

Neural Network Emulation for Computer Model with High

Dimensional Outputs using Feature Engineering and Data

Augmentation

A dissertation submitted to the

Graduate School

of the University of Cincinnati

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in the Department of Mathematical Sciences

of the College of Arts and Sciences

by

Mohammed Barakat M Alamari

Committee:

Won Chang, Ph.D., Chair.

Emily Kang, Ph.D.

Xia Wang, Ph.D.

i

Abstract

Expensive computer models (simulators) are frequently used to simulate the behavior of a complex

system in many scientific fields because an explicit experiment is very expensive or dangerous to

conduct. Usually, only a limited number of computer runs are available due to limited sources.

Therefore, one desires to use the available runs to construct an inexpensive statistical model, an

emulator. Then the constructed statistical model can be used as a surrogate for the computer model.

Building an emulator for high dimensional outputs with the existing standard method, the Gaussian

process model, can be computationally infeasible because it has a cubic computational complexity

that scales with the total number of observations. Also, it is common to impose restrictions on

the covariance matrix of the Gaussian process model to keep computations tractable. This work

constructs a flexible emulator based on a deep neural network (DNN) with feedforward multilayer

perceptrons (MLP). High dimensional outputs and limited runs can pose considerable challenges

to DNN in learning a complex computer model’s behavior. To overcome this challenge, we take

advantage of the computer model’s spatial structure to engineer features at each spatial location

and then make the training of DNN feasible. Also, to improve the predictive performance and

avoid overfitting, we adopt a data augmentation technique into our method. Finally, we apply our

approach using data from the UVic ESCM model and the PSU3D-ICE model to demonstrate good

predictive performance and compare it with an existing state-of-art emulation method.

© Copyright by

Mohammed Barakat M Alamari

2022

i

Acknowledgements

Words cannot express my deepest gratitude to my advisor Prof. Won Chang for the tremendous

help, clear guidance, and continued encouragement. I am fortunate to have the opportunity to work

with Prof. Won Chang; without his expertise, patience, and insightful comments, this work would

not be possible. I am incredibly thankful to my dissertation committee members, Prof. Xia Wang

and Prof. Emily Kang, for giving up their valuable time to serve on my dissertation committee

and for their insightful and helpful remarks that greatly improved this work.

Many thanks to all Professors I had as instructors at the University of Cincinnati. I would like to

extend my thanks to all Professors and staff members in the Department of Mathematical Sciences

at the University of Cincinnati. Also, I am grateful to King Khalid University, Saudi Arabia, for

providing financial support to pursue graduate studies in the United States.

I would like to thank my beloved wife for being a great supporter and continuing to believe in

me through tough times. Without her help, sacrifices, and patience, achieving this goal would

have been much more difficult. To my precious children, thank you for bringing so much joy and

happiness to my life. To my dear Mother, I am deeply grateful for all the unconditional love and

support. To my amazing siblings, thank you for your encouragement and motivation.

ii

DEDICATION

I dedicate this dissertation work to my father, in loving

memory.

Contents

1 Introduction 1

1.1 Overview of the Proposed Method . 6

1.2 Outline of the Dissertation . 7

2 Computer Models and Uncertainty Quantification 8

2.1 Uncertainty Quantification Tasks . 10

2.1.1 Computer Model Calibration . 10

2.1.2 Uncertainty Propagation . 11

2.1.3 Optimization . 11

2.1.4 Sensitivity Analysis . 11

2.1.5 Data Models Discrepancy . 12

2.2 Emulation Problem . 12

iv

3 Deep Neural Networks 15

3.1 Feedforward Neural Networks . 16

3.1.1 Architecture of Feedforward Neural Networks 17

3.1.2 Model Fitting in Deep Neural Networks . 19

3.1.3 Regularization techniques in deep learning . 21

3.1.3.1 Dropout . 21

3.1.3.2 Penalized Loss Function . 23

3.1.3.3 Other Regularization Techniques . 23

3.1.4 Activation Functions and Saturation Issue . 24

3.2 Parameters Estimation and Optimization . 25

3.3 Uncertainty Quantification in Deep Neural Networks 27

4 Various-Neighbor Neural Network Emulators via Feature Engineering and Data

Augmentation 30

4.1 Data Description . 31

4.1.1 Motivation Problems . 31

4.1.2 The University of Victoria Earth System Climate Model (UVic ESCM) . . . 32

4.1.3 The PSU3D-ICE Model . 33

v

4.2 Related Work and Challenges with Large-Scale Applications in Computer Models

using Neural Networks . 34

4.3 Methodology . 36

4.3.1 Parallel Features Engineering . 37

4.3.2 Data Augmentation . 41

4.3.2.1 Motivation . 41

4.3.2.2 Data Points of Various Distances . 42

4.3.2.3 Data Augmentation Details . 43

5 Applications 46

5.1 UVic ESCM Model Application . 46

5.1.1 Investigating Data Augmentation’s Effectiveness 47

5.1.1.1 Designing Test Studies . 47

5.1.1.2 Implementation Details . 49

5.1.1.3 Comparing the Performance based on Neighboring Choice 50

5.1.1.4 Necessity of Incorporating our Data Augmentation in Training Process 53

5.1.2 Comparison between our V3N and PPGP . 54

5.1.2.1 Test Scenarios and Evaluation Criteria 54

vi

5.1.2.2 Implementation Details . 55

5.1.2.3 Comparison Results . 56

5.2 PSU3D-ICE Model Application . 57

5.2.1 Design of the test study and evaluation criteria 58

5.2.2 Implementation Details . 58

5.2.3 Comparison Results . 59

6 Summary 63

7 Supplementary Material 72

S1 UVic ESCM Model Application . 72

S1.1 Visual Comparisons under the First Case Test Scenario 73

S1.2 Visual Comparisons under the Second Case Test Scenario 75

vii

List of Figures

2.1 Computer models as a black-box . 9

3.1 Feedforward deep neural network architecture . 17

3.2 Left: Neural network without dropout technique. Right: Neural network with dropout

technique . 21

4.1 An example of the 250 UVic ESCM model runs . 32

4.2 An example of the 625 PSU3D-ICE model runs . 33

4.3 Illustration of the parallel features engineering approach. Here, m = C = 3. To make

a prediction at an untried parameter setting θi and at spatial location sj, neighboring

information in Θ and S can be used through input features to the neural network. . . 39

4.4 Sketch of the proposed data augmentation. Black dots denotes design points in

Θ. Red cross marks represent the selected design points form which we engi-

neered input features for DNN to predict Yij. The left panel uses the information on

the short-distance points. The middle panel uses the information on the medium-

distance points. The right panel uses the information on the long-distance points. . 43

viii

5.1 The Uvic ESCM Model’s design points. 47

5.2 Visualization of the two test situations. Left: The test design points (blue dots) are

chosen randomly in the input space. Right: The test design points (blue dots) are

selected to cause a gap in the input space. 48

5.3 Comparison of root mean-squared prediction errors for Model 1, Model 2, Model

3, Model 2+Aug, Model 3+Aug under case one scenario. 51

5.4 Comparison of the root mean-squared prediction errors for Model 1, Model 2,

Model 3, Model 2+Aug, Model 3+Aug under case two scenario. 52

5.5 A visual comparison between an original computer output and the emulated outputs

from V3N and PPGP. The top plot shows an output from the test data. The low-

left plot shows the predicted output using our method. The low-right plot show the

predicted output by PPGP. 60

5.6 Another visual comparison example between an original computer output and the

predicted outputs from V3N and PPGP. The top plot shows an output from the

test data. The low-left plot shows the predicted output using our method. The low-

right plot show the predicted output by PPGP. 61

5.7 A visual comparison between original computer and predicted outputs from V3N and

PPGP. The top plot shows an output from the test data. 62

S1 A UVic ESCM run (top plot). The bottom plots show comparison between the

emulated run using V3N (bottom left plot) and the emulated run using PPGP

(bottom right plot). 73

ix

S2 Another visual comparison between the true run (top plot) and the emulated outputs

from our V3N (bottom left plot) and PPGP (bottom right plot) under the first

case test scenario. 74

S3 Plots of the actual run (top plot) and the predicted outputs from our V3N (bottom

left plot) and PPGP (bottom right plot) under the second case test. 75

S4 Another visual comparison between the computer model output (top) and the emu-

lated outputs from our method (bottom left) and PPGP (bottom right). 76

x

List of Tables

5.1 RMSPE under case one test. 53

5.2 RMSPE under case two test. 53

5.3 A comparison of the performance of our emulator and PPGP in terms of various

metrics. Both emulators are evaluated based on r∗ = 50 randomly chosen test input

parameter settings. 56

5.4 A comparison of the performance of our emulator and PPGP in terms of different

criteria. Both emulators are evaluated based on r∗ = 50 test input settings, which

were chosen in a way to cause a gap in the input space. 57

5.5 A comparison of the performance of our emulator and PPGP in terms of various

metrics. Both emulators are evaluated based on r∗ = 425 randomly chosen test input

parameter settings. 59

xi

Chapter 1

Introduction

Computer models (simulators) are frequently used to simulate the behavior of a complex physi-

cal system in many scientific fields because an explicit experiment is costly, dangerous, or even

impossible to conduct. Computer models are now commonplace in many scientific fields, such as

engineering, biological, and climate science. For example, in climate science, computer models are

built to mimic the actual world so scientists can understand the past and project climate scenarios

in the future. Typically, computer models represent physical phenomena with a complex system

of mathematical equations according to laws of physics and mathematical theories. Scientists can

only solve them using sophisticated computers (Smith (2013); Gramacy (2020)).

Computer models have a complex structure and are expensive to run, and could take hours, days,

or even weeks to obtain a single run at a specific input setting. Still, they are not perfect because

they represent an ideal reality of the world, and they cannot have all the physical processes we need

in them due to ignorance or computation limits. Consequently, these computer models have many

sources of uncertainty, and these sources have to be quantitatively characterized and reduced to

1

produce a reliable simulation of the target physical system. Identifying and reducing uncertainties

related to computer models falls under a research field called uncertainty quantification (UQ).

Uncertainty quantification (UQ) is an interdisciplinary field of applied science and has become

increasingly popular due to the tremendous use of computer models (computer experiments) in

modern science. Since uncertainty quantification (UQ) problems such as uncertainty propagation,

computer model calibration, and sensitivity analysis require a considerable number of runs of the

computer models, building an inexpensive statistical model is desirable to cope with the expensive

computer models (Santner et al. (2003); Gramacy (2020)).

Sacks et al. (1989) were among the first to propose modeling the computer model’s output as

a Gaussian process (GP) realization. The Gaussian process model is also known as Kriging in

geostatistics, where the input space’s dimension is typically two (latitude and longitude) or at

most three (Cressie (1993)). The characteristics of the data generated by computer models make

them different from data in other applications, such as data in spatial statistics (Gu (2016); Gra-

macy (2020)). Therefore, in the procedure of building an emulator, we need to consider these

characteristics.

First, It is common for computer models to be deterministic. That is, the repeated runs of the

computer model at the same input parameter settings will always generate the same outputs. In

this work, we consider deterministic climate computer models. Hence, building an emulator that

nearly interpolates the computer model outputs in the input parameter space is desirable, or at

least it is appropriate (Sacks et al. (1989); Gramacy (2020)). Gaussian process can be an exact

interpolator by setting the so-called nugget term (jitter) to zero. However, a zero nugget term is

not recommended for better numerical stability (Neal (1997); Gramacy and Lee (2008); Pepelyshev

(2010)) and better predictive accuracy and coverage when data are sparse or the Gaussian process

2

model assumptions are not satisfied (e.g., stationarity) (Gramacy and Lee (2012)). Second, the

input parameters of the computer models are usually on different scales and have different units.

Hence we expect the correlation of the outputs would not decay homogeneously in each input

parameter direction; this property is called anisotropy, as opposed to isotropy. In comparison with

spatial statistics setting, an isotropic correlation structure (e.g., isotropic Gaussian, Matérn, etc.) is

often appropriate since the axes (e.g., longitude and latitude) are on the same scale (Ugarte (2015);

Gu (2016)). Gaussian process can maneuver the anisotropy by allowing different correlation rates in

each input direction. In practice, this is not an easy job; and often, a separable correlation structure

(e.g., anisotropic Gaussian) is used in computer models for computational purposes (Ugarte (2015);

Gu (2016); Gramacy (2020)). Third, the relationship between the computer model outputs and

input parameters is highly nonlinear with complicated interactions; a flexible statistical model is

required to approximate the computer model sufficiently.

Although the Gaussian process is a powerful and standard method to construct a statistical model

that interpolates computer model outputs in the computer model parameter space, it has limi-

tations. The primary limitation of the Gaussian process on large-scale applications is evaluating

an expensive likelihood which involves finding the inversion of a large dense covariance matrix.

