health burden; as of 2020, it is the second leading cause

of cancer-related mortality worldwide. Hepatic resection is considered the gold standard

for the treatment of liver malignancies. However, this procedure is only possible in a

minority of patients, necessitating treatment modalities with comparatively worse per-

formance, such as thermal ablation. Thermal ablation generally results in poorer clinical

outcomes relative to resection, with a higher rate of recurrence and the potential for

complications related to damage to healthy tissue near the ablation zone. Medical imag-

ing techniques can improve thermal ablation procedures via assistance in preoperative

planning, probe placement and postoperative evaluation, but clinicians lack a method to

monitor and control thermal ablation while the procedure is ongoing.

Echo decorrelation imaging is a pulse-echo ultrasound imaging technique that mea-

sures stochastic variations in echo signals arising from thermal treatment. The method

has been shown to accurately predict thermal lesioning in in vivo and ex vivo studies of

thermal ablation using conventional 2D ultrasound imaging. This thesis aims to apply

the echo decorrelation methodology to volumetric ultrasound data to control RFA proce-

dures in real-time. Feedback control is implemented as a bang-bang type controller that

automatically stops thermal treatment if the spatial mean of the cumulative decorrelation

map exceeds a set threshold.

3D echo decorrelation-based control was evaluated through a series of feedback-

controlled and uncontrolled ablation trials on ex vivo bovine liver tissue using a clinical

RFA system. The RFA system was set to target a 15 mm radius spherical region of tissue

while decorrelation maps were computed from captured volumetric ultrasound data; if

the control criterion was met, the procedure was automatically stopped using a custom-

designed microcontroller circuit. Trials were divided into two groups, a preliminary group,

which was used to evaluate the efficacy of the method in predicting local thermal lesioning

as well as to inform parameter selection for later trials, and a final group, which was used
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to gauge the performance of the method in optimizing the size and geometry of the

ablated region.

In our feedback-controlled trials, we found moderately better conformance to the

targeted region as measured by the Sorenson-Dice coefficient between the targeted region

and sectioned tissue histology. A statistically significant difference in ablated volume was

found between the uncontrolled and controlled groups, but no difference was found in

the variance of ablated volume or the ablation rate. We found that 3D echo decorre-

lation imaging performed similarly to 2D echo decorrelation imaging in monitoring and

controlling thermal lesioning, despite using a lower frame rate, lower number of samples

and forgoing stochastic averaging. Overall, we have demonstrated a feedback control

methodology for ex vivo radiofrequency ablation using 3D ultrasound echo decorrelation

imaging that resulted in better conformance to our desired ablation region. This result

shows promise for the utility of echo decorrelation imaging in optimizing thermal ablation

procedures, which could potentially result in better clinical outcomes for patients with

liver cancer.
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Chapter I

Introduction

1.1 Background

1.1.1 Clinical background

In 2020, an estimated 905,677 patients were diagnosed with primary liver cancer, and

830,180 deaths were attributed to the disease worldwide, making it the second leading

cause of cancer-related mortality [1]. The high human toll is in large part due to liver

cancer’s mortality rate; the estimated combined 5-year survival rate for all stages in the

united states is 18%, the second lowest behind only pancreatic cancer [2]. Hepatocellular

carcinoma (HCC) is the most common primary liver cancer, accounting for an estimated

75% of diagnoses in 2020 [2]. Epidemiologically, the causes of HCC are multifaceted, with

primary risk factors varying by region and population group. In developing nations, the

foremost risk factors are hepatitis B (HBV), hepatitis C (HCV), and aflatoxin exposure,

while in developed nations, these factors have been largely mitigated by wide-scale vac-

cination and strict food safety laws [3, 4]. In these countries, the development of HCC

is primarily associated with obesity, alcoholism, and type 2 diabetes, while less common

risk factors include hemophilia, non-alcoholic fatty liver disease, hemochromatosis, and

congenital diseases such as Alpha 1-antitrypsin deficiency and Wilson’s disease [3, 5–7].

Recent projections based on epidemiological models of these risk factors, particularly

obesity and type 2 diabetes, have suggested that the overall incidence of liver cancer will

increase by 2030 [8]. Even with global efforts for more equitable distribution of hepatitis
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vaccinations, the rise in obesity- and type 2 diabetes-mediated liver cancer diagnoses are

expected to outpace these mitigation efforts in developing nations [8]. Additionally, the

liver is a frequent site for metastasis of other cancers, which is associated with significantly

worse clinical outcomes and higher rates of recurrence, particularly when originating from

the lungs, pancreas, colon or stomach [9].

Prognosis and treatment methods vary widely by the stage at which the disease is

diagnosed, with early detection being the most substantial predictor of long-term survival

[5, 6, 10]. Unfortunately, early-stage liver cancer is often symptomatically indistinguish-

able from generalized chronic liver disease, resulting in most patients going undiagnosed

until the disease has progressed [7, 10]. Curative treatment approaches, such as hep-

atic resection (HR), liver transplantation (LT), and thermal ablation (TA) are often only

available in early-stage cases, while systemic chemotherapy and palliative care are typi-

cally the only treatment options available for late-stage disease with metastasization [5,

6]. Chemotherapy often results in a relatively limited prolongation of life, with the stan-

dard first-line treatments such as Sorafenib, Lenvatinib and Nivolumab only providing an

additional three months for the patient while also causing debilitating side effects [7]. As

later-stage disease is nearly always fatal, screening, early intervention, and improvement

in treatment methodologies for early-stage disease are essential for effective treatment of

HCC and metastatic liver disease [7]. There are numerous treatment methodologies in

current clinical use for patients diagnosed in earlier stages of the disease; these will be

discussed in the following section.

1.2 Current liver cancer treatment approaches

1.2.1 Clinical standards

Results from a meta-analysis of liver cancer treatment modalities completed by Tan

et al. in 2018 suggested that hepatic resection (HR) offers superior clinical outcomes when

compared to percutaneous ablation procedures such as thermal ablation and chemical ab-

lation [11]. Studies have found that in patients satisfying the Milan criteria (≤ 3 lesions,
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≤ 3 cm each or a single lesion ≤ 5 cm [12]) the overall survival (OS) rate for patients

undergoing HR is between 60–70% [7]. By contrast, percutaneous ablation procedures

have an OS rate between 38–60% depending on treatment method [7]. These are both

generally inferior to liver transplantation (LT) which has an OS rate of 65–78%, but

due to the finite availability of donor organs, this treatment approach is often limited

to patients with comorbid liver cirrhosis or later-stage disease without metastasization,

for whom LT is the only curative approach [7]. This analysis is reflected in authorita-

tive clinical recommendations for the treatment of liver cancer, such as those published

by the American Association for the Study and Treatment of Liver Disease (AASLD)

[6] and the National Comprehensive Cancer Network (NCCN) [5], both of which con-

ditionally recommend hepatic resection over ablative procedures in patients where it is

applicable. A diagram detailing recommended treatment courses given Barcelona Clinic

Liver Cancer (BCLC) stage can be seen in figure 1.1. Unfortunately, despite being the

Figure 1.1: Diagram of treatment guidelines provided by Heimblech et al. for clinical
recommendations published by AASLD per BCLC stage 0-D, with rows 1, 2 and 3 rep-
resenting first-line, second-line, and third-line treatment respectively [6].

recommended first-line treatment, as many as 70% of patients are ineligible for hepatic

resection [13]. Exclusionary criteria for HR include general systemic risks for invasive

surgery, anatomical features of the tumor itself, and insufficient hepatic reserves [14, 15].
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For patients with early stage disease (BCLC 0–A) who are ineligible for surgical resection

there are numerous locoregional treatments in current use; including thermal ablation

(TA), chemical ablation (CA) and arterially directed therapies (ADT). Of these, thermal

ablation has become the de facto standard for treatment of early stage disease, replacing

older methodologies such as chemical ablation in general clinical practice [16, 17]. Arte-

rially direct therapies, such as transarterial radioembolization (TARE) and transarterial

chemoembolization (TACE) are generally recommended for patients with intermediate

stage disease (BCLC stage B-C) [6, 7, 10] or in combination with thermal ablation for

early stage disease (BCLC A) [7, 18]. As the procedure is indicated for later stage disease,

it is intended to prolong survival while waiting for a suitable donor, rather than to be

curative in itself [7].

1.2.2 Thermal ablation

Thermal ablation is the clinical standard for early-stage primary liver cancer in

patients who are ineligible for hepatic resection [6, 7]. The principal of operation in

all thermal ablation procedures is to apply a thermal dose to the afflicted tissue in or-

der to raise its temperature above 60◦, inducing coagulative necrosis within a targeted

region [19]. Thermal energy can be delivered via radiofrequency electric current as in ra-

diofrequency ablation (RFA) [20], microwave electromagnetic radiation as in microwave

ablation (MWA) [21], or acoustic waves as in high intensity focused ultrasound ablation

(HIFU) [7]. In cases where the tumor is < 2 cm in diameter, ablation has similar efficacy

to HR [13, 22], but in the general case ablation has a higher recurrence rate, as well as

the potential for additional complications from damage to surrounding healthy tissue [7,

11, 13, 22, 23].

To ensure full treatment, physicians are advised to ablate a margin of 2–5 mm around

the tumor [24]. This margin then serves as the clinical target for evaluation of treatment

efficacy [25]. Although a large margin can substantially decrease the odds of recurrence, it

is also associated with an increased risk of serious complications [25]. For cases where the

tumor’s location precludes hepatic resection, it is especially pertinent that these tumors
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are accurately ablated, with minimal damage to surrounding tissue, while also ensuring

full necrosis of the diseased tissue [13, 25–27].

1.2.2.a Radiofrequency ablation

Radiofrequency ablation accounts for the bulk of thermal ablation procedures in the

United States and worldwide [7]. The principle of operation in RFA consists of passing

radiofrequency AC electric current (400–500 kHz) from a needle inserted directly into

the tumor to a dispersive grounding pad situated on the skin of the patient [11]. The

resultant electric field agitates ions at the frequency of the applied potential, transducing

electrical energy into heat via friction [20]. As the field lines disperse widely through the

tissue, thermal lesioning is limited to a small, roughly spherical region near the needle

tip [20]. Electrical conductivity is the primary limiting factor for lesion size, which is

further compounded by the formation of ‘charred’ high electrical impedance regions of

ablated tissue [19]. Tissue vaporization, coagulation, and vascular perfusion-induced

heat sinks also affect electrical and thermal conductivity, resulting in highly non-linear

heat propagation characteristics [11, 20, 28]. Larger lesions can be achieved with saline

infusion, which regularizes ion concentration and cools the tissue to prevent charring-

induced impedance spikes, and by using multiple electrodes [13, 29].

RFA has a comparatively poor survival rate when compared to HR, with a 5-year OS

rate between 39.9–68.5% [7], and tumor recurrence occurring in 15–20% of patients [13,

30]. Recurrence is strongly associated with overall tumor size and proximity to surround-

ing vital anatomical features [13]. A study by Ayav et al. found that the best predictor

for recurrence in ablation procedures is a tumor size > 3 cm, which they posited was due

to the high heterogeneity of the tumor causing uneven treatment throughout the ablation

zone [13, 29]. RFA is generally recognized as a low-risk procedure, but complications can

include damage to adjacent organs, liver failure, cancer seeding and peritoneal hemor-

rhaging in a minority of patients [27]. Complications related to inaccurate treatment and

ablation of healthy tissue can result in significantly worsened clinical outcomes [27, 31],
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with a strong correlation between ischemic complications as a result of overtreatment and

patient mortality [26].

1.2.2.b Microwave ablation

Microwave ablation (MWA) is an increasingly popular alternative to RFA and is

indicated for the same stage and manifestations of the disease (ineligible for hepatic re-

section, tumor size < 5 cm) [7]. In MWA, tissue is heated via microwave-frequency

(900–2450 MHz) electromagnetic radiation emitted from a dipole antenna placed within

the targeted tumor. Dipole molecules, primarily water, oscillate at the applied frequency,

heating tissue via friction in a manner similar to RFA [21]. MWA is less dependent on lo-

cal tissue conductivity than RFA and, as such, is not as affected by vaporization-induced

changes in tissue impedance, allowing for greater power delivery and thus shorter ablation

times [32]. Additionally, MWA is less susceptible to undesired cooling from local arterial

perfusion [11, 21, 32]. MWA has been found to perform similarly to RFA in clinical

practice, with a comparable 5-years OS rate of 43.1–60% [7]. A meta-analysis by Tan

et al. did not find a statistically significant difference in clinical outcomes or incidence

of complications between the two methods [11] and concluded there was no substantial

evidence for the superiority of MWA over RFA. Despite its seemingly negligible improve-

ments in treatment outcomes compared with RFA, MWA has become a popular modality

among physicians due to lower procedure times, and perceived improvements in ablation

accuracy [7, 12].

1.2.2.c High intensity focused ultrasound ablation

High intensity focused ultrasound (HIFU) ablation utilizes focused acoustic energy

to induce coagulative necrosis at a precise focal depth [20]. Unlike percutaneous ablation

methods such as RFA or MWA, HIFU can deliver a thermal dose to a targeted region

without direct contact. This offers clear benefits in reducing the risk of complications

from a surgical incision, such as tumor seeding [33]. Despite the many benefits offered by

a minimally invasive procedure, HIFU adoption has been relatively slow in the United
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States [34]. However, HIFU ablation is a very active area of research and is being studied

for the treatment of liver [35], breast [36], pancreatic [37], prostate [38, 39] and brain

cancer [40].

1.2.2.d Combination therapies

Combination therapies of ablative procedures with TACE and TARE have been pro-

posed to address the shortcomings of either method. The techniques can be administered

concurrently to compensate for heat loss due to perfusion-mediated tissue cooling or se-

quentially to ensure complete treatment of potentially unablated tissue [41, 42]. This

combination has shown promising results in some clinical studies and meta-analyses,

with some reporting significant improvements from combination HIFU-TACE therapy

[43], RFA-TACE therapy [44, 45] and MWA-TACE therapy. but this increase in efficacy

is limited to more severe disease with > 5 cm tumors, which is consistent with the clinical

recommendation for TARE/TACE alone [46].

1.2.3 Clinical need: monitoring and control of thermal ablation

procedures

Thermal ablation procedures are considered a second-line treatment modality due to

comparatively poor performance relative to hepatic resection in both metastatic [47] and

primary cases [7, 11] of liver cancer. Despite being the first-line treatment, HR is only ap-

plicable in 20–30% of patients, necessitating the application of treatment modalities with

relatively poor performance, such as thermal ablation [7]. This poor performance can be

attributed to a lack of precise targeting of cancerous tissue relative to the precision of

surgical resection [13, 30]. Inaccurate targeting has two potential adverse effects: cancer

recurrence if the tissue is undertreated and damage to vital, healthy tissue if the tumor is

overtreated. Recurrence as a result of undertreatment occurs in 15–20% of patients [13,

30] and will require additional rounds of therapy to assure long-term disease-free survival.

Overtreatment can worsen clinical outcomes through damage to vital supportive tissue,

such as the hepatic artery or portal vein [13]. Therefore, a method that can improve the
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accuracy of thermal ablation procedures to be closer to the precision of clinical resec-

tion could reduce the incidence of complications arising from tumor overtreatment and

undertreatment [48].

1.3 Image guided thermal ablation

The standard operating procedure for thermal ablation involves medical imaging

technologies for localization of malignancies, probe placement and postoperative evalua-

tion of the ablated region [49]. This can be done with magnetic resonance (MR), com-

puted tomography (CT) [50, 51], and/or ultrasound (US) [49] based imaging methods.

MR [47] and CT [51] can generate high-resolution scans delineating tumor boundaries

more consistently than US alone, but face numerous practical limitations for use in real-

time targeting of cancerous tissue. Exposure to ionizing radiation limits the continual use

of CT, and the need for highly specialized non-magnetic equipment limits MR [47]. Thus

these modalities are generally limited to pre- and postoperative imaging, where they are

used to determine the volume and location of a tumor and thermal lesion, respectively

[51]. Probe placement is typically guided by B-mode ultrasound imaging with reference

to the images generated by CT and MR [25].

Notably, standard clinical methods are almost entirely limited to post- and pre-

operative evaluation of tumor margins, with no way of verifying complete ablation during

the procedure. Clinicians thus cannot stop the procedure early to minimize lesioning of

healthy tissue, nor can they continue an incomplete ablation without first viewing medical

images taken after the procedure. A real-time imaging modality that can inform clinicians

of the status of the targeted tumor could thus minimize the need for additional procedures

and minimize the amount of ablated healthy tissue.

1.3.1 Real-time monitoring and control of RFA

Numerous real-time imaging techniques have been proposed for improving tissue

targeting in thermal ablation procedures, including magnetic resonance imaging (MRI)
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[52–54] and ultrasound-based (US) [55, 56] methods. As ablation procedures already

feature one or more imaging modalities for tumor localization and lesioning evaluation,

real-time monitoring methods would not add a high degree of complexity to existing

clinical standards.

MR is capable of accurately predicting thermal lesioning in real-time via T1 [57,

58], T2 [59, 60] and proton resonance frequency [61, 62] based thermometric methods.

MR monitoring of RFA and MWA has been found to offer promising performance in

predicting necrotic lesions and incomplete tumor ablation in some clinical studies [59,

63]. MR monitoring of HIFU has seen particularly well studied [64], and is becoming

more common in clinical practice. However, MR devices are costly, non-portable, require

extensive training and can only be used in conjunction with specialized non-magnetic

tools [7].

In contrast with MR, ultrasound imaging is portable, inexpensive, and can be used

with standard equipment [7]. Thermal lesioning results in measurable changes in the

acoustic properties of tissue such as the elastic modulus [65] and attenuation coeffi-

cient [66, 67], as such these quantities can be measured to estimate local tissue necro-

sis. Proposed methods include echo-strain imaging [68], integrated backscatter mapping

[69], attenuation imaging [66, 67], elastography [65], radiation-force elasticity [70], block-

matching [71], and harmonic motion imaging [55, 72]. Many of these methods rely on

cross-correlation of adjacent echo-frames for computation, which can be distorted by

stochastic variation in echo signals arising from structural deformation, shadowing from

bubbles and changes in blood flow. Broadly, these effects can be described as ‘echo signal

decorrelation’.

The underlying physical mechanisms of echo-signal decorrelation were analyzed by

Hooi et al. [73] who found that decorrelation arose out of intrinsic structural changes as

well as noise- and motion-induced artifacts. Local tissue heating affects the strain of the

scattering medium through thermal expansion or changes in the speed of sound, causing

decoherence between successive pulse-echo signals [73]. Additionally, tissue vaporization

above 100 ◦C results in transient bubble activity within the heated tissue, causing rapid
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random motion that is detectable in echo signals [74]. Echo signal decorrelation is the

basis of the echo decorrelation imaging technique, as will be discussed in the next chapter.

