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Abstract

We provide a self-tallying voting protocol based on the hardness of decision version of the
ring learning with errors problem. We present two versions of the protocol, the first one
is passively secure against semi-honest adversaries and the other version is actively secure
where we additionally employ Σ′−proofs which are zero-knowledge proofs. We provide
proofs of security for two adversarial models, namely a semi-honest one and a malicious
one. First, we show that our protocol is secure against semi-honest adversaries by simulat-
ing the view given its local inputs and the public messages. We also show that our voting
protocol is secure in the sense of privacy of the honest voters’ individual votes against a
malicious adversary controlling a coalition of dishonest voters. The idea of our security
proof follows the real/ideal world-paradigm where we show that our protocol emulates
the ideal-world execution of tallying the votes. Hence any attack in the real-world can
be translated to an attack in the ideal-world. However, a successful attack in the ideal-
world is impossible which means any attack in the real-world will not be successful as well.
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Chapter 1
Introduction

1.1 Motivation

Suppose a company wants to elect a new set of officers and decides to conduct an

electronic-based election where the voting procedure is private, meaning that everyone

encrypts their votes, and is self-tallying, that is given all the encrypted votes, we can

determine the result of the election without decrypting any of the individual votes and

without the help of a trusted third party that is tasked to do the computation of the result.

Several papers, such as [Hao and Zieliński 2006], [Groth 2004] proposed solutions to the

above problem but both solutions rely on the hardness of the decisional Diffie-Hellman

(DDH) problem and in addition, [Groth 2004] also uses a trusted third party as the last

voter to ensure fairness of the protocol, that is, if the last voter is not honest, he can

determine the partial tally of votes just before he sends his own vote. Protocols relying on

the hardness of the DDH problem is susceptible to a quantum algorithm attack, known

as the Shor’s algorithm [Shor 1999] and the threat of having a large enough quantum

computer that implements Shor’s algorithm can efficiently break DDH-based protocols.

Hence, a post-quantum voting protocol seems to be the natural alternative solution to

the voting problem mentioned above. In fact, there are several post-quantum voting
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protocols already in the literature, namely based on the worst-case hardness of lattice

problems, for example [Pino et al. 2017] and [Aranha et al. 2021]. However, since the

above protocols are large-scale voting schemes, a trusted third party or a trusted server is

necessary to ensure security of individual votes as well as correctness of the voting result.

In this paper, we propose a self-tallying lattice-based voting protocol which relies on the

hardness of the decisional Ring Learning with Errors (RLWE) problem. Our protocol is

the RLWE analogue of [Hao, Ryan, et al. 2010] and in addition, we employ lattice-based

commitment schemes and non-interactive zero knowledge proofs inside our protocol to

ensure that voters follow the protocol specification honestly. In fact, the zero-knowledge

proof that we will use is a weaker one in the sense that the proving knowledge of the

secret only guarantees proof of knowledge of a scaled version of the witness. Nevertheless,

this zero-knowledge proof is similarly employed in [Benhamouda, Krenn, et al. 2015] and

for our scheme, this weaker zero-knowledge proof is enough to prove knowledge of the

secret.

1.2 Overview of Structure

This paper is organized as follows: In Chapter 2, we review some related work on voting

protocols. First, we will discuss two anonymous veto protocols one is based on the

hardness of the decision Diffie-Hellman (DDH) problem [Hao and Zieliński 2006] and one

is a lattice-based [Ding, Emery, et al. 2020]. Then we will take a look at three voting

protocols with the first two based on the DDH problem [Groth 2004], [Hao, Ryan, et al.

2010] and the other is a lattice-based one [Pino et al. 2017]. In Chapter 3, we discuss

relevant background material where we start with a discussion of lattices in Rn and

some of the hard lattice problems. Next, we mention the discrete Gaussian distribution

on lattices and some relevant results. We also mention average-case problems such as

the Learning with Errors (LWE) problem which was introduced by [Regev 2009] which

relies on the hardness of an approximate version of the shortest vector problem. We also
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mention a special variant of the LWE problem, namely, the Ring Learning with Errors

problem (RLWE) which can be thought of as LWE on ideal lattices and was introduced

in [Lyubashevsky, Peikert, et al. 2013]. Cryptographic protocols based on the RLWE

problem are more efficient than those who rely on LWE and also guarantees shorter

keys on the same security level. One of the first primitives based on RLWE is given in

[Ding, Xie, et al. 2012] which is an RLWE version of the Diffie-Hellman key exchange

protocol. We also take inspiration from [Ding, Xie, et al. 2012] to construct our voting

protocol in addition to [Hao and Zieliński 2006]. Even though the RLWE problem assumes

additional structure on the lattices considered, there are no known efficient (that is,

polynomial-time) attacks, even quantum ones, yet in the literature. We also discuss

how the rejection sampling technique works which is about a sampling technique that

allows one to sample from an auxiliary distribution but such samples look like they are

drawn from the target distribution. The rejection sampling technique is employed in our

zero-knowledge protocol which allows the prover to hide information of his secret when he

do knowledge proofs. Finally, we also define what a commitment scheme is, which is an

important cryptographic primitive acting as a procedure to construct “electronic sealed

envelopes" which hide the sender’s, in our case the voter, secret keys and messages with

the additional property that the envelope does not open to any other secret message, this

is called the binding property of the commitment. Also to ensure that voters follow the

protocol specification we add another layer to our protocol with the use of zero-knowledge

proofs which provides a way for the prover to prove to a verifier that he knows some

secret information given a statement without revealing this secret information.

In Chapter 4, we describe our protocol where we consider two separate cases, one is

for a voting protocol for two candidates and the other is for multiple candidates. The

protocol for two candidates uses bit values while for multiple candidates case, we use

monomial powers Xk as our secret votes. We also show how our protocol performs using
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specific parameters and we shall see the limitations of our protocol if we modify specific

parameters.

In Chapter 5, we define what we mean by a secure voting protocol, in particular define

the desirable properties of a secure voting protocol, namely, being a self-tallying one,

second, having fairness in the sense that the voting result can only be learned after all

the votes are cast and achieving privacy that is any individual vote of honest parties

cannot be learned by any adversary. We analyze the security of our protocol, first against

semi-honest adversaries, that is adversaries that follow the protocol specification but

tries to learn secret information from its inputs and from the public outputs. We also

check that our protocol is secure against malicious adversaries; adversaries that deviate

from the protocol specification, that is, it can change its inputs, prematurely abort, or

do whatever it wants in trying to learn secret information from honest voters’ votes.

To prove security against malicious adversaries, we will follow the “real-vs-ideal world"

paradigm, where we show that our real protocol “emulates" the ideal-world protocol for

our voting problem so any malicious attack in the ideal-world can be efficiently built from

an attack in the real-world. However, since the ideal-world is secure by its definition, any

attack on it is futile and thus, a malicious attack in the real-world is impossible.

In Chapter 6, we make a summary of our paper and provide some recommended future

work.

1.3 Contributions

The original work and contributions presented in this paper are the following: First, we

show a natural, simple commitment scheme based on the hardness of the RLWE hardness

assumption in Section 3.9.1. In Section 3.9.3 we propose two proofs of knowledge, namely

what we call Σ′− protocols based on the hardness of the RLWE problem, with the first

one provides a prover a way to prove that he knows small RLWE secrets that convinces a

verifier without revealing any information about the secrets other than the fact that they
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are small. Secondly, in the post-quantum veto paper [Ding, Emery, et al. 2020] where

I am one of the authors, I present a contributed work primarily on the design and the

proof of correctness of the passively-secure veto protocol. Thirdly, since we are proposing

a voting protocol involving two candidates where voters cast a 0 vote corresponding to

the first candidate and a 1 vote for the second candidate, we propose another Σ′-protocol

for proving that a voter honestly casted an encryption of a 0 or 1 vote without revealing

the specific vote to any verifier. Finally in Chapter 6, we provide security proofs for

our voting protocol in two adversarial models, namely the first one is in the semi-honest

adversarial model and the other one is in the malicious adversarial model.
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Chapter 2
Review of Related Literature

In this chapter, we review some of the existing voting protocols that would serve as

inspirations in constructing our own self-tallying lattice-based voting protocol. In the

first section, we will review what is known as Anonymous Veto Networks (AV-net) which

was introduced in [Hao and Zieliński 2006] as a solution to the Dining Cryptographers

Problem presented in [Chaum 1988]. The Dining Cryptographers Problem is essentially

a protocol where participants anonymously choose 0 (non-veto) or 1 (veto) as vote such

that if at least one participant casts a vote of 1, the result is 1, while if the votes are

unanimously 0, then the result is 0. In other words, participants want to securely compute

a function

f(x1, . . . , xm) =


0 if all xi = 0

1 otherwise
(2.0.1)

where xi ∈ {0, 1} is the secret vote of the i−th participant and m is the number of

participants. Also, we present a lattice-based AV-net [Ding, Emery, et al. 2020] which is

analogue of the AV-net in [Hao and Zieliński 2006].

Additionally, we present three voting protocols that actually count the number of votes

for each candidate, namely, [Hao, Ryan, et al. 2010], [Groth 2004] and [Pino et al. 2017].
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The first two relies on the hardness of the decisional Diffie-Hellman problem while the

third one is a lattice-based voting protocol.

2.1 Anonymous Veto Networks (AV-net)

In this section, we present two anonymous veto networks (AV-net), one is based on the

decisional Diffie-Hellman problem (DDH) [Hao and Zieliński 2006] and the other is based

on the hardness of the ring learning with errors (RLWE) problem [Ding, Emery, et al.

2020]. The latter is a RLWE analogue of the DDH-based AV-net but the main difference

is that in the RLWE-based AV-net, tallying the total votes results to errors and therefore,

correctness of the result only holds with overwhelming probability for specific parameters.

2.1.1 A discrete logarithm-based AV-net

Now, we first present the AV-net due to Hao and Zielinski proposed in 2006 [Hao and

Zieliński 2006]. The security of their protocol is based on the decisional Diffie-Hellman

(DDH) assumption which we will define below:

Definition 2.1.1 (Boneh 1998). Let g be a generator of a multiplicative cyclic group

G of prime order q. The decisional Diffie-Hellman (DDH) assumption states that the

distribution of {(ga, gb, gab)} where a, b are chosen independently from the uniform distri-

bution on Zq and the distribution of {(ga, gb, gc)} where a, b, c are chosen independently

from the uniform distribution on Zq are computationally indistinguishable.

The primary tool in [Hao and Zieliński 2006] is the following lemma:

Lemma 2.1.2. Let R be a commutative ring with unity with m ≥ 2 and suppose

r1, . . . , rm ∈ R. Then
m∑
i=2

i−1∑
j=1

ri · rj =
m−1∑
i=1

m∑
j=i+1

ri · rj
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Proof.

m∑
i=1

i−1∑
j=1

ri · rj = r2r1 + (r3r1 + r3r2) + · · ·+ (rmr1 + rmr2 + · · ·+ rmrm−1)

= (r2r1 + r3r1 + . . .+ rmr1) + (r3r2 + · · ·+ rmr2) + · · ·+ rmrm−1

= r1

m∑
j=2

rj + r2

m∑
j=3

rj + · · ·+ rm−1rm

=
m−1∑
i=1

m∑
j=i+1

ri · rj

which completes the proof. ■

Their protocol for securely computing f in Equation 2.0.1 consists of two rounds. First,

all participants agree on a generator g of a public multiplicative cyclic group G of prime

order q for which the DDH assumption holds. In the first round, each participant Pi

chooses a secret exponent xi and publishes gxi along with a knowledge proof for xi. After

all the participants have published gxi , participant Pi computes

gyi =

∏
j<i

gxj

∏
j>i

gxj
.

In the second and final round, participant Pi publishes its vote gciyi , where

ci =


ri if Pi’s vote is 1 where ri is uniformly random chosen from Zq

xi if Pi’s vote is 0
.

To tally the result, everyone computes res =
n∏
i=1

gciyi . The result is 0 or no-veto if the

product is equal to 1 while the result is 1 if the product is not equal to 1. Hence, the

result is correct with probability 1− 1
|G|

.

In [Hao and Zieliński 2006], they showed that their protocol above resists any partial

collusion attack, that is, if some number of participants, not all, collude in an attempt
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to attack the privacy of votes of the other participants. If the attack is passive, that is,

the corrupted participants try to learn, without loss of generality, the private key of one

participant, say Pi, then there exists some xk (which is a private key of a non-colluding

participant, not equal to the secret xi of Pi) oblivious to the corrupted participants

since not everyone is corrupted, and therefore gyi remains uniformly distributed since it

depends on the uniform xk and thus, the corrupted participants does not learn yi.

Moreover, the corrupted participants that try to actively overturn the result from

veto to a non-veto one must solve the discrete logarithm problem on the group G to be

successful which is at least as hard as the DDH problem. Hence, the AV-net proposed in

[Hao and Zieliński 2006] achieves provable security based on the DDH assumption.

The major problem with any cryptographic protocol that is based on the hardness

of the discrete logarithm problem, which includes the DDH assumption is that it can

be easily broken by a polynomial-time quantum algorithm due to [Shor 1999]. Hence

a need for an alternative hardness assumption for cryptographic protocols is needed

that is believed to resist any efficient quantum attack. Some of the known examples

of post-quantum cryptography are lattice-based cryptography, multivariate public key

cryptography and code-based cryptography. Our discussion and results in this paper fall

under the category of lattice-based cryptography.

2.2 Voting protocols

In this section, we discuss some of the existing voting protocols in the literature analogous

to the veto protocols mentioned in the previous section, in the sense that the first two

voting protocols also relies on the DDH assumption while the third voting protocol relies

on the hardness of the LWE/RLWE problem.
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2.2.1 A self-tallying voting protocol based on the DDH assumption due to

Hao, Zielinski, Ryan

Hao, Zielinski and Ryan extended the veto protocol in [Hao and Zieliński 2006] into an

anonymous self-tallying voting protocol [Hao, Ryan, et al. 2010] that turned out to be

the main inspiration in constructing our own voting protocol.

As in [Hao and Zieliński 2006], their voting protocol assumes a finite cyclic group G

of order prime q for which the DDH assumption holds. Also, let g be a generator of G.

First, we describe their protocol involving m voters and 2 candidates, where a vote of 0

corresponds to a vote for candidate 1 and a vote of 1 for candidate 2.

Round 1: Each voter Pi selects a uniformly random chosen xi ∈ Zq and publishes gxi

and a zero-knowledge proof for the exponent xi.

After all gxi are published and the corresponds proofs are verified, each voter Pi

computes gyi as in Equation 2.1.1.

Round 2: To cast vote vi ∈ {0, 1}, voter Pi computes and publishes gxiyigvi and a

corresponding zero-knowledge proof for the exponent xiyi + vi.

To tally the votes, everyone computes
m∏
i=1

gxiyigvi which is equal to g
∑m

i=1 vi since
m∑
i=1

xiyi = 0. The exponent
m∑
i=1

vi can be determined for example, by precomputing the

values of gℓ, for ℓ ∈ {0, 1, . . . ,m}.

Moreover, they have extended their protocol to the case of multiple candidates. Suppose

that there are m voters and t candidates. First, choose a smallest positive integer k such

that 2k > m. The first round of the protocol is the same as round 1 of the two candidates

case while in the second round, a vote for candidate j ∈ {1, . . . , t}, corresponds to a vote

2(j−1)k, that is, voter Pi publishes gxiyigvi , where vi = 2(j−1)k as an encryption of the

vote for candidate j and a corresponding zero-knowledge proof.
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To tally the votes, everyone still computes
m∏
i=1

gxiyigvi which is again g
∑m

i=1 vi but this

time, we have
m∑
i=1

vi = 20c1 + 2kc2 + · · ·+ 2(t−1)kct

where cj is the number of votes obtained by candidate j.

2.2.2 A self-tallying voting protocol based on the DDH assumption due to

Groth

Another voting protocol we will mention is a self-tallying voting protocol due to [Groth

2004] that relies on the DDH assumption. Assume for simplicity that there are two

candidates in the election, let 0 be a vote for the first candidate and 1 corresponds to a

vote to the second candidate.

The design of the protocol in [Groth 2004] is as follows:

1. At the beginning of the protocol, all voters agree on a group G of prime order q with

a generator g, where the DDH assumption holds. Also, we assume an authenticated

bulletin board where voters publish their public keys and encryption of their votes.

2. In the key registration phase, each voter Vi selects a uniformly random element

xi ∈ Zq and sets hi = gxi . Here, they publish hi and a proof of knowledge on xi

such that it satisfies hi = gxi . After all voters are done publishing their hi along

with a corresponding proof of knowledge, they set the current state of the election

to (1, 1).

3. In the voting phase, to cast vote vi ∈ {0, 1}, voter Vi downloads the current state

of the election, say the current state is (u, v), verifies the proof of knowledge of the

keys and all votes cast so far. Then to encrypt its vote, voter Vi selects a uniformly

random chosen ri ∈ Zq and updates the current state of the election from (u, v)
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into (U, V ), where

U = ugri

and

V = vu−xi

∏
j∈T

hj

ri

gvi ,

where T is the set of remaining voters.

To better see what is happening in the current state of the protocol, assume that Vi is

the i−th voter, that is, the voter who casts its vote after i− 1 voters. Assume also that

there are m voters.

Then the state of the election updates in the following manner:

1. The initial state is (1,1).

2. After voter V1 casts its vote, state becomes

gr1 , gv1
m∏
j=2

hr1
j



3. After voter V2 casts its vote, state is updated into

gr1+r2 , gv1+v2
m∏
j=3

hr1+r2
j



4. Hence, after voter Vi casts its vote, state is updated into

g∑i

k=1 rk , g
∑i

k=1 vk ·
m∏

j=i+1
h

∑i

k=1 rk

j



5. Finally when the last voter casts its vote, the final state of the protocol becomes

(
g
∑m

i=1 ri , g
∑m

i=1 vi

)

12



since the product in terms of powers of hj eventually become 1.

Hence, we can easily determine the sum
m∑
i=1

vi by precomputing the powers ga, where

a ∈ {0, 1, . . . ,m}. The total number of votes for the first candidate is m−
m∑
i=1

vi while

the total number of votes for the second candidate is
m∑
i=1

vi.

Groth has shown the security of the protocol in the sense of perfect secrecy/privacy

of the votes against malicious adversaries by using a hybrid argument to show that any

adversary of the real execution of his protocol can be simulated such that the simulator

only has knowledge of the sum of the honest voters’ votes.

We will use the same idea later when we prove the security of our own protocol against

malicious adversaries.

2.2.3 A lattice-based voting protocol

Here, we briefly mention the lattice-based voting protocol by [Pino et al. 2017]. The design

of their protocol uses homomorphic commitments and homomorphic zero-knowledge

proofs. The commitment scheme employed in the voting protocol in [Pino et al. 2017]

relies on the hardness of the ring version of short integer solution (SIS) problem (see

[Ajtai 1996]).

Definition 2.2.1. Informally, the ring-SIS problem states that given a uniformly random

matrix A ∈ Rn×m
q , where m ≥ n, find a short, nonzero vector s ∈ Rmq such that

As = 0 mod q.

The ring-SIS hardness result states that an efficient oracle that solves ring-SIS implies

an efficient solver for certain worst-case approximate ideal lattice problems. We describe

their commitment scheme below: First, fix a public commitment key

A
B

 where A

and B are uniformly random chosen matrices over Rq. To commit to x ∈ Zq, with x

being viewed as a polynomial whose constant term is x and the other terms are 0 in
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Rq := Zq[X]/(Xn + 1), n a power of two, q ≥ 2 a prime, integer, we pick a random vector

r of polynomials where each polynomial ri of r has small coefficients and the commitment

to x is given by a

b

 :=

A
B

 r +

0

x

 .
To open the commitment, simply compute

a

b

−
A
B

 r

The binding property of the above commitment scheme follows from the hardness of

ring-SIS while the hiding property comes from the decision version of the ring-SIS problem.

The above commitment scheme is homomorphic in the sense that the commitment

of the sum of a number of elements in Zq is the sum of their commitments which only

holds for a bounded number of messages since the coefficients of the randomness becomes

larger as the number of messages increases.

Moreover, the key specification of their protocol assumes a fixed number of trusted

authorities such that each voter decomposes its vote into several parts and for each part

of its vote, the voter applies the above commitment scheme and sends the commitment

of each part of its vote to each authority.

On the other hand, each voting authority receives the randomness used for the com-

mitment of each voter and using all the randomness from all the voters, confirms that

each randomness is short by doing a proof of knowledge to its fellow authorities.

For more details of their protocol, see [Pino et al. 2017].
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Chapter 3
Relevant Background Material

3.1 Lattices and Hard Lattice Problems

We start this section by defining what a lattice is and some of the standard lattice

problems that are conjectured to be hard to solve which serves as the basis of security of

lattice-based cryptographic protocols. After we introduce the hard lattice problems, we

also state its worst-case to average-case connection to the learning with errors and ring

learning with errors problems introduced by [Regev 2009] and [Lyubashevsky, Peikert,

et al. 2010]. All the discussion in this section can be referenced from the following lecture

notes: [Micciancio 2021].

Definition 3.1.1. A lattice Λ is an additive discrete subgroup of Rn. Equivalently, a

lattice Λ is a subset of Rn consisting of integral combinations of k linearly independent

vectors in Rn. If k = n, we say that Λ is a full-rank lattice in Rn.

