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ABSTRACT

With the paradigm shift to cloud-based operations, reliable and secure access to and transfer of data

between differing security domains has never been more essential. A Cross Domain Solution (CDS)

is a guarded interface which serves to execute the secure access and/or transfer of data between

isolated and/or differing security domains defined by an administrative security policy. Cross do-

main security requires trustworthiness at the confluence of the hardware and software components

which implement a security policy. Security components must be relied upon to defend against

widely encompassing threats – consider insider threats and nation state threat actors which can be

both onsite and offsite threat actors – to information assurance. Current implementations of CDS

systems use sub-optimal Trusted Computing Bases (TCB) without any formal verification proofs,

confirming the gap between blind trust and trustworthiness. Moreover, most CDSs are exclusively

operated by Department of Defense agencies and are not readily available to the commercial sectors,

nor are they available for independent security verification. Still, more CDSs are only usable in

physically isolated environments such as Sensitive Compartmented Information Facilities and are

inconsistent with the paradigm shift to cloud environments. Our purpose is to address the question

of how trustworthiness can be implemented in a remotely deployable CDS that also supports avail-

ability and accessibility to all sectors. In this paper, we present a novel CDS system architecture

which is the first to use a formally verified TCB. Additionally, our CDS model is the first of its

kind to utilize a computation-isolation approach which allows our CDS to be remotely deployable

for use in cloud-based solutions.
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Chapter 1

Introduction

Intelligence services use specialized, and often clandestine, sources and methods to gather informa-

tion about their targets. ... To employ the information in network defense exposes it to leakage or

theft, particularly by cyber threat actors. Once such information is compromised, it loses its unique

defensive value because actors can modify their plans or adjust their tradecraft. More importantly,

compromise of defensive information based on intelligence can also compromise the sources and

methods used to get it, eliminating future intelligence.

Therefore, national security communities need mechanisms that will allow effective use of sen-

sitive intelligence information for defense of a broad range of networks, but which can also protect

that information from unauthorized access, leakage, and theft. – B. M. Thomas and N. L. Ziring

[126]

1.1 Idea Formulation

The initial idea for the project stems from the reading of Using Classified Intelligence to Defend

Unclassified Networks by B. M. Thomas and N. L. Ziring [126]. The paper lays out some high level

approaches to solving the problem of, as the title suggests, how to leverage classified intelligence to

defend unclassified networks. Formulated from this paper were the following hypotheses:

(i) The concept of using classified technology to process unclassified data can be extended and

applied to a system with capabilities including the transfer of data between two domains of

differing trust levels;
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(ii) Data confidentiality must be the foremost security requirement for such a system; and

(iii) The system’s classified technology and operations must be relied upon to not leak information.

The above hypotheses led to further examination of cross domain solution (CDS) technology

with the following questions in mind:

(i) Can a CDS architecture be formed to fulfill such a capability as described in [126], i.e. to

defend unclassified networks using classified technology?

(ii) How can a system’s reliability be measured, and can a CDS architecture be comprehensively

proven to be trustworthy?

(iii) Can a baseline CDS solution be developed for versatility such that it can be applied to a

variety of environments and use-cases without extensive modification or costs?

1.2 Overview of the Subject Matter

In the context of secure computing systems, the following problems are often encountered: (i) ex-

isting methods for accessing and transferring data between domains are not guaranteed to be

trustworthy, (ii) the majority of existing technologies for accessing and transferring data between

domains are limited to use and management by the Department of Defense (DoD) and are ex-

pensive solutions tailored to a single use-case, and (iii) current solutions are physically isolated,

secure appliances with capabilities which are inconsistent with the move to cloud-based solutions.

Furthermore, existing solutions are either highly specialized systems which cannot be applied to

other use-case environments without incurring unreasonable modification and maintenance costs,

or they are ad hoc solutions built upon technologies which lack assured security [13, 26, 47, 57].

In the context of military information systems, a domain is an environment which contains a set

of computer-based systems, processes, data, controls, and security policies defined by a classification

label, which serves in isolation from other systems and can only be accessed using a defined set of

rules. Similarly, a security domain is a system or set of systems separated from other domains by

a boundary defined by an administrative security policy. Oftentimes there is a need for a smaller

security domain, called an enclave, to reside inside a larger security domain which enforces security
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policies for more highly classified data. The objective of the security policy is to uphold trust

or classification level, information access and transfer regulations, and data ownership within a

domain. Creating a secure connection between security domains necessitates the implementation

of multifaceted security policies for information flow management in a CDS. Cross domain refers

to the access to and/or transport of data across domains of isolated and/or differing classification

levels. A CDS enforces a security policy on an interface between the discrete security domains.

The individual defense technologies used in CDS systems, which implement the security policies,

are what allow CDSs to employ layered defense. Note that variations of the terms high and low are

used herein, to describe domains and/or assets of higher and lower security classification or trust

levels. Additionally, the terms security domains, classification boundaries and variations of these

are used to define a domain in a CDS context.

1.3 Problem Statement

The DoD and the Intelligence Community (IC) manage CDS services, devices, and the standards

which CDSs must abide by, almost exclusively, through the National Cross Domain Strategy Man-

agement Office (NCDSMO) [48]. Furthermore, [47] details the CDS needs and requirements, origi-

nally outlined by the UCDMO, that are exclusively written for DoD agencies. More recently, the

National Security Agency (NSA) NCDSMO has documented a strategy for improving CDS tech-

nology requirements and security policies called Raise The Bar [99]. While there are a few CDS

solutions available outside the DoD/IC such as [40, 50], this community manages the CDS stan-

dards and technologies which are leveraged by these systems. This not only creates the problem of

general CDS availability outside the DoD, but also means these systems are significantly expensive

and must be redesigned for specific environments [48].

Further challenges with the current status quo of CDS designs include reliability and assurance

(trustworthiness), remote deployability, and accessibility [48, 82]. [126] also states that current

CDS products are available only as secure appliance or “strong box” implementations meaning

they reside in a physically isolated environment and are unfit for cloud environments as they

are not remotely deployable. As a consequence, existing solutions are either highly specialized

systems which cannot be applied to other use-case environments without incurring unreasonable
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modification and maintenance costs, or they are ad hoc solutions built upon technologies which

lack assured security [13, 26, 47, 57].

These problems can be made manifest by the three CDS architectures of current CDS systems.

The first architecture uses physically isolated domains (Chapter 2.7.1: Physically Isolated Domains)

to maintain one classification level per domain. This separation ensures that an authorized operator

must maintain multiple physical infrastructures. One implementation is sometimes referred to as

a “swivel-chair setup” because the operator could effectively swivel his or her chair to access each

workstation while other implementations use a keyboard, video monitor, and mouse (KVM) switch

to access different domains from a single computer [117]. Oftentimes this architecture employs air

gaps to transfer data using removable devices. The second architecture uses partitioned workstations

(Chapter 2.7.2: Partitioned Workstations), which relies on domain virtualization on top of a single

host. The host regulates the separation between domains by running a corresponding virtual

machine (VM) for each domain or trust level. The third architecture uses data diodes (Chapter

2.7.3: Data Diodes), which are analogous to electrical diodes, to restrict the flow of data in one

direction (e.g. a domain of low classification level may be permitted to transfer data to a domain

of high classification level but not the opposite). These tailored designs may explain why the

Committee on National Security Systems (CNSS) called the current CDS architectures niche CDSs

because they lack accessibility to commercial sectors outside of the military/DoD designations [24,

126]. These architectures are further described in Chapter 2.7: CDS Architectures.

A critical observation regarding security systems, in general, is that many descriptions bundle

the well-understood security objectives of confidentiality, integrity, availability, authenticity, and

accountability (CIAAA) together. In practice, this not only forces impractical redesign, but en-

forcing each of these objectives is simply not necessary if the threat model does not require it.

Furthermore, each security objective requires the addition of more technologies which may incur

risk beyond the defined threat model. The CDS architecture, presented herein, focuses on data

confidentiality, i.e. ensuring that data spillage does not occur.

Summarizing the preceding discussion of the problem, the facts presented above pose an elevated

risk to data confidentiality, the focus of the vCDS threat model, for multiple reasons. First, a

system that has not been mathematically proven trustworthy should not be trusted to securely

maintain data. Second, the status quo in both commercial and DoD-specific CDS technology is
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inconsistent with the paradigm shift to offsite/cloud computing and does not allow for secure remote

deployability as it could expose and compromise the data. Third, security through obscurity is

exposed as a failed security technique, and the need for independent validation of security properties

is revealed.

1.4 Significance of the Problem

CDSs are at the forefront of security research and technology because context-specific data, pro-

cesses, connections and boundaries need a comprehensive protection plan against a disclosure-

focused threat model. Furthermore, the data which are protected by the security policies should

be able to be made available at a moment’s notice to all parties which require it. Secure threat

intelligence sharing (TIS) is a necessity in the age where cloud computing meets cyber warfare [61].

Of further significance is the need for a system which can, with all certainty, be relied upon. It

has been established that trusting a system to perform and enforce security as expected without

being formally evaluated is commonplace [13, 26, 47, 48, 57, 82]. Without having a CDS that

can be relied upon to protect the access and/or transfer of sensitive and/or classified information

across remote boundaries during critical operations, the attack could already have materialized by

the time the information reached its destination or threat actors could have gained access to and

exploited the knowledge of the information.

In general, there is a common need for CDS capabilities in the commercial sector in addition

to the military sector. The limited availability of such capabilities to commercial entities exposes

not only private information, but even critical infrastructures to tampering [48].

1.4.1 Design Objectives and Requirements

From the presented problem, the following objectives and requirements were constructed:

(i) ensuring data confidentiality, i.e. protection against leaks of classified data/technology, must

be the central focus;

(ii) the CDS should be able to be comprehensively and mathematically verified for functional

correctness;
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(iii) the CDS should be able to be remotely deployable;

(iv) the CDS technology should be available to the commercial sector for use and independent,

formal verification; and

(v) the CDS’s baseline architecture should provide versatility in the application of the system to

different use-cases and environments.

1.5 Research Approach

The processes planned and conducted for realizing the research herein are formalized below:

(i) Deconstruct current CDS and trusted computing systems to determine how their limitations

affect security operations – explore the significance of formal verification and trustworthy

computing systems and the criteria by which these systems are evaluated; the effect of re-

motely accessible, classified information, on security awareness; and how system availability,

outside the DoD, affects critical information which is important to both the DoD and the

commercial entities which lack the system capabilities.

(ii) Develop a concept of the security objectives and requirements necessary to form the basis

of a remotely deployable and dynamically adaptable CDS – develop the minimal necessary

security requirements which would be required to develop the CDS, such that it meets the

solution objectives of being remotely deployable, widely accessible and comes with functional

correctness and object security guarantees.

(iii) Analyze use-cases and implementations of current systems and envision further use-cases to

generate the requirements and the security baseline architecture for the CDS – examine and

deconstruct applications and scenarios in which the system may be used, solidify the security

objectives and design potential architectures based on those objectives and adaptability to

different applications.

(iv) Investigate technologies and begin system development – investigate existing technologies

which can be used in the CDS system components and the development process; begin de-

velopment:

6



(a) Provide diagrams based on architecture design for each use-case

(b) Consolidate architectures into one adaptable architecture

(c) Select a single use-case to focus on for implementation

(d) Develop goals, test cases and benchmarks for system analysis

(e) Implement the system – build the technology stack and develop the components and

processing needed for the selected use-case

(f) Collect metrics – measure the system against the test cases and benchmarks

(g) Refine the system – refine the system to better meet the goals of the test cases and

benchmarks and repeat collection and refinement until goals are met

The formalizations above have been further divided and simplified into a research methodology

which is shown in Table 1.1, below.

Research Methodology

1. Review literature and current solutions
Examine and evaluate the state-of-the-art CDS and secure
computing systems as detailed in the literature.

2. Examine problems and limitations
Find and deconstruct the limitations and problems based on
the literature review in step 1.

3. Hypothesize
Formulate hypotheses based on the potential solution to
problems established in step 2.

4. Objectives and Requirements
Formulate solution objectives and requirements necessary to
test the hypotheses in step 3.

5. Develop solution

System architecture and implementation must be developed,
in addition to specific use-case applications. The architecture
must meet the objectives and requirements established in
step 4.

6. Evaluate solution

System architecture and implementation must be evaluated
and experimented on, in addition to the evaluation of a
specific use-case. Furthermore, results should be compared
to state-of-the-art solutions and results gathered from step 1.

7. Repeat steps 4-7 Continue as needed for each selected use-case implementation.

Table 1.1: Research Methodology

1.6 Contributions of this Research

The purpose of this work is to systematically examine and correct the challenges of CDS systems,

in particular, their lack of: (i) trustworthiness, (ii) remote deployability, and (iii) accessibility,
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identified in the references above.

A novel CDS architecture, presented in [33], called virtual CDS (vCDS) has been analyzed. The

resulting CDS systems overcome the weaknesses of current CDSs with the following contributions:

(i) The architecture allows for public analysis in terms of the trustworthiness of its instantiations

– vCDS ensures trustworthiness through execution on top of a formally verified, TCB.

(ii) The resulting vCDS systems are widely accessible, including both DoD/IC and commercial

sectors – accessibility to commercial sectors provided by using open-source and commodity

software and hardware.

(iii) The resulting vCDS systems allow for secure remote deployability, including remote deploy-

ment in cloud environments.

(iv) The vCDS architecture can be leveraged or dynamically adapted to implement critical security

mechanisms, such as Intrusion Detection System/Intrusion Prevention System (IDS/IPS)

and Firewall technologies, which use tools or Indicators of Compromise (IOC) with high

classification levels, such as cryptographic signatures and analytics tools, to defend computer

systems with low classification levels. This is achieved by allowing these IPS/IDS of high

classification levels to examine traffic in networks of low classification levels, without leaking

information about the technologies with high classification levels.

(v) The vCDS architecture is compatible with big data and high performance computing environ-

ments where distributed parallel processing, including the access and transfer, of large data

sets is commonplace. In the case of a big data platform, vCDS is compatible to platforms like

MapReduce in that it moves the computation to the data. In the case of a high performance

computing platform, vCDS can move the data to the compute nodes. The versatility of vCDS

ensures scalability and low-cost implementations.

(vi) The vCDS architecture can integrate with other security solutions, such as the B2CSM ar-

chitecture described in [61], which aims at achieving secure intelligence collaboration through

data collection, aggregation, analysis, and threat-related information dissemination to critical

parties.
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(vii) A prototype instantiation of the vCDS architecture was designed and analyzed.

(viii) A stream processor implementation of vCDS has been analyzed and evaluated.

(ix) An auditing tool which seeks to validate the correctness of the implemented security con-

figuration of all vCDS instantiations was developed. This is the first tool to analyze and

audit CDS security control implementations. Presented along with this tool are the following

contributions:

(a) The need to verify the implementation of a CDS system security model is addressed.

(b) This tool is the first and only development of a tool which audits a CDS described via

an architecture description language (ADL).

(c) This work is the first to tailor an ADL for describing a CDS system with the ability to

tag components with proper labels which propagate down through the ADL, allowing

the algorithm to check the constraints.

(d) The use of the tailored ADL is extended to include labels and key words which trigger the

appropriate protection models and information flow constraints in vCDS to determine

whether or not to encrypt the data.

(e) The tailored ADL is extended to provide system security modeling that is far beyond

the status quo.

As evidenced by a thorough search of the relevant literature, vCDS is the first general purpose CDS

system, which leverages a TCB that is provably secure and has been comprehensively verified for

functional correctness and security guarantees, that can be applied to and deployed in a variety of

use-cases and environments.

1.7 Overview of the Dissertation

Chapter 2: Background provides the background of technologies and information which has been

deemed essential to understanding the presented research such as the access control and security

models, formal verification and functional correctness, TEEs, TCBs, and CDSs. Additionally

covered is previous work relating to these specific technologies and information used in this research.
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Chapter 3: The vCDS Architecture examines the operational context, such as the system and

threat models, the security requirements and objectives, some of the applications of vCDS systems

and the architectural design of the vCDS system.

Chapter 4: The vCDS Implementation provides the details about each technology which is useful

for realizing each layer of the architecture described in Chapter 3. These specific technologies are

those which are used in the prototype system presented herein.

Chapter 5: Auditing a Cross Domain Solution examines the need for CDS auditing and details

the implementation of a CDS auditing tool which can be used to audit vCDS instantiations.

Chapter 6: Analysis and Evaluation analyzes the experiments and measurements taken against

the presented system as well as how the metrics compare to other systems.

Finally, Chapter 7: Conclusion highlights the contributions of this work to the field of cross do-

main solutions, trusted computing systems and information assurance. This chapter also introduces

the future direction of this research.

1.8 Key Findings

This research details the shortcomings associated with the status quo in CDS technology which

are systematically examined to determine the underlying causes as well as the effects of these

problems. The development and implementation of a vCDS prototype demonstrates the feasibility

of applying such a system to a real-time environment which necessitates remote deployability,

trustworthy computations and proven data security, and widely available and accessible system

components. The functionality of the vCDS prototype displays its adaptability to data security

needs and its impact on cross domain capabilities. Furthermore, the system’s functional correctness

guarantees through formal verification and its provable object security yield system trustworthiness

not readily available in CDS systems. Based on the experiments herein, it can be determined that

security is not equated with, nor does it necessitate, poor performance. The presented metrics show

that the vCDS architecture ensures an implementation which delivers both high security and high

performance. Overall, it can be determined that trust is not the same as trustworthiness, that CDS

systems can be remotely deployable to offsite computing environments while remaining secure, and

that security through obscurity is no excuse for the lack of CDS accessibility to all sectors.
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This work is partially based on the following previous work:
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ture. In Preparation. n.d.
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ing. 2022.

Parts of, and even entire, sections have been adopted and modified from the original publica-

tions. Additionally, a few of the diagrams in this work have been re-purposed from the previous

work listed above.
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Chapter 2

Background

This chapter highlights the objectives and definitions of systems and terms related to the work

presented herein and introduces three common CDS categories as well as three common CDS

system architectures. Additionally introduced, along with the technological components commonly

found in secure computing systems, are the functions and objectives that these components aim

to meet, and the distinction between the concepts of trust and trustworthiness as they pertain

to secure computing systems. This section will begin with the introduction of several security

models, which are categorized as follows: Access Control Models, Domain Security Models, and

Data Protection Models.

2.1 Access Control Models

Access control models historically focus on subjects, or the users and processes which access and

manipulate the data, and objects, or the data which is being processed. In the context of military

systems, each subject is assigned a clearance or privilege and each object is assigned a classification

label. In general, access control follows a subject-oriented approach where each file respectively

defines a set of access-mode bits, which represent access rights, that allow access to be granted to a

subject based on user and group identities or clearance level. Likewise, the subjects and processes of

a sufficient clearance level can perform the same operations on an object of a particular classification

level.

There are several types of access control models including, but not limited to: mandatory access
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control (MAC), discretionary access control (DAC), role and rule based access control (RBAC), and

attribute based access control (ABAC). A MAC model is a formal set of rules by which data access

is always governed. A DAC security policy provides a user with the authority to extend access to

a second user based on his or her own discretion, if and only if that second user is allowed by non-

discretionary security to view the information [17]. The RBAC model is a non-discretionary access

control model which defines access permissions relative to a subject’s position and/or explicit rules

defined by the organization. ABAC is a policy based access control model which assigns clearances

to subjects and classifications to objects based on attributes of the subject or the resource.

2.1.1 Bell-LaPadula Confidentiality Model

One model that employs both MAC and DAC security policies is the Bell-LaPadula (BLP) model.

BLP is a top-down state machine model with the primary purpose of enforcing data confidentiality

and controlled access to classified information designed specifically to formalize domain security for

the DoD [23]. The BLP model, described formally in [17], enforces the following security properties

for access control:

(i) Simple Security Property: known as the no read up property; a subject at a specific security

level cannot read an object at a higher security level

(ii) *-Property (Star Property): known as the no write down property; a subject at a specific

security level cannot write to any object at a lower security level

(iii) Discretionary Security Property (Strong Star Property): an alternative to the *-Property in

which all granted access requests must be authorized by a defined protection matrix

(iv) Tranquility Principle:

(a) Strong Tranquility: security levels do not change during normal system operation

(b) Weak Tranquility: security levels never change in a way that violates the defined security

policy

BLP ensures that individuals can only read objects at or below their own security level, individuals

can only create objects at or above their own security level if the *-Property is used, and all access
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requests must be authorized based on an access control matrix that characterizes the security level

and rights of each individual if the Discretionary Security Property is implemented. Furthermore,

the weak tranquility principle preserves the principle of least privilege (POLP) assuring that a

subject may only access the minimum resources necessary for a particular operation. BLP’s primary

concern is confidentiality of data [15].

2.1.2 Biba Integrity Model

The MAC model presented by K.J. Biba in [19] focuses on the preservation of data integrity

by identifying and enforcing proper data modifications. Listed below are the goals of integrity

protection, with respect to the modification of data, detailed in [19]:

(i) Protect the importance of the data – prevent object modification by unauthorized subjects

(ii) Enforce the need-to-modify – prevent improper object modification by authorized subjects

(iii) Protection of system services – prevent the problem of the mutually suspicious subsystem by

maintaining internal and external consistency such that no one system service can access the

rights of another

The Biba Integrity Model aims to ensure that any higher classified objects remain isolated from

lower classified objects and subjects of lower classification. All new objects which are created within

a system by a subject are classified at or below the integrity clearance level of the subject which

created it. Additionally, subjects can only access objects which are classified at or above their

clearance level. The Biba model enforces the following security properties for the preservation of

integrity:

(i) Simple Integrity Property: known as the no read down property; a subject at a specific

integrity level cannot read an object at a lower integrity level

(ii) *-Integrity Property (Star Integrity Property): known as the no write up property; a subject

at a specific integrity level cannot write to any object at a higher integrity level

(iii) Invocation Property: a subject of lower integrity level cannot request access to or invoke a

subject residing at a higher integrity level
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The above rules reverse some of the rules defined by BLP, however, because of the lattice structure

of Biba, the security policy defined by BLP and the integrity properties of Biba can co-exist and

encourage harmonious security and integrity rules.

2.2 Domain Security Models

There are two central domain security models which describe the relationship between security

classifications and security domains: multiple independent levels of security (MILS) and multi-level

security (MLS) [24]. Domain security models are architectures which are used to process data that

reside at different security domains, that is, incompatible classification levels. The key features in

these security architectures are data isolation mechanisms and information flow controls.

2.2.1 Multiple Independent Layers of Security

MILS ensures separation by assigning a single domain to a single security classification level. For

example, a high side domain would be segregated from a low side domain using a boundary or

separation mechanism. One example of such a mechanism is depicted in 2.15 as an air gap, or

physical separation, between domains which can only be bridged by an authorized removable storage

device. Another isolation mechanism is a partitioner or separation kernel. The separation kernel

enforces the following objectives as defined by [4]:

(i) Data Separation: the address spaces of a partition must be independent of other partitions

thereby preventing reads and writes of incompatible partitions

(ii) Information Flow: if communication channels between differing partitions must exist, then

they must be authorized and controlled

(iii) Sanitization: all resources must be processed and sanitized before they can be accessed by a

process in another partition

(iv) Damage Limitation: all breaches or faults must be limited to the partition in which they

occur

Figure 2.1 below is a diagram showing domains of different classification levels (i.e high and

low) in isolation of one another. No matter which separation mechanism is leveraged by the MILS
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architecture, the following properties, otherwise known as the NEAT concept, should be upheld by

the security mechanisms in a MILS system [4, 16]:

(i) Non-bypassable: the boundary between domains cannot be bypassed and the mechanisms

guarding the boundary cannot be avoided;

(ii) Evaluatable: mechanisms must be small enough to be formally tested and analyzed for security

and functional correctness;

(iii) Always invoked: mechanisms are invoked for every action, i.e. all communications and accesses

are always individually checked and monitored; and

(iv) Tamperproof: no unauthorized modifications of the mechanisms are permitted;

Figure 2.1: Multiple Independent Layers of Security (MILS) Model

2.2.2 Multi-level Security

MLS, on the other hand, governs systems where all data is placed in a single domain, relying on

trusted labels and user clearance level for proper security access enforcement [117]. MLS classifica-

tion levels are not separated into high and low domains, but instead use high and low access control

labels as well as security assurance policies to enforce the separation boundary. MLS systems im-

plement the separation and security features through a Reference Validation Mechanism (RVM)

such as a reference monitor. The RVM, as is similarly true with MILS security mechanisms, must

adhere to NEAT [16]. Additionally, the RVM must:

(i) provide validation of all references made by processes in execution against references autho-

rized for the subject,

(ii) assure that the references are authorized to shared resource objects, and
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(iii) assure that the reference access right is correct (i.e read or write, etc.) [10].

Figure 2.2 below shows the subject who may have clearance for individually tagged data which,

in this case, is data tagged with either H (for high) or L (for low), or the subject may have clearance

for all data which is tagged with either an H or an L. Note that the tags of H and L on the data

represent the levels at which the data are classified and the RVM provides the reference checks and

separation mechanisms.

Figure 2.2: Multi-level Security (MLS) Model

2.3 Data Protection Models

Data protection models are security models which define the conditions under which authority may

be granted. These types of security models have: (i) “a finite set of access rights”, and (ii) “a finite

set of rules for modifying the distribution of these access rights” [44]. Introduced in this section are

the following models: Take-Grant Model and Capability Model. Note that portions of the following

sections, including diagrams, have been adopted from “Auditing a Software-Defined Cross Domain

Solution Architecture”, in preparation [35].
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2.3.1 Take-Grant Model

The classical take and grant scheme (a.k.a. take-grant security model) utilizes a directed graph

with rules to express the conditions under which a subject can acquire authority over another

object within a system. Each node in the directed graph represents a user or a data record, further

referred to as subjects and/or objects depending on their relationship to one another. This system

can be formulated as a graph with ni ∈ N , where ni is a node representing a particular subject or

object, and N is the non-empty set of nodes in a graph, i.e. the set of all subjects and objects in

the system. The labelled, directed edges represent one node’s possession of authority over another

node that is being pointed to by the edge which is formulated as α ⊆ R where R is the non-empty

set of all access rights in the system, e.g. α ⊆ {r = read,w = write}. As defined by [44, 91], the

classical take-grant model employs four rules for state transitions which are as follows:

(i) Take: Let n1, n2, n3 be three distinct nodes in the protection graph. Let there be an edge

from n1 to n2 with a label γ such that take ∈ γ, and from n2 to n3 labelled α ⊆ R. The

take rule then defines a new graph by adding an edge from n1 to n3 with the label β ⊆ α.

Therefore, n1 takes from n2 the ability to execute β operations on n3.

Figure 2.3: Take Rule

(ii) Grant: Let n1, n2, n3 be three distinct nodes in the protection graph. Let there be an edge

from n1 to n2 with a label γ such that grant ∈ γ, and from n1 to n3 labelled α ⊆ R. The

grant rule then defines a new graph by adding an edge from n2 to n3 with the label β ⊆ α.

Therefore, n1 grants to n2 the ability to execute β operations on n3.

(iii) Create: Let n1 be a node in the protection graph. The create rule then defines a new graph
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Figure 2.4: Grant Rule

by adding a new object, n2, and an edge from n1 to n2 with a label α ⊆ R. Therefore,

n1 creates a new object, n2, which it can execute α operations on.

Figure 2.5: Create Rule

(iv) Remove: Let n1, n2 be nodes in the protection graph. Let there be an edge from n1 to n2

with a label α ⊆ R. The remove rule defines a new graph by deleting a subset, β, from

α. If α − β = ∅, then the edge is removed. Therefore, n1 removes its ability to execute β

operations on n2.

Figure 2.6: Remove Rule

While these rules will vary depending on the safety model in which they are used, the application

of these rules determine whether or not rights will or can leak in a particular safety model. Fur-

thermore, [44, 91] have shown that the take-grant model is decidable in linear time and, therefore,

object security is decidable in a take and grant based safety model.

2.3.2 Capability Model

The capability protection model supports data security by using access tokens. A capability is

an access token, or key, which grants a subject specific authoritative rights to a particular object.
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Shown in Fig. 2.7, the capability is implemented as a data structure which encapsulates an object

reference and the rights conveyed to that object [87].

Figure 2.7: A capability is an immutable object reference which encapsulates an object reference
and the access rights conveyed to the object

Capabilities operate contrary to forgeable references which identify objects but do not explicitly

state which access rights are granted based on the relationship of the privilege of the subject holding

the reference to the label of the object. Attempts to access an object through a forgeable reference

must be validated against the access control list (ACL) by the operating system. However, these

object references are mutable so they can be typecast and modified to permit access to any system

object.

