

Pinball: Using Machine Learning Based Control in
Real-Time, Cyber-Physical System

A thesis submitted to the
Graduate School

of the University of Cincinnati
in partial fulfillment of the

requirements for the degree of

Master of Science

in the Department of Electrical Engineering and Computer Science
of the College of Engineering and Applied Science

by

Pavan Saranguhewa
BS University of Ruhuna, Sri Lanka

Committee Chair: Zachariah E. Fuchs Ph.D.
Date: November 10, 2022

ABSTRACT

Saranguhewa, Pavan. M.S., Department of Electrical Engineering, University of Cincinnati, Novem-
ber 2022. Pinball: Using Machine Learning Based Control in Real-Time, Cyber-Physical System.

Applied Machine Learning on real-time Cyber Physical Systems (CPS) brings several

new challenges to Machine Learning (ML) based control. CPS are subjected to environ-

mental changes, noise, hardware limitations and tightly coupled time constraints, which

make real-time control a non-trivial task. This thesis work focus on studying applicability

of ML based control in real-time CPS using physical pinball machines as sandboxes.

A simulator framework to evaluate ML algorithms in a virtual setting and a real-world

framework to evaluate ML algorithms in physical pinball machines are developed. Both

frameworks provide visual information and extracted features for the ML agent, and actu-

ates the system according to ML agent control signals. The real-world framework utilizes

a real-time state tracker, hardware based synchronizer, and a non-invasive system actuation

method to realize the abstracted framework. We discuss the development of the simulation

framework and the real-world framework. Subsequently, we move into the application of

model-free ML, where we experiment with reinforcement learning under different percep-

tion models and modular learning. Finally, we discuss the application of model-based ML

where we experiment with Model Predictive Control (MPC) with Deep Neural Networks

(DNN) and Support Vector Regression (SVR), on selected primitive goals in the system.

Each technique is statistically evaluated and results are presented. The evaluation results

showed that ML based MPC was able to reach up to 96% accuracy in the selected shot

aiming scenario.

iii

iv

Acknowledgment
There are many people who helped me in numerous ways in reaching this milestone of

my education, whom I must thank.

First, I must express my gratitude to my professor and academic advisor, Dr. Zachariah

Fuchs, for the kind support and guidance. His insights on scientific problem solving and

hands-on training inspired me and also shaped the outcome of this research. I would also

like to thank my thesis committee members, Dr. Ali Minai and Dr. John Gallagher for

finding time to serve in my thesis committee in their busy schedule. Also, I would like

to thank my lab members, Michael Ikuru, Brian Swanson and Pavlos Androulakakis, who

have been supportive by all means.

Then I must mention my loving wife, parents, brother, and all of my extended family

who have always been there for me. Finally, I have to thank all my friends and everyone

else, who helped and inspired me throughout this journey.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Related work . 3
1.3 Thesis Organization . 4

2 Simulation Framework 5

3 Simulator experiments: Model free learning 9
3.1 Pinball as a Markov Decision Process . 9
3.2 Optimal policy via Deep-Q-Learning . 11
3.3 Experiment setup . 12
3.4 Image-based DQN . 13
3.5 Motion feature based DQN . 16
3.6 Modular Reinforcement Learning . 18

3.6.1 Trained agents . 19
3.6.1.1 Learning to cradle the ball 19
3.6.1.2 Learning to shoot from the cradled position 20
3.6.1.3 Learning to shoot directly 21

3.6.2 Direct Learning vs. Modular Learning 21

4 Real-world framework 24
4.1 Overhead Camera . 26
4.2 Image processing module: ball tracking and feature detection 29

4.2.1 Ball tracking in a custom built pinball playfield 31
4.2.2 Ball tracking on commercial pinball machines 33
4.2.3 Kalman filter to filter positional data 39

4.3 Control module . 43
4.4 Hardware actuator . 45

5 Real-world experiments: Model based learning 47
5.1 Modeling the game of pinball . 48

5.1.1 Rolling Shot Scenario . 49

vi

5.1.2 Data collection . 53
5.2 Model Predictive Controller . 55

5.2.1 Trajectory Prediction Engine . 56
5.2.2 Shot Aiming Controller . 56

5.3 Neural Network based MPC . 59
5.3.1 Hyperparameter tuning . 60

5.4 Support Vector Regression based MPC . 62
5.5 Results . 64

5.5.1 Evaluation metric . 64
5.5.2 Asynchronous Shot Aiming Controller 65
5.5.3 Model Predictive Controller . 68

6 Discussion and Conclusion 72

Bibliography 74

vii

List of Figures

2.1 Pinball simulator . 5

3.1 Pinball simulator with the viewport of the virtual camera (middle-left) . . . 13
3.2 A sample input to the DCN where four consecutive frames are stacked . . . 14
3.3 Image-based DQN evaluation results . 15
3.4 Performance comparison of motion feature based methods 17
3.5 Performance of the agent learning to catch the ball in either of the flippers. . 19
3.6 Performance of the agent learning to hit a random target starting from the

cradled position. 20
3.7 Performance of the agent learning to hit the random target as a single task . 21
3.8 Comparison between direct learning and modular learning 22

4.1 Commercial pinball machines in the laboratory 24
4.2 Components of the real-world framework 25
4.3 Overhead camera of the framework. 26
4.4 ’ChArUco’ pattern for camera calibration 28
4.5 Example of Distortion correction sample 29
4.6 Custom-built simple test-bed . 31
4.7 Ball tracking methodology for the simple test-bed 32
4.8 Stranger Things game playfield . 33
4.9 Image processing pipeline . 37
4.10 Components of control module . 43
4.11 Hardware Actuator Module in the the system diagram 45

5.1 Control Region: Area in which the flipper can change the ball dynamics . . 48
5.2 Rolling Shot Scenario (RSS). 49
5.3 Ball motion in rolling phase. 50
5.4 The launch trajectory . 51
5.5 Tracked ball positions in a sample RSS shot 53
5.6 A sample timeline of processing a frame and actuating a shot 54
5.7 Model Predictive Controller Architecture 55
5.8 Error, ed for a given ball launch trajectory 56
5.9 Kalman filtering in a rolling phase example 57

viii

5.10 Examples for possible under-fit and over-fit models 60
5.11 Model training loss . 61
5.12 Visualization of the Neural Network model picked for predicting the launch

trajectory . 62
5.13 Visualization of SVR models . 63
5.14 The four target locations. 64
5.15 Difference between synchronous and asynchronous shot aiming methods. . 65
5.16 Error distribution of shots using SAC and A-SAC for different targets and

starting locations . 67
5.17 Error distributions for Polynomial model, SVR model and Neural network

model, all using A-SAC . 69
5.18 Error distribution for trials with the ball started from the cradled position. . 70
5.19 Error distribution for trials with the ball started from middle of the ramp. . 71

ix

List of Tables

3.1 Action Space . 10
3.2 Reward Scheme . 14
3.3 Network configuration . 14
3.4 DNN configuration . 16
3.5 Reward Scheme . 19

x

Introduction

Cyber-Physical-Systems (CPS) are systems which combine computer-based software

and physical, engineered or natural system hardware to realize an intelligent application.

The software components are utilized to monitor, control, coordinate and integrate the as-

sociated physical system [1]. A real-time CPS has tight constraints on the wall time for

sensing, computation, communication and actuation relative to the physical time of the

system. Examples for real-time CPS would be autonomous vehicles that have to make crit-

ical maneuvers in real-time, smart grids which have to regulate the system in real-time and

aircraft anti-missile defense systems that neutralize attacks in real-time. With the global

advancement to Industry 4.0 and IIoT, more and more systems have advanced into this

category making the study of control strategies for real-time CPS crucial.

1.1 Motivation

Applications of real-time CPS are commonly associated with safety critical require-

ments. If we consider the same examples introduced above, autonomous driving has to

react to events in the environment in real-time to avoid collisions and ensure safety. Smart

grids have to respond quickly to changes in the system to avoid interruptions and hazards

to it’s subscribers as well as the safety of the grid, while the defense systems have to detect,

track, and neutralize threats in real-time to safeguard the aircraft.

Recently, sophisticated Machine Learning (ML) methods such as AlphaFold[2], AlphaGo[3]

and Dall-E[4] have achieved impressive performance and it is tempting to adopt similar so-

1

phisticated ML methods in other domains, including CPS. Though researchers are now

looking for explainable AI and causal machine learning techniques, state-of-the-art ML

methods are still black box models. Application of such techniques in real-world systems

such as CPS, raise concerns about reliability and safety. Formal verification of the ML

techniques prior to use in safety-critical systems is crucial, but the data requirements for

ML methods limit the applicability, due to the cost of data generation in CPS in general.

To address this issue, there are many simulation models developed for Model Based Test-

ing (MBT) on CPS[5, 6, 7]. But the results will only be as good as the model’s ability to

emulate the real world. Hence, hardware based, real-time CPS sandboxes are essential to

testing and validating ML control techniques.

Physical pinball machines are real-time physical systems with non-linear dynamics.

A game of pinball generally consists of a single or multiple balls, two flippers, bouncers,

fixed targets, responsive targets, ramps and rails. The combination of these components

creates a fast-paced, chaotic physical environment. When making a shot with the flippers,

the direction of the ball changes with time (in a resolution of milliseconds) based on the

linear and angular momentum of the ball and random noise in the environment. The scoring

system in a game of pinball extends from primitive goals like shooting particular targets

to complex goals like making sequence of shots, certain types of shots, and certain game

modes. Points accumulate till certain number of lives are used per each game, where each

life ends when the ball is drained. This physical system, augmented with a framework

consisting of a perception system, an actuation system, and a computation resource, create

a real-time CPS.

Precise timing and time synchronization are essential for a real-time application. Most

physical processes are time-dependent and their interactions have to abide by the time

requirements of the process. Constraints on the combined wall time for sensing the sys-

tem, computing the control instructions, communication between subsystems and actuation

have to be met for safe and reliable operation of the system in real-time. For a CPS with

2

sub-modules, researchers assume an oracle provided time theoretically [8], but in reality,

explicit time synchronization between each module and the physical process is required.

The developed pinball framework includes explicit time synchronization to allow accurate

real-time control.

In this work, we construct a framework applicable over commercial pinball machines

in a generalized manner with no alternations to the machine as a real-time CPS sandbox.

In parallel, a simulator sandbox is created to pre-validate the ML techniques. We test the

applicability of selected ML techniques on both the simulation and the real-world frame-

works, then use Principal Component Analysis (PCA) based plots to visualize the models.

Finally, we present the performance results of the ML models in both simulation and phys-

ical environments.

1.2 Related work

There have been simulation-based, hardware-based and hybrid sandboxes for CPS

testing pertaining to different domains including smart grids, automotive, transportation,

industrial automation, health-care and robotics. Literature shows that simulation-based and

hybrid CPS sandboxes are more common than hardware-based sandboxes, since they are

easier to build, highly customizable, scalable, and are cost efficient comparing to hardware-

based ones. From the previous studies focused on simulation based and hybrid testbeds for

CPS, [9] presented a simulation-based evaluation sandbox for transportation networks in

which the simulation environment is easily customizable. A ROS-based CPS simulation

environment for testing control methods on groups of ground robots was presented in [10],

while [11] presented a simulation environment for testing scheduling control methods in

a smart grid. [12] presented a hybrid system, which combines hardware and simulated

network properties in their CPS sandbox.

Examples of hardware-based CPS sandboxes are the topics of [13, 14, 15, 16, 17]. A

CPS sandbox to test control algorithms and communication security on a low-cost ground

3

bot is presented in [13] and a hardware-based real-time CPS sandbox to test power system

security and control applicable on computer clusters and networks is presented in [14]. An

inexpensive UAV CPS sandbox consisting of small drones and a software framework to test

control algorithms is presented in [15]. A CPS sandbox for testing cloud communication

over smart grid consisting of physical hardware is presented in [16], and a multi-vehicle

transportation system environment for testing traffic control methods is presented in [17].

When it comes to experiments involving the game of pinball, there are multiple work

done related to both simulated and physical games. Simulator-based work, such as [18],

focused on applying reinforcement learning methods on pinball. Moreover, there have been

previous work done on functionally similar games like billiards [19] and angry-birds [20],

where it is advantageous for the player to strategically aim shots. Few work has been done

using real pinball machines [21, 22]. [21] created an AI that activated the flippers whenever

the ball came near them and assessed the duration of time during which the agent was able

to keep the ball from draining. It also presented the results of a preliminary experiment

done on shot aiming, which yielded around a 50% success rate under a constrained pinball

playfield. Our work in [22] used a parametric switched mode system and a polynomial fit

based model predictive controller for shot aiming in a simplified custom pinball playfield.