Definition 3.1.2. We define the minimum distance, denoted by λ1(Λ) , of a lattice Λ to

be the length of a shortest nonzero vector of Λ, that is,

λ1(Λ) = min{∥v∥ : 0 ̸= v ∈ Λ}
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b1 = (2, 2)

b2 = (3, 1)

Figure 3.1: A two-dimensional lattice with basis vectors b1 = (2, 2) and b2 = (3, 1). Points on
the lattice are denoted by the red dots. The grey shaded area denotes the fundamental

parallelepiped of the lattice.

Calculating λ1(Λ) is computationally hard as the dimension of the lattice goes to infinity

but there are several known bounds to it. A lower bound to λ1(Λ) can be obtained by

considering any basis B of lattice Λ, then calculate the Gram-Schmidt orthogonalization

B̃ of B and it can be shown that mini ∥b̃i∥ ≤ λ1(Λ), where b̃1, . . . , b̃n are the Gram-

Schmidt orthogonalized vectors associated to basis B, which gives a lower bound for

λ1(Λ). Notice that the lower bound above is dependent on the choice of basis B. On the

other hand, an upper bound to λ1(Λ) can be obtained by applying Minkowski’s theorem

[Minkowski 1910] which implies that λ1(Λ) ≤
√
n(det Λ)1/n. Unfortunately, these bounds
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are not good enough to estimate for λ1(Λ) since we can construct lattices where its λ1(Λ)

are too far from the bounds mentioned above.

Hard Lattice Problems

First, we present three versions of the approximate shortest vector problem SVPγ , namely

the search, decision and estimate versions of the problem.

Definition 3.1.3. Let Λ be a full-rank lattice in Rn and let γ = γ(n) ≥ 1. We define the

three variants of the shortest vector problem SVPγ .

1. The search version of SVPγ takes a basis B of Λ and γ as inputs and outputs a

nonzero vector v ∈ Λ such that ∥v∥ ≤ γ · λ1(Λ).

2. The decision version of SVPγ, also denoted as GapSVPγ takes as input a real

number d > 0 and outputs YES if λ1(Λ) ≤ d while it outputs NO if λ1(Λ) > γ · d.

3. The estimate version of SVPγ takes a basis B of Λ and outputs a real number

r ∈ [λ1(Λ), γ · λ1(Λ)).

Remark 3.1.4. It can be shown that the decision and estimate versions of SVPγ are

equivalent by showing the an oracle solving one of them implies an algorithm that solves

the other. However, the only proven fact here is that the search version of SVPγ is at

least as hard as GapSVPγ . In other words, showing that an oracle solving GapSVPγ

implies an algorithm solving the search version still remains an open problem for γ > 1

(the case where γ = 1 can be shown to be true).

Another hard lattice problem is the shortest independent vectors problem or SIVP but

before we define the problem, we need to introduce the k-th successive minimum of a

lattice.

Definition 3.1.5. The k-th successive minimum of an n−dimensional lattice Λ, denoted

by λk(Λ) is the smallest r > 0 such that the n−dimensional ball centered at 0 of radius r,

B(0, r) contains at least k linearly independent lattice vectors in Λ.
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As a consequence of the definition above, we have that λ1 ≤ λ2 ≤ · · · ≤ λn.

Definition 3.1.6. Let γ = γ(n) ≥ 1 and Λ be an n−dimensional lattice. The search

version of γ−shortest independent vectors problem, denoted by SIVPγ asks to find n

linearly independent vectors vi ∈ Λ such that max ∥vi∥ ≤ γ · λn(Λ).

Remark 3.1.7. The hardness of SVPγ and SIVPγ stems from the following setup: if

we are given an arbitrary basis of a lattice Λ both problems are computationally hard to

solve for polynomial (in the dimension n) approximation factors. In fact, the best-known

algorithms such as the LLL algorithm [Lenstra et al. 1982] take exponential time and

space to solve the above problems with polynomial approximation factor γ(n). However,

if the approximation factor γ(n) is exponential in n, then the above problems are “easy"

in the sense that it will take polynomial time to solve them. Hence, in cryptography, it is

very important to base the protocols to lattice problems with polynomial approximation

factors to guarantee provable security.

Finally we define the approximate closest vector problem, denoted CVPγ and its

“promise" variant called the bounded distance decoding problem denoted by BDD. The

learning with errors problem that we will define later turns out to be an average-case

reformulation of the BDD problem and we will see its connection to the worst-case lattice

problems we defined earlier, specifically GapSVP and SIVP.

Definition 3.1.8. Let γ = γ(n) ≥ 1. The γ−closest vector problem, denoted by CVPγ,

takes as input a lattice Λ and a target vector t ∈ Rn and asks to find a vector v ∈ Λ such

that ∥v − t∥ ≤ γ · dist(t,Λ), where dist(t,Λ) = inf{∥t− x∥ : x ∈ Λ}.

Definition 3.1.9. Let γ = γ(n) ≥ 1. The bounded distance decoding (BDD) problem,

takes as input a lattice Λ, a real number d > 0 and a vector t ∈ Rn such that dist(t,Λ) ≤ d,

and asks to find a lattice vector v ∈ Λ such that ∥v − t∥ ≤ d.

Notice that the BDD problem does not always guarantee that a vector t ∈ Rn exists

such that dist(t,Λ) ≤ d but in the setup of the learning with errors problem, such vector

18



t always exists. Moreover, the real number d > 0 is typically taken to be less than λ1(Λ)
2

to guarantee that the lattice vector v is unique such that ∥t− v∥ ≤ d.

Dual lattices

Now, we will define the dual of a lattice which is similar to the construction of a dual of

a vector space. The dual of a lattice is itself a lattice so we can simply call it the dual

lattice.

Definition 3.1.10. Let Λ be a full-rank lattice in Rn. The dual lattice Λ∗ to Λ is given

by

Λ∗ := {y ∈ Rn : ⟨x, y⟩ ∈ Z,∀x ∈ Λ}.

Remark 3.1.11. Λ∗ is itself a lattice since if B is the matrix consisting of basis vectors

of the full-rank lattice Λ, then B−T is the matrix consisting of basis vectors for Λ∗. As a

consequence, det(Λ) = 1
det(Λ∗) . Moreover, the dual of the dual lattice of Λ is Λ, that is,

(Λ∗)∗ = Λ and if we scale the lattice, (sΛ)∗ = 1
s

Λ∗.

3.2 Notions of indistinguishability and some statistical

background

In this section, we define the three notions of indistinguishability. First let’s define what

we mean by a negligible function and state its properties.

Definition 3.2.1. A function ϵ : N → R is negligible if for any polynomial function

p : N→ R+, there exists n0 ∈ N such that for any n ≥ n0, we have ϵ(n) ≤ 1
p(n) .

Most of the time, we simply write ϵ(n) = negl(n) to denote that ϵ is a negligible

function without explicitly specifying its function formula.

Theorem 3.2.2. The following are the properties of negligible functions:
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1. Sum of two negligible functions is negligible.

2. Product of a negligible function and a polynomial function is negligible.

3. Subtracting a nonnegligible function by a negligible function is nonnegligible.

As a consequence, we have:

Corollary 3.2.3. Let εi be a sequence of negligible functions and qi be a sequence of

polynomial functions. Then for any constant c ∈ N, we have that
c∑
i=1

qiεi is a negligible

function.

Now, let X = (Xn)n∈N be a sequence of random variables, where we can think of n as

a security parameter. We write x $←− Xn to denote sampling a value from distribution

Xn.

Definition 3.2.4 (Statistical distance). The statistical distance of two sequences of

random variables X = (Xn)n∈N and Y = (Yn)n∈N is defined as the function

SDX,Y (n) := 1
2

∑
z∈{0,1}∗

|Pr[X(1n) = z]− Pr[Y (1n) = z]|

Now we are ready to define the three different notions of indistinguishability between

two sequences of random variables.

Definition 3.2.5 (Indistinguishability). Let X = (Xn)n∈N and Y = (Yn)n∈N be two

sequences of random variables.

1. We say X and Y are perfectly indistinguishable, denoted X p= Y , if for any n ∈ N,

SDX,Y (n) = 0.

2. We say X and Y are statistically indistinguishable, denoted X
s≈ Y , if for any

n ∈ N, SDX,Y (n) = negl(n).
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3. We say X and Y are computationally indistinguishable, denoted X c≈ Y , if for all

efficient (polynomial-time) algorithms D, the advantage

Advindist
X,Y,D(n) := |Pr[D(1n, X(1n)) = 1]− Pr[D(1n, Y (1n)) = 1]|

is a negligible function.

3.3 Discrete Gaussian Distribution on Lattices

In the learning with errors and ring learning with errors problems, the error distribution

is typically taken to be the discrete Gaussian distribution on a lattice Λ. In fact the worst-

case to average-case hardness result of the above problems assumes a discrete Gaussian

error distribution. In this subsection, we define the discrete Gaussian distribution on a

lattice and state some facts on the total measure of the discrete Gaussian distribution,

in particular if the lattice is perturbed either by scaling or by a lattice coset. Also, we

briefly mention the connection between the total discrete Gaussian measures between

a lattice and its dual via the Poisson summation formula which serves as a vital tool

in proving the facts mentioned above on the effect on the total Gaussian measure by

perturbing the lattice. We continue our discussion with reference to [Micciancio 2021].

Definition 3.3.1. Let Λ be a full-rank lattice in Rn, σ > 0 and v ∈ Rn. Define the

Gaussian function on Rn with parameter σ as the function ρσ(x) = e−π∥x∥2/σ2. Given

any lattice coset v + Λ, where v ∈ Rn, define ρσ(v + Λ) :=
∑

x∈v+Λ
ρσ(x). The discrete

Gaussian distribution Dv+Λ,σ on the lattice coset v + Λ with parameter σ is given by

the distribution on v + Λ whose density is given by ρσ(x)/ρσ(v + Λ), where x ∈ v + Λ.

Moreover, if the lattice Λ is already understood, the discrete Gaussian distribution DΛ,σ

on Λ is simply denoted by Dσ.
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Before we state the Poisson summation formula, we need to briefly recall the Fourier

transform of a function f on Rn.

Definition 3.3.2. Let f : Rn → C be a function such that
∫
Rn
|f(x)| dx < ∞. The

Fourier transform of f , denoted f̂ , is defined as a function f̂ : Rn → C such that

f̂(y) =
∫
Rn
f(x)e−2πi⟨x,y⟩ dy

Now, we state the Poisson summation formula on Gaussian measure for lattices below.

Theorem 3.3.3. Let ρ be the Gaussian function on Rn with parameter 1, that is, ρ = ρ1.

Then ρ = ρ̂. Now, let Λ be a n−dimensional lattice and define ρ(Λ) to be
∑
x∈Λ

ρ(x). Then

ρ(Λ) = det(Λ∗)ρ(Λ∗).

Notice that for any s > 0 and any lattice Λ, ρ(sΛ) = ρ1/s(Λ). As consequences of the

Poisson summation formula stated above, we have the following bounds on the Gaussian

measure when the lattice is scaled by a positive real factor greater than 1 and when the

lattice is perturbed as a lattice coset.

Theorem 3.3.4. Let s ≥ 1 and Λ be an n−dimensional lattice. Then ρ
(1
s

Λ
)
≤ snρ(Λ).

Theorem 3.3.5. Let v ∈ Rn and Λ be any full-rank lattice in Rn. Then ρ(v+ Λ) ≤ ρ(Λ).

Lemma 3.3.6. Let v + Λ be a lattice coset, let h ∈ Rn be a fixed vector and let

H = {x ∈ Rn : ⟨x, h⟩ ≥ ∥h∥2}. Then ρ ((v + Λ) ∩H) ≤ ρ(h)ρ(v − h+ Λ).

A useful corollary to the above lemma says that if we choose x $←− DΛ := DΛ,1, the

probability that the max norm ∥x∥∞ := maxi{|xi|} is greater than some sufficiently large

t > 0 is negligible in t. The proof of the corollary is left as an exercise in [Micciancio

2021] but in this paper, we provide a proof of the corollary. Before we give the proof, we

briefly mention the union bound.
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Lemma 3.3.7. Let A1, A2, . . . be a countable set of events in a sample space S. Then

Pr
[ ∞⋃
i=1

Ai

]
≤

∞∑
i=1

Pr[Ai].

Corollary 3.3.8. For any n−dimensional lattice Λ and real number t > 0, we have

Pr[∥x∥∞ ≥ t|x $←− DΛ] ≤ 2ne−πt2 .

Proof. Let B := {x ∈ Rn : ∥x∥∞ ≥ t} =
n⋃
i=1
{x ∈ Rn : |xi| ≥ t}. For each i = 1, . . . , n,

let ei ∈ Rn be the vector whose i−th coordinate is 1 and 0 elsewhere. Let

Ai := {x ∈ Rn : ⟨x, ei⟩ ≥ t} = {x ∈ Rn : ⟨x, tei⟩ ≥ t2}

and let

Bi := {x ∈ Rn : ⟨x, ei⟩ ≤ −t} = {x ∈ Rn : ⟨x,−tei⟩ ≥ t2}.

Then B =
n⋃
i=1

(Ai ∪Bi). Thus by Theorem 3.3.5, Lemma 3.3.6 and Lemma 3.3.7, we have

Pr[∥x∥∞ ≥ t|x $←− DΛ] = ρ(Λ ∩B)
ρ(Λ)

≤ 1
ρ(Λ)

n∑
i=1

(ρ(Λ ∩Ai) + ρ(Λ ∩Bi))

≤
n∑
i=1

2e−πt2 = 2ne−πt2 .

since ρ(Λ∩Ai) ≤ ρ(tei)ρ(−tei+Λ) ≤ e−πt2ρ(Λ) and similarly, ρ(Λ∩Bi) ≤ e−πt2ρ(Λ). ■

A direct consequence of the corollary above is that if we choose x $←− DΛ,s for some

parameter s > 0, then the probability that ∥x∥∞ ≥ t, where t > 0, is less than or equal

to 2ne−π(t/s)2
.

Now, if we replace the max norm by the Euclidean norm, we have the following:
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Theorem 3.3.9. For any α ≥ 1 and any n−dimensional lattice Λ, we have

Pr
[
∥x∥ ≥ α

√
n

2π : x $←− DΛ

]
≤
(

α2

eα2−1

)n/2

The smoothing parameter of a lattice

In [Micciancio and Regev 2007], another lattice invariant called the smoothing parameter

was introduced. The smoothing parameter tells us the least value of the parameter σ > 0

of the discrete Gaussian distribution DΛ,σ such that DΛ,σ becomes statistically close to

the “uniform” distribution on Λ. To be precise, Theorem 3.3.11 says that samples from

the discrete Gaussian distribution on a lattice with parameter σ at least as large as the

smoothing parameter of a sublattice Λ′ is indistinguishable from the uniform distribution

on the points Λ mod Λ′. The importance of the smoothing parameter lies to the result in

the learning with errors problem that if we pick the parameter σ of the discrete Gaussian

error distribution for our learning with errors samples to be at least as large as the

smoothing parameter, then the samples become indistinguishable from uniform ones.

Definition 3.3.10. Let Λ be an n−dimensional lattice and let ε > 0. The smoothing

parameter of Λ is the number ηε(Λ) := min{s > 0 : ρ(sΛ∗) ≤ 1 + ε}.

The term smoothing parameter comes from the proceeding result [Micciancio and

Regev 2007]:

Theorem 3.3.11. Let Λ,Λ′ be n−dimensional lattices such that Λ′ ⊆ Λ. Then for any

ε ∈ (0, 1/2), any σ ≥ ηε(Λ′), the distribution of DΛ,σ is within statistical distance at most

2ε from the uniform distribution on Λ mod Λ′.

We also have the following lemma that relates the smoothing parameter and the λ1(Λ∗)

and λn(Λ) of any n−dimensional lattice Λ, due to [Micciancio and Regev 2007]:

Theorem 3.3.12. For any n−dimensional lattice Λ, we have:
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1. η2−2n(Λ) ≤
√
n/λ1(Λ∗)

2. ηε(Λ) ≤
√

ln(n/ε)λn(Λ) for all ε ∈ (0, 1).

Finally, we state a useful lemma from [Banaszczyk 1993].

Lemma 3.3.13. For any n−dimensional lattice Λ and r > 0, a point sampled from DΛ,r

has Euclidean norm at most r
√
n, with probability at least 1− 2−2n.

Finally we mention the complexity of an algorithm for sampling from a discrete

Gaussian distribution on an n−dimensional lattice according to [Gentry et al. 2008]

which states that the running time takes O(n2) plus ω(n log2 n) operations to generate a

sample.

3.4 Learning with Errors

In [Regev 2009], Regev introduced the learning with errors (LWE) problem which asks

about finding a secret vector s ∈ Znq , q ≥ 2 an integer, in a system of noisy linear

equations. To be precise we define the learning with errors problem below.

Definition 3.4.1. Let q ≥ 2 be an integer and n ∈ N. Let χ be some distribution on

Z, typically taken to be a discrete Gaussian distribution. Let s ∈ Znq be some secret

vector chosen from the uniform distribution on Znq . Consider the system of noisy linear

equations modulo q:

b1 = ⟨a1, s⟩+ e1

b2 = ⟨a2, s⟩+ e2

...

bm = ⟨am, s⟩+ em
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where a1, . . . , am are drawn independently from the uniform distribution on Znq and the

error vectors e1, . . . , em are drawn independently from χ. Denote the LWE distribution

by As,χ whose samples are of the form (ai, bi) generated as above.

The learning with errors (LWE) problem asks the following: Given arbitrarily number

of pairs (a1, b1), . . . , (am, bm) from the LWE distribution As,χ, find the secret s.

Remark 3.4.2. Choosing specific parameters for the error distribution χ, χ has standard

deviation αq, where α > 0 is chosen to be 1/poly(n). Also, the modulus q is also typically

taken to be polynomial in n.

The above definition of the LWE problem is the also called search-LWE since the

problem asks to find the secret s. The decision variant of the LWE problem is given

below and Regev showed in [Regev 2009] that the search and decision variants of the

LWE problem are equivalent.

Definition 3.4.3. In the search version of the LWE problem defined above, denote by

As,χ the distribution of the LWE pairs (a, b) ∈ Znq × Zq. The decision-LWE problem takes

as input pairs (a, b) ∈ Znq × Zq and asks to distinguish with non-negligible advantage

whether the pairs are generated according to As,χ or according to the uniform distribution

on Znq × Zq.

Another variant of the LWE problem takes a secret s from the error distribution χ

called the Hermite Normal Form of the LWE problem, denoted HNF− LWE. It was shown

that HNF− LWE is at least as hard as the standard LWE [Applebaum et al. 2009]. In

other words, selecting the secret from χ does not change the hardness of LWE.

3.4.1 Hardness of the LWE problem

In [Regev 2009], Regev showed that under certain parameters, an oracle solving the

LWE problem implies an efficient quantum algorithm that solves GapSVP and SIVP with

polynomial approximation factors on any lattice. His proof involves an iterative process
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broken down into two components. The first component says that an LWE oracle implies

we can efficiently solve the BDD problem on any dual lattice Λ∗ to within some specified

distance. More precisely, we state the first component from [Regev 2009]:

Theorem 3.4.4. Let q ≥ 2 be an integer and α ∈ (0, 1). Suppose we have an oracle that

solves the LWE problem with modulus q and error distribution parameter α. Then, given

as input any n−dimensional lattice Λ, a large enough polynomial number of samples from

DΛ,r, for some r ≥
√

2q · ηε(Λ) (or we can use the stronger inequality r ≥ q
√

2n/λ1(Λ∗)),

and a point x ∈ Rn such that dist(x,Λ∗) ≤ αq/(
√

2r), then we can output the unique

closest lattice point to x in polynomial time.

The second component involves an efficient quantum algorithm that assumes an oracle

to the BDD problem to within distance d > 0 on the dual lattice Λ∗ and outputs a sample

from DΛ,
√
n/d. The proof idea for the second component is using the BDD oracle, we can

efficiently create a quantum state equivalent to a periodic discrete Gaussian distribution

on the dual lattice Λ∗, take its quantum Fourier transform, and the resulting quantum

state corresponds to DΛ,
√
n/d. Thus, to sample from DΛ,

√
n/d, we simply measure the

quantum state we obtained.

When we combine the two components above, assuming an LWE oracle, we start by

selecting polynomially many samples from DΛ,r for large r (in fact, r ≥ 22nλn(Λ)) and

this can be done efficiently by the Bootstrapping lemma in [Regev 2009]. Apply the

first component to solve BDD to within distance d :=
√

2n/r on Λ∗. Since we have a

solver for BDD on Λ∗ to within distance d, by the second component, using a quantum

algorithm, we obtain polynomially many samples from DΛ,r/
√

2. Now, we iterate the

process by applying the first component with Dr/(
√

2)i , i = 1, 2, . . . until we get samples

from DΛ,r′ , where r′ = poly(n)/λ1(Λ∗). If we apply the first component one more time

with DΛ,r′ , Regev showed that a solution to BDD allows us to solve GapSVP on Λ to

within a polynomial approximation factor. On the other hand, if we take n samples from

DΛ,r′ , we get a solution to SIVP on Λ to within a polynomial approximation factor.
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Before we state the hardness result of LWE, we define the discrete Gaussian sampling

problem DGS below.