A capability, on the other hand, is an immutable reference that enforces the POLP by ensuring

that the only way an operation can be performed on a component is by invoking the capability which

is pointing to that object; thus restricting the granted rights to the absolute minimum required

to perform the operation [65]. “Capabilities are the basis for object protection; a program cannot

access an object unless its capability list contains a suitably privileged capability for the object”

[87]. In other words, when a process is invoked, it must be handed a capability which defines the

object and the operation permitted to take place on the object. This ensures that the system

disallows any direct modification of access rights in the capability and that “invoking a capability

is the one and only way of performing an operation on a system object” [65].

There are two additional properties of capabilities which are beneficial to the model: access

interposition and privilege delegation [65, 79]. The opacity of capabilities provides the interposition

of access so that, if a subject is given the reference or capability to an object, it has no method of

determining what the object is, restricting the subject only to invocation of methods on the object.

The delegation property of capabilities allows one subject, that owns an object, to safely delegate

privileges for that object to a second subject by minting an object capability and giving it to the

second subject. This allows the second subject to operate on the object without referring to the
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delegating subject. The delegating subject can also mint the capability with diminished rights as

is the case with most access control models.

2.4 Security Model Safety and Decidability

Note that portions of the following sections have been adopted from “Auditing a Software-Defined

Cross Domain Solution Architecture”, in preparation [35].

When provided with a system S, an initial graph state, s, and the set of access rules, R,

decidability means that an algorithm exists which can determine whether or not S is safe with

respect to α ⊆ R. A safe system is a system in which it is impossible for a node ni to acquire

α ⊆ R, which it did not previously possess, in order to reach some new state, s′ [81]. In other

words, if α ⊆ R cannot be leaked in system S, S is considered safe. Presented in Chapter 2.4.1:

Analyzing Security Configurations are the results of [44, 91] who have shown that the take-grant

model, and subsequently, the seL4 security model, is decidable in linear time and, therefore, object

security is decidable in the take-grant security model.

2.4.1 Analyzing Security Configurations

This section provides a review of the conclusions in the works respectively found in Lipton and

Snyder [91] and Elkaduwe et al. [44]. As in the literature, there are no distinctions between subjects

and objects, only references to both, synonymously, through the following terms: entities, nodes

and vertices. Various states of the system security model itself are referred to as the following:

state, graph, system and subsystem. Finally, the following terms to denote the use of an access

right are used: authority, rule, label, arc and edge.

Take-Grant Decidability

Presented below are the results of the work in [91] which examines the nonuniform safety problem;

Lipton and Snyder present a concrete example of a practical protection system, i.e. the classical

take-grant model, and seek to analyze its behavior to determine if a protection violation is possible

[91]. It should also be understood that the following descriptions have been aggregated from their

original work.
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Methodology. Lipton and Snyder begin by presenting two questions, the answer to which should

be known by each user of a protection system, represented by u ∈ U , where U is the non-empty

set of all system users:

(i) What information, belonging to a user, u, can be accessed by another user, u′ ∈ U?

(ii) What information, belonging to u′, can be accessed by user, u ∈ U?

The questions are simplified by the following question, given that α ⊆ R where α is a subset of

access rights and R is the set of all access rules: Is it true that a node, p, can be α by a node, q?

The objective of Lipton and Snider is to show that there are two conditions which are necessary

to answer the stated question. Each of the predicates is presented below, with the following

definition presented in [91]: Let G be a directed protection graph and α ⊆ R, then a node, p, and

a node, q, are connected if there exists a path between p and q in G, independent of directionality

or α label.

Condition 1 p and q are connected in G [91].

Condition 2 There exists a node, x in G and an arc from x to q, with label β ⊆ α [91]. In other

words, there exists a node x that has access to, i.e. α’s, node q.

These conditions determine the safety of a system, S, with respect to α ⊆ R. Therefore, these

conditions serve to prove the decidability of a system, i.e. to determine if one node could acquire

a particular authority over another node which it did not previously possess. This work is further

examined and applied in Chapter 6: Analysis and Evaluation.

2.5 Cross Domain Solutions

As previously stated in Chapter 1: Introduction, a CDS is a system which provides for the access

to and/or transfer of data across domains of differing classification or trust levels. One of the

mechanisms a CDS enforces between the discrete security domains is a security policy. The security

policy is used to enforce the security models described above by upholding trust or classification

level, information access and transfer regulations, and data ownership within a domain.
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There are three main CDS categories that fit the purpose and needs of different cross domain

devices as defined by [37]. These categories are Access Solutions, Transfer Solutions, and Multi-level

Solutions. Additionally, each cross domain type has several different implementation architectures.

Three of these implementation architectures are focused on and categorized by [117]: Physically

Isolated Domains, Partitioned Workstations, and Data Diodes. The following sections detail the

use and background of each.

2.6 CDS Categories

The following types of CDSs govern the central focus and use of the system. While a CDS could

be set up to allow for both access to and transfer of data, if the system requirements do not call for

both capabilities, implementing such a system would likely add more threat risks. It can be noted

here that access and transfer solutions typically rely on an MILS domain security architecture

whereas a CDS which includes both access and transfer capabilities relies on an MLS domain

security architecture.

2.6.1 Access Solutions

The function of an access CDS is to allow the reading and manipulation of data, applications, or

platforms in different security domains [37, 100]. For example, an access solution may grant read

access in higher domains to data residing at a lower trust level [48]. Access solutions prevent data

overlap between security domains by enforcing separation policies between trust boundaries [117].

Essentially, an access solution is much like a “dumb terminal” as it only allows a user to view

and/or use the data but does not permit movement or writes to the data. A primitive mandatory

access control (MAC) model, such as Bell-LaPadula [17], is used to implement rules such as no read

up where a user with a low trust level cannot access data with a higher trust level. The purpose of

this type of solution is to allow access to information while preventing data spills from high trust to

lower trust levels. As previously stated, this solution typically relies on the MILS domain security

model.

Depicted below, in Figure 2.8, is one example of an access solution architecture where the high

and low domains are separated by a CDS. The subject, or user, is interfacing with Domain High and
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wants to access data residing in Domain Low. This form of access CDS is a “browse-down” CDS

because it only allows the subject to access data at or below the classification level of the domain

to which the subject is connected. In this case, the access CDS does allow for communications.

However, the only communications permitted are access requests input by the user to the CDS and

the system responses output back to the user. No data is transferred between domains.

Figure 2.8: Access Solution

While “browse-up” and multi-access solutions exist in theory, these architectures introduce risk

and, in a lot of cases, break the defined security models. For example, in a multi-access solution

where an authorized subject can access two or more domains at a time, not only do common

risks such as the threat of hypervisor and hardware attacks exist, but trust is placed in the hands

of the subject not to make any inadvertent or purposeful errors such as inputting or copying

information into the wrong domain. The multi-access solution should only be used when necessary

and should include each of the above risks as a part of the threat model. In a browse-up solution,

the subject would be accessing high classified data from an untrusted, low environment. This

introduces unnecessary risks such as a threat actor intercepting high classified data or even sending

unauthorized commands to be executed in the high domain and therefore should never be used

[24].

2.6.2 Transfer Solutions

The goal of a transfer CDS is to enforce the security policy for the movement of information between

different security domains [37, 100]. Transfer devices generally leverage a copy function rather than

actually relocating the data to a different domain [48]. In order for a transfer solution to control
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connections between domains and determine what function to execute on the information, the data

are examined in accordance with security policies defined by the implemented technologies [117].

Security policies regulate the assurance and trust of data before copying it to a higher domain

and they restrict higher data from entering into lower security domains. Furthermore, small scale

transfer solutions can be implemented as uni-directional using a single data diode to ensure that

data only flows in one direction (e.g. low to high; high to low), or bi-directional using a pair of

data diodes with data guards to separate data flow control [24]. Data diodes are further discussed

in Chapter 2.7.3: Data Diodes and displayed in Figure 2.17. Like access solutions, this solution

typically relies on the MILS domain security model.

Figure 2.9 shows a uni-directional “data export” solution where certain data which resides in

Domain High is permitted, and optionally filtered, to be transferred to Domain Low. Conversely,

Figure 2.10 shows a uni-directional “data import” solution where certain data which resides in

Domain Low is permitted to be transferred to, or imported into, Domain High. Finally, a bi-

directional transfer solution is depicted in Figure 2.11. The bi-directional solution provides two

different avenues of communication: one which carries data away from Domain High and one which

carries data to Domain High. By themselves, these individual avenues act as uni-directional data

export and/or data import solutions.

Figure 2.9: Transfer setup from High to Low

Figure 2.10: Transfer setup from Low to High
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Figure 2.11: Bi-directional Transfer Solution

2.6.3 Multi-level Solutions

Multi-level solutions rely on the MLS domain security model to help provide both access and

transfer capabilities through trusted labeling on a single or multi-domain setup. This allows data

to be stored at the proper classifications and restricts access to the data based on credentials [100].

Like access solutions, multi-level CDS systems utilize MAC policies, though more evolved, to enforce

user authenticity and privilege level. One additional security feature of multi-level solutions is that

subjects are not permitted to directly access the security domains allowing subjects of differing

clearance levels to work together with different data in the same environment [24]. While multi-

level systems improve performance and eliminate the need for several technologies like filters and

guards, it is impractical to develop, not only because of implementation difficulty and cost [117],

but because of the threat model with a single point of failure and the fact that this type of setup

restricts the environments in which it can be used. It is also important to note that based on the

threat model and the environment, multi-level CDS architectures have historically lacked in system

assurance [41].

Figure 2.12, below, diagrams a multi-level CDS. As shown, Domain High and Domain Low are

isolated from one another by the CDS. As discussed in Chapter 2.2.2: Multi-level Security, the

RVM resides inside the CDS to provide reference checks and separation mechanisms. Figure 2.13

dissects the internals of the CDS, showing an RVM between the domains, and an RVM between the

tagged data and the subject. In this case, the subject can be authorized to access high data, low

data, or both high and low data depending on the subject’s clearance level. Note that the subject

cannot directly access either of the security domains.
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Figure 2.12: Multi-level CDS Architecture

Figure 2.13: Multi-level CDS showing RVM
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2.7 CDS Architectures

This section introduces three common CDS architectures which are used in current solutions.

Additionally provided for better understanding is a diagram for each. Each of them focuses on

data confidentiality protection and are listed as follows: Physically Isolated Domains, Partitioned

Workstations, and Data Diodes.

2.7.1 Physically Isolated Domains

The physical isolation approach to domains separates individual security domains to maintain

only one classification or trust level per domain. Therefore, in terms of an access CDS, if an

authorized operator needs to access two different domains, he or she would need to access two

different physical infrastructures. Shown in Figure 2.14 is one implementation, for the segregation

of information processing environments in this way, that is sometimes referred to as a “swivel-chair”

setup because the operator could effectively swivel his or her chair to access each workstation [117].

Some implementations use a keyboard, video monitor, and mouse (KVM) switch to access different

domains from a single terminal. The most common implementation of this architecture as a transfer

CDS is called an air gap, depicted in Figure 2.15. Air gapped domains are physically separated

domains with the ability to transfer data using only a removable device. While this architecture

is the most common, one of the key concerns with it is that it does not allow for remote access or

maintenance.

Figure 2.14: Isolated Domains (e.g. “swivel-chair”)
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Figure 2.15: Physically isolated domains separated by an Air Gap

2.7.2 Partitioned Workstations

The partitioned workstation architecture relies on domain virtualization on top of a single host.

The host regulates the separation between domains by running a corresponding virtual machine

(VM) for each domain trust level. Partitioned workstations not only slow down performance due

to the need for hardened operating systems, but they are susceptible to common hardware attacks

and VM-specific vulnerabilities [117]. The main problem comes down to incomplete assurance

promised by state-of-the-art TCBs, not to mention the common neglection to use a TEE to protect

data confidentiality.

Figure 2.16 below shows one possible arrangement of the partitioned workstation architecture

with a base hardware layer that contains multiple network interface cards (NIC) where each cor-

responds to a different security domain. Above the hardware layer is the host operating system

whose hypervisor runs a virtual operating system for each security domain. A subject with proper

clearance and authorization can access each domain from the same workstation.

Figure 2.16: Partitioned Workstation
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2.7.3 Data Diodes

Shown in Figure 2.17 is the data diode architecture. Data diodes, analogous to electrical diodes,

are devices that restrict the flow of data to one direction. In a circuit diagram, the diode symbol

contains an arrow which points in the direction of conventional current, i.e. anode to cathode; the

arrow contradicts the flow of electrons, i.e. cathode to anode. In this work, depictions of the diode

symbol are used, with the arrow pointing in the direction of conventional current, in accordance

with the following citations: [38, 49, 52, 71, 77, 90, 106]. An example implementation of a data

diode might be in a system where a low side domain is permitted to transfer information to a

high side domain but the diode would prevent the high side from leaking data to the low side.

One limitation with uni-directional solutions is that it does not implement the TCP/IP stack (and

breaks the majority of network protocols) which would be essential to remote deployability [113].

[24, 117] detail bi-directional implementations with a pair of data diodes which allow for the

transfer of information in two directions with the addition of content guards that filter data based

on a directional security policy. While this solution allows for secure, bi-directional data transfer,

there is a key problem. The implementation of content guards in this solution does mitigate the

covert passing of malicious data but it does not always prevent data spills [117].

Figure 2.17: Data Diode

2.8 Trusted Execution Environments

A Trusted Execution Environment (TEE) “is a secure, integrity-protected processing environment,

consisting of processing, memory, and storage capabilities” [14]. While there is some discrepancy

in TEE definitions and implementations outlined in [109], the goal of a TEE is to improve security

through runtime-state protection and data restriction to ensure no sensitive data leaves the TEE.

This can be achieved through the implementation of a dedicated VM [53] or an environment that

30



runs alongside but is isolated from the main OS [95], such as a hardware-based enclave supported

by security co-processors with the common goal of sensitive data restriction and isolation. A TEE

must define mechanisms to “securely attest its trustworthiness”, not allowing untrusted code or

operations to cause, enable, or prevent any code execution, traps, exceptions, or interruptions [109].

[109] introduces five building blocks of TEEs:

(i) Secure Boot: assure that only the correct, unmodified code can be loaded;

(ii) Secure Scheduling: assure a balanced and efficient coordination between the TEE and the

rest of the system so that tasks running in the TEE do not affect the responsiveness of the

main OS;

(iii) Inter-Environment Communication: interface for assuring authenticity in the communication

between the TEE and other system components;

(iv) Secure Storage: data confidentiality and integrity is preserved in storage; and

(v) Trusted I/O Path: protect authenticity and confidentiality of the communication between the

TEE and peripheral devices.

TEEs are used to protect complex and interconnected systems that require a high level of security

with protection against both physical attacks to main memory, and software-based attacks.

There has been an emergence of TEE technology in commodity systems. The most common

hardware based TEE systems includes Intel’s Software Guard Extensions (SGX), AMD’s Secure

Encrypted Virtualization/Secure Memory Encryption (SEV/SME), and ARM’s TrustZone. While

the technology is still maturing, TEE systems have evolved greatly from proprietary solutions to

a standards-based approach for use in PC’s, mobile devices, and other Internet-connected devices

[3]. Furthermore, the push for a viable TEE solution for use in cloud computing environments has

begun.

2.9 Trusted Computing Bases

The core element for any security solution is the TCB. Historically, a TCB has referred to several

types of computing bases including, but not limited to: a security kernel, a trusted operating
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system (TOS), a security filter or individual access control validation mechanism, or an entire

trusted computing system [36, 103]. The integral components included in modern TCBs are the

reference monitor and security kernel. The reference monitor serves to provide complete mediation

of access, validating access to all objects by authorized subjects. The security kernel provides the

lowest level of software to hardware abstraction and employs mechanisms to enforce security at

differing trust boundaries.

In order for a TCB solution to be robust, its components must be sound. While the design

and construction of TCB implementations have changed some over the years, the objectives and

mechanisms necessary to determine a sound TCB, as per [103], have remained:

(i) Controlled: the system should provide and properly implement access controls

(ii) Guarded: the system should provide self-protecting mechanisms such that no system modifi-

cation or interference can take place

(iii) Formally Verifiable: the system should be designed with the intent to be functional correctness

verified using formal and/or semi-formal methods

In other words, the TCB is responsible for isolating security-bound components and upholding the

security policy which describes “the conditions under which information and system resources can

be made available to the users of the system” [103].

Therefore, a TCB, commonly implemented with a combination of hardware, firmware, and

software, is the totality of protection mechanisms responsible for enforcing a security policy [36].

These protection mechanisms ensure that any system components which are not included in the

TCB should not need to be trusted for the whole system to remain fully protected [36]. While the

TCB definition in [36] remains the standard, emphasis in TCB design, as of late, is on assurance

and trustworthiness through formal verification of trusted computing systems [28, 102, 103].

2.10 Trust vs Trustworthy

The DoD Trusted Computer System Evaluation Criteria (TCSEC), first released in 1983, states

that the “assurance of correct and complete design and implementation for these systems is gained

mostly through testing of the security-relevant portions of the system” where the security-relevant
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portion refers to the TCB [36]. Assurance is measured as confidence in the TCB to meet explicitly

identified security expectations [31]. The Common Criteria (CC), which replaced the aforemen-

tioned evaluation criteria in 2005, introduces the Evaluation Assurance Level (EAL) which goes

beyond security testing to introduce formal specifications and formal verification of computing

bases [31]. The goal of an EAL measurement is to exercise the distinction between trust and trust-

worthiness, where a trusted system is a system that is believed to be capable of handling a security

event and a trustworthy system is proven to be capable of handling a security event. In other

words, trust can be broken but trustworthiness has been formally proven and cannot be broken.

However, as shown in [11], vendors often find loopholes to game the evaluation system, rendering

the “illusion of stability” without actually proving trustworthiness. This fact shows the impor-

tance of the following system design objectives: the CDS should be able to be comprehensively

and mathematically verified for functional correctness and security, and it should be available for

independent verification to ensure trustworthiness.

2.11 Formal Verification

Formal verification (FV) is a rigorous process that uses mathematical reasoning to verify that

the design’s correct behavior is preserved by the implementation [110]. Specifically, functional

correctness verification is often conducted by systems of formal, mathematical logic which reason

about the correctness of an algorithm or computer program. Hoare logic is one such formal set

of logical rules which cover certain “programming language constructs such as loops, exceptions,

expressions with side effects, and procedures, together with clear presentations of their soundness

and completeness proof” [105]. Hoare logic can be used to show refinement. A refinement proof

takes the properties of the abstract model and establishes their correspondence with the properties

of the refined model representation of the system. In other words, refinement guarantees that any

security properties which are proven in the abstract model, using Hoare logic, will also hold in the

source code [78, 79].

For the FV process to be conducted, a software specification must be evaluated based on an

extensive criteria. For example, when a software product is measured by the CC’s EAL, it is

measured on a scale from 1 to 7, where 1 means functionally tested without security, levels 2-4
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requires structural and methodical design and testing, level 6 requires semi-formal verification, and

level 7 claims full, formal verification of functional correctness. Therefore, the higher the EAL,

the greater the assurance or confidence in the system. During the evaluation, the software product

ideally undergoes exhaustive exploration of all input values and all possible states.

The need for FV is apparent as [1] shows that one third of all software faults take 5000+

execution-years to be revealed. While that means one third of all software bugs are hidden from

common execution paths, it also means there are still several vulnerabilities in the system. FV is

valuable because a formally verified system is a system that is proven to be correct and without

bugs. The key metric in TCB assurance evaluation is the size and complexity of the code base [36].

As the size of the code base grows, added effort, measured in time by [28], grows astronomically.

Therefore, FV is not only a rigorous process, but also an expensive one.

2.12 Guards

A guard is a trusted “application which is responsible for analyzing the content of the commu-

nication and determining whether this communication is in accordance with the system security

policy” and is often implemented in CDS systems [4]. Typically, guard components are imple-

mented as filters which can modify or delete messages, verifiers which can check data integrity, and

isolation mechanisms to separate the data. Guards are located at the border of a component’s or

domain’s ingress and egress data channels. Described in the sections below are three such guards:

the Content Guard, the Integrity Guard, and the High Assurance Guard (HAG).

Content Guard

The content guard “is a filter that separates the originally transmitted data into legitimate infor-

mation and illegitimate information”, allowing only the legitimate information to pass through [60].

In the context of a CDS, content guards filter out high data, for example, from documents that

are transmitted to a low side domain. This filter relies on complex deep inspection and pattern

recognition algorithms or manual labelling to remove any data that should not be present based

on the domain it resides in. This guard is useful for preventing the covert passing of malicious

data, however, due to the complexity of the pattern recognition algorithms and/or human error,
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this guard is not as reliable in preventing data spillage [117].

Integrity Guard

Integrity guards, described in [60], are filters designed for storage subsystems where, in the case of an

integrity output filter, data are written or transferred out to be later read back in while preserving

the integrity of the data. An integrity input filter works in the opposite direction where data are

read in and later need to be written back out in an integrity preserving way. In a cross domain

pipeline, the integrity preserving mechanism works by first calculating a unique identification tag,

much like a hash, just before the data exits the security domain. The unique ID is then checked

against the data by the corresponding filter upon entry into a second security domain. If the

data returns, it will be re-examined by the output filter to ensure that the data have not been

modified. This filter is especially useful for preventing covert passing of malicious data as well as

data modification.

High Assurance Guard

The National Institute of Standards and Technology (NIST) defines a HAG as “an enclave boundary

protection device that controls access between a local area network that an enterprise system has

a requirement to protect, and an external network that is outside the control of the enterprise

system, with a high degree of assurance” [83]. In other words, a HAG is a data transfer device that

ensures that authorized data, and only authorized data, is transferred from one domain to another

[63]. This transfer guard ensures that data, processes, or devices do not violate security policies or

interfere with one another. [117] shows that HAG’s are efficient at preventing data leakage, broken

protocols, hidden or malicious content including steganography and other embedded files, and zero

day attacks.

2.13 Protocol Adapters

CDSs leverage environment and use-case appropriate security functionality which often includes

mechanisms to protect against protocol-based threats. One such component is called a protocol

adapter (PA). PAs are processes that handle CDS communications with external entities through

35



physical communication interfaces. PAs often enforce security actions such as authentication

schemes, packet filtering and/or protocol breaking/termination. Typically, PAs process protocols

in the Open Systems Interconnection (OSI) model layers 5-7. Some examples include HyperText

Transfer Protocol (HTTP) [70], Advanced Message Queuing Protocol (AMQP) [9], Message Queu-

ing Telemetry Transport (MQTT) [97], Distributed Network Protocol 3 (DNP3) [42], Inter-Control

Center Communications Protocol (ICCP) [121], Secure File Transfer Protocol (SFTP) [121], and

Transmission Control Protocol (TCP) [121]. Protocol adapters are further discussed in Chapter

3.7: Discussion: Protocol Adapters for their enforcement of data safety.

2.14 Related Work

Researchers have been trying to develop provably secure operating systems (PSOS) using a design

methodology that “facilitates the formal statement and proofs of relevant system properties”, since

the mid-1970’s [102]. The concept of a security kernel materialized as a means to derive system

security from a formally verified foundation [75]. One such general purpose security kernel [112] was

evaluated at the highest level of the NSA’s TCSEC – Class A1: Verified Protection. [62] is a system

which has been developed on top of the security kernel [112], with the intention of being evaluated

at EAL7+. [119] is a trusted operating system which has been evaluated at EAL6. Another notable

solution is the XTS-400, an MLS system based on the secure trusted operating program (STOP)

operating system which was evaluated at EAL5 [122]. Additional systems geared more for military

use include [93, 101, 123, 124].

In an effort to improve performance and make functional correctness more easily verifiable, a

family of security microkernels [67], being the critical portions of a kernel, were developed. More

recent research has led to the “comprehensive formal verification, including a functional correctness

proof of the implementation and a complete proof chain of high-level security properties down to

the executable binary” [67, 79]. The only system which has undergone such evaluation and is

acclaimed as the fastest performing, most verifiably secure, microkernel in the world is seL4 [65].

This study is very closely related to [65] but is unique because of the utilization of the technology

in a novel CDS architecture.

Commercial CDS systems and technology companies, such as the aforementioned [40, 50, 54,
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124], along with the data diode solutions [69, 71, 74, 120, 123, 127], whose systems are managed

and tested by the DoD/IC, seem to adhere to a current standard of security through obscurity

as the specifications and evaluation results are not available for independent verification. It is

also important to note that the above respective evaluations, some of which are EAL7+, may not

express the system confidence expected because these vendors have historically cheated the system.

As a consequence, the specifications and evaluations of such systems may not be sound. This can

be justified by the fact that evaluations based on the CC are problematic because:

(i) “usability is ignored”;

(ii) the paperwork, not the product, is the test subject; and

(iii) these schemes are known to “squeeze a very volatile and competitive industry into a bureau-

cratic straightjacket, in order to provide purchasers with the illusion of stability” [11].

From a technical perspective, the presented vCDS is designed to leverage seL4, the previously

mentioned state-of-the-art microkernel, which has a number of formally verified properties [65, 67,

79]. Each of these properties, and the proofs of enforcement [32], are available for independent

verification.

As evidenced by a thorough search of the relevant literature, vCDS is the first general purpose

CDS system to be designed and developed, which leverages a TCB that is provably secure and

has been comprehensively verified for functional correctness and security which can be applied

to a variety of use-cases and applications. Recall that existing CDS systems are either highly

specialized systems which cannot be applied to other environments without incurring unreasonable

modification and maintenance costs or they are ad hoc solutions built upon TCBs which lack the

assured security of the vCDS system [13, 26, 47, 57].
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Chapter 3

The vCDS Architecture

This chapter outlines the vCDS system and threat models along with the security requirements, the

architecture and pipeline of vCDS and a security analysis of the architecture. Note that portions of

the following chapter, including diagrams marked with “© 2021 IEEE”, have been adopted from

“vCDS: A Virtualized Cross Domain Solution Architecture”, © 2021 IEEE [33].

3.1 System Model

The vCDS system model is based, in part, on the Bell-LaPadula (BLP) model whose primary

concern is data confidentiality [15]. BLP ensures that subjects can only read objects at or below

their own security level, subjects can only write to objects at or above their own security level,

and all access requests must be authorized based on an access control matrix that characterizes the

security level and rights of each subject. Furthermore, BLP preserves the principle of least privilege

assuring that a subject may only access the minimum resources necessary for a particular opera-

tion. In fact, the BLP model is a CDS model in that is was designed to confront the “operational

needs to move information between networks of different classifications and sensitivity levels” [18].

vCDS faithfully implements this model because it has been rigorously studied to ensure that con-

fidentiality of data is protected, despite compromises to other security objectives such as integrity,

availability, authenticity, and/or accountability, and it allows data to flow safely between certain

isolated security domains [17, 18].
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3.2 Threat Model

The threat model focus is to prevent the compromise of data confidentiality through various infor-

mation disclosure attacks, specifically focusing on attempts to leak data from the high side to the

low side entities. Common vectors by which attackers are able to create data spillage in sensitive

computer systems include covert channels, unauthorized access to resources, and disrupting the

flow of data by forcing movement against the intent [24]. Furthermore, the threat model includes

powerful adversaries who are given insider access and, therefore, are granted privileges that an out-

sider would not possess [109]. The attack surface includes all communications between the secure

enclave and the high side target [126]. For example, powerful attackers who are able to spoof the

secure enclave to intercept high-trust communications are a grave threat to data confidentiality.

The model also “includes all software attacks and the physical attacks performed on the main

memory and its non-volatile memory” [109] and also, physical bus attacks.

Vulnerabilities
Mitigations

TEE TCB Guard

Side Channels [7, 58] [55, 65] [60]

Disclosure, spillage, manipulation [5, 76, 89] [65] [60]

Logic Errors [65, 125] [131]

VM Breakout [5, 22, 89] [65]

Control Hijacking, Injection [5, 22, 76] [65]

Communication/Spoofing [5, 22] [65, 125]

Table 3.1: Threat Model Matrix

Table 3.1 provides insight into the hardware and software vulnerabilities defined in the vCDS

threat model as well as references to the various mitigations employed by each technology com-

ponent (including an optional guard) of vCDS which are further discussed later in Chapter 3.6:

Security Analysis.