1.3 Thesis Organization

Section 2 describes the build of the pinball simulation framework using Unity and

the extended features for experimentation. Section 3 describes the experiments done with

the simulation framework using model free control methods and their results. Section 4

describes the design and construction of a generalized real-world framework around phys-

ical pinball machines, including the features and functions of each component of the sys-

tem. Section 5 describes the experiments done on the real-world system using model-based

control and the results obtained. Finally, the conclusion of our work and possible future

directions are presented in Section 6.

4

Simulation Framework

Figure 2.1: Pinball simulator

To construct the simulation environment, we created a virtual pinball game from

scratch using the Unity game engine. Unity allows for the use of custom 3D models in

the game with high customization of material and physical properties of every element.

Unity also contains a physics engine which can simulate gravity to emulate the effect of

the slanted playfield in the game. Figure 2.1 shows the pinball game created with Unity.

The simulation game consists of a ball plunger connected to a ramp to shoot the ball into

5

the playfield, two flippers, two side-bouncers and three bouncer-targets covering the main

components of a typical pinball game. Proportions of the playfield were made approxi-

mately equal to the standard commercial pinball machine, ’Indiana Jones’ by Stern Inc.

The ball diameter was set to 27mm and the mass was set to 80g to approximately match

the size and mass of a real pinball. The angle of the pinball playfield, θ, was set to 7°and

gravitational acceleration was set to 9.8ms−2. The game score is displayed on top of the

game window. Scoring rules are customizable as required.

The game is controllable with keystrokes and a joystick in the manual control mode.

Control commands include the game start button, reset button, pull the plunger button and

left/right flipper buttons. Also, the game could be controlled using internal API calls, which

we used in the context of learning agents. The game elements could be customized, such

as the ball starting location, game speed, etc. In the simulation environment, the agents

are provided with two methods to read the game information: visual information and ball

position information. Visual information is passed to the agent from a virtual camera which

is mounted on top of the playfield in which the region of capture can be adjusted. As the

ball position information, the agent receives the location of the ball in Cartesian coordinates

in the plane of the playfield. The agent is also able to read the current score of the game

at any given moment. Depending on the learning and control method we choose, the agent

can use any combination of the available information channels to read the state of the game.

The next aspect of this framework is the ability to collect training and testing data.

As mentioned before, the agent can control the game similar to a human player, and has

the ability to play consecutive games. To leverage the capabilities of the simulator, we

introduce two options that can drastically speed up the data collection process: speed-up

game time and parallel game instances. Unity allows the user to scale up or down the clock

used in the game relative to the wall time. By manipulating this feature, we provided an

Application Programming Interface (API) handle to the agent to change the game clock

scale as desired. This allows the agent to speed up the game up to 100x from the real-time.

6

The upper limit had to be 100x as inaccuracies of the physics engine started to emerge at

speeds above that. Other feature is the parallel game instances. Leveraging the features

of the Unity environment, we allowed the agent to spawn multiple game instances to run

independently in the available processors for a single data collection task. The games

streamed data into the agents’ sample database asynchronously till the required number of

games samples were collected.

Agents were programmed with C#, which has the Unity ’s native support. An agent is

allowed to define any required customizations to the game configuration through API calls.

It can then specify the number of training and test samples, mode of training from online

and offline, and the training heuristics to monitor. For neural network based online learn-

ing agents, readily available optimization functions from Unity-ML package were used for

training the networks. We attempted to use already available pinball game simulation en-

gines: Future Pinball and Visual Pinball, to simulate the game and build a framework.[23][24]

Future Pinball is a free software which allows for the design of custom playfields using 3D

models of the components. We are able to modify the characteristics of the game such as

material properties and the physics properties. Then it simulates the game on the computer

screen with support for keyboard control. On the other hand, Visual Pinball consists of a

game emulator component named PinMAME (Pinball Multi-Arcade-Machine-Emulator),

which allows emulation of ROMs of real pinball machines along with a simulation capa-

bility similar to that of Future Pinball. Visual Pinball is mainly used to simulate real-life

pinball machines with replicated virtual playfields and the emulated ROMs. Visual Pinball

is supported by a large community consisting of players and playfield designers.

Even though we could extract the visual features of the live playfield via capturing the

screen of these game simulators, the only way to control the game was via virtual keyboard

commands, as there was not an API to directly communicate with the game engine. That

was unreliable in the long run with the various interruptions from the operating system.

The other issue was that we could not run simulation sessions in parallel or speed up the

7

game simulation as it was not supported. Interruptions to virtual keyboard commands were

preventable using an isolated environment for the simulations. Yet the un-scalability of

these simulators to run in parallel or at faster clock speeds, made them unsuitable for our

work at the moment.

8

Simulator experiments: Model free

learning

We can model the game of pinball as a Finite-Horizon Markov Decision Process

(MDP) and then apply reinforcement learning methods to let an agent learn to play the

game. Q-Learning is a well-studied algorithm for finding the optimal policy over MDPs.

For systems with a larger number of states where tabular Q-Learning is not practical, Deep-

Q-Learning is used where the Q values are approximated with a neural network function.

Deep-Q-Learning has shown good performance in learning agents over simulated game

environments [25].

3.1 Pinball as a Markov Decision Process

The game of pinball consists of different states and actions. Also, depending on the

actions taken in each state, a final reward (score) will be received. Pinball games are finite

and deterministic for the most part, except for little noise components present in the system.

That allows us to assume the game of pinball to be an MDP. We model the state space of

pinball as (a) image pixels and (b) derived features. More details on each state space

representation will be presented in Sections 3.4 and 3.5, respectively.

While in play, a player’s only input on the game is through the flippers. There are four

distinct actions a player can take on any state of the game, which are shown in Table 3.1.

The game ends when the player loses the ball from the playfield which makes the horizon

9

Table 3.1: Action Space

Action Left flipper Right flipper
1 Up Down
2 Down Up
3 Down Down
4 Up Up

of the game process indefinite yet finite. Though the game dynamics are continuous, we

can assume the player observes the game state at a certain sampling rate, hence at discrete

time steps. Next, we will discuss how the pinball MDP is defined based on these details.

In the following description, we use the terms st - state, at - action at time step t, and

rt - reward received for taking action at in state st. The horizon of the Markov chain is

variable and depends on the length of each game. For each state and action pair (s, a), a

Q-value is defined as the expected sum of present and discounted future rewards following

a defined policy π. The discount factor for future rewards is γ (0 < γ < 1). Q-value is

defined as in Equation 3.1 [26].

Q(s, a) = E[rt + γrt+1 + γ2rt+2 + ...|st = s, at = a, π] (3.1)

An optimal policy π∗ can be formed by following the actions for each state that corre-

sponds to maximum Q∗(s, a), which can be calculated through Bellman Equation,

Q∗(s, a) = max
π

E[rt + γrt+1 + γ2rt+2 + ...|st = s, at = a, π]. (3.2)

To learn this optimal policy on selected gameplay scenarios without using an expert

model, we explore the use of Q-Learning, which is a model-free, temporal difference based

learning method.

10

3.2 Optimal policy via Deep-Q-Learning

In Q-Learning, a database of Q-values for each (s, a) pair has to be maintained. Q-

Learning algorithm updates the Q values database with each step in the process (st, at, st+1, rt+1).

The update rule for Q-Learning is

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a

Q(st+1, a)−Q(st, at)] (3.3)

where α is the learning rate. With enough samples to sweep the entire space of state

action pairs, (3.3) is able to converge the Q values [27]. However, as the state space grows in

size, the required number of samples increases, which renders the direct use of Q-Learning

impractical. Instead, an approximation function to estimate Q values can be used. Learning

agents based on Deep-Q-Learning are extensively studied in the literature [28]. Following

the work [29], we use Deep-Q-Learning as a non-linear function approximation method,

which trains a Deep Neural Network (DNN) to predict Q-values. Weights θ, of DNN are

updated as,

yq(θ)← yq(st, at, θ
−) + α[rt+1 + γmax

a
yq(st+1, a, θ

−)− yq(st, at, θ
−)] (3.4)

which is adapted from 3.3. Here, θ− represents the previous weights of the network.

In generating training data, we follow an ε − greedy policy, where action selection in

each state is made according to the policy derived from the current state of DNN with

a probability of 1 − ε and randomly otherwise. We make use of the experience replay

technique used in [29] to reduce the effect of sample bias.

11

3.3 Experiment setup

A constrained game configuration was created to test Deep-Q-Learning using the sim-

ulator. One of the three targets was assigned points which the player could score by hitting

it. The duration of each game episode was set to 300 frames. For each game, the ball start

location was fixed at a point above the left flipper. Little noise is added to the simulation

engine. The goal of the agent is to score many points as possible by directing the ball

toward the selected target without overusing flippers or losing the ball.

During testing, we identified the following hyper-parameters which seemed to have a

considerable impact on the overall learning process. Though an extensive study was not

carried out on hyper-parameter tuning, they were adjusted through trial and error.

• Reward and Penalty values: a reward for flippers hitting the ball, a penalty for each

activation of a flipper, and a penalty for losing the ball has to be assigned relative to

the fixed reward for hitting the target.

• Discount factor(γ) of Bellman equation: γ = 1 accounts for all future rewards and

γ = 0 discards all future rewards. Optimal γ lets the agent learn, accounting for both

short-term and long term rewards under a balance.

• Neural network hyperparameters: the architecture of the neural network directly

affects it’s accuracy and efficiency[30].

• Training parameters: learning rate, batch size, and replay buffer size have to be

adjusted to avoid convergence issues.

• Exploration and exploitation: a good balance between exploration and exploitation

at each stage of the learning process leads to a better outcome.

12

3.4 Image-based DQN

Figure 3.1: Pinball simulator with the viewport of the virtual camera (middle-left)

We placed a virtual camera of 84 x 84 pixel image size on top of the simulator play-

field, which captures the area around flippers. Figure 3.1 shows the simulator window with

the view of the image captured by the virtual camera during a training session. The number

at the top of the playfield is the cumulative game rewards. Color images captured through

the virtual camera are converted to 8-bit grayscale images. Since static images do not em-

bed dynamic features of the game, a stack of four consecutive images (as shown in Figure

3.2) is used as the input to the DNN. Overall, this results in a 256×84×84×4 = 7, 225, 344

sized state space.

13

Figure 3.2: A sample input to the DCN where four consecutive frames are stacked

A Deep Convolution Network (DCN) is initialized arbitrarily to use as the Q value

estimator following the architecture in [25]. They used an input layer of 84 x 84 x 4

where the input is then passed through 3 convolution layers and 2 fully connected layers.

The corresponding action for the max value produced in the final layer is considered the

optimal action. Hyperparameters were adjusted by trial and error to find a configuration

that gives the maximum hit/miss ratio for the target, minimizing flipper overuse.

Table 3.2: Reward Scheme

Action Reward
Swinging a flipper -0.9

Flipper hitting the ball +1.0
Ball hitting the target +10.0

Table 3.3: Network configuration

Layer Layer type Output shape Parameter count
1 Input [4,84,84] 0
2 2D Convolution [32,20,20] 8,224
3 ReLU activation [32,20,20] 0
4 2D Convolution [64, 9, 9] 32,832
5 ReLU activation [64, 9, 9] 0
6 2D Convolution [64, 7, 7] 36,928
7 ReLU activation [64, 7, 7] 0
8 Linear [512] 1,606,144
9 ReLU activation [512] 0

10 Linear [4] 2,052

The selected network structure is shown in Table 3.3, and the assigned reward scheme

is shown in Table 3.2. The discount factor, γ, is set to 0.99. The training was done with

14

a batch size of 32 games, replay memory of 100,000 games, and a learning rate of 10−6

over 2 × 106 game samples. Exploration and exploitation balance was achieved using the

equation,

At =

arg max

a
Qt(a) with probability (1− ε)

a ∼ Uniform({a1...ak}) with probability ε

(3.5)

where,

ε = εfinal + (εstart − εfinal)× exp
−game count

εdecay
(3.6)

and εdecay is tuned empirically.

Figure 3.3: Image-based DQN evaluation results

Figure 3.3 shows the variation of game scores evaluated on 50 games, with model save

points corresponding to the incrementing number of samples. The agent learned to shoot

the target at around 0.75× 106 training samples. Though the game score improvement was

slightly slow from that point onward, we observed that the agent had reduced the overuse

of flippers at later training steps. We concluded that the outlier at 1.85 × 106 was a result

of a corrupted model save-point as PyTorch was not able to read that model back from the

disk.