Typically, the time complexity of computing a likelihood with n-dimensional outputs at r different

parameter settings requires O(n3r3) operations. Therefore, the Gaussian process model can be

computationally infeasible for large-scale problems in computer model literature.

A considerable amount of research has been done to improve the time computation of the Gaussian

process model in the literature. Various approaches are possible, primarily relying on imposing

certain constraints on the covariance structure. Defining a separable covariance structure is a

common approach; as a result, the large covariance matrix can be decomposed as a Kronecker

3

product of much smaller matrices, and then one can exploit the Kronecker structure to speed up

the computation (Rougier (2008); Conti and O’Hagan (2010)).

Dimension reduction techniques are another natural approach for overcoming the high dimension-

ality issue, where one finds proper orthogonal basis representations of high dimensional outputs

into a lower-dimensional space. Then the reduced and transformed outputs can be modeled as

independent Gaussian processes (e.g., principal components (Higdon et al. (2008); Chang et al.

(2014)) or wavelet decomposition (Bayarri et al. (2007)).

Yet another approach would be low-rank methods which approximate the Gaussian process co-

variance matrix with a lower-dimensional structure. Then, the computation saving is achieved by

replacing the expensive covariance matrix with a low–rank approximation that has a computation-

ally tractable form, i.e., the low-rank methods utilize the Sherman-Woodbury-Morrison structure

in the calculation to exploit the low-rank approximation (e.g., Fixed rank kriging (Cressie and

Johannesson (2008)), Gaussian predictive processes (Banerjee et al. (2008); Finley et al. (2009))).

Other approaches reduce the computational burden by inducing sparsity in the covariance matrix,

e.g., covariance tapering (Kaufman et al. (2008)) or in the precision matrix using the assumption of

conditional independence, e.g., Nearest-Neighbor Gaussian Process (NNGP) (Datta et al. (2016)).

Then, sparsity structure can be exploited in the calculation.

Emulating computer model outputs is a well-studied subject; however, there are considerable chal-

lenges to building an emulator for computer models with high dimensional outputs. The high di-

mensional outputs are usually in the form of spatial fields with a complicated dependence structure.

Unfortunately, most existing emulation procedures based on Gaussian processes have difficulty scal-

ing well with high dimensional outputs of complex computer models due to restrictive assumptions

such as a separable covariance matrix structure or a particular parametric form of the covariance

4

matrix. Although such assumptions are computationally convenient, this can result in poor per-

formance of the emulator of complicated computer models. It is far less common to construct an

emulator that copes well with high dimensional outputs, such as (Gu and Berger (2016)), than

for low dimensional problems in the computer emulation literature. Nowadays, it is increasingly

common in many scientific fields to develop a highly sophisticated computer model with very large

outputs due to recent technological advances and computing power. Developing an emulator with

sufficient flexibility to approximate a complicated computer model with high dimensional outputs

is an active area of research in many fields of science and engineering.

In recent years, deep neural networks have revolutionized the artificial intelligence (AI) field and

reached state-of-the-art results in many complex problems in the AI field, such as image recognition,

language processing, speech recognition, and many more (Krizhevsky et al. (2012); Graves et al.

(2013); Deng et al. (2013); Goodfellow et al. (2016)). Many fundamentals of deep neural networks

were developed decades ago; however, deep neural networks did not become popular until recent

years. The recent advancement and popularity of deep neural networks have flourished by many

factors, such as an increase in computing power, an increase in available training data (big data),

recent advancements in stochastic gradient-based optimizations, and the development of practical-

open-source software libraries for deep learning (Goodfellow et al. (2016); Tripathy and Bilionis

(2018)).

A wide range of applications has shown that deep neural networks are highly flexible and powerful

enough to model complex nonlinear relationships (Goodfellow et al. (2016)) and some theoretical

aspects of deep learning’s powerful nonlinear function approximation have been investigated (e.g.,

Poggio et al. (2017); Chen et al. (2019)). The recent advancements and successes of deep neural

networks have motivated many researchers in computer model literature and related fields to ex-

5

plore opportunities for deep learning as an alternative paradigm to model data with complicated

structures (e.g., Bhatnagar et al. (2020); Wang et al. (2019); Tripathy and Bilionis (2018); Di et al.

(2016)).

1.1 Overview of the Proposed Method

Inspired by the recent improvements and successes of deep neural networks, we propose in this

work an alternative approach for constructing a flexible emulator of computer models with high

dimensional outputs and limited runs using a deep neural network with a feedforward multilayer

perceptron (MLP).

In computer model emulation problems, we often face a limited number of runs. Thus using deep

neural networks to build emulators can be significantly challenging to train the neural networks

to learn the underlying system of computer models accurately. This issue is further complicated

by the presence of high dimensional outputs. Therefore, we introduce an approach to engineer

input features for neural networks to make the training more practical under constraints of high

dimensional outputs and limited runs. We call this way of finding input features for the neural

network parallel features engineering.

Computer model outputs are highly correlated with complex dependence structures. Incorporating

information from neighboring outputs can improve the constructed emulator’s prediction accuracy.

We use the proposed parallel features engineering to create several sets of input features for neural

networks to incorporate the neighboring information in the parameter and spatial space. The

input features include parameter settings, spatial coordinates, and neighboring information in the

parameter and spatial space.

6

Also, to substantially improve the predictive performance of neural networks, we adopt a data

augmentation technique into our approach. Our data augmentation will increase the size and

diversity of the training data points. The proposed data augmentation will enable us to include

outputs’ information of various ranges instead of only including short-range outputs’ information

and thus enhance the learning dynamic of neural networks.

1.2 Outline of the Dissertation

We have organized the rest of the dissertation as follows: Chapter 2 provides a brief overview of

computer models and presents the emulation problem. In Chapter 3, we discuss deep neural net-

works (DNN) in general, and we review the properties of a neural network architecture related to

our work, regularization techniques in deep learning literature, and the parameters optimization of

neural networks. In Chapter 4, we start with descriptions of the data from the computer models we

used in this work. Then Chapter 4 explains the dimensionality problem of training neural networks

with high dimensional output and limited runs. Also, Chapter 4 develops a features engineering

approach to overcome the dimensionality problem and adapt a data augmentation technique to

improve the prediction accuracy of our emulator. Chapter 5 designs numerical studies that inves-

tigate the effectiveness of the proposed data augmentation method on the prediction performance

under different scenarios. In addition, Chapter 5 shows that our method outperforms an existing

state-of-art method under different situations. In Chapter 6, we summarize the contributions and

findings of our work and report the conclusions of this dissertation.

7

Chapter 2

Computer Models and Uncertainty

Quantification

Over the last decades, computer models have become indispensable tools for simulating complicated

phenomena such as weather models, climate models, and biological models. Computer models en-

able us to study complex phenomena and solve difficult problems through computer experiments

(simulations); otherwise, it would be expensive, dangerous, or impossible to conduct physical ex-

periments. Typically, computer models are sophisticated codes implemented in computers to solve

a highly complex system of partial differential equations using numerical methods such as the finite

element method. Computer models take a set of input parameters that are believed to govern the

process of interest and return a quantity of interest (output or response).

Computer models are often deterministic, meaning that the runs of computer code at the same

input parameter settings will always produce the same outputs. Although computer models can

have a stochastic nature, this work’s emphasis will be on computer models of deterministic nature.

8

It is often that computer models are treated as black-box functions. Many scenarios can lead

researchers to treat computer models as black boxes, such as intractable closed-form solutions of

the underlying mathematical equations or restricted access to internal aspects of computer models.

Consequently, running computer models is required to reveal any information about the underlying

solution at specific parameter settings; the parameter settings can represent a particular situation

of interest. Herein we think of the computer models as a black-box that takes inputs and returns

outputs of the simulated process. Figure 2.1 demonstrates the black-box treatment of computer

models, in which only the inputs and outputs of the simulated process are visible.

Figure 2.1: Computer models as a black-box

Although Computer models are essential for gaining insight into the behavior of target complex

systems, they are typically time-consuming and expensive for tasks requiring hundreds or thousands

of runs, such as uncertainty quantification tasks.

9

2.1 Uncertainty Quantification Tasks

Computer models are excellent tools to simulate complicated systems but are not perfect. Real-

world processes are inherently chaotic and complex. Computer models can not represent real-world

phenomena perfectly or include all related physical processes due to a lack of knowledge, limited

computing power, and budget constraint. Uncertainty quantification is a cross-disciplinary field

that aims to identify and reduce uncertainties related to computer models to produce reliable simu-

lations. Typical uncertainty quantification tasks of interest include but are not limited to computer

model calibration, uncertainty propagation, optimization, sensitivity analysis, and computer model

discrepancy.

2.1.1 Computer Model Calibration

One primary source of uncertainty associated with computer models is uncertainties about the com-

puter model’s parameters’ actual values. Typically, the true values of some of the input parameters

that influence the outputs of computer models are unknown. These input parameters are known as

calibration parameters, and their actual value needs to be estimated to make valid inferences about

the actual process under study. The formal approach that estimates the calibration parameters by

utilizing information from available actual observations of the process and computer model runs is

called computer model calibration, also known as the inverse problem (Chang et al. (2014)).

10

2.1.2 Uncertainty Propagation

As we mentioned earlier, computer models are not perfect, and they have many sources of un-

certainties. One popular task in uncertainty quantification literature is uncertainty propagation,

also called forward uncertainty quantification. Uncertainty propagation is the procedure of quan-

tifying uncertainties in computer model outputs that are propagated from uncertainties in input

parameters (Tripathy and Bilionis (2018)).

2.1.3 Optimization

Computer models are used extensively for decision-making in many scientific and engineering prob-

lems, such as design issues with helicopter rotor blades (Booker et al. (1999)). The design problems

can be formulated as an optimization problem where the goal is to search for optimal input design

variables. After solving the optimization problem, informed decisions about the design variables

can be made.

2.1.4 Sensitivity Analysis

We can define sensitivity analysis as the procedure that investigates how the computer model

outputs respond to changes in the input parameters. Sensitivity analysis is a priceless tool for a

process where it is of great importance to know which are the input parameters that mainly affect

the variability of the output (Oakley and O’Hagan (2004)).

11

2.1.5 Data Models Discrepancy

The difference between the computer model outputs and actual observations of the process of

interest is called data model discrepancy—the discrepancy results from the fact that computer

models are imperfect and rely on assumptions and simplifications that do not hold in reality.

Recognizing model discrepancies is critical for making appropriate use of the observations of the

process of interest. The model discrepancy is also called by other names, such as model inadequacy

(Kennedy and O’Hagan (2001)).

2.2 Emulation Problem

Uncertainty quantification tasks require hundreds or thousands or even tens of thousands of re-

peated evaluations of computer models. Consequently, performing uncertainty quantification tasks

can be highly challenging due to the high computational power that is required for each evaluation

of the computer models or the long wait time it takes to complete each evaluation of the computer

models. For example, if each computer code evaluation takes an hour to complete, 1000 evaluations

will take 42 days.

As a result of the challenges mentioned above, building a low-cost statistical model, an emulator, to

replace the expensive and computationally time-consuming computer model is necessary to perform

hundreds or thousands of runs to properly quantify the uncertainties associated with the computer

model. The problem of constructing an inexpensive approximation of computer models is called

computer emulation. So, an emulator can be defined as a cheap approximation of an expensive

computer model. Emulators and surrogates are frequently used interchangeably to mean the same

thing.

12

To formulate the emulation problem, we take the opportunity to establish a set of notations that

will be used throughout this thesis. The computer model is a black-box function η that takes a set

of input parameters θi from the input space Θ ⊆ Rv and returns an output Yi of n-dimensional

space. Typically, the computer model simulates the quantity of interest over a known fixed grid

of spatial locations {s1, s2, ..., sj , ..., sn} = S ⊆ Rd, such as meshes used in numerical methods

for solving partial differential equations like finite-difference methods, finite element methods, and

finite-volume methods. It is worth noting that S is no longer variable since it is known and fixed;

thus, we loosely represent the computer model as a function mapping from the input parameter

space to the n-dimensional space.

f :Θ→ Rn

θi → Yi

(2.1)

The corresponding output of evaluating the computer model at a specific parameter setting θi is a

spatial process that is computed at n known different spatial locations Yi = (Y (θi, s1), Y (θi, s2), ...,

Y (θi, sj), ..., Y (θi, sn))
T .

Typically, emulators are constructed with limited number of runs due to limited resources. There-

fore, at r carefully chosen design points θi ∈ Θ ⊆ Rv, i = 1, 2, ..., r, the computer model is executed.

