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Abstract

Brain-computer interface (BCI) allows the human brain to connect directly

with the outside world using electroencephalogram (EEG) signals, due to

this it has received a lot of interest in recent years. These EEG signals are

generated through the electrode placed on the head which captures brainwave

activity while performing different motor imagery task, these electrodes are

also known as EEG channels which generates EEG signals. In the further

processing of these EEG signals, commands are generated that are used to

control equipment such as wheelchairs, robotic arms, etc. In the proposed

work we are interested in selecting the optimal number of EEG channels from

the available unicorn channels without much affecting the system accuracy.
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Chapter 1

Introduction of

Brain-Computer Interface

1.1 Brain-Computer Interface

Brain-computer interface (BCI) read the signals from the brain, analyze the

brain signals, and convert those raw signals into meaningful information or

actions that are carried out by output devices [6] [7]. BCI has reached the

general interest of the public over the past few years, but the people have

been working on it for the last 20-30 years. BCI are devices or systems

which respond to the neural processes in the brain that generate or modify

movement. So, the signal which BCI use are the signal from the neuron or the

scalp. The signal coming from the brain just before any movement is process

by signal processing unit and pass to the output device, the action perform
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by output device is based on the signal that picks up from the brain [6].

1.1.1 Goal of BCI

The goal of BCI is to create an environment that enables people with dam-

aged neural pathways to control their environment. Brain signals are used to

control devices rather than paralyzed limbs, control device could be robotic

arm or any other device [6]. BCI systems are predicted to have great societal

impact, and there is a growing interest from industry to commercialize and

market BCI system for medical and non-medical applications [6].

BCI allow disable people to control a wheelchair, robotic prosthesis or a

computer cursor. Many research are going on but nothing has been widely

deployed they still are in pilot stages. There is still a huge opportunity in

this field to make a BCI device which is cost effective and reliable [6]. The

current trend in worldwide BCI is extensive and is rising rapidly BCI and is

approaching the level of first-generation medical practice, and clinical trial

of invasive BCI technologies [6].

1.1.2 BCI system

There are two types of systems P300 and Gtec. Suppose you have a patient

with stroke, to rehabilitate them or help them to communicate you can use

these systems. P300 stimulus has different alphabets being flashed on the

screen [6]. Suppose the subject wants to say “hello,” he has different al-
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phabets being scalped, the first letter of the word hello is “H,” it has P300

signal and 6 instances of this it will get the alphabet “H,” similarly alphabet

“e” and then followed by the other word. As the transfer rate is slow, it

is hard to communicate, but still helpful for a person who has difficulty in

communicating. Figure 1.1 is the classical P300-based spelling paradigm, it

is developed by Dochin [6].

Figure 1.1: The classical P300-based spelling paradigm [1]

.

1.1.3 Implications of BCI

1. Closed-loop system

2. Real time system

1.2 Brain Activity Detection

The phenomenon known as neuronal activity is due to the motion of electric

charges in the brain, which produces both electric and magnetic fields. Brain-
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computer captures this change in electric and magnetic field that occurs as

a result of certain tasks performed by the brain.

1.2.1 Invasive

Invasive BCI have multi-electrode arrays of tens to hundreds of electrode

implanted in brain cortical tissue from which movement intent is decoded.

It is not painful to create the recording. However, it can be painful to

perform surgery and there are risks involved with recovery [3]. Animals

such as monkeys and rats are typically used for invasive recordings. Animals

(for example monkey) can be recorded for weeks and months, while humans

can be recorded for as little as a few minutes in a clinical setting [3].

We worked on noninvasive BCI because for invasive BCI it is not possible

unless you are a neurosurgeon and have access to patient brains [8].

1.2.2 Non-invasive

Non-invasive BCI use the scalp signal and record the changes in EEG stage,

follow through the signal conditioning unit to control output devices. The

recorded signals are electrical signals range between 5 to 10 microvolts, this

could be motor potentials [3] [9].

1.3 Thesis Outline

This thesis is organized as follows:
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Chapter 1 (the current chapter) covers a basic introduction of the BCI.

Chapter 2 includes the different non-invasive techniques and brief descrip-

tion about electrode positioning.

Chapter 3 introduces the related work and contribution as per topic. which

involves BCI, EEG signals, channel selection and unicorn headset.

Chapter 4 covers the introduction of the bootstrap fusion scheme and pro-

posed method to select optimum channel in unicorn headset.

Chapter 5 covers the channel selection algorithm in unicorn headset.

Chapter 6 describes the experiment set up which includes data-set and

procedure, then presents the simulation results and discussions.

Chapter 7 conclude the paper giving future research directions.
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Chapter 2

Noninvasive Techniques

2.1 Noninvasive Techniques

Noninvasive recording techniques employ sensors placed on the scalp, or ma-

chinery surrounding the whole skull [10]. Noninvasive techniques are broadly

categorized into two types of:

1. Direct techniques

2. Indirect techniques

Direct techniques measures the electrical activity or the magnetic activity of

the brain, examples: Electroencephalography, Magnetoencephalography [10].