15

3.5 Motion feature based DQN

To explore how feature extraction would change the performance, we selected a set

of motion parameters: ball position (x, y), ball velocity (ẋ, ẏ) and flipper states (up or

down) to use as input features to the agent. The same reward scheme from Section 3.4

was used. Instead of the Deep Convolution Network used in image-based method, a deep

neural network is used. The structure of the network is shown in Table 3.4. For training, a

batch size of 32, a replay memory of 50,000, a sample size of 5×105 games and a learning

rate of 10−6 were used.

Table 3.4: DNN configuration

Layer Layer type Output shape
1 Input 6
2 Linear 512
3 ReLU activation 512
4 Linear 512
5 ReLU activation 512
6 Linear 4

We are able to calculate the error between the ball position and the target location

based on the ball position information that is extracted. We repeated the experiment on 3

different configurations to evaluate the agent performance with additional incentives. An

additional incentive reward is added to the regular reward scheme. There are three incentive

reward schemes:

1. Original: No additional incentive.

2. Field-based: Additional incentive based on,

Incentive =
C

distance2 + 1
(3.7)

16

3. Horizontal line based: Add an incentive only when the ball passes through the

horizontal level of the target as,

Incentive =

C

distance+ 1
if ball crosses the horizontal line

0 otherwise
(3.8)

0

5

10

15

20

25

30

35

40

45

50
00

25
00

0

45
00

0

65
00

0

85
00

0

10
50

00

12
50

00

14
50

00

16
50

00

18
50

00

20
50

00

22
50

00

24
50

00

26
50

00

28
50

00

30
50

00

32
50

00

34
50

00

36
50

00

38
50

00

40
50

00

42
50

00

44
50

00

46
50

00

48
50

00

A
ve

ra
ge

 g
am

e
sc

or
e

Training steps

Position based RL method comparison

20 per. Mov. Avg. (Original)

20 per. Mov. Avg. (Field based proximity reward)

20 per. Mov. Avg. (Horizontal line based proximity reward)

Figure 3.4: Performance comparison of motion feature based methods

C was fine-tuned with a few trials. Figure 3.4 shows the result comparison between

the three incentive reward scenarios. All three methods were able to train the agent to

score well. Looking at the scores, we see that the addition of proximity-based reward

has brought some stability to the trained agent, whereas the agent who used the original

method degraded in performance closer to the end, which we can assume to be a result of

over-training.

Comparing the average scores recorded for motion feature based learning agent (from

Figure 3.3) to image-based learning agent (from Figure 3.4), we can clearly see that motion

feature based agent was able to reach the performance level of the image based learning

agent using only 1/4th of the training samples.

17

3.6 Modular Reinforcement Learning

In this approach, we studied how the use of a combination of Modular Reinforcement

Learning (MRL) agents, which are trained individually, affect the overall performance.

MRL breaks down a complex goal into a series of simplified tasks, which allows for the

reuse of modular components as a baseline for new learning problems [31, 32]. It also

paves the way for a hierarchical learning agent, which can use the trained sub-models as

sub-routines in the high-level controller. In this section, we evaluate if decomposing the

goal into a series of sub-tasks improves the performance.

For this experiment, we increased the difficulty of the game by allowing the target

location to be random in the playfield and letting the ball to start from a random location.

We conducted this experiment using the motion feature based learning method due to its

sample efficiency as shown in Section 3.5. We train two modular agents: one who trains to

capture the ball in cradled position and one who trains to shoot from the cradled position.

To compare the performance, a third agent is trained to shoot the falling ball directly. Next

two sections describe how the individual agents performed and a comparison between the

modular learning agents and direct agent, respectively.

18

3.6.1 Trained agents

3.6.1.1 Learning to cradle the ball

Figure 3.5: Performance of the agent learning to catch the ball in either of the flippers.

This agent is trained to learn how to capture the ball from either flippers within 4

seconds of gameplay. This agent is also the first sub-module of the modular scheme. Figure

3.5 shows the performance of the agent. Rewards were assigned as in Table 3.5 to promote

capturing the ball in cradled position with the least number of flips. Initially, the agent tried

to capture the ball by overusing the flippers and eventually reduced the flipper overusing

behavior slowly as the training progressed.

Table 3.5: Reward Scheme

Action Reward
Got the ball to cradled position +1.0

Each flip -0.1

19

3.6.1.2 Learning to shoot from the cradled position

Figure 3.6: Performance of the agent learning to hit a random target starting from the
cradled position.

The second sub-module of the modular scheme is this agent, who learns how to shoot

the ball toward the target from the cradled position. Rewards were assigned as in Table 3.2.

The agent was able to maintain a higher average from the start of the training as the ball

starting stationary from the cradled position is intuitively more controllable.

20

3.6.1.3 Learning to shoot directly

Figure 3.7: Performance of the agent learning to hit the random target as a single task

An agent is trained to hit the randomly positioned target in the playfield with the ball

dropped from a random location in the playfield. Rewards were assigned as in Table 3.2.

Figure 3.7 shows the performance of the agent in 5 second games averaged over 250 games.

We can see that the agent has slowly improved the cumulative reward which requires hitting

the target without overusing the flippers.

3.6.2 Direct Learning vs. Modular Learning

A modular learning scheme is obtained by utilizing the agent who learned to cradle

the ball (Section 3.6.1.1) and the agent who learned to shoot from cradled position (Section

3.6.1.2). At the game start, the first agent is utilized to capture the ball. Once the ball is

cradled, the second agent takes control and shoots the ball up. Either hitting the desired

target or the ball falling down the playfield triggers a switch-back to the first agent.

21

0

5

10

15

20

25

30

35

40

50
00

0

25
00

00

45
00

00

65
00

00

85
00

00

10
50

00
0

12
50

00
0

14
50

00
0

16
50

00
0

18
50

00
0

20
50

00
0

22
50

00
0

24
50

00
0

26
50

00
0

28
50

00
0

30
50

00
0

32
50

00
0

34
50

00
0

36
50

00
0

38
50

00
0

40
50

00
0

42
50

00
0

44
50

00
0

46
50

00
0

48
50

00
0

G
am

e
sc

or
e

Training steps

Direct learning vs. Modular learning comparison

10 per. Mov. Avg. (Average Reward for direct hit)

10 per. Mov. Avg. (Average Reward for catch + shoot)

Figure 3.8: Comparison between direct learning and modular learning

Figure 3.8 shows how the performance of a single agent learning to aim a shot directly

compares with the combination of two modular agents learning to catch the ball and shoot.

An evaluation was done using 1000 second games with just 10 points for each successful

hit to the target. The graph shows the moving average of 10 data points. Results indicate

that the modular learning method had performed better from the start whereas the direct

learning agent could catch up as the number of training samples grew. We can also see that

the modular scheme is less stable than the other. We believe this instability can be improved

with use of an intelligent and adaptive higher level controller instead of the simple rule

based switching method we used.

Possible future steps would be training hierarchical learning agents who utilize the

modular knowledge in comprehending complex tasks. DQN based higher level agents[33],

HIRO [34], and HAC [35] are among the many possible avenues in hierarchical learning

we can pursue [36, 37].

In our learning experiments, goals involved optimizing a combination of sub-goals

where some take precedence over others. For example, while aiming a shot towards a

selected target, reducing the overuse of the flipper and preventing the ball from sinking

22

were also present as sub-goals. These sub-goals were introduced to the agents via the

reward scheme. Agents had to converge to a policy with an optimal balance between all

sub-goals on their own, which can increase the number of training samples required and the

possibility of getting trapped in a local extremum. It might be possible to reduce the chance

of encountering a local extremum with a gradual training plan where we place a dynamic

reward scheme that guides the agent on which goal to focus based on current performance.

Same can be applied to learning via simple scenarios initially and gradually pushing the

agent to learn complex ones. This is essentially curriculum learning[38] which is used

to inject domain knowledge into the training making the process more data efficient. As a

future experiment, we can evaluate the improvement of performance and training efficiency

with a curated curriculum with our expertise in the task at hand.

23

Real-world framework

Figure 4.1: Commercial pinball machines in the laboratory

The real-world framework is built for training and testing control agents on real-life

pinball machines. The framework is generalized to a certain level, allowing it to be used on

different machines with little modifications. Figure 4.1 shows the set of commercial pinball

machines we have in our laboratory. The real-world framework consists of a camera to cap-

ture the pinball playfield, a hardware actuator that controls the pinball game switches, and

a PC containing the agent software. Figure 4.2 shows the components of the framework.

The overhead camera streams video to the main computer, which has an image processing

24

module and a control module. The main computer sends control signals to the hardware

actuator which consists of a microcontroller and an opto-isolated control circuit. Details

on each of these framework components are discussed in the next sections.

AtMega328P
microcontroller

Overhead
camera

Video Stream

Pinball machine

Opto-isolated control
circuit

Main Computer

Control commands
and debug signals

Actuation
signals

Opto-isolated actuation lines

Synchronization
signals

Image
processing

module

Control
module

Figure 4.2: Components of the real-world framework

25

4.1 Overhead Camera

(a) Camera and the lens (b) Camera placement

Figure 4.3: Overhead camera of the framework.

We place an overhead camera that captures the area of the pinball machine’s playfield.

Figure 4.3a shows a closer look at the camera and Figure 4.3b shows how the camera is

positioned over the ’Stranger Things’ commercial pinball machine. The camera we used

is ’FLIR Blackfly S BFS-UE-32S4C’, which is extensively customizable and capable of

capturing RGB images at 118 frames per second in 2048x1536 resolution. It also contains

a high-precision real-time clock (accuracy up to 1ms) and a configurable GPIO port, which

we use for the framework functions. The camera settings, including exposure time, reso-

lution, frame-rate, color-mode, trigger mode were configurable via API calls. The camera

uses USB 3.0 to stream data and has the capability of transmitting an image of 2048x1536

26

resolution under 1ms of latency according to our measurements. The frame rate of the

image stream could be increased by reducing the image resolution. For example, 800x600

images can be streamed at 200 frames per second.

For our application, the camera was configured to capture images in the resolution of

2048x1140, which has a close aspect ratio to that of the pinball playfield. The GPIO port of

the camera is configured to send an opto-isolated digital signal containing pulses for each

capture trigger of the camera. This pulse train is used in the hardware actuation module

to synchronize the frame capture times with the pinball actuation times, which we will

provide details under the ’hardware actuator’ topic in Section 4.4. Each image captured

from the camera is sent with an embedded timestamp from the internal real-time clock. We

also configured the camera to allow reading the internal real-time clock data through API

requests, which is used by our software.

An ’Edmonds 8.5 mm C-mount’ wide-angle lens is mounted to the camera in which

the focus distance and the aperture were adjustable. After positioning the camera, the lens is

adjusted to focus on the playfield. The iris is kept in the maximum open position, which was

f/1.3 aperture, to make best use of the environment light. The camera exposure time was

adjusted empirically to a level which is high enough to prevent an under-exposure effect

and low enough to prevent a motion blur effect, which can occur due to fast movements of

the ball. Having good environmental lighting conditions help this process.

Images captured through a wide-angle lens suffer from the barrel-distortion effect.

Camera calibration is the process of evaluating camera geometric model parameters [39].

There are many methods used to correct image distortion through camera calibration.([40,

41, 42, 43, 44] to cite a few) We used OpenCV implementation of Zhang’s method to

calculate the camera model parameters [44]. Zhang’s algorithm requires a set of camera

images containing a fixed pattern, captured with different poses and locations of 3D space

visible to the view of the camera. From many different patterns that are being used for this

purpose such as checker board, Square matrix, Circular dot, ARTag, etc.[45], we went with

27

a custom generated ’ChArUco’ pattern, which is a combination of checker board pattern

consisting sharp edges and ’ArUco’ markers, which are unique cell patterns, making it less

prone to detection errors [46, 47].

(a) The generated ’ChArUco’ pattern (b) One of the collected image samples

Figure 4.4: ’ChArUco’ pattern for camera calibration

Figure 4.4 shows the ’ChArUco’ pattern used in our camera calibration process and

how it was used in sample collection. Zhang’s algorithm provides us with an estimation

of the camera matrix, distortion coefficients and rotation and translation vectors. OpenCV

provides us a method to calculate a mapping function to undistort according to the cali-

bration parameters. In our application, we used the generated mapping information in two

ways: undistorting the image as a whole and mapping individual pixels to the undistorted

space. Figure 4.5 shows, (a) a distorted image , (b) same image corrected and cropped. We

will discuss further on it’s usage in the next section.