The r design points and their corresponding computer model outputs {θi,Yi}ri are often referred

to as the training data. Then we use the available model runs to construct an emulator f̂ that

mimics the input-output functional relationship in the black-box computer model. After building

the emulator f̂ , we can use it to predict the computer model outputs at untried parameter settings

θ∗
i and perform uncertainty quantification tasks such as computer model calibration, sensitivity

analysis, optimization, and uncertainty propagation.

In the literature, there are a variety of approaches for creating an emulator, and it is a growing

13

field of study. Methods that use Gaussian processes are widespread and popular for emulating

the computer model outputs. For a more detailed review of the Gaussian process model and its

properties and drawbacks, please see (Gramacy (2020)). In our work, we construct an emulator

based on neural networks. Chapter 3 reviews neural networks and some of their properties that are

of interest to our work.

14

Chapter 3

Deep Neural Networks

Neural networks were around many decades ago. The original idea of neural networks is to mimic

some of the functionality of biological systems in the human brain (Block (1962)). This idea

attracted researchers in the neuroscience, computer science, applied mathematics, and statistics

communities to study the potential capabilities of neural networks. However, due to the limitations

in training data and computing power at that time, neural networks did not achieve significant

performance and became less popular.

Recent Increases in computing power, availability of vast training data, and other advancements

have significantly improved the performance of neural networks and reached state-of-the-art perfor-

mance in many challenging tasks. Since then, large neural networks trained with massive data have

become very popular and among the top-performing algorithms in the machine learning literature.

The fundamental building component of a neural network is called a neuron since, in principle,

neural networks mimic the human brain. Sometimes neurons are also called unites or nodes. A

neuron takes inputs, performs a mathematical operation on the inputs, and then returns outputs.

15

Layers of neural networks consist of a stack of neurons. Neural networks begin with an input layer

and end with an output layer. The term hidden layers refers to the intermediate layers. The number

of neurons in a layer refers to the width or size of the layer. The depth of a neural network refers

to the total number of layers in the network. The term architecture refers to the configuration of

the network’s layers and nodes.

When neural networks contain several hidden layers, they are called deep neural networks. Deep

neural networks are a potent tool with excellent modeling capabilities in machine learning literature

and have a very expressive architecture that allows them to capture complicated phenomena in the

real world. Deep neural networks can accurately approximate an arbitrary input-output functional

relationship given rich training data and sufficiently large neural network architecture.

There are many types of neural network architectures. However, we do not plan to give a com-

prehensive review of the neural network architectures. For a more thorough review, please see

Goodfellow et al. (2016). Instead, we focus on one type of neural network architectures in the

following section and review some of its properties related to our work.

3.1 Feedforward Neural Networks

One well-known architecture of deep neural networks is feedforward neural networks (FNNs). FNNs

are also called feedforward multilayer perceptrons (MLPs) or neural networks (NNs). MLPs are uni-

versal function approximations under mild conditions, which is an appealing characteristic (Hornik

et al. (1989)). In other words, It has been proven that sufficiently large neural network architectures

with enough data can describe arbitrary complex functions.

MLPs are extremely important in deep learning. They function as the building blocks for many

16

famous and specialized neural networks, such as Convolutional neural networks (CNN), Long short-

term memory (LSTM), and many more (LeCun et al. (1995); Huang et al. (2015)). MLPs have

a wide range of applications and, unlike CNN and LSTM, do not require inputs to be in specific

formats. In this sense, MLPs can be seen as a more flexible architecture because it has broader

applicability than the other networks (e.g., CNN or LSTM). In this manuscript, we use the names

feedforward multilayer perceptrons, neural networks, and deep neural networks interchangeably.

3.1.1 Architecture of Feedforward Neural Networks

Figure 3.1: Feedforward deep neural network architecture

Figure 3.1 shows a general architecture of feedforward neural networks. These networks are called

17

feedforward because information flows from the input layer to the output layer, and there is no

feedback connection between the neurons. Typically, the width of the input layer is determined

by the dimension of the input features plus one for the intercept term, while the dimension of the

output determines the size of the output layer. The practitioners specify the widths of the hidden

layers. We can increase the neural network models’ flexibility by increasing the width of the hidden

layers or the depth of the networks. For additional information about feedforward neural networks,

please see (Goodfellow et al. (2016), Chapter 6).

To be more precise, consider an input vectorXi of dimension p with corresponding responseYi ≡ fi

of dimension n generated by an unknown function f(.). Let d0 denotes the number of neurons in

the input layers and dl is the number of neurons in the lth hidden layer. Also, assume dL+1 is

the number of neurons in the output layer. We can express the architecture of feedforward neural

networks using matrix notations as a hierarchical structure:

H(1) =g(1)(W(1)X+ b(1))

H(2) =g(2)(W(2)H(1) + b(2))

...

H(l) =g(l)(W(l)H(l−1) + b(l))

...

H(L) =g(L)(W(L)H(L−1) + b(L))

f̂ =W(L+1)H(L) + b(L+1)

(3.1)

where W(l), for l ∈ {1, 2, ..., L, L+1}, are dl× dl−1 weight matrices; b(l), for l ∈ {1, 2, ..., L, L+1},

are dl-dimensional intercept vectors (commonly called ”bias” in the deep learning community).

18

gl : Rdl → Rdl is an element-wise activation function for the neurons in the lth layer and H(l−1) is a

dl dimension vector of the neurons in the lth layer. So the neurons in the hidden layers take inputs

from the previous layer. They then perform a weighted sum of the inputs and apply an element-wise

nonlinear transformation according to a specified activation function. The outputs of one layer are

passed to the subsequent layer as inputs. f̂(.) is the approximation function constructed by the

deep neural network of the unknown underlying function f(.).

Recent studies in neural network approximation theory literature have shown that deep neural

networks (i.e., L≫ 1) tend to have a small approximation error than shallow networks (Liang and

Srikant (2016); Poggio et al. (2017); Chen et al. (2019)). Training deep neural networks can be

problematic due to many problems, such as saturation (vanishing gradient), overfitting issues, and

efficient optimization techniques. The proceeding sections review recent advancements in the deep

network literature and how these advancements can help overcome these issues.

3.1.2 Model Fitting in Deep Neural Networks

The neural network structure f̂ in (3.1) can be fully described by its weights matrices W(l) and

biases vectors b(l), where l ∈ {1, 2, ..., L, L + 1}. Jointly, they are referred to as the network’s

parameters. Let ω be the collection of the neural network’s parameters, i.e., ω = {W(l),b(l)}L+1
l=1 .

Consequently, f̂ is a function in ω. To fit f̂ to a response of interest f , we need to estimate

the network’s parameters ω. The parameters estimation problem can be treated as a minimiza-

tion problem of an appropriate loss function L(ω;f) that captures the discrepancy between the

true function f and the approximated function f̂ . Eq. 3.2 formulates the parameters estimation

problems as a minimization problem.

19

ω̂ =arg min
ω

L(ω;f) (3.2)

where ω̂ are the estimates of neural network’s parameters. In practice, we estimate ω based

on a finite set of data points, known as the training dataset, since we only observe f at finite

inputs Y1,Y2, ...,Yi, ...,YN . Let Dtrain = {Xi,Yi}Ntrain
i=1 be the set of the training data of Ntrain

data point examples. Then the problem of estimating the neural network’s parameters, called the

training or learning stage in deep neural literature, is reduced to the problem of minimizing the

mismatch between the actual output Yi and the predicted output Ŷi = f̂i based on an appropriate

loss function. The standard loss function for regression tasks (continuous response) is the mean

squared loss function in deep neural literature.

L(ω;Dtrain) =
1

Ntrain

Ntrain∑
i

(Ŷi −Yi)
T (Ŷi −Yi) (3.3)

Where Ŷi is the prediction of the true output Yi. So, the objective is to find ω̂ such that the deep

neural network approximates Yi satisfactory for a given input Xi. The neural network is trained

by minimizing the loss function in 3.3, which is equivalent to maximizing the log-likelihood function

for the model in 3.4 under the Gaussian noise assumption.

Yi =f̂(Xi) + ϵi

=Ŷi + ϵi

(3.4)

where ϵi is an n-dimensional prediction error term and f̂ is the deep neural network, as we men-

tioned earlier.

20

3.1.3 Regularization techniques in deep learning

Deep neural networks are incredibly powerful tools with excellent modeling capabilities; however,

they are prone to overfitting, typically leading to poor prediction performance (Srivastava et al.

(2014)). Imposing regularization techniques often improve prediction performance.

3.1.3.1 Dropout

Dropout is a popular technique used in deep neural networks to avoid overfitting, which was pro-

posed by Srivastava et al. (2014). The underlying idea of dropout is to introduce stochasticity in

the likelihood function in model 3.4 by randomly dropping some nodes in the network architec-

ture each time the likelihood is evaluated. Figure 3.2 visually illustrates the basic idea of this

regularization method.

Source: Srivastave et al., 2014

Figure 3.2: Left: Neural network without dropout technique. Right: Neural network with dropout
technique

As a result, the network structure given in 3.1 needs to be modified, as shown below:

21

H(1) =g(1)(W(1)X ∗ r(1) + b(1))

H(2) =g(2)(W(2)H(1) ∗ r(2) + b(2))

...

H(l) =g(l)(W(l)H(l−1) ∗ r(l) + b(l))

...

H(L) =g(L)(W(L)H(L−1) ∗ r(L) + b(L))

f̂ =W(L+1)H(L) ∗ r(L+1) + b(L+1)

(3.5)

where ∗ is the elementwise multiplication and r(l) for l = 1, ..., L+1 is a dl-dimensional random vec-

tor whose elements r(l) = [r
(l)
1 , ..., r

(l)
dl
]T are identically and independently distributed Bernoulli ran-

dom variables with a pre-specified success probability pkeep, i.e., r
(l)
1 , ..., r

(l)
dl
∼ iid. Bernoulli(pkeep).

So,

r
(l)
i =

1 with probability pkeep

0 with probability 1− pkeep

where i = 1, 2, ..., dl. This results in a stochastic loss function since every evaluation of the loss

function depends on the random vectors, r(l) for l = 1, ..., L+ 1. To emphasize the stochasticity of

the loss function, we add r as a subscript to the loss function as the following:

Lr(ω;Dtrain) =
1

Ntrain

Ntrain∑
i

(Ŷi −Yi)
T (Ŷi −Yi) (3.6)

Dropout is one popular type of the so-called stochastic regularization technique and has been shown

to improve DNN performance in different applications (Srivastava et al. (2014)).

22

3.1.3.2 Penalized Loss Function

Another popular regularization technique is adding a parameter norm penalty term Ω(ω) to the

loss function Lr(ω;Dtrain) to reduce model complexity. The regularized loss function, which we

will denote as ℓr(ω), can be expressed as the following

ℓr(ω) ∝ Lr(ω;Dtrain) + Ω(ω) (3.7)

Lasso and ridge are among the standard parameters norm regularization choices, and they use L1

and L2 penalties, respectively, on the neural networks’ parameters. The L1 regularizer is well known

for encouraging sparsity in parameter estimation, while L2 has the effect of shrinking parameter

estimation towards zero (Goodfellow et al. (2016)). Another known regularizer is the elastic net

regularizer, a combination of lasso and ridge penalties (Zou and Hastie (2005)).

In our work, we follow an impressive option for the penalty term in the deep learning literature

suggested by Gal and Ghahramani (2016), which is an L2 penalty form (Please see Section 3.3 for

more information and why we follow this choice).

3.1.3.3 Other Regularization Techniques

Other regularization methods are typically used to avoid the overfitting issue in the deep learning

literature, such as early stopping strategy and data augmentation technique (See Goodfellow et al.

(2016), Chapter 7). The early stopping regularizer terminates the optimization if the validation set

error does not improve for a specific number of iterations (”Patience”) and returns to the parameters

with the lowest validation error. On the other hand, data augmentation avoids overfitting by

23

generating artificial data points in order to increase the size and diversity of the training data

points with the goal of improving the deep neural network’s generalization to new data.

The mentioned regularization methods are mainly done during the parameters estimation stage,

not the prediction stage. The Monto Carlo dropout approach is an exception when applied to get

an uncertainties measure for predictions (Refer to Section 3.3 and Gal and Ghahramani (2016) for

details). Utilizing one regularizer does not prevent utilizing other regularizers; they can be used

together (Goodfellow et al. (2016)).