Indirect techniques measures brain function that reflect metabolism, exam-

ples: Functional magnetic resonance imaging, Functional near infrared imag-

ing [10].
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2.1.1 Electroencephalography

EEG (Electroencephalography) is a method of recording brain signals non-

invasively using electrodes placed on the head [3] [11]. The high temporal

resolution of EEG is advantageous because it is a low-cost procedure for

an experiment design and data collection that can be used for brain data

collection [12]. Figure 2.1 shows the image of the electroencephalography

signal.

Figure 2.1: Electroencephalography [2]

.
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Figure 2.2 shows a subject wearing headset containing an EEG cap with

three electrodes - a recording electrode, reference electrode, and ground elec-

trode to record EEG signals [10]. A differential amplifier is used to amplify

the EEG, which is the core of the measurement. For the EEG waveform to

be accurately captured, this impedance should be as low as possible.

Figure 2.2: Subject wearing EEG cap [3]

EEG signals consist of different types of oscillations called rhythms or

frequency. The spatial and spectral localization of these rhythms can dif-

fer [13]. There are five major bands in an EEG recording, corresponding to

frequencies of 0.5Hz to 40z [12]. Table 2.1 [13] shows the name of rhythms

with their frequency range and amplitude.
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Table 2.1: EEG rhythms

Rhythm Frequency in Hertz Amplitude in µV
Delta 1− 4 100− 200
Theta 4− 7 5− 10
Alpha 8− 12 20− 80
Beta 13− 30 1− 5
Gamma 30− 40 0.5− 2

In the delta wave, the frequency ranges from 1 to 4 Hz [13]. Waves in

this group tend to have the highest amplitude and the slowest waves. This is

the pattern seen normal in slow-wave sleep in adults and also in infants [2].

Figure 2.3 shows the waveform of Delta waves.

Figure 2.3: Waveform of Delta wave [2]

Theta waves have a frequency range of 4 Hz to 7 Hz [13]. In young

children, theta is commonly observed. Children and adults may show signs

of drowsiness or arousal, and it may be evident during meditation as well. An

excessive amount of theta indicates abnormal activity [2]. Figure 2.4 shows

the waveform of Theta waves.

The frequency range of an alpha wave is 8 Hz to 12 Hz [13]. The wave

occurs on both sides of the head, but its amplitude is greater on the dominant
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side. In this state, it arises when the eyes are closed and relaxing, and recedes

when the eyes are opened or when mental effort is exerted. This rhythm is

actually lower than 8 Hz in children [2]. Figure 2.5 shows the waveform of

Alpha waves.

Figure 2.4: Waveform of Theta wave [2]

Figure 2.5: Waveform of Alpha wave [2]

The beta wave oscillates between 13 Hz to 30 Hz [13]. Most frequently,

it appears frontally and is symmetrically distributed on both sides. During

movements, the beta activity is generally attenuated and is linked closely to

the motor behavior. An active, busy, or anxious mindset is often accompa-

nied by a low-amplitude beta signal with multiple and varying frequencies [2].

Figure 2.6 shows the waveform of Beta waves.

Gamma wave refers to the frequency range between 30 Hz to 40 Hz.
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It is generally believed that Gamma rhythms represent the co-ordination

of different populations of neurons in order to carry out certain cognitive

functions. Figure 2.7 shows the waveform of Gamma waves.

Figure 2.6: Waveform of Beta wave [2]

Figure 2.7: Waveform of Gamma wave [2]

2.1.2 Magnetoencephalography

Magnetoencephalography (MEG) technique is a noninvasive technique that

records the magnetic fields generated by neurons in the brain [3]. Magnetic

fields cannot be detected by a single neuron, but they can be detected when

numerous neurons fire together, creating a much larger and more visible

magnetic field. Anatomical images such as magnetic resonance imaging, as

well as the functional information obtained from magnetic field recordings,

are combined in the MEG [10].
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2.1.3 Functional Magnetic Resonance Imaging

Functional Magnetic Resonance Imaging (fMRI) is used to measure the neu-

ronal activity of the brain, it identifies a hemodynamic response to blood

oxygen levels dependent also known as BOLD [10]. A fundamental princi-

ple of magnetic resonance imaging is the coupling of neuronal activity with

regional cerebral blood flow and oxygenation [3]. For detailed BCI tasks,

fMRIs could provide highly accurate spatial information, but compared to

other techniques such as EEG or MEG, their temporal resolution is relatively

slow [10].

2.1.4 Functional Near Infrared Imaging

Functional Near Infrared Imaging (fNIR) monitors the blood flow in the

cerebral cortex for changes in oxygenated and deoxygenated blood. Light

is absorbed at different rates by oxygenated and deoxygenated blood [3].

fNIRS has a slower temporal resolution than EEG or invasive approaches

due to the latent nature of the blood flow response to neuronal activations

in the cerebral cortex. It can only detect surface changes in the brain, as it

doesn’t penetrate into deeper areas[10].