28

(a) Distorted image (b) Corrected (and cropped) image

Figure 4.5: Example of Distortion correction sample

4.2 Image processing module: ball tracking and feature

detection

We use a PC running on Windows 10 as the main computer. We developed our soft-

ware using Python 3. It contains two components of the framework: Image processing

module and control module. Image processing module takes in the images streamed from

the camera and extract features of importance, in real-time. For image processing, we use

OpenCV built with cuda support. Images streamed over USB 3.0 from the camera are cap-

tured using the python libraries provided in the Spinnaker SDK, which is the official SDK

of the ’FLIR blackfly’ cameras [48].

As discussed earlier, the images we receive from the camera are distorted and need

29

to be corrected to get accurate feature coordinates. Initially, we went with correcting the

whole image as the first step of the image processing pipeline, but the time required for

the calculations involved in the process were exceeding the time constrains of real-time

operation. Hence, we went with processing the images without correction, and applied the

pre-calculated mapping function to calculate the correct positions for feature points at the

end. This method allowed us to perform calculations on individual pixels as needed, which

was much faster.

In Section 3, we found that motion feature based learning is more effective in sample

efficiency. To derive the same set of features, we have to detect the ball position and state

of each flipper from the received images. Ball velocity and higher order derivatives can

be derived from temporal ball position data. We will first discuss how ball tracking and

flipper state tracking were done in a simple custom-built pinball playfield and then in the

commercial pinball machine, ’Stranger Things’ by Stern Inc.

30

4.2.1 Ball tracking in a custom built pinball playfield

Figure 4.6: Custom-built simple test-bed

For experimentation, we use a simple custom-built pinball playfield with minimum

necessary features as shown in Figure 4.6. It contains two flippers, a ball plunger, and a

plain playfield. The flippers were powered with solenoids, which were driven with MOS-

FETs on a 48V DC supply. Power to the solenoids was controlled according to the state

of the flipper. Zero power was applied to keep the flipper in the lowered position, high

power was applied to activate the flipper, and when shooting the flipper up and a small

amount of power was applied to hold the flipper in up position. This was achieved by

31

driving the MOSFETs with Pulse Width Modulation (PWM) signals generated by a micro-

controller, according to actuation commands and the current state of the flipper. Actuation

commands were sent from the PC and the state of the flipper was detected with the limit

switches attached to each solenoid. The rest of the experiment setup follows the framework

description we presented earlier.

Background
subtraction

Converting to
binary image

Blob
detection

Image
stream

Ball
position

Figure 4.7: Ball tracking methodology for the simple test-bed

Since the playfield is plain and static, we used an image of the playfield without the

ball as the background. Figure 4.7 shows the flow of operations we follow to extract the ball

position. First, the background was subtracted from each image in grayscale color space.

The result is then converted into a binary image by clustering the pixels into two groups,

black and white by a threshold value. This threshold value was adjusted by experimentation

to reduce noise. Finally, the binary image is processed to detect contours using OpenCV

implementation of Suzuki’s method [49]. After, we filter the detected blobs according to a

set range of values on enclosing pixel count and detect the ball. We take the centroid of the

blob as the center point of the ball. Flipper state information was available from the limit

switches attached to each flipper.

Some preliminary experiments were done in this playfield in collaboration with my

colleague, Michael Ikuru. They included profiling the resultant trajectory of the ball ac-

cording to the shot delay from the cradled position and testing the applicability of Deep-

Q-Learning based on states defined with a virtual grid. We will omit the details of those

experiments as they were collaborative work. However, conclusions from those experi-

ments helped in shaping the direction of this work.

32

4.2.2 Ball tracking on commercial pinball machines

Figure 4.8: Stranger Things game playfield

Commercial pinball machines increase the complexity of ball tracking. Figure 4.8

shows the playfield of the ’Stranger Things’ pinball machine which we used for our exper-

iment. Generally, the playfield of a commercial pinball machine is a dynamic environment

with frequent lighting and color changes due to blinking lights, spot indicators, area lights,

etc. Depending on the game design, there are interactive components which have differ-

ent motions during game-play. For example, there are bouncers which have elastic bands

33

showing significant shape deflection during a ball bounce, there are stand targets which

hide or move as ball touches them. These movements also induce changes in the shadows

and regions with glare in the playfield. The pinball ball is coated in silver color with a

mirror-like finish, which causes it to reflect different colors and lights of the pinball play-

field. And the shadow of the ball changes in size and shape according to the lighting of

the region, which the ball is rolling through. Another challenging aspect is the random

vibrations in the playfield relative to the fixed camera, caused by the impact of shooting

and bouncing of various elements during gameplay.

We experimented with deep learning methods and classical image processing tech-

niques to handle this challenge. Deep learning methods required thousands of labeled ball

samples from the playfield to give reasonable tracking accuracy and sample collection pro-

cess had to be repeated for each playfield we used our framework on. Since our system is

built with generality in mind, we went for a solution based on classical image processing

techniques which expands upon the method described in section 4.2.1.

The issues discussed above, are also considered as some of the key challenges in

the background separation problem in general[50]. Various methods were proposed to

solve this problem including histogram analysis [51], filtering based methods [52, 53, 54],

clustering methods [55, 56] and statistical methods [57, 58]. For our application, we also

had to pick a method that is computationally light so the time required to calculate meets

the real-time time constraints. To sample the background in our work, we first capture

N images of the playfield each time we initiate a game. Our controller waits until the

background sample collection is completed to insert the ball into the playfield. Image

samples take the form of a three dimensional matrix,

Ii = {Ii(xj, yk, cn) : 0 < j ≥ w, 0 < k ≥ h, n ∈ {R,G,B}}, (4.1)

34

where (x, y) are pixel coordinates, w is the width of the image, h is height of the im-

age, and c resembles intensity values in the color channels. Initially, we used an averaging

method, where we calculate a static background image, Ib by taking the average of pixels

in each color channel.

Ib =
1

N

N∑
i=1

Ii(xj, yk, cn). (4.2)

Then we extracted the foreground pixels by subtracting Xb from the images and

thresholding to remove noise. This method delivered decent results, but had issues in re-

gions of the playfield where dynamic color changes occurred.

We experimented with the methods in the literature to overcome the problem with the

averaging method. The determined solution is a simplified version of Gaussian Mixture

Models (GMM) based background subtraction introduced by Stauffer et al. [58]. Stauffer

models intensity values of each pixel of the image as a mixture of Gaussian distributions.

For a given pixel Xt, the probability of the pixel belonging to the GMM is

P (Xt) =
K∑
k=1

ωk ∗ η(Xt, µk, Σk), (4.3)

where K is the number of Gaussian distributions, ωk, µk, Σk are the weight, mean and

the covariance matrix of the kth Gaussian respectively, and η is the probability distribution

function. For simplicity, we assume the color channels are independent from each other

and K = 2. We used the SciPy implementation of the Expectation Maximization (EM)

algorithm to estimate the parameters of the Gaussian distributions for each pixel using the

N background images. Stauffer picks a set number of Gaussian distributions with highest

ω/ρ ratio where ω and ρ are the weight and standard-deviation of a given distribution.

From the two Gaussian distributions trained, we pick the one with higher ω/ρ ratio as

35

the background distribution, since that would capture the background information and the

wider, shorter distribution would correspond to the noise.

We obtain the Gaussian models corresponding to the background pixels during the

initialization phase of our tracking system. We set N = 100, which is the number of back-

ground image samples. Then the obtained Gaussian models are used to extract foreground

from the images coming from the stream. If a pixel intensity values are 2.5 times away

from standard deviation of the Gaussian, it is taken as a foreground pixel. We did not up-

date the distributions in middle of the games so that the regular processing tasks were not

interrupted. As a future development of the framework, an online background modeling

scheme can be adapted.

36

Background
subtraction

in BGR domain

Converting to
binary image

Apply static
mask

Image
stream

Ball
position

Previous ball
location known?

Narrow the
search to

neighborhood

Search in full
image

Apply dynamic
mask

YesNo

Find contours

Match flipper
characteristics

Match ball
characteristics

Apply flipper
maskFlipper(s) up?

Yes

No

Morphological
operations

Figure 4.9: Image processing pipeline

Figure 4.9 shows the steps followed in image processing. We will describe each step

in brief.

1. Image received from the image stream undergoes the background subtraction in the

method described above. Foreground pixel data is sent to the next step.

2. Converts the image to black and white, where black corresponds to the background

pixels and white corresponds to the foreground pixels. Threshold value separating

black and white is adjusted to reduce noisy pixels.

37

3. To avoid any noise from the non-playfield regions in the image, a fixed mask is

applied to filter them out.

4. The dynamic mask is applied. Dynamic mask is created online in which masked

regions are generated according to the following rules.

(a) If there are additional foreground objects detected in an image after identifying

the ball (and flippers if applicable), those regions are added to the mask.

(b) If the ball is not found in the image and there are matching foreground objects

masked out by dynamic mask, that region is removed from the mask.

This dynamic mask is updated at the end of processing pipeline of each frame.

5. In this step, we apply two morphological operations on the image: dilation followed

by erosion with a same sized kernel. This step, further removes any noisy pixels and

combine clusters of close-by blobs into a single blob. The effect of this operation is

controlled by adjusting the kernel size.

6. We find contours in the binary image by making use of OpenCV implementation of

Suzuki’s method [49].

7. Next, the found contours are compared with the predefined set of properties (includes

a range of area, bounding rectangle dimension range) to find either left flipper or right

flipper (or both) are up.

8. If either of the flippers are up, a corresponding mask is applied on the image to cover

up the flippers. This is done in order to identify the ball in scenarios where the ball

is either touching the flipper (eg: when ball is starting from the cradled position) or

moving near the shadows of flippers.

9. Then we change the search region for the ball according to following criteria.

38

(a) If the ball location is known from the previous frame, narrow down the search

region to a square, where the center of the square is the position of the ball in

the previous frame.

(b) Else search on the entire image.

10. Final step is to compare the contours in the image with the predefined properties of

the ball to identify the blob corresponding to the ball. The centroid of the blob is

considered as the center of the ball.

Detected ball position as well as flipper states are passed on to the next stages of the

framework. In Graphical User Interface (GUI) mode, the detected ball position and the

flipper states are displayed graphically. In real-time operation in higher frame rates, GUI

mode is disabled to meet the processing time restrictions. This image-processing pipeline

completely operates on the Central Processing Unit (CPU). As an alternative approach we

implemented a pipeline with all image processing tasks run on Graphics Processing Unit

(GPU) to leverage the power of cuda processors[59]. Though the image processing steps

took less time on the GPU than the CPU, the overhead time of transferring image matrices

to the GPU, and vice versa, increased the overall processing time. Hence we chose CPU

implementation to meet the time constraints of our application.

4.2.3 Kalman filter to filter positional data

The ball position data sent from the image processing pipeline is noisy. Some of the

factors that contributes to the noise are,

• Tracking method is sensitive to the variation of ball shadow. It can not differentiate

the shadow from the reflective ball.

• Vibrations of the playfield due to large impact forces generated by it’s components.

• Occasional errors in the image processing module.

39

The effect of noise is greatly visible in the derivatives of the ball position data as dif-

ferentiation amplifies noise. A adequate filtering technique should be able to effectively

reduce the effect of noise to improve the accuracy of the data. To implement a filter, we

approximated the ball motion with a constant acceleration model in both the X and Y direc-

tions. In this approximation, we neglect the effect of friction, air resistance, and consider

only the gravitational acceleration component acting on the ball due to the angle of the

playfield. This model is not valid for instances where the ball hits another object (i.e.: flip-

per, bouncer, etc) Hence, we use this filter on known portions of the game-play which does

not violate these assumptions. These portions include the ball falling or moving up freely

in the playfield, rolling down from a straight ramp or a ball guide.

Under those approximations, the ball position (x, y), at time t, can be modeled as

x (t;x0, ẋ0, ax) =
ax
2
t2 + ẋ0t+ x0 (4.4)

y (t; y0, ẏ0, ay) =
ay
2
t2 + ẏ0t+ y0 (4.5)

ẋ (t; ẋ0, ax) = axt+ ẋ0 (4.6)

ẏ (t; ẏ0, ay) = ayt+ ẏ0. (4.7)

where, (ax, ay) are the acceleration components due to net forces on the ball in x and

y directions. The acceleration components can be assumed to be constant as we selectively

apply this model only on regions where the net force is constant. That include the scenarios

where the ball is rolling freely down a ramp, moving up after being shot, etc. Considering

only first and second order derivatives of the position, we define the ball motion parameters

as m := [x, ẋ, ẍ, y, ẏ, ÿ]⊤ and the ball position measurements as b := [x, y]⊤. We base the

Kalman filter on the following dynamic model.