3.1.4 Activation Functions and Saturation Issue

Earlier sections of this chapter have introduced the concept of hidden layers of the feed neural

network. The hidden layers require us to select activation functions to compute the values of the

hidden nodes. There are different activation functions available in deep learning literature, such as

sigmoid (Eq. 3.8), hyperbolic tangent (Eq. 3.9), and rectified linear unit (Eq. 3.10).

g(x) =
1

1 + exp(−x)
(3.8)

g(x) =
2

1 + exp(−2x)
− 1 (3.9)

g(x) = max(0, x) (3.10)

In deep neural networks, the gradient of the loss function tends to vanish when classic activation

24

functions such as sigmoid and hyperbolic tangent are utilized in 3.1 because their bounded range

pushes the gradient towards zero except for a limited input region. This phenomenon is called

saturation or vanishing gradient, making gradient-based learning very problematic (Goodfellow

et al. (2016)). In modern deep learning literature, the rectified linear activation function (ReLU)

becomes the default choice for use with the hidden layers of feedforward neural networks because it

alleviates the vanishing-gradient problem of the classic activation functions. Another advantage of

using ReLU is its capability of imposing a sparsity representation to the neural network by making

parts of the hidden layers contain zeros. Therefore, we use the ReLU activation function in this

work.

3.2 Parameters Estimation and Optimization

To utilize the prediction power of the neural network, we need to estimate its parameters ω that

best reflect the observation data Dtrain = {Xi,Yi}Ntrain
i=1 . The parameters estimation problem can

be cast as a minimization problem of the loss function described in Eq. 3.7. For deep neural

networks, the most common algorithm to minimize the loss function is stochastic gradient descent

(SGD) and its variants. The SGD uses the objective function’s first-order derivative information,

the gradient ∇ωℓr(ω), to iteratively update the neural network’s parameters in the direction of the

negative gradient of the objective function. The so-called back-propagation algorithm can obtain

the gradient of the objective function ∇ωℓr(ω) with respect to all parameters ω = {W(l),b(l)}L+1
l=1

by taking advantage of the neural network’s hierarchical structure through a recursive application

of the chain rule (Goodfellow et al. (2016),Chapter 6).

A fundamental and attractive property of SGD is that it introduces stochasticity in the optimization

process by replacing the actual deterministic gradient ∇ωℓr(ω;Dtrain) with an approximated gra-

25

dient computed from a randomly sampled small subset, Dmb often called mini-batch, ∇ωℓr(ω;Dmb)

of the entire training data points. This property makes the SGD algorithm much faster than the

deterministic gradient descent because it updates the values of parameters using only a mini-batch

instead of processing the whole training data set to do a single update of the parameters as in

the standard deterministic gradient descent. Moreover, SGD can help with prediction performance

because of the stochasticity it adds to the learning process (Goodfellow et al. (2016),Ch.8).

While various SGD algorithms are available, we apply the adaptive moment optimization algorithms

(ADAM), a widely used variant of the SGDmethod (Kingma and Ba (2014)). The ADAM algorithm

adapts the step size for each neural network parameter by estimating the first and second moments

of gradients. The ADAM updating procedure is as follows:

Algorithm 1 The updating rule of ADAM

Require: α: Stepsize
Require: 0 ≤ β1, β2 < 1: Exponential decay rates
Require: ℓr(ω): Objective function with parameters ω
Require: Initialization;

ω0: Initial parameter vector
M0 ← 0: Initialize the first moment vector
V0 ← 0: Initialize the second moment vector
t← 0: Initialize time-step
while ωt not converged do

t← t+ 1
gt ← ∇ωℓr(ωt−1): computing gradients of objective function at time-step t
Mt ← β1Mt−1 + (1− β1)gt: Update the first moment estimate of the gradients
Vt ← β2Vt−1 + (1− β2)gt

2: Update the second moment estimate of the gradients
M̂t ← Mt

(1−βt
1)

: Bias correction of first moment estimate

V̂t ← Vt

(1−βt
2)

: Bias correction of second moment estimate

ωt ← ωt−1−α M̂t

(
√

V̂t+ϵ)
: (Update parameters; ϵ is a small constant to prevent 0 denominator)

end while
return ωt

In the applications in Chapter 5, we use the default values for β1 = 0.9, β2 = 0.999 and α = 0.001

as proposed by (Kingma and Ba (2014)), and we set ϵ = 10−7, which is the default value in

TensorFlow package from R.

26

3.3 Uncertainty Quantification in Deep Neural Networks

It is highly desirable to report the uncertainties associated with predictions in the computer emu-

lation literature. We employ the Monto Carlo dropout method to quantify the uncertainties in the

neural network predictions (Gal and Ghahramani (2016)). Monto Carlo dropout, or MC-dropout,

is a method based on variational Bayes approximation and has become a standard way to quantify

uncertainty in deep neural networks.

MC-dropout required us to incorporate the dropout regularizer and the L2 penalty form given by

Eq. 3.11 during the training process.

Ω(ω) =
L∑
l=1

(
Pkeep

2τNtrain
||W(l)||22 +

1

2τNtrain
||b(l)||22

)
(3.11)

Where τ > 0 is a hyperparameter that controls the overall contribution of the penalty term; ||W(l)||2

denotes the element-wise L2 norm for Wl, which is given below:

||W(l)||2 =

√√√√√ dl∑
i=1

dl−1∑
j=1

ω2
(l)ij

where ω(l)ij is the ijth element in Wl; ||b(l)||2 denotes the element-wise L2 norm for ||b(l)|| defined

as below:

||b(l)||2 =

√√√√ dl∑
i=1

b2(l)i

with b(l)i representing the ijth element in ||b(l)||.

Gal and Ghahramani (2016) proved that when incorporating this penalty choice with the dropout,

27

the trained neural networks are equivalent to variational Bayes approximation to a deep Gaussian

process with a corresponding structure to our neural network. As a result, one can construct

interval predictions for deep neural networks using the Monte Carlo (MC) dropout approach.

The implementation of MC-dropout is straightforward, and the following steps describe how to get

the predictive mean E(Y) and variance V ar(Y) for a given input X:

Step 1: Train the neural network with dropout and the L2 regularization form shown in 3.11. In

other words, we minimize the loss function given in 3.7.

Step 2: Apply dropout multiple times (say T times) during the test time to generate a sample

from the predictive distribution of the neural network. In other words, sample T sets of

vectors of realizations from the Bernoulli distribution {r(1)t , r
(2)
t ,, r

(l)
t , . . . , r

(L)
t }Tt=1 and

use them in 3.5, given that we have estimated the neural network’s parameters, to perform

T stochastic forward passes through the learned neural network and collect the {Ŷ(t)}Tt=1

realizations of Y. As a result, we can get a sample for Y, say {Ŷ(1)
, Ŷ

(2)
, ..., Ŷ

(t)
, ..., Ŷ

(T)}.

This Monte Carlo sample is referred to as MC-dropout.

Step 3: Using the generated sample from the predictive distribution {Ŷ(t)}Tt=1, we can estimate

the predictive mean and variance using the following equations:

E(Y) ≈ 1

T

T∑
t=1

Ŷ
(t)

(3.12)

28

V ar(Y) ≈(
Pkeep

2τNtrain
)−1 In+

1

T

T∑
t=1

Ŷ
(t)
(Ŷ

(t)
)T − E(Y)(E(Y))T

(3.13)

where In is the identity matrix of size n and (
Pkeep

2τNtrain
)−1 is the inverse model precision. We see

from 3.12 and 3.13 that the predictive mean equals the sample mean of the MC-dropout, and the

predictive variance is the inverse model precision plus the sample variance of the MC-dropout. For

more information, see Gal and Ghahramani (2016).

29

Chapter 4

Various-Neighbor Neural Network

Emulators via Feature Engineering

and Data Augmentation

This chapter introduces a flexible emulator that approximates computer models with high di-

mensional outputs and limited runs based on deep neural networks. Before describing our various-

neighbor neural network emulator, we begin this chapter by describing the data of computer models

considered here, reviewing related works, and illustrating the dimensionality problem of training

neural networks with high dimensional outputs under the restriction of limited runs. Also, we

present a method to incorporate neighboring information into the learning process. Moreover, we

propose a data augmentation technique that enables us to include the information of data points

with various distances in the learning process to sharpen the performance of the constructed emu-

lator. In the end, we name the deep neural network that exploits the information in the computer

30

model’s parameter and spatial space, and that also uses the proposed data augmentation by the

various-neighbor neural network (V3N) emulator.

4.1 Data Description

4.1.1 Motivation Problems

The Atlantic meridional overturning circulation (AMOC) is a global-scale circulation of ocean water

that transports cold salty water from the North Pole towards the equator, and then the heat of

the equator warms up ocean water, which is then transported northwards into the North Atlantic.

In other words, changes in the density of ocean water cause this circulation. The AMOC is a vital

component of the Earth’s climate system and plays an essential role in distributing heat and carbon

around our planet. In response to human actions, such as burning fossil fuels, the AMOC may

continue to weaken. Models have projected that a decline in the AMOC significantly impacts the

Earth’s climate system (Alley et al. (2007); Chang et al. (2014)).

Currently, we are in a warming climate phase as actual observations indicate an increase in the

average ocean water temperature, an increase in melting in ice sheets and glaciers, and a rise in

sea level. As projected by computer models, an increase in the earth’s average temperature will

change the rate of circulation in the AMOC, which will influence the global climate pattern (Alley

et al. (2007)).

31

4.1.2 The University of Victoria Earth System Climate Model (UVic ESCM)

We use the University of Victoria’s Earth System Climate Model (UVic ESCM) (Weaver et al.

(2001)), which projects the mean ocean temperature from 1955 to 2006. The Uvic ESCM outputs

are 3-dimensional spatial fields on a 77 (latitude) × 100 (longitude) × 13 (depth) grid. The outputs

have been aggregated over longitudes; then, the resulting outputs are on a 77 (latitude) × 13

(depth) grid. It is customary to aggregate 3-dimensional climate model outputs into 1-dimensional

or 2-dimensional to prevent computational problems or because the skill of the models at higher

resolution may not always be reliable (Chang et al. (2014); Bhat et al. (2010); Sham Bhat et al.

(2012); Schmittner et al. (2009)).

Figure 4.1: An example of the 250 UVic ESCM model runs

The three parameters that govern the model outputs are vertical ocean background diffusivity (Kbg),

anthropogenic aerosol scaling factor (Ascl), and longwave radiation feedback factor (Lwr). Please

32

see Chang et al. (2014) for additional information about the model input parameters. The UVic

ESCM is sampled at 250 parameter settings obtained by a factorial design. For more information

about the design points and the ensemble outputs, refer to (Sriver et al. (2012)). Figure 4.1 shows

an instance of the 250 model outputs.

4.1.3 The PSU3D-ICE Model

In addition to the UVic ESCM model, we also consider the PSU3D-ICE model (Pollard and De-

Conto (2009); Chang et al. (2016b)). The PSU3D-ICE model can accurately simulate the long-term

behavior of the west antarctic ice sheet. The outputs of the PSU3D-ICE model are spatial fields

representing ice thickness patterns on a large grid 171× 171, resulting in 29241 spatial locations in

the model output (Chang et al. (2016b)).

Figure 4.2: An example of the 625 PSU3D-ICE model runs

The four input parameters that primely control the model outputs are the sub-ice-shelf oceanic

melt factor (OCFAC), the calving factor (CALV), the basal sliding coefficient (CRH), and the

33

asthenospheric relaxation folding time (TAU). Please refer to Chang et al. (2016b,a) for a more

thorough description of these input parameters. The PSU3D-ICE model outputs are sampled at

625 different parameter settings given by a factorial design, where each input parameter has five

different values (Chang et al. (2016b)). A PSU3D-ICE model run is plotted in figure 4.2.

4.2 Related Work and Challenges with Large-Scale Applications

in Computer Models using Neural Networks

Leveraging neighboring information in data to improve predictive performance is sensible. Wang

et al. (2019) proposed a spatial prediction method for a scalar output called Nearest-Neighbor Neu-

ral Network for Geostatistics (4N). For better predictive performance, the Nearest-Neighbor Neural

Network (4N) offers a new way to incorporate nearby information using the standard multilayer

feedforward neural networks (MLP). The 4N method makes no assumptions about the input data

format to include neighboring information, as opposed to methods based on a convolutional neural

network (CNN) or long short-term memory (LSTM). Typically, CNN is suitable for tasks with grid

cell inputs such as images, while LSTM is ideal for sequence input data such as time series (LeCun

et al. (1995); Huang et al. (2015); Goodfellow et al. (2016)).

To include neighboring information in the neural network, Wang et al. (2019) offered different

ways to engineer input features to the neural network based on neighboring information. For

example, Wang et al. (2019) introduced a non-parametric set of features, which consists of the

spatial location sj=(latitude, longitude) of the scalar response Y (sj), the m nearest neighbors

to Y (sj), the m differences in latitudes,and the m differences in longitudes. The non-parametric

feature engineering approach (Wang et al. (2019)) would result in p = 2+3m input features to the

34

neural network for a scalar output.