2.2 Electrode positions

Electrodes need to be positioned in a standard manner to obtain multichan-

nel EEGs. The international 10–20 system is the most common electrode

12



arrangement. In the current EEG studies, higher density systems such as

10-10 and 10-5 systems are used, specifically in the 64 electrodes and 128

electrodes measurements [10] [14]. Figure 2.8 shows positioning of electrodes

used for measurement of EEG signals.

Figure 2.8: Electrode positions used for the EEG measurements [4]

.
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Chapter 3

Literature Survey

3.1 Related work and contribution

Gaur et al. [7] presents a method for reducing the number of channels with

minimal computational complexity and sufficient accuracy, by utilizing an

automatic subject-specific channel selection method based on Pearson cor-

relation coefficient. In their work, EEG correlations are computed to select

highly discriminating EEG signals. Jianli Yu et al. [15] proposed a quan-

titative assessment and ranking criterion, providing a practical method to

assess EEG channels during MI tasks. When calibrating MI BCI systems,

the ranked channels are selected, by reducing the complexity of computing

and configuration. Between the traditional work of feature extraction and

channel selection, Jiuqi Han et al. [16] proposes feature compression and

normalized signal representation, classifying a single EEG trial with selected
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channels is performed with a linear discriminant analysis(LDA) model. Mah-

naz Arvaneh et al. [17] worked on an optimization problem, that selects the

fewest channels within a constraint of accuracy; by removing noisy and irrel-

evant channels, the algorithm can yield the best accuracy.

Yongkoo Park et al. [18] used method to optimize channel in which, chan-

nels are grouped based on an analysis of their correlations, and the Fisher

scores are computed by utilizing the filter-bank CSP (FBCSP) exclusively

applied to those channels. Ian Daly et al. [19] refer that during motor im-

agery tasks of the hands and feet, there was a significant difference between

the event-related desynchronization and phase locking value strength of indi-

viduals with cerebral palsy and healthy individuals. Cerebral palsy patients

had significantly lower event-related desynchronization strengths and phase

locking values.

Yongkoo Park et al. [20] select the discriminative H channels and target

channel of the EEG and configure several sub-channels to get the optimal

selection using the channel covariance matrix and cross-combining region.

Using the statistical characteristics of the available channels EEG signal, a

channel selection method is proposed by Venkata Phanikrishna Balam et

al. [21] for a single-channel EEG-BCI system.

Xiaorong Gao et al. [22] design a system that is intended to enable people

with motion disabilities to control household appliances. The hardware has

been redesigned and advanced signal processing techniques have been used.
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Chapter 4

Channel Selection in Unicorn

Headset

4.1 Motivation

The motivation behind the approach is to find an optimum subset of unicorn

headset channels without compromising the performance. Classifiers are used

to to analyze the accuracy. One way to select the optimum subset of channels

is to analyze each channel present in unicorn headset and select channels with

high performance.

The proposed method aims to select a channel for unicorn headsets while

maintaining an acceptable accuracy level.
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4.2 Unicorn Headset

Unicorn headset is a device used to capture brain waves perfectly. It is a

high-quality wearable EEG headset. Brain activity can be recorded with or

without the help of gel in the headset, enabling the device to be used for all

kinds of BCI applications. Unicorn headset has eight electrodes placed in the

cap, which corresponds to eight unicorn channels name Fz, C3, Cz, C4, Pz,

PO7, Oz, and PO8 [5]. Figure 4.1 [5] shows eight channel unicorn headset.

Figure 4.1: Unicorn headset [5]

.
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4.3 Proposed Method

Unicorn headset contains eight channel named Fz, C3, Cz, C4, Pz, PO7,

Oz, and PO8. Consider u[k] as received signal at unicorn headset for k =

1, 2, . . . , 8, where k represents the number of channel. The distribution of

the signal depends upon the number of samples taken in a particular time

interval. If the number of samples are few, they follow the Chi-square dis-

tribution; on the other hand, if a significant number of samples are taken

(n ≥ 250), they follow the Gaussian distribution [23]. The mathematical

modeling for Gaussian distributed signal is done quite easily. In the pro-

posed work, we select the motor imagery data set. This data set consists of

one- and two-minute EEG recordings, obtained from 109 subjects. This data

set consist of mainly four different task:

� Task-1 represents opening and closing of left fist or right fist.

� Task-2 represents imagine opening and closing of left fist or right fist.

� Task-3 represents opening and closing of both fists or both feet.

� Task-4 represents imagine opening and closing of either both fists or

both feet.

Out of these activities we have selected the Task-4 activity in which the EEG

signals are recorded when the subject imagines opening and closing of either

both fists or opening and closing of both feet, and then the subject goes to

idle state. In the proposed work, we consider large number of samples, which

18



can significantly help to increases the probability of classification accuracy.