1.4 3D ultrasound imaging

Real-time volumetric ultrasound imaging has become practical in recent years as a

result of advances in piezoelectric material manufacturing, and efficient parallel comput-

ing devices [75]. Matrix array transducers are state-of-the-art in volumetric ultrasound

imaging, offering far superior volume rates compared to previous methods based on me-

chanical motion of conventional 2D linear arrays [75]. Matrix arrays utilize a 2D grid of

imaging elements cut from a single piezoelectric crystal, each of which is capable of trans-

mission and reception of pulsed ultrasound signals [76, 77]. The principle of operation of

matrix arrays is similar to linear phased arrays; a phased pulse is applied to each individ-

ually addressable grid element, and the received echos are beam-formed into a composite

image [76]. In linear phased arrays, beam steering is limited to the azimuthal imaging

plane. In contrast, a matrix array can steer along the azimuthal imaging plane and the

orthogonal elevational imaging plane, enabling the acquisition of true real-time 3D pulse-

echo volumes. These devices have found use in fetal imaging [78], renal monitoring [79]

and breast cancer screening [48] among other applications [75].

As mentioned in section 1.2, the clinical benchmark used for evaluation of thermal

lesioning is the 3D margin enclosing the tumor [23]. Previously, a 2D linear array was

limited to evaluating a single plane and could not track the entire margin. With matrix

arrays, it becomes possible to image the full ablation zone at volume rates high enough

for real-time imaging. Thus, if an accurate method of determining thermal lesioning with

ultrasound imaging can be established, true real-time prediction of the total ablation

margin is possible.
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Chapter II

Echo decorrelation imaging

2.0.1 Introduction

Previous ultrasound-based monitoring and control methods were found to be ham-

pered by the phenomenon of local echo signal decorrelation around the region of interest,

limiting the accuracy of estimated tissue properties such as the elastic modulus and at-

tenuation coefficient [80]. While these ultrasound methods can often accurately measure

changes in tissue elasticity due to thermal lesioning, their accuracy during the proce-

dure is greatly limited. However, since local decorrelation occurs consistently in areas

of thermal activity, this limitation could be repurposed into a predictor of local thermal

lesioning.

Echo decorrelation imaging is a pulse-echo ultrasound imaging technique that spa-

tially maps millisecond-timescale echo-signal decorrelation due to thermal lesioning. The

method provides a computationally inexpensive method of measuring local spectral deco-

herence in the scattering medium and, accordingly, changes in tissue arising from thermal

lesioning. The theory behind echo decorrelation and previous work related to its use in

both real-time monitoring and control of thermal ablation procedures will be explored in

this chapter.

2.0.1.a Theory

Let I(r, t) be a complex beamformed pulse-echo frame (Hilbert transformed analytic

or in-phase/quadrature demodulated) recorded at time t, where r is a coordinate vector
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in Cartesian space. Let I(r, t + τ) be a second frame recorded at time t + τ , where τ is

the inter-frame time. The spatially windowed zero-lag cross-correlation between the two

frames is computed as

R01(r) = ⟨I(r, t) · I(r, t+ τ)∗⟩ (2.1)

where ∗ denotes complex conjugation and ⟨·⟩ is windowed spatial integration. Spatial inte-

gration over a finite window is equivalent to convolution of the frame with the windowing

function, defined as follows:

⟨I(r, t)⟩ =
∫
S
w(r− r′)I(r, t)dr′ = I(r, t) ∗ w (2.2)

where w is the windowing function and S is the coordinate space of the echo frame over

which the quantity is integrated. This allows for efficient computation of decorrelation

maps using FIR filter- or FFT-based convolution, which is necessary for use in real-time

imaging.

The windowed zero-lag autocorrelation of each frame is computed similarly,

R00(r) = ⟨|I(r, t)|2⟩

R11(r) = ⟨|I(r, t+ τ)|2⟩
(2.3)

and can be regarded as a smoothed map of local backscatter energy magnitudes for each

echo frame [74]. The elementwise geometric mean of the autocorrelation functions is then

defined as the integrated backscatter map, β(r)

β(r) =
√

R11 ·R00 (2.4)

which is an approximation of local tissue backscatter energy between the two frames.

A simplified locally normalized decorrelation [81] map can be defined as the normal-

ized correlation coefficient between the echo frames subtracted from unity [73]

∆(r)local = 1− |R01(r)|2

|R11(r)| · |R00(r)|
= 1− |R01(r)|2

β2(r)
(2.5)
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Hooi et al. demonstrated that this expression is an approximation of local spectral de-

coherence in the scattering medium. As such, echo decorrelation imaging provides a

computationally inexpensive method of measuring changes in the scattering medium in-

duced by thermal lesioning

Mast et al. proposed normalization by the spatial average of backscattered energies,

R00, to account for artifactual decorrelation in regions of both high and low echogenicity

[74]. The quantity is then divided by the interframe time to account for greater variation

within a larger time window. The final decorrelation map as used in this study was

defined by Subramanian et al. [82] as

∆(r) = 2 ·
[β2(r)− |R01(r)|2

τ · [β2(r) + β2]

]
(2.6)

where the term β2 is the spatial mean of the integrated backscatter map over the entire

echo-frame. This is used in place of normalization by R00 to account for the backscatter

energies of both echo-frames.

In the decorrelation formula, the term in the numerator β2(x, y, z, t)−|R2
01(x, y, z, t)|

measures transient heat-induced changes in the pulse-echo frame at each voxel, such that

at regions where the signal has diverged decorrelation is larger, and in regions where

the signal is similar, decorrelation is smaller. An illustration of decorrelation on a single

scan line can be seen in figure 2.1. To account for stochastic variation within a given

adjacent pair of echo-frames, instantaneous decorrelation maps can be computed from

an ensemble average of multiple echo-frame pairs. Ensemble averaged instantaneous

decorrelation, ∆(r, t), is computed as

∆(r, t) =
1

K − 1

K−1∑
k=1

∆(r, kτ) (2.7)

where K is the number of frames over which the ensemble average is computed and k is

the index of each frame.

Numerical analysis of the effect of ensemble averaging was completed by Cox et al.,

who found that RMS error between echo decorrelation imaging and scatterer reflectivity
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Figure 2.1: Example of locally and globally normalized echo decorrelation on a single
scan line. The solid red and blue lines represent two sequential dB scaled I/Q scan line
magnitudes at times t and t + τ imaging to a depth of 255 mm. The dotted black line
is echo decorrelation per millisecond. Decorrelation increases as the echo signals diverge,
reaching a maximum at approximately 205 mm where the two signals have diverged to
the greatest degree within the Gaussian window (σ = 3 mm).

decoherence was proportional to 1/
√
N for small windows, where N is the number of

ensemble-averaged frames [83]. As such, ensemble averaging can significantly reduce the

effect of random variation on echo decorrelation maps. Using a larger spatial window

also improves resilience to stochastic variation. For 3D echo decorrelation, where the

large size of the data limits ensemble averaging, a larger window can be used to account

for stochastic variation. This comes at the cost of spatial resolution, as windowing will

introduce statistical dependence to the computed echo decorrelation maps. This will be

discussed further in section 3.2.3.d.

2.0.1.b Thermal ablation monitoring using echo-decorrelation imaging

Monitoring of thermal ablation procedures is accomplished via computation of a cu-

mulative echo-decorrelation map from a series of instantaneous echo-decorrelation maps.

B-mode images are captured at a set interval and their instantaneous decorrelation is

computed from equation 2.6 and ensemble averaged as defined in equation 2.7. The

cumulative map is then computed as the element-wise maximum of all instantaneous

decorrelation maps

∆cum(r) = max(∆(r, 0),∆(r, 1), ...,∆(r, N)) (2.8)
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where N is the number of instantaneous decorrelation maps computed thus far and n is

the index of the instantaneous decorrelation map.

This cumulative maximum echo decorrelation map is hypothesized to measure the

total heat-induced echo signal decorrelation at a given voxel, giving an estimate of local

tissue necrosis due to thermal treatment. Multiple studies have shown that decorrela-

tion mapping offers better predictive power for measurement of thermal lesioning than

backscatter mapping [74, 82, 84, 85].

2.0.1.c Noise and motion compensation

A procedure developed by Hooi et al [73] can be used to isolate thermally induced

signal decorrelation from artifactual decorrelation arising from motion and noise. Total

decorrelation is modeled as a linear combination

∆(r, t) ≈ 1− ρ(r, t)(1−∆(r, t)artifactual) (2.9)

where ρ represents the expected contribution of artifactual decorrelation sources as a

function of position [73].

The parameter ρ can be estimated by recording a set of echo-frames prior to ablation

and computing a sham decorrelation map, ∆sham, from the cumulative decorrelation map

generated by those echo-frames. The final derived quantity as used in in vivo studies of

echo decorrelation by Fosnight et al. [84] and Abbass et al. [86] was

∆corrected(r, t) =
∆uncorrected(r, t)−∆sham(r, t)

1−∆sham(r, t)
(2.10)

where ∆corrected is the component of decorrelation attributed primarily to changes in the

scattering medium and ∆sham is a decorrelation map computed from echo frames recorded

prior to ablation.

This method was found to accurately isolate ablation induced decorrelation from

other deorrelation sources in studies of in vivo ablation of rabbit liver with an implanted
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VX2 tumor [84, 87], providing evidence for echo decorrelation’s potential utility in a

clinical setting.

2.0.2 Echo decorrelation based control

Abbass et al. [85, 87] proposed a real-time closed-loop feedback control method using

a scalar control criterion derived from cumulative echo decorrelation maps. The control

criterion is updated upon recomputation of cumulative echo decorrelation and compared

to a set threshold. If that threshold is exceeded, the treatment is stopped.

In their trials on control in ex vivo bovine liver, they captured a set of 20 B-mode

images per HIFU sonication cycle. Ensemble averaged decorrelation maps were then com-

puted from the set of of B-mode images and a cumulative decorrelation map was formed.

The control parameter, ∆̂, is derived from the cumulative maximum decorrelation map

as either the spatial mean of all pixels within a selected region of interest (ROI)

∆̂avg =
1

|R|
∑
r∈R

∆cum(r, n) (2.11)

or the minimum pixel value within a ROI

∆̂min = min(∆(r, n)), r ∈ R (2.12)

where R denotes the set of pixels within the targeted ROI, and |R| is the number of

pixels within that ROI.

Ablation was stopped if the decorrelation criterion exceeded a predetermined thresh-

old, denoted ∆thresh. The control behavior can be summarized as


∆̂(N) < ∆thresh Continue

∆̂(N) ≥ ∆thresh Stop treatment

(2.13)

where the value of the threshold is determined by analyzing decorrelation maps of trials

without feedback control. The decorrelation value which resulted in a true positive rate
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(specificity) exceeding 90% for prediction of local ablation was one criterion for selection

of a control parameter. Further optimization of the control parameter was carried out

through analysis of the entire ablated area. Trials were classified into two groups; trials

where the targeted ROI was fully ablated and trials where the targeted ROI was not fully

ablated. The minimum decorrelation within the ROI in each case was used as a predictor

of full ablation of the targeted ROI, and the control parameter was selected to achieve

high specificity and reasonable sensitivity for ablation of the full ROI.

In their ex vivo trials of this method, it was found that echo decorrelation feed-

back control improved the ability of echo decorrelation to predict local ablation, but did

not result in more uniform lesions [85]. The authors concluded that echo decorrelation

imaging-based control showed promise, but was limited by its inability to image the entire

ablation margin.

This methodology was then used in a model of in-vivo rabbit liver with an induced

VX2 tumor. The motion compensation described in section 2.0.1.b was applied to account

for motion due to the breath of the anesthetized animal. Feedback-based control was

found to perform similarly to the ex vivo trials. Little effect was found on the uniformity

of the ablated region, but prediction of local ablation was found to be superior in the

controlled group [87].

2.0.3 3D echo decorrelation imaging

Previous studies have shown promising results for predicting local tissue ablation

with echo decorrelation imaging, but have been limited to a single 2D plane of tissue.

This research aims to extend that methodology to 3D, using the now widely available

matrix-array probe technology described in Section 1.4.

A study completed in our lab prior to this thesis explored the use of 3D echo decorre-

lation imaging for monitoring thermal ablation in ex-vivo bovine liver [81]. In this study,

ex vivo bovine liver was treated using a clinical RFA system while volumetric ultrasound

data was recorded using a matrix array probe. The RFA needle was set to ablate a 2

cm diameter region with a maximum delivered power of 150 W, temperature target of
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110 ◦C and a treatment time at the target temperature of 5 minutes. Echo decorrelation

imaging was found to be an effective predictor of local tissue ablation, outperforming

backscatter based imaging by a significant margin, as measured by the AUC of the ROC

curve (described in more detail in section 3.2.6).

This study also explored alternative normalization schemes. Echo decorrelation maps

were computed as described in equation 2.6, referred to as combined normalization, in

addition to only local normalization (equation 2.5) and only global normalization by

the spatial average of integrated backscatter. The performance of global and combined

normalization, as measured by the AUC of the ROC curve, was found to be significantly

better than local normalization. No significant difference was found between combined

and global normalization in this study.

Prediction of total ablation volume was assessed via a procedure based on K-means

clustering. Voxels were classified as predicted-ablated and predicted-unablated based on

weighted k-means clustering on their decorrelation value and distance from the ablation

needle tip. Performance in prediction of local ablation was then evaluated via the RMS

error between predicted volumes and segmented tissue histology, as well as the Dice

coefficient between predicted-ablated voxels and observed ablated voxels. The results

were similar to the results with ROC analysis, with global and combined decorrelation

significantly outperforming locally normalized decorrelation and integrated backscatter.

Correlation between predicted volume and observed volume was found to be greatest for

globally normalized decorrelation (R2 = .333) and least for IBS (R2 = .110).

The overall viability of the method was in line with previous studies, where its

performance in measuring local ablation was found to be comparable to 2D echo decorre-

lation imaging. Notably, this performance was achieved without ensemble averaging and

with a significantly lower frame rate (10 FPS) than was used in previous studies. This

study provided preliminary evidence for 3D echo decorrelation’s viability as a real-time

monitoring methodology for thermal ablation procedures.
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2.1 Hypothesis and specific aims

2.1.1 Research hypothesis

This research aims to provide an ultrasound imaging-based feedback control scheme

for radiofrequency ablation procedures. Such a method could result in improved treat-

ment outcomes for the patient due to reduced damage to healthy tissue while ensuring

complete ablation of malignant tissue. The central hypothesis of this research is that

3D echo decorrelation imaging can serve as a suitable control parameter for precisely

targeted ablation, improving the regularity of the ablation zone and full ablation of a

desired margin.

2.1.2 Specific Aim 1: Evaluation of 3D echo decorrelation as

a predictor of thermal lesioning and determination of a

control parameter

Before the proposed method of echo decorrelation-based control could be applied, a

suitable control parameter needed to be determined. This was accomplished via a set of

preliminary trials in ex-vivo bovine liver using a clinical RFA system. Pulse-echo volumes

were acquired using a 3D matrix-array probe during the ablation procedure and used to

construct a cumulative 3D echo decorrelation map. Ablated bovine liver tissue was then

sectioned into azimuth-depth planes and scanned via an optical scanner. The optical

scans were then segmented into 2D binary masks and combined into a 3D mask. A viable

control parameter was then found from analysis of echo decorrelation’s performance as

a predictor of local ablation as well as through evaluation of total ablation size and

geometry.
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2.1.3 Specific Aim 2: Evaluations of three-dimensional echo

decorrelation based control in ex-vivo bovine liver

3D echo decorrelation’s performance in improving the uniformity and conformance

to the targeted ablation zone was evaluated through a set of trials with echo decorrelation

feedback control and an ‘uncontrolled’ set, which only uses the RF generator’s temper-

ature control functionality. Ablation trials were carried out with the same RFA system

and imaged with a matrix array probe. Uncontrolled trials were carried out identically to

the preliminary trials, while controlled trials were automatically halted upon satisfying

the control criterion. The relative performance between controlled and uncontrolled tri-

als was then evaluated by comparing total ablation volume, conformance to the desired

ablation geometry via the Sorenson-Dice coefficient, and the rate of ablation.
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Chapter III

Real time monitoring and control of ex-vivo

radiofrequency thermal ablation using echo

decorrelation imaging

3.1 Introduction

To use 3D echo decorrelation imaging’s favorable performance in the prediction of

local tissue necrosis to optimize the size and geometry of the ablated region, a closed-loop

feedback control algorithm was designed. This algorithm was based on previous work by

Abbass et al [85, 87] on control of HIFU ablation using 2D echo-decorrelation imaging

described in section 2.0.2, with necessary adaptations for use with volumetric data and RF

ablation. Volumetric pulse-echo pairs were acquired as IQ demodulated pulse-echo data

via a matrix array probe connected to a clinical ultrasound system. Received volumes

were then used to create a 3D cumulative echo decorrelation map, and a scalar control

criterion derived from this map was used to control treatment duration via a bang-bang

type controller.

Trials were divided into two groups, a preliminary group, which was used to evaluate

the efficacy of the method in predicting local thermal lesioning as well as to determine an

effective control criterion for feedback-controlled trials, and a final group, which was used

to gauge the performance of echo decorrelation feedback control in optimizing the size

and geometry of the ablated region. Real-time control required several additional com-
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putational optimizations over the monitoring study, where decorrelation was computed

entirely post-hoc. It also required the creation of software and hardware to coordinate

image acquisition, decorrelation computation, and automatic control of the RF genera-

tor. This chapter will outline the materials, methods, and results of our feedback control

system.

3.2 Materials and methods

3.2.1 3D echo decorrelation feedback control algorithm

Real-time feedback control using 3D echo decorrelation imaging was implemented via

a closed loop feedback control system, where treatment duration was controlled by a bang-

bang type controller. Treatment was stopped when the control criterion, derived from

the cumulative echo decorrelation map computed from 3D pulse-echo frames acquired

throughout the procedure, exceeds a given threshold. Trials were said to have been

‘successfully controlled’ if the treatment was stopped early due to the control condition

being satisfied.

Pulse-echo volume pairs were acquired by a clinical ultrasound system and sent for

processing as quickly as the device allowed. Instantaneous decorrelation maps were then

computed from the received volume pairs via the definition of echo decorrelation described

in section 2.0.2 and formed into a cumulative decorrelation map. After each new echo

volume pair was acquired, the cumulative map was updated, and the control parameter

was recomputed. If the control criterion exceeded a set threshold, ∆thresh, the treatment

was stopped; The process can be summarized as


∆̂(N) < ∆thresh Continue

∆̂(N) ≥ ∆thresh Stop treatment

(3.1)

where the control criterion, ∆̂, was chosen as the spatial average of all voxels within a

15 mm spherical ROI centered at the needle tip. This approach is similar to the method
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proposed by Abbass et al [85], as discussed in in section 2.0.2, with the exception that

we chose to only use the average decorrelation feedback criterion. Abbass et al. found

that the minimum and average based control criteria performed similarly in their trials

[85], so it was decided to use only the average-based method.

Figure 3.1: Flow chart showing the real-time echo decorrelation feedback control algo-
rithm. Subfigures (a) and (b) show the control algorithm, where the portion marked (a)
occurs on the control computer and the portion marked (b) occurs on the ultrasound
scanner. Subfigure (c) shows a higher-level view of the setup, illustrating the overall
data-flow among the devices used.