Table 3.2 provides specific insight into different cache mitigation strategies. Note that Rowhammer-

induced memory flips can still halt the machine necessitating a power cycle [58]. Additional common

vulnerabilities and exposures (CVE) can be found for the TEE though appropriate mitigations are

claimed in [8].
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Vulnerabilities Mitigations

Electromagnetic Attacks
(e.g. Rowhammer/RAMBleed)

[7, 58, 85]

Timing Attacks
(e.g. Prime and Probe)

[55, 130]

Transient/Speculative Execution
(e.g. Spectre, Meltdown)

[8]

Table 3.2: Cache Attack Mitigation

3.3 Security Requirements

There are three essential property measurements expressed in a comprehensive CDS protection

plan, as detailed by [111, 126]:

(i) defensive effectiveness: timely and accurate prevention and response, system flexibility;

(ii) confidentiality: data content protection from unauthorized parties; and

(iii) operational relevance: usable and accessible in multiple operational environments.

These three measurements re-enforce the primary security objective to protect confidentiality of

data. While this system is equipped to protect and enforce other objectives in the CIAAA, these

are orthogonal to the main objective. In order to achieve data confidentiality and enforce the de-

signed protection plan in the presence of the threats mentioned above, the security design needs

to ensure the following which are discussed in Chapter 3.6, Security Analysis: Hardware Protec-

tions and Memory Encryption, Trustworthy Components, Decidable Object Security and Staticity,

Computation Isolation, and Data Flow Restriction.

3.4 Architectural Design

The following subsections detail two of the basic architectural designs which vCDS can provide. It

can be noted that, given the versatility of the vCDS pipeline, both of these designs have optional

components and have dynamic arrangements for utilization depending on the use-case to which
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these architectures are applied. The two architectures are the General Purpose Architecture and

the Co-processor Architecture.

3.4.1 General Purpose Architecture

Figure 3.1: General purpose vCDS architecture © 2021 IEEE

In order to achieve the security objectives mentioned above, the following CDS security archi-

tecture is presented, and depicted in Figure 3.1, with three layers which include the (i) Hardware,

(ii) Computing Base, and (iii) Software Components.

Overview

Within the functional block diagram there is a dotted line, which is referred to as the delineator,

that separates all Low Side operations from all High Side operations. The Guard component

is optional and therefore is enclosed in a dotted block. Additionally, there is an optional High

Side Management Network (C2) for protected communications with the High Side components.

Elsewhere in the diagram, all solid, directed lines refer to required communication channels, where
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as all dotted, directed lines refer to optional communication channels.

Hardware

Found in Layer 1, the hardware-based TEE capability corresponds to all High Side (Layer 3) data

and computations while the Low Side (Layer 3) leverages the basic hardware capabilities. The

basic hardware, shown to the left side of the delineator in Layer 1, contains very few added security

components as it is the base hardware of the low security boundary. The TEE, to the right of the

delineator, is specifc to all High Side operations. Within the hardware level there is also a central

processing unit (CPU) and a NIC. The CPU manages all processing of data for the components

residing in Layers 2 and 3, using strict isolation mechanisms. The NIC functions only with the

High Side and Guard on Layer 3.

Computing Base

In Layer 2, on top of the TEE, is a Formally Verified TCB, which serves as the fundamental compo-

nent in this system and allows vCDS to be easily adapted to different implementation requirements

and CDS architectures. The TCB ensures integrity and confidentiality through a trustworthy code

base and access controls providing isolation and staticity which is further discussed in Chapter 3.6:

Security Analysis.

Software Components

In Layer 3, there are two separate processes running on top of the Formally Verified TCB: one that

represents the High Side and one that represents the Low Side. The Low Side component manages

the low classified data while the High Side manages the higher classified data.

The High Side leverages only one device and driver in order to communicate with a C2: a NIC.

The High Side tunneling strategy allows the isolated high enclave to communicate with components

of the same classification which, in this case, is an optional Guard and the C2. Functions of the

latter are relative to the system, for example, the C2 in a CDS with the primary purpose of analyzing

and filtering network traffic would need to regularly push signature updates and blocking actions to

sensitive intelligence sensors and traffic analyzers as well as receive alerts should a malicious packet

be discovered. In a distributed computing CDS system, the C2 would regularly push code to each

42



computing node which would then run an operation defined by the code and send the results back

to the C2.

Before data passes from high to low, there is an optional Guard that functions as a filter to ensure

that no high sensitive data are passed to low. This Guard can have several additional functions

like sending alerts back to the High Side, but in any case, it has bi-directional communication with

the High Side as it resides at the same classification level. This is an important distinction from

the rest of the data flow model because the direction of data flow is restricted with a data diode 1

as depicted with a diode symbol in Figure 3.1. The data diode is further discussed in Chapter 3.6:

Security Analysis.

Information Flow

The flow of information depends heavily on the implemented use-case, but, in general, the flow

within vCDS begins once the data are within the Low Side and moves as follows:

(i) The data will flow through the Formally Verified TCB via a data diode before reaching any

High Side components.

(ii) Once within the High Side processing environment, the data may flow out through an egrees

route, which passes through the TCB, to the Guard or in through an ingress route, also

passing through the TCB, to the High Side from the Guard. If required by the use-case,

the bi-directional channel between the Guard and the High Side can be separated into dual

routes which combine to effectively meet the requirements for a bi-directional channel but

with more strictly enforced access controls. Recall that all communications with the Guard

are optional as the Guard itself is optional depending on the use case.

(iii) The data will then optionally flow through the Formally Verified TCB via a data diode, from

one of the High Side components, and back to the Low Side.
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Figure 3.2: Co-processor vCDS architecture

3.4.2 Co-processor Architecture

Figure 3.2 is a schematic which illustrates the possibility of further isolation of low components. This

architecture leverages three central, high-level components: Untrusted Host Processor, Protected

Co-Processor, and the Bi-directional Bus.

Untrusted Host Processor

On the left portion of the diagram is the host processor. The host processor runs a strictly low

security domain on top of the Formally Verified TCB. Additionally, the host employs basic hardware

components and may or may not employ additional security mechanisms or controls. This domain

may or may not have a NIC for communication with other low security environments, but in any

case, this host is the isolated entry point for this CDS architecture.

Protected Co-Processor

The right portion of the diagram depicts the protected co-processor. The co-processor is an imple-

mentation of the generic CDS, previously detailed in Figure 3.1. Other than the communication

channel with the untrusted host processor, the architecture of the co-processor is the same as the

General Purpose Architecture of vCDS.

1Recall from Chapter 2.7.3: Data Diodes that in a circuit diagram, the diode symbol contains an arrow which
points in the direction of conventional current, i.e. anode to cathode; the arrow contradicts the flow of electrons, i.e.
cathode to anode. In this work, depictions of the diode symbol are used, with the arrow pointing in the direction of
conventional current, in accordance with the following citations: [38, 49, 52, 71, 77, 90, 106].
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Bi-directional Bus

Between the host and co-processor, the architecture leverages a physical, bi-directional bus for use

as a communication channel through which all data that is to be moved, either from the host to

the co-processor or in reverse, must pass. There are no added security controls for the bus itself;

the bus acts as an additional isolation mechanism between low operations and high operations.

Information Flow

The data first enters the untrusted host processor. This could be by way of a network connection

passing through a NIC, a removable physical device, creation of data directly within the domain,

or some other method. If the data must undergo or be processed by the high operations, then

they will pass through the bi-directional bus into the Low Side of the co-processor. Within the

co-processor, information flows identically to that of vCDS’s General Purpose Architecture with

the exception of the additional bi-directional communication channel. Once the data are back in

the Low Side of the co-processor, they may travel back through the bus and into the host processor.

3.5 Applications

The vCDS system model and architectures abstract a family of systems which can support a

range of applications such as those listed below. Note that portions of the following sections,

including diagrams, have been adopted from “Cross Domain Solution System Built on a Formally

Verified Security Microkernel Running on Processors Enabled with Memory Encryption”, a patent

in preparation [34].

3.5.1 Stream Processor

The research discussed in [126] aims to address the problem of using classified data and technology

for a security task on an unclassified host without revealing any information about the classified

resources to the host. The vCDS system is adaptable to implement an Intrusion Detection Sys-

tem/Intrusion Prevention System (IDS/IPS) and/or firewall technologies which use highly classified

tools, or Indicators of Compromise (IOC), such as cryptographic signatures and analytics tools,

to defend a host that is either unclassified or resides at a low security boundary. For example,
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one implementation is a network sensor (IPS/IDS) that is composed of classified technology but

is required to examine traffic on an unclassified system. The sensor employs IDS/IPS technology

which must not leak any information, including covert channel information such as time or storage,

about itself while operating in a low environment.

Figure 3.3 below peels back the curtain and reveals the inner mechanisms governing vCDS

when implemented as a stream processor. The system is comprised of three layers, the hardware

layer, the TCB layer, and the domain layer. Each layer is split into two sides as represented by the

dotted vertical line in the figure. The left half represents Low Side, unencrypted processing; the

right half represents encrypted High Side processing. Residing in the hardware layer is a NIC for

untrusted, Low Side communications, and a NIC for protected, High Side communications with a

High Side management network. Additionally, there is a CPU for all processing which, again, uses

encryption when processing High Side data, and a TEE for use by the High Side. The next layer

in the diagram is the Formally Verified TCB through which all communication channels pass.

In the domain layer, inside the Low Side, is a Packet Bridge which could receive and process all

communications received by the NIC. Once the data passes through the Packet Bridge, they are

tagged by a cryptographic Integrity Tag mechanism, such as a hash, to be later verified for data

integrity. Once the data have been tagged, it will pass through a data diode to the high domains,

shaded with diagonal lines, ensuring that the data only travels in one direction. The High Side will

then process the data through and IDS/IPS and/or Firewall. This is where the goal of processing

unclassified data with classified technology is realized. From here, there is a bi-directional path

which provides the data with an ingress and egress route between the High Side domain and an

optional, High Side, filter which is running as a native TCB process. If the data travels to the

TCB Native Process, the data tag is verified to ensure that no data was changed as they were

being processed on the High Side. Further checks in the native process can take place inside a

Disposition mechanism. If any of the security checks fail, a notification will be sent from the TCB

Native Process to the High Side and the data are prevented from leaving the High Side domain. If

the checks pass, the data will exit through a data diode and return back to the Low Side. Note

that the data, depending on what is required by the High Side, may or may not leave the High

Side. Additionally, the data may never enter the TCB Native Process.

Overall, the flow of the data, depicted in Figure 3.3, are as follows: the data are received via the
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Figure 3.3: Stream Processor Architecture

Low Side NIC and processed by the packet bridge. The data are then identified with an Integrity

Tag. From the Low Side, the data moves in one egress direction, controlled by a data diode, to

the High Side domain where they pass through an IDS/IPS/Firewall. The next step depends on

the system architecture based on the system implementation of a TCB Native Process (guard) or

absence thereof. If there isn’t a guard, the data will simply transfer from the High Side back to the

Low Side through the data diode. However, if the guard exists as it does in the functional block

diagram, the data will flow into the guard and will be examined by an Integrity Check. Upon a

successful integrity audit, the data are passed out through the Disposition portion of the guard and

back to the Low Side, via the data diode.

3.5.2 Data Sharing

Secure information sharing must be realized between compliant parties in systems such as Fusion

Centers, Real Time Tactical Information Centers, and Real Time Crime Centers where threat

intelligence sharing (TIS) is required. One application of vCDS is in a blockchain-based, TIS,
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environment for robust and automated cyber security management (CSM). [25] state that, because

validation of state transitions during consensus is necessary, all data concerning the blockchain

are public and “existing smart contract systems thus lack confidentiality or privacy: they cannot

safely store or compute on sensitive data”. This problem is one which vCDS aims to correct.

Furthermore, vCDS can be adapted to a system architecture based upon the B2CSM architecture

described in [61] with the goal of achieving secure intelligence collaboration through data collection,

aggregation, analysis, and threat-related information dissemination to critical parties.

Figure 3.4 below shows one potential vCDS architecture which seeks to correct the problem

of confidentiality concerning smart contracts while achieving the goal of TIS. Once again, the

architecture is comprised of three layers where each layer is split into two sides, high and low,

as represented by the dotted vertical line in the figure. The first layer represents the hardware,

with full encryption capabilities for the high side. The second layer in the diagram is the Formally

Verified TCB through which all communication channels pass. The top layer shows the publicly

available Blockchain placed on the Low Side while the Smart Contract resides within the High Side.

Both high domains are shaded with diagonal lines. In this way, similarly to Ekiden [25], vCDS

architecture separates computation from consensus. The Filter Guard in this figure is, once again

optional. The Filter Guard, if used, could be purposed to ensure that no metadata from the Smart

Contract is leaked back to the Blockchain.

Much like the Stream Processor, the data flow is as follows: the public intelligence data which

resides on the Blockchain in the Low Side are directed to the High side via the one-way data

diode link. The High Side performs the Smart Contract computations and then, if the guard is

implemented, sends the data and results through the Filter Guard to filter out any metadata and

results before sending the intelligence through a data diode to the Low Side. Once again, all transfer

channels pass through the Formally Verified TCB and are therefore protected.

3.5.3 Big Data/High Performance Computing

Today’s information processing workload on cloud/big data infrastructure makes apparent the

need for scalable, remotely deployable, and high performance CDS systems. The current funnelling

approach to data manipulation across classification boundaries in Big Data/Cloud environments

degrades system performance to the point of ineffectiveness. These platforms require too much data
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Figure 3.4: Data Sharing Architecture

to move efficiently as current approaches do which is inconsistent with MapReduce – the distributed

computing paradigm for big data where the computation is moved to the data nodes as opposed to

the data being moved to the computation [88]. One note about current platforms is that operational

ineffectiveness oftentimes forces users to violate the security policy and access regulations in order

to carry out an operation [82]. More concerning is that permanent solutions to this problem do

not currently exist and the DoD is merely implementing several short term technologies which,

more than likely, introduce more vulnerabilities into the system [82]. Furthermore, CDS appliances

that are able to handle the immense amount of data are highly specialized, individually developed

solutions: presenting scalability and cost of maintenance as major limitations [47].

Our CDS system is adaptable to both the big data platform (BDP) and high performance

computing (HPC) environments where distributed parallel processing, including the access and

transfer, of large data sets is commonplace. In the case of a big data platform, vCDS is consistent

with MapReduce in that it moves the computation to the data. Relating to the tool presented

herein, the computation which is moved resides in the enclave. In the case of a high performance
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computing platform, vCDS can be adapted to move the data to the compute nodes. vCDS is

a versatile solution that provides the needed scalability and low cost implementations in a field

ruled only by highly specialized systems [47, 82]. The implementation of the vCDS architecture

can achieve high performance/BDP goals as a general purpose, security baseline solution with very

little cost, and is adaptable to the particular use case.

Illustrated in Figure 3.5 is a functional block diagram for the BDP/HPC application. Beginning

again at the hardware layer, there are components used to process both the Low Side and the High

Side functionality. On the Low Side, there exists the basic hardware components which allow

for processing of untrusted, low data and operations. On the High Side hardware layer, there is a

hardware TEE which enables secure memory computations for the high security components. Above

the hardware is the TCB layer. The Formally Verified TCB provides the assurance of functional

correctness and security, along with the uni-directional channels which pass data from one security

domain to another. The channels are enforced with a data diode to ensure the uni-directional flow

of the data from the Low Side and into the High Side boundary.

Additionally, within the High Side boundary, there is an optional, bi-directional, data flow

channel from the High Side to the high TCB Native Process. From the native process, there

is another optional uni-directional data flow channel, enforced by a data diode, which serves to

transfer data from one of the High Side components and back to the Low Side. At the top level of

Figure 3.5, there are the untrusted and trusted domains represented respectively by the Low side

and the High Side, which includes the TCB Native Process. Depending on the implementation,

the Low Side can implement a Hadoop file system (HDFS) or a Lustre file system which, much like

the common file system, house the data. Related, the High Side domain could employ the Hadoop

process, MapReduce, or an MPI Node. The TCB Native Process, once again, is an optional guard

that contains an obfuscation function which, for example, could poly-instantiate the data, adding

noise to the channel.

Overall, the flow of the data, is as follows: the data are first accessed via the Hadoop or

Lustre file system and move in one direction, controlled by a data diode, to the High Side domain

where they pass through to MapReduce or the MPI Node. The next step depends on the system

architecture based on the system implementation of a guard or absence thereof. If there isn’t a

guard, the data will simply transfer from the High Side, back to the Low Side through the data
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Figure 3.5: Big Data Architecture

diode. However, if the guard exists as it does in the functional block diagram, the data will flow

into the guard, and be obfuscated by a poly-instantiation function. The data will then travel back

to the Low Side via the data diode.

3.6 Security Analysis

The methods by which the security architecture achieves the security objectives and requirements

mentioned above are analyzed below.

3.6.1 Hardware Protections and Memory Encryption

Relative to the High Side, the TEE is used to mitigate attacks from more privileged software and

physical attacks with full, transparent memory encryption as well as protection of memory at rest,

memory in transit, and memory in use which helps mitigate the vCDS Threat Model (Chapter

3.2). Additionally, a padding mechanism, similar to the one described in [68], is added to increase

the execution time of the data processing and authentication mechanisms to mitigate data leakage
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through timing analysis. Note that [55] presents a method to provably eliminate timing channels

and cross-domain temporal interference in a formally verified microkernel, discussed in Chapter

7.2: Discussion, though it has not yet been integrated as of this work. Furthermore, [130] shows

that timing channels can be successfully eliminated in a RISC-V processor.

It is important to note here that without the TEE, vCDS provides complete formal verification

but lacks the security measures required for a secure, remotely deployable system. With the TEE,

the system achieves the objective of secure remote deployability, however, at the time of this writing,

no effort has been made to formally verify the enhancement of this solution. The formal proofs for

the enhancement are intended for future development.

3.6.2 Trustworthy Components

The formally verified code base assures that no software vulnerabilities exist in its operation and

that the system is proven trustworthy. This proof is one key element which differentiates current

trusted CDS systems from the presented trustworthy CDS system: the vCDS system architecture

is able to rely on the functional correctness provided by the formal verification which ensures

that the system is trustworthy to adhere to defensive effectiveness and ensure data confidentiality.

Furthermore, vCDS components are open for independent verification [32] which further validates

the confidence in its correctness.

3.6.3 Decidable Object Security and Staticity

A capability-based access control model governs all kernel services so that any applications wanting

to perform an operation must invoke a capability that has sufficient access rights for the service

making object security decidable [44, 91, 125]. There is no implicit memory allocation within the

kernel, only explicit request via capability invocation [44]. Furthermore, all hardware resource par-

titioning is governed by capability distribution, that is, authority distribution. A system resource

manager enforces a resource management policy such that it is guaranteed that no entity can obtain

any capability to another entity (subject or object) without the preexistence, i.e. pre-allocation,

of the particular capability [44]. This authority confinement enforces an upper bound on authority

changes [115]. The component architecture model combines with the capability model to enforce

the staticity property [33] – a property which ensures that configurations occur before compile time
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so that all channels, i.e. interfaces and connections, and privileges are pre-allocated and that no

channels or added privileges can exist outside of what is predefined. Therefore, the threat vectors

involving attacks stemming from dynamic creation of channels and reconfiguration of privileges are

mitigated. The access control model also allows the system to grant specific communication capa-

bilities which enable authorized and controlled communication between components, thus enabling,

with a high degree of assurance, component isolation because only operations that are explicitly

authorized by capability possession are permitted [125]. Component isolation and communication

authenticity further mitigate threat vectors outlined in the vCDS Threat Model (Chapter 3.2) by

ensuring that no user or process can access resources without authorization.

3.6.4 Computation Isolation

In addition to kernel and kernel-enforced component isolation, there exists component and compu-

tation isolation within the High and Low Side domains. On the Low Side, the necessary drivers

and data management services and computation are isolated from the High Side. In contrast, the

High Side hides all sensitive intelligence used to analyze the low data from the Low Side.

3.6.5 Data Flow Restriction

The data diode ensures that data can only travel from low to high and never back to low, thus

mitigating the confidentiality threat model [98]. If the data must travel from high to low through a

corresponding data diode, the data will first pass through the guard which ensures that no sensitive

data are passed to the low, again mitigating threat vectors in the vCDS Threat Model (Chapter

3.2). The stream processor application leverages the integrity filter as described in Chapter 2.12:

Integrity Guard. The integrity filter creates and checks data identifiers to make certain that data

from the high does not leak, accidentally or purposefully, to the Low Side.

For whichever use case vCDS is implemented, secure communication between components of

the same classification level helps to mitigate the threat vectors in the vCDS threat model, while

providing a secure path of remote deployability.
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3.7 Discussion: Protocol Adapters

Although confidentiality is the focus of this model, PAs, like filters and guards, can be added to the

architecture to further enforce data safety. Data safety involves protection from data attacks, data

hiding, and data disclosure [30]. The addition of such mechanisms would require expansion of the

vCDS baseline threat model. In the vCDS architecture, a new component would be instantiated

as a particular PA, like those mentioned in Chapter 2.13: Protocol Adapters. In the cases when

multiple PAs are required, an individual component would be added and instantiated for each one.

Figure 3.6 below presents an example of what the vCDS architecture may look like when

leveraging consumer and producer PAs. For example, a PA consumer may be located between the

Low Side and the High Side while a PA producer would be located between the Guard and Low

Side return connection. The flow of data would then be as follows: the data would proceed from

the Low Side to the consumer which would terminate the protocol by striping only the essential

information, for example the payload; then the data would be processed by the High Side and

Guard before being reconstructed by the producer and transferred back to the Low Side. Other

configurations of the architecture may place the PAs of varying objectives at other points depending

on the use-case and requirements.

Figure 3.6: vCDS Protocol Adapter Integration
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Chapter 4

The vCDS Implementation

Figure 4.1: vCDS Stream Processor Instantiation © 2021 IEEE

Note that portions of the following chapter, including diagrams marked with “© 2021 IEEE”,

have been adopted from “vCDS: A Virtualized Cross Domain Solution Architecture”, © 2021 IEEE

[33].

The following chapter details the resilient, cross-layer implementation of vCDS and each system
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component, shown in Figure 4.1, from the selection of hardware TEE to the use and development

of software applications used by the high and low components. The implementation described

herein, as tailored to the stream processor application which can be referred to as a network sensor

(IPS/IDS), was elected for the purposes of better understanding the architecture. The sensor

application is further discussed and evaluated in Chapter 6: Analysis and Evaluation. To further

emphasize the mobility and flexibility of vCDS, a prototype of the solution is implemented, both on

QEMU, an open source machine emulator and virtualizer [108], and directly on machine hardware

to emphasize the use of a hardware-based TEE.

To understand the following implementations, it is useful to visualize the vCDS project directory

tree, including the key source files which help to make up the individual components of the stream

processor. Note that only the smallest necessary portion of the files are listed in Figure 4.2.

4.1 For Realizing Layer 1 in the Architecture: AMD EPYC with

SEV/SME

As mentioned above, experiments were run with the stream processor on QEMU, in addition to

those hardware platforms with the AMD Zen 3 and Intel Nehalem microarchitectures [108]. One

of these microarchitectures, AMD Zen 3, is implemented on AMD’s EPYC processor. In order to

instantiate the hardware layer of vCDS, the Dell PowerEdge R6525 rack server with AMD EPYC

processor was selected [72].

4.1.1 Implementation

All Low Side computations require the basic hardware capabilities – no concern is taken to in-

corporate security mechanisms on the Low Side in this use-case, as the Low Side represents an

untrusted domain. The AMD EPYC processor provides the basic hardware mechanisms and ca-

pabilities necessary for implementation of each Low Side component and to carry out all Low Side

computations. On the other hand, the High Side does require security and data protection mech-

anisms for storing and processing classified data. The AMD EPYC processor presents the Secure

Encrypted Virtualization (SEV) and the Secure Memory Encryption (SME) technologies which

help administer essential protections – for data-at-rest, data-in-transit, and data-in-use – against
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Figure 4.2: Stream Processor Project Tree
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the threat vectors outlined in Chapter 3.2: Threat Model. With the provision of these technolo-

gies, the processor provides full memory encryption to meet the security requirements, outlined in

Chapter 3.3: Security Requirements, for use as a TEE to secure the High Side components at the

hardware level.

Secure Memory Encryption

The SME mechanism is a scalable architectural capability for main memory encryption. Two

hardware components are leveraged for the main memory encryption: the AMD Secure Processor

and the Advanced Encryption Standard (AES), 128-bit, hardware encryption engine [5]. Encryption

is performed by on-die memory controllers which each include an AES-128 engine to encrypt the

data when written to main memory and, when provided with the key, decrypt the data when

they are read [76]. The AES-128 engine, when the memory encryption bit is enabled by the

operating system or the hypervisor in the page table entry, automatically executes the cryptographic

operations. It is worth noting that the cryptographic operations do incur additional latency for

the main memory access, but has no significant impact as recorded by [76]. Additionally, because

SME is only utilized for High Side operations, it is expected that performance is less impacted.

The Secure Processor is a 32-bit microcontroller that functions as a dedicated security processor

in order to provide secure, NIST SP 800-90 compliant, key generation and key management. The

AES encryption key is randomly generated and managed upon each system reset and is not acces-

sible to, nor does it require access to, any software running on the CPU [76]. SME also provides

a transparent SME mode (TSME) which allows even legacy operating systems and hypervisors to

be protected by full memory encryption without modifying the software.

Secure Encrypted Virtualization

The SEV mechanism integrates the SME capabilities with AMD-V virtualization architecture in

order to provide cryptographic isolation to VMs. This security model contrasts the traditional

ring-based security, where subjects have full access to objects at or below their own classification

level, by isolating each level so one does not have access to the resources of another [76]. Therefore,

a hypervisor cannot access the resources of a VM guest even though it typically resides at a higher

classification or privilege level, thereby mitigating threat vectors described in Chapter 3.2: Threat
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Model.

Once SEV is enabled, the hardware will tag all data with its address space identifier (ASID) to

mark to which VM the data belongs. The tag protects data within the system on chip (SOC); when

the data are outside the SOC, that is leaving or entering, the AES-128 engine encrypts/decrypts and

protects the data [76]. Furthermore, each VM and the hypervisor have an ASID and an encryption

key such that any data associated with a VM tag and encryption key is restricted to that VM.

An additional benefit of SEV is Encrypted State (SEV-ES). SEV-ES ensures the encryption of

all CPU register contents whenever the VM stops running. This is especially useful for preventing

any leakage of data from the registers to the hypervisor. SEV-ES can also detect any malicious

attempts to modify register contents as the VM is encrypted with the guest encryption key such

that integrity is protected [6].

One especially advantageous outcome of using SEV in the vCDS system is that its security

isolation is applicable in cloud environments. Specifically, SEV ensures that data-in-use is cryp-

tographically protected and isolated from the hosting software and other VMs and processes [76].

As is true with SME, SEV does not require any software modifications to provide cryptographic

isolation.

4.1.2 Security Analysis

Hardware accelerated memory encryption ensures that all data are cryptographically protected

from physical attacks, in addition to attacks on main memory and data-in-use. VM and hypervisor

isolation by SEV ensures that if an attacker has access to the hypervisor, host, or has control over

one VM, the attacker will not be able to read the memory of any other VM as the memory will be

encrypted. The vCDS system takes advantage of the per-VM encryption keys to ensure that High

Side data confidentiality is maintained in the hardware. Additionally, when the vCDS use-case

calls for a high side remote management network (C2) or a cloud-based environment, the isolation

of the VM from the host and the hypervisor supports the goal of remote deployability [76].
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4.2 For Realizing Layer 2 in the Architecture: seL4

The Secure Embedded L4 (seL4) operating system microkernel and hypervisor has been chosen

and implemented as the TCB, in order to leverage the trustworthiness provided through its formal

verification and security guarantees. This section provides the background and technical details

relating to the seL4 microkernel. It is also important to distinguish between the previous use of the

acronym TCB and how it is used in Chapter 4.2, For Realizing Layer 2 in the Architecture: seL4 .

Previously, and in all other sections, TCB refers to the Trusted Computing Base, however, in this

section only, TCB will refer to the thread control block.

4.2.1 seL4 Technical Overview

The seL4 microkernel isolates execution contexts, i.e. threads, through a capability based security

model, and supports message passing services for communication between theses contexts. The

kernel provides objects for thread control block (TCB), address spaces, message passing, device

primitives and capability spaces, which can be used to interact with other objects within the

system. Recall that a capability is the encapsulation of a reference to a kernel object and the rights

associated with that object. Once the kernel boots, all physical memory resources are allocated to

the root thread as a data structure, BootInfo that contains interrupt request (IRQ), memory, I/O

port information as well as capability references to untyped kernel objects [46, 114]. Untyped kernel

objects reside in untyped memory which correspond to “a block of contiguous physical memory with

a specific size” [114]. These objects leverage a Boolean device to indicate kernel-writable memory.