It may be noted here that other choices of task from the data set are also

possible such as task-1, task-2 or task-3. The outputs of each channel in the

unicorn headset are the samples obtained from the unknown distribution of

EEG signals. Here, we are interested in calculating mean of the unknown

distribution with the help of data samples through bootstrapping [24].

Let V = [V1, V2, . . . , VM ] be the data samples obtained from the output of

the unicorn headset for each channel. Assuming each of the observed values

Vj for j = 1, 2, . . . ,M, equiprobable, the bootstrap samples are obtained by

random sampling with replacement from the data set. Let V ∗1, V ∗2, . . . , V ∗B

denote the B sets of independent bootstrap samples each consisting of M

data values, where V (∗) indicates that it is not the actual data set but a

re-sampled version of V .

The expected mean values of all the bootstrap samples are calculated

next, which are given by E[V ∗1], E[V ∗2], . . . , E[V ∗B], where

E[V ∗m] =
1

M

M∑
i=1

V ∗m
i = γm m = 1, 2, . . . , B (4.1)

We designate these mean values (E[V ∗m]) as γmN and γmS for the fists move-

ment and the feet movement respectively. We further use γN to represent the

set of mean values of bootstrap samples when the fists movement is present,
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and γS when the feet movement is present. Thus, we have

γN = [γ1N , γ2N , . . . , γBN ] (4.2)

γS = [γ1S, γ2S, . . . , γBS] (4.3)

In general, we use γ to denote the EEG signals. If the data samples are large

enough, then according to the central limit theorem, a Gaussian distribution

of the mean values of the bootstrap samples is obtained [25].

Let ΓN and ΓS represent the random variables corresponding to γN and

γS with mean µ0 and µ1, and variance σ2
0 and σ2

1, for the fists movement and

the feet movement, respectively. Thus, we have

ΓN ∼ N (µ0, σ
2
0) (4.4)

ΓS ∼ N (µ1, σ
2
1) (4.5)

where N denotes the normal distribution.

4.3.1 Bootstrap fusion scheme

In the proposed work, the channel selection is done through bootstrap method.

Bootstrap is a computer based simulation method to estimate some statis-

tical properties of an unknown distribution. It is quite advantageous when

the empirical distribution is unknown, but the samples of the distribution

are available. The output signals of the unicorn headset are considered as

20



the data samples of the unknown distribution. The sets of bootstrap sam-

ples are created through re-sampling with replacement. After this, the mean

value of each set of the bootstrap samples is calculated. This mean value is

compared with the threshold, which is set as per the majority rule and then

the decision is made.

4.3.2 Channel selection

In the proposed work channel selection is done in two steps, in the first step

we calculate the standard error for the mean values of the bootstrap samples

obtained at the individual channel. The standard error is an estimate of

the standard deviation of the sampling distribution of the mean. The higher

values of standard error shows that the sample means are more spread around

the population mean, so there is a greater chance that any given mean is an

inaccurate representation of the true population mean, whereas low value of

standard error shows that sample means are closely distributed, so there is

a higher chance that, the chosen sample mean is a more accurate reflection

of the actual population mean.

In the second step, we arrange all the standard error values obtained in

the previous step in the increasing order. Let’s say now out of eight channel

we have to select six channels, for this purpose we will select top six channel

having lower value of standard error. This process is repeated for N number

of patients. It may be noted that for all the patients there may not be

similar channels consisting of lower values of standard error out of eight any
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six values can be selected depending upon strength of EEG signal, task done,

and the sample taken at that instant, therefore after repeating the process

for N number of patients we apply the majority rule for channel selection. In

majority rule, we count the number of times a particular channel has been

occurred then select top six channels.
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Chapter 5

Channel Selection Algorithm

5.1 Channel Selection Algorithm in Unicorn

Headset

In the proposed work, bootstrap method is used for channel selection in

unicorn headset. We explained two scenario for selecting the unicorn channel.

1. Six unicorn channel selection algorithm

2. Four unicorn channel selection algorithm

5.1.1 Six unicorn channel selection algorithm

The steps for the proposed six channel selection bootstrap fusion scheme is

summarized in Table 5.1.
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Table 5.1: Six unicorn channel selection through bootstrap fusion scheme

Steps Description

Step 1 Obtain M data samples [V1, V2, . . . , VM ] from the output of
unicorn headset.

Step 2 Select B set of independent bootstrap samples
[V ∗1, V ∗2, . . . , V ∗B] each comprising M independent data
samples obtained with replacement.

Step 3 Calculate the mean values of B independent data sets and
obtain the set of mean values [γz = γ1z, γ2z, . . . , γBz], where
z = S,N, depending upon the fists movement or feet move-
ment.

Step 4 Calculate the mean γ̄z.

Step 5 Calculate the standard error (SE).

Step 6 Select six unicorn channel with lowest standard error.

Step 7 Repeat the process for all subjects.

Step 8 Count the occurrence of individual unicorn channel.

Step 9 Apply majority rule to select top six channels.