A block diagram of the control algorithm and related devices can be seen in Figure

3.1, which shows the main feedback control algorithm in subfigures 3.1a and 3.1b, and

a high-level block diagram of the devices used in subfigure 3.1c. The portion running

on the scanner, seen in 3.1b, is completed asynchronously with the portion running on

the control computer, seen in subfigure 3.1a. Time taken to complete each operation is

marked with curly braces. A detailed account of our implementation of this algorithm is

given in section 3.2.3.
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3.2.2 Image processing

3.2.2.a Acquisition and scan conversion

Ultrasound pulse-echo volumes were recorded using a Siemens SC2000 imaging sys-

tem with a 4Z1c matrix array probe (active aperture 19.2×14.4 mm2; 48×36 elements;

bandwidth 1.5–3.5 MHz) as in-phase/quadrature (IQ) demodulated 3D matrices of com-

plex fixed-point numbers in a pyramidal (frustum-like) coordinate system. Datapoints

are indexed by their depth along each scan line r, and the angle between the origin xy and

xz planes denoted θ (azimuthal) and ϕ (azimuthal), respectively. Scan lines are spaced

in equal increments of sin(θ) and sin(ϕ). The device was set to use a 2.8 MHz center

frequency and 2.5 MHz sampling rate for IQ demodulated echo signals, the lowest spatial

resolution allowed by the scanner to maximize temporal resolution.

Imaging depth and scan angles were adjusted throughout the parameter determina-

tion process, which will be described in sections 3.2.9 and 3.2.7. Earlier trials used an

elevational and azimuthal scan angle range of 78◦ and a nominal depth of 110 mm (true

recorded depths extended to 117 mm). In this mode, the size of the pyramidal space

volumes was 376× 55× 54× 2 (r × θ × ϕ× frames), with a frame rate of 55 VPS and a

time-between acquisitions of approximately 16 seconds. For better time resolution, this

was reduced to the minimal possible geometry to image our ablation region with addi-

tional padding of at minimum 4σ points isotropically around the region to account for

edge effects at the boundaries of the frustum. The chosen geometry for the final set of

trials was selected as 56◦ × 56◦ azimuth and elevation scan angles with a nominal depth

of 70 mm (actual volumes extended to 80 mm). Received matrix sizes for this setting

were 255× 45× 42× 2, with a frame rate of 117 VPS and a volume export rate of once

every 6 seconds.

Exported volumes were scan converted onto a Cartesian grid of isotropic step size

1 mm using trilinear interpolation. The grid was defined to fully enclose the imaging

frustum, where the dimension z is the distance from the origin in the depth direction,

and y and x are the distance along the elevational and azimuthal directions centered
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at the origin. Each point on the Cartesian grid, x̂i, was sampled and its corresponding

location in pyramidal space was determined using the formulae

r =
√
x2 + y2 + z2 (3.2)

sin(θ) =
y√

y2 + z2
(3.3)

sin(ϕ) =
x√

x2 + z2
(3.4)

where r is depth, θ is the azimuthal angle and ϕ is the elevational angle.

The location of each Cartesian point, xi, in pyramidal space was determined (r̂i =

(ri, θi, ϕi)) and the closest 8 points in a cubic lattice surrounding the sampled point are

weighted by their distance and summed

Icart(xi) =
8∑

n=1

cn(rn, r̂i) · Ipyram(rn) (3.5)

where Ipyram is the echo frame in pyramidal coordinates, Ipyram is the echo frame in

Cartesian coordinates, and ci is the coefficient of each pyramidal space voxel, determined

by its distance from the sampled point r̂i.

As each point in the 3D grid requires multiple floating-point operations, scan-

conversion was implemented as efficient compiled code, described in more detail in section

3.2.3.d.

3.2.2.b Decorrelation implementation

Echo decorrelation maps were computed via the definition of decorrelation described

in section 2.0.1. As discussed in that section, spatially averaged quantities within a

window can be computed via convolution, allowing for efficient discrete computation of

decorrelation with FIR filtering- or FFT-based methods. We found that spatial frequency

domain convolution offered better performance for our particular setup, and as such the

convolution operations were completed in the frequency domain.
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Explicitly, for each zero-padded correlation term R[x] in a discrete 3D Cartesian

coordinate system

⟨R[x]⟩ =
∑
x∈V

R[x] · w[x− x0] = R[x]⊛ w[x]

= F−1 [F [R[x]] ◦ F [w[x]]]
(3.6)

where x is the coordinate vector in discrete cartesian space, ⊛ is circular convolution, ◦

is the elementwise product and w is a 3D Gaussian kernel with width parameter σ = 3

mm, defined with its Fourier transform pair as

w[x] =
1

σ3(2π)
3
2

· exp
(
−|x

2|
2σ2

)
FT←→ exp

(
−σ2|k2|

2

)
(3.7)

where k corresponds to the frequency bin vector in the 3D spatial frequency domain.

A 3D Gaussian kernel with width parameter σ = 3 mm was selected for the win-

dowing function as a compromise between spatial resolution of the computed echo decor-

relation maps and reduction of the effects of stochastic variation. As we are not using

ensemble averaging, we chose a larger smoothing window relative to some previous 2D

echo decorrelation studies, which used values in the range of σ =1–2.5 mm [82, 84, 85]).

Each correlation term R01, R00 and R11 as defined in equation 2.1 is transformed into

the frequency domain using MATLAB’s built-in fftn package. They are then pointwise

multiplied with the Gaussian window defined in the frequency domain, transformed back

to the spatial domain and used in the definition of decorrelation. We found that decor-

relation could be computed reasonably quickly on commodity hardware. On the laptop

used for our experiments (Dell Precision 5510 with an Intel Core-i7 6820HQ processor)

the time to process full decorrelation maps from received raw ultrasound echo frames was

approximately 526 ms for the larger echo-volume setting and approximately 9–10 ms for

the smaller volume setting.
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3.2.3 Software and device interoperation

3.2.3.a Real-time control software

Controlled trials required intercommunication between the scanner, RF generator

and a central-control computer responsible for data processing and coordinating the other

devices. For this purpose, a custom-designed MATLAB graphical user interface (GUI)

was designed. Computation, file I/O and other processing tasks were carried out by

a set of MATLAB classes with a GUI-independent application interface. The interface

provided a standard way of accessing data from all devices, which could then be used for

real-time computation and post-hoc analysis.

A screenshot of the MATLAB GUI can be seen in figure 3.2. The GUI is divided

into three panels, one for setting image and device interoperation parameters, another

for real-time operation of the device, and a third for reviewing the results of a given trial.

The ‘setup panel’, shown in subfigure 3.2a, is used to initialize connections between the

devices and set parameters for imaging geometry, ROI placement and settings related

to device interoperation. To visualize the 3D volumetric ultrasound data and locate

important features within the scan converted B-mode volumes, the GUI displays three

orthogonal 2D planes of B-mode data, corresponding to the elevation-azimuth, depth-

azimuth and depth-elevation planes. A slider can be used to pan through the volume

along any of the three orthogonal directions. Additionally, each slice image displays the

location of the imaging ROI as a green circle.

The ‘imaging panel’, shown in Figure 3.2b, is used for real-time monitoring of the

B-mode ultrasound data, cumulative decorrelation maps, and RF generator output data

during the treatment. The feedback control threshold is entered into a text field and

the treatment is started via the ‘automatic imaging’ subpanel. The GUI displays 3 2D

planes of the most recent volumetric ultrasound data, in the same manner as the ‘setup

panel’ with the addition of the current cumulative decorrelation overlaid over the B-mode

ultrasound data. A time series plot of log10-scaled cumulative decorrelation within the

entire echo volume, as well as the average decorrelation within just the targeted ROI, is
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(a) Setup panel

(b) Imaging panel

Figure 3.2: Imaging panel of real-time control GUI. This panel is used to set parameters
for the ultrasound volume geometry, treatment ROI, device connections and decorrelation
maps.
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shown in the bottom left plot. The bottom right plot displays the current temperature

at the RF needle’s thermocouples. A Python script was designed to interface with the

scanner’s internal imaging system via a network socket originally intended for debugging

the device. The script records volumetric ultrasound data to a buffer and exports it to

a solid-state drive shared via an ad-hoc wired network connection between the scanner

and control laptop. The script then packages the recorded raw data files into folders with

a timestamp and metadata file containing geometric parameters of the recorded volume.

Validation was also performed on the recorded data, as earlier trials of the device resulted

in numerous errors. Particularly, the devices would often hold on to a particular buffer

and continuously export the same information. To account for this, a subset of values are

taken from each data set in a standard manner and hashed, and each subsequent frame’s

partial hash is compared to a list of all previous frames to verify correct operation.

Other errors were sometimes present in the received ultrasound data, such as the device

outputting seemingly random data, which was detected using the control GUI. If present,

these volumes were excluded from our analysis.

Upon starting the script, the user is prompted to enter geometry information for

the ablation trial and to select a directory from the shared drive on the scanner. The

Python script then exports files over the network connection to the control laptop asyn-

chronously. Data is packaged as time-stamped folders containing all necessary image data

and geometry information. The MATLAB classes then provide a separate interface for

managing the generated data files, scan-converting the volumes to a Cartesian grid and

computing echo decorrelation maps.

3.2.3.b RF generator control

The RF generator’s (RITA 1500x RF generator, AngioDynamics, Queensbury, NY)

built-in control methodology uses temperature readings pulled from the average of the

3 thermocouples within the targeted ablation zone to maintain a specified target tem-

perature for a set amount of time. The RF generator’s power delivery can be toggled

via a button on its front panel or via a pneumatic switch intended to be used with a

29



foot pedal, but does not have an interface for digitally controlling the device’s state or

other operating parameters. Therefore, decorrelation based control was implemented by

toggling the power delivery using the device’s built-in pneumatic switch interface.

Figure 3.3: Device designed to control the RF generator via the built-in pneumatic switch
automatically. (a) Block diagram of the device. (b) Logic-level MOSFET switching
circuit that controls the vacuum pump and solenoid valve. (c) Image of the physical
circuit soldered to a prototyping board. (d) Image of the entire device.

The action of the foot pedal was replicated in a computer-controllable manner via

a microcontroller circuit connected to a vacuum pump and solenoid valve. These were

off-the-shelf parts used for aquarium maintenance (vacuum pump) and coffee machines

(solenoid valve). The vacuum pump simulated the action of the foot pedal being pressed

while the solenoid valve released pressure from the tube. These devices were powered

by a 12V DC power adapter and activated via a simple N-channel logic level MOSFET

switching circuit connected to digital pins of a microcontroller. An Arduino Nano (Ar-

duino NANO, Interaction Design Institute Ivrea, Ivrea, Italy) microcontroller connected
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to the central control computer via an RS232 serial connection through USB performed

logic for switching the vacuum pump and solenoid valve. The microcontroller was pro-

grammed to poll for a signal over the serial stream and activate the vacuum pump via

the logic level MOSFET once the signal was received. Upon receiving a start signal, the

device immediately switches on the pump to trigger the pneumatic switch. After a short

50 ms delay, the valve is switched to release built up pressure between the pump and

pneumatic switch.

A block diagram of the device used for automatic control of the RF generator can be

seen in Figure 3.3a, the circuit for driving the vacuuum pump and solenoid valve can be

seen in Figure 3.3b and the physical implementation of the device can be seen in Figures

3.3c and 3.3d.

3.2.3.c RF generator data output

The RITA 1500x’s front panel displays critical operating parameters of the device,

such as the instantaneous power, total ablation time and current temperature measured

at the ablation needle’s thermocouples. Unfortunately, Angiodynamics did not provide

an off-the-shelf interface for programmatic monitoring of the device’s internal parameters,

nor could we find any relevant documentation to aid in doing so. Through suggestions in

the manual, we could determine that one of the device’s RS232 serial ports can be used to

interface with an obsolete in-house proprietary software package, which the manufacturer

was also unwilling to provide.

Failing to find solutions via normal channels, the serial stream needed to be reverse-

engineered. The suspected serial output port was connected to a laptop via a USB RS232

adapter and sniffed with a C++ program utilizing Microsoft Windows’s built-in serial

communications API. The raw output was analyzed to determine the stream’s baud rate,

packet delimiters and packet polling period, which were determined to be 9600 baud, a

carriage return and 100 ms, respectively. The program was then modified to parse out

bitstreams within each packet and export it to a file for further analysis. To determine

how the information was encoded in each packet, a series of ablation trials were conducted
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using beef round sourced from a local supermarket. During these trials, the front panel’s

displayed parameters were logged while the C++ program captured raw packets from

the serial port. The timing of changes in the displayed parameters was compared with

the timing of changes in the bitstream to determine which bits corresponded to each

parameter.

After extensive trial and error, we determined that the values were encoded as 14-

bit integers composed of the 7 least significant bits of every two adjacent bytes. Further

testing was carried out to verify the units of the parameters, which were determined to

be decidegree Celsius, ohms, seconds and watts for temperature, impedance, time and

power quantities, respectively. A MATLAB class was then written to parse the serial

stream and integrated into the rest of the codebase.

3.2.3.d Optimization

Limitations of the Siemens SC2000 scanner’s ability to export raw ultrasound data

necessitated a series of optimizations to minimize latency for real-time control. Siemens

provided various helpful tools for retrieving and reading raw data from the device’s inter-

nal buffers. However, these tools were designed for debugging the system and, as such,

were not optimized for real-time external image formation. Using the minimum viable

imaging geometry, which would fully encompass our region of interest as described in

section 3.2.2.b, we could only achieve a volume export rate of approximately every 6

seconds. Unfortunately, little could be done to remedy this due to the internal topology

of the system. The latency between data acquisition and updating the control parameter

thus had to be reduced at later stages in the pipeline.

Data from the debugging console is written to disk as non-standard signed hexadec-

imal 17-bit fixed-point numbers encoded as UTF-8 text. The text, therefore, needed to

be scanned, parsed and recast into standard floating-point numbers before use. Siemens

provided an interpreted MATLAB script to read these files, but it required an additional

6 seconds per volume pair. The provided function used computationally expensive inter-

preted formatted text reads for parsing the file and floating-point operations to recast
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the fixed-point numbers, both of which introduced unnecessary latency. An improved

version of the data parsing script was written as a compiled C++ binary implementing

the MATLAB Executable (MEX) interface. File I/O was expedited through memory

mapping the data file and indexing it based on its regular structure rather than string

formatting. Typecasting was implemented as a series of bitwise operations to form the

17-bit fixed-point number into a standard 32-bit float. Briefly, the steps it performs are:

signing the integer, bitshifting the data portion to the first bit of the fraction section

of a standard IEEE 32-bit float, XORing the result with an integer designed such that

the mantissa is equivalent to the magnitude of the fixed-point number, dereferencing the

integer pointer, and pointing a float towards the memory address. This substantially

improved computation time over the interpreted method, requiring approximately 0.22

seconds for the entire file, contrasted to 6 seconds in the original implementation.

It was also found that 3D scan conversion with trilinear interpolation was costly

in interpreted code, so an additional set of C++ MEX files was written to optimize

this process. As ablation geometry was standard between volumes, a look-up table of

coefficients could be computed once and applied to each successive trial. Most floating-

point operations are identical for a given geometry, so they can be separated from the rest

of the floating-point operations and stored as a set of coefficients in a look-up table (LUT).

The coefficients are stored as a list of structures pointing to specific indices within the

provided serialized echo data. The LUT-based compiled code can convert both volumes

in approximately .06 seconds, while the naive interpreted code required approximately 4

seconds per set. This could be further optimized with parallelization, but it was found

unnecessary as the scanner was only capable of writing data every 6 seconds.

These limitations were largely artificial; a much higher time-resolution implementa-

tion of echo decorrelation would be feasible on standard ultrasound scanners equipped

with modern parallel processing capabilities. As the scanner can output scan converted

volumes at a rate of 117 VPS or higher with the resultant volumetric data passing through

multiple linear filters before being displayed, theoretically an integrated version of echo
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decorrelation imaging could be performed at near the same volume rate that B-mode

images can be recorded.

3.2.4 RFA experiment design

3.2.4.a Tissue Handling

Bovine liver tissue was acquired from a local butcher less than 24 hours postmortem

and kept refrigerated until approximately 30 minutes before experiments. Once the tissue

had acclimated to room temperature (20 to 25 ◦C), it was sectioned into roughly cubic

pieces (70×80×80 mm3), taking care to avoid large arteries or other inhomogeneous por-

tions within each piece. A custom polylactic acid (PLA) 3D printed apparatus, pictured

in Figure 3.4(b), consisting of a cuvette, stand, and lid was designed to ensure repeatable

exposure conditions between trials. Each sectioned tissue piece was placed within an

individual cuvette with a dimension of 100 × 82 × 82 mm3. The top of the cuvette is

exposed for placement of the ablation needle and a rectangular window on its anterior

face is exposed for imaging. The cuvette’s imaging window was then covered with an

adhesive Tegaderm film (3M Health Care, St. Paul, MN, USA) before being filled with

phosphate-buffered saline solution (PBS) (0.01 M, pH 7.4 at 25°C, Sigma Life Science

P3813, St. Louis, MO, USA) and agitated to remove any air pockets. Once each cuvette

had been prepared, it was placed on the guiding stand and secured to the lab bench via

a mechanical arm.

3.2.4.b Thermal ablation experiments

RFA was performed using a Rita 1500x RF generator with an XLi enhanced needle

with saline infusion (AngioDynamics, Latham, NY, USA). Before each trial, the saline

infusion needles were purged with phosphate buffered saline (PBS) solution (0.01 M, pH

7.4 at 25 ◦C, Sigma Life Science P3813, St. Louis, MO) until they presented a steady

flow. A grounding pad cut from a standard dispersive electrode (RITA Thermopads,

AngioDynamics, Manchester, GA, USA) was attached to the RF generator’s ground

terminal and inserted between the tissue and cuvette on its posterior face. A lid fit with
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Figure 3.4: Experimental setup used for RFA trials. (a) Image of the physical setup
where the 3D printed cuvette, stand, and lid are affixed to the benchtop via a mechanical
arm. A roughly cubic sample of bovine liver was placed within the cuvette and imaged
with a 4Z1c matrix array transducer; the XLi enhanced probe was then placed through
the needle track and connected to the RF generator’s ground terminal. (b) Illustration
of the 3D printed parts with their corresponding dimensions.

an integrated needle guide, designed such that the needle’s tip would be 40 mm from

the bottom of the box, 52 mm from the imaging window and centered in the azimuthal

direction, was then affixed to the top of the cuvette. Actual needle placement measured

from segmented tissue histology was found to vary between 52–54 mm in depth. The

ablation needle was inserted into the tissue through the needle guide and left unplugged

to reduce any undesired heating before the trial. The cuvette was then filled with PBS

solution and agitated to remove any remaining air pockets.