Definition 3.4.5. The discrete Gaussian sampling problem DGS takes a lattice Λ and

an r ≥ ϕ(Λ) for some function ϕ on Λ as inputs, and asks to sample from DΛ,r.

More precisely, the hardness result of the LWE problem can be stated below:

Theorem 3.4.6. Let ε = ε(n) be some negligible function of n. Also, let q = q(n) be

some integer and α = α(n) ∈ (0, 1) such that αq > 2
√
n. Assume that we have access

to an oracle that solves LWE with modulus q and error parameter α given polynomially

many samples. Then there exists an efficient quantum algorithm that solves DGS on

lattice Λ with r ≥
√

2n · ηε(Λ)/α.

As we mentioned earlier, it suffices to have an efficient solver for the DGS problem

in the above theorem to solve GapSVP and SIVP on any lattice Λ to within polynomial

approximation factors.

3.4.2 Attacks on the LWE problem

Here, we briefly mention direct attacks on the LWE problem. We start with an algebraic

attack from [Arora and Ge 2011] where the idea is converting LWE samples (a, b) to

polynomial equations mod q,

fa,b(s) =
∏
e∈S

(b− ⟨a, s⟩ − e) mod q = 0.

where S ⊆ Zq (think of S as the subset of Zq consisting of all error values with overwhelm-

ing probability). Notice that for each sample (a, b), fa,b(s) = 0 is a polynomial equation

of degree |S| and the attack actually solves a system of polynomial equations (induced by

the LWE samples) using a linearization technique (a technique that transforms monomial

terms to variables so that the system of polynomial equations becomes a system of linear
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equations). However, Arora-Ge would need exponential time and space in the dimension

n to recover the secret s.

The second attack is due to Blum, Kalai and Wasserman (BKW) [Blum et al. 2003] and

an improvement to Arora-Ge. The BKW attack is so far the best known attack on LWE

and is a combinatorial algorithm. BKW requires 2O(n) samples and time. Their algorithm

finds a small subset S among the 2O(n) samples (ai, bi) such that
∑
i∈S

ai = (1, 0, . . . , 0) and

since S is small, they can find the first coordinate of the secret s from
∑
i∈S

bi = s1 +
∑
i∈S

ei,

where s1 is the first coordinate of s. Hence, they can recover s by applying the same idea

to obtain the remaining coordinates.

Another attack to the LWE problem is presented in [Ding 2010], but the assumption is

that the errors come from a fixed bounded subset D of Zq, that is, the set of errors do

not span the entire set Zq. Ding’s attack is polynomial-time in the dimension n, thus

if we are to generate LWE samples, it is very important that the error distribution is

supported on the entire set Zq.

3.5 Algebraic Number Theory

In this section, we will establish some algebraic number theory background to setup an

improvement of the LWE problem, efficiency-wise for cryptographic applications, called

the ring learning with errors RLWE problem. In particular, we will recall the notion of

cyclotomic number fields, describe how algebraic number fields can be embedded as inner

product space isomorphic to the Euclidean space Rn for some n which in consequence

allows us to view ideals in a number field as lattices. We start with the following

definition.

Definition 3.5.1. An algebraic number field K, or simply a number field, is an extension

field of Q of finite dimension when K is viewed as a vector space over Q. The elements

of K are the algebraic numbers, that is, the elements α ∈ C whose minimal polynomial
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are in Q[X]. The ring of integers OK of a number field K consists of α ∈ K that is a

root of an irreducible, monic polynomial in Z[X]. The elements in OK are called the

algebraic integers in K.

Definition 3.5.2. Let K be a number field and OK be its ring of algebraic integers.

An integral ideal of K is a subset I ⊆ OK that is closed under addition and that for all

r ∈ OK and x ∈ I, we have that rx ∈ I.

Definition 3.5.3. A fractional ideal of a number field K is a subset J of K such that

there exists nonzero d ∈ OK such that dJ ⊆ OK .

It is a standard fact in algebraic number theory that the set of fractional ideals of a

number field form a multiplicative group, that is, it is a group under multiplication of

ideals and the ring of integers OK serves as the identity element.

Definition 3.5.4. Given a positive integer m, an element ζ ∈ C is called a primitive

mth root of unity if ζ is a root of Xm − 1 = 0 and for all 1 ≤ m′ < m, ζm′ ̸= 1. The

mth cyclotomic field is the number field Q(ζm), that is the smallest field containing Q

and ζm, where ζm is a primitive mth root of unity. The dimension of Q(ζm) over Q can

be shown to be n = φ(m), where φ is the Euler totient function.

From now on, we only consider cyclotomic number fields Q(ζ2n), where n is a power of

two. Hence, the degree of the algebraic extension Q(ζ2n) over Q is given by n = φ(2n).

Moreover, the polynomial Xn + 1 is irreducible over Q since it is the minimal polynomial

of the 2nth primitive root of unity ζ2n and so the 2nth cyclotomic field K = Q(ζ2n) is

isomorphic to Q[X]/(Xn + 1) as fields, and thus as vector spaces over Q. Moreover,

the ring of integers OK is Z[ζ2n] and thus, OK is isomorphic to R := Z[X]/(Xn + 1)

as rings, as well as Z−modules. Notice that R is isomorphic to Zn via the coefficient

embedding, that is, given a polynomial a = a0 + a1X + · · · + an−1Xn−1 ∈ R, a is

mapped to (a0, a1, . . . , an−1) ∈ Zn. Another way to embed K into Cn is via the canonical

embedding. We define the canonical embedding below.
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Definition 3.5.5. Let K = Q(ζ), where ζ = ζm is a primitive m−th root of unity, be a

cyclotomic field of dimension n = φ(m) over Q. Let {σk}k∈Z×
m

be the set of embeddings

σk : K → C, where σk(ζ) = ζk and Z×
m := {a ∈ Zm : gcd(a,m) = 1}. Define the canonical

embedding σ of K into Cn to be the map that takes ζ into an n−tuple (σk(ζ))k∈Z×
m

.

If n is a power of two, notice that K = Q(ζ2n) is isomorphic to Q[X]/(Xn + 1) as

fields via the map ζ := ζ2n 7→ X. Hence, for any element α ∈ K, with α =
n−1∑
i=0

aiζ
i, we

can identify α as the polynomial fα(X) =
n−1∑
i=0

aiX
i in Q[X]/(Xn + 1). As a consequence,

σ(α) = (fα(ζk))k∈Z×
2n
.

Furthermore, notice that given α ∈ K, identified as the polynomial
n−1∑
i=0

aiX
i we can

relate the coefficient vector and embedding representation of α by the following equation:

(α(ζ)), . . . , α(ζ2n−1))T = Vn · (a0, a1, . . . , an−1)T

where Vn is the n× n Vandermonde matrix



1 ζ ζ2 · · · ζn−1

1 ζ3 ζ3·2 · · · ζ3(n−1)

...
...

... . . . ...

1 ζ2n−1 ζ2·(2n−1) · · · ζ(2n−1)(n−1)


(3.5.1)

Definition 3.5.6. The trace of an element α ∈ K, denoted Tr(a) is defined as

Tr(α) =
∑
k∈Z×

2n

σk(a)

and the (algebraic) norm of α is defined as

N(α) =
∏

k∈Z×
2n

σk(α)
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where both sum and product is over all the n embeddings of K into Cn.

Definition 3.5.7. For x ∈ Cn, we define the ℓ2−norm as ∥x∥ =
(

n∑
i=1
|xi|2

)1/2

, where

x = (x1, . . . , xn) and the ℓ∞−norm as ∥x∥∞ = maxi |xi|.

Definition 3.5.8. Let s1, s2 ∈ N ∪ {0} such that s1 + 2s2 = n. Define the space

H ⊂ Rs1 × C2s2 by

H = {(x1, . . . , xn) ∈ Rs1 × C2s2 : xs1+s2+j = xs1+j , ∀j ∈ {1, . . . , s2}}.

It is a standard fact that H is isomorphic to Rn as an inner product space over R, where

the inner product on H is induced from Cn. Also, since the embeddings σk on K satisfy

σk = σ2n−k, we may identify the cyclotomic field K with σ(K) ⊂ H. In other words, we

endow K with a geometry via the canonical embedding. Also, the canonical embedding

σ is a ring homomorphism between K and H, where the addition and multiplication

operations on H are coordinate-wise.

Definition 3.5.9. The (geometric) ℓ2−norm of an element α ∈ K, denoted ∥α∥ is

defined by ∥α∥ = ∥σ(α)∥, where the right hand side is the ℓ2−norm on H. Replace ∥ · ∥

by ∥ · ∥∞, we have a similar definition of the ℓ∞−norm of an element α ∈ K.

Remark 3.5.10. It was shown in [Lyubashevsky and Seiler 2018] that the matrix norm

of Vn defined in Equation 3.5.1, is equal to
√
n, thus, ∥σ(α)∥≤

√
n∥(a0, . . . , an−1)∥., where

σ(α) is the canonical embedding representation of α ∈ K. In other words, the canonical

embedding norm is just
√
n times the coefficient embedding norm of an element in the

2n−th cyclotomic field K, where n is a power of two.

Let ej ∈ Cn, j = 1, . . . , n be the n−dimensional vector whose j−th coordinate is

1 and 0 elsewhere. From [Lyubashevsky, Peikert, et al. 2013], we note that H has

basis given by hj ∈ Cn, where hj = ej for j = 1, . . . , s1, and hj = 1√
2(ej + ej+s2) and

hj+s2 = i√
2(ej − ej+s2) for j = s1 + 1, . . . , s1 + s2, where n = s1 + 2s2.
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Now, letr > 0. We can define the Gaussian function on H to be ρr(x) = e−π∥x∥2/r2 and

define the continuous Gaussian distribution Dr on H whose density function is r−nρr(x).

Definition 3.5.11. Let r = (r1, . . . , rn) ∈ (R+)n such that rs1+s2+j = rs1+j for j ∈

{1, . . . , s2}. The elliptical Gaussian distribution Dr on H is a distribution which samples

a vector
n∑
i=1

aihi, where each ai is sampled independently from the Gaussian distribution

Dri on R and {hi} is the basis above for H.

Remark 3.5.12. It is easy to check that for any a, b ∈ K, we have ∥a · b∥ ≤ ∥a∥∞∥b∥.

Also, observe that

Tr(a · b) =
∑
k

σ(a)σ(b) = ⟨σ(a), σ(b)⟩.

In other words, the trace map can be viewed as an inner product on K.

For any fractional ideal I of K, I has a Z− basis, that is, there exists, u1, . . . , un ∈ K

such that I = Zu1 + · · ·+ Zun. Under the canonical embedding σ, I embeds as a lattice

σ(I) in H.

Definition 3.5.13. In the above discussion, for any fractional ideal I, we define σ(I) to

be an ideal lattice.

With some abuse of notation, we use the notation I to also denote the ideal lattice

σ(I) so that as a geometric object, we can also talk about the length of the shortest

nonzero vector in I, determinant of I, and other geometric properties of a lattice.

Definition 3.5.14. The (ideal) norm of an integral ideal I of K is defined to be N(I) =

|R/I|, the size of the quotient ring R/I. We can extend the definition of the norm to

fractional ideals, that is, if J is a fractional ideal of K with d ∈ OK such that dJ ⊆ OK ,

then we define N(J) = N(dJ)/|N(d)|.

Hence, we may view the ideal norm map as a group homomorphism between the

multiplicative group of fractional ideals in K and the nonzero elements of the rationals

Q since it is known that the ideal norm and the algebraic norm are multiplicative.
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Definition 3.5.15. We define the discriminant of K, denoted by ∆K to be (det(OK))2.

In the case of the cyclotomic field K = Q(ζ), ∆K = det(σj(ζi))2, where ζ = ζ2n,

i ∈ {0, . . . , n− 1} and j ∈ Z×
2n.

In fact, for any m−th cyclotomic field K of dimension n = φ(m), it is known that

∆K = mn∏
prime p|m

pn/(p−1) ≤ n
n

and if m is a power-of-two, we actually have equality, that is ∆K = nn.

Remark 3.5.16. Let I be a fractional ideal in K. It can be shown that det(I) =

N(I)
√

∆K .

As a consequence of the above remark, we have the following approximation of the

length of the shortest nonzero vector on any ideal lattice I of a number field K of degree

n:
√
nN(I)1/n ≤ λ1(I) ≤

√
n(N(I)

√
∆K)1/n.

The lower bound can be shown using the AM-GM (arithmetic mean-geometric mean)

inequality while the upper bound is a direct application of Minkowski’s theorem.

This also tells us that GapSVP on ideal lattices is easy since we can approximate λ1(I)

to within a factor
√

∆K
1/n using the approximation

√
n(N(I)

√
∆K)1/n.

Now, for brevity, when we refer to ideals in K, we mean fractional ideals. Since ideals

in K can be viewed as a lattice in H, we may speak of the dual of the ideal lattice I.

Definition 3.5.17. For any fractional ideal I in K, we define the dual ideal I∨ of I to

be

I∨ := {a ∈ K : Tr(aI) ⊆ Z}.

As a special case when I = OK , we call O∨
K to be the codifferent ideal and (O∨

K)−1 to

be the different ideal. It can be shown that I∨ = I−1O∨
K , where I−1 is the multiplicative
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inverse of I in the multiplicative group of fractional ideals in K. More precisely, I−1 =

{a ∈ K : aI ⊆ OK}. Since
√

∆K = det(OK), then 1/
√

∆K = det(O∨
K). As a consequence,

N(O∨
K) = ∆−1

K .

Now, if we let m to be a power-of-two, n = m/2 and OK = Z[ζm] to be the ring of

integers of the m−th cyclotomic field, then by referring to [Lyubashevsky, Peikert, et al.

2013] we have, O∨
K = 1

n
OK .

Let’s state the Chinese Remainder Theorem for rings which will be useful later on.

Lemma 3.5.18. Let I1, . . . , Ir be pairwise relatively prime ideals of a ring R, that is,

Ii + Ij = R for i ̸= j. Let I =
r∏
i=1

Ii. Then the natural ring homomorphism R→
r∏
i=1

R/Ii

induces a ring isomorphism R/I ∼=
r∏
i=1

R/Ii.

Now, let’s consider a prime q ≡ 1 mod 2n, n is a power-of-two. Also, let R = OK , K

is the 2n−th cyclotomic field. We may also view R to be Z[X]/(Xn + 1). Consider the

principal ideal

qR := {qα : α ∈ R}.

A standard result in algebraic number theory about the splitting of the ideal qR into

prime ideals in R, says that

qR =
∏
i∈Z×

2n

qi,

where qi = qR+ (ζ2n − ωi2n)R are distinct prime ideals in R of norm q, where ω2n is a

primitive 2n−th root of unity modulo q.

By the Chinese Remainder Theorem, we have the isomorphism of rings

R/qR ∼=
∏
i∈Z×

2n

R/qi ∼= Znq .

Denote Rq := R/qR. The above isomorphism allows us to view polynomials a ∈ Rq as

n−tuples (a(ωi2n))i∈Z×
2n

.
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3.6 Ideal Lattice Problems

Now, we state the analogous hard lattice problems on ideal lattices. Here, we will skip

the analog of GapSVP since it is easy on ideal lattices. Hence, we will only define the

analogues of SVP, SIVP and BDD on ideal lattices.

Definition 3.6.1. Let K be a number field endowed with some geometric norm (e.g.

either the ℓ2 or ℓ∞ norm), and let γ ≥ 1. The K − SVPγ problem in the given norm is:

given a fractional ideal I in K, find some nonzero x ∈ I such that ∥x∥ ≤ γλ1(I). The

K − SIVPγ problem asks to find n linearly independent elements in I such that all their

norms are at most γλn(I).

Definition 3.6.2. Let K be a number field endowed with some geometric norm (e.g.

either the ℓ2 or ℓ∞ norm). Let I be a fractional ideal in K, and let d < λ1(I)/2. The

K − BDDγ problem in the given norm is: given I and y ∈ K of the form y = x+ e for

some x ∈ I and e ∈ K with ∥e∥ ≤ d, find x.

3.7 Ring learning with errors

We define the ring learning with errors, denoted RLWE problem as in [Lyubashevsky,

Peikert, et al. 2013]. First, let K be a number field with R = OK be its ring of algebraic

integers. Let q ≥ 2 be an integer. Let T = KR/R
∨, where KR = K ⊗Q R which can be

thought of as changing the scalar of the Q−vector space K into R, and we also note that

KR is isomorphic to H as R− inner product spaces. Let Rq := R/qR and Rq := R∨/qR∨.

Definition 3.7.1. For s ∈ R∨
q and an error distribution ψ over H (or KR), a sample

from the RLWE distribution denoted As,ψ over Rq × T is generated by choosing a ∈ Rq

uniformly at random, choosing e from ψ, and outputting (a, b = (a · s)/q + e mod R∨).

Notice that since s ∈ R∨
q and R∨ is a fractional ideal, then (a · s)/q ∈ 1

qR
∨/R∨ so

adding to it e ∈ R modulo R∨ is well-defined.
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Definition 3.7.2. Let ψ be a distribution over H. The search version of RLWE problem

asks to find the secret s ∈ R∨
q , given an access to arbitrarily many independent samples

from As,ψ.

Definition 3.7.3. Let Ψ be a family of distributions over H. The (average-case)

decision-RLWE problem asks the following: distinguish with non-negligible advantage

between arbitrarily many samples from As,ψ and the same number of uniform, independent

samples from Rq × T, where (s, ψ) $←− U(Rq)×Ψ.

It was shown in [Lyubashevsky, Peikert, et al. 2013] that the search and decision

versions of the RLWE problem are equivalent for cyclotomic number fields so that we will

just assume that K is a cyclotomic field for the rest of the paper so that equivalence

holds. Also, we will argue security using the hardness of the decision variant of the RLWE

problem when we construct our voting protocol.

Moreover, if we additionally assume that K is a power-of-two cyclotomic, we have

that R∨ = 1
nR, so that we may choose the secret s to be in Rq by transforming samples

(a, b = (a · s)/q + e) into samples (a, b′ = (a · s′)/q + e′), where s′ = ns ∈ Rq and e′ = ne.

Hence, the RLWE problem can be restated in the power-of-two cyclotomic case as

distinguishing between samples from As,ψ and from uniform ones, where s ∈ Rq and ψ is

a distribution on H.

Now, before we state the hardness result of the RLWE problem, we first define a specific

family of elliptical distributions over H for which the hardness result holds.

Definition 3.7.4. Let K be an m−th cyclotomic field with degree n = φ(m). Let α > 0.

Define the distribution Ψα to be the distribution on the family of elliptical distributions

Dr over H where r is chosen such that r2
i = r2

i+n/2 = α2(1 +
√
nxi), where each xi,

i = 1, . . . , n/2, are chosen independently from the gamma distribution, Γ(2, 1) whose

shape parameter is 2 and scale parameter 1.
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Hence, on average, if we sample an elliptical Gaussian distribution from Ψα, the

parameters ri are roughly O(αn1/4).

Before we give the hardness result, we denote a function f(n) to be ω(g(n)) if f(n)

grows asymptotically faster than g(n). Hence, we may think of ω(g(n)) as a function

that is at least g(n) for sufficiently large n.

Now, we state the hardness result for the RLWE problem for specific parameters:

Theorem 3.7.5 (Lyubashevsky, Peikert, et al. 2013). Let K be the mth cyclotomic

number field with dimension n = φ(m) and R = OK be its ring of integers. Let

0 < α <
√

logn/n, and let q = q(n) ≥ 2, q = 1 mod m be a poly(n)-bounded prime

such that αq ≥ ω(
√

logn). Then there is a polynomial-time quantum reduction from

Õ(
√
n/α)-approximate SIVP (or SVP) on ideal lattices in K to the problem of solving

decision-RLWE given only ℓ samples from As,ψ where ψ is the Gaussian distribution Dξq

and s uniformly random chosen from R∨
q , for ξ = α · (nℓ/ log(nℓ))1/4.

Notice that assumption on α <
√

logn/n which is required so that the RLWE problem is

not impossible to solve. If we set α ≥
√

logn/n, then RLWE samples are indistinguishable

from uniform since the error parameter would be greater than the smoothing parameter

of R∨. Also, the choice for q so that αq ≥ ω(
√

logn) is important to resist polynomial

time attacks to the LWE (hence, RLWE as well) problem and finally, q assumed to be a

polynomially bounded integer in n makes the approximation factor in the worst-case

SIVP problem in ideal lattices to be polynomial in n as well. We note that SIVP within

polynomial approximation factors are believed to be hard as well since the best available

algorithms for these approximation factors require exponential time such as the LLL

algorithm. Finally, observe that the RLWE problem only relies on the hardness of SIVP

and not on GapSVP since as we mentioned earlier, GapSVP is easy on ideal lattices.