5.1.2 Four unicorn channel selection algorithm

The steps for the proposed four channel selection bootstrap fusion scheme is

summarized in Table 5.2.
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Table 5.2: Four channel selection through bootstrap fusion scheme

Steps Description

Step 1 Obtain M data samples [V1, V2, . . . , VM ] from the output of
unicorn headset.

Step 2 Select B set of independent bootstrap samples
[V ∗1, V ∗2, . . . , V ∗B] each comprising M independent data
samples obtained with replacement.

Step 3 Calculate the mean values of B independent data sets and
obtain the set of mean values [γz = γ1z, γ2z, . . . , γBz], where
z = S,N, depending upon the fists movement or feet move-
ment.

Step 4 Calculate the mean γ̄z.

Step 5 Calculate the standard error (SE).

Step 6 Select four unicorn channel with lowest standard error.

Step 7 Repeat the process for all subjects.

Step 8 Count the occurrence of individual unicorn channel.

Step 9 Apply majority rule to select top four channels.
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Chapter 6

Experiment Setup and Results

6.1 Experiment Setup

6.1.1 Dataset

The motor imagery data set [26] consists of EEG recordings gathered from

109 subjects. Using the BCI2000 system, subjects performed different motor

imagery tasks while 64-channel EEG signals were recorded. Four experimen-

tal runs per subject were completed: two baseline runs of one minute each

with eyes open and closed, and three runs of two minutes each of the four

tasks.

� Baseline, eyes open

� Baseline, eyes closed

� Task 1 (open and close left or right fist)
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� Task 2 (imagine opening and closing left or right fist)

� Task 3 (open and close both fists or both feet)

� Task 4 (imagine opening and closing both fists or both feet)

6.1.2 Experiment Procedure

In the proposed work, we worked on motor imagery dataset. In this dataset,

experiment are performed on 109 subjects and contains recording of four

different tasks. We have worked on eight unicorn channels. The name of

the channels are Fz, C3, Cz, C4, Pz, PO7, Oz, PO8. Further, we calculated

their classification accuracy, and compared their performance by selecting

six channels and then four channels through our proposed bootstrap-based

channel selection algorithm through standard error. In this motor imagery

dataset, each channel has 60,000 data samples obtained from 1–2-minute

recording of EEG signals.

6.2 Result

6.2.1 Scenario I: Selected six channel

In Table 6.1, we have calculated the standard error of channels, to calcu-

late the standard error for each channel for a single subject, we took these

60,000 data samples, and resample this data set with replacement to form

our bootstrap samples. The resampled dataset has been formed by randomly
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selecting the values from the original 60,000 samples. Since we are randomly

selecting from the dataset each bootstrap sample will be different from one

another and it will be different from the actual dataset. After creating 10,000

bootstrap samples where each bootstrap sample will have 60,000 values, we

calculate the mean of each bootstrap sample, and thus 10,000 mean values

are obtained. The distribution of these mean values follows the gaussian dis-

tribution, from this Gaussian distribution standard error for a single subject

is calculated. Table 6.1 shows the standard error for subject-1. Here the

Table 6.1: Standard error of unicorn channels and standard error of selected
six channels for subject-1

Unicorn
Channels

Standard Error

Fz 9.268e− 08
C3 9.062e− 08
Cz 8.954e− 08
C4 7.965e− 08
Pz 8.878e− 08
PO7 9.829e− 08
Oz 1.087e− 07
PO8 9.448e− 08

Selected
Channels

Standard Error

C4 7.965e− 08
Pz 8.878e− 08
Cz 8.954e− 08
C3 9.062e− 08
Fz 9.268e− 08
PO8 9.448e− 08

standard error for the unicorn channels Fz, C3, Cz, C4, Pz, PO7, Oz, and

PO8 are 9.268e–08, 9.062e–08, 8.954e–08, 7.965e–08, 8.878e–08, 9.829e–08,

1.087e–07, and 9.448e–08 respectively, out of these eight channels we se-

lected six channels C4, Pz, Cz, C3, Fz, and PO8 having lowest standard

error 7.965e–08, 8.878e–08, 8.954e–08, 9.062e–08, 9.268e–08, and 9.448e–08,

respectively. A lower standard error corresponds that the value is closer to
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the mean, which improves the accuracy of the model.

Table 6.2 refers to the standard error calculation for subject-2. Here the

standard error of the unicorn channels Fz, C3, Cz, C4, Pz, PO7, Oz, and

PO8 are 5.599e–08, 5.656e–08, 6.181e–08, 4.833e–08, 5.869e–08, 5.212e–08,

5.513e–08, and 5.960e–08, respectively. It may be noted that standard error

values will be different for different subjects, depending upon the strength

of the received EEG signal at unicorn channels. Out of eight channels we

selected six channels C4, PO7, Oz, Fz, C3, and Pz having the lowest standard

error 4.833e–08, 5.212e–08, 5.513e–08, 5.599e–08, 5.656e–08, and 5.869e–08,

respectively. Due to the change in the values of the standard error, the

selected six channels are different from the channels of other subjects.