Ultrasound imaging was performed using a Siemens 4Z1c matrix array transducer

connected to an SC2000 ultrasound imaging system (Acuson SC2000 and 4Z1c matrix

array, Siemens, Erlangen, Germany). The transducer was placed within a latex probe

cover and acoustically coupled to the tissue via Aquasonic ultrasound transmission gel

(Parker Laboratories, NJ, USA) on the inside and outside of the body. A set of guiding

rails affixed to the stand, pictured in figure 3.2.4.b(a), hold the ultrasound probe against

the imaging window of the cuvette. The probe was set to record with an azimuthal and

elevational scan angle range of 56◦ and a nominal depth of 70 mm (recorded data extended
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slightly further to approximately 81 mm). These settings were selected to minimize the

inter-volume time while still imaging the entire ablation zone with a margin equal to at

minimum 3× the Gaussian window’s σ parameter isotropically around the ablation zone

to ensure minimal boundary effects within the ROI.

Ablation exposure conditions were set to 7 minutes of treatment time, a target tem-

perature of 110◦C, and a maximum power output of 50 W. The RF generator utilized

its built-in temperature control functionality to heat the tissue to the targeted temper-

ature and maintain that temperature for the set treatment time. A plot of the device’s

temperature control behavior can be seen in Figures 3.5a and 3.5b. The RF generator

adjusts its power delivery based on impedance and temperature readings integrated into

the ablation needle to achieve a roughly linear increase in temperature. Once the mean

temperature among all integrated thermocouples overshoots the target temperature, it

maintains that temperature for the set treatment time. Upon completing the treatment

cycle, it enters a cooldown phase before indicating that it can be removed.

An initial set of 5 pulse-echo volumes were recorded prior to ablation to form the

sham decorrelation map. The RF generator was then activated by the control computer

and allowed to run through the entire treatment time while pulse-echo volumes (set to the

same parameters as the initial volumes) were recorded every 6 seconds and transferred

to a connected laptop to compute decorrelation maps.

3.2.5 Sectioning and segmentation

The relationship between echo decorrelation and thermal lesioning was assessed via

direct comparison of computed cumulative decorrelation maps with segmented tissue his-

tology. The method we employed was similar to previous studies of ultrasound-based

ablation monitoring [74, 84, 85] using linear arrays, but required some modifications to

ensure proper registration of volumetric tissue data. Specifically, each specimen was sec-

tioned into multiple parallel lateral slices, each of which was used to create a 2D segmented

binary mask. These masks are then combined into a 3D mask of tissue ablation.

36



(a)

(b)

Figure 3.5: Representative example of the RITA 1500x RF generator’s default
temperature-controlled ablation behavior. (a) Plot of temperature across thermocouples
1–3 for the entire duration of an uncontrolled ablation trial. The mean temperature across
all thermocouples, shown in black, is used as the control parameter for temperature-based
control of the device. (b) Delivered power and average temperature across all thermo-
couples in the same trial. The device attempts to increase temperature linearly based
on the mean temperature of the thermocouples and current delivered power. At minute
2.3 of the trial, the temperature falls below the target and power is rapidly increased to
maintain the target. Once the mean temperature across all thermocouples overshoots the
target, the delivered power is regulated to maintain the current temperature.
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To minimize geometric deformation during sectioning, ablated tissue was left within

the imaging cuvette and transferred to a −80 ◦C temperature-controlled freezer for a

minimum of 24 hours. Once frozen, the tissue was removed from the freezer and partially

thawed in a warm water bath. Shallow incisions were cut into the sagittal plane at a

regular interval of 5 mm to restrict the height of each slice. The tissue was then sectioned

into azimuth-depth planes with a width of approximately 3.5 mm using a commodity

deli slicer. The elevational bounds of the ablated region were recorded based on the cuts

along the elevational face; the needle tip’s location was also registered to account for any

deformation resulting from freezing. Each plane was imaged using an optical scanner

(V550, Epson America, Inc. Long Beach, CA, USA) with an imaging resolution of 660

DPI.

Figure 3.6: Alignment and file selection panel of the MATLAB image segmentation GUI.
Each scanned plane of tissue was aligned with a square corresponding to the cuvette’s
inner (depth × azimuth) area via sliders which translated and rotated the image. Once
aligned, the image was cropped and saved for later segmentation. For sections where the
boundaries of the box are unclear, the GUI can display multiple additional landmarks
(outer edge contours, previous slice with transparency) based on previously segmented
sections to aid in registration.
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(a)

(b)

Figure 3.7: Segmentation panel of the MATLAB image segmentation GUI. (a) Depth-
azimuth tissue slice with a user-defined contour line overlaid on the ablated region. (b)
Automatically generated polygonal region overlaid on the contour, where each vertex can
be adjusted to account for inaccuracies in the automatically generated region.
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Figure 3.8: Volumetric mask generation panel of the MATLAB image segmentation GUI.
Parameters for the recorded ablation start height, end height and needle tip height were
used to generate a 3D mask from a series of 2D masks. The two panels on the top of
the GUI are used to verify registration along the elevational (orthogonal to 2D slices)
plane. Each white line is a single 2D plane, shown in its room-scale location according
to parameters entered in the ‘volume settings’ panel. A red dot is placed at the location
of the needle tip to correct any deformation in the elevational plane.

40



The optical scans of azimuth-range planes were segmented into 2D binary images

where 1 represents ablated tissue and 0 represents unablated tissue. A custom-designed

semi-automated MATLAB GUI was used to accurately register the tissue scans to their

position in the cuvette. The GUI cycles through each optical scan and allows the user

to translate and rotate the image to align with a square representing the cuvette’s inner

walls. A contour is then overlaid on the tissue scan around the borders of the ablation

zone based on an adjustable isoline of average pixel intensities across all channels. Once

a suitable contour representing the boundary of the ablated region is found, a polygonal

region is placed along the contour, which can be manually adjusted to account for any

irregularities in pixel intensity that distort the automatically generated region.

The 2D masks are combined into a sparse 3D volume corresponding to their room-

scale location as indicated by the measured start and end of the ablation zone. The

image is then adjusted based on the measured location of the needle tip to account for

any deformation in the elevational plane. Values between slices in the elevational direction

are computed via nearest-neighbor interpolation based on the nearest two parallel tissue

sections. The mask is then smoothed using a 3D Gaussian filter, rounded to form a 3D

binary mask and scaled to match the recorded ultrasound data. A screenshot of the

program used for segmenting 2D images can be seen in figures 3.6, 3.7a and 3.7b, while

the GUI panel for combining the 2D masks into a 3D matrix can be seen in figure 3.8.

Trials were excluded if the scanned tissue histology did not clearly show the entire 3D

ablated region. Two trials were excluded because, in these trials, part of the ablated

region could not be imaged, due to a large portion of the region becoming detached from

the tissue before sectioning.

3.2.6 Prediction of local ablation

Prediction of local ablation was evaluated through ROC analysis of the computed

3D cumulative decorrelation map and 3D ablation masks derived from segmented tissue

histology. ROC curves provide a measure of the strength of a predictor under a varying

threshold. In ROC analysis, the threshold for the predictor is allowed to vary and the
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Figure 3.9: Representative tissue histology of 6 azimuth-elevation planes. (a) Optical
scans of azimuth-depth (82 × 82 mm) sectioned tissue histology with a slice width of
3—3.5 mm. The top row shows optical images fit to an 82× 82 mm square representing
the inner dimension of the cuvette. The middle row shows the same images with a green
dotted line overlaid around the ablated region, and the bottom row shows the final 2D
binary mask for each 2D section.

false-positive rate (1 − Specificity) and true-positive rate (Sensitivity) are computed for

each threshold. A curve is then constructed as the false-positive rate vs. the true-positive

rate. These terms are computed as

Sensitivity =
TP

TP + FN
(3.8)

1− Specificity =
FP

FP + TN
(3.9)

where TP is the number of correctly predicted ablated voxels, FP is the number of

incorrectly predicted ablated voxels, TN is the number of correctly predicted unablated

voxels, and FN is the number of incorrectly predicted unablated voxels.

The area under the curve (AUC) of the ROC curve provides a measure of the strength

of the predictor; a value of 1 indicates perfect predictive ability, while a value of .5

indicates that the predictor is no better than chance [88]. This value is computed using

numerical integration via the trapezoid rule on the computed ROC plot.
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The statistical significance of the resultant AUC is assessed via the computation of

a sample size adjusted Z-score. The windowing function in the definition of echo decorre-

lation introduces statistical dependence in geometrically nearby voxels, necessitating an

adjustment of the sample size to only the number of statistically independent voxels. As

the window impacts nearby voxels isotropically, the number of sufficiently independent

samples can be determined by the maximal sphere packing density within the volume.

The effective number of points Neff is then computed as

Neff =
Nδ3v
ρsphd3

(3.10)

where δv is the voxel step size, N is the number of voxels within the tested region, d

is the diameter of each sphere and ρsph = π
3
√
2
is the maximum close hexagonal packing

density of equal radii spheres, defined as the number of unit diameter spheres per unit

length cube. An illustration of close sphere packing can be seen in Figure 3.10, where

each sphere represents a single effectively independent point, and the spheres are packed

in close hexagonal spacing. The diameter chosen for the sphere is the full width at half

Figure 3.10: Illustration of sphere packing for determination of an effective sample size
with sufficiently low statistical dependence.
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maximum (FWHM) of the windowing function. For a Gaussian window this is

d = 2
√

2 log(2)σ (3.11)

The adjustment for sample size effectively limits the spatial resolution of echo decorre-

lation maps to the diameter of the sphere, as only voxels occurring at minimum d mm

away from other voxels are considered independent measurements.

Standard error for the uncorrected ROC curve was computed using MATLAB and

the total sample and statistical significance was determined via a sample size adjusted

Z-statistic (Zeff), which is computed as

Zeff =
Z√
Ntotal

Neff

(3.12)

where Zeff is the Z-score calculated from the ROC curve, Ntotal is the number of samples

within the tested region and Neff is the number of effectively independent samples. A

two-tailed effective significance value, peff , for the sample size adjusted AUC Z-score, Zeff ,

is then computed as

peffective = 2 · (1− cdf(Zeff)) (3.13)

Rejection of the null hypothesis is assumed if p < .05, indicating that the sample size

adjusted AUC is significantly different from the value expected by chance (AUC=.5).

Differences in AUC values between groups is assessed similarly to difference between

the AUC and random chance (AUC=.5). The value for standard error of the ROC curve

is used to determine an adjusted Z-score for the difference between each compared ROC

curve, and the p−value is computed from equation 3.13.

3.2.7 Preliminary trials

3.2.7.a Initial RFA trials without feedback-control

Initial assessment of 3D echo decorrelation’s performance as a predictor of local tissue

lesioning in ex-vivo bovine liver was carried out through a preliminary series of trials

44



(N = 9) without the use of echo decorrelation feedback control following the procedure

outlined in section 3.2.4. For ‘uncontrolled’ trials, ablation time and power delivery were

controlled by the RF generator’s built-in temperature-controlled mode, which modulates

delivered power in order to keep the targeted region at a set temperature as signaled by its

built-in thermocouples. The RFA probe was set to target a 3 cm diameter region of tissue,

with a maximum power output of 50 W, target temperature of 110◦ C and a treatment

time of 7 minutes at the target temperature. Following each ablation, treated tissue was

frozen, sectioned and segmented as described in section 3.2.5. Performance in prediction

of local ablation was evaluated via ROC analysis between computed cumulative echo

decorrelation maps and segmented tissue histology. The results of ROC analysis in these

trials was used as a preliminary estimate for an appropriate decorrelation threshold.

The log10-scaled spatially averaged mean decorrelation within the targeted ablation

zone, ∆̂avg, was computed for each of the initial uncontrolled trials and used to inform an

initial threshold for feedback-controlled trials. The initial threshold for feedback control

was selected to maximize the likelihood of successful control by choosing a value lower

than the minimum post-hoc computed values for ∆̂ in the initial set. Additionally, the

relationship between ∆̂avg and total ablation volume was evaluated using linear regression

to determine if there was a relationship between the prospective control criterion and total

ablation volume.

3.2.7.b Preliminary RFA trials with feedback control

A series of preliminary echo decorrelation feedback-controlled trials (N = 8) were

then performed at varying thresholds covering log10-scaled decorrelation per millisecond

values between log10∆thresh = –3.5 and –3. Multiple thresholds were used to evaluate

the relationship between thermal lesioning and the control criterion and to provide data

points at different ablation sizes in relation to the control parameter. The preliminary

feedback-controlled trials were performed in tandem with an additional set of uncontrolled

trials (N = 10) to account for any differences in tissue samples. Trials were completed

with identical RFA exposure conditions (50 W, 110◦ C temperature target, 7 minute
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ablation time, 3 cm diameter) to the initial uncontrolled group. The same analysis of local

lesioning prediction completed in the initial set was also completed on the preliminary

set of feedback-controlled and uncontrolled trials.

Following the first set of feedback-controlled trials, an additional set of preliminary

trials were completed with saline infusion (N = 11), of which the majority were feedback-

controlled (N = 7) with some additional uncontrolled trials (N = 4). Control threshold

values for this group were between ∆thresh = –2.8 and –2.2, a range which was informed

by the results of the preliminary trials without saline infusion. Saline infusion was used to

increase the total diameter of ablation by ensuring adequate cooling in the targeted region

and thereby reducing the likelihood of charring-induced electrical impedance spikes. The

use of saline infusion would also more closely match the typical clinical practice for

ablation procedures and would therefore provide lesioning characteristics closer to what

would be expected in a real clinical setting.

Post-hoc analysis was completed on all preliminary trials combined, as well as on

each of the constituent groups to evaluate local ablation prediction performance as well as

to evaluate the relationship between the control parameter and the total ablated volume.

Local ablation was evaluated using ROC analysis, and values for optimal prediction of

local ablation were computed. Differences between groups in terms of predicting local

lesioning were assessed as stated in 3.2.6. The effect of saline infusion was further analyzed

to determine the relevance of previous trials without saline infusion in the determination

of a final control threshold.

3.2.8 Control threshold determination

The final feedback control parameter was informed through a combination of local

ablation predictive ability and full volume predictive ability. A decorrelation threshold

which predicted local tissue lesioning with 90% specificity, to ensure a high likelihood of

targeted tissue being ablated, was desired. In addition to the analysis of local tissue abla-

tion, further analysis was completed to determine the likelihood of a given decorrelation

threshold resulting in 80% and 90% of the targeted region being ablated. The proposed
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control parameter, ∆̂avg, was computed for all feedback-controlled and uncontrolled tri-

als and used as a predictor of 90% and 80% ablation of the targeted region. Trials that

resulted in 80% of the targeted region being ablated were assigned a value of 1, and trials

that did not were assigned a value of 0; the spatial mean of the cumulative decorrelation

map within the targeted 3 cm diameter sphere centered at the needle tip was then used as

a predictor for 80% ablation of the targeted region. Sensitivity and specificity values were

computed for the mean decorrelation within the ROI as a predictor of a proportion of the

volume being ablated, and a threshold value was selected that achieved high specificity

in the prediction of 80% ablation of the targeted region. This analysis was repeated for

90% ablation as well.

The final chosen value for the decorrelation threshold was selected to achieve high

specificity and reasonable sensitivity for prediction of both local lesioning and the total

ablation volume, as well as through general observations on lesioning in the preliminary

set of trials.

3.2.9 Final feedback controlled trials

After determining an appropriate control threshold through the process described

in the previous section, a set of final feedback-controlled (N = 11) and uncontrolled

(N = 11) trials were performed. Each liver sample was prepared as outlined in Section

3.2.5 and divided into a feedback-controlled and uncontrolled group in roughly equal

proportion. Uncontrolled trials were completed in a nearly identical manner to the pre-

liminary uncontrolled trials with saline infusion, with the same probe placement, trans-

ducer placement, imaging settings and RF exposure conditions. The control threshold

was held constant at log10∆thresh/ms = –2.2, which was determined from analysis of the

preliminary set of trials.

Post-hoc analysis on local ablation, as well as full ablation of the targeted region,

was completed in a manner identical to the preliminary trials. Additional analysis was

completed on control performance with a constant threshold, which will be outlined in

detail in the next section.
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3.2.10 Analysis of feedback control performance

3.2.10.a Ablation volume

Ablation volume was computed as the summed volume of all ablated voxels within

the segmented 3D binary masks generated from the scanned tissue histology, as described

in section 3.2.5. The mean ablation volume in the feedback-controlled and uncontrolled

groups was assessed to determine the efficacy of echo decorrelation feedback in optimizing

for the desired ablation volume. Additionally, the variance of the volume between these

groups was assessed to determine if echo-decorrelation feedback results in a more con-

sistent ablation volume. The difference in means was assessed via a two-sided Student’s

t-test, where the null hypothesis (that the two groups have equal means) is rejected if

p < .05. Similarly, differences in variance are assessed via the F-test of equal variance,

and the null hypothesis is rejected if p < .05.

The F-test and t-test are only valid if the samples are normally distributed [89], as

the sample size in this study (N = 11 for each group) is not sufficiently large to assume

normality under the central limit theorem. Alternative non-parametric tests would be

used if the population did not display normality. Normality was assessed via the Shapiro-

Wilk normality test, which is an effective normality test for smaller sample sizes (N < 50)

[90]. For the Shapiro-Wilk test, the null hypothesis (that the population is non-normal)

was rejected if p < .05. The two groups were assessed separately to determine if they

follow a normal distribution and can be analyzed via standard statistical tests. Pending

affirmation of normality, the average volume between the two groups was assessed for

statistical significance using the two-sided Student’s t-test. Contingently, if the groups

were non-normal, the non-parametric Smirnov test would be used to determine statistical

significance between the two sets.

We hypothesized that an increase in the mean decorrelation within the targeted re-

gion, equivalent to the control parameter for controlled trials (∆̂avg), would be associated

with greater thermal lesioning. This was tested with linear regression of the total ablation

size vs. mean decorrelation within the targeted region. Significance was assessed via the
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F-statistic vs. a constant model; the null hypothesis (that the observed fit is no better

than a constant model) would be considered rejected if p < .05.

The ablation rate was assessed to evaluate if feedback control resulted in more ef-

ficient lesioning. Ablation rate is computed as the bulk ablation volume per second of

treatment time. The sum of all ablated voxels was divided by the total duration of ab-

lation provided by the RF generator’s serial interface data output. Total ablation time

between the two groups was compared using a two-sided Student’s t-test to determine

if there was a significant difference in treatment efficiency between the two groups. The

variance in ablation rate was also assessed using the F-test.

3.2.10.b Ablation geometry

Geometric conformance to the desired ablation zone was measured via the Sorenson-

Dice coefficient. The Dice coefficient provides a score for the similarity between two sets

of binary points and is defined as:

DSC =
2|X ∩ Y |
|X|+ |Y |

(3.14)

where X and Y are two sets of binary classifiers; in our case, this refers to voxels within

a targeted region and the 3D binary mask generated from tissue histology.

The score takes values between 0 and 1, where 1 denotes an identical set and 0

denotes a mutually exclusive set. Observed ablation maps are compared to an ideal 15

mm radius sphere centered on the end of the needle track. The voxels within a 25 mm

radius sphere surrounding the ablation needle tip were used for evaluation of the Dice

coefficient. For our purposes, the Dice coefficient was computed as

DSC =
2 · TP

2 · TP + FP + FN
(3.15)

where TP is the number of voxels in the targeted ROI which were successfully ablated,

FP is the number of voxels outside of the targeted region that were ablated (overabla-
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tion), and FN is the number of voxels within the targeted region that were not ablated

(underablation).