Moreover, since we will pick q = 3 mod 8, q a polynomially-bounded prime, we need an

additional hardness result which states that there is a reduction from the RLWE problem

with modulus q to the RLWE problem with modulus p. Combining the reduction theorem
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below from [Langlois and Stehlé 2012], which the authors call the “modulus-switching

self-reduction" for RLWE and Theorem 3.7.5, we see that solving the RLWE problem for

any modulus q is at least as hard as solving any (worst-case) approximate SIVP or SVP

problem on ideal lattices, with appropriate choices of parameters. In particular,

Theorem 3.7.6 (Langlois and Stehlé 2012). If β ≥ α · max(1, q/p) · Ω̃(n3/4) and

αq = Ω̃(
√
n), then there is a (classical) reduction from RLWEq,Dαq to RLWEp,Dβp

.

Finally we mention an important lemma from [Ding, Xie, et al. 2012]:

Lemma 3.7.7 (Ding, Xie, et al. 2012, lemma 2). For a, b ∈ Rq, ∥a · b∥∞ ≤ ∥a∥ · ∥b∥.

3.8 Rejection Sampling

In this section, we will describe the rejection sampling technique which will be a vital

tool when we employ our zero-knowledge proofs in our voting protocol. The rejection

sampling technique that we will follow comes from [Lyubashevsky 2012] where the goal

is to construct an algorithm whose output follows the distribution of a discrete Gaussian

distribution on Zn centered at 0. The basic idea is that we will sample from a discrete

Gaussian distribution on some coset v + Zn and only accept this sample according to a

certain acceptance criteria.

In our zero-knowledge proof later in the following section, the discrete Gaussian

distribution on a coset v + Zn corresponds to some secret of the prover and the rejection

sampling method allows the prover to hide the information about the secret since by

rejection sampling, the information about the secret is lost since the output follows the

discrete Gaussian distribution on Zn. This gives the prover confidence that no information

about the secret is leaked so that no verifier learns the prover’s secret information. We

follow the rejection sampling technique in [Lyubashevsky 2012].
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For simplicity, we denote Dσ to be the discrete Gaussian distribution on Zn with

parameter σ and denote Dv,σ to be the discrete Gaussian distribution on the coset v+Zn,

where v ∈ Rn.

accept

reject

X

Y
y = Dσv (x)

y = Dv,σv (x)
y = M · Dv,σv (x)

Figure 3.2: The green shaded area represents the region where a sample from Dv,σv
is accepted

while the red shaded area represents the rejection region. The blue shaded area is also part of
the acceptance region but the samples from Dv,σv gets accepted with probability 1 since its

image on the red dotted curve is always less than its image on the blue dotted curve.

First, the following lemma states that with high probability, namely with probability

greater than 1−2−100, there exists M > 0 such that if z $←− Dσv then Dσv (z) < MDv,σv (z),

where v ∈ Zn and σv is a parameter that depends on v.

Lemma 3.8.1 (Lyubashevsky 2012). For any v ∈ Zn, if σv = α∥v∥, for any α > 0 then

Pr[Dσv (z)/Dv,σv (z) < M : z $←− Dσv ] > 1− 2−100, (3.8.1)
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where M = e
12
α

+ 1
2α2 .

The existence of such M in the preceding lemma allows us to employ the rejection

sampling technique and the following theorem states the distribution of samples from

rejection sampling algorithm is statistically close to the distribution of samples from algo-

rithm which are drawn from the standard discrete Gaussian distribution with probability
1
M

.

Theorem 3.8.2 (Lyubashevsky 2012). Let V ⊂ Zn in which all elements of V have

norm less than T > 0, σ̃ ∈ R such that σ̃ = ω(T
√

logn), and h : V → R be a probability

distribution. Then there exists M > 0 such that the following algorithm A:

1. v $←− h

2. z $←− Dv,σ̃

3. output (z, v) with probability min
(

Dσ̃(z)
MDv,σ̃(z) , 1

)
.

is within statistical distance 2−ω(logn)

M
of the distribution of the following algorithm F :

1. v $←− h

2. z $←− Dσ̃

3. output (z, v) with probability 1
M

.

Moreover, the probability that A outputs something is at least 1− 2−ω(logn)

M
. More

concretely, if σ̃ = αT for any positive α, then M = e
12
α

+ 1
2α2 , the output of algorithm A

is within statistical distance 2−100

M
of the output of F , and the probability that A outputs

something is 1− 2−100

M
.
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How algorithms A and F precisely work:

The idea behind the rejection sampling algorithm A is to sample from a so-called proposal

distribution Dv,σ̃ but this sample looks like it was drawn from Dσ̃. So step 1 of A samples

v
$←− h which serves as the center of Dv,σ̃. By the previous lemma, we can find such

M > 0 such that with high probability, if z $←− Dσ̃, then Dσ̃(z) < MDv,σ̃(z). In step 2, it

samples z $←− Dv,σ̃ and we can split the acceptance criteria into two cases:

• if Dσ̃(z) ≥MDv,σ̃(z), output z;

• otherwise if Dσ̃(z) < MDv,σ̃(z), sample u $←− U , where U is the uniform distribution

on [0, 1] and if u < Dσ̃(z)
MDv,σ̃(z) , output z, otherwise reject and repeat step 2. In this

case, the probability that A outputs z is Dσ̃(z)
MDv,σ̃(z) .

Hence, in both cases, the probability that A outputs z is min
(

Dσ̃(z)
MDv,σ̃(z) , 1

)
.

For step 2 in algorithm F , sample z $←− Dσ̃ and draw u
$←− U , where U is the uniform

distribution on [0, 1]. If u < 1
M

, output (z, v), otherwise reject and repeat step 2.

3.9 Cryptographic Primitives

3.9.1 Commitment Schemes

In our protocol, the encryption of secret keys and votes are actually commitments and

we show that these commitments enjoy perfectly binding and computationally hiding

properties. These properties are important which allows an honest verifier to trust

that the voter/prover follows our voting protocol. Below we recall the definition of a

commitment scheme and also include some lemmas which are essential in proving the

hiding and binding properties that we claim above.

Definition 3.9.1. A commitment scheme consists of three algorithms (KGen,Com,Ver)

such that:
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• On input 1n, the key generation algorithm KGen outputs a public commitment key

pk.

• The commitment algorithm Com takes as input a message m from a message space

M and a commitment key pk, and outputs a commitment/opening pair (c, d)

• The verification algorithm Ver takes a key pk, message m, a commitment c and an

opening d, and outputs accept or reject.

In addition, a commitment scheme has to satisfy the following security requirements:

1. Correctness: Ver outputs accept whenever the inputs were computed by an honest

party, that is,

Pr[Ver(pk,m, c, d) = accept : pk ← KGen(1n),m ∈M, (c, d) $←− Com(m, pk)] = 1.

2. Binding: A commitment cannot be opened to different messages. Below are two

types of binding properties:

• Perfect: With overwhelming probability over the choice of public key pk ←

KGen(1n), we have that

(Ver(pk,m, c, d) = accept) ∧ (Ver(pk,m′, c, d′) = accept) =⇒ m = m′.

• Computational: If no PPT (probabilistic, polynomial-time) adversary can come

up with a commitment and two different openings, that is, for every PPT

adversary A, there is a negligible function negl on n such that

Pr [Ver(pk,m, c, d) = Ver(pk,m′, c, d′) : pk ← KGen(1n), (c,m,m′, d, d′)← A(pk)]

≤ negl(n).
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3. Computationally Hiding: A commitment computationally hides the committed

message, that is, any adversary is restricted to polynomial-time and has negligible

advantage in identifying the message in the commitment.

Before we give our simple commitment scheme whose hiding property is based on the

hardness of the decision RLWE problem, we mention the following simple lemma which

states that a uniformly random chosen element in Rq has small coefficients with small

probability.

Lemma 3.9.2. The probability that a uniformly chosen random element r ∈ Rq has max

norm less than or equal to β ≥ 1 is given by

Pr[∥x∥∞ ≤ β : x← Rq] ≤
(2β + 1)n

qn
.

Proof. Since the coefficients of the polynomials in Rq = R/qR, where R = Z[X]/(Xn+

1) are chosen to be in the interval [− q−1
2 , q−1

2 ], then the number of elements in Rq whose

infinity norm is less than β is given by (2β + 1)n. The result follows. ■

Now, another important lemma from [Stehlé et al. 2009] states that Xn + 1 for n a

power of two splits into two irreducible polynomials modulo q where q ≡ 3 mod 8.

Lemma 3.9.3 (Stehlé et al. 2009). Let k ≥ 0 and n = 2k. Then f(X) = Xn + 1 is

irreducible in Q[X]. If k ≥ 2 and q is a prime with q ≡ 3 (mod 8), then f = f1f2

(mod q), where for any i ∈ {1, 2}, we have that fi is irreducible in Zq[X] and can be

written as fi = Xn/2 + tiX
n/4 − 1 for some ti ∈ Zq.

The next lemma comes from [Lyubashevsky and Seiler 2018], which gives a sufficient

condition on the Euclidean norm of an element in Rq so that it is invertible in Rq.

Here, denote by ∥y∥ to be the coefficient embedding norm and ∥y∥e to be the canonical

embedding norm of an element y ∈ Rq.

44



Lemma 3.9.4 (Lemma 3.1, Lyubashevsky and Seiler 2018). Let n be a power of two, q

any prime and d be any integer such that

Xn + 1 ≡
d∏
i=1

fi(X) (mod q) (3.9.1)

for distinct polynomials fi(X) of degree n/d that are irreducible in Zq[X], and let y be

any element in Rq. If 0 < ∥y∥ < q1/d, then y is invertible in Rq.

Proof. Proceed by contradiction. Suppose y is not invertible. Then by the Chinese

Remainder Theorem, there exists an i such that y has a zero coordinate in Zq[X]/(fi(X)),

that is, fi(X) divides y in Zq[X].

Define I := {z ∈ R : z mod (fi(X), q) = 0}. We claim that I is an nonzero ideal

of R. Notice that y ∈ I and y ̸= 0 by assumption. Also, note that
√
n∥y∥ ≥ ∥y∥e ≥

√
n · |N(y)|1/n. Thus, ∥y∥ ≥ |N(y)|1/n ≥ N(I)1/n. Now, we compute N(I) = |R/I|.

Notice that we can write I as (fi(X), q) an ideal of R. Moreover, we set J = qR = (q),

the principal ideal in R generated by q so that J ⊆ I. Hence,

R/I ∼=
R/J

I/J
(by third isomorphism theorem for rings)

= Rq
fi(X)Rq

∼=
Zq[X]

fi(X)Zq[X] (by third isomorphism theorem for rings).

But, Zq[X]
fi(X) · Zq[X] is just the finite field Fqn/d , since deg fi = n/d and fi(X) is irreducible

in Zq[X]. Thus, N(I) = qn/d. Hence, ∥y∥ ≥ N(I)1/n = q1/d which contradicts the

assumption on the norm of y. Therefore, y is invertible in Rq. ■

We note that for any y ∈ Rq, ∥y∥ ≤
√
n∥y∥∞, thus as a consequence of Lemma 3.9.3

above and Lemma 3.9.4, we have:
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Lemma 3.9.5. Let n be a power of two and q ≡ 3 (mod 8) be a prime. Let R =

Z[X]/(Xn + 1) and Rq = R/qR. If y ∈ Rq such that 0 < ∥y∥∞ <

√
q

n
, then y is

invertible in Rq.

The above lemma about the invertibility of elements in Rq for n a power of two and

q ≡ 3 mod 8 serves as an important ingredient in proving the binding property of our

simple commitment scheme which we will now describe:

Commitment Scheme

Let n be a power of two integer, q ≡ 3 (mod 8) a prime , m ∈ N and DZn,σ

be the discrete Gaussian distribution on Zn. Let the message space be the set

{s ∈ Rq : ∥s∥∞ ≤ σ
√
n}. The procedure of our commitment scheme is described

below:

- KGen : The public commitment key pk = a where a $←− Rq.

- Com : To commit to a message s ∈ Rq with ∥s∥∞ ≤ σ
√
n, the commitment

algorithm draws e ← DZn,σ conditioned on ∥e∥∞ ≤ σ
√
n (note that such

an e is drawn with overwhelming probability by Lemma 3.3.13) and output

b = as+ (m+ 1)e as the commitment for s. The opening information for b

is given by the pair (s, e).

- Ver : Given commitment b and opening pair (s′, e′), the verifier accepts if

and only if b = as′ + (m+ 1)e′, ∥s′∥∞, ∥e′∥∞ ≤ σ
√
n.

Proposition 3.9.6. Let n be a power of two, n > 16, and let DZn,σ be the discrete

Gaussian distribution on Zn, m ∈ N and q ≡ 3 (mod 8), q a poly(n)-prime such that

q > 4nβ2, where β = σ
√
n. Then under the decision RLWE hardness assumption, the

above commitment scheme is a computationally hiding and perfectly binding commitment

scheme with overwhelming probability over the choices of the public commitment key.
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Proof. Correctness. This is trivial.

Computationally hiding. Under the decision-RLWE hardness assumption, then the com-

mitment b = as+ (m+ 1)e is pseudorandom, that is, it is indistinguishable from uniform

ones over Rq.

Binding. We need to show that given b = as + (m + 1)e with ∥s∥∞, ∥e∥∞ ≤ β, where

β = σ
√
n and if there exists ∥s′∥∞, ∥e′∥∞ ≤ β such that

b = as+ (m+ 1)e = as′ + (m+ 1)e′ (3.9.2)

then s = s′, or alternatively, if

a(s− s′) + (m+ 1)(e− e′) = 0 (mod q) (3.9.3)

then s = s′ with overwhelming probability over the choices of a in Rq. We will show

that the probability that there exists (s̃, ẽ) ∈ R2
q such that 0 < ∥s̃∥∞, ∥ẽ∥∞ ≤ 2β and

as̃ + (m + 1)ẽ = 0 (mod q) over the choices of a ∈ Rq is negligible in n. First, fix

s̃, ẽ ∈ Rq such that 0 < ∥s̃∥∞, ∥ẽ∥∞ ≤ 2β. Since q > 4nβ2, then 2β <
√
q

n
. Then by

Lemma 3.9.5, s̃ is an invertible element of Rq. Define the map Fs̃,ẽ : Rq → Rq given by

a 7→ as̃+ (m+ 1)ẽ. Since s̃ is invertible, it is not hard to show that Fs̃,ẽ is an injective

map on Rq. Thus,

Pr[as̃+ (m+ 1)ẽ = 0 (mod q) : a $←− Rq] = q−n (3.9.4)

Taking the union bound over all pairs (s̃, ẽ) ∈ R2
q such that 0 < ∥s̃∥∞, ∥ẽ∥∞ ≤ 2β,

the probability that there exists (s̃, ẽ) ∈ R2
q such that 0 < ∥s̃∥∞, ∥ẽ∥∞ ≤ 2β and

as̃ + (m + 1)ẽ = 0 (mod q) over the choices of a ∈ Rq is given by (4β + 1)2n

qn
< 2−n

since q > 2(4β + 1)2 (Indeed, q > 4nβ2 > 50β2 > 2(4β + 1)2). This proves the binding

property of the commitment scheme. ■
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3.9.2 Σ′- Protocols and Proofs of Knowledge

In [Damgård 2010], Damgard introduced the notion of a Σ−protocol between a prover

and verifier where a prover convinces the verifier that he knows some secret information

without revealing any information about the secret other than the claim that the prover

knows the secret. In [Benhamouda, Camenisch, et al. 2014], they have introduced the

notion of Σ′−protocol which is a weaker version of Damgard’s Σ−protocol. For our

voting protocol, we only need this weaker version since we employ rejection sampling to

prove knowledge of votes without revealing what the vote really is. Before we give the

definition of a Σ′−protocol, we need some preliminary background..

First, the notation {0, 1}∗ means the set of bit strings of arbitrary length.

Definition 3.9.7. A (binary) language is a subset L ⊆ {0, 1}∗.

Definition 3.9.8. A (binary) relation is a subset R ⊆ {0, 1}∗ × {0, 1}∗ such that if

(x,w) ∈ R, then |w| ≤ p(|x|), where | · | denotes the bit string length and p(·) is any

polynomial function.

For some (x,w) ∈ R, x can be thought of as an instance of a computational problem

and w as the solution of that instance. We call w a witness of x in this case.

Σ-protocols

Now, we will define what a Σ−protocol is which is a protocol that involves a prover P

and a verifier V with the goal that P wishes to convince V that he knows a witness w for

some (x,w) ∈ R, R a relation without revealing any information about w. Also, denote

by A(z) to be the output of an algorithm A on input z.

Consider the following protocol, let’s denote it by P: Assume that P and V are

polynomial-time algorithms where P denotes the prover and V denotes the verifier. Let x

be a common input to both P and V , and w be a private input to P such that (x,w) ∈ R.

Let t be some positive integer be the size of the challenge set C, that is C = {0, 1}t.
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The protocol P works in the following steps:

1. P sends a message a := P (x,w) to V .

2. V sends a uniformly random bit string e of length t to P as challenge.

3. P sends a reply z := P (x,w, a, e) and V decides to accept or reject, that is either

V (x, a, e, z) = 1 or V (x, a, e, z) = 0.

Prover(x,w) Verifier(x)

a← P (x,w) a

e e← C

z ← P (x,w, a, e) z V (x, a, e, z) = 0 or 1

Figure 3.3: By convention, the output 0 of verifier V denotes V rejects the proof while output 1
denotes V accepts it.

Definition 3.9.9. A protocol P is said to be a Σ−protocol for a relation R if P is of

the form in Figure 3.3 such that P satisfies the following three properties:

1. Completeness: Whenever (x,w) ∈ R, the verifier V accepts.

2. Special soundness: There exists a probabilistic, polynomial-time algorithm (PPT) E

(knowledge extractor) which takes two accepting transcripts (a, e, z), (a, e′, z′) such

that e ̸= e′ as inputs, and outputs witness w such that (x,w) ∈ R.

3. Special honest-verifier zero knowledge: There exists a PPT algorithm M (the

simulator) which takes x and e as inputs, and outputs (a, z) so that the triple

(a, e, z) is indistinguishable from an accepting protocol transcript generated by a

real protocol run.
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Example 3.9.10. A standard example of a Σ−protocol is a protocol that allows the

prover to convince a verifier that he knows a secret discrete logarithm without revealing

it. This protocol is called Schnorr’s protocol [Schnorr 1989].

Now, let G be a finite group of order prime q. Think of G as a large prime order

subgroup of the multiplicative group Z∗
p, in this case G is a cyclic subgroup. Suppose

that g is a generator for G. Now, Peggy wants to prove to Victor that she knows x ∈ Z∗
q

such that y = gx without revealing x. Both of them proceed to conduct a ZKP.

1. First, Peggy chooses a uniformly random r ∈ Z∗
q , computes R = gr and sends R to

Victor.

2. Victor responds by sending a challenge c ∈ Z∗
q to Peggy.

3. Peggy computes z = xc+ r and sends z to Victor.

4. Victor checks if gz = Ayc. If true, he accepts, otherwise reject.

First, completeness is immediate. For soundness, suppose that Peggy is able to answer

with two distinct challenges with the same initial response R, that is, assume we have two

accepting transcripts (R, c1, z1) and (R, c2, z2). Then we have that x := (z2−z1)/(c2−c1)

satisfies y = gx. Hence, we extracted the secret x which shows soundness. Finally, to

prove zero-knowledge, we need to construct a simulator S that takes y, c as inputs and

outputs a triple indistinguishable from an accepting real transcript. S does the following:

1. Choose a uniformly random z ∈ Z∗
q .

2. Define A = gzy−c

3. Output (A, c, z)

The output of S is clearly indistinguishable from a real accepting transcript.
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Proofs of Knowledge

Now, according to [Damgård 2010], a Σ−protocol for a relation R is a proof of knowledge

for R. But, what do we mean by a “proof of knowledge”? A proof of knowledge essentially

means that a certain prover P can prove that it knows something without revealing the

secret information about it.

Going further, what do we mean by the statement that “a prover P claims to know

something”? In [Damgård 2010], the statement “machine P knows something” means

that P can be used to compute relevant information about that “something” efficiently.

Below we give a precise definition of a proof of knowledge, but before we do that, given

any prover P ∗, denote by ϵ(x) to be the probability that a verifier V accepts on input x.

Definition 3.9.11. Let κ : {0, 1}∗ → [0, 1], a function from bit strings to the interval

[0, 1]. The protocol (P, V ) is said to be a proof of knowledge for relation R with knowledge

error κ, if the following are satisfied:

1. Completeness: On common input x to P and V and private input w of P such that

(x,w) ∈ R, then V always accepts.

2. Knowledge soundness: There exists a PPT algorithm E, called the knowledge

extractor, which gets x as input and has a rewindable black-box access to P , and

attempts to compute w such that (x,w) ∈ R. Additionally, we require the following

holds: There exists a constant c such that whenever κ(x) < ϵ(x), E will output a

correct w in expected time at most

|x|c

ϵ(x)− κ(x)

where access to P counts as one step only.

Here, we think of κ(x) as the probability that a prover, without knowing w, convinces

a verifier.
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Notice that as long as κ(x) is way more smaller than ϵ(x) which is the situation one

gets better at convincing V with knowledge about w, then the efficiency of computing w

gets better as well.

The theorem below states the every Σ−protocol is a proof of knowledge.

Theorem 3.9.12 (Damgård 2010). Let P be a Σ−protocol for a relation R with challenge

length t. Then P is a proof of knowledge with knowledge error 2−t.