Table 6.2: Standard error of unicorn channels and standard error of selected
six channels for subject-2

Unicorn
Channels

Standard Error

Fz 5.599e− 08
C3 5.656e− 08
Cz 6.181e− 08
C4 4.833e− 08
Pz 5.869e− 08
PO7 5.212e− 08
Oz 5.513e− 08
PO8 5.960e− 08

Selected
Channels

Standard Error

C4 4.833e− 08
PO7 5.212e− 08
Oz 5.513e− 08
Fz 5.599e− 08
C3 5.656e− 08
Pz 5.869e− 08

Similar calculations are shown in table 6.3, table 6.4, and table 6.5 for

subject-3, subject-4, and subject-5.

For subject-3 the standard error for unicorn channels are Fz, C3, Cz,
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Table 6.3: Standard error of unicorn channels and standard error of selected
six channels for subject-3

Unicorn
Channels

Standard Error

Fz 9.263e− 08
C3 8.661e− 08
Cz 8.830e− 08
C4 8.160e− 08
Pz 9.092e− 08
PO7 1.025e− 07
Oz 9.927e− 08
PO8 8.831e− 08

Selected
Channels

Standard Error

C4 8.160e− 08
C3 8.661e− 08
Cz 8.830e− 08
PO8 8.831e− 08
Pz 9.092e− 08
Fz 9.260e− 08

C4, Pz, PO7, Oz, and PO8 are 9.263e–08, 8.661e–08, 8.830e–08, 8.160e–08,

9.092e–08, 1.025e–07, 9.927e–08, and 8.831e–08, respectively, out of this we

selected six channels C4, C3, Cz, PO8, Pz, and Fz having lowest standard

error 8.160e–08, 8.661e–08, 8.830e–08, 8.831e–08, 9.092e–08, and 9.260e–08

respectively.

For subject-4 the standard error for unicorn channels are Fz, C3, Cz, C4,

Pz, PO7, Oz, and PO8 are 3.803e−08, 3.624e−08, 3.746e−08, 3.510e−08,

3.347e − 08, 3.629e − 08, 3.140e − 08, and 3.230e − 08, respectively, out of

this we selected six channels Oz, PO8, Pz, C4, C3, and PO7 having lowest

standard error 3.140e−08, 3.230e−08, 3.347e−08, 3.510e−08, 3.624e−08,

3.629e− 08, respectively.

For subject-5 the standard error for unicorn channels are Fz, C3, Cz, C4,

Pz, PO7, Oz, and PO8 are 4.555e−08, 4.127e−08, 4.406e−08, 3.892e−08,

4.083e − 08, 4.380e − 08, 3.957e − 08, and 4.453e − 08, respectively out of
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this we selected six channels Oz, PO8, Pz, C4, C3, and PO7 having lowest

standard error 3.892e−08, 3.957e−08, 4.083e−08, 4.127e−08, 4.380e−08,

and 4.406e− 08, respectively.

Table 6.4: Standard error of unicorn channels and standard error of selected
six channels for subject-4

Unicorn
Channels

Standard Error

Fz 3.803e− 08
C3 3.624e− 08
Cz 3.746e− 08
C4 3.510e− 08
Pz 3.347e− 08
PO7 3.629e− 08
Oz 3.140e− 08
PO8 3.230e− 08

Selected
Channels

Standard Error

Oz 3.140e− 08
PO8 3.230e− 08
Pz 3.347e− 08
C4 3.510e− 08
C3 3.624e− 08
PO7 3.629e− 08

Similar calculations are done for the remaining 104 subjects. As we have

observed that the set of selected six channels may differ for different subjects,

to select six channels out of eight channels we apply the majority rule. In

the majority rule, we calculate the number of times a particular channel has

been selected among the top six channels or has a lower standard error. For

example, in table 6.1 the occurrence of channel Cz is in the third position,

whereas in table 6.2 channel Cz is not present in the set of selected six

channels. This indicates that the performance of channel Cz is good for

subject-1, but poor for subject-2.

Table 6.6 shows the occurrence of the individual channel among all 109

subjects. Here we can observe that for each subject we have selected six
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Table 6.5: Standard error of unicorn channels and standard error of selected
six channels for subject-5

Unicorn
Channels

Standard Error

Fz 4.555e− 08
C3 4.127e− 08
Cz 4.406e− 08
C4 3.892e− 08
Pz 4.083e− 08
PO7 4.380e− 08
Oz 3.957e− 08
PO8 4.453e− 08

Selected
Channels

Standard Error

C4 3.892e− 08
Oz 3.957e− 08
Pz 4.083e− 08
C3 4.127e− 08
PO7 4.380e− 08
Cz 4.406e− 08

channels, but all eight channels are present in the counting. The presence

of all eight is due to changes in the strength of EEG signals for individual

subjects. Table 6.6 shows that out of 109 subjects channel Fz occurred 76

times in the set of top six selected channels, similarly, C3 occurred 78 times,

Cz occurred 80 times, C4 occurred 101 times, Pz occurred 84 times, PO7

occurred 66 times, Oz occurred 78 times, and PO8 occurred 91 times. Out

of these eight channels we selected six channels through majority rule, the

selected channel are C3, Oz, Cz, Pz, PO8, and C4 having count 78, 78, 80,

84, 91 and 101, respectively.