This non-parametric feature engineering can be generalized for n-dimensional outputs, resulting in

2 + (m × n) + 2m input features. In the UVic ESCM, the dimension of the outputs is n = 1001,

and the dimension of the input parameters θi ∈ R3 is 3; hence the number of input features will be

p = 3 + (m× n) + 3m. This naive generalization of the proposed method in (Wang et al. (2019))

for high dimensional outputs will lead to a massive number of input features, leading to large size

of the input layer of the neural network, hence increasing the number of parameters in the neural

network. Also, this generalization will lead us to choose the neural network output layer of size n

since we have n-dimensional outputs Yi ∈ Rn. Under the constraint of the limited number of runs,

a neural network with large input and output layers, which significantly increases the number of

neural network parameters, usually makes the training infeasible. The issue even becomes worse for

our second application, the PSU3D-ICE model, where the dimension of the output is n = 29241.

In the presence of high dimensional outputs and a limited number of runs, it is crucial to engineer

the input features appropriately to enable us to choose a suitable architecture of neural networks

and make the training feasible. To make the neural network training feasible, we introduce parallel

features engineering approach in Section 4.3.1.

The notion of finding nearby information in the input parameter space is unclear. The input pa-

rameters have different units and scales. The standard metrics, such as the Euclidean distance,

would not appropriately address the anisotropy nature of the computer model data. Also, com-

puter models usually represent very complex systems; large deep neural networks are required to

approximate them sufficiently. However, large deep neural networks are susceptible to over-fitting

(Goodfellow et al. (2016); Srivastava et al. (2014)), especially in computer model settings where

only limited numbers of runs are available. Imposing strong regularization methods, such as weight

35

decay and dropout, can help avoid over-fitting (Goodfellow et al. (2016); Srivastava et al. (2014)).

However, such regularization methods can reduce the flexibility of the fitted model and cause over-

smoothing. Typically, over-smoothing is not desired in deterministic computer models since we

want to interpolate nearly (Ranjan et al. (2011); Gramacy (2020)). To overcome these challenges,

we adopt a data augmentation technique into our method in Section 4.3.2.

4.3 Methodology

Let Yij = Y (θi, sj) denotes the observation at the spatial location sj and the model parameter

setting θi. Let Xij = (Xij1,, Xijp)
T represent the engineered p features at the spatial location

sj in the parameter space Θ using the parallel features engineering approach (more details are in

Section 4.3.1). Our approach to construct an emulator consists of the following steps:

(1) Consider the following model:

Yij = f(Xij) + ϵij

i = 1, 2, . . . , r

j = 1, 2, . . . , n

(1)

where f(.) is a feedforward deep neural network (DNN) and ϵij is Gaussian noise.

(2) We engineer the features Xij for the observation Yij using the parallel features engineering

approach.

(3) To significantly improve the learning process and predictive performance, we incorporate a data

augmentation strategy into our approach.

36

4.3.1 Parallel Features Engineering

The proposed parallel features engineering allows us to include nearby information with high di-

mensional outputs data without blowing up the number of parameters of the neural networks. One

feature of the computer model outputs is that the outputs are observed at the same n known spatial

locations. It is standard for computer models to have this feature, but we have highlighted it here

because it is a key for the approach in this work. We can consider these n locations as indexes

of components in the n-dimensional output Yi = (Y (θi, s1), Y (θi, s2), ..., Y (θi, sj), ..., Y (θi, sn))
T ,

for example, sj is an index of the observation Y (θi, sj). At each spatial location sj , we engineer

features for the observation Yij in the parameter space Θ. In short, we look at a specific spatial

location and then extract neighboring information in the computer parameter space. We call this

approach parallel features engineering since we can engineer features independently at each spatial

location.

Definition 1. Nearest Neighborhood Nij:

At a specific location sj and a parameter setting θi, we define the nearest neighborhood Nij of size

m for an observation Yij = Y (θi, sj) as the set that has the related information about Yij itself and

the m nearest observations {Y 1
ij , Y

2
ij , ..., Y

m
ij } to the Yij in the parameter space Θ using Euclidean

metric.

We consider the following sets of features in Nij to predict Yij :

• Basic features {θi, sj} of the query point Yij :

We call the input parameter setting θi and the spatial location sj of an observation Yij by the

basic features. The basic features do not depend on the metric we use to decide the nearby

observations in parameter space or the size of the neighborhood. Including the basic features

37

as inputs can capture non-stationarity behavior. However, using just the basic features, we

do not expect the neural network to completely address the dependence structure in the

computer model data.

• Nearby information in parameter space {Y k
ij ,θ

k
i ,∆θk

i } to Yij :

We engineer different features from Nij for an observation Yij such as (1) m nearest neigh-

bors Y k
ij , k = 1, 2, ..,m in the parameter space Θ at the same spatial location sj , but different

parameter settings (2) the parameter settings θk
i , k = 1, 2, ..,m, of the m nearest neighbors,

(3) and the differences between the parameter setting of the query observation and the m

nearest neighbors ∆θk
i , k = 1, 2, ..,m. Including neighboring information in Θ as input fea-

tures makes it possible for neural networks to recognize the underlying dependence structure

between the computer model observations at nearby parameter settings. Furthermore, using

distance differences ∆θk
i = (θi1−θki1, ..., θiv−θkiv)T as input features allows the neural network

to implicitly learn proper weights in each direction, allowing it to acquire a distance-based

prediction emulator.

• Nearby information in spatial space {Y kc
ij , skcj } to Y k

ij :

In addition to neighboring information in Θ, we also include neighboring information in S

because of spatial dependence within computer model outputs. In other words, observations

at nearby spatial coordinates in Yi are highly correlated. We consider C nearest neighbors

Y kc
ij , c = 1, 2, .., C to the spatial coordinate sj of the m nearest neighbors Y k

ij , k = 1, 2, ..,m in

Θ. For example, the C nearest neighbors in S to the spatial coordinate sj of first neighbor

Y 1
ij in Θ are Y 1c

ij , c = 1, 2, ..., C. Also, we consider the spatial coordinates of the C nearest

neighbors Y kc
ij , c = 1, 2, .., C in S, i.e. we use skcj , c = 1, 2, .., C, as input features. We

anticipate that incorporating neighboring information in spatial space S can improve the

38

prediction performance because neural networks can benefit from the spatial dependence at

nearby spatial locations within the computer model outputs.

Figure 4.3 provides an abstract sketch of the proposed parallel feature engineering approach. Our

parallel feature engineering will significantly reduce the number of parameters in the neural network

since it leads to an output layer of a single node and a manageable size of the input layer. Therefore,

our features engineering will enable us to include neighboring information while simultaneously

making the training of neural networks viable under the constraint of high dimensional outputs

and a limited number of runs.

𝑠𝑗

The first neighbor 𝑌𝑖𝑗
1 in 𝚯,

its parameter setting 𝛉𝐢
𝟏 ,

and the difference 𝚫𝛉𝐢
𝟏 .

The 𝐶 nearest neighbors 𝑌𝑖𝑗
2𝑐 ,

𝑐 = 1, 2, 3 = 𝐶 in 𝑆 to the

second neighbor 𝑌𝑖𝑗
2 in 𝜣.

Computer model runs at design points in 𝜣:

𝜽𝟏

𝛉𝟐

𝜽𝒊

𝛉𝟑

𝛉𝟒

Predict?

𝑁𝑖𝑗

𝑚 = 3

Nearby information in 𝜣

Nearby information in 𝑺

𝑌𝑖𝑗
3

𝚫𝛉𝒊
𝟏 = 𝛉𝐢- 𝛉𝟐

𝑌𝑖𝑗
23

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

𝑌𝑖𝑗

DNN

𝑌𝑖𝑗
12

𝑌𝑖𝑗
13

𝑌𝑖𝑗
31

𝑌𝑖𝑗
33

𝑌𝑖𝑗
32

•
•

•

•
• •

•
•
•

Figure 4.3: Illustration of the parallel features engineering approach. Here, m = C = 3. To make
a prediction at an untried parameter setting θi and at spatial location sj, neighboring information
in Θ and S can be used through input features to the neural network.

We consider the following three models based on different sets of input features to the neural

network for predicting Yij :

39

Model 1:

This model uses the basic features {θi, sj} as input features to predict Yij . The number of input

features is v + d.

Model 2:

This model is an extension of Model 1 and uses the basic features and the nearby information in

parameter space. As a result, the number of input features is v+d+m(1+2v). In particular, from

Nij of size m, Model 2 uses the following input features { θi, sj︸ ︷︷ ︸
basic

features

, Y 1
ij ,θ

1
i ,∆θ1

i︸ ︷︷ ︸
1st neighbor

information in Θ

, Y 2
ij ,θ

2
i ,∆θ2

i , ...,

Y m
ij ,θ

m
i ,∆θm

i︸ ︷︷ ︸
mth neighbor

information in Θ

} to predict Yij .

Model 3:

We call the model that uses the basic features, nearby information in parameter space, and nearby

information in the spatial space Model 3, which is an extension of Model 2 and Model 1. This

model has v + d + m(1 + 2v) + mC(1 + d) input features and uses the following input features

{ θi, sj︸ ︷︷ ︸
basic

features

, Y 1
ij ,θ

1
i , Y

11
ij , s11j , Y 12

ij , s12j , ..., Y 1C
ij , s1Cj ,∆θ1

i︸ ︷︷ ︸
1st neighbor

information in Θ and S

, Y 2
ij ,θ

2
i , Y

21
ij , s21j , Y 22

ij , s22j , ..., Y 2C
ij , s2Cj

,∆θ2
i , ..., Y

m
ij ,θ

m
i , Y m1

ij , sm1
j , Y m2

ij , sm2
j , ..., Y mC

ij , smC
j ,∆θm

i︸ ︷︷ ︸
mth neighbor

information in Θ and S

} to predict Yij .

Based on the choice of input features, we refer to Model 1 as the no-neighbor model, while

models 2 and 3 as the nearest-neighbor models.

40

4.3.2 Data Augmentation

4.3.2.1 Motivation

The concept of closeness in the parameter space Θ is not straightforward. Standard metrics ignore

the anisotropy of the input parameter space, or the input parameters are entirely on different scales,

which is common in computer experiments. However, to implement the nearest-neighbor models,

we need to find the m nearest neighbors that are close to the query point in Euclidean or some other

metrics. Naturally, this leads us to question if it is optimal to rely only on the nearest neighbors’

information throughout the input parameter space in the neural network learning process.

Finding the best data points can be influential for many machine-learning algorithms like nearest-

neighbor algorithm-based methods (Hastie and Tibshirani (1995)) or Gaussian process approxima-

tion methods (Stein et al. (2004); Gramacy and Apley (2015); Vecchia (1988)). Vecchia (1988)

observes that the m nearest neighbors are usually not optimal. (Gramacy and Apley (2015); Gra-

macy (2020)) argues that distance data points can be of great value, particularly when there are

strong correlations, because their information provides long-range dependence information. Stein

et al. (2004) shows that parameter estimation can be improved considerably by including distance

data points; however, this is not necessarily beneficial when the goal is prediction.

In machine-learning literature, the performance of many algorithms can be remarkably improved

by utilizing good data points rather than naively using the nearest neighbors throughout the input

space in terms of Euclidean. Consequently, this raises the question of how can we do better than

using the closest neighbors in our proposed method?

41

4.3.2.2 Data Points of Various Distances

Motivated by the belief that we can do better than only relying on the m nearest neighbors points in

terms of Euclidean, we adopt a data augmentation into our method to enhance the learning ability

of neural networks and eventually improve the prediction performance. Our data augmentation

technique increases the size and diversity of training data, and as a result, we will have more training

data with diverse ranges of information. Therefore, our model will experience many scenarios during

the training stage and see different cases. Hence, improving the learning dynamic of the neural

network.

The idea is that we will consider multiple neighborhoods with different information structures for

each observation. Then we will train the neural network to predict the same observation from

the multiple neighborhoods with varying information structures. By doing our data augmentation,

we will have training data with various distances. Thus, our model can learn how to handle data

points of various distances. Figure 4.4 depicts the basic notion of the proposed data augmentation

strategy. To be explicit in applying the data augmentation, we define what we mean by the multiple

neighborhoods and describe how to utilize them to create more training data points.

Definition 2. Neighborhood N
(u)
ij :

At a specific location sj and a parameter setting θi, we define the neighborhood N
(u)
ij of size m

for an observation Yij as the set that has the related information about Yij itself and the m near-

est observations starting from the u nearby observation {Y u
ij , Y

u+1
ij , ..., Y u+m−1

ij } to the Yij in the

parameter space Θ using Euclidean distance.