The Dice coefficient was analyzed similarly to ablation volume, with normality being

assessed with the Shapiro-Wilk normality test and the difference in means assessed by

the 2-sided student’s t-test. The variance between the two groups was then compared

via the F-test to determine if the ablation geometry was more uniform in either group.

Following the hypothesis that total thermal lesioning would generally increase with

the mean-decorrelation within the targeted region, a larger mean-decorrelation value

would be associated with greater lesioning outside of the targeted region (false positives).

A smaller mean-decorrelation value would be associated with unablated tissue within the

targeted region (false negatives). Thus, we hypothesized that the Dice coefficient would be

optimized near the targeted ablation threshold and lower at thresholds above and below

this optimal threshold. To test this hypothesis, quadratic regression was performed on

the Dice coefficient vs. mean decorrelation value within the targeted region.
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3.3 Results

3.3.1 Preliminary trials

3.3.1.a Initial uncontrolled trials

ROC curves for the prediction of local ablation via echo decorrelation imaging for the

first set of preliminary uncontrolled trials (N = 9) can be seen in figure 3.11a. The area

under the curve was found to be .785 (p < 10−16), indicating significantly better predictive

power than chance (AUC=.5, p < 10−16). The minimal log10-scaled decorrelation per ms

threshold achieving 90% (∆90%) specificity was found to be –2.43, with a corresponding

sensitivity of 30.2%. The optimal point of the ROC curve for prediction of local ablation

(∆opt) was found to be –3.07, and resulted in specificity and sensitivity of 67.2% and 76.2%

respectively. Figure 3.11b shows the odds plot of the same ROC curve with vertical lines

representing ∆90% and ∆opt.

(a) (b)

Figure 3.11: Results for prediction of local ablation in the initial set of preliminary
uncontrolled trials (N = 9). (a) ROC curve for prediction of local tissue ablation across
all initial trials, with the optimal point for prediction of local ablation (∆opt = –3.08)
shown in blue and the minimum threshold achieving 90% specificity (∆90% = –2.41) shown
in black. (b) Odds plots of sensitivity and specificity per log10 decorrelation threshold
with ∆opt and ∆90% marked with a solid and dashed vertical line respectively.
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The mean ablated region in the initial group of uncontrolled trials was found to

be 16.76 ± 5.04 mL (mean ± standard deviation). Figure 3.12a and 3.12b show the

total ablation volume and Dice coefficient plotted against the log10-scaled spatial average

decorrelation within the targeted ablation zone. A slight but insignificant correlation was

found between the spatial average decorrelation within the targeted ablation zone and

total ablated volume (R2=.101, p = .406). Similarly, a scatter plot of log10-scaled spatial

average decorrelation vs. Dice coefficient between segmented tissue histology and an ideal

15 mm radius sphere centered at the needle tip can be seen in Figure 3.12b, which showed

no clear relationship between the two quantities.

(a) (b)

Figure 3.12: Scatter plots of log10-scaled average decorrelation within a targeted 15 mm
radius ablation zone centered at the needle tip vs. (a) total ablation volume and (b) Dice
coefficient between segmented and targeted ablation zones.

The minimum log10-scaled spatial average decorrelation per millisecond within the

ROI, ∆̂, in the initial group was found to be –3.08. This informed the thresholds to be

used in subsequent preliminary feedback-controlled trials. The threshold was selected

to be significantly below the minimum observed mean decorrelation value within the

targeted region in order to maximize the likelihood of successful control. The initial value

for the log10-scaled control criterion was chosen as ∆thresh = –3.5; subsequent values were

selected to be between ∆thresh = –3.25 and ∆thresh = –2.2, which covered the majority

of the observed values (log10 ∆̂ = –3.08 to –1.9) in the initial set of trials without echo

decorrelation feedback. The lower chosen threshold (∆thresh = –3.5) roughly corresponded
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to a local lesioning prediction with 50% specificity and 95% sensitivity, while the higher

value (∆thresh = –2.2) corresponds to 90% specificity and 50% sensitivity.

3.3.1.b Preliminary feedback-controlled and uncontrolled trials without

saline infusion

All (N = 8) preliminary feedback-controlled trials without saline infusion were suc-

cessfully controlled. A trial was considered ‘successfully controlled’ if the average decor-

relation within the ROI, ∆̂avg, exceeded a set threshold and the treatment was stopped

early. The distribution of thresholds in these trials was: log10∆thresh = –3.5 (N = 1),

–3.25 (N = 1) and –3 (N = 6). The uncontrolled group of preliminary trials without

saline infusion (N = 19) had a significantly larger ablation volume of 12.75 ± 6.17 mL

(mean ± std) compared to 4.91 ± 2.31 mL for the controlled group (p = .013). Addi-

tionally, total ablation volume within the feedback-controlled group had a significantly

smaller variance than the uncontrolled group (p = .013), providing some preliminary

evidence for feedback control resulting in a more consistent thermal lesion.

A scatter plot of log10-scaled mean decorrelation within the targeted region vs.

ablation volume can be seen in Figure 3.13a. A slight correlation was found between

the spatial mean of decorrelation within the targeted ablation zone and the total abla-

tion volume computed from sectioned tissue histology which was found to be significant

(R2=.203, p = .021), suggesting a moderate relationship between the spatial average

decorrelation and ablation volume.

The mean Dice coefficient in the uncontrolled group without saline infusion was found

to be .717± .133, while the mean in the feedback-controlled group was .477± .169. The

difference in Dice coefficients between the uncontrolled and feedback-controlled trials and

the difference in variance between those groups reached statistical significance under the

t-test (p = .63) and F-test (p = .59), respectively. A scatter plot of the Dice coefficient vs.

log scaled spatial mean decorrelation within the ablation zone is shown in Figure 3.14a.

As most trials resulted in little ablation outside the ablation zone, the Dice coefficient

vs. spatial mean decorrelation resembles the relationship between volume and spatial
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(a) (b)

Figure 3.13: Results for total ablation volume in the preliminary group of feedback-
controlled (N = 8) and uncontrolled trials (N = 19) without saline infusion. (a) Scatter
plot of log10-scaled average decorrelation within a targeted 15 mm radius ablation zone
centered at the needle tip vs. total ablation volume with overlaid least-squares optimized
linear fit. (b) Bar plot of mean volumes in the feedback-controlled and uncontrolled
groups, with error bars showing standard error.

mean decorrelation. A quadratic regression was performed on the Dice coefficient vs.

spatially averaged decorrelation within the targeted ablation zone, which was found to

have not reached statistical significance (p = .135). The relatively poor performance in

the feedback-controlled group in terms of the Dice coefficient suggested that the trials

were stopped too early and that our control threshold was too low. Both groups had a

mean total ablation volume less than the volume of the targeted ablation volume, which

for a 15 mm radius sphere would be 14.14 mL. This informed our decision to use saline

infusion in the subsequent set of preliminary trials.

ROC curves for prediction of local ablation in the preliminary controlled and uncon-

trolled group can be seen in figure 3.15. The AUC of the ROC curve in the feedback-

controlled group was found to be .804 (p < 10−16), and in the uncontrolled group was

found to be .800 (p < 10−16). The difference between these was not found to be statis-

tically significant (p = .868). ROC curves for the uncontrolled and feedback-controlled

groups can be seen in Figure 3.15a and ROC curves for the feedback-controlled group

broken down by control threshold can be seen in Figure 3.15b. AUC values within each

threshold varied between .874 and .798, and all were found to be significantly different
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(a) (b)

Figure 3.14: Results for Dice coefficients in the preliminary group of feedback-controlled
and uncontrolled trials without saline infusion. (a) Scatter plot of log10-scaled average
decorrelation within a targeted 15 mm radius ablation zone centered at the needle tip
vs. Dice coefficient with overlaid least-squares optimized quadratic fit. (b) Bar plot of
mean Dice coefficients in the feedback-controlled and uncontrolled groups, with error bars
showing standard error.

(a) (b)

Figure 3.15: Results for prediction of local ablation in preliminary trials without saline
infusion (N = 24). (a) ROC curve for prediction of local tissue ablation across all uncon-
trolled (N = 19) and feedback-controlled (N = 8) trials (b) ROC curves for preliminary
trials without saline infusion per control threshold (∆thresh = –3.5, –3.25, –3).
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from random chance (AUC= .5). A summary of ROC analysis, including the AUC and

its associated significance value, across all groups in the preliminary uncontrolled set of

trials without saline infusion can be seen in Table 3.1.

AUC for preliminary uncontrolled and feedback-controlled trials without saline

Uncontrolled Controlled Combined

∆thresh — –3.5 –3.25 –3 all —
# Trials 19 1 1 6 8 27

AUC .800 .819 .874 .798 .801 .813
Z-score 30.39 3.91 7.89 12.94 13.62 37.37
p-value < 10−16 8.45 · 10−5 3.11 · 10−15 < 10−16 < 10−16 < 10−16

Table 3.1: Area under the curve for all preliminary uncontrolled (N = 17) and controlled
trials without saline infusion, with thresholds ∆thresh set to –3.5 (N = 1), –3.25 (N = 1)
and –3 (N = 6). Significance is determined by p < .05, where p is determined by a
sample size adjusted Z-score.

The optimal point of the ROC curve (∆opt), defined as the point nearest to the

upper left corner of the ROC curve, was found to be –3.38 in the feedback-controlled

group and –3.15 in the uncontrolled group. The threshold achieving 90% specificity was

found to be –2.91 in the feedback-controlled group and –2.45 in the uncontrolled group,

with a corresponding sensitivity of 30% and 34%, respectively. Odds plots of sensitivity

and specificity vs. decorrelation threshold can be seen in Figure 3.16a for the feedback-

controlled group and Figure 3.16b for the feedback-controlled group, where the optimal

point and threshold achieving 90% sensitivity are marked with vertical lines.

Tissue sections of a characteristic controlled and uncontrolled trial with correspond-

ing decibel-scaled azimuth-depth B-mode slices with overlaid cumulative log10∆/ms maps

can be seen in Figure 3.17. Column 1 shows the 4 slices of sectioned tissue histology

nearest to the center of ablation for a characteristic uncontrolled trial, and figures in

column 2 are the corresponding azimuth-depth B-mode ultrasound slices with overlaid

log10-scaled decorrelation for each histology section in column 1. Decorrelation values

are shown for values between log10∆/ms = –4 and log10∆/ms = –1. Columns 3 and 4

show tissue histology and corresponding B-mode with decorrelation overlaid for a char-

acteristic controlled trial (∆thresh = –3). As was typically the case, the uncontrolled
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(a) Uncontrolled trials (b) Controlled trials

Figure 3.16: Odds plots for (a) uncontrolled and (b) controlled groups in the preliminary
set of trials without saline infusion. The solid black vertical line shows the optimal
decorrelation value for prediction of local ablation, while the dashed vertical line shows
the threshold which achieved 90% sensitivity.

trial had significantly greater decorrelation within the targeted region as well as a much

greater ablation volume. Similarly, the conformance between local thermal lesioning and

decorrelation magnitude can be seen in these slices.

3.3.1.c Preliminary feedback-controlled and uncontrolled trials with saline

infusion

All (N = 7) preliminary feedback-controlled trials with saline infusion were suc-

cessfully controlled. The log10-scaled control thresholds used in these trials were:

∆thresh = –2.8 (N = 2), –2.5 (N = 2), –2.4 (N = 2) and –2.2 (N = 1). The mean

volume within the uncontrolled group with saline infusion (N = 4) was found to be

20.705 ± 4.947 (mean ± standard deviation), which was significantly larger than the

mean volume in the feedback-controlled group, which was 8.375± 1.383 (p = 1.24 · 10−4).

The correlation between log10-scaled spatial average decorrelation within the ab-

lation zone and ablation volume in trials with saline infusion was found to be similar

to those without saline infusion, but did not reach statistical significance (R2 = .194,
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Figure 3.17: Example of tissue histology with corresponding decibel-scaled B-mode slices
with overlaid log10-scaled decorrelation per ms. The column marked (1) shows tissue
histology for the four tissue slices closest to the needle tip for a characteristic uncon-
trolled trial in the preliminary uncontrolled group without saline infusion, and the col-
umn marked (2) shows an azimuth-depth B-mode plane at the same elevation as each
tissue slice in column 1 with overlaid log10-scaled decorrelation maps. Columns (3) and
(4) show the same information for a characteristic controlled trial (∆thresh = –3).
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p = .176). A scatter plot of log10-scaled average decorrelation vs. ablation volume with

an MSE-optimized linear regression line can be seen in Figure 3.18a.

(a) (b)

Figure 3.18: Results for total ablation volume in the preliminary group of feedback-
controlled and uncontrolled trials with saline infusion. (a) Scatter plot of log10-scaled
average decorrelation within a targeted 15 mm radius ablation zone centered at the needle
tip vs. total ablation volume with overlaid least-squares optimized linear fit. (b) Bar plot
of mean volumes in the feedback-controlled and uncontrolled groups, with error bars
showing standard error.

The mean Dice coefficient in the uncontrolled group was .738± .081, while the mean

in the feedback-controlled group was .717 ± .060. The difference in the mean of the

feedback-controlled and uncontrolled groups was not found to be significant (p = .54),

and the variance under the F-test was also not found to be significant (p = 63). A scatter

plot of the Dice coefficient vs. log scaled spatial mean decorrelation within the ablation

zone is shown in Figure 3.19a.

ROC analysis completed on preliminary trials with saline infusion is summarized in

table 3.2. All groups predicted local thermal lesioning significantly more effectively than

chance, with AUC values between .795–.879 (p < 10−16, all cases).
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(a) (b)

Figure 3.19: Results for Dice coefficients in the preliminary group of feedback-controlled
(N = 7) and uncontrolled (N = 4) trials with saline infusion. (a) Scatter plot of log10-
scaled average decorrelation within a targeted 15 mm radius ablation zone centered at
the needle tip vs. Dice coefficient with overlaid least-squares optimized quadratic fit. (b)
Bar plot of mean Dice coefficients in the feedback-controlled and uncontrolled groups
with error bars showing standard error.

(a) (b)

Figure 3.20: Results for prediction of local ablation in preliminary trials with saline
infusion (N = 10). (a) ROC curve for prediction of local tissue ablation across all
uncontrolled (N = 3) and feedback-controlled (N = 7) trials, with the optimal point
for prediction of local ablation (∆opt = –2.9) shown in blue and the minimum threshold
achieving 90% specificity (∆90% = –2.3) shown in black. (b) ROC curves for preliminary
trials with saline infusion per control threshold (∆thresh = –2.8, –2.5, –2.4, –2.2).
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AUC statistics for preliminary trials with saline infusion
Uncontrolled Controlled

∆thresh — –2.8 –2.5 –2.4 –2.2 all
# Trials 4 2 2 2 1 7
AUC .795 .892 .879 .855 .859 .867
Z-score 18.39 14.73 12.31 12.66 9.21 32.81
p-value p < 10−16 p < 10−16 p < 10−16 p < 10−16 p < 10−16 p < 10−16

Table 3.2: Area under the curve for all trials with saline infusion. Uncontrolled (N = 14)
and controlled trials (N = 18) with threshold ∆thresh set to –3 (N = 2), –2.5 (N = 2),
–2.4 (N = 2) –2.2 (N = 1). Statistical significance of the AUC values was determined
via a 2-tailed sample size adjusted Z-score.

3.3.2 Analysis of all preliminary trials and control parameter

determination

3.3.2.a Summary

Mean ablation volume in the feedback-controlled and uncontrolled trials with and

without saline infusion can be seen in Figure 3.21a. A combined scatter plot of log10-

scaled spatial decorrelation within the ROI vs. ablation volume can be seen in Figure

3.21b. These variables had a moderate and statistically significant correlation (R2 = .219,

p = .003). Uncontrolled trials with saline infusion had a significantly greater ablation

volume than those without saline infusion (p = .026), as did feedback-controlled trials

(p = .004), however these were controlled at a range of thresholds between log10∆thresh =

–2.8 and –2.2. The mean spatial decorrelation in the uncontrolled groups, which was

log10∆avg = –2.11 for the group with saline infusion and log10∆avg = –2.88 without saline

infusion, was also found to be significantly different under a two-sided t-test (p = .006).

Similarly, a bar plot for Dice coefficients between trials with and without saline

infusion can be seen in Figures 3.22a. The increase in conformance in the saline group is

likely due to generally increased ablation volumes arising from more consistent thermal

lesioning. A scatter plot of spatial average decorrelation in the ROI vs. Dice coefficient

with an MSE optimized quadratic fit can be seen in Figure 3.21b. The quadratic model

was found to be significant (R2 = .243, p = .009), and shows generally low Dice coefficient

values for lower mean decorrelation values, particularly in the feedback-controlled group.
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(a) (b)

Figure 3.21: Comparison of ablation volumes for feedback-controlled and uncontrolled
trials with and without saline infusion. Subfigure (a) shows mean volume across each
group and Subfigure (b) shows mean ablation volume for feedback-controlled trials per
decorrelation control threshold.

(a) (b)

Figure 3.22: Comparison of Dice coefficients for feedback-controlled and uncontrolled
trials with and without saline infusion. Subfigure (a) shows mean volume across each
group and Subfigure (b) shows mean ablation volume for feedback-controlled trials per
decorrelation control threshold.
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Considering the significant difference between trials with and without saline infu-

sion, the results within the trials with saline infusion were considered more relevant for

threshold determination for the final set of feedback-controlled trials.

3.3.2.b Prediction of local ablation

Across all trials, the optimal threshold for local prediction was found to be –2.49.

The ROC curve for all preliminary controlled trials can be seen in figure 3.23a, where the

AUC of the ROC curve was found to be .80 (p < 10−16).

(a) (b)

Figure 3.23: Results for prediction of local ablation in all preliminary trials combined
(N = 34). (a) ROC curve for prediction of local tissue ablation across all preliminary
trials, with the optimal point for prediction of local ablation (∆opt = –3.02) shown in blue
and the minimum threshold achieving 90% specificity (∆90% = –2.49) shown in black. (b)
Odds plots of sensitivity and specificity per log10 decorrelation threshold with ∆opt and
∆90% marked with a solid and dashed vertical line respectively.

Decorrelation values that achieved high specificity and reasonable sensitivity for

prediction of local ablation were considered a reasonable starting point for a final feedback

control threshold. Odds plots for all preliminary trials in both the feedback-controlled

and uncontrolled groups can be seen in Figures 3.24a and 3.24b, where a threshold of

–2.41 was found to achieve 90% sensitivity in the uncontrolled group and –2.75 in the

controlled group. These had corresponding sensitivites of 37.3% and 50.7% respectively.
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(a) Uncontrolled trials (b) Controlled trials

Figure 3.24: Odds plots for (a) uncontrolled and (b) controlled groups in all preliminary
trials (both with and without saline infusion). The solid black vertical line shows the
optimal decorrelation value for prediction of local ablation, while the dashed vertical line
shows the threshold which achieved 90% specificity.