To evaluate the performance of our bootstrap-based channel selection al-

gorithm, we calculate the accuracy of selected six channels through a support

vector machine (SVM).
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Table 6.6: Number of times individual channel occur in 109 subjects, and
selected six unicorn channels

Unicorn
Channels

Count

Fz 76
C3 78
Cz 80
C4 101
Pz 84
PO7 66
Oz 78
PO8 91

Selected
Channels

Count

C3 78
Oz 78
Cz 80
Pz 84
PO8 91
C4 101

6.2.2 Scenario II: Selected four channel

To select four channels out of eight channels of the unicorn headset, we again

calculate the number of times a particular channel has occurred in the set

of top four channels in standard error calculations. To create a set of top

four channels we first calculate the standard error of the mean values of the

set of 10,000 bootstrap samples, and then we select the lowest four values of

standard error.

Table 6.7 shows the standard error calculations for subject-1. As shown

in table the standard error for unicorn headset channels Fz, C3, Cz, C4,

Pz, PO7, Oz, and PO8 are 9.268e–08, 9.062e–08, 8.954e–08, 7.965e–08,

8.878e–08, 9.829e–08, 1.087e–07, and 9.448e–08 respectively. It can be ob-

served that the standard error values for both cases are similar because here

we are working on the set of mean values. We select the four channels with
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lower standard errors out of these eight values. Table 6.7 shows the names of

the selected channel and their values. The selected four channels are C4, Pz,

Cz, C3 and their respective standard error values are 7.965e–08, 8.878e–08,

8.954e–08, and 9.062e–08.

Table 6.7: Standard error of unicorn channels and standard error of selected
four channels for subject-1

Unicorn
Channels

Standard Error

Fz 9.268e− 08
C3 9.062e− 08
Cz 8.954e− 08
C4 7.965e− 08
Pz 8.878e− 08
PO7 9.829e− 08
Oz 1.087e− 07
PO8 9.448e− 08

Selected
Channels

Standard Error

C4 7.965e− 08
Pz 8.878e− 08
Cz 8.954e− 08
C3 9.062e− 08

Similarly, we calculated the standard error and selected the set of four

values of the lowest standard error for the remaining subjects. The standard

error values and the selected channels for subject-2, subject-3, subject-4, and

subject-5 are shown in table 6.8, table 6.9, table 6.10, and table 6.11.

For subject-2 the standard error for unicorn channels are Fz, C3, Cz,

C4, Pz, PO7, Oz, and PO8 are 5.599e–08, 5.656e–08, 6.181e–08, 4.833e–08,

5.869e–08, 5.212e–08, 5.513e–08, and 5.960e–08, respectively, out of this se-

lected four channels are C4, PO7, Oz, and Fz and their standard errors are

4.833e–08, 5.212e–08, 5.513e–08, and 5.599e–08, respectively.

For subject-3 the standard error for unicorn channels are Fz, C3, Cz,
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Table 6.8: Standard error of unicorn channels and standard error of selected
four channels for subject-2

Unicorn
Channels

Standard Error

Fz 5.599e− 08
C3 5.656e− 08
Cz 6.181e− 08
C4 4.833e− 08
Pz 5.869e− 08
PO7 5.212e− 08
Oz 5.513e− 08
PO8 5.960e− 08

Selected
Channels

Standard Error

C4 4.833e− 08
PO7 5.212e− 08
Oz 5.513e− 08
Fz 5.599e− 08

C4, Pz, PO7, Oz, and PO8 are 9.263e–08, 8.661e–08, 8.830e–08, 8.160e–08,

9.092e–08, 1.025e–07, 9.927e–08, and 8.831e–08, respectively, out of this se-

lected four channels are C4, C3, Cz, and PO8 and their standard errors are

8.160e–08, 8.661e–08, 8.830e–08, and 8.831e–08, respectively.

Table 6.9: Standard error of unicorn channels and standard error of selected
four channels for subject-3

Unicorn
Channels

Standard Error

Fz 9.263e− 08
C3 8.661e− 08
Cz 8.830e− 08
C4 8.160e− 08
Pz 9.092e− 08
PO7 1.025e− 07
Oz 9.927e− 08
PO8 8.831e− 08

Selected
Channels

Standard Error

C4 8.160e− 08
C3 8.661e− 08
Cz 8.830e− 08
PO8 8.831e− 08

For subject-4 the standard error for unicorn channels are Fz, C3, Cz, C4,
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Table 6.10: Standard error of unicorn channels and standard error of selected
four channels for subject-4

Unicorn
Channels

Standard Error

Fz 3.803e− 08
C3 3.624e− 08
Cz 3.746e− 08
C4 3.510e− 08
Pz 3.347e− 08
PO7 3.629e− 08
Oz 3.140e− 08
PO8 3.230e− 08

Selected
Channels

Standard Error

Oz 3.140e− 08
PO8 3.230e− 08
Pz 3.347e− 08
C4 3.510e− 08

Pz, PO7, Oz, and PO8 are 3.803e−08, 3.624e−08, 3.746e−08, 3.510e−08,

3.347e−08, 3.629e−08, 3.140e−08, and 3.230e−08, respectively out of this

selected four channels are Oz, PO8, Pz, and C4 and their standard errors are

3.140e− 08, 3.230e− 08, 3.347e− 08, and 3.510e− 08, respectively.