Technically, we can consider r−m+1 neighborhoods of size m for each data point. That is, u can

take the following values 1, 2, 3, ..., r −m, r −m + 1. If we consider only one neighborhood with

42

Figure 4.4: Sketch of the proposed data augmentation. Black dots denotes design points in Θ.
Red cross marks represent the selected design points form which we engineered input features for
DNN to predict Yij. The left panel uses the information on the short-distance points. The middle
panel uses the information on the medium-distance points. The right panel uses the information
on the long-distance points.

u = 1 for each observation, i.e. N
(1)
ij , we are just utilizing the m nearest neighbors in the learning

stage. However, the purpose of our data augmentation is to increase the size and diversity of the

training data to encourage the neural network to accurately learn a robust representation of the

engineered features through the use of various-range information.

4.3.2.3 Data Augmentation Details

To apply the data augmentation, we need to consider multiple neighborhoods in Θ, each with

different information structures. For example, if we consider the following neighborhoods N
(1)
ij ,

N
(m+1)
ij , and N

(2m+1)
ij for each observation Yij in Model 2, our model will be trained to predict

each observation Yij from the information that corresponds to neighborhoods N
(1)
ij , N

(m+1)
ij , and

43

N
(2m+1)
ij . So, we will train our neural network to predict the same Yij from the following input

features:

• From N
(1)
ij :

{ θi, sj︸ ︷︷ ︸
basic features

, Y 1
ij ,θ

1
i ,∆θ1

i , Y
2
ij ,θ

2
i ,∆θ2

i , ..., Y
m
ij ,θ

m
i ,∆θm

i︸ ︷︷ ︸
the features in N

(1)
ij

}

In our applications, we set the size of the neighborhood to equal six. N
(1)
ij is visually given

in the left panel of figure 4.4 where m = 6.

• From N
(m+1)
ij :

{ θi, sj︸ ︷︷ ︸
basic features

, Y m+1
ij ,θm+1

i ,∆θm+1
i , Y m+2

ij ,θm+2
i ,∆θm+2

i , ..., Y 2m
ij ,θ2m

i ,∆θ2m
i︸ ︷︷ ︸

the features in N
(2m+1)
ij

}

The middle panel of figure 4.4 sketches N
(m+1)
ij for m = 6.

• From N
(2m+1)
ij :

{ θi, sj︸ ︷︷ ︸
basic features

, Y 2m+1
ij ,θ2m+1

i ,∆θ2m+1
i , Y 2m+2

ij ,θ2m+2
i ,∆θ2m+2

i , ..., Y 3m
ij ,θ3m

i ,∆θ3m
i︸ ︷︷ ︸

the features in N
(2m+1)
ij

}

The right panel of figure 4.4 shows N
(2m+1)
ij where m = 6.

The proposed data augmentation will incorporate dependence information of diverse ranges in

neural networks’ parameters learning process (parameter estimation) instead of only using short-

range dependence information. Consequently, neural networks will be encouraged to learn more

44

robust representations of the underlying computer models. Also, the way our data augmentation

introduces more training points will encourage the neural network to understand the structure of

the input parameter space Θ. By considering multiple neighborhoods in Θ for the same Yij , the

neural network will see how the neighboring information varies differently inΘ and learn meaningful

weights for the differences in each direction ∆θk
i = (θi1 − θk1 , ..., θiv − θkv)

T .

Deep-large neural network structures are essential for developing an interpolator nearly of deter-

ministic computer models, but high-capacity structures are prone to overfitting with limited runs.

Reducing the flexibility of neural network structures, either by considering smaller structures or

imposing strong regularization techniques, such as weight decay and dropout, can discourage the

emulator from interpolating, which is not desired for deterministic computer models. Our data

augmentation enables us to use deep-large neural network structures required to fit highly complex

responses because it can act as a regularizer and help avoid overfitting.

When models 2 and 3 incorporate our data augmentation in the training process, we refer to them

by various-neighbor models. Also, let us denote Model 2 with data augmentation by Model

2+Aug and Model 3 with data augmentation by Model 3+Aug.

45

Chapter 5

Applications

5.1 UVic ESCM Model Application

In this section, we investigate the prediction accuracy of the proposed method using Uvic ESCM

data. We design two test scenarios to show that using only the nearest neighbors in the learning

process of neural networks can lead to an emulator with a poor generalization and a highly sensitive

emulator to the underlying test scenarios.

Through two test cases, we show that it is necessary for the neural network to incorporate various-

range information using the proposed data augmentation during the training process in order to

learn a robust representation and greatly improve the emulator’s prediction accuracy.

In the end, we compare our method with the parallel partial Gaussian process emulator (Gu and

Berger (2016)), an existing state-of-the-art emulation method for high dimensional outputs. The

parallel partial Gaussian process emulator, PPGP, is a statistical method to emulate computer

models that run on massive grids. PPGP, also called robust Gaussian stochastic process emula-

46

tion, was developed by Mengyang Gu as part of his Ph.D. dissertation (Gu (2016)) and has shown

promising results on large-scale computer models emulation problems (Gu and Berger (2016));

therefore, we have decided to compare it with our method. The PPGP is implemented with R

package RobustGaSP (Gu et al. (2018)).

5.1.1 Investigating Data Augmentation’s Effectiveness

5.1.1.1 Designing Test Studies

To carefully examine the proposed method, we design two test cases using the data from the Uvic

ESCM Model. Recall for the Uvic ESCM Model; the model outputs Yi are obtained at r = 250

design points θ1, ...,θi, ...,θ250, specified by a factorial design where the dimension of input space

is v = 3, θi ∈ Θ ⊆ R3. We have three input parameters θ = (θ1, θ2, θ3) with five levels for θ1,

five levels for θ2, ten levels for θ3. Figure 5.1 shows the design points in its space given by the

factorial design.

0.2

0.4

0
1

2
3

0

2,000

θ1

θ2

θ 3

Design points in Θ

Figure 5.1: The Uvic ESCM Model’s design points.

47

0.2

0.4

0
1

2
3

0

2,000

θ1

θ2

θ 3

Case 1

Train points
Test points

0.2

0.4

0
1

2
3

0

2,000

θ1

θ2

θ 3

Case 2

Figure 5.2: Visualization of the two test situations. Left: The test design points (blue dots) are
chosen randomly in the input space. Right: The test design points (blue dots) are selected to cause
a gap in the input space.

We divided the 250 runs into 50 runs as test design points (r∗ = 50) and 200 as train design points

(r = 200). We consider two ways to choose the 50 test points. Figure 5.2 offers a visual illustration

of the two test situations. For the case one scenario, we choose the test points randomly. As a

result, the train points will stay spread out in Θ, which is advisable in computer models to extract

maximum information about the underlying behavior of computer models. For the case two

scenario, we choose the test points in a way that causes a gap in the middle of the input space.

Consequently, the case two test will resemble a scenario where an uneven sampling or clumpiness

of design points exists, which is not recommended when the prediction is the primary concern.

However, emulators are generally applied in higher dimensional (i.e., more than 2d) input space

with limited runs. As a result, it is not always clear how to balance the design points in the input

space.

48

5.1.1.2 Implementation Details

We have used TensorFlow and Keras packages from R to implement the no-neighbor, nearest-

neighbor, and various-neighbor models. For all models, we take 20% of the training data as a

validation data set Dval to tune the models’ hyperparameters, such as the size of neighborhoods,

number of hidden layers and their sizes, epochs, etc. We apply the dropout technique and an early

stopping rule to help avoid overfitting. The ’early stopping’ rule terminates the training if the

validation error does not decrease for several epochs (the patience).

For Model 1, we use five hidden layers, each with 128 units. We set the patience to 30 in the early

stopping rule, the dropout rate to 0.00005, the epoch to 150, and the mini-batch size to 512.

For the nearest-neighbor and various-neighbor models, we set the size of the neighborhood to

6 in Θ as well as in S spaces to do the proposed features engineering in Section 4.3.1.

For the nearest-neighbor models, We use five layers with hidden units ranging from 128 to 256.

We use mini-batches of size 256, set the number of epochs to 200, and take pdrop = 0.00001 (the

dropout rate). Also, we use the early stopping with patience =30.

We also have implemented the various-neighbor models with five hidden layers, each with 128

units. We utilize mini-batches of size 512 and let the number of epochs to 300. We set the

patience to 100 and let pdrop = 0.00005. To have wildly diverse training data, we have applied our

data augmentation using fourteen neighborhoods ,N
(u)
ij , with different information structures. To

be specific, u takes the following values 1, 10, 20, ..., 120, 130 in definition 5.3. As a result, the

training data set will grow fourteen times its initial size.

49

5.1.1.3 Comparing the Performance based on Neighboring Choice

We use the root-mean-square prediction error (RMSPE), whose formula is provided below, to

assess the predictive performance of the presented models.

RMSPE =

√∑n
j=1

∑r∗

i=1(Y
∗
ij − Ŷ ∗

ij)
2

nr∗
,

where Ŷ ∗
ij is the predicted values of the Y ∗

ij in the test data. We also plot the boxplots of the

root-mean-square prediction errors for the examined models.

1) Case one:

We have implemented the no-neighbor, nearest-neighbor, and various-neighbor models, and

RMSPE is computed along the way and reported in table 5.1. Moreover, boxplots comparing

the root-mean-square prediction errors are shown in Figure 5.3.

Figure 5.3 and table 5.1 show that, generally, Model 1 has the poorest predictive performance,

and incorporating information of other outputs in the learning process of neural networks, whether

nearest distance information or various distance information, leads to a better version of the con-

structed emulator. By comparing Model 2 with Model 3, we see that including information in

the spatial domain S typically leads to slight improvement. Also, we see that the proposed data

augmentation has drastically improved the predictive performance of Model 2 and Model 3.

Furthermore, we can see that data augmentation’s effect is much larger than the effect of including

nearby information in spatial space, but it is still useful. The predictive performance of Model

2+Aug and Model 3+Aug is very competitive, but overall, Model 3+Aug performs slightly

50

better.

Figure 5.3: Comparison of root mean-squared prediction errors for Model 1, Model 2, Model 3,
Model 2+Aug, Model 3+Aug under case one scenario.

2) Case two:

Under this test scenario, we also have implemented the no-neighbor, nearest-neighbor, and

various-neighbormodels. Then theRMSPE is calculated to compare the predictive performance

and reported in table 5.2. Figure 5.4 shows boxplots comparing the root-mean-squared errors

under the case two test.

Figure 5.4 and table 5.2 show that the predictive performance of Model 2 and Model 3 is

not good as in the case one test. Model 2 has the poorest predictive performance in terms of

51

Figure 5.4: Comparison of the root mean-squared prediction errors for Model 1, Model 2, Model
3, Model 2+Aug, Model 3+Aug under case two scenario.

RMSPE. By looking at Model 2 and Model 3, we see it is worthwhile to include the information

in the spatial domain. Similar to the case one test, the predictive performance of Model 2

and Model 3 has significantly improved after utilizing the data augmentation in the training

process. This observation reveals the protection our data augmentation can offer against challenging

scenarios such as a gap in the input space, an uneven sampling, or sparsity in data. Due to the

powerful effect of our data augmentation, the prediction accuracy of Model 2+Aug and Model

3+Aug becomes very similar; however, it is not surprising that Model 3+Aug performs slightly

better than Model 2+Aug because it incorporates information in both spaces Θ and S .

52

5.1.1.4 Necessity of Incorporating our Data Augmentation in Training Process

From figure 5.3 and figure 5.4, as well as table 5.1 and table 5.2, we see that training with

data augmentation has remarkably improved the prediction performance of the nearest-neighbor

models in both test case scenarios. The remarkable improvement highlights the necessity of utilizing

our data augmentation in the training process to learn a better and more robust representation

of the underlying structure of computer model data. The need to employ the proposed data

augmentation in the training process of the nearest-neighbor models can be explained from

various perspectives.

case one scenario without augmentation with augmentation

Model 1 0.03956 not available

Model 2 0.02978 0.01425

Model 3 0.02532 0.01356

Table 5.1: RMSPE under case one test.

case two scenario without augmentation with augmentation

Model 1 0.04712 not available

Model 2 0.06773 0.01941

Model 3 0.04571 0.0175

Table 5.2: RMSPE under case two test.