40

m̂t = Fm̂t−1 +Gut +wt−1 (4.8)

bt = Hmt + vt, (4.9)

where F is the state transition matrix, G is the control matrix, w is the process noise,

H is the observation model and v is the measurement noise.

For regions where the constant acceleration model is applicable, we do not have a

control input. Hence, u = 0. We assume w ∼ N (0,Q), a zero mean Gaussian noise with

time invariant covariance Q. We also assume v ∼ N (0,R), a zero mean Gaussian noise

with time invariant covariance R.

Using (4.4)-(4.7), we can derive the following state transition relationship and state

transition matrix F:

x̂t

ˆ̇xt

ˆ̈xt

ŷt

ˆ̇yt

ˆ̈yt

︸ ︷︷ ︸
m̂t

=

1 ∆t 0.5∆t2 0 0 0

0 1 ∆t 0 0 0

0 0 1 0 0 0

0 0 0 1 ∆t 0.5∆t2

0 0 0 0 1 ∆t

0 0 0 0 0 1

︸ ︷︷ ︸

F

x̂t−1

ˆ̇xt−1

ˆ̈xt−1

ŷt−1

ˆ̇yt−1

ˆ̈yt−1

︸ ︷︷ ︸

m̂t−1

(4.10)

Using the definitions of m and b, H can be derived:

41

H =

1 0 0 0 0 0

0 0 0 1 0 0

 (4.11)

To account for the inaccuracies of the model imposed due to our assumption of con-

stant acceleration, we presume there is a random variation in the acceleration components

with a constant variance σ2
a. We derive process noise covariance, Q:

Q = FQaF
T

where Qa = σ2
a

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

thus, Q = σ2
a

∆t4

4
∆t3

2
∆t2

2
0 0 0

∆t3

2
∆t2 ∆t 0 0 0

∆t2

2
∆t 1 0 0 0

0 0 0 ∆t4

4
∆t3

2
∆t2

2

0 0 0 ∆t3

2
∆t2 ∆t

0 0 0 ∆t2

2
∆t 1

(4.12)

For simplicity, we assume the measurements x and y are uncorrelated and they both

have a time invariant random uncertainty variance of σ2
b. Hence R is,

42

R =

σ2
b 0

0 σ2
b

 . (4.13)

Using these derivations for F,H, Q and R, we implemented the filter based on stan-

dard prediction equations and update equations of Kalman filter [60, 61, 62]. The process

noise variance, σ2
a, and measurement uncertainty variance, σ2

b, were tuned empirically.

4.3 Control module

Sample collection

Inference mode

Real-time control mode

Control algorithm

Data buffer

Mode

Processed
image

features

Control signals

Control module

Figure 4.10: Components of control module

The control module sits in the PC next to the image processing module (Section 4.2)

in the diagram and handles data processing and decision making. As shown in Figure 4.10,

the control module receives feature information from the image processing module and

generates control signals as outputs. The main three sub modules inside the control module

43

are: mode selector, control algorithm and data buffer.

• Mode selector: consists of configurations for three different modes: sample collec-

tion mode, inference mode and real-time control mode.

– Sample collection mode: This generates control signals to make random shots

or make shots according to pre-configured patterns or conditions, and collects

the shot related data (timestamp, extracted features and corresponding images).

Collected data is sent to data buffer to save accordingly.

– Inference mode: This is used to do a dry run of the control algorithms on ei-

ther real-time data stream or previously saved shot data. This mode is used to

analyze the output of the controller without exhausting the real machine where

applicable. This mode does not require adhering to real-time constraints.

– Real-time control mode: In this configuration, data stream from image process-

ing module is used to generate decisions from the control algorithm module

and control signals are sent to actuate them. Similar to sample collection mode,

shot data is sent to the data buffer to be used as training data for online-training

algorithms or for evaluating the accuracy of the controller later.

• Control algorithm: different control algorithms can be implemented inside this

module. It has essential handles for training and inferencing. It is also possible

to plug in externally trained models to this module. The control algorithm module

has access to real-time data or saved data for training. Decisions made in inference

mode are sent out as control signals for actuation.

• Data buffer: acts as an intermediate data storage until data is written to hard drive or

used by other modules. When another module sends data to be saved to disk, the data

buffer keeps them in memory until time-critical operations are completed and initi-

ates the time consuming data write operation. The data buffer also retains historical

44

data for the use of online-learning agents, control algorithms and GUI operations for

features like displaying shot replays. Use of data-buffer is a critical step in real-time

operation of the system.

4.4 Hardware actuator

AtMega328P
microcontroller

Overhead
camera

Pinball machine
Opto-isolated control

circuit

Main Computer
Control
commands
and
debug
signals

Actuation
signals

Opto-isolated actuation lines

Synchronization
signals

Hardware Actuator

Figure 4.11: Hardware Actuator Module in the the system diagram

The final component of the realworld framework is the hardware actuator. It has the

responsibility of controlling the pinball buttons according to control signals received from

the computer while being precise on timing. The two main components in this module is

AtMega328P microcontroller and the opto-isolated control circuit.

• AtMega328P microcontroller: This is connected with the main computer with a

serial link built using USART interface. Microcontroller receives synchronization

pulse train from the overhead camera in which each pulse starts at frame capture start

event. A hardware interrupt is configured to capture the start of each pulse, which

is used to synchronize the micro-controller time with the frame capture events. A

45

hardware timer is configured to count microseconds from the event of interrupt. This

allows the controller to send out actuation signals, either in-sync with the next image

capture time or with a customizable delay from that moment accurate to microsec-

onds in a non-blocking manner. The actuation signals for left flipper, right flipper

and the ball shoot/game start is sent out to the opto-isolated control circuit.

• Opto-isolated control circuit: This is used to electrically isolate our system from

the pinball machine. Incoming signals are relayed to the output via individual opto-

isolating transistors in which outputs are connected to each pinball machine button

terminals via removable clips.

46

Real-world experiments: Model based

learning

The aim of the experiments done in this section is to explore the methods of training

a sample-efficient agent to play a real-world pinball machine. We utilize the real-world

framework we developed in Section 4 for the experiments. Based on results we got from

simulation based experiments in Section 3, we know extracting features can reduce the

number of training-samples in comparison to image pixel based learning method. Hence,

we use extracted features as the input. Even with motion feature based inputs, we see that

model-free methods required thousands of samples to train in the simulator experiments.

That number is still infeasible with a real-world machine.

We experimented on transferring neural network models trained on the simulation

framework to real-world machines via transfer learning techniques, but that was not able to

produce significant improvement on the results. We believe the number of training samples

feasible on the real-world machine might not be sufficient for transfer learning agents to

adapt. The differences in perception noise, sampling rate and actuation delays can be con-

tributing factors. Data efficient transfer learning is a highly relevant and interesting future

research direction for this project.

We moved on to using a model-based approach. We trained our agents to act as Model

Predictive Controller (MPC) in the following experiments. We will describe the pinball

model, then the ML techniques used to train agents, and finally, the evaluation results.

47

5.1 Modeling the game of pinball

Figure 5.1: Control Region: Area in which the flipper can change the ball dynamics

Figure 5.1 shows the Control Region in green. It is the area in which the player is able

to hit the ball and impact the game-flow. When the ball is outside this region, the game

is completely governed by the momentum of the ball, reaction of the ball to other game

components, governing forces over the elements, and noise. The challenge for the player

is to act when the ball is within the control region and re-direct the ball to desired paths.

We use a Cartesian coordinate system, (x, y) with the origin located in the pivot point

of the flipper as shown in the Figure 5.1. The ball position data provided by the image

processing module is transformed to this Cartesian coordinate system. We define the state

of the system as a vector concatenating position and velocity vectors, z := (x, y, ẋ, ẏ). The

trained agent has to precisely time shots by anticipating the motion of the ball. To reduce

the complexity of the problem, we consider a common scenario of the game where the ball

rolls down from a ramp and guided towards the flipper from the side, namely ’Rolling Shot

Scenario’ (RSS), which we previously introduced in [22]. In the RSS, the player is able to

plan well and make a shot to almost all accessible areas of the playfield from the chosen

flipper. Hence, pinball players often uses other flipper techniques to move the ball into the

RSS and make a calculated shot from there.

48

5.1.1 Rolling Shot Scenario

Figure 5.2: Rolling Shot Scenario (RSS).

Figure 5.2 shows the three phases of RSS: rolling phase, flip phase and launch phase.

zF is the starting state of flip phase and zL is the starting state of the launch phase. In the

RSS, the ball rolls down from the side ball guide of the flipper and at a moment when the

ball is on top of the flipper, the flipper is activated to shoot the ball up. The system moves

to the flip phase at the moment the flipper is activated. The flip phase exists until the ball

is being pushed up by the flipper and maintains surface contact. At the moment the ball

looses surface contact with the flipper, the system moves into the launch phase. The launch

phase lasts until the ball hits another object in the playfield.

We define tF as the moment in time the flipper activates and the corresponding state as

zF := z(tF) = (xF , yF , ẋF , ẋF). Similarly, we define tL as the moment in time the system

enters the launch phase and corresponding state as zL := z(tL) = (xL, yL, ẋL, ẏL). The

player changes the phase of the system from the rolling phase to the flip phase by activating

the flipper by pressing the corresponding flipper activation button, which is located in the

left and right sides of the pinball machine by default. Next, we will discuss the motion

dynamics of each phase of the RSS.

• Rolling phase dynamics

49

Figure 5.3: Ball motion in rolling phase.

Figure 5.3 shows an arbitrary system state in the rolling phase. Net forces acting on

the ball consists of a frictional component and gravitational component. They are

governed by the pinball playfield inclination, ball guide angle, and the resting angle

of the flipper. The gravitational component is significantly larger than the frictional

component and assuming friction to be negligible,we can formulate the following

dynamic model for any given time in the rolling phase.

x (t;x0, ẋ0, ax) =
ax
2
t2 + ẋ0t+ x0 (5.1)

y (t; y0, ẏ0, ay) =
ay
2
t2 + ẏ0t+ y0 (5.2)

ẋ (t; ẋ0, ax) = axt+ ẋ0 (5.3)

ẏ (t; ẏ0, ay) = ayt+ ẏ0. (5.4)

Here, (x0, y0) is an arbitrary initial starting position of the ball at t = t0 and ax, ay are

the acceleration components acting on the ball. Since we only consider gravitational

components on the ball, we can presume (ax, ay) to be constant.

50

• Launch phase dynamics

Figure 5.4: The launch trajectory

In the launch phase, the ball has the most momentum when entering this phase, which

is state zL. By analyzing some shot samples empirically, we can observe that the

magnitude of the ball velocity in the y direction ẏL renders the effect of gravitational

component in y direction insignificant. Also, as the playfield is leveled from left

to right in general, and neglecting frictional components, we can assume the ball is

moving with a constant velocity ẋL in the x direction. Hence, the launch phase can

be approximated with a straight line, g(x , y) with a constant velocity model as shown

in Figure 5.4.

For the the initial ball position in the launch phase zL := (xL, yL, ẋL, ẏL) the launch

trajectory can be parameterized as

g(x, y) = x− ẋL

ẏL
y + ẋL

yL
ẏL
− xL = 0

= x− β1y − β0, (5.5)

where β1 :=
ẋL

ẏL
and β0 := −ẋL

yL
ẏL

+ xL are the launch trajectory parameters.

51

• Flip phase dynamics

Modeling the flip phase dynamics are not essential at this point. However, for a given

zF , the flipping dynamics have to be deterministic given the external conditions do

not change. We can use that to build a deterministic relation between zF and zL.

Thus the launch trajectory parameters β1 and β0, which only depend upon zL, relates

to zF deterministically. We can say there are functions,

β1 = f̂β1(zF) (5.6)

β0 = f̂β0(zF) (5.7)

where f̂β1 and f̂β0 are mapping functions. A human player develops intuitive knowl-

edge on those mapping functions whereas artificial agents have to learn them via

machine learning. Ideally, if we have accurate information on pinball machine dy-

namics, we should be able to mathematically derive those functions [63]. However,

that might not be practical as we would have to account for slightest changes on the

system to be precise. For example, machine wear and tear will change the system dy-

namics. Using a learning based method will allow the system to adapt to the system

with less effort.