The value for local prediction across all trials was determined to be less relevant to our

final controlled trials by the statistically significant difference in thermal lesioning between

trials with saline infusion and trials without saline infusion. Instead, local predictive

power within the saline trials was considered more relevant for final determination of a

control threshold.

Figures 3.25a and 3.25b show the odds plots for only trials with saline infusion, where

the threshold achieving 90% specificity in the uncontrolled group was found to be –2.28

and in the feedback-controlled group was –2.56. These had a corresponding sensitivity of

38.2% and 50.4% respectively.

Computed sensitivity and specificity values at ∆opt, ∆90%, and at the final chosen

threshold ∆thresh = –2.2 for prediction of local ablation via ROC analysis in the un-

controlled, feedback-controlled and combined groups can be seen in table 3.3 for trials

without saline infusion, table 3.4 for trials with saline infusion and table 3.5 for all trials

combined. As feedback control affected the observed value for ∆90%, which will be dis-

cussed further in section 3.4, the most relevant parameter was the result for uncontrolled

64



(a) Uncontrolled trials (b) Controlled trials

Figure 3.25: Odds plots for (a) uncontrolled and (b) controlled groups in the preliminary
set of trials with saline infusion. The solid black vertical line shows the optimal decor-
relation value for prediction of local ablation, while the dashed vertical line shows the
threshold which achieved 90% specificity.

trials with saline infusion, which was found to have a value of ∆90% = –2.28, with a

corresponding sensitivity of 38.2%.

Sensitivity and specificity values for preliminary trials without saline infusion

Uncontrolled Controlled Combined

∆opt ∆90% ∆thresh ∆opt ∆90% ∆thresh ∆opt ∆90% ∆thresh

log10(∆) –3.15 –2.45 –2.20 –3.36 –2.91 –2.20 –3.18 –2.60 –2.20
Spec.(%) 69.7 90.0 94.2 69.5 90.0 99.0 71.7 90.0 95.8
Sens.(%) 78.3 35.4 20.5 77.3 37.2 5.3 77.2 41.6 18.2

Table 3.3: Sensitivity and specificity values for preliminary trials without saline infusion.
Values are shown for the optimal threshold (∆opt), minimal threshold achieving 90%
specificity (∆90%) and threshold chosen for final trials (∆thresh) for uncontrolled trials,
feedback-controlled trials and all trials combined.

3.3.2.c Prediction of total ablation volume

Sensitivity and specificity values for the prediction of lesion volume via the mean

decorrelation within the targeted ROI were computed to further refine the control thresh-

old choice. In all preliminary trials, a threshold of ∆thresh = –2.2 resulted in a specificity
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Sensitivity and specificity values for preliminary trials with saline infusion

Uncontrolled Controlled Combined

∆opt ∆90% ∆thresh ∆opt ∆90% ∆thresh ∆opt ∆90% ∆thresh

log10(∆) –2.68 –2.28 –2.20 –3.01 –2.56 –2.20 –2.85 –2.44 –2.20
Spec.(%) 70.9 90.0 91.5 76.3 90.0 95.7 75.0 90.0 94.4
Sens.(%) 74.5 38.2 32.6 84.3 50.4 21.3 80.3 47.3 28

Table 3.4: Sensitivity and specificity values for preliminary trials without saline infusion.
Values are shown for the optimal threshold (∆opt), minimal threshold achieving 90%
specificity (∆90%) and threshold chosen for final trials (∆thresh) for uncontrolled trials,
feedback-controlled trials and all trials combined.

Sensitivity and specificity values for all preliminary trials

Uncontrolled Controlled Combined

∆opt ∆90% ∆thresh ∆opt ∆90% ∆thresh ∆opt ∆90% ∆thresh

log10(∆) –3.03 –2.41 –2.20 –3.17 –2.75 –2.20 –3.09 –2.53 –2.20
Spec.(%) 70.0 90.0 93.7 75.3 90.0 97.5 72.8 90.0 95.4
Sens.(%) 76.8 37.3 23.8 79.1 50.7 15.1 78.0 44.2 21.6

Table 3.5: Sensitivity and specificity values for preliminary trials without saline infusion.
Values. are shown for the optimal threshold (∆opt), minimal threshold achieving 90%
specificity (∆90%) and threshold chosen for final trials (∆thresh) for uncontrolled trials,
feedback-controlled trials and all trials combined.
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for prediction of 80% of the targeted ablation zone of 78% and a sensitivity of 50%. The

same analysis was completed on preliminary trials with saline infusion only, as these are

the conditions which would be used in the final set of feedback-controlled trials. For the

group of preliminary trials with saline infusion, a threshold of ∆thresh = –2.2 resulted in

a specificity of 77% and sensitivity of 100%.

3.3.2.d Threshold selection

Results within the preliminary group of trials were used to determine a range of

reasonable values for the final selected control threshold. Analysis was completed on

all trials together, as well as separately for trials with and without saline infusion, as

well as with or without feedback control. Trials with saline infusion were considered

more relevant for our final control parameter determination, as there was a significant

difference in lesioning characteristics and decorrelation maps in trials with saline infusion

compared to those without. Prediction of local ablation in the feedback-controlled groups

was also affected by the choice of control threshold, and was thus considered less relevant

for parameter selection based on local ablation prediction.

Among all uncontrolled preliminary trials, a threshold value of log10∆thresh = –2.2

resulted in prediction of local ablation with specificity 93.7% and sensitivity 23.8%. For

full volume ablation, using both feedback-controlled and uncontrolled trials, a threshold

of –2.2 resulted in a 90% ablation volume specificity of 79% and sensitivity of 30%, and

for 80% ablation had a specificity of 78% and sensitivity of 50%.

In the uncontrolled group with saline infusion, a threshold of –2.2 resulted in a local

ablation prediction specificity of 91.5% and sensitivity of 32.6%. For 80% ablation, a value

of –2.2 had a specificity of 72% and a sensitivity of 50%. For 90% ablation specificity at

-2.2 was 77% and sensitivity was 100%.

A threshold of –2.2 thus provided a high specificity for prediction of local ablation

and total volume ablation, with reasonable sensitivity.
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3.3.3 Final feedback-controlled trials

3.3.3.a Analysis of tissue lesioning in final trials

Results for final uncontrolled (N = 11) and controlled (N = 11) trials were analyzed

to determine the efficacy of 3D echo-decorrelation based feedback control. All 11 trials in

the controlled group were successfully controlled, with an average total treatment time

of 5.36 minutes (maximum of 7.19 minutes and minimum of 3.55 minutes, σ = 1.23).

Treatment followed a similar course in most procedures, with generally rapidly increasing

cumulative decorrelation occurring within 30–40 seconds of reaching the target temper-

ature. The target temperature was reached in 1.28 ± 0.046 minutes in the uncontrolled

group and 1.26 ± 0.031 in the controlled group. In some cases, a high level of decorre-

lation was registered early on, possibly caused by air bubbles within the tissue. A plot

showing cumulative and instantaneous decorrelation in the 30 mm diameter ROI, along

with temperature and impedance readings from the RF generator, of a representative

controlled and uncontrolled trial can be seen in Figures 3.26b and 3.26a respectively.

The mean ablation volume in the uncontrolled group was 26.08 ± 5.03mL

(mean±standard deviation), while the mean ablation volume in the controlled group

was 10.26 ± 3.14mL. Volume was found to be normally distributed under the Shapiro-

Wilk test for the uncontrolled group (W=0.93, p=.42) and controlled group (W=0.94,

p=0.39), indicating the validity of non-parametric statistical tests. The difference in the

mean volume between the two groups was found to be statistically significant (p < .05)

under the two-sided Student’s t-test (p < 10−16). However, the difference in variance

between the two groups was not found to be significant (p < .05) under the two-sample

F-test (p = 2.6 · 10−2).

Geometric conformance to the ideal targeted volume, as measured by the Sorenson-

Dice coefficient between the segmented mask and an ideal sphere centered at the needle

tip, was found to be 0.674 ± 0.09 for the uncontrolled group and 0.752 ± 0.06 for the

controlled group. Both groups were found to be normally distributed under the Shapiro-

Wilk test. Under a two-sided Student’s t-test the mean was found to be significantly
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(a) Example uncontrolled trial

(b) Example controlled trial

Figure 3.26: Time series of the spatial average instantaneous and cumulative decorrelation
within the targeted 15 mm radius spherical ROI with the mean temperature recorded
at the RF probe’s thermocouples. The x axis shows time since RF treatment started in
minutes. Subfigure (a) shows a representative uncontrolled trial, where the RF generator
was set to ablate for a 7 minute ablation time at the targeted temperature (110 ◦C).
Subfigure (b) shows a representative feedback-controlled trial, where the treatment was
stopped early upon the spatial average cumulative decorrelation reaching the control
threshold ∆thresh = –2.2.
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greater in the controlled group (p = .024), but the variance under the F-test was not

found to be statistically significant (p = .196).

Ablation rate was likewise found to be normal under the Shapiro-Wilk test for both

the uncontrolled (W = 0.874, p = 0.067) and controlled groups (W = 0.947, p = 0.610).

The mean value for ablation rate was negligibly different between each group, with the

uncontrolled trials having a rate of 1.86 ± 0.535 mL/minute and the uncontrolled trials

having a rate of 2.04 ± 0.411 ml/minute. The difference in means as measured by a

two-sided t-test was not found to be significantly different (p = .359), likewise under the

two sample F-test the variance was also not significantly different (p = .252). Bar plots

of mean ablation volume, Dice coefficient and ablation rate with error bars shown as

standard error can be seen in Figure 3.27, and the related statistics can be seen in Table

3.6.

Ablation statistics for the final group of feedback-controlled and uncontrolled trials

Uncontrolled Controlled t-test F-test

Volume (mL) 26.8± 5.026 10.256± 3.140 4.2 · 10−9 .138
Dice coefficient .674± .09 .752± .060 .024 .196

Ablation rate (mL/min) 2.044± .369 1.8632± .535 .359 .252

Table 3.6: Statistics for volume, Dice coefficient and ablation rate (mean ± standard
deviation) with corresponding p-values for two sided t-test for equivalence of mean and
F-test for equivalence of variance between groups. For both the t-test and F-test the null
hypothesis was rejected if p < .05.

The relationship between average decorrelation within the ROI and resultant abla-

tion volume and Dice coefficient was analyzed via linear regression. Figure 3.28.a shows

a scatter plot of log10-scaled spatial average decorrelation within the ROI vs. the ablated

volume in the final set of trials. A modest, but statistically significant, correlation be-

tween the spatial mean decorrelation and volume was observed (R2 = .26, p = .0124).

Feedback-controlled trials showed a less significant relationship between spatial average

decorrelation and ablation volume, with higher decorrelation values being associated with

70



(a) Volume (b) Dice coefficient

(c) Ablation rate

Figure 3.27: Bar plots of lesioning results in the final group of feedback-controlled and
uncontrolled trials. Bars show the mean and standard error of (a) ablation volume, (b)
Dice coefficient and (c) ablation rate for controlled and uncontrolled trials.
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lower volumes. This effect likely arose as a result of high localized decorrelation events

triggering early cessation of treatment in some controlled trials.

3.3.3.b Prediction of local ablation in the final set of trials

ROC curves for the prediction of local ablation via echo decorrelation in the feedback-

controlled and uncontrolled groups can be seen in Figure 3.29. Cumulative echo decor-

relation predicted ablation significantly better than chance (AUC=.5) in both groups,

with an AUC of 0.807 (p < 10−16) in the uncontrolled group and 0.836 (p < 10−16) in

the feedback-controlled group. The difference between the two groups was found to be

significantly different under the sample-size adjusted z-test (z = 2.04, p = .041), indicat-

ing a slightly improved predictive ability of local decorrelation for the controlled group.

A summary of statistical results for the AUC, sample size adjusted Z-score and p-values

can be seen in Table 3.7.

Post-hoc analysis was completed on the ∆90%, ∆opt and ∆thresh for the final set of

trials. The optimal threshold for 90% sensitivity across all final trials was found to be

–2.19, which was very close to the selected control threshold of –2.2. In uncontrolled trials,

the threshold achieving 90% specificity was found to be –2.13, which had a corresponding

sensitivity of 39%. In controlled trials, the threshold achieving 90% specificity was –2.26,

with a corresponding sensitivity of 45.2%. A summary of these results can be seen in

Table 3.8.
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Figure 3.28: Scatter plots of spatial average decorrelation vs. ablation geometry values
with MSE-optimized regression lines. Subfigure (a) shows results of linear regression of
the spatial average decorrelation within the targeted ROI vs. ablation volume. Subfigure
(b) shows results of quadratic regression on Dice coefficient vs. decorrelation.

AUC in final controlled and uncontrolled groups

Uncontrolled Controlled

# Trials 11 11

AUC .807 .836
Z-score 35.03 29.12
p-value p < 10−16 p < 10−16

Between groups

Z-score, p-value 2.04, p = .041

Table 3.7: Computed area under the curve values for all trials in the final controlled
(N = 11) and uncontrolled (N = 11) groups. Values for significance testing of the AUC
vs. chance (AUC=.5) are shown as the sample size adjusted Z-score with its corresponding
p-value. Significance testing between the AUCs of both groups is shown in the bottom
column.

Sensitivity and specificity values for final trials

Uncontrolled Controlled Combined

∆opt ∆90% ∆thresh ∆opt ∆90% ∆thresh ∆opt ∆90% ∆thresh

log10(∆) –2.51 –2.13 –2.20 –2.91 –2.26 –2.20 –2.74 –2.19 –2.20
Spec.(%) 73.3 90.0 88.0 74.5 90.0 90.1 73.1 90.0 89.8
Sens.(%) 70.9 45.4 50.7 79.1 45.2 41.9 77.8 47.9 44.3

Table 3.8: Sensitivity and specificity values for uncontrolled (N = 11) and controlled
(N = 11) final trials. Values are shown for the optimal threshold (∆opt), minimal thresh-
old achieving 90% specificity (∆90%) and threshold chosen for final trials (∆thresh) for the
uncontrolled and feedback-controlled groups as well as both groups combined.
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(a) Controlled

(b) Uncontrolled

(c) Overlaid

Figure 3.29: ROC curves for (a) uncontrolled trials, (b) controlled trials and (c) both sets
overlaid. Optimal thresholds for local ablation, as well as the threshold used in controlled
trials, are shown in subfigures (a) and (b). (*p < 10−16, **p < 10−16)
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(a) Uncontrolled (b) Controlled

Figure 3.30: Odds plots for uncontrolled (a) and controlled (b) groups in the final group.
The solid black vertical line shows the optimal decorrelation value for prediction of local
ablation, while the dashed vertical line shows the threshold chosen for controlled trials
(−2.2).

3.4 Discussion

This chapter detailed our efforts to create a real-time feedback control methodology

to optimize RF thermal lesioning in ex vivo bovine liver based on 3D echo decorrelation

imaging. Our method was to create a bang-bang type controller which stops the thermal

treatment when the spatial mean of the cumulative decorrelation map within our targeted

region exceeded a set threshold. All feedback-controlled trials (N = 27), including both

the preliminary (N = 16) and final groups (N = 11), were successfully controlled. That

is, in all feedback-controlled trials, the spatial average decorrelation, ∆̂avg, within the ROI

exceeded the control threshold, ∆thresh, and the procedure was stopped early relative to

the device’s default temperature-controlled behavior. Performance in the prediction of

local ablation and total thermal lesioning was then evaluated by creating a 3D binary

mask of tissue ablation. This mask was used to assess the relationship between local

decorrelation at a particular voxel, the relationship between the spatial mean decorrela-

tion within the targeted ROI and the total ablation volume, and the differences between
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feedback-controlled and uncontrolled trials in terms of lesion volume, ablation rate and

the Dice coefficient between the observed ablation geometry and the targeted ROI.

In our final set of feedback-controlled trials with a constant control threshold

(log10∆thresh = –2.2), we found that feedback control resulted in thermal lesions that

more closely matched the targeted ablation zone, as measured by the Sorenson-Dice coef-

ficient (.752±.06 vs. .674±.09, p = .024). Ablated volumes were also significantly smaller

in the feedback-controlled group compared to the uncontrolled group (10.25±3.14 mL vs

26.80± 5.03 mL, p = 4.2 · 10−9). However, we did not find a significant difference in the

ablation rate (p = .359), the variance in ablation volume (p = .138) or the variance in

Dice coefficient (p = .196). The greater Dice coefficient can be attributed to less ablated

tissue outside of the targeted region in the feedback-controlled group, as the uncontrolled

group often resulted in substantial treatment outside of the ROI.

In contrast with the final set of trials, the preliminary group of feedback-controlled

trials showed worse conformance to the targeted ablation zone when compared to the

uncontrolled group (.589 ± .18 vs. .721 ± .124). This difference was found to be more

substantial for the trials without saline infusion (.477 ± .17 vs. .717 ± .133) than those

with saline infusion (.717± .06 vs. .738± .081). The poorer Dice coefficient in the trials

without saline infusion was the result of lower overall lesion volumes compared to those

with saline infusion (4.92±2.31 mL vs. 8.37±1.38 mL). The smaller lesion volumes likely

arose out of both a lower control threshold (log10-decorrelation per ms thresholds were

between –3.5 and –3 for the group without saline infusion, and between –2.8 and –2.2

for the group with saline infusion), and the effect of saline infusion itself. Considering

only the uncontrolled trials in both the preliminary and final groups, which would not be

affected by the difference in control thresholds, thermal lesion volume was significantly

greater in the group with saline infusion compared to that without (25.18± 5.58 mL vs.

12.75 ± 6.17 mL, p = 1.18 · 10−6), and the trials with saline infusion also had a greater

mean decorrelation within the ROI (∆avg = –2.34 vs. –1.83). A figure showing lesion

volume vs. average decorrelation per ms within the targeted ROI is shown in figure 3.31.

There was a significantly stronger correlation between ∆̂avg and lesion volume in the
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group with saline infusion (R2 = .417, p = .009) than the group without (R2 = .097,

p = .208).

Figure 3.31: Lesion volume vs. mean log10-decorrelation per ms within the targeted ROI
for all uncontrolled trials with and without saline infusion.

Differences in thermal lesioning and decorrelation between the groups with and with-

out saline infusion can be partially explained by differences in the observed electrical

impedance behavior during those trials. Figure 3.32a shows electrical impedance mea-

sured by the RFA needle over time for a characteristic uncontrolled trial without saline

infusion, while figure 3.32b shows a trial with saline infusion. In the saline group, nearly

all trials showed monotonically decreasing electrical impedance, while in the group with-

out saline, impedance often increased as the trial progressed. This is consistent with

clinical recommendations for the use of saline infusion, which is meant to offset the effect

of impedance spikes from charred regions of tissue. This effect could have been the lim-

iting factor for lesion size in the trials without saline infusion, which tended to be much

smaller.