A classical example of a Σ−protocol can be found in [Schnorr 1989] which is about a

protocol for proving that some prover knows a secret discrete logarithm.

Note that Σ−protocols only guarantee privacy against honest-but-curious verifiers,

that is, verifiers that do not deviate from the protocol specification. Thus, the natural

question is how do we mitigate any attack from a malicious verifier, one that deviates

from the protocol? The standard technique is given by [Fiat and Shamir 1986], called

the Fiat-Shamir heuristic where we make the protocol non-interactive by replacing the

challenge of the verifier by a hash value of the inputs of a prover. We illustrate the

modification of a Σ−protocol via a Fiat-Shamir heuristic below:

Let H be a cryptographic hash function whose range is the challenge set C and that

both prover P and verifier V have access to. Then a non-interactive Σ−protocol P for

relation R works as follows: Let x be a common input to prover P and verifier V and w

be a private input to P such that (x,w) ∈ R.

1. First, P computes a on input x,w and computes challenge e = H(x, a).

2. Then P computes response z in P on input a, e, w.

3. P sends (a, e, z) to verifier V and V checks whether e = H(x, a) and outputs

V (x, a, e, z) = 0 or 1.

It was shown in [Pointcheval and Stern 1996] that non-interactive Σ−protocols, in fact,

non-interactive zero-knowledge protocols in general are secure against chosen message

attacks in the random oracle model, if we assume that random oracles exist.
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Moreover, it is more advantageous to deploy non-interactive Σ−protocols over the

interactive ones in self-tallying voting protocols to reduce the communication cost. Hence,

we will resort to non-interactive proofs and thus, we assume security in the random oracle

model as well.

The OR-proof

Suppose a prover P wants to convince a verifier V that on inputs x0, x1, P knows a

witness w such that either (x0, w) ∈ R or (x1, w) ∈ R without revealing which is the

case. To solve the problem above, we assume first that we have a Σ−protocol P for a

relation R and use P as a subroutine to construct another Σ−protocol for the relation

ROR = {((x0, x1), w) : (x0, w) ∈ R or (x1, w) ∈ R}.

First, let (x0, x1) be a common input to both prover P and verifier V and a private

input w to P such that (xb, w) ∈ R, where either b = 0 or 1. Assume also that we have a

Σ−protocol P for relation R.

We construct a protocol denoted by POR for relation ROR as follows:

1. P computes ab = P (xb, w) in P and P chooses e1−b at random and runs the

simulator M in P on input (x, e1−b) and let (a1−b, e1−b, z1−b) as its output. P

sends a0, a1 to V .

2. V chooses a random bit string s of length t and sends it to P .

3. P sets eb := s⊕ e1−b (⊕ denotes the XOR operation on bit strings) and computes

an answer zb := P (xb, w, ab, eb) to eb in P. P sends e0, z0, e1, z1 to V .

4. V checks that s = e0 ⊕ e1 and that both (a0, e0, z0) and (a1, e1, z1) are accepting

conversations in P on inputs x0, respectively x1.

We summarize the protocol POR in the figure below.
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Prover(x0, x1, w) with (xb, w) ∈ R Verifier(x0, x1)

ab ← P (xb, w)

e1−b ← C

(a1−b, e1−b, z1−b)←M(x, e1−b) (a0, a1)

s s← C

eb = s⊕ e1−b

zb = P (xb, ab, eb, w) (e0, z0, e1, z1) s
?= e0 ⊕ e1

V (a0, e0, z0) ?= 1

V (a1, e1, z1) ?= 1

Figure 3.4: Summary of protocol POR, a Σ−protocol for ROR.

Theorem 3.9.13 (Damgård 2010). POR above is a Σ−protocol for ROR.

Proof. Completeness: Completeness is straightforward since (ab, eb, zb) is a real protocol

transcript generated by an honest prover while (a1−b, e1−b, z1−b) is indistinguishable from

a real protocol transcript. Thus, any verifier will accept both as valid transcripts.

Special soundness: Given two accepting transcripts

((a0, a1), s, (e0, z0, e1, z1))

and

((a0, a1), s′, (e′
0, z

′
0, e

′
1, z

′
1)),

then both (ab, eb, zb) and (ab, e′
b, z

′
b) are accepting transcripts for relation R. Using the

special soundness property of the Σ-protocol for relation R, there is a knowledge extractor
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E that outputs witness w such that (xb, w) ∈ R. Hence w is a witness for (x0, x1) for

relation ROR.

Special honest-verifier zero knowledge: On input s ∈ C, we construct simulator SOR

as follows: first, S chooses e0
$←− C and let e1 = s ⊕ e0. Now, run simulator S in the

Σ−protocol for relation R twice, the first time on input (x0, e0) and on the second time

on input (x1, e1). Hence, S produces two accepting transcripts for R indistinguishable

from real protocol runs, which are (a0, e0, z0) and (a1, e1, z1). Finally, SOR outputs

((a0, a1), s, (e0, z0, e1, z1))

which is indistinguishable from a real accepting transcript when POR is run by an honest

prover and honest verifier, ■

Σ′−protocols

Now, we introduce a somewhat weaker version of Σ−protocols called Σ′−protocols and in

fact, we will employ a Σ′−protocol to our voting protocol to ensure that voters honestly

follow the voting protocol specification that we will illustrate in Section 5.

Definition 3.9.14. Let P = (P, V ) be a two-party protocol, where V is a PPT algorithm,

and let R,R′ be two relations such that R ⊆ R′. Then P is called a Σ′−protocol for

relations R,R′ with completeness error α, challenge set C, public input x and private

input w, if P is of the same form as in Figure 3.3 but P satisfies the rather weaker

conditions:

• Completeness: Whenever (x,w) ∈ R, the verifier V accepts with probability at least

1− α.

• Special soundness: There exists a PPT algorithm E (knowledge extractor) which

takes two accepting transcripts (a, e, z), (a, e′, z′) such that e ̸= e′ as inputs, and

outputs witness w′ such that (x,w′) ∈ R′.
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• Special honest-verifier zero knowledge: There exists a PPT algorithm M (the

simulator) which takes x and e as inputs, and outputs (a, z) so that the triple

(a, e, z) is indistinguishable from an accepting protocol transcript generated by a

real protocol run.

Notice the difference between the completeness and special soundness properties of

Σ′−protocols and Σ−protocols, since in a Σ′−protocol, the verifier may reject the proof

of an honest prover with probability at most α due to a weaker completeness property

and also the extracted witness w′ in the special soundness property in Σ′ has (x,w′) lying

in the larger relation R′ which means that the verifier is only assured that the prover

knows a witness in R′, not necessarily in the original relation R.

3.9.3 RLWE-based Σ′− protocols

Now, we present two Σ′−protocols that will be an essential cryptographic primitive

in constructing our self-tallying voting scheme. The first protocol is about proving

knowledge of a secret in an RLWE sample and the other is OR-proof that either a certain

polynomial is an RLWE sample or an RLWE sample added by 1. The Σ′−protocols that

we will present are very similar to the one in [Benhamouda, Camenisch, et al. 2014] with

just a slight modification.

Before we present the two Σ′−protocols, we state the following technical lemma from

[Benhamouda, Camenisch, et al. 2014] which says that certain binomials in Z[X]/(Xn+1)

can be inverted, and their inverses have small coefficients. This lemma is essential for

the proof of the special soundness property of the construction of the Σ′-protocol in

[Benhamouda, Camenisch, et al. 2014] as well as our own protocol.

Lemma 3.9.15 (Benhamouda, Camenisch, et al. 2014). Let n be a power of 2 and let

0 < i, j < n− 1, i ≠ j. Then 2(Xi −Xj) (mod Xn + 1) is invertible and 2(Xi −Xj)−1

(mod Xn + 1) only has coefficients in {−1, 0, 1}.
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Now, we present our first Σ′−protocol which is a protocol for the following relations:

Rb,m,σ,n =
{

((a, y), (s, e)) ∈ R2
q ×R2

q : y = as+ (m+ 1)e+ b, ∥s∥∞, ∥e∥∞ ≤ σ
√
n
}

(3.9.5)

R′
b,m,σ,n =

{
((a, y), (s, e)) ∈ R2

q ×R2
q : 2y = 2(as+ (m+ 1)e+ b), ∥2s∥∞, ∥2e∥∞ ≤ 2σn(

√
n logk 2n+ 1)

}
(3.9.6)

where b ∈ {0, 1}, m,n ∈ N, q ≡ 3 mod 8, σ > 0, for some constant k > 1
2, and 2s and 2e

are reduced modulo q. Moreover, it is trivial to check that Rb,m,σ,n ⊆ R′
b,m,σ,n.

Description of the Σ′−protocol for relations Rb,m,σ,n ⊆ R′
b,m,σ,n.

First, both prover and verifier agree to σ > 0, quotient ring Rq := Zq[X]/(Xn + 1),

where n is a power of two, q ≡ 3 mod 8 a prime and m ∈ N. Set σ̃ = ασ
√

2n with

α = (log 2n)k, where k > 1
2 is fixed. Set M = e

12
(log 2n)k + 1

2(log 2n)2k . Fix b ∈ {0, 1}. All the

above parameters are public.

Let (a, y) be common inputs to prover and verifier and let (s, e) be a private input to

prover such that ((a, y), (s, e)) ∈ Rb,m,σ,n.

1. First, the prover draws rs, re $←− DZn, σ̃√
2

and computes t = ars + (m+ 1)re in Rq,

then sends t to the verifier.

2. The verifier draws a uniformly random chosen c ∈ C := {0, 1, . . . , n− 1}.

3. After receiving c from the verifier, the prover sends (ss, se) := (rs, re) + (Xcs,Xce)

to the verifier if either:

• DZ2n,σ̃(ss, se) ≥M ·D(Xcs,Xce)+Z2n,σ̃(ss, se) or;

• if DZ2n,σ̃(ss, se) < M ·D(Xcs,Xce)+Z2n,σ̃(ss, se), prover draws u from uniform

distribution on [0,M · D(Xcs,Xce)+Z2n,σ̃(ss, se)] and output (ss, se) if u <

DZ2n,σ̃(ss, se).
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If none of the two cases holds, the prover sends an abort message ⊥ to the verifier

and returns to step 1. In this step, by Theorem 3.8.2, the probability that (ss, se)

is output and thus, the prover sends a response to the verifier is at least 1− 2−100

M

and so, the probability that the prover aborts is at most 1−
(

1− 2−100

M

)
.

Notice that our protocol employs a rejection sampling algorithm for the response of

the prover to the challenge of the verifier. We set the following parameters. First, given

the standard deviation σ of the discrete Gaussian distribution DZn,σ, we put T := σ
√

2n

and σ̃ = ω(T
√

log 2n), for instance, take σ̃ = σ
√

2n(log 2n)k for any fixed k >
1
2 . Then

according to Theorem 3.8.2, with M = e
12

(log 2n)k + 1
2(log 2n)2k , the algorithm A outputs

(ss, se), viewed as an element of Z2n in the protocol with probability at least 1− 2−100

M
.

Also, choosing k as close to 1/2 means that the acceptance probability in a single

run is as small as possible but it has also the advantage of having a smaller gap factor

between the two relations Rb,m,σ,n and R′
b,m,σ,n, which is the ratio 2σn(

√
n logk 2n+ 1)
σ
√
n

=

2
√
n(
√
n(log 2n)k + 1). Notice that the smaller the gap factor is, the more the verifier is

convinced that the prover knows witnesses in the original relation Rb,m,σ,n. Hence, we

see a trade off between the running time of the Σ′−protocol and the gap factor since

both depend on n and k.

Our Σ′−protocol for relations Rb,m,σ,n ⊆ R′
b,m,σ,n can be summarized by Figure 3.5:
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Prover Verifier

rs, re
$←− DZn,σ̃/

√
2

t = ars + (m+ 1)re

t

c c
$←− C = {0, 1, . . . , n− 1}

ss = rs +Xcs

se = re +Xce

accept with probability

1− 2−100

M

(ss, se) Xc(y − b) + t
?= ass + (m+ 1)se

∥ss∥, ∥se∥
?
≤ σ
√
n(
√
n logk 2n+ 1)

Figure 3.5: Σ′ - protocol for relations Rb,m,σ,n ⊆ R′
b,m,σ,n. Here the prover wants to prove

knowledge of secret (s, e) such that ((a, y), (s, e)) ∈ Rb,m,σ,n.

Despite the fact that Σ′−protocols are weaker in the sense that verifiers are only

convinced that honest provers know a witness in the larger relation R′
b,n,σ,n, such weaker

protocols are already used for example in [Xie et al. 2013], [Benhamouda, Camenisch,

et al. 2014] and [Benhamouda, Krenn, et al. 2015].

Theorem 3.9.16. The Σ′ - protocol in Figure 3.5 is an honest-verifier zero knowledge

Σ′-protocol for the relations Rb,m,σ,n and R′
b,m,σ,n. The protocol has a knowledge error of

1/n and completeness error of 1− 1/M .

Proof. Completeness: In a single run, the probability that an honest verifier accepts

the proof of an honest prover is 1/M , hence the completeness error is 1− 1
M

. Also, in
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the case that an honest prover successfully sends a challenge response, then

Xc(y − b) + t = Xc(as+ (m+ 1)e+ b− b) + ars + (m+ 1)re

= a(Xcs+ rs) + (m+ 1)(Xce+ re)

= ass + (m+ 1)se

and also,

∥ss∥ ≤ ∥rs∥+ ∥Xcs∥

≤ σ̃
√
n√
2

+ σ
√
n

= σn(logk 2n) + σ
√
n

= σ
√
n(
√
n logk 2n+ 1)

with overwhelming probability by Lemma 3.3.13 and also since Xcs is just an anti-cyclic

shift of s in Rq, hence ∥Xcs∥ = ∥s∥. By similar arguments, ∥se∥ ≤ σ
√
n(
√
n logk 2n+ 1).

This shows completeness.

Special soundness: Let c, c′ be two distinct challenges from C and let (ss, se), (s′
s, s

′
e) be

two distinct final responses from prover P such that both (t, c, (ss, se)) and (t, c′, (s′
s, s

′
e))

are accepting transcripts. The knowledge extractor E proceeds as follows to extract

witness in the relation R′
b,m,σ,n:

Taking the difference between the equations

Xc(y − b) + t = ass + (m+ 1)se

and

Xc′(y − b) + t = as′
s + (m+ 1)s′

e

we get

(y − b)(Xc −Xc′) = a(ss − s′
s) + (m+ 1)(se − s′

e) (3.9.7)
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Then multiplying both sides of (3.9.7) by 2(Xc −Xc′)−1, we have

2y = 2aŝ+ 2(m+ 1)ê+ 2b

where ŝ = (ss − s′
s)(Xc −Xc′)−1 and ê = (se − s′

e)(Xc −Xc′)−1. Moreover,

∥2ŝ∥∞ ≤ ∥ss − s′
s∥ · ∥2(Xc −Xc′)−1∥ (by Lemma 3.7.7)

≤ (∥ss∥+ ∥s′
s∥)
√
n (by Lemma 3.9.15)

≤ 2σn(
√
n logk 2n+ 1)

and similarly, ∥2ê∥∞ ≤ 2σn(
√
n logk 2n+ 1). Hence, (ŝ.ê) is a witness for (a, y) under

the relation R′
b,m,σ,n.

Special honest-verifier zero knowledge: Fix challenge c $←− C as an input of the simulator

S. The goal of the simulator S is to produce (t, (ss, se)) such that (t, c, (ss, se)) is

indistinguishable from a real accepting transcript from a real interaction between an

honest prover and honest verifier. Note that the simulator S also knows the values of the

public key a, the bit b and y. We now describe the execution of S. First S chooses ss, se $←−

DZn,σ(logk n+1) with probability 1− 2−100

M
. Otherwise, with probability 1−

(
1− 2−100

M

)
,

take (ss, se) =⊥, where ⊥ is the abort message. In the case where ss and se are chosen

from the discrete Gaussian distribution, we have that ∥ss∥, ∥se∥ ≤ σ
√
n(logk 2n+ 1) with

overwhelming probability by Lemma 3.3.13. Now, S takes t = ass+ (m+ 1)se−Xc(y− b)

in the case where ss, se are taken from the discrete Gaussian distribution while take t as

a uniformly random chosen element in Rq if (ss, se) =⊥. Hence, it can be easily seen that

(t, c, (ss, se)) is indistinguishable from a real accepting transcript since in addition, the

construction of t is indistinguishable from uniformly random ones by the decisional RLWE

assumption whenever ss, se are chosen from the discrete Gaussian distribution which

happens with probability 1− 2−100

M
while otherwise, t is uniformly random in Rq. Thus,

in both cases, the distribution of t generated by an honest prover is indistinguishable
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from the distribution of t generated by S. This proves the special honest-verifier zero

knowledge property. ■

Remark 3.9.17. As in Σ−protocols, we can make our Σ′−protocols non-interactive by

using a cryptographic hash function H and replace the challenge of an interactive verifier

by the value c = H((a, y), t), where (a, y) is the first pair of an element in Rb,m,σ,n and t

is the first message/commitment of the prover in the protocol. Hence, we eliminate any

attack of a dishonest verifier through the above Fiat-Shamir heuristic but again, we have

privacy in the random oracle model.

OR-proof using Σ′−protocols

For simplicity, if the parameters σ,m and n are already understood, we simply denote the

relation Rb := Rb,m,σ,n for b ∈ {0, 1}. Similarly, denote by R′
b := R′

b,m,σ,n Now, define

ROR := R0 ∪ R1 and R′
OR := R′

0 ∪ R′
1. Denote by Pb be the Σ′−protocol for proving

relations Rb ⊆ R′
b, b ∈ {0, 1}.

We consider the following problem: Suppose a prover and a verifier has common input

(a, y) and the prover has private input (s, e) such that ((a, y), (s, e)) ∈ ROR. Furthermore,

assume that the private input ((a, y), (s, e)) of the prover satisfies only ((a, y), (s, e)) ∈ Rb

for some b ∈ {0, 1} but not in R1−b. The prover wants to prove to the verifier that he

knows some secret pair (s, e) such that ((a, y), (s, e)) ∈ ROR without revealing which

among the relations R0 and R1 does ((a, y), (s, e)) belong to.

We propose a solution to the above problem using an OR-proof for the relation ROR

similar to the OR-proof using Σ−protocols but in our case, the verifier is only guaranteed

that the prover knows the witness in the larger relation R′
OR.

Given two relations R0,R1 with corresponding Σ′−protocols, say Pi for Ri, i = 0, 1,

the prover wishes to prove knowledge of witness (s, e) such that given (a, y) as common

inputs to both the prover and the verifier, either ((a, y), (s, e)) ∈ R0 or ((a, y), (s, e)) ∈ R1

without revealing which one.
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In a similar fashion as in the OR-proof using Σ−protocols, we construct a Σ′−protocol

for the relations ROR ⊆ R′
OR, with

ROR = {((a, y), (s, e)) : ((a, y), (s, e)) ∈ R0 ∪R1}

and

R′
OR = {((a, y), (s, e)) : ((a, y), (s, e)) ∈ R′

0 ∪R′
1}

where

Rb =
{

((a, y), (s, e)) ∈ R2
q ×R2

q : y = as+ (m+ 1)e+ b, ∥s∥∞, ∥e∥∞ ≤ σ
√
n
}

and

R′
b =

{
((a, y), (s, e)) ∈ R2

q ×R2
q : 2y = 2(as+ (m+ 1)e+ b), ∥2s∥, ∥2e∥≤2σn(

√
n logk 2n+ 1)

}

for b ∈ {0, 1}.

Now we describe our Σ′−protocol for relations ROR ⊆ R′
OR. This can be realized by

the following steps: First, let (a, y) be a common input to both prover P and verifier V

and let (s, e) be a private input to the prover such that ((a, y), (s, e)) ∈ ROR. Without

loss of generality, assume that ((a, y), (s, e)) ∈ Rb but not in R1−b for a fixed b ∈ {0, 1}.

Furthermore, denote by P0 (respectively, P1) to be the Σ′−protocol for relations R0 ⊆ R′
0

(resp. R1 ⊆ R′
1).

1. P chooses c1−b
$←− C = {0, 1, . . . , n − 1} and runs the simulator S1−b of P1−b to

obtain the tuple (t1−b, c1−b, (ss,1−b, se,1−b)) which is indistinguishable from real

protocol runs with probability 1
M

, so this entire step may take approximately M

times before a tuple is obtained.
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2. Now, P chooses rs,b, re,b
$←− DZn,σ̃/

√
2 and computes for tb = ars,b + (m+ 1)re,b in

Rq.

3. Now, P sends the tuple (t0, t1) to the verifier.

4. V sends a challenge c $←− C = {0, 1, . . . , n− 1}.

5. P computes for cb = c ⊕ c1−b. Also, he computes ss,b = rs,b + Xcbs and se,b =

re,b + Xcbe with probability 1
M

, (otherwise, the prover aborts and restarts the

protocol) and sends the following two responses

(c0, ss,0, se,0), (c1, ss,1, se,1)

to the verifier.

6. Finally, the verifier will check if the tuple (t0, c0, (ss,0, se,0)) (also for (t1, c1, (ss,1, se,1)))

is an accepting transcript for P0 (respectively for P1) and c = c0 ⊕ c1.