In the MPC approach, we train the agents with machine learning techniques to learn

f̂β1 and f̂β0 functions. Next we will discuss how the training data was collected.

52

5.1.2 Data collection

Figure 5.5: Tracked ball positions in a sample RSS shot

As mentioned before, we use a ’Stranger Things’ commercial pinball machine made

by Stern Pinball Inc. for the experiment. Our framework was configured to detect when a

ball was rolling down the left ramp representing a start to the RSS. Figure 5.5 shows the

tracked ball positions in a sample shot in yellow circles. The shape of the left side ramp is

shown in red. Once the ball has rolled down the left ramp, the sample collection module of

the framework starts recording the ball positions. When the ball is rolling over the flipper, a

shot is made by the framework at a desired state to move the ball through flip phase into the

53

launch phase. The launch trajectory is recorded until the ball changes it’s moving direction

after hitting another object.

In a single data collection run, where we drop the ball from a roughly fixed location in

the ramp, the data collection module takes in the number of trials we want to run and then

systematically collects shot samples by sweeping the region of possible shots with the goal

of creating an even distribution of the samples. This method was repeated for 3 different

ball drop locations in the ramp (upper, middle and lower sections) and with the ball cradled

in the left flipper (i.e. flipper is in the up position at the start and the ball is placed on

the head of the flipper). For each shot sample, the recorded launch phase ball positions

are fitted into a line using Deming regression and the launch trajectory parameters, β1 and

β0 are calculated[64]. 120 samples were collected as training data and 80 samples were

collected as validation data.

31 2 4

Frame captures

Shot execution

Transmission and processing time

t

Figure 5.6: A sample timeline of processing a frame and actuating a shot

Since the game of pinball depends on precise timing, both sample collection as well as

shot actuation, need sufficient timing accuracy. The processing time for a frame can slightly

vary from frame to frame due to operating system conditions. To avoid ambiguity in the

timing of the shot samples, we synchronize every shot actuation with the next immediate

frame capture event as shown in Figure 5.6. In this way, we fix the time from frame capture

to shot actuation, equal to the image capture period, which is 20ms. The same method

is used when making shots with the trained models to make timing consistent between

training and evaluation.

54

5.2 Model Predictive Controller

MPC

Trajectory
Prediction Engine

Shot Aiming
Controller

Pinball Game Area

Input pre-processing

Actuator

Target
Location

Figure 5.7: Model Predictive Controller Architecture

With use of the mathematical model we derived in section 5.1, we create a Model

Predictive Controller (MPC) to aim shots in the game of pinball. Figure 5.7 shows the inte-

grated components of the complete MPC system. Feedback from the pinball game is taken

using the camera in the framework and actuation of the game is done using the hardware

actuator of the framework. The dashed arrow indicates the synchronization signal coming

from the camera. Input pre-processing is done with the image processing module. The

components of the MPC: Trajectory Prediction Engine (TPE) and Shot Aiming Controller

(SAC) are implemented in the control algorithm module of the framework.

The MPC receives a set target location. TPE has to predict the launch trajectories for

any given system state. Utilizing the predicted launch trajectories, the SAC will strategi-

cally plan and execute a shot to reach the given target.

55

5.2.1 Trajectory Prediction Engine

(5.6) and (5.7) show that there exist mapping functions from a given system state, zt

to β1 and β0 as f̂β1(zt) and f̂β0(zt). We model these mapping functions using machine

learning techniques which we describe in detail in the next section. If the models are able

to predict the launch trajectories for system state with enough accuracy, those models can

be used to aim a shot utilizing the SAC.

5.2.2 Shot Aiming Controller

Figure 5.8: Error, ed for a given ball launch trajectory

Based on the launch trajectory parameter predictions, β̂1 and β̂0, provided by the TPE

functions, f̂β1(zt), and f̂β0(zt), the launch trajectory can be predicted using (5.5) as

ĝ(x, y) = x− β̂1y − β̂0. (5.8)

For a given target location coordinates (xT , yT), we define an error term, ed which

is the perpendicular signed distance between ĝ(x, y) and (xT , yT) as shown in Figure 5.8.

Using (5.8), ed can be written as

56

ed = Ed(xT , yT , β̂1, β̂0) =
xT − β̂1yT − β̂0√

β̂2
1 + 1

. (5.9)

When ed ≈ 0, the launch trajectory should go through the target location, which

should result in a successful target hit. In order to find a future state that will correspond

to ed ≈ 0, we first have to find the search space containing feasible future states, given the

current state of the system.

0.1 0.2 0.3 0.4 0.5
time (s)

20

40

60

80

100

120

x
po

si
tio

n
(p

ix
el

)

x position

raw
kalman filtered

0.1 0.2 0.3 0.4 0.5
time (s)

10

0

10

20

30

40

50

y
po

si
tio

n
(p

ix
el

)

y position

raw
kalman filtered

0.1 0.2 0.3 0.4 0.5
time (s)

0

50

100

150

200

250

300

350

400

x
ve

lo
ci

ty
 (p

ix
el

/s
)

x velocity

kalman filtered
raw values

0.1 0.2 0.3 0.4 0.5
time (s)

250

200

150

100

50

0

50

y
ve

lo
ci

ty
 (p

ix
el

/s
)

y velocity

kalman filtered
raw values

Figure 5.9: Kalman filtering in a rolling phase example

The motion model described with (4.4)-(4.7) under Kalman filtering in Section 4.2.3

57

is applicable to the rolling phase. Figure 5.9 shows the Kalman filtered values in a rolling

phase of an arbitrary RSS sample. Graph shows that the Kalman filter was able to regulate

the variations of the velocity with it’s estimates. Using Kalman filtered motion parameters

at time t, m̂ = [x̂, ˆ̇x, ˆ̈x, ŷ, ˆ̇y, ˆ̈y]⊤ we can derive the following equations for an arbitrary

small time step into the future,

x̂t+δt =
ˆ̈xt

2
δt2 + ˆ̇xtδt+ x̂t (5.10)

ŷt+δt =
ˆ̈yt
2
δt2 + ˆ̇ytδt+ ŷt (5.11)

ˆ̇xt+δt = ˆ̈xtδt+ ˆ̇xt (5.12)

ˆ̇yt+δt = ˆ̈ytδt+ ˆ̇yt. (5.13)

where the predicted system state at time t + δt is zt+δt := [x̂t+δt, ŷt+δt, ˆ̇xt+δt, ˆ̇yt+δt]
⊤.

States satisfying the above equations are the feasible future states for the system, given the

current state.

By empirical analysis we can conclude that for a ball rolling down the flipper, the

error function ed(t) is a strictly increasing monotonic function for a given target location.

By (5.6) and (5.7) we can derive the following for a given target location (xT , yT),

ed(t) = Ed(xT , yT , β1, β0)

= Ed(xT , yT , f̂β1(zt), f̂β0(zt)). (5.14)

Hence the predicted error at time t+ δt, êd(t+ δt) is

êd(t+ δt) = Ed(xT , yT , f̂β1(ẑt+δt), f̂β0(ẑt+δt)). (5.15)

58

Since it is not always feasible to find an inverse of the machine learning models which

we use as f̂β1 and f̂β0, we suggest two alternative methods to find the delay δt∗, where

ed(t+ δt∗) ≈ 0:

1. Iterative solver: We can solve for the root of the equation (5.15) using numerical

methods. Specifically, we use Secant method to solve for the root. This numerical

solver has to run in a serial manner.

2. Sampling solver: This is an approximation method where the next frame period

is subdivided into finite amount of samples and corresponding state and error are

calculated to find δt∗, which is closest to the root. These calculations can be done in

parallel for all time samples, which can save the effective execution time.

After finding the delay time δt∗, an accurately timed shot has to be made in order to

shoot the ball to the target.

5.3 Neural Network based MPC

In this experiment we explore the use of a multi layered neural network to predict

launch phase parameters from the state of the system as approximations to f̂β1(zt) and

f̂β0(zt). We train two neural networks as the prediction functions, f̂β1(zt) and f̂β0(zt).

59

5.3.1 Hyperparameter tuning

PC 11
0

1
2

PC 2
2.5

2.0
1.5

1.0
0.5

0.00.51.0

1

0.0

0.2

0.4

0.6

NN fit for 1
Data samples

(a) Possible under-fit

PC 11
0

1
2

PC 2
2.5

2.0
1.5

1.00.50.00.51.0

0

0
50

100
150
200
250

NN fit for 0
Data samples

(b) Possible over-fit

Figure 5.10: Examples for possible under-fit and over-fit models

To come up with a good neural network structure, number of hidden layers, number

of nodes per layer, activation functions, dropout rate, etc. had to be optimized. First we

decided the number of layers empirically by visualizing the generated models. A set of

models were trained with differing number of hidden layers with 20 models per each layer

count. Since our state space has four dimensions which is not convenient to visualize, we

checked the possibility of dimension reduction. With Principal Component Analysis on the

sample data we found two principal components which were able to capture more than 90%

of the variance of data which we name as ’PC1’ and ’PC2’. We use these two principal

components to visualize our data and the models. We visualized the validation data and the

trained models to identify under-fit and over-fit cases as in the examples shown in Figure

5.10 by observation. By eliminating the model groups with most observable under-fit and

over-fit cases, we decided to go with neural network models with 2 hidden layers.

60

(a) f̂β0 training

(b) f̂β1 training

Figure 5.11: Model training loss

To tune the hyperparameters: the hidden layer 1 node count, the hidden layer 1 acti-

vation function, the hidden layer 2 node count, the hidden layer 2 activation function and

the dropout percentage, we used a Baysian Optimization (BO) based method [65, 66]. A

finite search space is built by assigning a set of discrete values to each hyperparameter. BO

61

was applied over parallel model training sessions. Figure 5.11 show a summary view of the

model training results. In addition to this, we visually observed the distribution of models

in the final stages of BO using the principal components as we did earlier to rule out over-fit

models.

PC 11
0

1
2

PC 2
2.5

2.01.51.00.50.00.51.0

1

0.0
0.2
0.4
0.6
0.8
1.0

NN fit for 1
Data samples

(a) β1

PC 11
0

1
2

PC 2
2.52.01.51.00.50.00.51.0

0

50
75

100
125
150
175
200

NN fit for 0
Data samples

(b) β0

Figure 5.12: Visualization of the Neural Network model picked for predicting the launch
trajectory

Figure 5.12 shows the distribution of the selected models at the end of the hyper-

parameter tuning process. Final models consisted of 16 neuron hidden layer with tanh

activation and another 128 neuron hidden layer with ReLu activation function. Optimal

dropout percentage was 0% and 20% for f̂β0 and f̂β1 respectively, from the training results.

5.4 Support Vector Regression based MPC

This is another approach we took on the MPC. As the use of Support Vector Regres-

sion (SVR) also provided promising results, we will include the details here. SVR is a

generalized version of Support Vector Machines; hence the model provides a continues-

valued output [67]. The choice of SVR as a modeling method was also driven by the fact

that it is able complete training in a few seconds. A short training time is a useful property

for an online learning agent on the system. For the scope of this work, we will see how

62

SVR trains an agent with the collected sample data in an offline manner.

PC 11
0

1
2

PC 2

2.5
2.0

1.5
1.0

0.5
0.0

0.5
1.0

1

0.50
0.25

0.00

0.25

0.50

0.75

1.00

SVR fit for 1

(a) β1

PC 11
0

1
2

PC 2
2.5

2.0
1.5

1.0
0.5

0.0
0.5

1.0

0

50

0

50

100

150

200

SVR fit for 0

(b) β0

Figure 5.13: Visualization of SVR models

Using the same training dataset, SVR models were trained as f̂β1(zt) and f̂β0(zt) pre-

diction functions. Trained models were visualized using principal components of datasam-

ples. By testing with a set of different kernels: linear, polynomial, radial basis function and

sigmoid, we found the polynomial kernel fits the data better. Visualization of selected SVR

models are shown in Figure 5.13.

63

5.5 Results

5.5.1 Evaluation metric

Figure 5.14: The four target locations.