In the case of device memory, which is “not backed by RAM but some other device”, the kernel

is unable to write to it. It can however be retyped as a frame object: “physical memory frames,

which can be mapped into virtual memory” [114]. It is useful to note that, while at the hardware

level, threads sharing the same virtual memory space can traditionally be referred to as siblings, the

concept of a process does not exist in seL4; instead, the kernel uses threads [114]. Therefore, seL4

differs from most contemporary kernels in that one address space does not necessarily correspond to

one process [114]. seL4 manages its threads by keeping track of schedulable, executable resources

called TCB objects, shown in Figure 4.3. Unlike contemporary kernels, TCB objects must be

manually retyped in seL4.
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Another difference between contemporary kernels and seL4 can be realized when an object is

retyped and handed to the thread as a capability reference to a specific kernel object. The type

of the new object will determine what invocations can be made on that object. seL4 leverages

multiple, directed graphs, or trees, of capabilities called CSpaces, also shown in Figure 4.3. Each

CSpace is made up of one or more CNode objects, each CNode block contains an array of CSlots,

and each CSlot corresponds to a capability. Note that because a CNode is an object, one CNode

may contain a capability reference to another CNode. In effect, a CSpace is the full range of

capabilities accessible to an individual thread or a shared execution context [114]. Therefore, when

a new kernel object is minted by retyping an untyped kernel object, the capability reference is set

within the thread’s CSpace. Additionally, a thread that contains a capability to a chunk of untyped

memory, can retype it as virtual memory. Similarly to CSpaces, seL4 provides each thread with a

tree like object for managing virtual memory called a VSpace. For further isolation, a thread can

run inside the virtual address space referenced by the capability. While each TCB object contains

capabilities which define a thread’s CSpace and VSpace, multiple threads can share portions of, or

entire, CSpaces and VSpaces [84].

Figure 4.3: Thread Control Block
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4.2.2 Implementation

seL4 achieves its security properties and meets its security requirements through several mechanisms

and evaluations: Capability-based Security Access Control Model, Communication Mechanisms,

seL4 Data Protection Model, and seL4 Formal Verification.

Capability-based Security Access Control Model

The capability-based security access control model components used in seL4 are capabilities. Ca-

pabilities are “access tokens which support very fine-grained control over which entity can access

a particular resource in a system” [65]. A capability, which is an immutable object reference, or

pointer, enforces the PLOP by ensuring that the only way an operation can be performed on a com-

ponent is by invoking the capability which is pointing to that object, thus restricting the granted

rights to the absolute minimum required to perform the operation. Recall that BLP preserves the

POLP in a similar fashion. The capability, sometimes referred to as a fat pointer, encapsulates the

kernel object reference as well as the rights conveyed to the kernel object. The object itself could

be a TCB, for example.

The seL4 whitepaper [65] makes the distinction between ACLs, generally regarded as OS capa-

bilities, and seL4 object capabilities. As previously discussed in Chapter 2: Background, general

access control takes on a subject-oriented approach where each file respectively defines a set of

access-mode bits which allow access to a subject based on user and group identities. All subjects

or threads of a particular user or group can perform the same operations on an object. seL4 ca-

pabilities differ by providing object-oriented access control where a particular thread must have

been given a capability for a particular operation on an object. In other words, when a thread is

invoked, it must be handed a capability which defines the object and the operation permitted to

take place on the object. The opacity of capabilities provides the interposition of access so that, if

a subject is given the capability reference to an object, it has no method of determining what the

object is, restricting the subject only to invocation of methods on the object. Furthermore, one

subject that owns an object can safely delegate privileges for that object to a second subject by

minting an object capability and giving it to the second subject. This allows the second subject to

operate on the object without referring to the delegating subject. The delegating subject can also
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mint the capability with diminished rights. Once again, seL4 capabilities ensure the POLP and

maintain one avenue or channel for each operation on an object.

Communication Mechanisms

Endpoints are communication ports which facilitate the transfer of small amounts of data and

capabilities between threads and address spaces, through the kernel. Notifications are a signal-

ing mechanism which logically represent an array of binary semaphores. As shown in Figure 4.4,

capabilities to Endpoint and Notification objects have a unique member which categorizes them

as either a badged capability or an unbadged capability. Badged capabilities are capabilities with a

Figure 4.4: Endpoint capabilities have a badge field which is used to identify the parties involved
in a communication

defined data word, i.e. a badge, which specifies information related to the access of the capability,

such as the delineation of those parties involved in the communication, and whether the the capa-

bility is Notification or Endpoint specific [84, 125]. Unbadged capabilities are Endpoint capabilities

with a zero badge. The use of these badges will be examined in the following discussion. seL4

provides the use of three different communication mechanisms, each with specific and independent

use-cases: seL4 IPC, Notifications, and Shared Memory.

seL4 IPC. seL4 IPC is no longer the common “inter-process communication”, as defined by the

message passing primitives of typical operating systems; instead, it is the seL4 mechanism used to

synchronously transfer capabilities and small amounts of data between threads [114]. In order for a

thread to send a message, it must invoke an Endpoint capability that is in its CSpace. IPC message

passing is facilitated by Endpoint capability references to kernel objects, that is, Endpoint objects

are invoked to send and received IPC messages, depending on the respective capability a thread

possesses. Recall that a badge in a badged capability can mark the capability as an Endpoint

capability. Badges may also be used such that the sender and receiver can identify one another.

These types of capabilities are especially useful in the case of the seL4 IPC rendezvous model, with
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synchronous Endpoint objects that utilize blocking threads, where multiple parties are expected to

participated in communications.

Each Endpoint object contains a queue of threads which are waiting to send or receive messages.

Each thread within an Endpoint has an IPC buffer, consisting of a bounded area of message registers

that house the capabilities and data of the IPC message. The IPC buffer in the sending thread will

be copied, by the kernel, to the receiving thread’s IPC buffer [114]. The sending thread will block

until the message is consumed by the receiving thread. IPC closely resembles a remote procedure

call in that it is a mechanism “used for implementing cross-domain function calls” and is not to be

used as a mechanism for shipping data or synchronizing activities [64]. Furthermore, IPC should

not be used for sending large amounts of data or one-way notifications. Therefore, the only reason

seL4 IPC should be employed is for a thread to invoke functions within a different address space

of another thread.

Notifications. seL4 Notifications are asynchronous signals which can be sent from one thread to

another. In order for a thread to send a notification, it must invoke a capability to a Notification

object that is in its CSpace. Notification capabilities, like Endpoint capabilities, can be badged

such that the receiver can identify the sender. Each Notification object is formed by a data word,

which acts as an array of binary semaphores, and a queue of TCBs waiting for notifications. Each

Notification object has three states: (i) Waiting: TCBs are queued on this Notification and are

waiting to be signaled; (ii) Active: TCBs have signaled data on this Notification; and (iii) Idle: No

TCBs are queued and no TCBs have signaled this object since it was last set to idle [114]. When

a thread signals a Notification object, the following event will occur, depending on the state of the

object: (i) Waiting: the TCB at the head of the queue is woken and the capability badge is sent to

it, however, if the queue should be empty, the notification object is converted to idle; (ii) Active: the

badge of the capability used to signal the notification object is bitwise ORed with the notification

object’s data word; and (iii) Idle: the notification object’s data word is set to the badge of the

capability used to send the signal, and the object is transitioned to active [114]. When a thread

waits on a notification object, the following event will occur, depending on the state of the object:

(i) Waiting: the TCB is pushed to the queue; (ii) Active: the TCB will receive the notification

object’s data word which is then reset to 0 and the object is transitioned to idle; and (iii) Idle:

the TCB is pushed to the queue, and the object is converted to waiting [114]. Notifications are
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primarily used for interrupt handling and to synchronize access to shared memory [114].

Shared Memory. seL4 shared memory mappings are offered in the form of buffers which can

be shared between threads. Shared memory is specifically useful for shipping bulk data between

threads. seL4 IPC is distinguished from contemporary IPC through shared memory by the amount

of data to be shared.

seL4 Data Protection Model

Note that portions of this section have been adopted from “Auditing a Software-Defined Cross

Domain Solution Architecture”, in preparation [35].

The protection model employed in seL4 is based on the take-grant model described in Chapter

2: Background and is shown by [44, 91] to be decidable. It is useful to note here that, when the

take-grant model was proven decidable by [91], the take operation, described in Chapter 2.3.1:

Take-Grant Model, was included in the proof of the theorem. The take operation, in the case of

seL4, is a dangerous operation. Given n1, n2, n3, from Chapter 2.3.1: Take-Grant Model, the take

rule permits the node n1 to take the authority, α, from n2, to operate on n3. If this operation

were permitted, n1 may acquire authority to operate on n3 without explicitly being granted that

authority by n2. This would break the security proofs of seL4. Therefore, the take operation is

omitted and only the grant operation can be used to propagate authority. The new theorem that

applies to the seL4 implementation of the security model is proven in [44]. A security configuration

analysis tool is one contribution to mitigate this problem and is introduced in Chapter 5: Auditing

a Cross Domain Solution, along with further examinations of modifications made to the take-grant

model. The purpose of the tool, presented in [35], is to verify the correctness of the security

configuration of a vCDS instantiation.

seL4 Formal Verification

“Complete formal verification is the only known way to guarantee that a system is free of program-

ming errors” [78, 79]. The seL4 microkernel has undergone comprehensive, formal, machine-checked

verification, such that there exists a mathematical proof which ensures the following:

(i) seL4’s implementation is consistent with its specification;
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(ii) the implementation is free from programmer-induced defects;

(iii) the specification satisfies desirable high level properties such as:

(a) termination: the kernel will never crash, and

(b) execution safety: the kernel will never perform an unsafe operation,

that carry through to the code and binary levels; and

(iv) seL4’s access control and data protection models are formally proven to provide security

guarantees [56, 78, 79].

In order to achieve this level of functional correctness verification, the well-known Isabelle/HOL

interactive formal proof assistant was used to generate an executable specification, in order to show

refinement using Hoare logic, as previously described in Chapter 2.11: Formal Verification [104,

105]. Further proof is provided to show that the executable specification of seL4 correctly imple-

ments the abstract model, in addition to proofs of security enforcement, which were first carried

out over seL4’s abstract specification and then to it’s implementation using refinement proofs which

embody functional correctness. Therefore, the seL4 microkernel is the first comprehensively veri-

fied, general-purpose OS kernel which provides complete proof of the high-level security and safety

requirements, i.e. integrity, confidentiality and availability, as well as full, functional correctness

down to the executable machine code [79].

4.2.3 Security Analysis

seL4 is the only existing capability-based microkernel system with a proof of functional correctness

which “guarantees that every behavior of the kernel is predicted by its formal abstract specification”

[65]. Furthermore, the functional correctness property which has been proven for seL4 is “much

stronger and more precise than what automated techniques like model checking, static analysis

or kernel implementations in type-safe languages can achieve” because the kernel is analyzed to

ensure safe execution, and also to produce “a full specification and proof for the kernel’s precise

behavior” [78]. The proofs also show that the kernel is free of, and therefore cannot be affected by,

deadlocks or livelocks, buffer overflows or memory leaks, arithmetic overflows or exceptions, use of

66



uninitialized variables or null pointer dereferences [46]. In other words, the seL4 proofs guarantee

that there can be no undefined behavior and no bugs will be realized in the system.

The microkernel is also provably secure: “seL4 comes with further proofs of security enforce-

ment” [79], and employs the Take-Grant protection model, described in Chapter 4.2.2: seL4 Data

Protection Model, such that, “in a correctly configured seL4 -based system, the kernel guarantees

the classical security properties of confidentiality, integrity and availability” [65]. One of the stated

contributions of this research was to provide an audit tool which verifies the correctness of the

security configuration. This tool is detailed in Chapter 6: Analysis and Evaluation.

seL4 further ensures safety of time-critical systems and is the world’s fastest performing micro-

kernel while providing fine-grained access control [20, 65]. Therefore, the seL4 microkernel garners

the highest performance in its class [67]. Additionally, a key design goal implemented in seL4 is to

provide “strong isolation between mutually distrusting components”, making it ideal for vCDS in-

stantiations [80]. The seL4 isolation mechanisms are supported when used as a hypervisor, allowing

the secure execution of multiple systems of differing trust levels on top of seL4. The system also

renders statically defined components, processes and channels which are immutable after compile

time; this is another property which makes this microkernel and hypervisor ideal for vCDS.

4.3 For Abstracting Layer 2 and Linking to Layer 3 Components:

CAmkES

In order to abstract away the low-level seL4 components, the component architecture for microkernel-

based embedded systems (CAmkES) framework has been chosen. This component framework al-

lows the development and manipulation of a CDS instantiation on top of the static architecture of

seL4. CAmkES abstracts over low-level kernel mechanisms, providing communication primitives

and support for decomposing a system into functional units [80].

4.3.1 Implementation

The CAmkES architecture description language (ADL) describes three high-level system abstrac-

tions and their interactions which combine to form a composition: Components, Interfaces, and

Connectors [114]. Components are objects encapsulated by the microkernel, interfaces define com-
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ponent invocation, and connectors are one-to-one links between the interfaces. CAmkES leverages

a compiler to translate the ADL into the capability distribution language (capDL). capDL describes

the kernel objects that are needed by an seL4 application, in addition to the distribution of the

capability references to those objects [114]. In other words, the capDL defines a system’s entities

(subjects and objects) and access rights. seL4 enforces the specified access rights and only those

rights, so that whichever state the system is in, it is guaranteed to behave as described by the ADL.

4.3.2 Components

A CAmkES component is a type of functional entity [114]. The functional entity itself is the set of

all programs, code, and data which represent an instance of the component. For the purposes of

understanding, both components and instances of a component will be referred to as components

herein. Relating to the stream processor, the High Side and Low Side domains, as well as the

Guard are the CAmkES components.

4.3.3 Interfaces

An interface is an interaction point of a component, that is, it defines a point to which another

point is linked for the purposes of communication. CAmkES provides the use of three interfaces:

(i) procedures, (ii) events, and (iii) ports. A procedure is an interface over which function calls can

be made; each procedure has methods which can be independently invoked. An event interface is

an asynchronous signal interface of a component and a port is an interface type that represents

shared memory semantics [114]. In the case of the stream processor, only events and ports are

implemented. However, all three of these interfaces correspond to a connector, the use of which

will be examined in Chapter 4.3.4: Connectors.

4.3.4 Connectors

Connectors define the interfaces used to connect one component to another. A connection is an

instance of a connector, that allows two CAmkES components to communicate with each other

[114]. seL4 system calls must be invoked in order to send data through a connection; the system

calls are hidden by the CAmkES abstraction layer. CAmkES provides three connector types which

each correspond to an interface: (i) Shared Data, (ii) Notifications, and (iii) Remote Procedure
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Calls (RPC). Additionally, there is a special use-case for CAmkES connectors which is covered in

Chapter 4.3.4: Cross VM Connectors.

Shared Data

CAmkES components use Dataports as shared data connectors between port interfaces used by

components and guest processes, to enable one component to pass large amounts of data to another

component. The interfaces are made available to CAmkES components as shared memory regions

at runtime; seL4 has a corresponding seL4SharedData connector. Dataports are the typed shared

memory mappings which are leveraged in order to pass data across the high and low security domain

boundaries.

An important property of these shared memory mappings is that CAmkES provides access

controls such that components may have restricted access to them. In order to implement a data

diode explicitly and enforce the domain boundaries, the access rights granted to each component

for use of their Dataports must be configured in the ADL. This configuration allows the passing of

data structures through the protected seL4 microkernel via a unidirectional interface without the

possibility of leaking information through the component or microkernel layers. One thing to note

is that CAmkES Dataport permissions map directly to the seL4 page mapping flags. In the case

of a “write-only” flag, however, there, generally, is no write-only equivalent in the paging models

of most hardware platforms. This is not a bug and, in the data diode implementation, does not

convey any extra abilities to the sender (Appendix D: Inquiry to seL4 Developers).

Dataports are initialized between a CAmkES component and a VM guest when a processes

makes the ioctl system call, a call which connects the Dataport to a shared memory region. When

the system call is made on the file that is associated with the Dataport, specifying a page-aligned

size for the shared memory region, a kernel module within the guest VM will allocate the requested

sized, page-aligned buffer. The module will then notify the hypervisor, causing the hypervisor to

modify the VM guest’s address space in order to create the shared memory region to connect to

the CAmkES component. A process within the VM is then able to map the shared memory into

their own address space.
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Notifications

CAmkES components use event interfaces which, as previously stated, are asynchronous signal

interfaces of a component; seL4 has a corresponding seL4Notification connector. In CAmkES there

are two types of event connectors: emits and consumes. In this paragraph, these connectors are

referred to as events in the sense that their instantiations process an action, or event, which is to

take place. Emits events allow a process to emit a signal or notification to a CAmkES component.

This is made possible through an emits_event kernel module inside the guest VM which makes a

hypercall to the seL4 hypervisor, or VMM, to trigger the event and resume the VM. The emitter, or

sending thread, is non-blocked and can send data at any time and at any rate. Consumes events are

the receivers of emits events in that they allow a process in the VM to wait for an event sent by a

CAmkES component. In this case, the VMM will receive an emits event that is destined for another

guest VM and place the event identifier in shared memory between itself and the consumes_event

kernel module. Then the VMM will interrupt the guest VM that is running the consumes kernel

module; the module is registered to handle the interrupt from the VMM and it reads the event

identifier from shared memory. The consumer, i.e. the receiving thread, can either be blocked or

non-blocked so that it could simply just wait or it could handle other events while waiting for the

asynchronous signal from the emitter.

Remote Procedure Calls

RPC calls are synchronous procedure calls that allow a component to provide functionality to

another component; seL4 has a corresponding seL4RPCCall connector. In seL4 the RPC CAmkES

connector abstracts the invocation of a function that is provided by another component as a regular

function call, executed by the client component [65]. The client component can simply call the pro-

cedure as if it were one of its members. Though this particular type of connector is not used in the

stream processor implementation (although it certainly could be used), this connector is especially

useful in the Big Data/High Performance Computing application as it allows the movement of the

computations to the data when the use-case requires it.
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Cross VM Connectors

Cross VM connections are all events and memory regions that are shared between Linux VM pro-

cesses and the CAmkES components. The cross VM connection kernel module is an invaluable part

of vCDS functionality for virtualized use-case applications like the stream processor (Chapter 3.5.1:

Stream Processor). Cross VM connector mechanisms are provided, both by seL4 and CAmkES, in

order to create a communication channel between processes in a guest VM and CAmkES compo-

nents. The channel formed by these mechanisms is what allows the secure transfer capability to be

executed.

The connection module provides the functionality for parsing cross VM connections which are

advertised as peripheral component interconnect (PCI) devices by employing userspace input/out-

put (UIO) devices to allow processes in Linux to mmap the PCI base address registers (BAR). Some of

the inner workings of the module are highlighted in Listing 4.1, however, the cross VM connection

module is publicly available [114], and is therefore omitted from Appendix A: vCDS Source Code.

In line 1, BAR0, the event BAR, is set up by getting the bus start address for the PCI device region

and mapping it into the UIO device physical memory address. The event BAR is used specifically

to handle the previously discussed emits and consumes events through the Dataports. Line 3 sets

the byte length of the PCI region of addr from line 1 and line 4 sets the internal address to the

offset virtual address of the BAR’s physical address so that the device can be accessed from within

the module. Lines 6 through 14 repeat the above UIO device initialization for the remaining BAR

mappings which correspond to the Dataports.

1 uio ->mem [0]. addr = pci_resource_start(dev , 0);

2 ...

3 uio ->mem [0]. size = pci_resource_len(dev , 0);

4 uio ->mem [0]. internal_addr = pci_ioremap_bar(dev , 0);

5 ...

6 for (i = 1; i < MAX_UIO_MAPS; i++)

7 {

8 uio ->mem[i].addr = pci_resource_start(dev , i);

9 ...

10 uio ->mem[i]. internal_addr = ioremap_cache(pci_resource_start(dev , i),

11 pci_resource_len(dev , i));
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12 ...

13 uio ->mem[i].size = pci_resource_len(dev , i);

14 ...

15 }

Listing 4.1: Connection Module

4.3.5 Visualizing the CAmkES Model

A CAmkES visualizer, VisualCAmkES, was developed to aid in modelling CAmkES components

and connections [114]. Modifications were made to the visualizer in order to generate Figures 4.5

and 4.6, and even then, the visualization does not accurately capture the directional data flow

properties through dataports, nor does it capture the use of Cross VM Connectors. However, the

depictions below are useful to model the components and general connections which have been

implemented.

Consider the LowSide, HighSide, and Guard components of Figure 4.5. The box symbols repre-

sent Shared Data Dataports which connect via the leftmost and rightmost lines to each respective

component. The triangle symbols represent emits and consumes Notifications which actually show

directionality, i.e. the triangle points in the direction of the consumer. Figure 4.6 further provides

the description of the connections, showing the number and type of each. These two figures provide

an overview of the CAmkES components and their respective connections leveraged in vCDS.

Figure 4.5: VisualCAmkES Components and Connections

4.3.6 Security Analysis

CAmkES grants all vCDS systems the assurance that the Components, Interfaces, and Connectors

which have been specified in the ADL provide an accurate representation of all possible interactions
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Figure 4.6: VisualCAmkES Component Description

and that any interaction beyond what is specified will not materialize [65]. The implemented

Dataport configuration is an explicit data diode that allows the passing of data structures through

the protected seL4 kernel via a unidirectional interface without the possibility of leaking information

through the component or kernel layers. Additionally, the analysis tool developed for this research,

further described in Chapter 6: Analysis and Evaluation, takes the capDL as input and seeks to

verify the security configuration of the system based on the system description in the capDL.

4.4 For Realizing Layer 3 in the Architecture: Linux and seL4

Native Process

To represent the High and Low Side domains, VMs are utilized to run a custom-built Linux kernel

due to practicality of implementation (Appendix A: Custom Linux Kernel Config File). The Low

Side handles incoming traffic and initiates transport of the appropriate data to the High Side for

processing. Communication from the low component to the high component, through the afore-

mentioned Dataports, is achieved through cross VM connectors. The cross VM connectors allow

for the configuration of each process, within the guest VMs, to communicate with the CAmkES

components. The High Side can then access and process the data by opening and reading from the

Dataports. Communication from high to low within the network sensor (IPS/IDS) application is a
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separate channel protected by a guard. The guard or filter which has been developed is an optional

component which was specifically selected for use in the stream processor application.

4.4.1 Implementation

In this subsection are the details of the implementation of each mechanism and an explanation of

the unique and essential aspects of the stream processor code. It is now useful to discuss the access

right granted to each component and differentiate these rights from the access rights granted to

each Dataport connection between those components.

As per BLP, described in Chapter 3.1: System Model, the “no read up” and “no write down”

properties are enforced with the following access rights shown in table 4.1. Note that the High Side

refers to the domain as the Guard is a party to high computations. Therefore, the High Side and

the Guard components have the same access rights to the data which is being processed.

Component Access Rights

Low Side write-only

High Side read-only

Guard read-only

Table 4.1: Component Access Rights

The Low Side to High Side connection is equivalent to the access rights granted to the Low

Side. Additionally, the connection between the High Side and/or the Guard back to the Low

Side is equivalent to access rights granted to the Guard and High Side, shown in Table 4.1. The

difference, shown in Table 4.2, is recognized in the High Side to Guard and the Guard to the High

Side connections. The rights granted to these connections differ because the High Side is permitted

to send messages to the Guard and, likewise, the Guard is permitted to communicate back to the

High Side. This is possible without compromising data confidentiality because the Guard and the

High Side reside at the same classification or trust level. Further discussion on the components’

connections and how explicit rights enforce the data diode will reference Table 4.2.

Dataport Connection Access Rights

Low Side to High Side write-only

Guard to High Side read/write

Guard and/or High Side to Low Side read-only

Table 4.2: Shared Memory Access Rights
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Domains

As stated above, each domain has been implemented as a VM running Linux. In this case, the Linux

kernel version 5.4.139 was chosen. This version was selected in order to make the stream processor

compatible with multiple hardware platforms for testing which include, but are not limited to, those

platforms discussed in Chapter 4.1: For Realizing Layer 1 in the Architecture: AMD EPYC with

SEV/SME. The configuration file for the custom build is located in Appendix A: Custom Linux

Kernel Config File.

Listing 4.2, below, shows the kernel image being located, decompressed, and added to the VM

file server. The AddToFileServer receives two required arguments, the name which the kernel image

will be referred to within the file server – "bzImage" – and the location of the image within the file

system – the value of decompressed_kernel. Additional dependent arguments can be passed through

the optional parameter, DEPENDS. Lines 2 and 3 show the High Side and Low Side root file systems

being located while lines 15 and 16 show the file systems being added to the respective archive

(“copy in and copy out” – CPIO) after having been packed with all necessary files and modules.

Note that the GetDefaultLinuxRootfsFile function retrieves the custom-built default Linux rootfs.cpio

as the default root file system for both the High Side and Low Side.

1 GetDefaultLinuxKernelFile(kernel_file)

2 GetDefaultLinuxRootfsFile(high_rootfs_file)

3 GetDefaultLinuxRootfsFile(low_rootfs_file)

4

5 DecompressLinuxKernel(extract_linux_kernel

6 decompressed_kernel

7 ${kernel_file}

8 )

9 AddToFileServer("bzImage"

10 ${decompressed_kernel}

11 DEPENDS extract_linux_kernel

12 )

13 ...

14 # Add high and low rootfs images to file server

15 AddToFileServer("low_rootfs.cpio" ${low_rootfs_file })

75



16 AddToFileServer("high_rootfs.cpio" ${high_rootfs_file })

Listing 4.2: Linux Kernel and File System Build Setup

The code in Listing 4.3, from stream processor.camkes which is the main CAmkES project file,

shows the definitions of the high and low VM components. On line 1, VM_COMPOSITION_DEF is a C

preprocessor macro which defines the hardware multiplexing components and configurations: PCI

bus configuration, a real time clock (RTC), a serial server, and a time server. The main concern

of this macro is to define and configure any components that all VMs and/or hypervisors need.

VM_PER_VM_COMP_DEF is a macro which has been modified to take two arguments: the domain name and

a VM number. This macro defines each VM component and establishes all necessary connections

to the VM components: connections between the VM and the file server; connections between the

serial server and each VM component, as well as the serial input emulated by seL4; connections

between the VM and the RTC, as well as the time server; and connections between the VM and the

PCI configuration space. The PCI devices themselves are defined by each respective VM component

as discussed below.

1 VM_COMPOSITION_DEF ()

2

3 VM_PER_VM_COMP_DEF(LowSide , 0) // component LowSide vm0

4 VM_PER_VM_COMP_DEF(HighSide , 1) // component HighSide vm1

Listing 4.3: Domain Component Definition

In order to better understand the following instantiated high and low domains, it is useful to

understand the Record data structure which is defined in record.h:

1 typedef struct {

2 int isValid; // Holds value of pass/fail

3 int isDone; // Notification from guard to High

4 Tag tag; // Blake3 checksum

5 Packet packet; // Packet data

6 } Record;

Listing 4.4: Record Struct

The purpose of the Record struct is to hold the data and information about the data so they can

easily be accessed and processed by any authorized components which require it. The Record data

76



structure has four members which are described as follows: (i) isValid: Boolean value representing

the outcome of an integrity check – 1 for successful, 0 for failed; (ii) isDone: Boolean value which

represents the processing status of the guard – 1 for finished, 0 for in progress; (iii) tag: structure

which holds a 32-byte char pointer that references a checksum; and (iv) packet: structure which

contains the data as well as some metadata about the data.

Low Side Domain.

The Low Side domain implementation is presented first because of the sequential data flow

through the CAmkES components, shown in Figure 4.1. Additionally, the Low Side implementation

is not nearly as complex as the High Side implementation and is therefore useful in laying the

foundation of vCDS domains. The Low Side domain implementation is organized and presented in

the following way: (i) CAmkES Low Side component definition, (ii) CAmKES Low Side component

configuration, (iii) Low Side connections, and (iv) Low Side root file system build and setup.

(i) CAmkES Low Side component definition

Listing 4.5 shows the DeclareCAmkESVM function being called from CMakeLists.txt in the project’s

root directory to declare the LowSide component which was defined in the stream processor.camkes

file, shown in Listing 4.3. The function also provides the support to pass in an additional

source file as well as an include directory containing the necessary header files, such as the

aforementioned record.h.