We can summarize the above Σ′− protocol for ROR ⊆ R′
OR in the figure below:
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Prover Verifier

c1−b ← C = {0, 1, . . . , n− 1}

(t1−b, (ss,1−b, se,1−b)) $←− S1−b(c1−b)

rs,b, re,b
$←− DZn,σ̃/

√
2

tb = ars,b + (m+ 1)re,b

(t0, t1)

c c
$←− C = {0, 1, . . . , n− 1}

cb = c⊕ c1−b

ss,b = rs,b +Xcbs

se,b = re,b +Xcbe

accept with probability 1− 2−100

M

from rejection sampling theorem

(c0, (ss,0, se,0))

(c1, (ss,1, se,1))

accept if for each b ∈ {0, 1},

(tb, cb, (ss,b, se,b))

is an accepting

transcipt for Pb and c0 ⊕ c1 = c.

Figure 3.6: Σ′−protocol for proving knowledge of secret for relations ROR ⊆ R′
OR. Here,

assume that the prover knows secret (s, e) such that ((a, y), (s, e)) ∈ Rb but does not want the
verifier to learn exactly which among the relations R0 and R1 does ((a, y), (s, e)) belong to.

Theorem 3.9.18. Figure 3.6 is a Σ′− protocol for relations ROR (3.9.3), R′
OR (3.9.3)

with completeness error 1− 1
M and knowledge error 1

n
.
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Proof. Completeness: If (ss,b, se,b) is accepted by the rejected sampling algorithm which

occurs with probability 1− 2−100

M
then both (t0, c0, (ss,0, se,0)) and (t1, c1, (ss,1, se,1)) are

accepting transcripts for both P0 and P1 protocols, respectively. If (ssb
, se,b) is rejected,

that is, the challenge response of the prover is an abort message then the proof halts

with probability 1− 1− 2−100

M
.

Special soundness: Let ((t0, t1), c, (c0, c1, (ss,0, se,0))) and ((t0, t1), c′, (c′
0.c

′
1, (s′

s,0, s
′
e,0)))

be two accepting transcripts such that c ̸= c′. Thus, there exists a b ∈ {0, 1} such that

cb ≠ c′
b and that both (tb, cb, (ss,b, se,b)) and (tb, c′

b, (s′
s,b, s

′
e,b)) are accepting transcripts

for Pb. Using the special soundness property of Pb, there is a knowledge extractor Eb

that outputs (ŝb, êb) such that ((a, y), (ŝb, êb)) ∈ R′
b. Hence, ((a, y), (ŝb, êb)) ∈ R′

OR which

shows the special soundness property.

Special honest-verifier zero-knowledge: We construct the simulator SOR which takes c ∈ C

as input and outputs ((t0, t1), (c0, c1), (ss,0, se,0), (ss,1, se,1)) such that

((t0, t1), c, ((c0, (ss,0, se,0)), (c1, (ss,1, se,1))))

is indistinguishable from a real protocol transcript. First, SOR generates c, c0
$←− C

and computes c1 := c ⊕ c0. Then SOR runs the simulators S0 and S1 from the P0

and P1 protocols, respectively to produce two accepting transcripts (t0, c0, (ss,0, se,0))

for P0 and (t1, c1, (ss,1, se,1)) for P1 which are both indistinguishable from real accept-

ing transcripts. Finally, SOR outputs ((t0, t1), (c0, c1), (ss,0, se,0), (ss,1, se,1)) such that

((t0, t1), c, ((c0, (ss,0, se,0)), (c1, (ss,1, se,1)))) is indistinguishable from a real protocol tran-

script. This proves the special honest-verifier zero-knowledge property. ■

Non-interactive Σ′− protocols

So far, all the protocols we mentioned require an interaction between a prover and a

verifier but as mentioned in [Damgård 2010], we can replace the challenge response from
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the verifier using a Fiat-Shamir heuristic [Fiat and Shamir 1986], that is, given that

a prover and verifier initially agrees with a common public hash function H, then the

prover takes (or first response) (t0, t1) and the public pair (a, y) as inputs of H and

he receives c = H(t, (a, y)) as a random challenge which is indistinguishable from a

challenge of an interactive verifier. Finally, the prover proceeds to obtain final response

(c0, (ss,0, se,0)), (c1, (ss,1, se,1)). Now, the verifier accepts if

((t0, t1), c, (c0, (ss,0, se,0)), (c1, (ss,1, se,1)))

is a valid transcript and also checks if c = H(t, (a, y)).

Interactive proofs seem to be not too costly efficiency-wise in the case where one proves

that the statement is true without revealing any secret information to only a single

verifier. Now, the question is, what if the prover needs to prove a certain statement to

multiple, possibly a large number of verifiers? If the prover insists on conducting an

interactive zero knowledge proof, the verification process involving a large number of

verifiers may seem to be a very impractical or inefficient task. Hence, a solution to this

problem is by “simulating" the challenge response part of the verifier in the interactive

Σ′−protocol described above.

Simulating the challenge response of an interactive verifier by the output of a random

oracle on input the given statement, public parameters and the initial response of the

prover makes the protocol non-interactive. A random oracle can be viewed as a black

box that takes certain inputs and outputs something that is indistinguishable from a

uniformly random chosen element in its range.

The question whether random oracles exist is still an open problem, but in practice, in

place of random oracles, we apply a cryptographic hash function that somehow mimics

the ideal behavior of a random oracle. A hash function is a function that maps arbitrary

sized bit strings to fixed-sized bit strings and is collision-resistant and inversion-resistant.
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Hash functions are deterministic but its outputs follow a distribution indistinguishable

from uniform. An example of a hash function that is currently deployed is SHA-256.

This noninteractive setup provides security against chosen message attacks in the

random oracle model [Pointcheval and Stern 1996] .
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Chapter 4
A lattice-based veto protocol

In 2020, [Ding, Emery, et al. 2020] constructed an AV-net based on the hardness of the

decision RLWE problem defined in Section 3.7 which is at least as hard (quantumly) as

worst-case ideal lattice problems such as SIVP. The protocol is a lattice-based analogue

of [Hao and Zieliński 2006], that is, the specifications are very similar. In the passively

secure version of [Ding, Emery, et al. 2020], the protocol has two rounds while the actively

secure version has four rounds where the additional layer of a commitment scheme is

employed to resist any attack of an active, malicious adversary.

4.1 Passively Secure Lattice-Based AV-Net

In the passively secure version of the protocol, the adversarial model is the one controlling

corrupted parties in the protocol and tries to learn the secret keys and votes of the honest

participants just by reading the published messages on the authenticated bulletin board.

Now, we describe the protocol with the following parameters:

• Let n be a power of 2.

• Let R be the cyclotomic ring Z[X]/f(X) where f(X) = Xn + 1.

• Let χ to be the discrete Gaussian distribution on Zn with parameter σ.
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• Let β = σ
√
n.

• Let m be an integer. (This will be the number of voters.)

• Let q be a prime such that q ≡ 1 mod 2n such that m · (m− 1) ·β2 +m ·β ≤ q

4 − 2.

• Let Rq be the quotient ring R/qR.

• Let the coefficients of a polynomial in Rq be in the interval [− q−1
2 , q−1

2 ].

• Let ∥ · ∥ be the ℓ2−norm on Rq and ∥ · ∥∞ be the ℓ∞−norm on Rq.

At the beginning of the protocol, all participants select a uniformly random element

a ∈ Rq. Now, in the first round, each participant Pi selects si, ei from the χ. Then Pi

computes bi = a · si + ei, where all the computations are done in the ring Rq.

After all the bi’s are published, each participant Pi computes

yi :=
∑
j<i

bj −
∑
j>i

bj . (4.1.1)

In the second round, that is, the voting phase, each participant Pi publishes their vote ci,

where

ci =


siyi + e′

i if vote is 0 (no-veto)

ri if vote is 1,

where e′
i is a fresh error chosen from the discrete Gaussian distribution on Zn. The result

is computed by taking the sum
m∑
i=1

ci ∈ Rq, where m is the number of participants.

After all voters have published their ci’s, each voter (locally) computes the final result

as follows:

res←


no veto if

∥∥∥∥∥
m∑
i=1

ci

∥∥∥∥∥
∞

≤ q

4 − 2

veto otherwise
.
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We show that the passively secure veto protocol is correct, i.e., it outputs the correct

result (with overwhelming probability) if all participants follow the protocol specification

correctly (Theorem 4.1.2). To this end, we use the following result which ensures that

the error terms introduced (for privacy reasons) do not undermine correctness of the veto

protocol except with negligible probability.

Lemma 4.1.1. The probability that a uniformly chosen random element r ∈ Rq has max

norm less than or equal to N ≥ 1 is given by

Pr[∥x∥∞ ≤ N : x← Rq] = (2N + 1)n
qn

.

Theorem 4.1.2 (Correctness). Let Πveto be the veto protocol defined in Section 4.1.

Assume that all voters V1, . . . ,Vm (and the bulletin board B) are honest, i.e., run their

programs as specified by the protocol. Then, we have that for all runs (of this instance)

of Πveto, the following equivalence holds true with overwhelming probability: The final

result res is “veto” if and only if there exists (at least) one voter Vi who chooses “veto”.

Proof. First, let’s consider the case where all voters choose “no veto”. Then we have

that

m∑
i=1

ci =
m∑
i=1

(si · yi + e′
i)

=
m∑
i=1

si ·

i−1∑
j=1

bj

−
 m∑
j=i+1

bj

+
m∑
i=1

e′
i

=
m∑
i=1

si ·

i−1∑
j=1

a · sj + ej

−
 m∑
j=i+1

a · sj + ej

+
m∑
i=1

e′
i

=

 m∑
i=1

i−1∑
j=1

si · ej −
m∑
i=1

m∑
j=i+1

si · ej

+
m∑
i=1

e′
i

holds true, where the last equality follows from Lemma 2.1.2.
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Recall that all si, ei and e′
i are chosen according to χ, hence their norm is bounded by

β = σ
√
n (with overwhelming probability in the security parameter n) by Lemma 3.3.13.

Hence, by triangle inequality and by Lemma 3.7.7, with overwhelming probability we

have that

∥∥∥∥∥
m∑
i=1

ci

∥∥∥∥∥
∞

=

∥∥∥∥∥∥
 m∑
i=1

i−1∑
j=1

si · ej −
m∑
i=1

m∑
j=i+1

si · ej

+
m∑
i=1

e′
i

∥∥∥∥∥∥
∞

≤
m∑
i=1

∑
j ̸=i
∥si · ej∥∞ +

m∑
i=1
∥e′
i∥∞

≤
m∑
i=1

∑
j ̸=i
∥si∥ · ∥ej∥+

m∑
i=1
∥e′
i∥

≤m · (m− 1) · β2 +m · β

≤q4 − 2.

Conversely, assume that one of the voters vetoes, hence chooses ci uniformly at random

from Rq. From Lemma 4.1.1, it follows that the probability that
m∑
i=1

ci has max norm

≤ q

4 − 2 is negligible:

Pr[∥r∥∞ ≤
q

4 − 2 : r ← Rq] = 2−n
(
q − 6
q

)n
< 2−n.

Hence, altogether, we can conclude that (with overwhelming probability) the final

result res equals “veto” if and only if at least one voter vetoes. This proves the correctness

of the passively secure veto protocol. ■

Notice that the public bi’s are RLWE samples from RLWE distribution whose secret is

si and by the RLWE hardness assumption (see Section 3.7), it is indistinguishable from

uniform. The main issue in the protocol is that if one of the parties actively deviate from

the protocol.
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Specifically the issue is at the point of the protocol where the last voter casts its vote.

Suppose there are m participants and m− 1 participants have already published their

votes ci. Then the last voter can check the result of the protocol just by adding smym

to
m−1∑
i=1

ci and see if the infinity norm is small, hence the result is no-veto, and if the

infinity norm is more than the acceptance bound of a no-veto result, then the final result

is veto. If the last voter wants to overturn a veto result into a no-veto one, the last voter

must choose cm such that cm +
m−1∑
i=1

ci is small which he can easily do by choosing the

coefficients of cm so that the sum falls within the acceptance bound of a no-veto result.

Hence, to resist such an attack of an active adversary controlling all but at least two

parties, [Ding, Emery, et al. 2020] proposed an actively secure version of the protocol by

employing a commitment scheme before publishing the bi’s and ci’s.

4.2 Actively Secure Lattice-Based AV-Net

We now describe how the passively secure veto protocol from Section 4.1 can be extended

in order to defend against active adversaries that want to break privacy as well as the

correctness of the voting result. Now, we employ an arbitrary lattice-based commitment

scheme (KGen,Com,Open) which is (at least) computationally hiding and (at least)

computationally binding under standard lattice hardness assumptions. The actively

secure protocol specifies that voters open their commitments exactly in the reverse order

according to which they published them to resist such active attacks we mentioned at

the end of Section 4.1.

More precisely, we extend the veto protocol from Section 4.1 as follows. Denote a

generic commitment scheme by (KGen,Com,Open).

Parameters (extended). We denote by prm the joint public parameters of the commit-

ment scheme (computed by running KGen).
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Offline phase (extended). Each voter Vi, after having computed bi, executes the

following steps:

3. Compute (γi, ρi)← Com(prm, bi).∗

4. Publish γi.

5. Wait until all γj were published (j ∈ {1, . . . ,m}).

6. Set σ ← order of published γj ’s (according to their time stamps).

7. Wait until all (bj , ρj) were published for σ(j) > σ(i).

8. Publish (bi, ρi).

9. Wait until all (bj , ρj) were published for σ(j) < σ(i).

10. If Open(prm, bj , γj , ρj) = 0 for some j ̸= i, then abort.

Online phase (extended). Each voter Vi, after having computed ci, executes the

following steps:

3. Compute (γ′
i, ρ

′
i)← Com(prm, ci).

4. Publish γ′
i.

5. Wait until all γ′
j were published (j ∈ {1, . . . ,m}).

6. Set σ′ ← order of published γ′
j ’s (according to their time stamps).

7. Wait until all (cj , ρ′
j) were published for σ′(j) > σ′(i).

8. Publish (ci, ρ′
i).

9. Wait until all (cj , ρ′
j) were published for σ′(j) < σ′(i).

10. If Open(prm, cj , γ′
j , ρ

′
j) = 0 for some j ̸= i, then abort.

∗In other words, γi is the commitment to bi using randomness ρi.
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Verifiable correctness

In this section, we show that the veto protocol defined in Section ?? is verifiably correct

even if an arbitrary adversary actively corrupts (a subset of) voters.

We note that we can restrict our attention to the case that an adversary aims to swap

an honest “veto” into “no veto”. In fact, if an adversary (controlling at least one voter)

wants the final result to be “veto”, then he can simply let the corrupted voter run her

“veto” program.

The theorem below shows verifiable correctness of the actively secure version of the

veto protocol. Also, we include the proof from [Ding, Emery, et al. 2020] to illustrate how

this modified version resists the attack of an adversary who may adaptively change its

input, specifically in the case where it tries to overturn a veto result into a no-veto one.

Theorem 4.2.1 (Verifiable correctness). [Ding, Emery, et al. 2020, Theorem 4] Let Πveto

be the veto protocol defined in Section 4.2. Assume that the bulletin board B is honest.

Assume that the commitment scheme is computationally binding and hiding. Then, we

have that for all runs (of these instances) of Πveto, the following implication holds true

with overwhelming probability: If there exists an honest voter who chooses “veto”, then

the final result is “veto” (or the protocol aborts prematurely).

Proof. We follow the proof from the paper [Ding, Emery, et al. 2020].

We assume without loss of generality that there exists one honest voter, namely, V1.

This voter always chooses “veto”. Furthermore, we first restrict our attention to the case

that there exists one more voter, V2, which is controlled by an arbitrary PPT adversary

A. Now, we distinguish between the following two sets of protocol runs:

1. Voter V1 publishes γ′
1 before voter V2 has published γ′

2.

2. Voter V2 publishes γ′
2 before voter V1 has published γ′

1.
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In the first set of protocol runs, the probability that there is a final result and that

this result is “no veto” equals to the probability that an arbitrary adversary A′ can win

the following game (run with challenger C):

1. C: choose c1
r←− Rq

2. C: compute (γ1, ρ1)← Com(prm, c1)

3. C: return γ1

4. A′: return c2

5. A′ wins if and only if ∥c1 + c2∥∞ < q
4 − 2

Since we assume that the commitment scheme is computationally hiding and since

Lemma 4.1.1 holds true, any PPT A′ can win this game only with at most negligible

probability.

In the second set of protocol runs, the probability that there is a final result and that

this result is “no veto” equals to the probability that an arbitrary adversary A′ can win

the following game (run with challenger C):

1. A′: return γ2

2. C: choose c1
r←− Rq

3. C: return c1

4. A′: return (c2, ρ2)

5. A′ wins if and only if ∥c1 + c2∥∞ < q
4 − 2 and Open(prm, c2, γ2, ρ2) = 1.

Since we assume that the commitment scheme is computationally binding and since

Lemma 4.1.1 holds true, any PPT A′ can win this game only with at most negligible

probability.
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This proves that Theorem 4.2.1 holds true for one honest plus one dishonest voter. It

is easy to see that the more general result, i.e., Theorem 4.2.1 with an arbitrary number

of dishonest voters, effectively reduces to the two cases with one dishonest voter discussed

above. ■

Privacy

Finally privacy of individual votes from honest voters in the presence of malicious

adversaries hold by the theorem below:

Theorem 4.2.2 (Privacy). [Ding, Emery, et al. 2020, Theorem 5] Assume that the

RLWE hardness result holds true. Assume that the commitment scheme is computationally

binding and hiding. Let A be an arbitrary malicious ppt adversary which controls (at

most) all but two voters (Vi)i∈Idis
. Let (Vi)i∈Ihon

denote the remaining (uncorrupted)

voters. Let (vi)i∈Ihon
and (v′

i)i∈Ihon
be two arbitrary vectors of choices that yield the same

result res. Then, the probability that the adversary A can distinguish between the set of

runs in which the honest voters (Vi)i∈Ihon
vote according to (vi)i∈Ihon

or to (v′
i)i∈Ihon

is

negligible.
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Chapter 5
Self-tallying voting protocol

In this chapter, we will present a self-tallying voting protocol which involves m voters,

let’s call the voters Vi for i ∈ {1, . . . ,m} and two candidates, say, C1 and C2. We will

present two variants of the protocol: one is secure against semi-honest adversaries and

the other is secure against malicious adversaries.

Furthermore, we will mention an extension of our protocol which is the case involving

multiple candidates, possibly more than 2. In this chapter, we will only describe the

protocol specifications and the proof of correctness and leave out the security proofs in

Chapter 6.

5.1 Self-tallying voting protocol specification

Suppose that there are m voters and 2 candidates and an authenticated broadcast channel

which all the voters and candidates trust as secure. The result of the voting protocol is

very simple: we will just tally all the votes for C1 and C2 and whoever gets the higher

number of votes wins. In our protocol description, the voters will cast a vote of 0 for

C1 and a vote of 1 for C2. The final tally of votes will be the sum of all the 0 votes and

the sum of all the 1 votes. However, the voters do not want anyone to know how they
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voted, that is, for some reason they want to keep the privacy of their votes. To achieve

privacy of the votes, we encrypt the votes and we claim privacy using the RLWE hardness

assumption. But at the same time, when they cast their votes, other participants of the

protocol must be convinced that the encrypted votes are honestly computed according

to the protocol specification without revealing any information how the voters have

voted other than the fact that the vote is either a 0 vote or a 1 vote. To convince other

participants that votes are generated according to the protocol specification, we propose

the use of Σ′−protocols which we discussed in Section 3.9.3.

Now, let’s describe our self-tallying voting protocol involving m voters Vi and two

candidates C1 and C2. First, we set the following parameters:

• Let n be the main security parameter, where n is a power of two.

• Let σ > 0 be the standard deviation of the discrete Gaussian distribution DZn,σ.

• Let m be the number of voters.

• Let q ≡ 3 mod 8 be a prime such that

m+mσ
√
n[(m2 − 1)σ

√
n+m+ 1] < q

4 − 2 (5.1.1)

• Let Rq = R/qR = Zq[X]/(Xn + 1).

Choosing q in Equation 5.2.1 ensures the correctness of our protocol since as we tally

all the votes, we have to make sure that the coefficients of the total error does not wrap

around modulo q.

Initially, all voters agree on a public, uniformly random chosen a ∈ Rq and an

authenticated broadcast channel, for example, an authenticated message board where all

participants can post and view all the public messages. Also, for simplicity let χ be the

discrete Gaussian distribution DZn,σ and we let χ to be public knowledge among all the

participants of the protocol.

79



Round 1: Each voter Pi randomly selects a secret-error pair (si, ei) ← χ2. Voter Pi

computes bi := a · si + (m+ 1)ei and publishes bi and a Σ′−proof described in Figure 3.5

for ((a, bi), (si, ei)) ∈ R0 ⊆ R′
0.