To evaluate the performance of the developed ML models, we selected four frequently

used targets in the ’Stranger Things’ pinball game. The four targets are shown in Figure

5.14. Target A and B, which are stand targets, are 0.8 inches wide and target C and D, which

are entry points to ramps, are 1.8 inches wide. We use each target’s center point as the target

position. According to our setup, one pixel in the camera corresponds to 0.019 inches in the

playfield. The evaluation is done by making shots to the selected four targets and analyzing

the deviation of launch trajectories from the target points. To compare the performance, we

also implement the polynomial fit method presented in [22] which works on a two variable

system state description, and we asses it over the same evaluation conditions.

64

5.5.2 Asynchronous Shot Aiming Controller

Figure 5.15: Difference between synchronous and asynchronous shot aiming methods.

We use the term ’Asynchronous’ in our SAC to explain the difference between the

SAC we previously introduced in [22] and this implementation. Figure 5.15 shows a trail

of the ball rolling down the flipper in the rolling phase as yellow circles on top of the left

flippers. The red lines correspond to predicted launch trajectories from a given model at

each frame capture moments. The center of the white circle is the selected target. In [22],

the SAC is restricted to making shots synchronously with image capture events. Hence,

the possible shots it can take are only the ones shown in red. The asynchronous shot

aiming controller (A-SAC) we introduce, is able to make a shot anytime, asynchronously

with image capture events. In an ideal scenario, A-SAC is able to aim and execute a shot

precisely to go through a target position at any point in the playfield as shown by the cyan

line in the Figure.

From the two methods presented for implementing the A-SAC in Section 5.2.2, the

iterative solver is capable of reaching the exact answer, whereas the sampling solver ap-

65

proximates the answer, in-which the precision depends on the number of samples allowed.

The SVR method and polynomial method is able to calculate a prediction in less than

1ms whereas the neural network model inference takes ≈ 11ms for single input in the

PC we used (Intel(R) Xeon(R) CPU E5-1650 3.60GHz, 32GB RAM and Nvidia GTX960

GPU). Since we were running our system at 50Hz, we are time bound to complete the

full pipeline from capturing the image, processing the data, calculating the optimal shot

to actuating, within the frame period which is 20ms. With this time constraint, secant

solver was only applicable on the polynomial fit method and SVR. For the neural network

based method we went with sampling solver leveraging the batch inference capability of

’PyTorch’ framework which was able to process a batch of 20 state samples, ≈ 14ms in

average.

66

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Error (inches)

0

2

4

6

8

Sh
ot

 c
ou

nt

SAC
A-SAC

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Error (inches)

0

2

4

6

8

Sh
ot

 c
ou

nt

SAC
A-SAC

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Error (inches)

0

1

2

3

4

Sh
ot

 c
ou

nt

SAC
A-SAC

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Error (inches)

0

2

4

6

8

Sh
ot

 c
ou

nt

SAC
A-SAC

Target A Target B

C
ra

dd
le

d
Fr

om
 ra

m
p

SAC vs A-SAC performance for the NN model

(a) Target A and B

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Error (inches)

0

2

4

6

8

Sh
ot

 c
ou

nt

SAC
A-SAC

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Error (inches)

0

1

2

3

4

5

6

Sh
ot

 c
ou

nt

SAC
A-SAC

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Error (inches)

0

1

2

3

4

Sh
ot

 c
ou

nt

SAC
A-SAC

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Error (inches)

0

1

2

3

4

5

6

7

Sh
ot

 c
ou

nt

SAC
A-SAC

Target C Target D

C
ra

dd
le

d
Fr

om
 ra

m
p

SAC vs A-SAC performance for the NN model

(b) Targe C and D

Figure 5.16: Error distribution of shots using SAC and A-SAC for different targets and
starting locations 67

To evaluate the performance of the shot aiming controller, we conducted two trials.

One with SAC and another with A-SAC. Both trials consisted of 20 shot samples for each

target, from the two ball start locations: from middle of the ramp and from the cradled

position. In both trials, we used the same Neural Network model. Figure 5.16 shows the

result. It is evident that A-SAC was able to confine the error to a smaller region than the

SAC.

5.5.3 Model Predictive Controller

To evaluate the performance of the MPCs we trained, we conducted three trials. One

with the polynomial model, one with the SVR model and one with the NN model. All

models used A-SAC for shot aiming. Each trial consisted of 30 shot samples per each

target and per each of the two starting locations. The results are shown in Figure 5.17, with

separate plots for each target and each ball starting location. From the 720 total trial shots,

9 data samples were retaken as the errors reported were higher than ±7, which we suspect

to be caused by errors in the tracking system or the computer.

The results show that three models have shown different accuracy levels depending on

the ball start location and the selected target. Generally for a human player, the ball starting

from the cradled position makes shooting easier than the ball rolling down the ramp, as the

velocity of the ball is significantly lower when ball starts from the cradled position. We can

decide if the outcome is a hit or miss by comparing the error with the required accuracy

values for each target. The estimated accuracy for hitting target A and B are ±0.95 inches

and for target C and D, which are ramp entry points, are ±1.1 inches.

68

2 1 0 1 2
Error (inches)

0

2

4

6

8

10

12

14

Sh
ot

 c
ou

nt

Poly
SVR
NN

2 1 0 1 2
Error (inches)

0

2

4

6

8

10

12

Sh
ot

 c
ou

nt

Poly
SVR
NN

2 1 0 1 2
Error (inches)

0

1

2

3

4

5

6

Sh
ot

 c
ou

nt

Poly
SVR
NN

2 1 0 1 2
Error (inches)

0

2

4

6

8

Sh
ot

 c
ou

nt

Poly
SVR
NN

Target A Target B

C
ra

dd
le

d
Fr

om
 ra

m
p

Comparison of Poly, SVR and NN with ball starting position and target

(a) Target A and B

2 1 0 1 2
Error (inches)

0

2

4

6

8

10

12

14

Sh
ot

 c
ou

nt

Poly
SVR
NN

2 1 0 1 2
Error (inches)

0

2

4

6

8

Sh
ot

 c
ou

nt

Poly
SVR
NN

2 1 0 1 2
Error (inches)

0

1

2

3

4

5

6

7

Sh
ot

 c
ou

nt

Poly
SVR
NN

2 1 0 1 2
Error (inches)

0

2

4

6

8

10

Sh
ot

 c
ou

nt

Poly
SVR
NN

Target C Target D

C
ra

dd
le

d
Fr

om
 ra

m
p

Comparison of Poly, SVR and NN with ball starting position and target

(b) Target C and D

Figure 5.17: Error distributions for Polynomial model, SVR model and Neural network
model, all using A-SAC

69

Target A Target B Target C Target D
-1.5

-1

-0.5

0

0.5

1

1.5

Trials from Cradled position
Poly SVR NN

Figure 5.18: Error distribution for trials with the ball started from the cradled position.

Figure 5.18 shows the distribution of error for the ball starting from the cradled posi-

tion. As expected, Target A was the easiest for all 3 models as the ball moves the slowest in

the range of target A. From the 3 models, polynomial model and NN model show a lower

variation in error comparing to the the SVR model for all 4 targets. For different targets,

polynomial model seems to have a bias to either of plus or minus error sides. The SVR

model result variance is higher; still the deviation of the means from zero error is less than

that of the polynomial model.

Comparing with the required accuracy levels for each target, the Polynomial model

has shown above a 92% hit rate, SVR model has shown above a 96% hit rate and NN

model has shown above a 98% hit rate for all targets overall.

70

Target A Target B Target C Target D
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Trials started from Ramp
Poly SVR NN

Figure 5.19: Error distribution for trials with the ball started from middle of the ramp.

Figure 5.19 shows the error distribution for the trials where the ball started from the

middle of the ramp. Usually, the difficulty of shooting the ball from this location is higher

for a human player as the ball has already gained momentum through the drop from the

height. Both the NN and Polynomial models seem to have a wider variance in error distri-

bution for the same target when compared with the ball starting from the cradled position.

Comparing the required accuracy levels for each target, both the Polynomial model and the

SVR model have shown hit rates above 85%, and the NN model has shown a hit rate above

96% on all targets.

Overall, all three models have learned to shoot the selected targets with at least an

accuracy of 85%. The SVR model which has a comparatively larger variance in most of

the cases, can be considered to be more unstable than the Polynomial model and NN model.

Of the three methods, the NN method has reported the best results of at least a 96% hit rate

on all scenarios. Also we have to factor in for the data errors of the limited number of data

points we supplied the models with, errors in the pinball framework and the effects of the

hyperparameters we used for the models, which can have an effect on the overall results of

the models.

71

Discussion and Conclusion

The goal of this work was to create a real-time Cyber Physical System sandbox us-

ing pinball machines and to test the applicability of ML techniques for control. We have

developed a simulator framework to test ML techniques on pinball in a virtual setting. Us-

ing that, we have experimented on model-free control methods that fall into reinforcement

learning category. We have developed a real-world framework to be used with physical pin-

ball machines which we had used to experiment on model-based techniques, incorporating

the learnings from the simulator based experiments. We have used three different ML tech-

niques on MPC to see what they can accomplish and how they compare with each other.

Also, we discussed the methods and challenges in developing a controller for a real-time

Cyber Physical System from both controller design perspective and hardware and software

development perspective.

From the results, we saw that the introduction of a hardware based synchronization

and asynchronous shots had a positive effect on the results. All three ML methods we tested

were able to learn to aim and shoot with at least 85% accuracy with just 120 data-points

to train. We observed that using a model-based method reduced the data requirement from

hundreds of thousands, which we saw in simulator based experiments, to around a hundred,

which we saw in real-world experiments. Hence, we can conclude that ML based MPC was

able to learn a good shot aiming controller for the RSS in a data-efficient manner. And from

the three ML methods we tested for the RSS, the Neural Network based method was able

to deliver a hit rate of 96%.

72

Selection of the state space on this work was done in a generalized manner, consid-

ering possible future expansion of this project. The same state space is applicable on the

entire control region, which essentially covers the entire range of possible scenarios in the

game of pinball. The learned controllers in this work can be used as control modules in a

hierarchical or modular learning scheme as discussed in the simulator based experiments

section.

The development of the real-world framework is done in an generalized manner, so it

can be ported to any other physical pinball machine with little to no modifications. Hence,

the same framework can be used to experiment with transfer learning, where we can test to

what extent we can reuse the knowledge of an agent trained from one machine on another.

The SVR method was chosen due to the low computational power and time required to train

an agent with new data. We can extend our work to create an online learning agent who

improves itself with all new pinball shots they make and able to utilize them immediately.

As final remarks, we can state that Machine Learning based control on real-time CPS

is an under-explored domain. Specifically, training, testing and evaluation of control meth-

ods on physical hardware exposes the real challenges in the process. Hence, we believe the

sandbox environments we created and the knowledge we gained through the experiments

will be helpful in future research on real-time CPS controllers.

73

74

Bibliography

[1] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical systems: the next

computing revolution,” in Design automation conference, pp. 731–736, IEEE, 2010.

[2] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasu-

vunakool, R. Bates, A. Žı́dek, A. Potapenko, et al., “Highly accurate protein structure

prediction with alphafold,” Nature, vol. 596, no. 7873, pp. 583–589, 2021.

[3] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hu-

bert, L. Baker, M. Lai, A. Bolton, et al., “Mastering the game of go without human

knowledge,” nature, vol. 550, no. 7676, pp. 354–359, 2017.

[4] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and

I. Sutskever, “Zero-shot text-to-image generation,” in International Conference on

Machine Learning, pp. 8821–8831, PMLR, 2021.

[5] J. Zander, “Model-based testing for execution algorithms in the simulation of cyber-

physical systems,” in 2013 IEEE AUTOTESTCON, pp. 1–7, IEEE, 2013.

[6] I. Buzhinsky, C. Pang, and V. Vyatkin, “Formal modeling of testing software for

cyber-physical automation systems,” in 2015 IEEE Trustcom/BigDataSE/ISPA, vol. 3,

pp. 301–306, IEEE, 2015.

75

[7] Z. Jiang, M. Pajic, and R. Mangharam, “Cyber–physical modeling of implantable

cardiac medical devices,” Proceedings of the IEEE, vol. 100, no. 1, pp. 122–137,

2011.

[8] J. C. Eidson, E. A. Lee, S. Matic, S. A. Seshia, and J. Zou, “Distributed real-time soft-

ware for cyber–physical systems,” Proceedings of the IEEE, vol. 100, no. 1, pp. 45–

59, 2012.

[9] H. Neema, P. Volgyesi, B. Potteiger, W. Emfinger, X. Koutsoukos, G. Karsai,

Y. Vorobeychik, and J. Sztipanovits, “Sure: An experimentation and evaluation

testbed for cps security and resilience: Demo abstract,” in Proceedings of the 7th

International Conference on Cyber-Physical Systems, pp. 1–1, 2016.