1 DeclareCAmkESVM(LowSide

2 EXTRA_SOURCES ${connectionSourceLow}

3 INCLUDES include

4 )

Listing 4.5: Low Side VM Declaration

(ii) CAmKES Low Side component configuration

The Low Side CAmkES component attributes for the base VM definition, such as the RTC,

interrupt handlers for events, and the file server attributes, are set in the VM_INIT_DEF function,

shown in Listing 4.6. Line 5 defines a shared memory Dataport which is of the previously

defined Record data type. The record Dataport is used to communicate with, that is, to send

data to, the High Side.
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1 component LowSide {

2 VM_INIT_DEF ()

3

4 include "record.h";

5 dataport Record record;

6 }

Listing 4.6: Low Side Component Definition

Listing 4.7 below, from Appendix A.3: LowSide.camkes, shows the Low Side assembly,

i.e. the complete description of the full component, being configured. VM_PER_VM_CONFIG_DEF

initializes VM memory configuration attributes common to all VM guest instances. Lines 4

and 5 give the Low Side access to blocks of untyped memory, 8 megabyte and 4 megabyte

respectively, so that the Low Side can retype them as its virtual memory. Lines 6 and 7 specify

the VM guest’s heap size allotment and the RAM size respectively. The lines following specify

the command line console, kernel image file, root file system archive, and the I/O space at

line 12. Finally, on line 13, the record Dataport is configured with a size allotment of 4096

bytes.

1 configuration {

2 VM_PER_VM_CONFIG_DEF (0)

3

4 vm0.simple_untyped23_pool = 21; // 2^23 (8 MB)

5 vm0.simple_untyped22_pool = 1; // 2^22 (4 MB)

6 vm0.heap_size = 0x2000000;

7 vm0.guest_ram_mb = 128;

8 vm0.kernel_cmdline = LOW_SIDE_CMDLINE;

9 vm0.kernel_image = "bzImage";

10 vm0.kernel_relocs = "bzImage";

11 vm0.initrd_image = "low_rootfs.cpio";

12 vm0.iospace_domain = 0x0f;

13 vm0.record_size = 4096;

14 }

Listing 4.7: Low Side Component Configuration

It is especially useful to the network sensor application to provide network access to the
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untrusted guest VM so that it can receive untrusted communications from other untrusted

sources. An Ethernet device is configured by giving the VM guest passthrough access to the

Ethernet controller. Line 1 of Listing 4.8 sets the I/O space and lines 3 through 5 set the I/O

ports. The starting and ending regions were retrieved from the native Linux instance by using

the lspci command. Lines 7 through 19 set the PCI Ethernet controller device information

such as the bus, device, and function numbers, as well as the additional memory regions.

Finally, the IRQ information is set in lines 21 through 23.

1 vm0_config.pci_devices_iospace = 1;

2

3 vm0_config.ioports = [

4 {"start":0x3000 , "end":0x3100 , "pci_device":00, "name":"Ethernet5"},

5 ];

6

7 vm0_config.pci_devices = [

8 {

9 "name":"Ethernet5",

10 "bus":08,

11 "dev":00,

12 "fun":1,

13 "irq":"Ethernet5",

14 "memory":[

15 {"paddr":0xb4304000 , "size":0x1000 , "page_bits":64},

16 {"paddr":0xb4300000 , "size":0x4000 , "page_bits":64},

17 ],

18 },

19 ];

20

21 vm0_config.irqs = [

22 {"name":"Ethernet5", "source":0x12 , "level_trig":1, "active_low":1, "dest"

:10},

23 ];

Listing 4.8: Passthrough Ethernet Configuration

(iii) Low Side connections
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Listing 4.9 below shows the instantiation of a connector by forming a connection from the

Low Side VM record Dataport interface to the High Side VM record Dataport interface.

Specifically, seL4SharedDataWithCaps is a connector used to form a connection between Dataport

interfaces where both the “to” and the “from” sides have access to capabilities to the frames

which back the Dataport. This connector is required in order to connect processes in a VM

guest to other CAmkES components which is done at runtime when the hypervisor inserts new

memory mappings into the guest VM’s address space in order to establish shared memory.

On line 6 the record Dataport’s access rights are explicitly set. The enforcement of BLP

access control for this implementation means that the Low Side has write only privileges so

that “no read up” is enforced and that High Side data confidentiality is maintained. This

implements the “from” side of the data diode such that the Low Side can only transfer data

to the High Side and, again from the Low Side’s perspective, data cannot be read back.

1 connection seL4SharedDataWithCaps lowToHighConn(

2 from vm0.record ,

3 to vm1.record

4 );

5 ...

6 vm0.record_access = "W"; // write only

Listing 4.9: Low Side connections

(iv) Low Side root file system build and setup

The Low Side leverages a few external packages and additional files to complete processing

operations. For the purpose of the stream processor, two are discussed: (a) the send record

project, and (b) the Cross VM Connection Kernel Module.

(a) send record project

send record is an external project which provides the Low Side VM with the functionality

to send or transfer data along the CAmkES shared memory Dataport interface with the

High Side. Recall that this is the first step along the data flow path, depicted in Figure

4.1. The following paragraph refers to Listing 4.10 below.

The ExternalProject_Add function (lines 1 through 7) declares the send_record-app ap-
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plication and creates a custom target to build from the provided SOURCE_DIR on line

2. AddExternalProjFilesToOverlay is a helper function responsible for packing the ap-

plication files generated by the external project into the overlay target, in this case

overlay_low. Essentially, this function creates a target for the generated binary in

the external project and adds it to the root file system. The function passes four

required arguments and, in this case, one additional optional argument: (1) the ex-

ternal project target – send_record-app, (2) the external project’s install directory –

${CMAKE_CURRENT_BINARY_DIR}/send_record-app, (3) the overlay target to which to add the

file – overlay_low, (4) the location of install within the root file system – "usr/sbin", and

(5) the file to add from the external project – send_record.

1 ExternalProject_Add(send_record -app

2 SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR }/pkgs/send_record

3 BINARY_DIR ${CMAKE_CURRENT_BINARY_DIR }/ send_record -app

4 INSTALL_COMMAND ""

5 BUILD_ALWAYS ON

6 EXCLUDE_FROM_ALL

7 )

8

9 AddExternalProjFilesToOverlay(send_record -app

10 ${CMAKE_CURRENT_BINARY_DIR }/ send_record -app

11 overlay_low

12 "usr/bin"

13 FILES send_record

14 )

Listing 4.10: Declare Send Record External Project

The send_record-app functionality is granted by one key system call, mmap, shown in

Listing 4.11. The mmap function is a system call used to create a new mapping in the

virtual memory address space of the current running process. The Low Side calls the

mmap function on the file associated with the shared memory Dataport, captured by the

file_descriptor parameter. This provides the mapping of the memory, which resides in

the Dataport, to its own address space so that it can be processed. Note that within the

call to mmap, the respective enforced software-level file permissions are explicitly equivalent
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to those set for the Dataport configurations in the Root Project stream processor.camkes

file from Appendix A: vCDS Source Code. If the memory mapping fails, no data will be

transferred to the High Side, upholding the system model, Chapter 3.1: System Model.

1 Record *dataport = (Record *)mmap(NULL , length , prot , flags ,

file_descriptor , 1 * getpagesize ());

Listing 4.11: Send Record External Project

(b) Cross VM Connection Kernel Module

Listing 4.12 leverages DefineLinuxModule to define a new Linux module, connection, which

is then added to the Low Side overlay, overlay_low, by AddFileToOverlayDir. In both

functions, connection-module is used to define the location to the compiled Linux kernel

module and connection-target is used to define the target name for the kernel module.

The first argument in DefineLinuxModule is the location of the connection module project

directory, and the final argument provides the Linux kernel source directory. The first

argument of AddFileToOverlayDir, "connection.ko", defines the name of the installed module

and the third argument, "lib/modules/5.4.139/kernel/drivers/vmm", defines the location

within the overlay where the module will be placed.

1 DefineLinuxModule(

2 ${CAMKES_VM_LINUX_DIR }/camkes -linux -artifacts/camkes -linux -modules/

camkes -connector -modules/connection

3 connection -module

4 connection -target

5 KERNEL_DIR ${CMAKE_CURRENT_SOURCE_DIR }/5.4.139/ linux -5.4.139/

6 )

7 ...

8 AddFileToOverlayDir("connection.ko"

9 ${connection -module}

10 "lib/modules /5.4.139/ kernel/drivers/vmm"

11 overlay_low

12 DEPENDS connection -target

13 )

Listing 4.12: Adding the Cross-VM kernel module to the Low Side overlay target
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Recall from the declaration of the Low Side CAmkES VM, in Listing 4.5, that

connectionSourceLow was added as an additional source file to be compiled. This source

file cross vm connections low.c explicitly defines the connection handles and initializes

them. Listing 4.13 below shows the Low Side connections which correspond to the Low

Side Dataport, record. The data structure below is a struct of connections, which, in

this case, only contains one. The connection itself is also a data structure which receives

a handle to the VM as well as an additional function and an additional data structure

which will be examined when the High Side connections are introduced.

1 static struct camkes_crossvm_connection connections [] = {

2 {& record_handle , NULL , {.id = -1, .reg_callback = NULL}},

3 };

Listing 4.13: Low Side Connection Source

Listing 4.14 shows AddFileToOverlayDir adding the cross VM module initialization

shell script as "S90cross_vm_module_init" to the "etc/init.d" directory within the Low

Side overlay. Listing 4.15 shows the use of insmod to insert the module into the Linux

kernel which will run at boot because it was placed in "etc/init.d".

1 AddFileToOverlayDir("S90cross_vm_module_init"

2 ${CMAKE_CURRENT_SOURCE_DIR }/ overlay_files/init_scripts/

cross_vm_module_init

3 "etc/init.d"

4 overlay_high

5 )

Listing 4.14: Add script to insert the Cross-VM module into the High Side Linux kernel

1 insmod /lib/modules /5.4.139/ kernel/drivers/vmm/connection.ko

Listing 4.15: Insert Module Script

Once all packages and files intended for the Low Side have been packed into overlay_low,

the overlay is then packed into the rootfs.cpio archive. Listing 4.16 shows the function call to

AddOverlayDirToRootfs which is a helper function responsible for installing the defined target

overlay, overlay_low, onto the stated rootfs image, low_rootfs_file. Recall that both the high
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rootfs and the low rootfs files are built on top of the same default file system: the custom-

built default Linux rootfs file. The next argument, "buildroot" specifies the distribution of

the rootfs image. rootfs_install specifies how the image will be installed which, in this case,

is as the Low Side guest VM file system that will be used when the Low Side VM boots. The

final arguments specify the output location and the target of the overlayed rootfs image.

1 AddOverlayDirToRootfs(

2 overlay_low

3 ${low_rootfs_file}

4 "buildroot"

5 "rootfs_install"

6 low_rootfs_file

7 low_rootfs_target

8 )

Listing 4.16: Packing the High Side Overlay

High Side Domain. As was done with the Low Side domain, the High Side domain implementa-

tion is organized and presented in the following way: (i) CAmkES High Side component definition,

(ii) CAmKES High Side component configuration, (iii) High Side connections, and (iv) High Side

root file system build and setup.

(i) CAmkES High Side component definition

Listing 4.17 shows the DeclareCAmkESVM function being called, this time, to declare the HighSide

component. Once again, the helper provides the support to pass in an additional source file

and an include directory containing the necessary header files.

1 DeclareCAmkESVM(HighSide

2 EXTRA_SOURCES ${connectionSourceHigh}

3 INCLUDES include

4 )

Listing 4.17: High Side VM Declaration

(ii) CAmKES High Side component configuration
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Like with the Low Side, the High Side component attributes for the base VM definition – the

RTC, interrupt handlers for events, and the file server attributes – are set by the VM_INIT_DEF

function in Listing 4.18. The emits and consumes event connections are defined in lines 4 and

5. Shown from these definitions, the High Side emits a Ready signal to another component,

which is the Guard, and consumes a Done signal, also from the Guard. Lines 8 and 9 define

shared memory Dataports which will store the previously described Record data structure.

The record Dataport is used to receive data from the Low Side, and the record_bridge is used

to communicate bidirectionally with the Guard.

1 component HighSide {

2 VM_INIT_DEF ()

3

4 consumes Done done;

5 emits Ready ready;

6

7 include "record.h";

8 dataport Record record;

9 dataport Record record_bridge;

10 }

Listing 4.18: High Side Component Definition

Listing 4.19, from Appendix A.4: HighSide.camkes, shows the High Side assembly being con-

figured.

VM_PER_VM_CONFIG_DEF sets several important memory attributes such as the file server shared

memory size and the global endpoint address used for notifications which are especially im-

portant to the High Side. Lines 4 and 5 give the High Side access to 8 megabyte and 4

megabyte blocks of untyped memory, respectively, so that the High Side can retype them as

its virtual memory. Lines 6 and 7 specify the VM guest’s heap size allotment and the RAM

size respectively. The lines following specify the command line console, kernel image file, root

file system archive, and the I/O space. Beginning at line 14, the record and record_bridge Dat-

aports are configured with differing identification numbers – an important distinction when

concerned with their respective access rights – but with the same size allotments as they will

be handling the same amounts of data.
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1 configuration {

2 VM_PER_VM_CONFIG_DEF (1)

3

4 vm1.simple_untyped23_pool = 21; // 2^23 (8MB)

5 vm1.simple_untyped22_pool = 1; // 2^22 (4MB)

6 vm1.heap_size = 0x2000000;

7 vm1.guest_ram_mb = 128;

8 vm1.kernel_cmdline = HIGH_SIDE_CMDLINE;

9 vm1.kernel_image = "bzImage";

10 vm1.kernel_relocs = "bzImage";

11 vm1.initrd_image = "high_rootfs.cpio";

12 vm1.iospace_domain = 0x10;

13

14 vm1.record_id = 1;

15 vm1.record_size = 4096;

16 vm1.record_bridge_id = 2;

17 vm1.record_bridge_size = 4096;

18 }

Listing 4.19: High Side Component Configuration

(iii) High Side connections

The listing below, Listing 4.20, defines the event connections, readyConn and doneConn, as

well as the Dataport connections, lowToHighConn and highToGuardBridgeConn. Lines 1 through 4

establish the connection from the High Side to the Guard – an emits event on the High Side,

vm1, and a consumes event on the Guard, guard. The seL4Notification is an asynchronous event

connector such that a consumer will wait for an asynchronous signal from the emitter. The

emitter is non-blocked and can send data at any time. The consumer may be either blocked

or non-blocked. In the case that the consumer executes faster than the emitter, this connector

has the advantage of allowing the consumer to execute additional jobs while waiting for the

signal from the emitter. Likewise, lines 5 through 8 establish the connection from the Guard

to the High Side – an emits event on the Guard and a consumes event on the High Side.

Line 10 instantiates a connector by forming a connection between the High Side VM and

the Low Side VM Dataports. Specifically, seL4SharedDataWithCaps is a connector used to form
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a connection between Dataport interfaces where the “to” side has access to capabilities to

the frames backing the Dataport. Once again, this is a requirement for Dataport connections

between VMs in order to connect processes in a VM guest to other CAmkES components. This

same connector is used to form a connection between the High Side record_bridge Dataport

and the Guard record Dataport. Note that, in the connection formed from the High Side

to the Guard in line 14, the High Side uses a different Dataport than that which it uses to

retrieve data from the Low Side. Once again, this is because the High Side and the Guard

reside at the same classification level. Also, notice that no connections are made where the

Low Side, vm0, is on the “to” side of the connection. This is because this particular stream

processor implementation does not require a connection back to the Low Side; however, in

a use-case that would require it, it can easily be added by using the seL4SharedDataWithCaps

connector.

Finally, in lines 19 and 20, each Dataport’s access rights are explicitly set. The enforce-

ment of BLP access control for this implementation means that the High Side has read only

privileges, i.e. “no write down”, for data that comes from the Low Side. This implements

the “to” side of the data diode in that the High Side can only receive data from the Low

Side and is not permitted to transfer data back to the Low Side via this interface. The High

Side has both read and write privileges to and from the Guard as they reside at the same

classification level; for this interface, there is no data diode. Note that if the High Side were

given the ability to transfer the data back to the Low Side in this use-case, it would have to

form a new connection with a new Dataport which would require new access controls in order

to enforce the data diode.

1 connection seL4Notification readyConn(

2 from vm1.ready ,

3 to guard.ready

4 );

5 connection seL4Notification doneConn(

6 from guard.done ,

7 to vm1.done

8 );

9 ...
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10 connection seL4SharedDataWithCaps lowToHighConn(

11 from vm0.record ,

12 to vm1.record

13 );

14 connection seL4SharedDataWithCaps highToGuardBridgeConn(

15 from vm1.record_bridge ,

16 to guard.record

17 );

18 ...

19 vm1.record_access = "R"; // read only

20 vm1.record_bridge_access = "RW"; // read/write

Listing 4.20: High Side connections

(iv) High Side root file system build and setup

Additionally, the High Side leverages several external packages and additional files to com-

plete processing operations. For the purpose of the stream processor, three are discussed:

(a) receive record project, (b) Snort project, and (c) Cross VM Connection Kernel Module.

(a) receive record project

The first package is an external project called receive_record-app which provides the

High Side VM with the functionality to retrieve data from the CAmkES shared memory

Dataport and optionally, if specified as it is in the stream processor application, provide

data access to the Guard component, described in Chapter 4.4.1: seL4 Native Process:

the Guard. The following paragraphs closely parallel the previous examination of the

Low Side file system build.

In Listing 4.21, the ExternalProject_Add function declares receive_record-app and creates

a custom target to build. Note the CMAKE_ARGS where the C compiler for compiling the

project is specified; the variable CMAKE_C_COMPILER is set in the external project’s CMake-

Lists.txt file. This is because several of the external projects which are added to the

stream processor had to be built for different architectures by using a cross compilation

toolchain. This challenge is further discussed in Chapter 4.7: Implementation Chal-

lenges.
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AddExternalProjFilesToOverlay is a helper function responsible for packing the application

files generated by the external project into the overlay target, in this case overlay_high

. Once again, this function creates a target for the generated binary in the external

project and adds it to the root file system. The function passes four required ar-

guments and, like with the send_record-app, one additional argument: (1) the exter-

nal project target – receive_record-app, (2) the external project’s install directory –

${CMAKE_CURRENT_BINARY_DIR}/receive_record-app, (3) the overlay target to which to add

the file – overlay_high, (4) the location of install within the root file system – "usr/sbin",

and (5) the file to add from the external project – receive_record.

1 ExternalProject_Add(receive_record -app

2 SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR }/pkgs/receive_record

3 BINARY_DIR ${CMAKE_CURRENT_BINARY_DIR }/ receive_record -app

4 INSTALL_COMMAND ""

5 BUILD_ALWAYS ON

6 EXCLUDE_FROM_ALL

7 CMAKE_ARGS -DCMAKE_C_COMPILER =\${CMAKE_C_COMPILER}

8 )

9

10 AddExternalProjFilesToOverlay(receive_record -app

11 ${CMAKE_CURRENT_BINARY_DIR }/ receive_record -app

12 overlay_high

13 "usr/sbin"

14 FILES receive_record

15 )

Listing 4.21: Declare Receive Record External Project

The receive_record-app functionality is granted by one central function call, shown in

Listing 4.22. The mmap system call is used the same way here, as with the Low Side,

to create a new mapping in the virtual memory address space of the current running

process. In this case, the High Side calls the mmap function on the file associated with the

Dataport, captured by the record parameter, in order to map the memory which resides

in the Dataport to its own address space so that it can be processed. Likewise shown,

the High Side maps the Dataport bridge file, captured by the record_bridge parameter,
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to its address space where it can then write data to be accessed and processed by the

Guard.

1 Record *record_dataport = (Record *)mmap(NULL , size , record_prot , flags ,

record , 1 * getpagesize ());

2 ...

3 Record *record_bridge_dataport = (Record *)mmap(NULL , size , bridge_prot ,

flags , record_bridge , 1 * getpagesize ());

Listing 4.22: Receive Record External Project

Note that, in the case of each call to mmap, the respective enforced software-level file

permissions are explicitly equivalent to those set for the Dataport configurations in the

Root Project stream processor.camkes file in Appendix A.2. If the memory mapping

fails, no data are received by any of the High Side components and therefore all high

data are protected. If the mapping fails on the write to the record_bridge Dataport, then

the Guard will not be permitted by the High Side domain to read or process any of

the data. In the case where the High Side expects to send the data to the Guard for

processing before being sent back to the Low Side, the High Side will stop processing the

data immediately so that no data are sent back to the Low Side, ensuring confidentiality.

(b) Snort project

Another package included on the High Side is the IDS/IPS, Snort. This package is

used to examine and process the data as they pass through the High Side. Snort is

especially useful when the Ethernet passthrough device is leveraged on the Low Side

to receive network packets. The packets received on the Low Side can be transferred

to the High Side where they will be scanned by Snort to determine subsequent han-

dling of the data. Listing 4.23, similar to what was done with receive record, shows the

ExternalProject_Add function which creates a custom target to build the application. The

AddExternalProjFilesToOverlay function, as stated previously, accepts four required argu-

ments and one additional argument in order to add the files generated from the external

project to the High Side overlay.

1 ExternalProject_Add(snort -app

2 SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR }/pkgs/snort
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3 BINARY_DIR ${CMAKE_CURRENT_BINARY_DIR }/snort -app

4 INSTALL_COMMAND ""

5 BUILD_ALWAYS ON

6 EXCLUDE_FROM_ALL

7 )

8

9 AddExternalProjFilesToOverlay(snort -app

10 ${CMAKE_CURRENT_BINARY_DIR }/snort -app

11 overlay_high

12 "usr/sbin"

13 FILES snort

14 )

Listing 4.23: Declare Snort Package

(c) Cross VM Connection Kernel Module

Like with the Low Side, a new Linux connection module is defined using DefineLinuxModule.

Listing 4.24 below shows how the module is added to the High Side overlay, overlay_high,

by calling AddFileToOverlayDir. Once again, connection-module refers to the location of the

compiled Linux kernel module and connection-target is used to define the target name

for the kernel module. "connection.ko" defines the name of the installed module, and

"lib/modules/5.4.139/kernel/drivers/vmm", defines the location within overlay_high where

the module will be placed.

1 AddFileToOverlayDir("connection.ko"

2 ${connection -module}

3 "lib/modules /5.4.139/ kernel/drivers/vmm"

4 overlay_high

5 DEPENDS connection -target

6 )

Listing 4.24: Adding the Cross-VM kernel module to the High Side overlay target

Recall, once again, from the declaration of the High Side CAmkES VM that the file

represented by the connectionSourceHigh variable was added as an additional source file

to be compiled. This source file, cross vm connections high.c, explicitly defines the con-

nection handles and initializes them. Listed below are the High Side connections which
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correspond to the High Side Dataports. The data structure in Listing 4.25 is a struct

of connections. Each connection itself is also a struct which takes a handle to the VM,

an emit function, and a consumes event struct as arguments. As previously discussed,

the only emits/consumes events in the stream processor application are sent between

the High Side and the Guard, thus they only pass through the record_bridge Dataport.

In the case of the bridge Dataport, there is a ready_emit function – CAmkES prefixes

the name of the interface instance, “ready”, to the function being called across the in-

terface, _emit(), so that the application can transparently interact with the event – and

a consumes event struct with a positive identifier which has no use for a callback for

this implementation. In contrast, the record Dataport, which servers as the connection

between the High Side and the Low Side, does not have an emits function and has a

negative consumes event identifier which means it is not used.

1 static struct camkes_crossvm_connection connections [] = {

2 { &record_handle , NULL , {.id = -1, .reg_callback = NULL }},

3 { &record_bridge_handle , ready_emit , {.id = 1, .reg_callback = NULL}},

4 };

Listing 4.25: Connection Source

Listing 4.26 shows AddFileToOverlayDir adding the cross VM module initialization shell

script as "S90cross_vm_module_init" to the "etc/init.d" directory, this time, within the

High Side overlay. As with the Low Side, insmod is used in a shell script to insert the

module into the Linux kernel, placed in "etc/init.d", which will run at boot.

1 AddFileToOverlayDir("S90cross_vm_module_init"

2 ${CMAKE_CURRENT_SOURCE_DIR }/ overlay_files/init_scripts/

cross_vm_module_init

3 "etc/init.d"

4 overlay_high

5 )

Listing 4.26: Add script to insert the Cross-VM module into the High Side Linux kernel

Once all packages and files intended for the High Side have been packed into the overlay,

the overlay is then packed into the rootfs.cpio archive. Listing 4.27 shows the same function
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call to AddOverlayDirToRootfs as was used for the Low Side, which installs the target overlay,

overlay_high, onto the rootfs image, high_rootfs_file. The final arguments closely mirror those

which were passed for the Low Side: "buildroot" specifies the distribution of the rootfs image,

rootfs_install specifies that the image will be installed as the guest VM file system it will

use when it boots, and the final arguments specify the output location and the target of the

overlayed rootfs image respectively.

1 AddOverlayDirToRootfs(

2 overlay_high

3 ${high_rootfs_file}

4 "buildroot"

5 "rootfs_install"

6 high_rootfs_file

7 high_rootfs_target

8 )

9

Listing 4.27: Packing the High Side Overlay

seL4 Native Process: the Guard.

The seL4 native process is really a thread; recall from Chapter 4.2.1: seL4 Technical Overview

that seL4 does not really have a concept of processes. The thread is the execution context that

is responsible for running a CAmkES component which, in this case, is the Guard. Defining the

Guard component through CAmkES is very straight forward as seen in Listing 4.28.

1 component Guard guard;

Listing 4.28: Guard Definition

Unlike the VM components, the Guard is very simple but powerful. The listing below shows

the component configuration which specifies the Guard with the control keyword. Control makes

the Guard an active component by providing it with a run method (see Listing 4.32). Similarly to

the High Side, the Guard also consumes an event which, this time, is a Ready event and emits a Done

event. Finally, on line 8, the Guard is given access to a shared memory Dataport which is a Record

data structure type.
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1 component Guard {

2 control;

3

4 consumes Ready ready;

5 emits Done done;

6

7 include "record.h";

8 dataport Record record;

9 }

Listing 4.29: Component Configuration

The record Dataport, shown in Listing 4.30, is configured as follows: the Dataport is of size

4096 bytes and has read and write access to the shared memory. Recall that there is a bidirectional

connection between the Guard and the High Side so no data diode is enforced. This particular

implementation of the stream processor use-case does not call for a connection from the Guard

back to the Low Side. However, if the use-case required an additional connection from the Guard

to the Low Side, the new connection would be formed with a new Dataport which would require

explicit access controls to form the data diode.

1 guard.record_size = 4096;

2 ...

3 guard.record_access = "RW";

Listing 4.30: Dataport Configuration

Now the packages and dependencies which are needed to build and run the Guard will be

described. Listing 4.31 uses the DeclareCAmkESComponent helper function at line 12, similarly to

DeclareCAmkESVM which was used for the domain components, declares the Guard component with

its source and header files. As seen from lines 2 through 10, and lines 13 through 22, there

are several internal and external files which must be added to achieve the desired functionality.

Specifically, there three internal source files which are essential in achieving this functionality:

main.c, integrity.c, and disposition.c.

1 file(GLOB LIB_DIR lib/libblake3_x86 -64)

2 set(DEPS

3 ${LIB_DIR }/src/blake3.c
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4 ${LIB_DIR }/src/blake3_dispatch.c

5 ${LIB_DIR }/src/blake3_portable.c

6 ${LIB_DIR }/src/blake3_avx2_x86 -64 _unix.S

7 ${LIB_DIR }/src/blake3_avx512_x86 -64 _unix.S

8 ${LIB_DIR }/src/blake3_sse2_x86 -64 _unix.S

9 ${LIB_DIR }/src/blake3_sse41_x86 -64 _unix.S

10 )

11

12 DeclareCAmkESComponent(Guard

13 SOURCES

14 ${DEPS}

15 ${CMAKE_CURRENT_SOURCE_DIR }/ components/Guard/src/main.c

16 ${CMAKE_CURRENT_SOURCE_DIR }/ components/Guard/src/integrity.c

17 ${CMAKE_CURRENT_SOURCE_DIR }/ components/Guard/src/disposition.c

18 INCLUDES

19 include

20 ${LIB_DIR }/ include

21 /usr/lib/gcc/x86_64 -linux -gnu/${GCC_VERSION }/ include

22 )

Listing 4.31: Setting the Guard Dependencies

The Guard’s main.c is shown in Listing 4.32. As previously stated, the control keyword makes

the Guard an active component and provides it with a control thread that executes a run function

one time during the boot of the system. The function itself is quite simple: in order to keep the

thread running, all operations are placed inside an infinite loop. Line 5 of the code calls a function

which waits and polls for an emits event from the High Side. If an event is received from the

High Side, it means that the High Side has written data to shared memory for the Guard to begin

operations. The next function calls are for the integrity and disposition guard operations which

will be discussed later. Line 10 sets a value to be emitted back, when done_emit is called, to the

High Side to notify that the Guard has completed.