Once all the bi are published and all the Σ′−proofs are verified, each participant computes

yi =
i−1∑
j=1

bj −
m∑

j=i+1
bj . (5.1.2)

Round 2: Each voter Pi chooses a random e′
i ← χ and casts the vote ci where

ci =


siyi + (m+ 1)e′

i if Pi votes for C1

siyi + (m+ 1)e′
i + 1 if Pi votes for C2

,

along with a Σ′−proof for ((yi, ci), (si, e′
i)) ∈ ROR ⊆ R′

OR described in Figure 3.6. Finally,

once all the ci are published and all its corresponding Σ′−proofs are verified, everyone

computes for k ≡
(

m∑
i=1

ci mod q

)
mod (m+1), where k ∈ {0, . . . ,m}. This k gives the

total number of votes for Candidate 2 and consequently, gives m− k votes for Candidate

1. The result is accepted as long as

∥∥∥∥∥
m∑
i=1

ci

∥∥∥∥∥
∞

≤ q

4 − 2.
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Protocol 4.1 : Voting Protocol Summary

1. Each voter computes bi = asi + (m+ 1)ei where si, ei ∈ χ and publishes bi

and a Σ′−proof corresponding to (a, bi).

2. After all the bi and its corresponding proofs are published and verified, the

i−th voter computes yi according to Equation 5.1.2.

3. To cast votes, voters compute ci and publishes it and a corresponding

OR-proof.

4. After all the votes are published and its proofs verified, everyone tallies the

result by computing k =
m∑
i=1

ci mod q mod (m+ 1) and its value corresponds

to the number of votes for candidate C2 while m− k is the number of votes

received by candidate C1. Everyone checks if
∥∥∥∥∥
m∑
i=1

ci

∥∥∥∥∥
∞

≤ q

4 − 2 and if that

is the case, accepts the voting result.

Notice that using the Σ′−proof for ((yi, ci), (si, ei)) ∈ ROR ⊆ R′
OR ensures that only

an encryption of either a 0 vote or a 1 vote is being casted by a voter in the protocol.

Also, we may assume that the Σ′−proofs in both rounds are non-interactive by applying

the Fiat-Shamir technique so in addition, all the participants agree on a cryptographic

hash function whose range serve as the challenge set. To prove the correctness of the

protocol with overwhelming probability, we need the following Lemma 2.1.2 from [Hao

and Zieliński 2006] which serves as the trick to properly decrypt the aggregated votes.

For completeness, we provide a proof.

Now, we prove the correctness of our protocol. The proposition below tells us that

the final tally of votes decrypts properly with overwhelming probability in the security

parameter n as long as all the voters follow the voting protocol specification.

81



Proposition 5.1.1. Let n be a power of two, σ > 0 and let m be the number of voters.

Let q ≡ 3 mod 8 be a prime such that

m+mσ
√
n[(m2 − 1)σ

√
n+m+ 1] < q

4 − 2.

Let si and yi be defined as in (5.1.2), respectively. Then we have

k ≡
(

m∑
i=1

ci mod q

)
mod (m+ 1)

where k is the total number of votes for Candidate 2, with overwhelming probability.

Proof. Notice that

m∑
i=1

ci =
m∑
i=1

siyi + (m+ 1)
m∑
i=1

e′
i + k mod q

where k is the total number of votes for Candidate 2. Moreover, we see that

m∑
i=1

siyi = a

 m∑
i=1

i−1∑
j=1

sisj −
m∑
i=1

m∑
j=i+1

sisj

+ (m+ 1)

 m∑
i=1

i−1∑
j=1

siej −
m∑
i=1

m∑
j=i+1

siej


= (m+ 1)

 m∑
i=1

i−1∑
j=1

siej −
m∑
i=1

m∑
j=i+1

siej

 .
Thus, we get

m∑
i=1

ci ≡ k + (m+ 1)

 m∑
i=1

i−1∑
j=1

siej −
m∑
i=1

m∑
j=i+1

siej +
m∑
i=1

e′
i

 mod q.
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Observe that

∥∥∥∥∥
m∑
i=1

ci

∥∥∥∥∥
∞

=

∥∥∥∥∥∥k + (m+ 1)

 m∑
i=1

i−1∑
j=1

siej −
m∑
i=1

m∑
j=i+1

siej +
m∑
i=1

e′
i

∥∥∥∥∥∥
∞

≤ m+ (m+ 1)

 m∑
i=1

∑
j ̸=i
∥siej∥∞ +

m∑
i=1
∥e′
i∥∞


≤ m+ (m+ 1)

 m∑
i=1

∑
j ̸=i
∥si∥ · ∥ej∥+

m∑
i=1
∥e′
i∥


≤ m+ (m+ 1)(m(m− 1)σ2n+mσ

√
n)

= m+mσ
√
n[(m2 − 1)σ

√
n+m+ 1]

≤ q

4 − 2

where the first line of inequality is by triangle inequality, the next line of inequality holds

via Lemma 3.7.7 and the third line of inequality comes from Lemma 3.3.13.

We claim that

(m+ 1)

 m∑
i=1

i−1∑
j=1

siej −
m∑
i=1

m∑
j=i+1

siej +
m∑
i=1

e′
i

 mod q

has infinity norm less than or equal to q − 1
2 . Suppose otherwise, that is, it has infinity

norm greater than q − 1
2 . Then

∥∥∥∥∥
m∑
i=1

ci

∥∥∥∥∥
∞

=

∥∥∥∥∥∥k + (m+ 1)

 m∑
i=1

i−1∑
j=1

siej −
m∑
i=1

m∑
j=i+1

siej +
m∑
i=1

e′
i

∥∥∥∥∥∥
∞

≥

∥∥∥∥∥∥(m+ 1)

 m∑
i=1

i−1∑
j=1

siej −
m∑
i=1

m∑
j=i+1

siej +
m∑
i=1

e′
i

∥∥∥∥∥∥
∞

−m

>
q − 1

2 −m.
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Thus, q4 − 2 > q − 1
2 −m which is equivalent to q < 4m − 6 which contradicts our

choice for q.

Hence, all coefficients of

(m+ 1)

 m∑
i=1

i−1∑
j=1

siej −
m∑
i=1

m∑
j=i+1

siej +
m∑
i=1

e′
i

 mod q

are divisible by m+ 1. Hence, we have

k ≡
(

m∑
i=1

ci mod q

)
mod (m+ 1).

■

Remark 5.1.2. Notice that the construction of bi for each i corresponds to an RLWE

sample (a, bi) whose secret si. Also, notice that each yi is in fact equal to

yi = as̃i + (m+ 1)ẽi,

where s̃i =
∑
j<i

sj−
∑
j>i

sj and ẽi =
∑
j<i

ej−
∑
j>i

ej so that (yi, yisi+(m+1)ẽi) is also an RLWE

sample and by the RLWE hardness assumption, yi and ci, whether ci = yisi+ (m+ 1)ẽi or

yisi + (m+ 1)ẽi + 1 is indistinguishable from a uniformly random element in Rq. Hence,

the encrypted votes are pseudorandom and hence, any passive attacker cannot distinguish

the individual votes of the honest voters. We discuss more on privacy of votes in Chapter

6.

Remark 5.1.3. The reason we require that
∥∥∥∥∥
m∑
i=1

ci

∥∥∥∥∥
∞

≤ q

4 − 2 must hold true for the

voting result to be accepted is to make sure that all the voters use their secret si in

constructing their encrypted vote ci. If there is a malicious attack where a voter instead

use a different secret, say s′
i , other than the si used in constructing the bi, to construct ci,

then Lemma 2.1.2 will not apply in our protocol which would mean that no cancellations
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occur. If that is the case, the sum
m∑
i=1

ci can regarded as an RLWE sample as well, hence

pseudorandom in Rq. Hence, the probability that
m∑
i=1

ci has norm q

4 − 2 is negligible in n,

and therefore the voting result will be rejected.

5.2 A modified self-tallying voting protocol: multiple candidates

case

Now, we present a version of the voting protocol involving multiple candidates, in

particular, more than two candidates. The difference between the protocol involving two

candidates and the protocol we present in this section is that instead of encrypting 0

and 1 as votes, we will instead encrypt a monomial Xk−1, where k is a positive integer

corresponding to candidate Ck, for k ∈ {0, 1, . . . , t}, where t is the total number of

candidates.

In this version, we will not provide Σ′−proofs but one can devise an analogue of the

Σ′−proofs we discussed in Section 3.9.3 for this modified version.

Now, let’s describe our self-tallying voting protocol involving m voters V1, V2, . . . , Vm

and a number of t candidates, say C1, C2, . . . , Ct First, we set the following parameters

similar as in the previous protocol:

• Let n be the main security parameter, where n is a power of two.

• Let σ > 0 be the standard deviation of the discrete Gaussian distribution χ :=

DZn,σ.

• Let m be the number of voters.

• Let q ≡ 3 mod 8 be a prime such that

m+mσ
√
n[(m2 − 1)σ

√
n+m+ 1] < q

4 − 2 (5.2.1)

85



• Let Rq = R/qR = Zq[X]/(Xn + 1).

As in the previous protocol, all voters agree on a public, uniformly random chosen

a ∈ Rq.

Round 1: Each voter Pi randomly selects a secret-error pair (si, ei) ← χ2. Voter Pi

computes bi := a · si + (m+ 1)ei and publishes bi.

Once all the bi are published, each participant computes

yi =
i−1∑
j=1

bj −
m∑

j=i+1
bj .

Round 2: Each voter Pi chooses a random e′
i ← χ and casts the vote for candidate Ck

where k ∈ {1, . . . , t} as the “encryption" of the monomial Xk−1, that is, Pi’s vote for

candidate k is encrypted as ci = siyi + (m + 1)e′
i + Xk−1. Finally, once all the ci are

published, all voters compute
m∑
i=1

ci mod q mod (m + 1). Again, the voting result is

only accepted if
∥∥∥∥∥
m∑
i=1

ci

∥∥∥∥∥
∞

≤ q

4 − 2.

Proposition 5.2.1. Let si and yi be defined as above. Let β = σ
√
n. Assume that

m+mβ[(m2 − 1)β +m+ 1] < q

4 − 2. Then we have

p(X) ≡
(

m∑
i=1

ci mod q

)
mod (m+ 1),

where p(X) = v0+v1X+· · ·+vt−1Xt−1, vk ∈ {0, . . . , t−1} for each k and v0+. . .+vt−1 =

m, so that vk is the number of votes for candidate k.

Proof.

Notice that

m∑
i=1

ci =
m∑
i=1

siyi + (m+ 1)
m∑
i=1

e′
i + p(X) mod q,
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where p(X) = v0 + v1X + · · · + vt−1Xt−1, vk−1 ∈ {0, . . . ,m} for each k ∈ {1, . . . , t}

such that v0 + . . .+ vt−1 = m, where vk−1 is the number of votes for candidate Ck.

Moreover, we see that

m∑
i=1

siyi = a

 m∑
i=1

i−1∑
j=1

sisj −
m∑
i=1

m∑
j=i+1

sisj

+ (m+ 1)

 m∑
i=1

i−1∑
j=1

siej −
m∑
i=1

m∑
j=i+1

siej


= (m+ 1)

 m∑
i=1

i−1∑
j=1

siej −
m∑
i=1

m∑
j=i+1

siej

 .
Thus, we get

m∑
i=1

ci ≡ p(X) + (m+ 1)

 m∑
i=1

i−1∑
j=1

siej −
m∑
i=1

m∑
j=i+1

siej +
m∑
i=1

e′
i

 mod q.

Note that p(X) has infinity norm at most m and therefore we have,

∥∥∥∥∥
m∑
i=1

ci

∥∥∥∥∥
∞

=

∥∥∥∥∥∥p(X) + (m+ 1)

 m∑
i=1

i−1∑
j=1

siej −
m∑
i=1

m∑
j=i+1

siej +
m∑
i=1

e′
i

∥∥∥∥∥∥
∞

≤ m+ (m+ 1)

 m∑
i=1

∑
j ̸=i
∥siej∥∞ +

m∑
i=1
∥e′
i∥∞


≤ m+ (m+ 1)

 m∑
i=1

∑
j ̸=i
∥si∥ · ∥ej∥+

m∑
i=1
∥e′
i∥


≤ m+ (m+ 1)(m(m− 1)σ2n+mσ

√
n)

= m+mσ
√
n[(m2 − 1)σ

√
n+m+ 1]

≤ q

4 − 2

Hence, by similar arguments as in the proof of Proposition 5.1.1 we have

p(X) ≡
(

m∑
i=1

ci mod q

)
mod (m+ 1)
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which proves our proposition. ■

5.3 Choice of parameters to ensure correctness

Recall that given m voters and parameters n a power of two (usually taken to be 512 or

1024 to ensure security against best-known attacks on the RLWE problem) and σ > 0,

the parameter for the error distribution of our voting protocol, we need to choose our

modulus q for Rq to satisfy the inequality

m+mσ
√
n[(m2 − 1)σ

√
n+m+ 1] < q

4 − 2.

For simplicity, a sufficient condition for modulus q must be at least as large as 4m3σ2n

to guarantee correctness with overwhelming probability in the security parameter n. The

drawback of course of our protocol is when the number of voters m becomes at least

as large as n which means q will need to be quadratic in n and hence might undermine

efficiency. Thus, our voting protocol will not be a viable option for large-scale elections.

For example, in the case where n = 512 and σ = 4.19, we have the following table to

guarantee correctness with overwhelming probability:

Table 5.1: Choice of modulus q for n = 512 and σ = 4.19
m q >

5 4,325,992
10 35,595,391
15 120,808,507
20 286,920,132
30 969,703,586
40 2,299,675,111
50 4,492,564,063
70 12,330,011,675
100 35,951,297,718
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Moreover, we can see in the figures below how we must choose q as we increase

the number of voters to ensure correctness for fixed security parameter n and error

distribution parameter σ.
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5.4 Performance

Now, we analyze the performance of our voting protocol. First, we note that the choice

of the security parameter n to be a power of two allows us to use the Fast Fourier

Transform [Cooley and Tukey 1965] to perform fast ring operations in Rq, in particular,

a ring operation (addition or multiplication) between two polynomials in Rq takes

O(n logn) operations. Also, getting a sample from the discrete Gaussian distribution

on Zn takes at least O(n2) time according to the sampling procedure in [Peikert 2010].

The rejection sampling technique makes the Σ′−proofs presented in Section 3.9.3 take

on average O(Mn2) time, where M = e
12

ω(log 2n) + 1
ω(2 log 2n) . Hence, our voting protocol

has the following time complexity: in the key registration phase, where each voter has

to compute bi, it requires two calls on the discrete Gaussian sampler, one polynomial

multiplication and addition which takes a total time for each voter O(n2) +O(n logn) bit

operations. In addition, producing a Σ′−proof each requires O(Mn2) time. Computing

yi, requires m− 1 polynomial additions which take O(n) for each addition and finally

in the voting phase, where each voter casts ci, requires O(n2) +O(n logn) time. Hence,

the total complexity of our voting protocol takes m · (O(Mn2) + O(n2) + O(n logn))

time on average where M = e
12

ω(log 2n) + 1
ω(2 log 2n) such that all the other constant factors

are absorbed by the big-O notation.

5.4.1 Experimental results

We have implemented the voting protocol described in Section 5.1. Hence, we have only

implemented the voting protocol for two candidates case and the multiple candidates

case.

The implementation of the protocol uses the C++ language and NTL library, which is

a library for number theoretic calculations. We ran the experiment 10,000 times using the

parameters n = 512, σ = 4.19 with varying q values on a computer with AMD Ryzen 3

3350U CPU with Radeon Vega Mobile Gfx, @ 2100 Mhz, 4 Core(s), 4 Logical Processor(s),
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running Cygwin version 3.3.5, g++ compiler version 11.3.0-1. We evaluate the average

runtime for discrete Gaussian sampling based on [Peikert 2010] (DGS Time), then the

average runtime for ring operations (RO Time), namely addition and multiplication of

polynomials in Rq, and vote tallying (Vote Time). Below are the experimental results

where we vary the number of voters with two decimal precision shown in table below.

Table 5.2: Runtime (millisecond) of our implementation.
m q DGS Time RO Time Vote Time
5 120851 2.15 2.88 4.33
10 120851 3.89 7.59 7.79
20 250027 7.38 21.17 14.58
50 1500019 15.64 88.34 32.31

Even though we ran our experiment for a rather smaller value of the modulus q which

is way smaller than what would require for the provable correctness of the protocol

prescribed by the inequality

m+mσ
√
n[(m2 − 1)σ

√
n+m+ 1] < q

4 − 2,

no errors showed up, in the sense that the voting results are correctly computed in all

the executions. But we note that the choice of the modulus q in Table 5.3 is increased as

we increase the number of voters m so we always get the correctness of the result for

each execution. Hence, experimentally we could choose smaller values of the modulus q

to enhance the efficiency of the protocol.

We ran our experiment using the -O2 optimizer where this option increases both

compilation time and the performance of the generated code.

In addition, we also ran the experiment for the modified voting protocol but only for

the case where there are 4 candidates with similar parameters as in Table 4.1. There is

not much noticeable difference in the run times as we see in the table below.

91



Table 5.3: Runtime (millisecond) of our implementation.
m q DGS Time RO Time Vote Time
5 120851 2.25 3.06 3.73
10 120851 3.98 7.55 7.21
20 250027 7.57 21.31 14.54
50 1500019 17.19 99.60 37.34

In a similar fashion, no errors occurred in all the executions due to the choice of the

modulus q. If we increase the number of voters to say 70 with the same parameters used

for the case of 50 voters, we only get correctness 80% of the time.
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Chapter 6
Security of the voting protocol

In this chapter, all the definitions of security for multi-party computation follows from

Chapter 7 of [Goldreich 2004]. Our goal in this chapter is to prove that our protocol in

Chapter 5 is secure in the sense of privacy of the individual votes against two adversarial

models: the first one is security against semi-honest adversaries which are adversaries

the follow the protocol specification honestly but tries to learn any secret information

through the public information available to the adversary during the execution of the

protocol. The second adversarial model is a malicious one, that is, an adversary that

carries out an active attack on the protocol to learn the secret inputs of the honest

participants of the protocol. In the end, any attacker only learns the sum of the votes

of the honest voters but not their individual votes. Hence, our protocol is secure in the

sense of privacy of the honest individual votes against both adversarial models as we

shall see in the next few sections.

6.1 Security against Semi-honest adversaries

Our goal in this section is to define security against static, semi-honest adversaries of a

protocol for computing a deterministic m−ary functionality f : ({0, 1}∗)m → ({0, 1}∗)m
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and to prove that our voting protocol is secure in this security model. Here, a static,

semi-honest adversary means an adversary A than controls a fixed number of the parties

but these parties still follow the protocol specification. The goal of attack of this type

of adversary is to learn information about the secret choices of the honest parties from

A′s point of view during the execution of the protocol. Informally, to show security

against semi-honest adversaries, we need to show the existence of a simulator S such

that when S takes as input the input-output pair of the adversary, then S can generate

the view of the adversary on the execution of the protocol, where this view consists of all

the inputs, internal random choices, and messages received by all the controlled parties

during the execution of the protocol. The above condition on the existence of a simulator

captures the idea that anyone can simulate the protocol just by the input and output

information of the adversary and hence, any information that the adversary learns can

only be extracted from its input and output alone, and nothing else. An additional feature

of a secure deterministic protocol also must satisfy that it gives the correct outputs to all

the parties (both the honest and semi-honest ones) with overwhelming probability.

Now we give the formal definition of security against semi-honest adversaries.

Definition 6.1.1 (Security against semi-honest adversaries). Let f : ({0, 1}∗)m →

({0, 1}∗)m be an m − ary deterministic functionality and let Π denote a protocol for

computing f . Let I ⊆ [m] := {1, . . . ,m} denote the index set of semi-honest parties

controlled by adversary A. For each i ∈ [m], define the following:

• The view of party Pi on the execution of Π on input x̄ := {x1, . . . , xm}, denoted by

viewΠ
i (x̄), is the triple

(xi, ri,mi
j),

where xi, r
i, {mi

j} are the input, internal random coin tosses, and messages re-

ceived by Pi, respectively. Moreover the view of A is just the tuple viewI(x̄) :=

(viewi(x̄))i∈I
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• The output of party Pi after the execution of Π is denoted by outputΠ
i (x̄).

Notice the difference between f(x̄) and outputΠ(x̄), the former does not depend on the

protocol, in fact it is the intended output of the functionality while the latter depends on

the protocol specification of Π as it tries to securely compute f and it does not guarantee

that it outputs the same value as f(x̄) all the time.

We say that Π securely computes f if the following conditions hold:

• Correctness: Pr[outputΠ(x̄) ̸= f(x̄)] is a negligible function on the security param-

eter.

• Privacy: There exists an efficient simulator S such that

{S((xi)i∈I , fI(x̄))}xi∈({0,1})I
c≡ {viewI(x̄)}

These are the steps on how to prove security against semi-honest adversaries:

1. First, summarize your protocol Π which illustrates the interaction between the

parties as they try to securely compute the functionality f .

2. After making the illustration in step 1, identify the output of the protocol in

presence of semi-honest adversaries and also identify the view of each party i.

3. Now, knowing the view of each party, we prove into cases where we assume if the

adversary controls party i. Given the adversary A controlling parties in I, we

construct a simulator S, where we feed S the local inputs and local outputs of the

controlled parties, and the simulator’s task is to output something indistinguishable

to the view of the adversary. The view of the adversary is just the tuple consisting

of the views of its controlled parties.