An explanation is that our data augmentation increases the size and diversity of training points,

making the training data more comprehensive and therefore encouraging the stochastic gradient

descent to find a set of weights that works for different case scenarios. Therefore, our data aug-

mentation prevents neural networks from overfitting simple-to-learn input features and ignoring

difficult-to-learn input features. For illustration, due to the highly correlated data of computer

models, it is possible that the neural network can learn to predict query points primarily based

on the first nearest neighbor Y 1
ij and mostly ignore the other input features such as differences

53

∆θk
i , k = 1, 2, ..,m in Θ. As a result, Y 1

ij will dominate the learning process (the parameters

update in the stochastic gradient descent); hence, the trained model would be susceptible to Y 1
ij .

Another possible explanation is that the proposed data augmentation allows us to include multiple

range dependence information for the same observation, thus enabling the neural network to un-

derstand how the correlation between the observations changes in the input space. Consequently,

the trained neural network learns proper weights in each difference between the input parameters,

∆θk
i = (θi1− θki1, ..., θiv− θkiv)

T , and eventually acknowledges the anisotropic behavior in data from

computer models.

Overall, Model 3+Aug shows the best prediction performance regardless of the underlying test

scenario. Furthermore, Model 3+Aug takes advantage of the information in both spaces. There-

fore, we use Model 3+Aug to build an emulator and compare it with standard state-of-art

emulation methods for large outputs. For the rest of this work, we call Model 3+Aug by ’Various-

Neighbor Neural Network emulator’ or simply V3N to emphasize the proposed data augmentation’s

role in the learning process.

5.1.2 Comparison between our V3N and PPGP

5.1.2.1 Test Scenarios and Evaluation Criteria

For both V3N and PPGP, the prediction performance is evaluated under the same two test

scenarios shown in Figure 5.2. We use r = 200 runs to construct the emulator and r∗ = 50 runs

to evaluate the predictive performance in both test scenarios.

54

To evaluate the predictive performance, we use different criteria: RMSPE given in 5.1.1.3, the 95%

empirical coverage of the prediction intervals (PCI), and the average length of the 95% prediction

intervals (LCI). A better emulator will have a smaller RMSPE, empirical coverages close to the

nominal confidence level, and shorter average prediction interval lengths. The formulas of the PCI

and LCI criteria are given below:

PCI =
1

nr∗

n∑
j=1

r∗∑
i=1

1{Y ∗
ij ∈ PCIij},

LCI =
1

nr∗

n∑
j=1

r∗∑
i=1

LCIij ,

where Ŷ ∗
ij is the predicted values of the true Y ∗

ij in the test data; PCIij and LCIij are the empirical

coverage and the length of the 95% prediction interval.

To do uncertainty quantification in our V3N, we use Monto Carlo dropout technique (Gal and

Ghahramani (2016)).

5.1.2.2 Implementation Details

We have utilized TensorFlow and Keras packages from R in implementing the V3N emulator.

For the V3N method, we have applied the proposed data augmentation with the same fourteen

neighborhood structures specified in Section 5.1.1.2. Consequently, the size of the training data set

Dtrain will grow fourteen times the original size. Furthermore, we randomly keep 20% of Dtrain as

a validation data set Dval to tune the deep neural networks hyperparameters.

55

To apply the proposed features engineering in Section 4.3.1, we first need to choose the size of the

neighborhood in both spatial and parameter spaces. We tried values from 15 to 5, and based on the

validation set error, we choose the size of the neighborhood to be 6 in both spaces (m = C = 6).

Also, we use the validation set to tune the number of hidden layers and their size (hidden unites),

mini-batch size, and the number of epochs. We use 5 hidden layers, each with 128 units. For

the hidden layers, we use the Relu activation function, and for the output layer, we use linear

activation function. We use mini-batches of size 512 and set the number of epochs to 300. We use

an ’early-stopping’ rule, with the rule’s patience equal to 100 iterations.

For MC-dropout hyperparameters, we find τ = 3000000 (length-scale) and pdrop = 0.00005 (dropout

probability) results in small validation error and desired coverages of the interval estimates after

systemic tuning using the validation set. We use the Adaptive Moments (ADAM) optimization

algorithm to fit the neural networks.

5.1.2.3 Comparison Results

1) Case one:

Test one
scenario

RMSPE (95%)PCI (95%)LCI

V3N 0.0136 0.9763 0.0687

PPGP 0.0086 0.9047 0.0221

Table 5.3: A comparison of the performance of our emulator and PPGP in terms of various metrics.
Both emulators are evaluated based on r∗ = 50 randomly chosen test input parameter settings.

Table 5.3 shows the results of comparing our method with PPGP in terms of the three metrics

under the case one scenario which was shown in figure 5.2. The PPGP emulator based on

randomly selected test data outperforms our V3N emulator in terms of RMSPE. However, our

56

method performed very well and has a small RMSPE relative to the range of the predicted output

values (−1.68 to 28.47). Similarly, the average length of the prediction interval for the predicted

observations is reasonably short over its range. These results indicate that our method can precisely

emulate the underlying computer model. In Section S1.1 in the Supplementary Material, we plot

some predicted outputs from our method and PPGP and compare them with the true outputs

under this test scenario.

1) Case two:

Test two
scenario

RMSPE (95%)PCI (95%)LCI

V3N 0.0175 0.9461 0.0699

PPGP 0.0196 0.8139 0.0253

Table 5.4: A comparison of the performance of our emulator and PPGP in terms of different
criteria. Both emulators are evaluated based on r∗ = 50 test input settings, which were chosen in
a way to cause a gap in the input space.

Table 5.4 shows that when there is a gap in the input region, our emulator better fits the underlying

computer models than the PPGP emulator in terms of RMSPE. Also, our method has good

coverage for this case test, whereas the PPGP has an under coverage issue. Moreover, unlike

PPGP, the underlying test scenario had little impact on the performance of our method. These

results indicate that our V3N emulator can handle various problematic scenarios. Please refer to

Section S1.2 of the Supplementary Material for a visual comparison under the second case test

scenario between the predicted and actual computer outputs.

5.2 PSU3D-ICE Model Application

In this section, we apply our proposed method using more complex data from the PSU3D-ICE

model. The ice sheet model has four input parameters θ = (θ1, θ2, θ3, θ4) and is run at 625 different

57

parameter settings specified by a factorial design, with five levels for each input parameter. The

data from the PSU3D-ICE model is much larger than the data from the UVic ESCM model, where

the number of spatial locations is n = 29241, and the number of runs is r = 625, which will

emphasize the computational benefit of our method over the standard Gaussian process emulator.

Moreover, the ice sheet model data has very complicated structures, which will demonstrate the

powerful flexibility of deep neural networks in capturing complex structures.

5.2.1 Design of the test study and evaluation criteria

To examine and validate the performance of our V3N, we randomly divide the 625 runs into 200

training runs to build the emulator, and r∗ = 425 testing runs to evaluate the accuracy. Moreover,

we compare our V3N with PPGP in terms of the three metrics specified before in 5.1.1.3 and

5.1.2.1, i.e., RMSPE, (95%)PCI and (95%)LCI . Again, we used Monto Carlo dropout technique

(Gal and Ghahramani (2016)) to quantify uncertainties in our method.

5.2.2 Implementation Details

We utilize the same fourteen neighborhood structures described in Section 5.1.1.1 for our method

to employ our data augmentation technique. In addition, we randomly use 20% of Dtrain as a

validation data set Dval to tune the hyperparameters of our method. We try a range from 5 to

10 for m, and based on Dval error; we use m = C = 6 in Θ and S to engineer the input features

mentioned in Section 4.3.1. We use six hidden layers. The first, second, fifth, and sixth hidden

layers have 128 units, while the third and fourth hidden layers have 256 units. We use the Relu

activation function for the hidden layers as well as for the output layer to eliminate the possibility

of predicting a negative sea-level rise. We use mini-batches of size 8192 and set the number of

58

epochs to 100. We employ an ’early-stopping’ rule, with the rule’s patience set to 50 iterations. To

apply MC-dropout, we set τ = 2000 and pdrop = 0.005, which led to a smaller validation error and

desired coverage for the validation set. The parameters of the deep neural network are estimated

using ADAM optimizer algorithm. We use the easy-to-use TensorFlow and Keras packages from

R to train our V3N emulator. To implement PPGP emulator, we use RobustGaSP package in R

(Gu et al. (2018))

5.2.3 Comparison Results

As mentioned before, we have used r = 200 to construct the emulators and we will diagnose the

performance based on r∗ = 425 test input settings. Table 5.5 shows the comparison results

between our method and PPGP based on different criteria which they were mentioned in Section

5.1.2.1.

Methods RMSPE (95%)PCI (95%)LCI

V3N 198.175 0.9694 479.624

PPGP 229.912 0.9359 520.301

Table 5.5: A comparison of the performance of our emulator and PPGP in terms of various metrics.
Both emulators are evaluated based on r∗ = 425 randomly chosen test input parameter settings.

The results in table 5.5 demonstrate that our method performs better than PPGP for the ice

sheet model. These results show that the RMSPE of V3N emulator is lower than the RMSPE

of PPGP. Generally, we believe that both emulators have reasonably small RMSPE, especially

when considering that the predicted output values range from 0 to 5252.866. Regarding uncertainty

quantification, we can see that both emulators produce empirical coverages close to the nominal

confidence level 95% ;however, our method has a shorter average length of the 95% prediction

intervals. In addition, we provide examples of visual comparisons between the original outputs and

59

the emulated outputs from the considered emulators in Figures 5.5, 5.6 and 5.7 to support the

results in table 5.5 and show good predictive performance of our method.

Original model output

V3N emulated output PPGP emulated output

Figure 5.5: A visual comparison between an original computer output and the emulated outputs
from V3N and PPGP. The top plot shows an output from the test data. The low-left plot shows
the predicted output using our method. The low-right plot show the predicted output by PPGP.

60

Actual model run

Predicted output via V3N Predicted output via PPGP

Figure 5.6: Another visual comparison example between an original computer output and the pre-
dicted outputs from V3N and PPGP. The top plot shows an output from the test data. The low-left
plot shows the predicted output using our method. The low-right plot show the predicted output by
PPGP.

61

Real model run

Emulated run via V3N Emulated run via PPGP

Figure 5.7: A visual comparison between original computer and predicted outputs from V3N and
PPGP. The top plot shows an output from the test data.

62

Chapter 6

Summary

In this work, we have developed a new methodology for emulating computer models with high

dimensional outputs based on deep neural networks. To overcome the dimensionality problem of

training neural networks with high dimensional outputs and limited runs, we have proposed a new

way to engineer input features that leads to a trainable architecture for neural networks. Our pro-

posed features engineering enables us to incorporate neighboring information between and within

computer model outputs in the learning process of neural networks. Furthermore, To enhance the

learning ability and improve the predictive performance of neural networks, we have developed a

data augmentation technique that enables us to utilize the outputs’ information of various ranges

in the training stage of the neural networks. Also, we have investigated the effect of our data

augmentation on the prediction performance of our method. We have demonstrated the necessity

of training with our data augmentation technique to learn a robust representation of the underly-

ing computer model and improve the prediction accuracy for the proposed method, and we have

provided multiple explanations for this finding.

63

Moreover, we have shown that our proposed emulatorV3N can accurately emulate computer model

outputs, and the prediction performance is robust under different scenarios. We have compared

our emulator with an existing state-of-art emulator for high dimensional outputs, PPGP, using

computer data from the UVic ESCM model and the PSU3D-ICE model. Our emulator produces

promising results and outperforms PPGP under a gap scenario in the input space in the context of

UVic ESCM model outputs and outperforms PPGP in the context of PSU3D-ICE model outputs.

Also, We have demonstrated that our V3N can capture complicated structures like those in the

ice sheet model while PPGP can fail.

Deep neural networks are naturally suited to handle data with complicated structures; however,

their performance relies on the amount of training data. In other words, deep neural networks often

perform well in big data problems (a large amount of training data). Using deep neural networks

to address emulation problems with high dimensional outputs and limited runs can be challenging

since the emulation problems are seen as small data problems (limited runs) in the context of

deep neural networks. We believe our work will be a valuable contribution since it provides a

methodology that successfully applies deep neural networks to approximate computer models with

large outputs and limited runs, and it outperforms an existing state-of-art emulation method under

various scenarios.

64

Bibliography

Alley, R. B., Berntsen, T., Bindoff, N., Chidthaisong, A., Friedlingstein, P., Gregory, J., Hegerl,

G., Heimann, M., Hewitson, B., Hoskins, B., et al. (2007). Summary for policymakers.

Banerjee, S., Gelfand, A. E., Finley, A. O., and Sang, H. (2008). Gaussian predictive process

models for large spatial data sets. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 70(4):825–848.

Bayarri, M., Walsh, D., Berger, J., Cafeo, J., Garcia-Donato, G., Liu, F., Palomo, J., Parthasarathy,

R., Paulo, R., and Sacks, J. (2007). Computer model validation with functional output. The

Annals of Statistics, 35(5):1874–1906.