1 int run(void)

2 {

3 while (1)

4 {
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5 ready_wait ();

6

7 checkIntegrity ();

8 runDisposition ();

9

10 record ->isDone = 1;

11 done_emit ();

12 }

13 return 0;

14 }

Listing 4.32: Guard Run Method

As described in Chapter 3: The vCDS Architecture, the integrity checker leverages the Blake3

hashing algorithm. Shown in Listing 4.33, the integrity portion of the Guard leverages two central

functions: calculateCheckSum and checkIntegrity. As seen above checkIntegrity is called from the

initial control thread’s run function. This function first calls calculateCheckSum to initialize the

Blake3 hasher in lines 3 and 4, then load the hasher in line 6 with the data value to be hashed.

The checksum is then calculated in line 7 and placed in the checksum byte array.

Finally, in line 15, the checkIntegrity function enlists the help of another function, tagMatches,

which compares the tag that was originally calculated on the Low Side with the checksum that was

just produced. If the hashes match, the isValid flag is set to 1 – true – otherwise, the value is set

to 0 – false. This value will be read later by the High Side to determine if the data are permitted

to pass back to the Low Side. The assignment to isValid shows the reason why seL4GlobalAsynch

was used for the event connection from the Guard to the High Side. Here, a value is set within the

Dataport to be passed back to the High Side for processing and verification.

1 void calculateCheckSum(CDS_BYTE *checksum)

2 {

3 blake3_hasher hasher;

4 blake3_hasher_init (& hasher);

5

6 blake3_hasher_update (&hasher , record ->packet.value , record ->packet.size);

7 blake3_hasher_finalize (&hasher , checksum , BLAKE3_OUT_LEN);

8 }
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9

10 void checkIntegrity ()

11 {

12 CDS_BYTE checksum[BLAKE3_OUT_LEN ];

13 calculateCheckSum(checksum);

14

15 if (tagMatches(checksum))

16 record ->isValid = 1;

17 else

18 record ->isValid = 0;

19 }

Listing 4.33: Integrity Guard

For the purposes of experimentation and analysis, the disposition portion of the Guard has

been disabled because the Ethernet passthrough was not required for the use-case environment.

However, in an environment where the passthrough is enabled, the disposition will check portions

of the data against a white list or black list. In one implementation that leverages this functionality,

the source and/or destination internet protocol (IP) addresses were extracted from each packet and

checked against a list of black-listed IP addresses and a list of white-listed IP addresses. If the

disposition guard finds something of importance, that is, there is a match from one of the lists, the

guard will send a notification back to the High Side which will determine the appropriate course of

action necessary to resolve the alert.

4.4.2 Security Analysis

One of the processes applied to the data on the High Side is an IPS/firewall, which, in this case,

is Snort [118]. The filter adheres to the primary objective of integrity by implementing both an

integrity guard and a firewall which can be referred to as the disposition guard. The integrity guard

ensures that, upon crossing a trust boundary, the data have not been modified. This particular

stream processor implementation leverages the speed and security of the Blake3 cryptographic

hashing algorithm in order to check the integrity of the data and verify that no High Side data are

disclosed to the Low Side. The disposition guard, depending on the design, filters packets in or out

based on a list of source IP addresses, ports, and other properties to further mitigate threats.
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It is noteworthy to reveal that the Guard, though built upon seL4 is not formally verified, as

Blake3 is also not formally verified. This highlights the need for formal verification of functional

correctness and memory safety. One of the steps that has been taken to mitigate the risks associ-

ated with the lack of formal verification is to practice n-version programming (NVP) [2, 59, 131].

Practically, multiple different versions of the guard implementations have been added to the Low

and High sides which must agree in order for acceptance to take place. To further address mem-

ory safety, an additional implementation of Blake3 in Rust, a memory-safe systems programming

language, was leveraged.

Furthermore, it is useful to note that the Guard is implemented towards compliance with one

of the NCDSMO’s Raise-The-Bar concepts which is similar to the NEAT concept, described in

Chapter 2.2.1: Multiple Independent Layers of Security, called RAIN [51].

1. Redundant – security-relevant mechanisms must be executed multiple times.

2. Always Invoked – security-relevant mechanisms are always executed.

3. Independent Implementations – security-relevant mechanisms have multiple implementations.

4. Non-Bypassable – security-relevant mechanisms cannot be bypassed.

The difference between the described stream processor Guard instantiation and a RAIN compli-

ant filter is the lack of redundancy in the Guard. Redundancy (R) [94] has since been implemented

on subsequent versions of the stream processor implementation. The use of NVP ensures that there

are independent implementations (I) [59] of the Guard and the formally verified properties of the

TCB ensure that the Guard is always invoked (A) and non-bypassable (N) [21, 32, 98].

4.5 Data Diode Solution

In addition to the vCDS implementation with virtual domains, a bare-bones data diode using

the vCDS architecture was implemented. The reason for this implementation was to measure the

performance of a vCDS instantiation without the use of virtualized domains, in order to better

compare vCDS to real-world solutions. The results of this evaluation can be seen in Chapter 6:

Analysis and Evaluation.
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The main difference between the implementation of the aforementioned stream processor and

the bare-bones data diode is that both the High Side and the Low Side are seL4 native processes.

In the CMakeLists.txt project file of the stream processor, the DeclareCAmkESVM function is used to

declare the CAmkES VM. In the data diode instantiation, the High and Low Sides are declared

using DeclareCAmkESComponent as follows:

1 DeclareCAmkESComponent(Low SOURCES low.c)

2

3 DeclareCAmkESComponent(High SOURCES high.c)

Listing 4.34: Declare Diode Components

Similarly, the High and Low components are defined in Listing 4.35 (note that no Guard was

implemented). The method chosen for the transfer of data was also the same: CAmkES Dataports.

Not shown is the implementation of a TimeServer component for benchmarking the solution. The

TimeServer component definition and implementation is given in the seL4 documentation [114].

1

2 component Low {

3 ...

4 dataport Buf buffer;

5 }

6

7 component High {

8 ...

9 dataport Buf buffer;

10 }

Listing 4.35: Diode Component Definitions

The Dataports were configured similarly to the stream processor and are shown in Listing

4.36, with the remainder of the assembly. Though the differences are minimal, note the use of

seL4SharedData instead of seL4SharedDataWithCaps as with the cross VM Dataports.

1 assembly {

2 composition {

3 component Low low;

4 component High high;
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5

6 connection seL4SharedData lowToHighConn(

7 from low.buffer ,

8 to high.buffer

9 );

10 }

11

12 configuration {

13 ...

14 low.buffer_access = "W";

15 high.buffer_access = "R";

16 }

17 }

Listing 4.36: Diode Dataports Assembly

4.6 vCDS Build Process

The vCDS build process has been fully automated, not just for the stream processor application,

but for any instantiation of vCDS provided the proper component modifications have taken place

as required by the use-case. It is noteworthy that the custom built Linux kernel base requires

modifications relative to the domain which it will represent. In the case of the stream processor,

the addition of these modifications are fully automated and conducted during the build process. For

a different use-case, like the Data Diode Solution above, the process is similar once the modifications

have taken place. Note that the build process has been fully automated for the Data Diode Solution

as well.

4.7 Implementation Challenges

The implementation of vCDS came with many challenges including, but not limited to the following:

(i) the libraries which were essential to the Low Side, such as libblake3 and libpcap, had to be

compiled for both i686 and x86 64 architectures so that they could be used in the VM and

with the seL4 native process;
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(ii) full automation of the build process took a significant amount of time do to the scale of the

system and component implementations with multiple architectures;

(iii) several versions of the custom Linux kernel and cross-compile toolchains had to be built and

on hand for switching between machine architectures which included the servers and different

development machines;

(iv) the benchmark values from the initial experiments were calculated on four layers of virtual-

ization and did not garner competitive results;

(v) VisualCAmkES (see Chapter 4.3.5: Visualizing the CAmkES Model) did not work out of the

box and had to be modified extensively to work properly;

(vi) the time C library could not be used to establish the benchmarks for the data diode solution

as the functions were not supported for the native seL4 processes. This was worked around

by the development of a native seL4 process which acts as a time server.
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Chapter 5

Auditing a Cross Domain Solution

As was discussed in Chapter 6.1: seL4 Proofs, seL4 has been formally verified for the object

security guarantees of confidentiality, integrity, and availability [44]. However, building a system

which leverages a formally verified TCB does not necessarily mean that the system is secure out of

the box. In fact, in order for a system to be proven trustworthy, that system’s security configuration

must be verified to ensure that no access rights can be propagated beyond what is specified in the

system specification. The security analysis of vCDS is discussed below as well as an evaluation

using the presented auditing tool. Note that the following sections, including diagrams, have been

adopted from “Auditing a Software-Defined Cross Domain Solution Architecture”, in preparation

[35].

5.1 Introduction

In the context of security controls, a leak refers to the addition or acquisition of authority over an

object by a subject that did not previously have that authority. A system must have proper security

configurations in order to prevent unintended results such as privilege leaks. One critical goal of

any system’s security model should be its trustworthy implementation. The status quo in CDS

implementations rely on trust rather than trustworthiness. Trust in a system is the firm belief that

the system will perform as expected. Trustworthiness in a system is the proven property of that

system to perform as expected. One system which seeks to provide a trustworthy implementation

for cross domain capabilities is vCDS [33].
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vCDS is the first and, at the time of this writing, the only CDS built upon a formally verified

trusted computing base (TCB). The TCB has been formally verified for functional correctness and

security guarantees of confidentiality, integrity, and availability (CIA) [44, 65]. In one instantiation

of vCDS’s trustworthy architecture, the seL4 microkernel and hypervisor was leveraged. seL4 serves

as the lower level component of a system which can be abstracted by CAmkES, the component

architecture for microkernel-based embedded systems [114]. An important part of vCDS is the ar-

chitecture description language (ADL) provided by CAmkES. The ADL describes the components,

interfaces, connectors, and privileges which make up a system. Given these combined architectural

components, vCDS is a complete, formally verified CDS and comes with the security guarantees of

CIA which can be verified, through the ADL, to ensure that the system does not violate any CDS

constraints [44].

5.2 Problem Statement

Building a system which leverages a formally verified TCB does not necessarily mean that the sys-

tem is secure out of the box; the security guarantees provided by the TCB only hold if the system’s

security controls have been configured correctly. The serious nature of security misconfiguration is

underscored by Open Web Application Security Project’s (OWASP) rating it as number five in the

top ten most critical security concerns in applications in 2021 [107].

In order for a vCDS instantiation to be proven trustworthy, the system must be audited to

verify that no CDS information flow properties are violated. In other words, the ADL specification

of the vCDS system security properties must be verified against the specification for the vCDS

implementation. The problem of description verification often stems from poorly modeled system

security properties. Another issue that arises is that current CDS solution components are either

not described in an ADL, or component descriptions are not properly expressed in such a way as

to differentiate between the levels of protection necessitated by the sensitivity of the components.

5.3 Contributions

In the following sections,
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(i) the need to verify the implementation of a CDS system security model is addressed.

(ii) A tool is presented which, as evidenced by a thorough search of the relevant literature, is

the first to analyze and audit CDS security control implementations. The implementation of

the algorithm parses the system description and verifies that no CDS constraints are violated

such that there are no operations which will lead to a leak of rights or data. Furthermore, as

again evidenced by a thorough search of the relevant literature,

(iii) this is the first and only development of a tool which audits a CDS described via an ADL,

and the first to

(iv) tailor an ADL for describing a CDS system with the ability to tag components with proper

labels which propagate down through the ADL, allowing the algorithm to check the con-

straints.

(v) The use of the ADL is extended to include labels and key words which trigger the appropriate

protection models and information flow constraints in vCDS to determine whether or not to

encrypt the data. This capability is not only important for auditing a CDS system and

allowing for proper labelling but

(vi) is extended to provide system security modeling that is far beyond the status quo.

5.4 Overview of the vCDS Security Infrastructure

Presented in Chapter 3: The vCDS Architecture was a layered vCDS architecture which includes

the optional hardware protections, the software computing base, and the components [33]. The

primary focus of this section is to present the computing base with some carryover into the domain

components through a discussion on the security infrastructure of vCDS.

Figure 5.1 omits the hardware and TEE layers and instead focuses on the TCB, the component

architecture abstraction layer, and the component layer which depicts three of the components

employed in the stream processor, described in [33]: (i) Low Side, (ii) High Side, and (iii) Guard.

The Low Side corresponds to a lower classification or trust level and functions to retrieve the data

and, if the use-case requires it, calculate an integrity tag before writing the data to the High Side.
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Figure 5.1: vCDS stream processor architecture

The High Side corresponds to a higher classification or trust level and will read the data from the

Low Side and execute any predefined, trusted operations on the data. The High Side may then

write the data to the Guard which, depending on the use-case, may function to check the integrity

of the data, ensuring that no modifications to the data have occurred and that no operational data

have been added to the stream. If the data are cleared, the Guard may pass the data back to the

Low Side component. If the data have been modified, the Guard will notify the High Side and

determine the next course of action. Guard operations are typically automatic and are implemented

relative to the use-case and environment [60].

5.5 vCDS Security Model

The vCDS TCB leverages the capability model described in Chapter 2.3.2: Capability Model. At

kernel boot time, all physical memory resources, such as untyped kernel objects, are allocated [46].

Contiguous memory blocks hold untyped memory objects, some of which are writable by the kernel

[114]. Each untyped object can be retyped as a capability reference to a specific kernel object.

Invocations can then be made on the object, depending on the type of the object and the access

rights encapsulated in the capabililty.

The leveraged TCB provides security enforcement proofs as it employs a protection model
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inspired by the classical take-grant model such that when properly configured, the system “guar-

antees the classical security properties of confidentiality, integrity and availability” [65, 79]. The

employed security protection model is essentially the take-grant protection model with the following

modifications as detailed in [44]:

(i) Create: Creating a new object occurs by retyping an untyped object that was created in mem-

ory at boot time. The create rule only applies if an object has an outgoing edge representing

the create authority.

(ii) Remove: Capabilities are immutable so the remove operation will remove an object’s entire

edge as opposed to a portion of the object’s authority. Therefore, in order to take away a

portion of authority, the TCB’s security model will remove the more privileged edge and then

create a less privileged edge.

(iii) Revoke: The revoke rule is added in the security protection model and is a combination of

removal operations. Revoke allows the kernel to remove a set of capabilities from an object.

(iv) Take: All authority propagations are grant operations and therefore, the TCB does not

employ the take rule. In this particular case, the take operation is a dangerous operation.

Given n1, n2, n3, from Chapter 2.3.1: Take-Grant Model, the take rule permits the node n1

to take the authority, α, from n2, to operate on n3. If this operation were permitted, n1 may

acquire authority to operate on n3 without explicitly being granted that authority by n2.

This would break the security proofs of the TCB. Therefore, the take operation is omitted

and only the grant operation can be used to propagate authority.

5.6 Access Control Model Decidability

Elkaduwe et al. show the seL4 access control model, described in Chapter 5.5: vCDS Security

Model, to be decidable through proofs presented in [44]. Furthermore, the access control model has

been formalized and the security analysis of the TCB has been machine-checked. Presented below

are the theorems and necessary lemmas which lend themselves to reasoning about the decidability

of the model. It should also be understood that the following descriptions have been aggregated

from the original work in [44].
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5.6.1 Methodology

The goal of the proofs presented by Elkaduwe et al. [44] is to formalize the seL4 access control

model and show that the security model prevents authority leaks. For example, in a state, s, any

ruling that node, nx, has over another node, ni, cannot be exposed in such a way that nx would

pass any authority to ni in s or any future state, s′. In terms of the capability model, preventing an

authority leak means that a subsystem cannot give any capability references to physical memory

or communication channels to any other subsystem [44].

The definition of a sane state as it pertains to the introduction of new vertices, per Elkaduwe et

al.: a sane state is a formulation of kernel objects, i.e. a graph with vertices, in which the following

three properties hold:

(i) The new vertex being examined must exist in the graph,

(ii) there exist no dangling capability references and

(iii) no newly created vertices overlap with any existing object’s memory region [44].

Reviewed below are the theorems presented in the paper which seek to answer the following question:

Is it possible to prevent some node from leaking a capability to some other node in any future state

of the graph?

Theorem 1 ([44]) In any sane state, if two existing entities are not connected, they will never be

able to leak authority to each other.

Theorem 1 is described as the contrapositive of the following lemma, presented in the paper: in

any sane state s, if one existing node, nx, can spill a subset of the possible access rights, α ⊆ R, to

any other existing node, ni, in some future state, s′, then the nodes nx and ni must be connected

in the current state. Therefore, Theorem 1 states that, in a sane state, two entities which are not

connected will never be able to leak authority to one another [44]. This theorem does prove the

“standard take-grant non-leakage property for authority distribution in seL4”, however, Theorem

1 alone does not completely satisfy the question of whether or not spillage can occur. The theorem

does not account for entities that do not exist in the current state being analyzed, but may, however,

be created in some future state.
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Theorem 2 (Isolation of authority [44]) Given a sane state s, a non-empty subsystem ns in

s, and a capability c with a target identity n in s, if the authority of the subsystem does not exceed

c in s, then it will not exceed c in any future state of the system.

To correct the limitations of Theorem 1, Theorem 2 is introduced. Additionally referred to as

an Isolation Theorem, it proves the non-leakage property when authority confinement can be used

to implement isolated subsystems which can create additional entities in future states. Authority

confinement is a term presented in the paper to describe

(i) the “strong isolation guarantees between components” such that any unexpected behavior by

a particular subsystem is restricted to that subsystem and

(ii) the “isolation of authority” such that any particular authority cannot be increased in a sub-

system [44].

An isolated subsystem is a graph of connected vertices with arcs, i.e. access control labels, such that

any particular vertex in one subsystem, may not acquire a capability with a particular authority

over a vertex belonging to another subsystem, without the prior existence of that authority in that

other subsystem. In other words, arcs within a subsystem’s graph cannot be exfiltrated to another

subsystem and those arcs within another subsystem cannot infiltrate the graph. Additionally,

Elkaduwe et al. show that an already existing authority cannot be increased in the subsystem.

More formally, Theorem 2 states that, given a non-empty subsystem, i.e. a subsystem where

objects and authorities exist, in a sane state, s, and a capability, c, with some authority over a

node, n, in the subsystem, if the authority of s does not exceed c, then the authority will not exceed

c in any future state of the system, s′ [44]. Therefore, it can be concluded that Theorem 2 proves

the entirety of the non-leakage property such that “subsystems can neither exceed their authority

over physical memory nor their authority over communication channels to other subsystems” [44].

5.7 CAmkES Security Enforcement

CAmkES abstracts low-level kernel mechanisms. The CAmkES ADL describes the components,

interfaces, and connectors which make up a system. Components refer to the data, code, and

programs encapsulated by the microkernel, which, in the case of vCDS, represent the trust domains;
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interfaces define component invocation; and connectors are one-to-one links between the interfaces.

The CAmkES compiler translates the ADL into the capability distribution language (capDL): “a

low-level specification of the system’s initial configuration of kernel objects and capabilities” [80].

CAmkES provides multiple types of connectors, however, vCDS primarily utilizes Dataports

which represent shared memory regions. These port interfaces provide an avenue for one component

to pass bulk data to another component, including across the boundaries between domains of

differing trust levels [64]. One advantage of using CAmkES is that it allows for the implementation

of explicit access controls on each of these Dataports. These access controls form a portion of the

inputs which are processed by the audit tool, presented in Chapter 5.9: Security Control Audit

Tool.

A further advantage of utilizing this method is the enforcement of a data diode. A data diode is

a link through which data may only flow in one explicit direction. Data diode enforcement ensures

that the priority of preventing data leakage is upheld and no leaks can occur over the link in the

opposing direction.

5.8 vCDS Stream Processor Audit

Now the impact of the audit tool, described in Chapter 5.9: Security Control Audit Tool, is

demonstrated by leveraging it to analyze and verify the security configuration of the vCDS stream

processor application. This analysis requires the security configuration of the application as well

as the system description. Recall that the vCDS application implements four components for the

stream processor use-case: (i) Low Side, (ii) High Side, (iii) Guard, and (iv) High Side Management

Network.

Listing 5.1 shows the definition of these components using the keywords LowSide and HighSide.

These are an example of the keywords which have been tailored to trigger the appropriate protec-

tion models and information flow constraints in vCDS. For example, the LowSide keyword specifies

a component which resides in a low classification space whereas the HighSide keyword specifies

a component residing in a high classification space. Listing 5.1 also shows the pseudocode for a

connection between components. Figure 5.2 depicts the connectivity as well as the security config-

uration of the vCDS system. Specifically, the direction of the arrow represents a write operation.
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The component pointed to, i.e. on the receiving end of the arrow, is permitted to perform a read

operation.

1 component LowSide lowDomain;

2 component HighSide highDomain;

3 component HighSide guard;

4 component HighSide managementNetwork;

5

6 /* Define Connections Below

7 connection <connector -type > conn(

8 from component ,

9 to component

10 );

11 */

Listing 5.1: vCDS CAmkES Component Definitions

Figure 5.2: vCDS stream processor security configuration

Recall that the central focus of vCDS is data confidentiality. Therefore, the Low Side must not

be permitted to read content residing at a higher label. The Low Side may only write to the High

Side. The High Side must not be permitted to write to a lower label. Therefore, the High Side may

only read from the Low Side. The link from the High Side to the Guard, and from the High Side to

the High Side Management Network allow for both read and write privileges, bidirectionally. This

is possible because all three components have the same label. Finally, the Guard may be permitted

to write to the Low Side. This is made possible through the service which the Guard provides:
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ensuring that no data are leaked from any of the three high-classified components back to the Low

Side. The Low Side may read from the Guard only after an integrity check has been successful

and permits the operation. The Low Side may not read from any other high component under any

circumstances.

The audit tool verifies that the above description of the security configuration, visualized in

Figure 5.2, is accurate to the goal of data confidentiality. The results of the audit, excluding the

High Side Management Network rights, are shown in Figure 5.1. Furthermore, the results are sound

and no additional channels or rights can be acquired due to the authority confinement provided by

the formally verified TCB [33].

From Component Access Rights To Component

Low Side Write High Side

Low Side Controlled Read Guard

High Side Read Low Side

High Side Read/Write Guard

Guard Read/Write High Side

Guard Controlled Write Low Side

Table 5.1: vCDS Security Configuration Audit Results

5.9 Security Control Audit Tool

This section provides an introduction to the methodology and implementation of an analysis tool

which seeks to verify the correctness of the security configuration of vCDS [33].

5.9.1 Application of the Isolation Theorem to capDL

As described in Chapter 5.7: CAmkES Security Enforcement, capDL defines a system’s configura-

tion of kernel objects and capabilities, which notably includes access rights. The Isolation Theorem,

in [44], shows that authority, which currently exists within a system, can never increase. This the-

orem can be applied to subsystems described within capDL to determine if authority leak could

occur. Therefore, the Isolation Theorem serves as a function through which to input a particular

subsystem, from capDL. The output of the function would be the resulting authority that could

be propagated to a subsystem through the use of the access rights given to each subject within the

system.
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5.9.2 Implementation

The implementation of the audit tool can be broken down into five sections: (i) capDL parser,

(ii) graph constructor, (iii) connection generator, (iv) verifier, and (v) visualizer. The auditor

pipeline is depicted in Figure 5.3 and is made up of two phases: (i) Collection and (ii) Audit.

The main entry point begins by retrieving the capDL, which was constructed by the vCDS

build, and then sending it as input to the Collection phase. The Collection phase combines a set

of functions which serve to calculate both the intended solution as defined by the specification in

the capDL as well as all possible propagations from each of the connections. The Audit phase

follows the Collection phase where the intended configuration solution is compared against all

possible connections to determine if any additional connection or access right propagations can

occur. If the vCDS security configuration passes the audit, the output is a visualization of the

system components and their respective connections, otherwise, the output serves as an alert which

highlights the security control implementation error.

capDL Parser

The parser module contains the parseCapDL function which is called to read the vCDS specification

from capDL and filters out unnecessary information. It then retrieves all information which is

pertinent to the algorithm such as the components, the connectors, the connector types, and the

access rights for each of the connectors. The output of the parser is the system assembly which is

the description of each component, their connectors and corresponding access controls.

Graph Constructor

The graph constructor module takes the system assembly which was the output from the parser as

input. It matches the connector of one component to the connector of the component to which the

former connects. This is done for each of the connectors belonging to a single component, until each

component has been collected. The constructor then calls the constructGraph function to create

a graph of the system based on the provided assembly. More specifically, the generated system

graph is a directed graph which models the system controls for leakage prevention from higher to

lower trust levels. The directed graph consists of:
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Figure 5.3: Audit Tool Pipeline
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(i) a set of nodes, which correspond to the system components parsed from capDL;

(ii) a set of arcs, which represent the connections from one component to another; and

(iii) a set of labels along the arcs, where a label corresponds to the rights conveyed to the from

component through the connection on the to component side.

Connection Generator

The connection generator is the core of this algorithm and is implemented such that the Isolation

Theorem, given by [44], is deemed true. Additionally, for evaluation purposes (see Chapter 5.10:

Analysis), implementations of the conditions given by [91] were added to emphasize the danger of

the take rule, described in Chapter 5.5: vCDS Security Model, and to show the correctness of the

verification mechanism. Recall that [91] presents the take rule which permits a particular node,

n1, to take some specified authority from another node, n2 in order to perform an operation on a

node, n3, which n1 did not previously have the authority to perform. This would allow an authority

propagation and would break the security proofs of seL4. The use of both algorithms are further

examined in Chapter 5.10: Analysis. The correct implementation of the tool relies on the Isolation

Theorem, proven formally in [44].

This module calculates every possible connection and label which can be propagated to any

node in the graph, i.e. every possible access right propagation that can occur for all possible

connections between components. The algorithm implemented by the connection generator is given

by Algorithm 1.

Additionally, Algorithm 2 is developed to enforce the Isolation Theorem from [44]. Recall that

the Isolation Theorem ensures that a subject’s authority over an object or communication channel

in a current state cannot be exceeded in any future state, i.e. authority leakage is prevented.

Verifier

The verifier module implementation is trivial with respect to the operations on its inputs. The

module takes the output of possible connections from the connection generator and the output

from the Graph Constructor as input. The verifier then audits the graph constructed from the

capDL against the graph of all possible connections and authorities provided by the connection
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Algorithm 1: connectionGenerator

Input: digraph G = (V,E), where V is the set of vertices and E is the set of edges; λG
labeling function of E

Output: array M of dimension |V |x |V |
1 foreach p ∈ V do
2 foreach q ∈ V do
3 if p 6= q and (p,q) in E then
4 α = λG( (p,q) )

/* Isolation Theorem holds, i.e. p can α q */

5 if hasAuthority(p, q, α) then
6 M[p,q] = α

7 else
8 M[p,q] = NIL

9 return M

Algorithm 2: hasAuthority

Input: p, q, α
Output: Boolean

1 if ∃ the authority α, from p to q then
2 return True

3 return False

generator. If the two graphs are congruent, i.e. each contain the same number and type of nodes

and the same privileges, then authority leaks are nonexistent in the system described by the capDL.

The results of the verification step are reported.

Visualizer

The visualizer module serves to provide a visual representation of the security model of the system.

Essentially, the visualizer builds and outputs a diagram of the subsystems within the directed

graph – a diagram of the components, their respective connections and authorities, much like what

is presented in Figure 5.2, is generated.

5.10 Analysis

The analysis of this tool begins with the analysis of the take-grant security model. Recall that in

[91], Lipton and Snyder show the security model to be decidable in linear time, O(n). Subsequently,
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recall that the seL4 security model, which is based on the take-grant security model, is presented in

[44]. Based on the theorems and lemmas explicitly stated, which lead to the proof of the Isolation

Theorem, Elkaduwe et al. formally prove that this theorem ensures that no authority propagations

may occur in an seL4-based system. Moreover, Elkaduwe et al. show that the seL4 security model,

i.e. object security, is decidable in linear time, O(n). This audit tool is based on the theorems and

lemmas proven in [44, 91] and can therefore be trusted to be correct. Further examination to prove

this tool trustworthy is discussed in Chapter 5.10.4: Future Uses and Modifications.