[10] V. Matena, T. Bures, I. Gerostathopoulos, and P. Hnetynka, “Model problem and

testbed for experiments with adaptation in smart cyber-physical systems,” in 2016

IEEE/ACM 11th International Symposium on Software Engineering for Adaptive and

Self-Managing Systems (SEAMS), pp. 82–88, IEEE, 2016.

[11] H. Zhang, D. Ge, J. Liu, and Y. Zhang, “Multifunctional cyber-physical system

testbed based on a source-grid combined scheduling control simulation system,” IET

Generation, Transmission & Distribution, vol. 11, no. 12, pp. 3144–3151, 2017.

[12] H. Gao, Y. Peng, K. Jia, Z. Wen, and H. Li, “Cyber-physical systems testbed based

on cloud computing and software defined network,” in 2015 International Confer-

ence on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP),

pp. 337–340, IEEE, 2015.

[13] T. L. Crenshaw and S. Beyer, “Upbot: a testbed for cyber-physical systems,” in Pro-

ceedings of the 3rd international conference on Cyber security experimentation and

test, pp. 1–8, 2010.

76

[14] S. Poudel, Z. Ni, and N. Malla, “Real-time cyber physical system testbed for power

system security and control,” International Journal of Electrical Power & Energy

Systems, vol. 90, pp. 124–133, 2017.

[15] M. Khan, S. Alam, A. Mohamed, and K. A. Harras, “Simulating drone-be-gone: Ag-

ile low-cost cyber-physical uav testbed,” in Proceedings of the 2016 International

Conference on Autonomous Agents & Multiagent Systems, pp. 1491–1492, 2016.

[16] M. H. Cintuglu and O. A. Mohammed, “Cloud communication for remote access

smart grid testbeds,” in 2016 IEEE Power and Energy Society General Meeting

(PESGM), pp. 1–5, IEEE, 2016.

[17] Y. Zhou, J. Wang, H. Du, H. Li, P. Hu, G. Wang, and R. Shao, “The multi-agent

based evaluation of connected vehicle systems,” in 2014 IEEE Vehicular Networking

Conference (VNC), pp. 131–132, IEEE, 2014.

[18] N. Winstead, “Some explorations in reinforcement learning techniques applied to the

problem of learning to play pinball,” in Proceedings of the AAAI-03 Workshop on

Entertainment and AI/A-Life, pp. 1–5, 1996.

[19] K. Fragkiadaki, P. Agrawal, S. Levine, and J. Malik, “Learning visual predictive mod-

els of physics for playing billiards,” arXiv preprint arXiv:1511.07404, 2015.

[20] J. Renz, X. Ge, M. Stephenson, and P. Zhang, “Ai meets angry birds,” Nature Machine

Intelligence, vol. 1, no. 7, pp. 328–328, 2019.

[21] A. Metcalf, “Pinball: High-speed real-time tracking and playing,” 2011.

[22] Z. E. Fuchs, P. Saranguhewa, and M. Ikuru, Real-Time Model Predictive Control for

Shot Aiming in a Physical Pinball Machine, p. 1–8. IEEE, Aug 2021.

[23] “Future pinball.” https://futurepinball.com/. [Online], Date last accessed

04-August-2022.

77

https://futurepinball.com/

[24] “Visual pinball.” https://github.com/vpinball/vpinball. [Online],

Date last accessed 04-August-2022.

[25] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control

through deep reinforcement learning,” nature, vol. 518, no. 7540, pp. 529–533, 2015.

[26] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,

2018.

[27] F. S. Melo, “Convergence of q-learning: A simple proof,” Institute Of Systems and

Robotics, Tech. Rep, pp. 1–4, 2001.

[28] K. Shao, Z. Tang, Y. Zhu, N. Li, and D. Zhao, “A survey of deep reinforcement

learning in video games,” arXiv preprint arXiv:1912.10944, 2019.

[29] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint

arXiv:1312.5602, 2013.

[30] R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu, “Neural architecture optimization,”

2019.

[31] S. Bhat, C. L. Isbell, and M. Mateas, “On the difficulty of modular reinforcement

learning for real-world partial programming,” in AAAI, pp. 318–323, 2006.

[32] C. Simpkins and C. Isbell, “Composable modular reinforcement learning,” in Pro-

ceedings of the AAAI conference on artificial intelligence, vol. 33, pp. 4975–4982,

2019.

[33] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum, “Hierarchical deep

reinforcement learning: Integrating temporal abstraction and intrinsic motivation,”

Advances in neural information processing systems, vol. 29, 2016.

78

https://github.com/vpinball/vpinball

[34] O. Nachum, S. S. Gu, H. Lee, and S. Levine, “Data-efficient hierarchical reinforce-

ment learning,” Advances in neural information processing systems, vol. 31, 2018.

[35] A. Levy, G. Konidaris, R. Platt, and K. Saenko, “Learning multi-level hierarchies with

hindsight,” arXiv preprint arXiv:1712.00948, 2017.

[36] S. Pateria, B. Subagdja, A.-h. Tan, and C. Quek, “Hierarchical reinforcement learning:

A comprehensive survey,” ACM Comput. Surv., vol. 54, jun 2021.

[37] M. M. Botvinick, Y. Niv, and A. G. Barto, “Hierarchically organized behavior and its

neural foundations: A reinforcement learning perspective,” Cognition, vol. 113, no. 3,

pp. 262–280, 2009.

[38] X. Wang, Y. Chen, and W. Zhu, “A survey on curriculum learning,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 2021.

[39] L. G. Shapiro, G. C. Stockman, et al., Computer vision, vol. 3. Prentice Hall New

Jersey, 2001.

[40] R. Tsai, “A versatile camera calibration technique for high-accuracy 3d machine vi-

sion metrology using off-the-shelf tv cameras and lenses,” IEEE Journal on Robotics

and Automation, vol. 3, no. 4, pp. 323–344, 1987.

[41] J. Heikkila and O. Silvén, “A four-step camera calibration procedure with implicit

image correction,” in Proceedings of IEEE computer society conference on computer

vision and pattern recognition, pp. 1106–1112, IEEE, 1997.

[42] P. Sturm and S. Maybank, “On plane-based camera calibration: A general algorithm,

singularities, applications,” in Proceedings. 1999 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (Cat. No PR00149), vol. 1, pp. 432–437

Vol. 1, 1999.

79

[43] C. X. Guo, F. M. Mirzaei, and S. I. Roumeliotis, “An analytical least-squares solution

to the odometer-camera extrinsic calibration problem,” in 2012 IEEE International

Conference on Robotics and Automation, pp. 3962–3968, 2012.

[44] Z. Zhang, “A flexible new technique for camera calibration,” IEEE transactions on

pattern analysis and machine intelligence, vol. 22, no. 11, p. 1330–1334, 2000.

[45] Z. Gao, M. Zhu, and J. Yu, “A novel camera calibration pattern robust to incomplete

pattern projection,” IEEE Sensors Journal, vol. 21, no. 8, pp. 10051–10060, 2021.

[46] O. Kedilioglu, T. M. Bocco, M. Landesberger, A. Rizzo, and J. Franke, “Arucoe: En-

hanced aruco marker,” in 2021 21st International Conference on Control, Automation

and Systems (ICCAS), pp. 878–881, 2021.

[47] G. H. An, S. Lee, M.-W. Seo, K. Yun, W.-S. Cheong, and S.-J. Kang, “Charuco board-

based omnidirectional camera calibration method,” Electronics, vol. 7, no. 12, 2018.

[48] “Spinnaker sdk.” https://www.flir.com/products/spinnaker-sdk.

[Online], Date last accessed 28-August-2022.

[49] S. Suzuki et al., “Topological structural analysis of digitized binary images by border

following,” Computer vision, graphics, and image processing, vol. 30, no. 1, pp. 32–

46, 1985.

[50] T. Bouwmans, “Traditional and recent approaches in background modeling for fore-

ground detection: An overview,” Computer science review, vol. 11, pp. 31–66, 2014.

[51] J. Zheng, Y. Wang, N. L. Nihan, and M. E. Hallenbeck, “Extracting roadway back-

ground image: Mode-based approach,” Transportation research record, vol. 1944,

no. 1, pp. 82–88, 2006.

80

https://www.flir.com/products/spinnaker-sdk

[52] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers, “Wallflower: Principles and prac-

tice of background maintenance,” in Proceedings of the seventh IEEE international

conference on computer vision, vol. 1, pp. 255–261, IEEE, 1999.

[53] S. Messelodi, C. M. Modena, N. Segata, and M. Zanin, “A kalman filter based back-

ground updating algorithm robust to sharp illumination changes,” in International

Conference on Image Analysis and Processing, pp. 163–170, Springer, 2005.

[54] E. Zhang, F. Chen, and W. Zhang, “A novel particle filter based background subtrac-

tion method,” in 2006 International Conference on Computational Intelligence and

Security, vol. 2, pp. 1837–1840, IEEE, 2006.

[55] M. Shah, J. D. Deng, and B. J. Woodford, “Video background modeling: recent

approaches, issues and our proposed techniques,” Machine vision and applications,

vol. 25, no. 5, pp. 1105–1119, 2014.

[56] A. Ilyas, M. Scuturici, and S. Miguet, “Real time foreground-background segmenta-

tion using a modified codebook model,” in 2009 Sixth IEEE International Conference

on Advanced Video and Signal Based Surveillance, pp. 454–459, IEEE, 2009.

[57] T. Bouwmans, “Subspace learning for background modeling: A survey,” Recent

Patents on Computer Science, vol. 2, no. 3, pp. 223–234, 2009.

[58] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models for real-

time tracking,” in Proceedings. 1999 IEEE computer society conference on computer

vision and pattern recognition (Cat. No PR00149), vol. 2, pp. 246–252, IEEE, 1999.

[59] R. Di Salvo and C. Pino, “Image and video processing on gpu: Implementation

scheme, applications and future directions,” in Advances in Mechanical and Elec-

tronic Engineering (D. Jin and S. Lin, eds.), (Berlin, Heidelberg), pp. 375–382,

Springer Berlin Heidelberg, 2013.

81

[60] Q. Li, R. Li, K. Ji, and W. Dai, “Kalman filter and its application,” in 2015 8th

International Conference on Intelligent Networks and Intelligent Systems (ICINIS),

pp. 74–77, 2015.

[61] R. E. Kalman, “A new approach to linear filtering and prediction problems,” 1960.

[62] G. Bishop, G. Welch, et al., “An introduction to the kalman filter,” Proc of SIG-

GRAPH, Course, vol. 8, no. 27599-23175, p. 41, 2001.

[63] D. Limon, J. Calliess, and J. M. Maciejowski, “Learning-based nonlinear model pre-

dictive control,” IFAC-PapersOnLine, vol. 50, p. 7769–7776, Jul 2017.

[64] W. E. Deming, “Statistical adjustment of data.,” 1943.

[65] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of

machine learning algorithms,” Advances in neural information processing systems,

vol. 25, 2012.

[66] P. I. Frazier, “A tutorial on bayesian optimization,” arXiv preprint arXiv:1807.02811,

2018.

[67] M. Awad and R. Khanna, Support Vector Regression, pp. 67–80. Berkeley, CA:

Apress, 2015.

82

	Abstract
	Introduction
	Motivation
	Related work
	Thesis Organization

	Simulation Framework
	Simulator experiments: Model free learning
	Pinball as a Markov Decision Process
	Optimal policy via Deep-Q-Learning
	Experiment setup
	Image-based DQN
	Motion feature based DQN
	Modular Reinforcement Learning
	Trained agents
	Learning to cradle the ball
	Learning to shoot from the cradled position
	Learning to shoot directly

	Direct Learning vs. Modular Learning

	Real-world framework
	Overhead Camera
	Image processing module: ball tracking and feature detection
	Ball tracking in a custom built pinball playfield
	Ball tracking on commercial pinball machines
	Kalman filter to filter positional data

	Control module
	Hardware actuator

	Real-world experiments: Model based learning
	Modeling the game of pinball
	Rolling Shot Scenario
	Data collection

	Model Predictive Controller
	Trajectory Prediction Engine
	Shot Aiming Controller

	Neural Network based MPC
	Hyperparameter tuning

	Support Vector Regression based MPC
	Results
	Evaluation metric
	Asynchronous Shot Aiming Controller
	Model Predictive Controller

	Discussion and Conclusion
	Bibliography