The small average lesion volume in the feedback-controlled group suggested that

the chosen threshold in those trials was too low. As a result, subsequent trials with

77



(a)

(b)

Figure 3.32: Impedance measured at the ablation needle plotted with mean log10 scaled
instantaneous decorrelation for characteristic uncontrolled trials without saline infusion
(a) and with saline infusion (b).
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saline infusion used a higher control threshold. The threshold was continuously increased

throughout the preliminary trials to allow for a greater lesion size, as lesion volumes were

substantially smaller than the targeted ROI at lower control thresholds.

The trials with saline infusion had a much greater volume of treated tissue outside

of the targeted ablation zone when compared to the feedback-controlled trials, which

resulted in a lower Dice coefficient for that group.

All groups within this study showed favorable performance in the prediction of local

lesioning, with AUCs between .73 and .84, all of which were determined to be significant.

These results are similar to those found in previous studies of ex vivo RFA ablation

monitoring, such as a study by Mast et al. [74] (N = 9) which reported a value of .85

and a study by Subramanian et al. which reported a value of .919 (N = 15) [91]. This is

notable because our study did not use ensemble averaging and had a much lower spatial

resolution. The effective number of samples within the tested points (25 mm radius

sphere centered at the needle tip) was on the order of 120. These results were similar to

those found by Ghahramani et al. on 3D echo decorrelation based RFA monitoring in

ex-vivo bovine liver, where they found an AUROC of .837 for prediction of local ablation

using the globally normalized variant of echo decorrelation imaging [81].

The threshold achieving 90% specificity (∆90%) for prediction of local ablation tended

to vary with the control threshold, this is shown in Figure 3.33a, which shows a bar plot

with mean ∆90% per each control threshold. This also coincided with an improvement

in the prediction of local ablation in the feedback-controlled trials, as shown in Figure

3.33b. As trials with feedback control are stopped when the spatial mean decorrelation

exceeds the threshold, it would be expected that local decorrelation values would be close

to the control threshold. This is true only if high decorrelation events occur consistently

throughout the ROI. If high decorrelation events were limited to a small subregion, then

the mean could exceed the control threshold while the local decorrelation values were

significantly higher than the threshold. The improvement in the AUC of the ROC curve

likely arose for similar reasons as the change in ∆90%, control stopped the procedure
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early and limited the effect of decorrelation events which might have occurred without

correspondence to thermal lesioning.

(a) (b)

Figure 3.33: Effect of feedback control on computed 90% specificity thresholds for pre-
diction of local ablation. Subfigure (a) shows feedback control threshold vs. threshold
achieving 90% specificity, and subfigure (b) shows ROC curves separated by control
threshold.

Inhomogeneities within the tissue had a substantial effect on decorrelation maps;

for trials with large blood vessels near the ablation needle, decorrelation tended to be

higher than in trials without. For some feedback-controlled trials, this resulted in worse

performance in terms of targeting the entire ablation margin. The effect of vaporization

is widely described in the literature on RFA [26], and a similar effect was observed in

studies on HIFU-based control [92]. Figure 3.34 shows an example from the preliminary

saline group. In these trials, the procedure was stopped earlier than would have been

optimal, as local decorrelation around these inhomogeneities resulted in a higher mean

decorrelation which was not indicative of full ablation of the targeted region.

In a related study completed before this thesis, 3D echo decorrelation was compared

to integrated backscatter mapping, as well as to two different variants of decorrelation

imaging with different normalizations. The three variants of decorrelation compared were:

globally-normalized decorrelation, which is normalized only by the global spatial mean

backscatter, locally-normalized, which is normalized by local backscatter, and combined
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Figure 3.34: Example of increased local decorrelation arising from a blood vessel within
the ablation zone. (a) 2D azimuth-depth plane at an elevation of 50 mm from the bottom
of the cuvette. (b) Corresponding dB-scaled B-mode plane with overlaid log10-scaled
decorrelation.

normalization which is normalized by both global and local backscatter (and is the defi-

nition used in this study) [81]. The methodology employed in that study was very similar

to that which was employed for the ‘uncontrolled’ set of trials in this study, except for

exposure conditions, which were set to a 2 cm diameter sphere, 150 W power target, a

5-minute ablation time and without saline infusion. Imaging settings also differed; for

that study, echo-frames with a larger size of 110 mm × 79◦ × 79◦ were used. AUC values

for the prediction of tissue lesioning ranged from .726− .837, a very similar range to what

was presented in this thesis. Preliminary results from a study completed by Ghahramani

et al. were used to inform changes to this study. Power was reduced to 50 W to increase

the number of samples taken and reduce any impedance spikes from tissue charring. For

similar purposes, the imaging volume was lowered to 80 mm × 56◦ ×56◦, the absolute

minimum to encompass our desired region to increase the number of samples during each

trial. A larger ablation diameter was selected to increase the number of sampled points

within the targeted ablation zone relative to the previous study. Additionally, clinical

efficacy of thermal ablation tends to be worse with larger targeted regions, and for lesions
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with an ablation margin of 2 cm or less, ablation already has comparable performance to

hepatic resection [13]. A larger ablation margin of 3 cm or greater is generally associated

with worse performance in RFA procedures and thus is a better test case for the efficacy

of feedback control.

The controlled results can be compared to studies completed by Abbass et al. on

ex vivo bovine liver and in vivo rabbit liver with HIFU and bulk ultrasound ablation

[85] using 2D echo decorrelation based control. They used a control criterion based on

the minimum echo decorrelation within the targeted region and mean decorrelation in

the targeted region. They found no significant difference in ablation rate or lesion widths

between the controlled and uncontrolled groups under any tested control parameters. Our

results were similar in finding no significant effect of echo decorrelation-based control on

ablation rate and lesion uniformity, but our study showed an increase in conformance to

the targeted ablation zone as measured by the Dice coefficient.

This study was limited by a very low temporal resolution due to the time the scanner

takes to record and export a pair of echo volumes, which was approximately 7 seconds

per volume. Additionally, the amount of time needed for exporting volumes from a single

set was roughly linear with the number of volumes recorded; as such, we opted to use

only two echo-frames for our calculations, favoring more samples during the treatment

over temporal smoothing. This suggests that our computed decorrelation maps were

subject to significantly greater random variation than prior studies which used temporal

smoothing. Considering we were constrained to using a single echo-frame pair, it is

encouraging that the performance of echo decorrelation in predicting local ablation was

similar to previous studies using linear arrays. This limitation is not inherent to the

method but resulted from the device’s slow I/O operations. Theoretically, decorrelation

maps could be computed at nearly the device’s frame rate, as the additional convolution

and multiplication operations are not computationally demanding. Similar algorithms,

such as Doppler mode, are already available for these devices.

Overall, the results suggest that 3D echo decorrelation based control can provide

some utility in optimizing for a particular lesion geometry. In a clinical setting, better
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conformance to the targeted ablation margin could reduce negative clinical outcomes

associated with ablated healthy tissue, particularly for patients with impaired hepatic

functioning.
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Chapter IV

Conclusion

4.0.1 Summary

This thesis explored using 3D echo decorrelation imaging for real-time monitoring

and control of radiofrequency thermal ablation in ex-vivo bovine liver. We hypothesized

that 3D echo decorrelation imaging’s promising performance as a predictor of local ther-

mal lesioning could be utilized as a control parameter for thermal ablation procedures

and that this method would result in more uniform thermal lesions that more closely

match the desired ablation geometry. To test this hypothesis, we developed a closed-loop

feedback control methodology that stopped the procedure early if the spatial average

decorrelation within our targeted ablation zone exceeds a set threshold.

Chapter 1 explored the epidemiology, etiology and treatment of liver cancer, as well

as an overview of existing monitoring and control methods for thermal ablation treat-

ments. The primary impetus for creating a real-time control method for these procedures

is that clinicians do not have a standard, portable and effective way to control the geom-

etry of thermal lesioning in real-time. The ability to automatically control an ablation

procedure with real-time feedback could reduce the incidence of local tumor recurrence

due to under-treatment and reduce complications from over-treatment.

In Chapter 2, the echo-decorrelation imaging method was described, and previous

research on its utility in monitoring and control was outlined. In studies of 2D echo-

decorrelation, the technique improved the uniformity of ablated regions compared to
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standard temperature-controlled RFA. The previous methodologies were also explored to

control HIFU and bulk ultrasound in both in vivo and ex vivo trials.

Chapter 3 explored the methods we employed to evaluate 3D-echo decorrelation’s

utility as a predictor of local thermal ablation and our efforts to create an automated

feedback-controlled algorithm for optimizing thermal ablation. To assess the hypothesis

that 3D echo decorrelation-based feedback control would result in a more uniform lesion

volume and geometry, we completed a series of echo decorrelation feedback-controlled

and uncontrolled ablation trials at a set control threshold, which was determined via an

optimization process based on testing different control criteria in a preliminary group

of feedback-controlled trials. The optimization process considered the performance in

predicting local tissue lesioning and the full ablation volume. A threshold was selected

to achieve high specificity and a reasonable sensitivity in predicting both local thermal

lesioning and complete ablation of a proportion of the targeted region.

All trials in our final group of feedback-controlled trials were successfully controlled;

that is, the procedure was stopped early due to the spatial average decorrelation exceeding

our control threshold. Through analysis of the thermal lesions generated during the RFA

procedure, we found that the mean conformance to the desired ablation zone, as measured

by the Dice coefficient between the ablation region and the targeted ablation zone, was

superior in the feedback-controlled group. We, however, did not find a significant change

in variance in the total ablated volume or the ablation rate.

We found that 3D echo decorrelation imaging strongly predicted local tissue lesion-

ing and that echo-decorrelation-based control resulted in smaller lesions with significantly

greater conformance to an idealized ablation zone. We also found a moderate but statis-

tically significant correlation between the spatial mean decorrelation within the targeted

ablation zone and thermal lesion volume. However, the variance in lesion volume and con-

formance was not significantly different between the controlled and uncontrolled groups.

The central hypothesis of this study was that echo decorrelation feedback control would

result in more consistent ablation volumes and better conformance to the desired ablation

zone. Of these, only the difference in the mean of the Dice coefficient reached statistical
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significance. Variance in the ablated volume was reduced, but this did not meet statis-

tical significance. Overall, we have presented some preliminary evidence that 3D echo

decorrelation-based control of RFA procedures can result in greater conformance to a

targeted ROI. We however did not show that this control methodology can improve the

consistency of RFA induced lesions.

4.0.2 Future directions

This research aims to establish a method for real-time control of clinical RFA pro-

cedures using ultrasound imaging. To this end, this work offers some positive results,

despite many significant limitations. Feedback control was found to have resulted in bet-

ter conformance to the targeted ablation zone, but in some cases, a very high decorrelation

event occurring within the ROI resulted in ablation being stopped too early.

Both the control criterion and the control methodology could be further improved.

Lesions were found to be on average smaller than the targeted 3 cm diameter sphere, pos-

sibly suggesting a higher control threshold would be optimal for this particular geometry.

We found that decorrelation-feedback control based on the mean within the targeted ROI

was susceptible to localized high decorrelation-events arising from tissue inhomogeneity

and vaporization. Methods that can account for multiple regions within the tissue in-

dependently could potentially offset this but would likely require an increase in spatial

resolution to accurately localize different subsections of the ROI to a meaningful degree

of accuracy. One potential subregion scheme could be to divide the targeted ROI into

concentric semi-spherical subregions. As voxels near the needle tip are nearly always ab-

lated, these points are less relevant for a monitoring and control scheme. Instead, areas

where it is less certain that the tissue will be ablated, generally along the outer edge of

the treatment margin, should be monitored for successful ablation. Therefore, selecting

a subregion that roughly conforms to the shape of the outer edge of the ablation margin

might result in a more useful control algorithm for clinical purposes. These regions could

then be subdivided into multiple semi-spherical regions to account for local high decor-

relation events. Some other ways to account for local high-decorrelation events affecting
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the mean within the targeted region could include manual or automatic B-mode image

segmentation that could be used to identify regions where localized decorrelation spikes

are likely to occur, such as near arteries. An adjustment scheme could then be used to

offset these effects.

Alternative control schemes might offer some advantages over the bang-bang type

controller used in this study. Control was limited to a single binary decision of whether or

not to stop the treatment, a more dynamic control scheme, such as one which modulates

delivered power based on observed decorrelation values, might offer some performance

benefits. The temperature control functionality of standard RFA equipment, as used

in this study, modulates delivered power to maintain a linear increase in temperature

measured at its thermocouples. These temperature readings have limited accuracy as they

are only able to measure temperature at the location in which they are heating, which

does not necessarily reflect tissue temperature in the rest of the targeted lesion. Dynamic

control based on a combination of observations such as measured temperature, electrical

impedance and decorrelation might improve performance beyond temperature control

the decorrelation based bang-bang controller used in this study. Further improvements

might involve the use of multiple RFA needles, all of which could be toggled or modulated

separately to target a particular geometry using decorrelation imaging.

We found that the method performed similarly in the prediction of local ablation to

2D studies of echo decorrelation imaging, but did so without ensemble-averaging and at

a substantially lower spatial and temporal resolution. An implementation with a much

greater temporal and spatial resolution is technically feasible and could theoretically

improve echo decorrelation’s efficacy in predicting thermal lesioning.

As the end goal is clinical use, future research should be focused on ensuring the

efficacy of the method in in-vivo models of liver cancer. 2D studies of echo decorrelation

imaging have shown promise in monitoring and control of in vivo radiofrequency abla-

tion, where it was found to significantly outperform backscatter mapping for monitoring

thermal lesions under the influence of motion-induced noise [84, 85]. Verification of this
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performance in 3D is an essential step to the full implementation of echo decorrelation-

based control in true clinical procedures.
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Appendix A

Table of trials

Day Trial Group Type Saline? ∆thresh Dice Vol Rate Exclude reason
6/16/20 1 Prelim Uncont. No NA NA NA NA Probe placement
6/16/20 2 Prelim Uncont. No NA 0.786 18.216 2.181
7/23/20 1 Prelim Uncont. No NA 0.795 20.699 1.993
7/23/20 2 Prelim Uncont. No NA 0.882 14.31 1.363
8/5/20 1 Prelim Uncont. No NA 0.877 11.746 0.91
8/5/20 2 Prelim Uncont. No NA 0.908 13.454 1.012
8/5/20 3 Prelim Uncont. No NA 0.668 26.869 2.483
8/26/20 1 Prelim Uncont. No NA 0.627 19.279 2.102
8/26/20 2 Prelim Uncont. No NA 0.769 15.279 1.559
8/26/20 3 Prelim Uncont. No NA 0.838 10.997 1.059
9/9/20 1 Prelim Uncont. No NA NA NA NA US data output error
9/9/20 2 Prelim Cont. No -3.5 0.308 2.575 0.742
9/23/20 1 Prelim Uncont. No NA 0.56 6.379 1.815
9/23/20 2 Prelim Uncont. No NA 0.795 11.09 1.137
9/30/20 1 Prelim Uncont. No NA 0.695 17.709 2.823
9/30/20 2 Prelim Uncont. No NA 0.774 13.052 2.081
9/30/20 3 Prelim Cont. No -3 0.754 8.872 1.811
10/7/20 1 Prelim Uncont. No NA 0.39 3.423 0.382
10/7/20 2 Prelim Cont. No -3.25 0.587 5.88 0.657
10/7/20 3 Prelim Cont. No -3 NA NA NA Control misconfigured
10/7/20 4 Prelim Uncont. No NA 0.612 6.231 0.712
10/21/20 1 Prelim Uncont. No NA 0.613 6.982 0.798
10/21/20 2 Prelim Cont. No -3 0.503 5.522 1.269
10/21/20 3 Prelim Cont. No -3 0.582 6.709 1.398
11/4/20 1 Prelim Uncont. No NA 0.656 6.906 0.663
11/4/20 2 Prelim Uncont. No NA 0.654 6.914 0.672
11/4/20 3 Prelim Cont. No -3 0.386 3.64 1.308
11/4/20 4 Prelim Cont. No -3 0.472 4.367 0.794
11/4/20 5 Prelim Cont. No -3 0.225 1.789 0.475
11/18/20 1 Prelim Uncont. Yes NA 0.747 16.769 2.004
11/18/20 2 Prelim Cont. Yes -2.8 0.756 9.286 1.53
11/18/20 3 Prelim Cont. Yes -2.8 0.678 7.284 0.936
12/2/20 1 Prelim Uncont. Yes NA 0.844 16.087 1.863
12/2/20 2 Prelim Cont. Yes -2.4 0.755 9.255 2.136
12/2/20 3 Prelim Cont. Yes -2.2 0.792 9.542 1.794
12/16/20 1 Prelim Uncont. Yes NA 0.651 24.929 2.299
12/16/20 2 Prelim Cont. Yes -2.5 0.641 6.771 1.634
12/16/20 3 Prelim Cont. Yes -2.5 0.639 6.71 1.697
12/16/20 4 Prelim Cont. Yes -2.4 0.755 9.777 3.397
2/3/21 1 Prelim Uncont. Yes NA 0.711 25.035 2.217

Table A.1: Table of trials in the preliminary group of thermal ablation experiments.
Columns shown include the date the trial was performed, the number of the trial in each
day, whether or not it used feedback control, whether or not it used saline infusion, the
control threshold (if applicable), the Dice coefficient, volume, ablation rate and exclusion
reason (if the trial was excluded).
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Day Trial Group Type Saline? ∆thresh Dice Vol Rate Exclude reason
2/10/21 1 Final Uncont. Yes NA 0.815 18.818 1.353
2/10/21 2 Final Cont. Yes -2.2 0.701 7.679 1.443
2/10/21 3 Final Cont. Yes -2.2 0.819 9.899 1.86
3/3/21 1 Final Uncont. Yes NA 0.613 34.164 2.456
3/17/21 1 Final Uncont. Yes NA 0.554 33.064 2.44
3/17/21 2 Final Uncont. Yes NA 0.611 32.111 1.977
3/17/21 3 Final Cont. Yes -2.2 0.722 8.059 1.266
3/31/21 1 Final Uncont. Yes NA 0.775 21.694 1.481
3/31/21 2 Final Cont. Yes -2.2 0.84 12.639 1.76
3/31/21 3 Final Cont. Yes -2.2 0.818 11.305 1.976
4/14/21 1 Final Uncont. Yes NA 0.685 26.713 2.222
4/14/21 2 Final Cont. Yes -2.2 NA NA NA Tissue sections unusable
4/28/21 1 Final Uncont. Yes NA NA NA NA Corrupted data output
4/28/21 2 Final Uncont. Yes -2.2 NA NA NA Tissue sections unusable
5/5/21 2 Final Uncont. Yes NA 0.698 25.909 2.012
5/5/21 3 Final Cont. Yes -2.2 0.775 18.062 2.511
5/12/21 1 Final Uncont. Yes NA 0.657 28.889 2.274
5/12/21 2 Final Cont. Yes -2.2 0.729 8.499 1.937
5/12/21 3 Final Cont. Yes -2.2 0.699 7.644 1.164
5/19/21 1 Final Uncont. Yes NA 0.587 26.548 2.248
5/26/21 1 Final Uncont. Yes NA 0.614 26.073 2.242
5/26/21 2 Final Cont. Yes -2.2 0.628 6.538 1.842
5/26/21 3 Final Cont. Yes -2.2 0.754 9.304 2.052
6/16/21 1 Final Uncont. Yes NA 0.807 20.849 1.782
6/16/21 2 Final Cont. Yes -2.2 0.766 11.412 2.292
6/16/21 3 Final Cont. Yes -2.2 0.767 12.032 2.683

Table A.2: Table of trials in the final group of thermal ablation experiments. Columns
shown include the date the trial was performed, the number of the trial in each day,
whether or not it used feedback control, whether or not it used saline infusion, the control
threshold (if applicable), the Dice coefficient, volume, ablation rate and exclusion reason
(if the trial was excluded).
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Appendix B

Code listings

B.0.1 LUT generation

MEX C function that generates a look-up table of coefficients for scan conversion

as described in Equation 3.4. These coefficients can be pre-computed per a particular

geometry setting, which lowers the number of FLOPs necessary for scan converting each

volume.