Figure 5.2 shows the worst case execution time (WCET) for each component of the tool. The

overall execution time of the tool is O(n2). This execution time is realized due to the O(n2) from

the capDL parser, the graph constructor, the connection generator, and the verifier.

Component WCET

capDL Parser O(n2)

Graph Constructor O(n2)

Connection Generator O(n2)

Verifier O(n2)

Visualizer O(n)

Table 5.2: WCET of Audit Tool Components

5.10.1 Versatility

One of the further nice properties of this tool is its versatility to audit systems other than vCDS [33].

With little to no modifications, this tool functions with any system which leverages the CAmkES

framework on the seL4 microkernel. Therefore, it can be used to analyze and audit the security

configuration of vCDS systems and any other systems which utilize CAmkES on seL4.

5.10.2 Theorem Examination

When examining condition 2, expressed by Lipton and Snyder in [91], in the context of a vCDS

audit, the take operation permits rule propagations which would otherwise be prohibited. For

example, when auditing the specification of the stream processor application, some additional

rules, relative to Figure 5.1, are permitted, as shown in Figure 5.3. Upon first review, these results

reflect a significant error in the implementation of the security controls because the Low Side can

read and write to both the Guard and the High Side. However, when further examined, one might
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From Component Access Rights To Component

Guard Read Low Side

Low Side Write Guard

Low Side Read/Write High Side

Table 5.3: vCDS Audit Results Permitting Take Rule

conclude that the data diode link between the Low Side and the High Side has failed altogether.

One can be certain, however, that this is not the case because the data diode comes with formal

proofs of correctness and the take rule, as previously discussed, is not implemented in seL4 for the

reasons above.

5.10.3 Limitations

The limitations of this tool are reflections of the limitations of the capDL which is generated by the

CAmkES compiler from the ADL. Specifically, certain endpoint connectors do not translate to the

capDL. This, however, may not provide the functionality that is desired by other CAmkES/seL4

applications. A second limitation is that, while the Isolation Theorem has been proven trustworthy,

this software is not formally verified; this is further addressed in Chapter 5.10.4: Future Uses and

Modifications.

5.10.4 Future Uses and Modifications

First and foremost, for this audit tool to be trustworthy, it must be comprehensively verified for

functional correctness with respect to its specification. Proving this software correct is the next step

in providing the assurance that all security configurations in vCDS and like systems are correct.

Secondly, as new products evolve from vCDS, the building blocks of seL4 and CAmkES , and any

CDS described via an ADL, it will be useful to analyze and verify the respective configurations with

this tool to ensure proper security enforcement and improve the future development of formally

verified security systems.

5.11 Final Audit Tool Analysis

In the previous sections, the need for verifying the implementation of a CDS has been addressed.

The contributions of Elkaduwe et al. to the problem of decidable object security and how their
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conclusions provide an important function in this work have been reviewed. Additionally, an

algorithm has been presented as well as an implementation in the form of a security audit tool

which can be leveraged to analyze and audit the security configurations of the above listed systems.

Once again, this is, as evidenced by a thorough search of the relevant literature, the only algorithm

which seeks to verify the correctness of a CDS. This tool is also the first tool which audits a CDS

described by an ADL. Additionally presented is an ADL which has been tailored for describing a

CDS system with the ability to tag components in such a way as to check the system constraints and

trigger the appropriate protection models and information flow constraints in vCDS to determine

whether or not to encrypt the data. Finally, this tool has been extended to generate a system

security model to improve the status quo in system security modelling. The hope is that this work

inspires the further development of provably secure and trustworthy security computing systems

with verified security controls.
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Chapter 6

Analysis and Evaluation

This chapter begins with an analysis of the proof assumptions of seL4 as they pertain to vCDS and

ends with the performances of different vCDS instantiations are evaluated.

6.1 seL4 Proofs

The seL4 proofs show the formally verified properties of the microkernel. Examined in this section

are the properties which are enforced by the proofs, the implications of these properties, and the

assumptions which must be made to complete the formal verification process, as described in [32].

6.1.1 Enforced Properties

Discussed below are the properties enforced by the proofs relating to the comprehensive formal

verification of seL4. The proofs cover the following properties: (i) functional correctness, (ii) con-

fidentiality, (iii) integrity, and (iv) availability. More specifically, the proofs, as described in [79],

include the following:

(i) Functional correctness [78]: Recall that a refinement proof takes the properties of the abstract

model and establishes their correspondence with the properties of the refined model repre-

sentation of the system. Therefore, refinement ensures that any security properties which are

proven in the abstract model will also hold in the source code [78, 79]. This particular proof is

a proof of functional correctness between the kernel’s C code and its specification. However,
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when combined with the following proofs, these proofs “constitute a functional correctness

property in the strongest sense” [79].

(ii) Functional correctness for a “high-performance, hand-optimised inter-process communication

(IPC) fastpath” [79]: Recall that the IPC fastpath is a “hand-tuned implementation of the

IPC paths through the seL4 kernel” which are used to pass messages between components.

This proof shows that when fastpath is enabled, the kernel implementation of the abstract

specification is correct.

(iii) Correct access-control enforcement [115]: Specifically, this proof ensures correct enforcement

of integrity and authority confinement. As stated in the paper, “integrity provides an up-

per bound on write operations ... authority confinement provides an upper bound on how

authority may change” [115].

(iv) Information-flow noninterference [98]: This proof shows that seL4 can be configured as a

separation kernel to provide strong isolation through “isolated partitions with controlled

communications channels” [98]. Furthermore, seL4 is proven to enforce the properties of

confidentiality and integrity on storage and communication channels.

(v) User-level system initialization [21]: This proof connects to the access-control model of the

two security proofs above. Generally applied to all capability-based systems, an initializer

receives as input a formal description of the desired initialization state. The initializer then

creates the components, communication channels and access rights based on the description.

This proof ensures that the state, output from the initialzer, is the correct, desired state.

(vi) Binary functional correctness [116]: Binary correctness is shown through the “refinement

between the semantics of the kernel binary after compilation/linking and the C source code

semantics used in the functional correctness proof” [79]. In other words, this is a refinement

theorem between the source code and the binary. This proof shows that the binary is correct

and that the compiler and linker do not need to be proven trustworthy (or even trusted), thus

eliminating the necessity for a comprehensively formally verified toolchain.

(vii) Static analysis of the seL4 binary to provide a sound worst-case execution time (WCET)

profile of all system calls [20]: Although this is not a proof, but rather an analysis, this
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analysis makes seL4 an ideal choice for safety-critical and time-critical systems as it shows

that seL4 is the world’s fastest performing microkernel.

6.1.2 Implications

As stated above, the proofs directly prove the properties of (i) functional correctness, (ii) confiden-

tiality, (iii) integrity, and (iv) availability. As per [32], these proofs carry with them implications

of “the absence of whole classes of common programming errors”. A subset of these errors, listed

in [32], are as follows:

(i) Buffer overflows: Buffer overflows, sometimes referred to as overruns, occur when the amount

of data exceeds a memory buffer’s storage capacity. This can be used to crash the software or

inject malicious code to change the execution path of the program, leading to data leakage.

These proofs show that buffer overflows are unsuccessful on seL4.

(ii) Pointer errors: There are many common pointer errors such as uninitialized pointers, dangling

pointers, null pointer dereferences and more. Uninitialized pointers occur when attempting

to reference a pointer that does not yet point to a valid address. Dangling pointers occur

when attempting to reference a pointer whose memory has already been freed. A null pointer

dereference occurs when a pointer, which contains the value of NULL, is manipulated as if it

pointed to a valid memory address. Additionally, it is possible to assign a pointer to the

wrong datatype such as passing a char* to a function which expects a double*, for example.

These problems are commonly exposed in the C programming language and often lead to

system crashes, undefined behavior, lost data and/or memory leaks. These pointer related

errors cannot occur in seL4.

(iii) Memory leaks: Memory leaks commonly occur when memory, which is no longer needed, is

not released or freed. The opposite is true as well – memory can be freed while it remains in

use. These proofs show that memory leaks cannot occur in seL4.

(iv) Arithmetic overflows and exceptions: Given that machines have a finite amount of memory

storage, there are many problems which can occur if the use of numbers greater than what

can be represented by 32 or 64 bits (or more depending on the architecture) is attempted.
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Additionally, if an attempt to execute an undefined operation occurred, such as dividing some

number by zero, an exception would be thrown. These exceptions would be cause for a system

crash. Arithmetic overflows and exceptions cannot occur in seL4.

(v) Undefined behaviour: Undefined behavior occurs due to the lack of restrictions on the behavior

of a system. Many of the previous examples of errors are examples of undefined behavior.

The proofs show system restrictions such that no undefined behavior can occur in seL4.

6.1.3 Assumptions

Each of the proofs and implications of the proofs listed above are founded on a few basic assump-

tions. Essentially, seL4 comes with three assumptions as stated in [65]:

(i) the hardware behaves as expected;

(ii) the specification is correct; and

(iii) the theorem prover is correct.

The hardware assumptions include faults which may remain in certain low-level kernel components

such as the TLB, cache handling, handwritten assembly, and the boot code [32]. If the hardware

contains bugs, then the verification of seL4 has no benefit. With regard to a correct specification,

“there is always a gap between the world of mathematics and the physical world ... the advantage

of formal reasoning is that you know exactly what this gap is” [65]. In order to mitigate this, prop-

erties about the specification, such as security, have been proven through “comprehensive formal

verification, including a functional correctness proof of the implementation and a complete proof

chain of high-level security properties down to the executable binary” [67, 79]. The assumption

that the theorem prover must be correct is the least concerning because the core of the theorem

prover (Isabelle/HOL) used to prove seL4 has “checked many proofs small and large from a wide

field of formal reasoning, so the chance of it containing a correctness-critical bug is extremely small”

[65]. In addition to assuming the theorem prover is correct, one must assume that the axioms of

high-order logic (HOL) are also correct. If the axioms are logically inconsistent, there is a much

more significant problem with mathematics. Each of these assumptions, while limitations of the

system, are not limitations of the formal verification process and can be eliminated [32].
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6.2 vCDS Performance Throughput

This section serves to demonstrate the performance of vCDS through carefully selected benchmarks

which measure the throughput transfer of data from the Low Side domain to the High Side domain.

Additionally, results below show four stages of experiments.

6.2.1 Overhead Formula

The overhead is calculated for some of the experiments used to calculate throughput, given the

throughput measurements to compare the performance results of vCDS to the Native Linux Process.

The following formula is used to calculate overhead where the throughput performance of vCDS is

PvCDS and that of the Native Linux Process is, likewise, PLinux:

∣∣∣∣∣PLinux − PvCDS

PLinux

∣∣∣∣∣ · 100

6.2.2 CPU Information

All throughput measurements were run on an Intel® Xeon® Processor E5-2690V4 with 112 GB

of DDR4 memory (76.8 GB/s bandwidth) and a 35 MB cache. Further CPU specifications may be

found in [29].

6.2.3 Results

Shown below is the resulting throughput of vCDS, and the system overhead compared to a native

Linux process used to transport data through shared memory. Additionally, the vCDS performance

is compared to that of the state-of-the-art in commercial hardware data diodes.

vCDS vs Native Linux Process

The first result, shown in Table 6.1, is in the context of a vCDS solution with three layers of

virtualization: VM development machine, QEMU virtualizer, and seL4 VMM. The table displays

the vCDS pipeline throughput, that is, the number of bytes which can be processed in one second

of operation, compared to the throughput of a native Linux process which uses shared memory as

a transfer channel. For comparison purposes, the overhead of the development system is shown.
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Throughput (Bytes/Second)
vCDS Native Linux Process vCDS Overhead

33,193,800 447,585,750 92.6%

Table 6.1: vCDS vs Native Linux Process Throughput (3 Layers of Virtualization)

Table 6.2 depicts the vCDS pipeline throughput in the context of a vCDS solution running

directly on hardware with one layer of virtualization: seL4 VMM. There are two different through-

put measurements, a partial transfer where the data are available to the second domain without

any processing taking place, and a full transfer where the second domain does process the data.

Specifically, the data are processed by Snort on the High Side as well as the filter running on the

Guard. Additionally for comparison, the vCDS overhead is calculated.

Throughput (Bytes/Second)
Pipeline Transfer vCDS Native Linux Process vCDS Overhead

Partial 326,705,400 403,745,175 19.1%

Full 150,696,450 214,413,750 29.7%

Table 6.2: vCDS vs Native Linux Process Throughput (1 Layer of Virtualization)

vCDS Pipeline vs Commercial Hardware Data Diodes

Table 6.3 below shows, once again, the partial pipeline throughput of vCDS. However, the vCDS

performance throughput is measured against the hardware data diode products with the highest

claimed throughput specifications provided by the following commercial data diode vendors: OWL

Cyber Defense, Belden, BAE Systems (evaluated to EAL7+), Vado Security, Fox-It (EAL7+),

Arbit Cyber Defence Systems (EAL5+) and Waterfall Security Solutions [40, 69, 71, 74, 120, 123,

127]. OPSWAT [71] provides the specifications for several of the solutions listed below in the table.

Additional citations are also provided for specific solutions. As the results state, [71, 74, 123] claim

the highest throughput performance at 10 Gbps (1,250,000,000 Bps) for enterprise solutions while

the majority of general solutions boast 1 Gbps (125,000,000 Bps). vCDS results in a throughput

transfer of 2.6+ Gbps (326,250,000+ Bps). It can be noted that most commercial solutions provided

by each of the listed vendors generally only provide one solution with high throughput. This is

because the high throughput solutions are geared toward enterprise environments where security
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is often compromised as shown in Chapter 2: Background. Many of these vendors carry security-

focused, tactical solutions which range in performance from 5 Mbps (625,000 Bps) to 100 Mbps

(12,500,000 Bps) [71]. These security focused solutions often implement additional filtering and

sanitization techniques which may decrease the throughput. While the full transfer throughput of

vCDS yields superior performance compared to the throughput of tactical solutions, it is a challenge

to compare performance because the filtering mechanisms used within other solutions are unknown

and therefore could significantly decrease throughput. Overall, vCDS yields a throughput that is

26 times greater than the security-focused solutions and 2.6 times greater than the throughput of

the median solutions.

Throughput (Bytes/Second)
Tactical Solutions:

[69, 71]
General Solutions:
[39, 71, 120, 127]

vCDS
Enterprise Solutions:

[71, 74, 123]

12,500,000 125,000,000 326,705,400 1,250,000,000

Table 6.3: vCDS Pipeline vs Commercial Data Diode Throughput
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vCDS Data Diode Only Solution

The throughput of the bare-bones, software data diode vCDS solution is presented in Table 6.4

below. Note that Infodas [73] claims to have the fastest software data diode in the world with a

transfer rate up to 9.1 Gb/s. The provided CPU specifications of the Infodas solution are as follows:

Intel® Core™ i7-5700EQ Quad Core CPU, 32GB DDR3L memory (25.6 GB/s bandwidth), and a

6MB cache. More specifications can be found in [73]. The software based data diode solution has

a transfer rate of up to 12.2 Gb/s on the hardware detailed in Chapter 6.2.2: CPU Information.

Though inconclusive, it is possible that the Infodas solution may outperform the vCDS data diode

if tested on the same hardware. For this to happen, the source code from the Infodas solution

would be required. Additionally, it is notable, from Table 6.5, that taking the vCDS software data

diode throughput compared to the native Linux process shared memory throughput where read

and write only access was specified yields an overhead of -241.2%.

Throughput (Bytes/Second)
Tactical Solutions:

[69, 71]
General Solutions:
[39, 71, 120, 127]

Enterprise Solutions:
[71, 74, 123]

vCDS Data Diode

12,500,000 125,000,000 1,250,000,000 1,527,280,640

Table 6.4: vCDS Data Diode vs Commercial Data Diode Throughput

Throughput (Bytes/Second)
vCDS Native Linux Process vCDS Overhead

1,527,280,640 447,585,750 -241.2%

Table 6.5: vCDS Data Diode vs Native Linux Process Throughput (0 Layers of Virtualization)
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Chapter 7

Conclusion

7.1 Contributions

This work has systematically examined and presented a solution which aims to correct the chal-

lenges of CDS systems, in particular, lack of: (i) trustworthiness, (ii) remote deployablility, and

(iii) accessibility. A novel CDS architecture, presented in [33], called virtual CDS (vCDS) has been

analyzed. The resulting vCDS systems have been shown to overcome the weaknesses of current

CDSs with the following contributions:

(i) The architecture allows for public analysis in terms of the trustworthiness of its instantiations

– vCDS ensures trustworthiness through execution on top of a formally verified, TCB.

(ii) The resulting vCDS systems are widely accessible, including both DoD/IC and commercial

sectors – accessibility to commercial sectors provided by using commodity software and hard-

ware.

(iii) The resulting vCDS systems allow for secure remote deployability, including remote deploy-

ment in cloud environments.

(iv) The vCDS architecture can be leveraged or adapted to implement critical security mecha-

nisms, such as Intrusion Detection System/Intrusion Prevention System (IDS/IPS) and Fire-

wall technologies, which use tools or Indicators of Compromise (IOC) with high classification

levels, such as cryptographic signatures and analytics tools, to defend computer systems with
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low classification levels. This is achieved by allowing these IPS/IDS of high classification

levels to vet traffic in networks of low classification levels, without leaking information about

the technologies with high classification levels.

(v) vCDS can leverage additional, third-party, filtering and diode mechanisms to include both

hardware and software based mechanism.

(vi) The vCDS architecture is compatible with big data and high performance computing environ-

ments where distributed parallel processing, including the access and transfer, of large data

sets is commonplace. In the case of a big data platform, vCDS is compatible to platforms like

MapReduce in that it moves the computation to the data. In the case of a high performance

computing platform, vCDS can move the data to the compute nodes. The versatility of vCDS

provides the scalability and low-cost implementations.

(vii) The vCDS architecture can integrate with other security solutions, such as the B2CSM ar-

chitecture described in [61], which aims at achieving secure intelligence collaboration through

data collection, aggregation, analysis, and threat-related information dissemination to critical

parties.

(viii) A prototype stream processor instantiation of the vCDS architecture was designed and ana-

lyzed.

(ix) An auditing tool which seeks to validate the correctness of the implemented security config-

uration of all vCDS instantiations was developed. This is the first tool to analyze and audit

CDS security control implementations. Presented along with this tool were the following

contributions:

(a) The need to verify the implementation of a CDS system security model is addressed.

(b) This tool is the first and only development of a tool which audits a CDS described via

an architecture description language (ADL).

(c) This work is the first to tailor an ADL for describing a CDS system with the ability to

tag components with proper labels which propagate down through the ADL, allowing

the algorithm to check the constraints.
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(d) The use of the tailored ADL is extended to include labels and key words which trigger the

appropriate protection models and information flow constraints in vCDS to determine

whether or not to encrypt the data.

(e) The tailored ADL is extended to provide system security modeling that is far beyond

the status quo.

As evidenced by a thorough search of the relevant literature, vCDS is the first general purpose

CDS system, which leverages a TCB that is provably secure and has been comprehensively verified

for functional correctness and security guarantees, that can be applied to and deployed in a variety

of use-cases and environments.

7.2 Discussion

This section provides the details of the limitations of this work and the mitigations which have been

put in place to combat these limitations. Additionally discussed are the future intended efforts

which will seek to improve upon this work. Finally, presented below are some recommendations

for future work.

7.2.1 Limitations

The discussion below examines each of the limitations and potential problems with the current

design and implementation with hopes to garner interest and inspire further research of this tech-

nology. These limitations of vCDS are inherited from its building blocks.

(i) While seL4 proofs show functional correctness, the proofs, at present, do not capture time

properties. This presents an issue when examining the potential of an attacker opening a

covert timing channel to expose data or information about the data which could lead to

spillage.

(ii) CAmkES, on seL4, is guaranteed to provide proofs of security enforcement [79] when properly

configured. However, unless properly validated, there is no way to know that the security

enforcement is correct.
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(iii) The use of AMD SEV/SME exposes the vCDS system to some potential threats that are not

considered in the threat model [7, 43, 89, 96].

7.2.2 Mitigations

The following mitigations to the above limitations are incorporated and/or proposed and listed

numerically to correspond with the limitations above:

(i) vCDS utilizes a padding mechanism in order to pad the execution time to an upper bound

as described in [68]. The proof for this in seL4 is in the works [20, 68, 92] though it comes

with several difficulties [27, 55]. [66] explains that two important cache practices are neces-

sary for timing channel protection: spatial partitioning and cache flushing. By themselves,

spatial partitioning is limited by the fact that the core caches (L1, TLB, branch predictor,

pre-fetchers) are virtually indexed or not controlled by the OS so they cannot be spatially par-

titioned, and, while cache flushing covers the problems with spatial partitioning, it is useless

for concurrent access. Therefore, both are necessary to prove timing protection. Additionally,

[130] shows that timing channels can be successfully eliminated in a RISC-V processor. The

hope is to incorporate this in the future (Chapter 7.2.4: Future Work).

(ii) This limitation is mitigated with the development of the auditing tool, described in Chapter

5: Auditing a Cross Domain Solution,

(iii) Finally, one mitigation could be the use of RISC-V Keystone enclave to instantiate the TEE.

This is also further discussed in Chapter 7.2.4: Future Work.

7.2.3 NCDSMO: Concerns of vCDS

Discussed here are some concerns that the NCDSMO has expressed about vCDS going forward.

Most of these concerns closely relate to CDS filtering mechanisms and the Raise The Bar (RTB)

strategy [99]. Additionally presented are the ways in which vCDS is capable of meeting, or has

met, these concerns.

130



Concerns

(i) Real-world protocol adapters and filters are written with enormous amounts of code and

cannot, realistically, be proven correct. The attacker would then need only to defeat the

protocols and filters to fail the system open, while the kernel itself would have no knowledge

of the failure.

(ii) Filters must be able to enforce data safety, i.e. safety from data attacks, data hiding, and

data disclosure [30]. In other words, the data must be semantically checked for irregularities

such as malicious code or hidden data as well as sensitive data that could be leaked. The

NCDSMO would like to see vCDS implement additional filters to perform such safety checks.

(iii) Filters must be compliant with the RAIN concept [51].

Rebuttal

(i) Without any channels from the Guard to the Low Side, the advantage of using the formally

verified (for security, flow restriction, channel restriction, and functional correctness – see

Chapter 3.6: Security Analysis) TCB is that it does not have to rely on any filtering mech-

anisms to ensure that data is not leaked from high to low. No additional channels can be

created, the data cannot flow directly from high to low, and any implemented filters will

always be invoked and cannot be bypassed. Knowing these facts and that any filters im-

plemented on top of vCDS are susceptible to their own vulnerabilities, if there is a channel

from the Guard to the Low Side, then data confidentiality could potentially be compromised.

However, if the integrity guard is formally verified (see Chapter 7.2.4: Guard Formal Verifi-

cation), then it can be assured that data confidentiality will not be compromised from high

to low which is the primary concern of the vCDS architecture (Chapter 3.2: Threat Model).

(ii) In the case of the stream processor implementation, when the High Side moves data to the Low

Side, data disclosure is prevented (Chapter 4.4.2: Security Analysis). Note that the described

integrity guard is one implementation and recall from Chapter 3.6: Security Analysis that the

movement of data from high to low classification is optional. In the case where data moves

from low to high via the data diode (Chapter 3.6.5: Data Flow Restriction), data leakage
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and disclosure are prevented. However, the architecture security model does not directly

address the other data safety concerns: safety from data attacks and data hiding. The reason

for this is two fold: (i) vCDS was designed as a bare-bones, baseline solution with a threat

model (Chapter 3.2: Threat Model) focused primarily on ensuring data confidentiality from

high to low; and (ii) the vCDS architecture assumes that data safety filtering mechanisms

will be implemented and added according to the use-case requirements. Recall that any

existing hardware or software based filters may be added to vCDS, simply by declaring a new

component and associated connectors as shown in Chapter 4: The vCDS Implementation.

As for the instantiation of vCDS for additional use-cases and corresponding filters, this is

discussed in Chapter 7.2.4: Towards Extension to Operational Applications.

(iii) Discussed in Chapter 4.4.2: Security Analysis, the filter leveraged in the described stream

processor implementation is nearly compliant with RAIN. Additional implementations are,

and future implementations will be, compliant with the RAIN concept.

Supporting Evidence that vCDS Corrects Problems Now

With the concerns of the NCDSMO, came evidence that vCDS can be impactful now.

First, it can be confirmed that security through obscurity is a technique that is relied upon for

CDS and other security technologies. The advantage of vCDS is that it does not need to rely on

obscurity because, to a large extent, it is provably correct and provably protected. To the extent

that vCDS is not provably correct or protected, the vulnerabilities are well understood. Formal

verification of those portions is intended for future work (Chapter 7.2.4: Future Work).

Second, and as a compliment to the first point, the versatility of vCDS should not be underes-

timated but rather used as an advantage. The vCDS architecture was designed such that, because

its vulnerabilities are well understood, any necessary mechanisms can be quickly added to an in-

stantiation. One of the issues with status quo CDS systems (Chapter 1.3: Problem Statement) is

that they are highly specialized systems where different protocol adapters and filters are required

for each use-case such that CDSs cannot be applied to other use-case environments without exten-

sive modification [13, 47]. vCDS is different as the architecture serves as a “build your own CDS”

architecture upon which many use-cases may be built.
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Third, current solutions, while “independently verified”, are verified in closed labs operating

with biases in favor of the product. Furthermore, those labs are governed by, and therefore produce

results only as good as, the requirements [11]. The TCB upon which vCDS is built is completely

open to anyone for independent verification meaning that it does not just meet lab requirements,

it meets mathematical and logical requirements [32].

7.2.4 Future Work

In addition to addressing the limitations mentioned above, there are several research directions

for future studies. A subset of these studies and their importance are discussed below. Note that

portions of the following sections have been adopted from “vCDS: A Virtualized Cross Domain

Solution Architecture”, © 2021 IEEE [33].

RISC-V

In order to further enhance the security of vCDS systems while reducing their cost and addressing

scalability limitations associated with vendor hardware, it is interesting to instantiate the abstract

TEE used in the vCDS architecture via RISC-V based Keystone Enclave. This is possible because

Keystone [86] claims to solve many of the limitations surrounding AMD’s SEV/SME and Intel’s

SGX schemes, and it is available for independent, hardware formal verification [33]. Furthermore,

timing channels can be eliminated [130].

Guard Formal Verification

Recall from Chapter 4.4.2: Security Analysis that the Guard is not formally verified. The Guard

code base is quite small so formal verification is a necessary future goal. This would ensure that

the integrity check could not be compromised and that data leakage prevention is assured.

Another possibility is to adopt the use of a formally verified implementation of a cryptographic

algorithm [12, 128] to replace the use of Blake3. This would require the verification of a second

implementation of the same algorithm in order to fulfill the need for independent implementations

[51, 59]. Additionally, any effect on vCDS performance is unknown at this time.
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Towards Extension to Operational Applications

Third, it is useful to address additional environment/use-case, security, and scalability needs of

current systems. The intention is to apply the vCDS architecture to such use-cases as were described

in Chapter 3.5: Applications. The instantiation of the vCDS architecture for additional use-cases

or the modification of one of the described use-cases would likely involve implementing or leveraging

additional filtering mechanisms. This will be a significant addition in directing the use of the vCDS

system in different operational environments.

Load Balancing Strategy

Fourth, an aim is to evaluate the implementation of different load balancing strategies concerning

the movement of data between domains. Currently being explored are the following three options

as they related to CAmkES Dataports:

(i) Multi-Dataport, single buffer: multiple threads are leveraged with a single Dataport per

thread and each Dataport passes a single buffer

(ii) Single Dataport, multi-buffer: a single Dataport is designed to contain multiple buffers where

each buffer corresponds to a single thread

(iii) Multi-Dataport, multi-buffer: this strategy combines the above strategies using multiple Dat-

aports and buffers, separating each into groups by buffer content attributes such as origin,

priority and size

In addition to these strategies, there is an aim to adopt a circular buffer strategy to provide a

more dynamic functionality, implemented in either the buffer or Dataport levels. The hope is that

the results of each evaluation would reveal the most advantageous ways to improve performance

relative to the use-case that is implemented.

Remote Boot of High Domain

Fifth, as a strategy to prevent persistence of data after processing has concluded within the High

Side enclave, there is an aim to implement a remote management capability of the high domain
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from the C2 (high side management network). The management capability will include the lifecycle

from remote creation of the data to remote shutdown of the high domain.