Bhat, K. S., Haran, M., Goes, M., and Chen, M. (2010). Computer model calibration with mul-

tivariate spatial output: A case study. Frontiers of statistical decision making and Bayesian

analysis, 111:168–184.

Bhatnagar, S., Chang, W., and Wang, S. K. J. (2020). Computer model calibration with time series

data using deep learning and quantile regression. arXiv preprint arXiv:2008.13066.

Block, H.-D. (1962). The perceptron: A model for brain functioning. i. Reviews of Modern Physics,

34(1):123.

65

Booker, A. J., Dennis, J. E., Frank, P. D., Serafini, D. B., Torczon, V., and Trosset, M. W.

(1999). A rigorous framework for optimization of expensive functions by surrogates. Structural

optimization, 17(1):1–13.

Chang, W., Haran, M., Applegate, P., and Pollard, D. (2016a). Calibrating an ice sheet model

using high-dimensional binary spatial data. Journal of the American Statistical Association,

111(513):57–72.

Chang, W., Haran, M., Applegate, P., and Pollard, D. (2016b). Improving ice sheet model calibra-

tion using paleoclimate and modern data. The Annals of Applied Statistics, 10(4):2274–2302.

Chang, W., Haran, M., Olson, R., and Keller, K. (2014). Fast dimension-reduced climate model

calibration and the effect of data aggregation. The Annals of Applied Statistics, 8(2):649–673.

Chen, M., Jiang, H., Liao, W., and Zhao, T. (2019). Efficient approximation of deep relu networks

for functions on low dimensional manifolds. Advances in neural information processing systems,

32.

Conti, S. and O’Hagan, A. (2010). Bayesian emulation of complex multi-output and dynamic

computer models. Journal of statistical planning and inference, 140(3):640–651.

Cressie, N. and Johannesson, G. (2008). Fixed rank kriging for very large spatial data sets. Journal

of the Royal Statistical Society: Series B (Statistical Methodology), 70(1):209–226.

Cressie, N. A. (1993). Statistics for spatial data. john willy and sons. Inc., New York.

Datta, A., Banerjee, S., Finley, A. O., and Gelfand, A. E. (2016). Hierarchical nearest-neighbor

gaussian process models for large geostatistical datasets. Journal of the American Statistical

Association, 111(514):800–812.

66

Deng, L., Hinton, G., and Kingsbury, B. (2013). New types of deep neural network learning for

speech recognition and related applications: An overview. In 2013 IEEE international conference

on acoustics, speech and signal processing, pages 8599–8603. IEEE.

Di, Q., Kloog, I., Koutrakis, P., Lyapustin, A., Wang, Y., and Schwartz, J. (2016). Assessing pm2.

5 exposures with high spatiotemporal resolution across the continental united states. Environ-

mental science & technology, 50(9):4712–4721.

Finley, A. O., Sang, H., Banerjee, S., and Gelfand, A. E. (2009). Improving the performance

of predictive process modeling for large datasets. Computational statistics & data analysis,

53(8):2873–2884.

Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing model

uncertainty in deep learning. In international conference on machine learning, pages 1050–1059.

PMLR.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Gramacy, R. B. (2020). Surrogates: Gaussian process modeling, design, and optimization for the

applied sciences. Chapman and Hall/CRC.

Gramacy, R. B. and Apley, D. W. (2015). Local gaussian process approximation for large computer

experiments. Journal of Computational and Graphical Statistics, 24(2):561–578.

Gramacy, R. B. and Lee, H. K. (2012). Cases for the nugget in modeling computer experiments.

Statistics and Computing, 22(3):713–722.

Gramacy, R. B. and Lee, H. K. H. (2008). Bayesian treed gaussian process models with an applica-

tion to computer modeling. Journal of the American Statistical Association, 103(483):1119–1130.

67

Graves, A., Mohamed, A.-r., and Hinton, G. (2013). Speech recognition with deep recurrent neural

networks. In 2013 IEEE international conference on acoustics, speech and signal processing,

pages 6645–6649. Ieee.

Gu, M. (2016). Robust uncertainty quantification and scalable computation for computer models

with massive output. PhD thesis, Duke University.

Gu, M. and Berger, J. O. (2016). Parallel partial gaussian process emulation for computer models

with massive output. The Annals of Applied Statistics, 10(3):1317–1347.

Gu, M., Palomo, J., and Berger, J. O. (2018). Robustgasp: Robust gaussian stochastic process

emulation in r. arXiv preprint arXiv:1801.01874.

Hastie, T. and Tibshirani, R. (1995). Discriminant adaptive nearest neighbor classification and

regression. Advances in neural information processing systems, 8.

Higdon, D., Gattiker, J., Williams, B., and Rightley, M. (2008). Computer model calibration using

high-dimensional output. Journal of the American Statistical Association, 103(482):570–583.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are universal

approximators. Neural networks, 2(5):359–366.

Huang, Z., Xu, W., and Yu, K. (2015). Bidirectional lstm-crf models for sequence tagging. arXiv

preprint arXiv:1508.01991.

Kaufman, C. G., Schervish, M. J., and Nychka, D. W. (2008). Covariance tapering for likelihood-

based estimation in large spatial data sets. Journal of the American Statistical Association,

103(484):1545–1555.

Kennedy, M. C. and O’Hagan, A. (2001). Bayesian calibration of computer models. Journal of the

Royal Statistical Society: Series B (Statistical Methodology), 63(3):425–464.

68

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convo-

lutional neural networks. Advances in neural information processing systems, 25.

LeCun, Y., Bengio, Y., et al. (1995). Convolutional networks for images, speech, and time series.

The handbook of brain theory and neural networks, 3361(10):1995.

Liang, S. and Srikant, R. (2016). Why deep neural networks for function approximation? arXiv

preprint arXiv:1610.04161.

Neal, R. M. (1997). Monte carlo implementation of gaussian process models for bayesian regression

and classification. arXiv preprint physics/9701026.

Oakley, J. E. and O’Hagan, A. (2004). Probabilistic sensitivity analysis of complex models: a

bayesian approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

66(3):751–769.

Pepelyshev, A. (2010). The role of the nugget term in the gaussian process method. In mODa

9–Advances in Model-Oriented Design and Analysis, pages 149–156. Springer.

Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B., and Liao, Q. (2017). Why and when can deep-

but not shallow-networks avoid the curse of dimensionality: a review. International Journal of

Automation and Computing, 14(5):503–519.

Pollard, D. and DeConto, R. M. (2009). Modelling west antarctic ice sheet growth and collapse

through the past five million years. Nature, 458(7236):329–332.

Ranjan, P., Haynes, R., and Karsten, R. (2011). A computationally stable approach to gaussian

process interpolation of deterministic computer simulation data. Technometrics, 53(4):366–378.

69

Rougier, J. (2008). Efficient emulators for multivariate deterministic functions. Journal of Com-

putational and Graphical Statistics, 17(4):827–843.

Sacks, J., Schiller, S. B., and Welch, W. J. (1989). Designs for computer experiments. Technomet-

rics, 31(1):41–47.

Santner, T. J., Williams, B. J., Notz, W. I., and Williams, B. J. (2003). The design and analysis

of computer experiments, volume 1. Springer.

Schmittner, A., Urban, N. M., Keller, K., and Matthews, D. (2009). Using tracer observations to

reduce the uncertainty of ocean diapycnal mixing and climate–carbon cycle projections. Global

Biogeochemical Cycles, 23(4).

Sham Bhat, K., Haran, M., Olson, R., and Keller, K. (2012). Inferring likelihoods and climate

system characteristics from climate models and multiple tracers. Environmetrics, 23(4):345–362.

Smith, R. C. (2013). Uncertainty quantification: theory, implementation, and applications, vol-

ume 12. Siam.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: a

simple way to prevent neural networks from overfitting. The journal of machine learning research,

15(1):1929–1958.

Sriver, R. L., Urban, N. M., Olson, R., and Keller, K. (2012). Toward a physically plausible upper

bound of sea-level rise projections. Climatic Change, 115(3):893–902.

Stein, M. L., Chi, Z., and Welty, L. J. (2004). Approximating likelihoods for large spatial data sets.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66(2):275–296.

Tripathy, R. K. and Bilionis, I. (2018). Deep uq: Learning deep neural network surrogate models

for high dimensional uncertainty quantification. Journal of computational physics, 375:565–588.

70

Ugarte, M. D. (2015). Banerjee, s. carlin, bp, and gelfand, ae hierarchical modeling and analysis for

spatial data. crc press/chapman & hall. monographs on statistics and applied probability 135,

boca raton, florida, 2015. 562 pp. 99.95. isbn-13: 978-1-4398-1917-3 (hardcover).

Vecchia, A. V. (1988). Estimation and model identification for continuous spatial processes. Journal

of the Royal Statistical Society: Series B (Methodological), 50(2):297–312.

Wang, H., Guan, Y., and Reich, B. (2019). Nearest-neighbor neural networks for geostatistics. In

2019 International Conference on Data Mining Workshops (ICDMW), pages 196–205. IEEE.

Weaver, A. J., Eby, M., Wiebe, E. C., Bitz, C. M., Duffy, P. B., Ewen, T. L., Fanning, A. F.,

Holland, M. M., MacFadyen, A., Matthews, H. D., et al. (2001). The uvic earth system climate

model: Model description, climatology, and applications to past, present and future climates.

Atmosphere-Ocean, 39(4):361–428.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of

the royal statistical society: series B (statistical methodology), 67(2):301–320.

71

Chapter 7

Supplementary Material

This chapter provides Supplement to Chapter 5, where we compare the performance of our V3N

with PPGP under the two test scenarios specified in Section 5.1.1.1.

S1 UVic ESCM Model Application

We provide a visual comparison between the emulated outputs from our method and PPGP under

the two case scenarios for the UVic ESCM model.

72

S1.1 Visual Comparisons under the First Case Test Scenario

Original model output

Emulated output via V3N Emulated output via PPGP

Figure S1: A UVic ESCM run (top plot). The bottom plots show comparison between the emulated
run using V3N (bottom left plot) and the emulated run using PPGP (bottom right plot).

73

Original model output

Emulated output via V3N Emulated output via PPGP

Figure S2: Another visual comparison between the true run (top plot) and the emulated outputs
from our V3N (bottom left plot) and PPGP (bottom right plot) under the first case test scenario.

74

S1.2 Visual Comparisons under the Second Case Test Scenario

Original model output

Emulated output via V3N Emulated output via PPGP

Figure S3: Plots of the actual run (top plot) and the predicted outputs from our V3N (bottom
left plot) and PPGP (bottom right plot) under the second case test.

75

Original model output

Emulated output via V3N Emulated output via PPGP

Figure S4: Another visual comparison between the computer model output (top) and the emulated
outputs from our method (bottom left) and PPGP (bottom right).

76

	Introduction
	Overview of the Proposed Method
	Outline of the Dissertation

	Computer Models and Uncertainty Quantification
	Uncertainty Quantification Tasks
	Computer Model Calibration
	Uncertainty Propagation
	Optimization
	Sensitivity Analysis
	Data Models Discrepancy

	Emulation Problem

	Deep Neural Networks
	Feedforward Neural Networks
	Architecture of Feedforward Neural Networks
	Model Fitting in Deep Neural Networks
	Regularization techniques in deep learning
	Dropout
	Penalized Loss Function
	Other Regularization Techniques

	Activation Functions and Saturation Issue

	Parameters Estimation and Optimization
	Uncertainty Quantification in Deep Neural Networks

	Various-Neighbor Neural Network Emulators via Feature Engineering and Data Augmentation
	Data Description
	Motivation Problems
	The University of Victoria Earth System Climate Model (UVic ESCM)
	The PSU3D-ICE Model

	Related Work and Challenges with Large-Scale Applications in Computer Models using Neural Networks
	Methodology
	Parallel Features Engineering
	Data Augmentation
	Motivation
	Data Points of Various Distances
	 Data Augmentation Details

	Applications
	UVic ESCM Model Application
	Investigating Data Augmentation's Effectiveness
	Designing Test Studies
	Implementation Details
	Comparing the Performance based on Neighboring Choice
	Necessity of Incorporating our Data Augmentation in Training Process

	Comparison between our V3N and PPGP
	Test Scenarios and Evaluation Criteria
	Implementation Details
	Comparison Results

	PSU3D-ICE Model Application
	Design of the test study and evaluation criteria
	Implementation Details
	Comparison Results

	Summary
	Supplementary Material
	UVic ESCM Model Application
	 Visual Comparisons under the First Case Test Scenario
	 Visual Comparisons under the Second Case Test Scenario