1 #inc lude ”mex . h”

2 #inc lude <math . h>

3 void generatePyramidalCoordinates ( const mxArray ∗ p , const mxArray ∗ Lmu, const mxArray ∗ Lnu , const

mxArray ∗ LR, double dmu, double dnu , double dr , long int pSize , mxArray ∗ out ){

4 const double ∗ pArr , ∗ LmuArr , ∗ LnuArr , ∗ LRArr ;

5 double ∗ outArr ;

6 pArr = mxGetPr(p) ;

7 LmuArr = mxGetPr(Lmu) ;

8 LnuArr = mxGetPr(Lnu) ;

9 LRArr = mxGetPr(LR) ;

10 outArr = mxGetPr( out ) ;

11 int q = 0 ;

12 double dmumLmu = 0 ;

13 double dnumLnu = 0 ;

14 double drmLR = 0 ;

15 for ( int ip = 0 ; ip < pSize ; ip++){

16 q = pArr [ ip ] ;

17 drmLR = dr − LRArr [ q−1] ;

18 dmumLmu = dmu − LmuArr [ q−1] ;

19 dnumLnu = dnu − LnuArr [ q−1] ;

20 outArr [ ip ∗8 ] = drmLR ∗ dmumLmu ∗ dnumLnu ;

21 outArr [ ip ∗8 + 1 ] = LRArr [ q−1] ∗ dmumLmu ∗ dnumLnu ;

22 outArr [ ip ∗8 + 2 ] = drmLR ∗ LmuArr [ q−1] ∗ dnumLnu ;

23 outArr [ ip ∗8 + 3 ] = drmLR ∗ dmumLmu ∗ LnuArr [ q−1] ;

24 outArr [ ip ∗8 + 4 ] = LRArr [ q−1] ∗ dmumLmu ∗ LnuArr [ q−1] ;

25 outArr [ ip ∗8 + 5 ] = drmLR ∗ LmuArr [ q−1] ∗ LnuArr [ q−1] ;

26 outArr [ ip ∗8 + 6 ] = LRArr [ q−1] ∗ LmuArr [ q−1] ∗ dnumLnu ;

27 outArr [ ip ∗8 + 7 ] = LRArr [ q−1] ∗ LmuArr [ q−1] ∗ LnuArr [ q−1] ;

28 }

29 }

30 /∗ The gateway f un c t i o n ∗/
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31 void mexFunction ( int nlhs , mxArray ∗ plhs [ ] ,

32 int nrhs , const mxArray ∗prhs [ ] )

33 {

34 /∗ v a r i a b l e d e c l a r a t i o n s here ∗/

35 i f ( nrhs != 8) {

36 mexErrMsgIdAndTxt ( ”MyToolbox : arrayProduct : nrhs ” ,

37 ”One input r equ i r ed . ” ) ;

38 }

39 i f ( n lhs != 1) {

40 mexErrMsgIdAndTxt ( ”MyToolbox : arrayProduct : n lhs ” ,

41 ”One output r equ i r ed . ” ) ;

42 }

43 //mxArray ∗ p , mxArray ∗ Lmu, mxArray ∗ Lnu , mxArray ∗ LR, doub l e dmu , doub l e dnu , doub l e dr , doub l e

pSize ,

44 double dmu = mxGetScalar ( prhs [ 4 ] ) ;

45 double dnu = mxGetScalar ( prhs [ 5 ] ) ;

46 double dr = mxGetScalar ( prhs [ 6 ] ) ;

47 long int pSize = ( int ) mxGetScalar ( prhs [ 7 ] ) ;

48 p lhs [ 0 ] = mxCreateDoubleMatrix (1 , pSize ∗ 8 ,mxREAL) ;

49 generatePyramidalCoordinates ( prhs [ 0 ] , prhs [ 1 ] , prhs [ 2 ] , prhs [ 3 ] , dmu, dnu , dr , pSize , p lhs [ 0 ] ) ;

50 return ;

51 }

B.0.2 Scan conversion

MEX C function that scan converts pyramidal ultrasound data to Cartesian coor-

dinates. Applies the scan conversion coefficients computed in the ‘LUT generation’ code

to the serialized echo data output from the scanner.

1 #include ”mex . h”

2 #include <math . h>

3 void generateData ( const mxArray ∗ pData , const mxArray ∗ inputData , const mxArray ∗ mapIn ,

4 const mxArray ∗ iRIn , const mxArray ∗ inuIn , const mxArray ∗ imuIn , int pSize ,

5 int xSize , int ySize , int zSize , const mxArray ∗ sphSize , mxArray ∗ out ){

6 // MXArray p o i n t e r s

7 const double ∗ inDataReal , ∗ inDataImag , ∗ iR , ∗ inu , ∗ imu ;

8 double ∗ outDataReal , ∗ outDataImag ;

9 double ∗ mapArr ;

10 double ∗ p ;

11 double ∗ dimPtr ;

12 int rS i ze , thetaS ize , ph iS i z e ;

13 int q ;

14 int mapInd [ 8 ] = {0 ,0 , 0 , 0 , 0 , 0 , 0 , 0} ; // index i n t o map matr ix

15 double ptVal [ 8 ] = {0 ,0 , 0 , 0 , 0 , 0 , 0 , 0} ; // co r r e spond ing va l u e in map matr ix

16 int p1 , p2 , p3 , p4 , p5 , p6 , p7 , p8 ; // data index , co r r e sponds to mapInd v a l u e s

17 // g e t p t r s to mat lab mem

18 mapArr = mxGetPr(mapIn ) ;

19 outDataReal = mxGetPr( out ) ;

20 outDataImag = mxGetPi ( out ) ;

21 inDataReal = mxGetPr( inputData ) ;

22 inDataImag = mxGetPi ( inputData ) ;

23 imu = mxGetPr( imuIn ) ;

24 inu = mxGetPr( inuIn ) ;

25 iR = mxGetPr( iRIn ) ;

26 p = mxGetPr( pData ) ;
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27 dimPtr = mxGetPr( sphSize ) ;

28 rS i z e = dimPtr [ 0 ] ;

29 the taS i z e = dimPtr [ 1 ] ;

30 ph iS i z e = dimPtr [ 2 ] ;

31 double wtCoef = the taS i z e ∗ r S i z e ;

32 // l oop through p o i n t s

33 for ( int ip = 0 ; ip < pSize ; ip++){

34 // g e t cu r r en t po i n t

35 q = ( int )p [ ip ] ;

36 // index i n t o 1D array as 3D array

37 // combined to save o p e r a t i o n s

38 //p1 = iR [ q−1] + t h e t a S i z e ∗ ( imu [ q−1] + ph i S i z e ∗ inu [ q−1]) ;

39 p1 = iR [ q−1]−1 + ( imu [ q−1]−1)∗ r S i z e + ( inu [ q−1]−1)∗wtCoef ;

40 p2 = p1 + 1 ;

41 p3 = p1 + rS i z e ;

42 p4 = p1 + wtCoef ;

43 p5 = p4 + 1 ;

44 p6 = p4 + rS i z e ;

45 p7 = p3 + 1 ;

46 p8 = p4 + 1 ;

47 // g e t index i n t o po i n t ∗8 map matr ix

48 mapInd [ 0 ] = ip ∗8 ;

49 ptVal [ 0 ] = mapArr [ mapInd [ 0 ] ] ;

50 for ( int j = 1 ; j < 8 ; j++){

51 mapInd [ j ] = mapInd [ j −1] + 1 ;

52 ptVal [ j ] = mapArr [ mapInd [ j ] ] ;

53 }

54 outDataReal [ q−1] = p7 ;

55 outDataImag [ q−1] = p8 ;

56 outDataReal [ q−1] = inDataReal [ p1 ] ∗ ptVal [ 0 ] + inDataReal [ p2 ] ∗ ptVal [ 1 ] +

57 inDataReal [ p3 ] ∗ ptVal [ 2 ] + inDataReal [ p4 ] ∗ ptVal [ 3 ] +

58 inDataReal [ p5 ] ∗ ptVal [ 4 ] + inDataReal [ p6 ] ∗ ptVal [ 5 ] +

59 inDataReal [ p7 ] ∗ ptVal [ 6 ] + inDataReal [ p8 ] ∗ ptVal [ 7 ] ;

60 outDataImag [ q−1] = inDataImag [ p1 ] ∗ ptVal [ 0 ] + inDataImag [ p2 ] ∗ ptVal [ 1 ] +

61 inDataImag [ p3 ] ∗ ptVal [ 2 ] + inDataImag [ p4 ] ∗ ptVal [ 3 ] +

62 inDataImag [ p5 ] ∗ ptVal [ 4 ] + inDataImag [ p6 ] ∗ ptVal [ 5 ] +

63 inDataImag [ p7 ] ∗ ptVal [ 6 ] + inDataImag [ p8 ] ∗ ptVal [ 7 ] ;

64 }

65 }

66 /∗

67 The gateway f un c t i o n ∗/

68 void mexFunction ( int nlhs , mxArray ∗ plhs [ ] ,

69 int nrhs , const mxArray ∗prhs [ ] )

70 {

71 /∗ v a r i a b l e d e c l a r a t i o n s here ∗/

72 i f ( nrhs != 11) {

73 mexErrMsgIdAndTxt ( ”MyToolbox : arrayProduct : nrhs ” ,

74 ”One input r equ i r ed . ” ) ;

75 }

76 i f ( n lhs != 1) {

77 mexErrMsgIdAndTxt ( ”MyToolbox : arrayProduct : n lhs ” ,

78 ”One output r equ i r ed . ” ) ;

79 }

80

81 long int pSize = ( int ) mxGetScalar ( prhs [ 6 ] ) ;

82 long int xSize = ( int ) mxGetScalar ( prhs [ 7 ] ) ;

83 long int ySize = ( int ) mxGetScalar ( prhs [ 8 ] ) ;

84 long int zS i z e = ( int ) mxGetScalar ( prhs [ 9 ] ) ;

85 p lhs [ 0 ] = mxCreateDoubleMatrix (1 , xS ize ∗ ySize ∗ zSize ,mxCOMPLEX) ;
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86 generateData ( prhs [ 0 ] , prhs [ 1 ] , prhs [ 2 ] , prhs [ 3 ] , prhs [ 4 ] , prhs [ 5 ] , pSize , xSize , ySize , zS ize , prhs [ 1 0 ] ,

p lhs [ 0 ] ) ;

87 return ;

88 }

B.1 Echo decorrelation

MATLAB implementation of echo decorrelation using frequency domain-based con-

volution as defined in equation 2.6.

1 function compute3DDecorr Freq ( obj )

2 % Pad f o r FFT convo l u t i o n

3 for currVol = 1 : s ize ( obj . rawData cart , 4 )

4 paddedData ( : , : , : , currVol ) = padarray ( volData ( : , : , : , currVol ) , padImArr , ’ both ’ ) ;

5 end

6 % ∗compute windowed i b s and au tocor r01∗

7 %compute i b s and au to co r r b e f o r e windowing

8 ibsPadded = abs ( paddedData ) . ˆ 2 ;

9 autocorr01Padded = paddedData ( : , : , : , 1 : ( end−1) ) .∗ conj ( paddedData ( : , : , : , 2 : end) ) ;

10 % s e t NaN va l u e s to 0

11 ibsPadded ( find ( isnan ( ibsPadded ) ) ) = 0 ;

12 autocorr01Padded ( find ( isnan ( autocorr01Padded ) ) ) = 0 ;

13 %compute windowed i b s

14

15 for currVolume = 1 : s ize ( ibsPadded , 4 )

16 ibsPadded ( : , : , : , currVolume ) = ( i f f t s h i f t ( i f f t n ( f f t n ( ibsPadded ( : , : , : , currVolume ) ) .∗ kerne lFreq ) ) ) ;

17 end

18 %compute a u t c o r r e l a t i o n and d e c o r r e l a t i o n

19 for currVolume = 1 : ( s ize ( ibsPadded , 4 ) −1)

20 autocorr01Padded ( : , : , : , currVolume ) = abs ( i f f t s h i f t ( i f f t n ( f f t n ( autocorr01Padded ( : , : , : ,

currVolume ) ) .∗ kerne lFreq ) ) ) ;

21 end

22

23 obj . i b s = ibsPadded(1+padImArr (1) : end−padImArr (1)−padToOdd(1) ,1+padImArr (2) : end−padImArr (2)−

padToOdd(2) ,1+padImArr (3) : end−padImArr (3)−padToOdd(3) , : ) ;

24 obj . autocorr01= autocorr01Padded(1+padImArr (1) : end−padImArr (1)−padToOdd(1) ,1+padImArr (2) : end−

padImArr (2)−padToOdd(2) ,1+padImArr (3) : end−padImArr (3)−padToOdd(3) , : ) ;

25 for currVolume = 1 : ( s ize ( obj . ibs , 4 ) −1)

26 R00 = obj . i b s ( : , : , : , currVolume ) ;

27 R11 = obj . i b s ( : , : , : , currVolume+1) ;

28 B2 = R00 .∗R11 ;

29 B2ValidIBS = B2( validRange , validAz , va l i dE l ) ;

30 BMean=mean( B2ValidIBS ( : ) ) ;

31 R01 = ( obj . autocorr01 ( : , : , : , currVolume ) ) . ˆ 2 ;

32

33 obj . decorr ( : , : , : , currVolume ) = 2∗(B2−R01) . / (B2 + BMean) / obj . interFrameTime ;

34

35 end

36 end
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B.2 Serial interface

B.2.1 Arduino code

Code for microcontroller circuit responsible for actuating the pneumatic switch on

the RF generator. Polls for a control signal over a serial connection and activates pump

and solenoid valve in rapid succession.

1 bool pressureCharged = fa l se ;

2 unsigned long currTime ;

3 char data ;

4 void setup ( ) {

5 S e r i a l . begin (115200) ;

6 pinMode (22 ,OUTPUT) ;

7 pinMode (24 ,OUTPUT) ;

8 S e r i a l . setTimeout (50) ;

9 }

10

11 void loop ( ) {

12 // S e r i a l . p r i n t (” t e s t ”) ;

13 delay (50) ;

14 i f ( ! pressureCharged ){

15 d i g i t a lWr i t e (24 ,HIGH) ;

16 currTime = m i l l i s ( ) ;

17 while ( m i l l i s ( )−currTime <1000) ;

18 d i g i t a lWr i t e (24 ,LOW) ;

19 pressureCharged = true ;

20 de lay (50) ;

21 }

22

23 while ( S e r i a l . a v a i l a b l e ( ) > 0){

24 i f ( S e r i a l . a v a i l a b l e ( ) > 0){

25 data = S e r i a l . read ( ) ;

26 i f ( data == ’S ’ ){

27 delay (50) ;

28 S e r i a l . p r i n t (F( ”\n \n ∗∗Acitvated ∗∗ \n \n” ) ) ;

29 d i g i t a lWr i t e (22 ,HIGH) ;

30 currTime = m i l l i s ( ) ;

31 while ( m i l l i s ( )−currTime<500) ;

32 d i g i t a lWr i t e (22 ,LOW) ;

33 pressureCharged = fa l se ;

34 delay (100) ;

35 }

36 data = ”” ;

37 delay (50) ;

38 }

39 }

40 currTime = m i l l i s ( ) ;

41 while ( m i l l i s ( )−currTime<100) ;

42 delay (50) ;

43

44 }
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B.2.2 Function for converting fixed point data to floating point

C function which converts non-standard fixed point numbers output from the scanner

to standard floating point numbers using bitwise operations.

1 #include ”mex . h”

2 #include <s t r ing>

3 #include <math . h>

4 f loat f i x e d 2 f l o a t 1 7 ( char ∗ s t r I n ){

5 /∗ f i x e d 2 f l o a t 1 7

6 c on v e r t s a 17− b i t s i gn ed f i x e d po i n t (2ˆ−1) number to a 32 b i t f l o a t

7

8 s t andard f l o a t s are o f t h e form 1 . b1b2 . . . , ou tpu t must be c o r r e c t e d to account f o r t h i s

9 ∗/

10 unsigned int signedFloatMask = 0b00111100100000000000000000000000 ;

11 /∗ Signed f l o a t mask : When XOR’ d wi th t h e inpu t 32 b i t uns i gned twos compliment i n t forms a f l o a t

w i th exponent −1 and a 1 s i g n b i t , a l s o r e v e r s e s s h i f t e d s i g n b i t eg in dec ima l [ 1 ] [ 1 26 −8 ] [ b i t s

] [ padded to end ] ∗\

12 uns igned i n t uns ignedFloatMask = 0 b00111111000000000000000000000000 ;

13 /∗

14 Unsigned f l o a t mask : When XOR’ d wi th t h e i npu t forms a f l o a t w i th exponent −1

15 and a 0 s i gn b i t

16 ∗\

17 f l o a t f l o a t C o r r e c t i o n = . 5 ; // Mantissa i s o f t h e form 1 . b1b2b3 . . . so when exponent = −1 t h e r e i s

an a d d i t i o n a l 2ˆ−1 ( . 5 ) term in the f l o a t , which must be s u b t r a c t e d / added depend ing on s i g n

18 // g e t i npu t i n t

19 uns igned i n t num = s t r t o l ( h exS t r ing , n u l l p t r , 1 6 ) ; // conve r t hex s t r i n g to i n t

20 // B i tw i s e man ipu la t i on

21 i f (num >> 17){ // check i f s i g n ed b i t i s 1

22 num = ( ( ( ˜num)+1) << 7) ˆ s i gnedF loa tMask ;

23 r e t u rn ∗( f l o a t ∗)(&num) + f l o a t C o r r e c t i o n ; // d e r e f e r e n c e num, c a s t what t h e addre s s p o i n t s to

as a f l o a t and add c o r r e c t i o n

24 }

25 e l s e {

26 num = (num<<7) ˆ uns ignedFloatMask ; // same as above , bu t don ’ t t a k e two ’ s compliment

27 r e t u rn ∗( f l o a t ∗)(&num) − f l o a t C o r r e c t i o n ; // . 5 i s here because mant i s sa in a f l o a t i s o f t h e

form 1 . b1b2b3 . . . , w i t h an exponent o f −1, . 5 must i s l e f t over

28 }

29 }
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