Table 6.11: Standard error of unicorn channels and standard error of selected
four channels for subject-5

Unicorn
Channels

Standard Error

Fz 4.555e− 08
C3 4.127e− 08
Cz 4.406e− 08
C4 3.892e− 08
Pz 4.083e− 08
PO7 4.380e− 08
Oz 3.957e− 08
PO8 4.453e− 08

Selected
Channels

Standard Error

C4 3.892e− 08
Oz 3.957e− 08
Pz 4.083e− 08
C3 4.127e− 08

For subject-5 the standard error for unicorn channels are Fz, C3, Cz, C4,
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Table 6.12: Number of times individual channel occur in 109 subjects, and
selected four unicorn channels

Unicorn
Channels

Count

Fz 57
C3 46
Cz 42
C4 87
Pz 43
PO7 33
Oz 56
PO8 72

Selected
Channels

Count

Oz 56
Fz 57
PO8 72
C4 87

Pz, PO7, Oz, and PO8 are 4.555e−08, 4.127e−08, 4.406e−08, 3.892e−08,

4.083e − 08, 4.380e − 08, 3.957e − 08, and 4.453e − 08, respectively out of

this selected four channels are C4, Oz, Pz, and C3, and their standard errors

are 3.892e− 08, 3.957e− 08, 4.083e− 08, and 4.127e− 08 respectively.

After selecting the set of four channels for 109 subjects, we count the

number of times a particular channel has occurred in the selected set of

standard error values.

Table 6.12 shows the count of the occurrence of the channels. Unicorn

channel Fz has occurred 57 times, C3 occurred 46 times, Cz occurred 42

times, C4 occurred 87 times, Pz occurred 43 times, PO7 occurred 33 times,

Oz occurred 56 times, and PO8 occurred 72 times. On applying the majority

rule, the selected four channels are Oz, Fz, PO8, and C4 and their respected

counts are 56, 57, 72, and 87. Here we can observe that there is a difference

in the count of the occurrence of channels in table 6.6 and table 6.12.
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In both the tables, we have eight channels but the difference in the count

is due to a change in the values of standard error which in turn changes

the position of occurrence of a particular channel. For example, in table 6.6

Fz has occurred 76 times out of 109 subjects, whereas in table 6.12 Fz has

occurred 57 times only out of 109 subjects. The difference in Fz count is due

to its standard error value position. For subject-1 in table 6.1 channel Fz has

occurred at sixth position, so Fz is considered for the six-channel selection

method but not for the four-channel selection method.

The performance of the proposed method is measured in terms of clas-

sification accuracy. In this work, we have made use of a support vector

machine (SVM) to classify different motor imagery tasks. Moreover, we have

compared the accuracy of our six-channel and four-channel selection schemes

with the eight channel unicorn headset. The proposed six channel selection

algorithm shows an accuracy of 97.6% when compared with the eight channel

unicorn headset. While the proposed four channel selection algorithm shows

an accuracy of 90% when compared with the eight-channel unicorn headset.
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Chapter 7

Conclusion and Future Work

In this work, we proposed a bootstrap-based channel selection algorithm in

a unicorn headset. Unicorn headsets consist of eight channels, our objective

is to find an optimal subset of the channel without compromising the per-

formance. The performance of the work is measured in terms of accuracy.

We calculated the accuracy by selecting six channels and then four channels

out of eight channels of the unicorn headset. The proposed work is shown

to exhibit a performance that is comparable to eight channels in the unicorn

headset.

In this algorithm, we create a set of bootstrap samples at an individual

channel and calculate the standard error of the mean values of the set of

bootstrap samples. Channels having lower standard error are included in

the decision-making process. The final selection of channels is done through

majority rule.
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It is possible in a realistic scenario for some of the channels the signal

is weak. As here we are not making the decision based on actual incoming

signals, we are working on the mean values of the bootstrapped signals,

therefore, in such a situation when there are a considerable number of weeks

signals the performance of the proposed work does not change significantly,

indeed it remains almost unaffected for a range of week EEG signals.

The bootstrap-based channel selection algorithm does not make use of

any feedback mechanism, it will be interesting to devise such a mechanism,

through which we can assign some weight in terms of probability to individ-

ual channel to further improve the channel selection method which in turn

improves the accuracy of the system.
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