Now, we give the proof of security of the protocol for computing the functionality

f : {0, 1}m → ({0, 1}∗)m, where f(v1, . . . , vm) =
(

m∑
i=1

vi, . . . ,
m∑
i=1

vi

)
.
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Proposition 6.1.2. Suppose that the RLWE hardness assumption holds. Then the

protocol Π described in Protocol 5.1 securely computes f in the presence of static, semi-

honest adversaries.

Proof. Correctness: The proof of correctness is provided in Proposition 5.1.1.

Privacy: Let I ⊆ [m] := {1, . . . ,m} be the index set of corrupted voters controlled by an

adversary A. For each i ∈ I,

viewΠ
i (v1, . . . , vm) = (vi, ri; {bj}j ̸=i ∪ {cj}j ̸=i) (6.1.1)

Thus, the view of A is just viewΠ
I (v1, . . . , vm) =

(
viewΠ

i (v1, . . . , vm)
)
i∈I

. Moreover the

input-output pair of A is given by
(
{vi}i∈I ,

m∑
i=1

vi

)
. Now, our goal is to construct a

simulator S such that given the input-output pair of A as input to S, S outputs something

that is indistinguishable to the view of A. Before we proceed, notice that the view of

A has all the messages including those of the honest voters. Thus, to construct S, we

also need to simulate the behavior of the honest parties. Now we describe the simulation

process of the simulator S.

1. For all i ∈ [m] (hence we include the honest voters’ indices as well), S chooses

uniformly random coins as input to the discrete Gaussian sampling algorithm and

outputs si, ei $←− χ and computes bi = asi + (m + 1)ei. Notice that the random

coins used by the simulator is indistinguishable from the random coins used in the

real execution of the protocol.

2. After computing all the bi, S just computes

yi =
∑
j<i

bj −
∑
j>i

bj . (6.1.2)
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To simulate the votes and to make sure that the output of S has the same distribution

as the real output of the execution, we need to make sure that the constructed cj ’s

of S ‘sum up’ to the real output
m∑
i=1

vi.

3. Since S has both {vi}i∈I and
m∑
i=1

vi, then S can compute
∑

i∈[m]\I
vi, which is the sum

of the honest voters’ votes. Now, to simulate the encrypted votes of the corrupted

parties, S computes ci = siyi + (m+ 1)e′
i + vi for each i ∈ I, while to simulate the

honest voters’ individual votes, for each j ∈ [m]\I, S just chooses a random sequence

{v′
j}j∈[m]\I such that v′

j ∈ {0, 1} with the property that
∑

j∈[m]\I
v′
j =

∑
i∈[m]\I

vi. Then

for each j ∈ [m]\I, S computes cj = sjyj + (m+ 1)e′
j + v′

j , where e′
j

$←− χ.

4. Finally S outputs
(
(vi, ri; {bj}j ̸=i ∪ {cj}j ̸=i)

)
i∈I .

Notice that the output of S is indistinguishable from viewΠ
I (v1, . . . , vm) since the bj ’s

are indistinguishable from uniform by the RLWE assumption. Moreover, the individual,

simulated cj ’s as well as the real ones are indistinguishable from uniform by the RLWE

assumption as well and by construction, the simulated cj ’s has the property that
m∑
j=1

cj =

m∑
i=1

vi (mod m + 1) with overwhelming probability. Hence, any distinguisher of the

real view of the adversary A and the simulated view has only negligible advantage

of distinguishing. Hence, this proves security of the protocol Π against semi-honest

adversaries. ■

6.2 Security against Malicious Adversaries with abort

In this subsection, we present the malicious model with abort, that is, the adversary has

the ability to abort the execution of the protocol and can control an arbitrary number of

parties.
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To prove security in the above model, the approach is completely different compared

in the semi-honest case, that is, we prove security via the "real-vs-ideal" model paradigm.

What we mean by this is that given the real execution of the protocol Π for computing f

in the presence of a malicious adversary A, we can construct an “ideal" adversarial model

for computing f such that the outputs of the parties in the real model and the ideal

model are indistinguishable. The idea is that the adversary in the ideal model makes

subroutine calls to the adversary in the real model and at the end of the ideal execution,

the outputs of the parties in the ideal model are indistinguishable to the real outputs.

6.2.1 The ideal model - malicious model with abort

Assume that there is a malicious adversary controlling a fixed number of parties and we

assume that this malicious adversary can instruct one of its controlled parties to abort at

any moment during the execution of the protocol.

We define how the ideal model execution works for computing the functionality f . The

ideal model assumes that there is a trusted third party T where all the parties send their

inputs to. Upon receiving all the inputs from the parties, T honestly computes each

output of the parties, that is, given the inputs xi of party i, T computes each fi(x̄), where

x̄ = (x1, . . . , xm), m is the number of parties. Now, we consider two cases: the first case

is when Party 1 is honest and the other is when Party 1 is corrupted. Suppose that Party

1 is honest. In this case, we postulate that no aborts occur during the ideal execution for

computing the functionality. Thus, all the parties receive their corresponding outputs

from T . At the end of the execution, the honest parties output what they received

from T , while the corrupted parties output whatever the ideal adversary B tells them to

output. On the other hand, if Party 1 is corrupted, upon receiving its output from T

and before T sends the output f2(x̄) to Party 2, Party 1 may send an abort message to

T and in this case, the execution for computing f halts. Otherwise, if Party 1 decides

to continue, then the execution proceeds as in the previous case. We formally define
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this ideal execution below. Note that in the ideal execution, the corrupted parties may

change their inputs upon the instruction of the adversary that controls them.

Definition 6.2.1 (malicious ideal model with abort). Let f : ({0, 1}∗)m → ({0, 1}∗)m

be an m-ary functionality. For I ⊆ [m] := {1, . . . ,m}, let Ī = [m]\I and let x̄ =

{x1, . . . , xm}. A pair (I,B), where B is a probabilistic, polynomial-time algorithm repre-

sents an adversary in the ideal model. The joint execution of f under (I,B) in the ideal

model, denoted IDEALf,I,B(z)(x̄) := Ψ(x̄, I, z, r), where z is the auxiliary input of B and r

is a uniformly chosen random tape for B is defined as follows:

• If Party 1 is honest,

Ψ(x̄, I, z, r) := (fĪ(x̄′),B(x̄I , I, z, r, fI(x̄′)), (6.2.1)

where x̄′ := (x′
1, . . . , x

′
m) such that x′

i = B(x̄I , I, z, r)i for i ∈ I, and x′
i = xi

otherwise and fĪ(x̄′) := (fi(x̄′))i∈Ī

• If Party 1 is not honest, Ψ(x̄, I, z, r) equals

(⊥|Ī|,B(x̄I , I, z, r, fI(x̄′),⊥)) if B(x̄I , I, z, r, fI(x̄′)) =⊥ (6.2.2)

(fĪ(x̄′),B(x̄I , I, z, r, fI(x̄′)) otherwise (6.2.3)

where x̄′ := (x′
1, . . . , x

′
m) such that x′

I = B(x̄I , I, z, r)i for i ∈ I, and x′
i = xi

otherwise.

Remark 6.2.2. In the above definition, the notation B(·) means the output of the

algorithm B given an input and this output represents the behavior of the adversary

controlling the corrupted parties, which captures the malicious behavior that the inputs of

the corrupted parties sent to the trusted party may be substituted by B.
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Now, we formally define the real execution of a protocol Π for computing f in the

presence of a real, malicious adversary A.

Definition 6.2.3 (real malicious model). Given a functionality f and a protocol Π

for computing f , the joint execution of Π under (I,A) in the real model, where (I,A)

represents a real adversary, denoted by REALΠ,I,A(z)(x̄), is defined as the output sequence

resulting from the interaction between all the parties, where the messages of the corrupted

parties are computed according to A(x̄I , I, z) and the messages of the honest parties are

computed according to Π. Here, the messages of the corrupted parties are determined by

the adversary A based on the initial inputs of the corrupted parties, the auxiliary input z

of A, and all the public messages sent by all parties, including the honest ones.

6.2.2 Security in the malicious model with abort

Now, we define security of a protocol Π in the malicious model for computing a function-

ality f . Informally, the proceeding definition says that given any real adversary A of Π,

there exists an adversary B in the ideal model such that for any fixed I ⊆ [m], the joint

execution in the real model under (I,A) and the joint execution in the ideal model under

(I,B) are indistinguishable. In other words, since the executions are indistinguishable, if

A successfully carries out an attack in Π, there is an adversary B in the ideal model that

also carries out a successful attack with the same effect as the attack of A.

We now give the formal definition.

Definition 6.2.4 (security in the malicious model with abort). Protocol Π securely

computes f if for every probabilistic, polynomial-time algorithm A (representing a real

model adversary), there exists a probabilistic, polynomial-time algorithm B (representing

an ideal model adversary), such that for every I ⊆ [m],

{
IDEALf,I,B(z)(x̄)

}
x̄,z

c≡
{

REALΠ,I,A(z)(x̄)
}
x̄,z

(6.2.4)
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Intuitively, the ideal model is assumed to be “secure" against any adversary so if the

definition of security in the first malicious model holds for a protocol Π for computing f ,

then Π also resists any adversarial behavior.

6.2.3 Security proof of the voting protocol against malicious adversaries with

abort

Before we give the security proof of our protocol against malicious adversaries, let’s

briefly recall the two relations R and ROR. Given a fixed integer m and b ∈ {0, 1}, the

relation Rb is given by

Rb = {((a, y), (s, e)) ∈ R2
q ×R2

q : y = as+ (m+ 1)e+ b, for some ∥s∥∞, ∥e∥∞ ≤ β}

(6.2.5)

while ROR is given by

ROR = {((a, y), (s, e)) ∈ R2
q ×R2

q : ((a, y), (s, e)) ∈ R0 ∪R1}. (6.2.6)

We have shown in the previous chapter the existence of Σ′-proofs for the above

relations. Let’s first recall our protocol Π for computing f , where f(v1, . . . , vm) =(
m∑
i=1

vi, . . . ,
m∑
i=1

vi

)
, vi ∈ {0, 1}, that is, f is an example of a deterministic functionality

that computes the result of an election consisting of two candidates with m voters. Π is

described as follows:

• First, all voters agree on a uniformly, random chosen a
$←− Rq and on an authenti-

cated message board that displays their public keys and encrypted votes.

• Key registration phase. Each voter Vi runs the discrete Gaussian sampler twice

and receives si, ei $←− χ. Then Vi computes

bi = asi + (m+ 1)ei (6.2.7)
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and runs a Σ′-proof for ((a, bi), (si, ei)) ∈ R0 as described in Section 3.9.3. Then

Vi posts bi as well as its Σ′-proof to the message board. After all the bi’s and their

proofs are published. Once all the proofs are checked as valid, Vi computes its

voting key yi as

yi =
∑
j<i

bj −
∑
j>i

bj . (6.2.8)

Note that every voter can compute the voting keys of all the other voters.

• Voting phase. To cast vote vi ∈ {0, 1} of voter Vi, Vi chooses e′
i

$←− χ and

computes

ci = yisi + (m+ 1)e′
i + vi (6.2.9)

and runs a Σ′-proof for ((yi, ci), (si, e′
i)) ∈ ROR as described in Section 3.9.3.

• Result phase. After all ci are published and all Σ′-proofs are checked as valid,

every voter computes the result of the election as

m∑
i=1

ci mod (m+ 1). (6.2.10)

Before we prove security of the above protocol in the malicious model, let’s take a look at

the ideal model execution of computing the functionality f and the real model execution

Π of computing f in the presence of malicious adversaries. First, let’s describe the ideal

model execution.

A malicious ideal model for voting.

Let I ⊆ [m] and suppose B is a malicious adversary in the ideal model that controls

the voters Vi, i ∈ I. Let Ī = [m]\I. Let z be the auxiliary input and r be the internal

random coins of B. Denote by T the trusted third party in this ideal model. The inputs

of all the voters are their votes vi ∈ {0, 1}.
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• Every honest voter sends its vote vi to T while a corrupted voter sends v′
j

$←−

B(v̄I , z, r)j to T .

• Upon receiving all the vi, i ∈ Ī and v′
j , j ∈ I, T computes

res :=
∑
i∈Ī

vi +
∑
j∈I

v′
j (6.2.11)

• Then T sends res first to the first voter who sent its vote, say this voter is V1. If

V1 is honest, then T proceeds by sending res to all the other voters. If V1 is not

honest, it may stop T from sending res to all the other voters by sending an abort

message ⊥.

• In the case that no abort has occurred, the honest voters output res while the

corrupt voter Vj outputs B(v̄I , z, r, res)j , where j ∈ I.

• Thus, IDEALf,I,B(z)(v̄) = (res,B(v̄I , z, r, res)) which denotes the sequence of outputs

of all the voters. In the case that V1 aborts, IDEALf,I,B(z)(v̄) = (⊥,B(v̄I , z, r, res,⊥)).

The malicious real model for voting.

In the real execution of Π, the adversary A controlling a fixed number of corrupted

parties determines the inputs of the corrupted voters on the message board. Let v̄ :=

(v1, . . . , vm) denote the sequence of votes, where vi ∈ {0, 1} is the vote of voter Vi. Suppose

I is the index set for the corrupted voters and let i ∈ I. Then in the key registration phase,

Vi sends b′
i and a Σ′-proof for (a, b′

i) ∈ R0 where b′
i ←− A(z, r)i to the message board.

Now, for each k ∈ [m], yk :=
∑
j<k

b̃j −
∑
j>k

b̃j , where b̃j = b′
j if j ∈ I, and b̃j = bj otherwise.

In the voting phase, A computes c′
i ←− A(z, r, v̄I , bĪ)i and a Σ′-proof for (yi, c′

i) ∈ ROR

and sends c′
i and the corresponding Σ′-proof to the message board. Finally, A outputs

A(z, r, v̄i, bĪ , cĪ) so that the corrupted voter Vi outputs the i-th coordinate of A’s output
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while the honest voters output res :=
∑
k∈Ī

ck+
∑
i∈I

c′
i since the honest ones follow the protocol

specification. Hence, in this case, the real output of i-th corrupted voter is given by

A(z, r, v̄I , bĪ , cĪ)i. and REALΠ,I,A(z)(v̄) = (res,A(z, r, v̄I , bĪ , cĪ)) if no abort occurred while

if A aborts at some point in the execution of Π, REALΠ,I,A(z)(v̄) = (⊥,A(z, r, v̄I , bĪ , cĪ)).

Proposition 6.2.5. Suppose that the RLWE assumption holds. Then protocol Π securely

computes f in the presence of a malicious adversary controlling a fixed number of corrupted

voters with abort.

Proof. Suppose that A is a real adversary on the execution of Π and let I ⊆ [m] be

the index set of corrupted voters controlled by A. We want to show the existence of an

ideal adversary B such that B makes subroutine calls to A and at the end of the ideal

execution, we have that IDEALf,I,B(z)(v̄) c≡ REALΠ,I,A(z)(v̄). Now, we describe how the

ideal adversary B works into several steps:

1. B sends the votes vi of each Vi, i ∈ I to T . Note that the honest voters also send

their votes to T .

2. After receiving all the votes vi from all the voters, T computes

res :=
m∑
i=1

vi

3. Just before T sends res to the first honest party, B sends either an abort message ⊥

or a continue message to T . If T receives ⊥, then T sends ⊥ to all the remaining

voters. In this case, all the honest voters output ⊥ while the corrupted voters will

output according to B(z, r, res,⊥). If T receives a continue message from B, then

T sends res to all the voters. In this case, the honest voters output res while the

corrupted voters output according to B(z, r, res).

Hence, our task is how B computes B(z, r, res) such that B(z, r, res) is indistinguishable

as the output of the real model adversary A, A(z, r, bĪ , cĪ , v̄I), where bĪ := (bi)i∈Ī ,
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bi = asi + (m + 1)ei, cĪ := (ci)i∈I in the real execution of Π and also we want res

to be indistinguishable to the output of the honest voters in the real execution. So

after B receives res from T , B computes res −
∑
i∈I

vi which is equal to the sum of the

votes of the honest voters
∑
i∈Ī

vi. Now, for each i ∈ Ī, B selects si, ei $←− χ and computes

bi := asi+(m+1)ei and for i ∈ I, B runs A to obtain bi ←− A(z, r)i and the corresponding

Σ′-proof for (a, bi) ∈ R0. For each i ∈ [m], define

yi :=
∑
j<i

bj −
∑
j>i

bj . (6.2.12)

Now, B feeds A with bĪ and for each i ∈ I, ci is computed as ci ←− A(z, r, bĪ) along with

a Σ′-proof for (yi, ci) ∈ ROR. Since A is required to provide a Σ′-proof for (yi, ci) ∈ ROR,

this ensures that with overwhelming probability that ci is computed as encryption of

either the 0-vote or the 1-vote for i ∈ I. In other words, the Σ′-proof forces A to

behave honestly. Moreover, A cannot use a different secret si other than the one used

for choosing bi, in constructing ci since as we told in Remark 5.1.3, the voting result

will be rejected. Finally, B must simulate the encryption of the honest voters’ votes so

that the output of the honest voters in the real and ideal execution are the same with

overwhelming probability. For each i ∈ Ī, B computes ci := yisi + (m+ 1)e′
i + ṽi, where

e′
i

$←− χ, ṽi ∈ {0, 1} such that
∑
i∈I

ṽi =
m∑
i=1

vi −
∑
i∈Ī

vi. Thus, we feed A with bĪ and cĪ ,

where cĪ := (ci)i∈I . Hence, the output of B is A(z, r, bĪ , cĪ). The outputs of A and B

are indistinguishable by the RLWE assumption since we note that c̃i := yisi + (m+ 1)e′
i

is indistinguishable from uniform by RLWE and so is ci since the distribution of the

shifted uniform distribution is still uniform. All we need to check is if res =
m∑
i=1

vi and
m∑
i=1

ci mod (m+ 1) are the same. Now,
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m∑
i=1

ci mod (m+ 1) =
∑
i∈I

ci +
∑
i∈Ī

ci mod (m+ 1)

=
∑
i∈Ī

vi +
∑
i∈I

ṽi

=
m∑
i=1

vi.

Hence, we have

IDEALf,I,B(z)(v̄) = (res,B(z, r, res))
c≡ (res,A(z, r, bĪ , cĪ , v̄I))

=
(

m∑
i=1

ci mod (m+ 1),A(z, r, bĪ , cĪ , v̄I)
)

= REALΠ,I,A(z)(v̄)

with overwhelming probability. Thus, the two distributions {IDEALf,I,B(z)(v̄)}v̄,z and

{REALΠ,I,A(z)(v̄)}v̄,z are computationally indistinguishable.

The case when B aborts trivially implies indistinguishability between the real and

ideal outputs. Hence, in all cases, we have shown security of Π for computing f against

malicious adversaries with abort. ■

To summarize this chapter, we have shown that our voting protocol ensures privacy

of the individual votes against both semi-honest and malicious adversaries and that

adversaries can only learn the sum of the votes of the honest voters and nothing else.
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Chapter 7
Conclusion and Future Work

7.1 Conclusion

To summarize what we have done in this paper, we first presented a simple commitment

scheme based on the hardness of the RLWE problem where we commit small elements in

the ring Rq. Then, we presented two Σ′−proofs, the first one allows a prover that he

knows a small secret element in Rq and convinces any verifier that the committed element

is an RLWE sample on the small secret. This proof does not reveal exactly what the small

secret element is. The second Σ′−protocol is an OR-proof where any prover convinces a

verifier that his committed value is either an RLWE sample or an RLWE sample plus one.

The voting protocol we have presented uses the commitment scheme and the Σ′−proofs

mentioned above. The commitment scheme allows any voter to commit to his public keys

and encrypted votes while the Σ′−proofs convinces any verifier that voters follow the

protocol specifications honestly. As a result of the specification of our protocol, voters

can tally the votes themselves without the need of having a central authority that is

usually used in standard voting procedures.

Also, we have provided security proofs so anyone who wishes to apply our protocol in

a real setting are guaranteed privacy of the individual votes from the honest voters.
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However, there are some issues regarding our protocol. The first one is that it can

only support a small number of voters hence it seems our protocol are only useful for

small elections. If one insists of using the protocol with a large number of voters, then

to guarantee correctness, it will require a choice of larger parameters, hence efficiency

is compromised. Another issue that we have is in the use of Σ′−proofs since this only

convinces verifiers that the prover knows secret in a larger relation. Also, the proofs

require rejection sampling since if we don’t employ this technique, any verifier may learn

information about the secret. Thus, this makes our proofs somehow expensive since it

might take several takes before a prover successfully generates a proof.

Finally, what we have done is a simple voting protocol that guarantees privacy and also

our protocol is post-quantum secure for which we believe is one of the few post-quantum

voting protocols in the existing literature as we speak.

7.2 Future Work

One research direction that could improve our protocol is the use of Σ−protocols instead

of Σ′−protocols so that any verifier is convinced that prover knows the secret in the

original relation. Also, another line of direction is constructing proofs without the use of

rejection sampling to gain more efficiency.

Of course, constructing new post-quantum voting protocols would be an important

research direction especially ones that would effectively reduce the size of the parameters

and protocols that are more scalable, that is, that would allow a large number of voters

without compromising efficiency, privacy and correctness.
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