Collaborative Efforts

Finally, interest in a CDS built upon a formally verified TCB was explicitly expressed at the seL4

Summit 2020 by the U.S. Army [45]. Numerous commercial companies such as the Cohere Tech-

nology Group and L3Harris Technologies have expressed interest in collaborations and potentially

using a future product based on vCDS. Additionally, the NSA has reached out with inquiries about

vCDS and about potential future collaborations. In the future, the hope is to pursue collaboration

with the U.S. Army, the NSA, DARPA, and other entities in the commercial sector.

7.3 Recommendations

This work may serve as an important step in the right direction as it:

(i) yields a solution which is closer to, and, in certain use-case environments, serves as, a com-

prehensively formally verified CDS system;

(ii) improves upon the status quo in CDS security;

(iii) makes secure CDS technology more accessible to all sectors;

(iv) promotes remote deployability; and

(v) promotes system versatility such that it can be applied to many different use-cases and envi-

ronments.

With the impacts listed above in mind, the following recommendations for future improvements of

the vCDS system are presented:

(i) formally verify the integrity guard implementation;

(ii) instantiate the TEE using the RISC-V Keystone enclave in addition to the timing protections

presented in [68];

(iii) formally verify the coupling of a RISK-V based TEE with the TCB of vCDS;
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(iv) the auditing tool should be formally verified in order to ensure a trustworthy implementation

of vCDS security configurations; and

(v) a system should be developed for quick evaluation of load balancing strategies for each use-

case implementation of vCDS.

Additionally presented are the following recommendations for any future use and development

of CDS systems:

(i) CDS systems must be able to be relied upon, i.e. security must be architected into both

hardware and software, with all components, including filters, being formally verified for

security and functional correctness, in order to build secure, trustworthy CDS systems;

(ii) future development of CDS systems should utilize the architecture of vCDS, not only for its

formally verified properties, security, and versatility, but also because vCDS implementations

align with the DoD’s best interests (see Appendix C: Towards Trustworthy Cross-Domain

Technologies;

(iii) the practice of verify once, reuse many should be adopted in order to mitigate both cost and

time to market;

(iv) describing CDS systems via an ADL is essential for the verification of CDS security configu-

rations and should therefore be a requirement; and

(v) making use of the vCDS auditing tool further improves the time to market for a CDS which

fully aligns with the best interests of the DoD.

For further recommendations, see Appendix C: Towards Trustworthy Cross-Domain Technolo-

gies.

7.4 Closing Remarks

In this work, there has been a review and examination of the status quo in state-of-the-art CDS

technology. Additionally the problems, limitations and concerns of current CDS systems have been

discussed. To combat these problems, limitations and concerns, the Virtualized Cross Domain
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Solution (vCDS) system, originally presented in [33], has been examined. vCDS is the first CDS

system to be constructed on top of a comprehensively, formally verified trusted computing base

(TCB). The main objectives of vCDS: (i) trustworthiness, (ii) multi-sector availability, (iii) remote

deployability and (iv) versatility, have been re-enforced through an in-depth analysis of the imple-

mentation of the stream processor application. As previously discussed, this work “provides a new

and much improved security baseline tailored to (i) defensive effectiveness, (ii) data confidentiality

and (iii) operational relevance” [33].

Furthermore, a CDS auditing tool was developed which, as evidenced by a thorough search of

the relevant literature, is the first to:

(i) analyze and audit CDS security control implementations such that no CDS constraints are

violated and no operations will lead to a leak of rights or data;

(ii) audit a CDS described via an ADL;

(iii) tailor an ADL for describing a CDS system with the ability to tag components with proper

labels which propagate down through the ADL, allowing the algorithm to check the con-

straints;

(iv) include labels and key words in the ADL which trigger the appropriate protection models and

information flow constraints in vCDS to determine whether or not to encrypt the data; and

(v) provide system security modeling that is far beyond the status quo.

Finally, the work presented herein does not conform to status-quo of security through obscurity

and ad hoc solutions. The security and limitations of vCDS are well understood and open for

independent evaluation. The hope is that this work inspires and influences further improvements in

CDS systems with the common goals of (i) trustworthiness, (ii) multi-sector availability, (iii) remote

deployability and (iv) versatility.

137



Bibliography

[1] Edward N. Adams. “Optimizing Preventive Service of Software Products”. In: IBM J. Res.

Dev. 28.1 (Jan. 1984), pp. 2–14. issn: 0018-8646. doi: 10.1147/rd.281.0002. url: https:

//doi.org/10.1147/rd.281.0002.

[2] Mohammad Alam. Analysis of Different Software Fault Tolerance Techniques. May 2009.

[3] Secure Technology Alliance. “Trusted Execution and Environment (TEE) and 101: A Primer”.

In: A Secure Technology Alliance Mobile Council White Paper. Secure Technology Alliance.

191 Clarksville Road Princeton Junction, NJ 08550: Secure Technology Alliance, June 2018.

[4] Jim Alves-Foss et al. “The MILS architecture for high-assurance embedded systems”. In:

International Journal of Embedded Systems 2 (2006), pp. 239–247.

[5] AMD. Enhance your Cloud Security with AMD EPYC™ Hardware Memory Encryption.

Tech. rep. Oct. 2018.

[6] AMD. Extending secure encrypted virtualization with Sev-ES. 2018. url: https://events19.

linuxfoundation.org/wp-content/uploads/2017/12/Extending-Secure-Encrypted-

Virtualization-with-SEV-ES-Thomas-Lendacky-AMD.pdf.

[7] AMD. AMD SEV-SNP: Strengthening VM Isolation with Integrity Protection and More.

Tech. rep. Jan. 2020.

[8] AMD. Software Techniques for Managing Speculation on AMD Processors. Sept. 2020. url:

https://developer.amd.com/wp-content/resources/56305_3.01.pdf.

[9] AMQP protocol adapter. Aug. 2021. url: https://owlcyberdefense.com/resource/

amqp-protocol-adapter/.

138

https://doi.org/10.1147/rd.281.0002
https://doi.org/10.1147/rd.281.0002
https://doi.org/10.1147/rd.281.0002
https://events19.linuxfoundation.org/wp-content/uploads/2017/12/Extending-Secure-Encrypted-Virtualization-with-SEV-ES-Thomas-Lendacky-AMD.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2017/12/Extending-Secure-Encrypted-Virtualization-with-SEV-ES-Thomas-Lendacky-AMD.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2017/12/Extending-Secure-Encrypted-Virtualization-with-SEV-ES-Thomas-Lendacky-AMD.pdf
https://developer.amd.com/wp-content/resources/56305_3.01.pdf
https://owlcyberdefense.com/resource/amqp-protocol-adapter/
https://owlcyberdefense.com/resource/amqp-protocol-adapter/


[10] J.P. Anderson. Computer security technology planning study. Volumes I and II. Tech. rep.

ESD-TR-73-51. The Mitre Corporation, Air Force Electronic Systems Division, Hanscom

AFB, Badford, MA, Oct. 1972.

[11] Ross J. Anderson. Security Engineering: A Guide to Building Dependable Distributed Sys-

tems. 2nd ed. Wiley Publishing, 2008. isbn: 9780470068526.

[12] Andrew W. Appel. “Verification of a Cryptographic Primitive: SHA-256”. In: ACM Trans.

Program. Lang. Syst. 37.2 (Apr. 2015). issn: 0164-0925. doi: 10.1145/2701415. url: https:

//doi.org/10.1145/2701415.

[13] United States Government US Army. Joint Publication JP 3-12 Cyberspace Operations June

2018. North Charleston, SC, USA: CreateSpace Independent Publishing Platform, 2018.

isbn: 1723569224. doi: 10.5555/3285221.

[14] N. Asokan et al. “Mobile Trusted Computing”. In: Proceedings of the IEEE 102.8 (Aug.

2014), pp. 1189–1206. doi: 10.1109/jproc.2014.2332007.

[15] Ryan Ausanka-Crues. “Methods for Access Control: Advances and Limitations”. In: Clare-

mont, CA, 2001.

[16] Bill Beckwith et al. “High Assurance Safe and Secure Distributed Systems and Information

Sharing”. In: Infotech@Aerospace. 2005. doi: 10.2514/6.2005-6930. eprint: https://arc.

aiaa.org/doi/pdf/10.2514/6.2005-6930. url: https://arc.aiaa.org/doi/abs/10.

2514/6.2005-6930.

[17] D. E. Bell and L. J. Lapadula. Secure Computer System: Unified Exposition and Multics

Interpretation. Tech. rep. National Technical Information Service (NTIS) U. S. Department

of Commerce, Mar. 1976.

[18] D.E. Bell. “Looking back at the Bell-La Padula model”. In: 21st Annual Computer Security

Applications Conference (ACSAC’05). 2005, 15 pp.–351. doi: 10.1109/CSAC.2005.37.

[19] Ken Biba. Integrity Considerations for Secure Computer Systems. Apr. 1977.

[20] B. Blackham et al. “Timing Analysis of a Protected Operating System Kernel”. In: IEEE

32nd Real-Time Systems Symposium. 2011, pp. 339–348. doi: 10.1109/RTSS.2011.38.

139

https://doi.org/10.1145/2701415
https://doi.org/10.1145/2701415
https://doi.org/10.1145/2701415
https://doi.org/10.5555/3285221
https://doi.org/10.1109/jproc.2014.2332007
https://doi.org/10.2514/6.2005-6930
https://arc.aiaa.org/doi/pdf/10.2514/6.2005-6930
https://arc.aiaa.org/doi/pdf/10.2514/6.2005-6930
https://arc.aiaa.org/doi/abs/10.2514/6.2005-6930
https://arc.aiaa.org/doi/abs/10.2514/6.2005-6930
https://doi.org/10.1109/CSAC.2005.37
https://doi.org/10.1109/RTSS.2011.38


[21] Andrew Boyton et al. “Formally Verified System Initialisation”. In: Formal Methods and

Software Engineering. Ed. by Lindsay Groves and Jing Sun. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2013, pp. 70–85. isbn: 978-3-642-41202-8.

[22] Robert Buhren, Christian Werling, and Jean-Pierre Seifert. “Insecure Until Proven Updated:

Analyzing AMD SEV’s Remote Attestation”. In: Proceedings of the 2019 ACM SIGSAC

Conference on Computer and Communications Security. CCS ’19. London, United Kingdom:

Association for Computing Machinery, 2019, pp. 1087–1099. isbn: 9781450367479. doi: 10.

1145/3319535.3354216. url: https://doi.org/10.1145/3319535.3354216.

[23] Laurentiu Burdusel. “A Secure Communication System for classified documents over public

network”. In: IEEE, 2010, pp. 485–488.

[24] Australian Cyber Security Center. “Fundamentals of Cross Domain Solutions”. English.

In: MENA Report (June 2020). Name - Cybersecurity and Infrastructure Security Agency;

Copyright - © 2019 Al Bawaba (Albawaba.com) Provided by SyndiGate Media Inc. (Syndi-

gate.info); Last updated - 2019-12-06; SubjectsTermNotLitGenreText - United States–US.

url: https://search-proquest-com.proxy.libraries.uc.edu/docview/2322199850?

accountid=2909.

[25] Raymond Cheng et al. “Ekiden: A Platform for Confidentiality-Preserving, Trustworthy,

and Performant Smart Contract Execution”. In: CoRR abs/1804.05141 (2018). arXiv: 1804.

05141. url: http://arxiv.org/abs/1804.05141.

[26] CloudShield. “CloudShield CS-4000: Trusted Network Security Platform (TNSP)”. In: (2018).

[27] David Cock et al. “The Last Mile: An Empirical Study of Timing Channels on SeL4”.

In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications

Security. CCS ’14. Scottsdale, Arizona, USA: Association for Computing Machinery, 2014,

pp. 570–581. isbn: 9781450329576. doi: 10.1145/2660267.2660294. url: https://doi.

org/10.1145/2660267.2660294.

[28] Ed Colbert and Barry Boehm. “Cost Estimation for Secure Software and Systems”. In: ISPA

/ SCEA 2008 Joint International Conference. Center for Systems and Software Engineering,

140

https://doi.org/10.1145/3319535.3354216
https://doi.org/10.1145/3319535.3354216
https://doi.org/10.1145/3319535.3354216
https://search-proquest-com.proxy.libraries.uc.edu/docview/2322199850?accountid=2909
https://search-proquest-com.proxy.libraries.uc.edu/docview/2322199850?accountid=2909
https://arxiv.org/abs/1804.05141
https://arxiv.org/abs/1804.05141
http://arxiv.org/abs/1804.05141
https://doi.org/10.1145/2660267.2660294
https://doi.org/10.1145/2660267.2660294
https://doi.org/10.1145/2660267.2660294


University of Southern California. 941 W. 37th Pl., Sal 328, Los Angeles, CA 90089-0781,

Jan. 2006.

[29] Intel Corporation. Intel® Xeon® processor E5-2690 V4 (35m cache, 2.60 GHz) - product

specifications. Feb. 2022. url: https://www.intel.com/content/www/us/en/products/

sku/91770/intel-xeon-processor-e52690-v4-35m-cache-2-60-ghz/specifications.

html.

[30] Roger L Costello. XML Risks and Mitigations. 2013. url: https://www.mitre.org/sites/

default/files/pdf/13_2445.pdf.

[31] Common Criteria. “Common Criteria for Information Technology Security Evaluation”. In:

Common Criteria. July 2009.

[32] CSIRO’s Data61. The Proof. 2020. url: https://www.sel4.systems/Info/FAQ/proof.

pml.

[33] Nathan Daughety et al. “vCDS: A Virtualized Cross Domain Solution Architecture”. In:

MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM). 2021, pp. 61–

68. doi: 10.1109/MILCOM52596.2021.9652903.

[34] Nathan Daughety et al. Cross Domain Solution System Built on a Formally Verified Security

Micro-kernel Running on Processors Enabled with Memory Encryption. Patent Pending.

2022.

[35] Nathan Daughety et al. Auditing a Software-Defined Cross Domain Solution Architecture.

In Preparation. n.d.

[36] Department of Defense. “Department of Defense Trusted Computer System Evaluation Cri-

teria”. In: DoD 5200.28-STD. Dec. 1985.

[37] Department of Defense. Department of Defense Instruction: Cross Domain Security Policy.

Aug. 2017.

[38] OWL Cyber Defense. What’s the Difference Between Firewalls and Data Diodes? May

2019. url: https://owlcyberdefense.com/wp-content/uploads/2019/05/19-OWL-

DataDiodes-Firewalls.pdf.

141

https://www.intel.com/content/www/us/en/products/sku/91770/intel-xeon-processor-e52690-v4-35m-cache-2-60-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/91770/intel-xeon-processor-e52690-v4-35m-cache-2-60-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/91770/intel-xeon-processor-e52690-v4-35m-cache-2-60-ghz/specifications.html
https://www.mitre.org/sites/default/files/pdf/13_2445.pdf
https://www.mitre.org/sites/default/files/pdf/13_2445.pdf
https://www.sel4.systems/Info/FAQ/proof.pml
https://www.sel4.systems/Info/FAQ/proof.pml
https://doi.org/10.1109/MILCOM52596.2021.9652903
https://owlcyberdefense.com/wp-content/uploads/2019/05/19-OWL-DataDiodes-Firewalls.pdf
https://owlcyberdefense.com/wp-content/uploads/2019/05/19-OWL-DataDiodes-Firewalls.pdf


[39] OWL Cyber Defense. OPDS-1000 Perimeter Defense Solution. Mar. 2021. url: https:

//owlcyberdefense.com/product/opds-1000/.

[40] OWL Cyber Defense. OWL Cyber Defense Cross Domain Solutions. https://owlcyberdefense.

com/. 2021.

[41] Rance J. DeLong and LynuxWorks. MLS with MILS. 2006.

[42] DNP3 protocol adapter. 2021. url: https://owlcyberdefense.com/products/data-

diode-products/software-modules/dnp3/.

[43] Zhao-Hui Du et al. Secure Encrypted Virtualization is Unsecure. 2017. doi: 10.48550/

ARXIV.1712.05090. url: https://arxiv.org/abs/1712.05090.

[44] Dhammika Elkaduwe, Gerwin Klein, and Kevin Elphinstone. “Verified Protection Model of

the seL4 Microkernel”. In: University of New South Wales Sydney, Australia, 2008.

[45] Leonard Elliot. Army CCDC-GVSC Vision and Progress. seL4® Center of Excellence 2020

Summit, Jan. 2021. url: https://www.youtube.com/watch?v=EqnKeRcDQu0.

[46] Nicholas Evancich. seL4 Overview and Tutorial. 2020. url: http://secdev.ieee.org/wp-

content/uploads/2020/11/t1-03-evancich.pdf.

[47] B. Farroha, M. Whitfield, and D. Farroha. “Enabling Net-Centricity through Cross Domain

Information Sharing”. In: IEEE SysCon 2009 —3rd Annual IEEE International Systems

Conference, 2009 Vancouver, Canada, March 23–26, 2009. Vancouver, Canada: IEEE, Mar.

2009.

[48] Bassam S. Farroha Deborah L. Farroha et al. “Challenges and Alternatives in Building

a Secure Information Sharing Environment through a Community-Driven Cross Domain

Infrastructure”. In: IEEE, 2009.

[49] Fibersystem. Data diodes for isolated and classified networks. 2021. url: https://www.

fibersystem.com/data-diodes/.

[50] Forcepoint. Forcepoint Cross Domain Solutions. https://www.forcepoint.com/solutions/

need/cross-domain. 2021.

142

https://owlcyberdefense.com/product/opds-1000/
https://owlcyberdefense.com/product/opds-1000/
https://owlcyberdefense.com/
https://owlcyberdefense.com/
https://owlcyberdefense.com/products/data-diode-products/software-modules/dnp3/
https://owlcyberdefense.com/products/data-diode-products/software-modules/dnp3/
https://doi.org/10.48550/ARXIV.1712.05090
https://doi.org/10.48550/ARXIV.1712.05090
https://arxiv.org/abs/1712.05090
https://www.youtube.com/watch?v=EqnKeRcDQu0
http://secdev.ieee.org/wp-content/uploads/2020/11/t1-03-evancich.pdf
http://secdev.ieee.org/wp-content/uploads/2020/11/t1-03-evancich.pdf
https://www.fibersystem.com/data-diodes/
https://www.fibersystem.com/data-diodes/
https://www.forcepoint.com/solutions/need/cross-domain
https://www.forcepoint.com/solutions/need/cross-domain


[51] Forcepoint. Forcepoint Meets Current National Cross Domain Startegy Managment Office

Raise-The-Bar Guidelines for Cross Domain. Oct. 2021. url: https://www.forcepoint.

com/sites/default/files/resources/files/solution_brief_cross_domain_raise_

the_bar_en.pdf.

[52] Miguel Borges de Freitas et al. “SDN-Enabled Virtual Data Diode”. In: Computer Security.

Ed. by Sokratis K. Katsikas et al. Cham: Springer International Publishing, 2019, pp. 102–

118. isbn: 978-3-030-12786-2.

[53] Tal Garfinkel et al. “Terra: A Virtual Machine-Based Platform for Trusted Computing”. In:

Bolton Landing, New York, USA: ACM, Oct. 2003.

[54] Garrison. Transformational Cross-Domain Technology. 2021. url: https://www.garrison.

com/en/cross-domain.

[55] Qian Ge et al. Time Protection: The Missing OS Abstraction. 2019.

[56] Phillip Gibbons. seL4: Formal Verification of an OS Kernel. 2021. url: https://www.cs.

cmu.edu/~15712/lectures/17-seL4.pdf.

[57] Looking Glass. LookingGlass IRD-100 Data Sheet: Stealth Threat Response at the Network

Edge. Feb. 2019.

[58] Daniel Gruss et al. “Another Flip in the Wall of Rowhammer Defenses”. In: 2018 IEEE

Symposium on Security and Privacy (SP). 2018, pp. 245–261. doi: 10.1109/SP.2018.00031.

[59] Robert S. Hanmer and Lucent Lane. N-Version Programming. 2009.

[60] Michael Hanspach and Jorg Keller. “In Guards We Trust: Security and Privacy in Operating

Systems Revisited”. In: 2013 International Conference on Social Computing. IEEE, Sept.

2013. doi: 10.1109/socialcom.2013.87.

[61] Songlin He et al. Blockchain-Based Automated Cyber Security Management. 2020.

[62] Mark R. Heckman, Roger R. Schell, and Edwards E. Reed. “A High-assurance, Virtual

Guard Architecture”. In: IEEE (2012).

[63] Mark R. Heckman, Roger R. Schell, and Edwards E. Reed. “Towards Formal Evaluation of

a High-Assurance Guard”. In: 6th Layered Assurance Workshop. Ed. by Christoph Schuba.

Orlando, Forida, USA, Dec. 2012, pp. 25–32.

143

https://www.forcepoint.com/sites/default/files/resources/files/solution_brief_cross_domain_raise_the_bar_en.pdf
https://www.forcepoint.com/sites/default/files/resources/files/solution_brief_cross_domain_raise_the_bar_en.pdf
https://www.forcepoint.com/sites/default/files/resources/files/solution_brief_cross_domain_raise_the_bar_en.pdf
https://www.garrison.com/en/cross-domain
https://www.garrison.com/en/cross-domain
https://www.cs.cmu.edu/~15712/lectures/17-seL4.pdf
https://www.cs.cmu.edu/~15712/lectures/17-seL4.pdf
https://doi.org/10.1109/SP.2018.00031
https://doi.org/10.1109/socialcom.2013.87


[64] Gernot Heiser. How to (and how not to) use seL4 IPC. https : / / microkerneldude .

wordpress.com/2019/03/07/how-to-and-how-not-to-use-sel4-ipc/. Mar. 2019.

[65] Gernot Heiser. “The seL4 Microkernel – An Introduction”. In: The seL4 Foundation. Vol. 1.2.

LF Projects, LLC. June 2020.

[66] Gernot Heiser. The seL4 Report: State of the Union. YouTube, Nov. 2020. url: https:

//www.youtube.com/watch?v=_2KgrFm2Fz4&amp;t=1961s.

[67] Gernot Heiser and Kevin Elphinstone. “L4 Microkernels: The Lessons from 20 Years of

Research and Deployment”. In: ACM Trans. Comput. Syst. 34.1 (Apr. 2016). issn: 0734-

2071. doi: 10.1145/2893177. url: https://doi-org.proxy.libraries.uc.edu/10.

1145/2893177.

[68] Gernot Heiser, Gerwin Klein, and Toby Murray. “Can We Prove Time Protection?” In:

Proceedings of the Workshop on Hot Topics in Operating Systems. HotOS ’19. Bertinoro,

Italy: Association for Computing Machinery, 2019, pp. 23–29. isbn: 9781450367271. doi:

10.1145/3317550.3321431. url: https://doi.org/10.1145/3317550.3321431.

[69] Hirschmann. Rail Data Diode. Oct. 2021. url: https://catalog.belden.com/techdata/

EN/19DINRailAdapter_techdata.pdf.

[70] HTTP protocol adapter. 2021. url: https://owlcyberdefense.com/products/data-

diode-products/software-modules/http/.

[71] OPSWAT INC. Data Diode Guide. 2021. url: https://www.opswat.com/products/data-

diode.

[72] Dell Inc. PowerEdge R65625. 2021. url: https://i.dell.com/sites/csdocuments/

Product_Docs/en/poweredge-r6525-spec-sheet.pdf.

[73] infodas. SDoT Diode. Mar. 2021. url: https://www.infodas.de/en/products/sdot_

cross_domain_solutions/data_diode/.

[74] FOX IT. Fox Data Diode. 2021. url: https://www.fox-it.com/nl-en/fox-crypto/fox-

datadiode/.

[75] T. Jaeger. Operating System Security. Synthesis Lectures on Information Security, Privacy,

and Trust. Morgan and Claypool, 2008, p. 218. doi: 10.2200/S00126ED1V01Y200808SPT001.

144

https://microkerneldude.wordpress.com/2019/03/07/how-to-and-how-not-to-use-sel4-ipc/
https://microkerneldude.wordpress.com/2019/03/07/how-to-and-how-not-to-use-sel4-ipc/
https://www.youtube.com/watch?v=_2KgrFm2Fz4&amp;t=1961s
https://www.youtube.com/watch?v=_2KgrFm2Fz4&amp;t=1961s
https://doi.org/10.1145/2893177
https://doi-org.proxy.libraries.uc.edu/10.1145/2893177
https://doi-org.proxy.libraries.uc.edu/10.1145/2893177
https://doi.org/10.1145/3317550.3321431
https://doi.org/10.1145/3317550.3321431
https://catalog.belden.com/techdata/EN/19DINRailAdapter_techdata.pdf
https://catalog.belden.com/techdata/EN/19DINRailAdapter_techdata.pdf
https://owlcyberdefense.com/products/data-diode-products/software-modules/http/
https://owlcyberdefense.com/products/data-diode-products/software-modules/http/
https://www.opswat.com/products/data-diode
https://www.opswat.com/products/data-diode
https://i.dell.com/sites/csdocuments/Product_Docs/en/poweredge-r6525-spec-sheet.pdf
https://i.dell.com/sites/csdocuments/Product_Docs/en/poweredge-r6525-spec-sheet.pdf
https://www.infodas.de/en/products/sdot_cross_domain_solutions/data_diode/
https://www.infodas.de/en/products/sdot_cross_domain_solutions/data_diode/
https://www.fox-it.com/nl-en/fox-crypto/fox-datadiode/
https://www.fox-it.com/nl-en/fox-crypto/fox-datadiode/
https://doi.org/10.2200/S00126ED1V01Y200808SPT001


[76] David Kaplan, Jeremy Powell, and Tom Woller. “AMD Memory Encryption”. In: AMD

Developer Central, Advanced Micro Devices, Inc. (Apr. 2016). url: ttps://developer.

amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.

pdf.

[77] Mehmet Kara. “A Model for Secure Data Sharing Between Different Security Level Net-

works”. In: Computer Engineering and Information Technology 6:1 (Jan. 2017). doi: 10.

4172/2324-9307.1000163.

[78] Gerwin Klein et al. “seL4: formal verification of an OS kernel”. In: SOSP ’09. 2009. url:

https://www.sigops.org/s/conferences/sosp/2009/papers/klein-sosp09.pdf.

[79] Gerwin Klein et al. “Comprehensive Formal Verification of an OS Microkernel”. In: ACM

Transactions on Computer Systems (TOCS) 32 (Feb. 2014). doi: 10.1145/2560537.

[80] Gerwin Klein et al. “Formally Verified Software in the Real World”. In: Commun. ACM

61.10 (Sept. 2018), pp. 68–77. issn: 0001-0782. doi: 10.1145/3230627. url: https://doi.

org/10.1145/3230627.

[81] Manuel Koch, Luigi Mancini, and Francesco Parisi Presicce. “Decidability of Safety in

Graph-Based Models for Access Control”. In: Oct. 2002, pp. 229–243. isbn: 978-3-540-44345-

2. doi: 10.1007/3-540-45853-0_14.

[82] Bernard F. Koelsch and Army War College Carlisle Barracks PA. Solving the Cross-Domain

Conundrum. English. 2013.

[83] D. Richard Kuhn et al. “Introduction to Public Key Technology and the Federal PKI In-

frastructure”. In: SP 800-32. National Institue of Standards and Technology. Feb. 2001.

[84] Ihor Kuz et al. “capDL: A Language for Describing Capability-Based Systems”. In: June

2010, pp. 31–36. doi: 10.1145/1851276.1851284. url: http://conferences.sigcomm.

org/sigcomm/2010/papers/apsys/p31.pdf.

[85] Andrew Kwong et al. “RAMBleed: Reading Bits in Memory Without Accessing Them”. In:

41st IEEE Symposium on Security and Privacy (S&P). 2020.

[86] Dayeol Lee et al. “Keystone: an open framework for architecting trusted execution environ-

ments”. In: Apr. 2020, pp. 1–16. doi: 10.1145/3342195.3387532.

145

ttps://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
ttps://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
ttps://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://doi.org/10.4172/2324-9307.1000163
https://doi.org/10.4172/2324-9307.1000163
https://www.sigops.org/s/conferences/sosp/2009/papers/klein-sosp09.pdf
https://doi.org/10.1145/2560537
https://doi.org/10.1145/3230627
https://doi.org/10.1145/3230627
https://doi.org/10.1145/3230627
https://doi.org/10.1007/3-540-45853-0_14
https://doi.org/10.1145/1851276.1851284
http://conferences.sigcomm.org/sigcomm/2010/papers/apsys/p31.pdf
http://conferences.sigcomm.org/sigcomm/2010/papers/apsys/p31.pdf
https://doi.org/10.1145/3342195.3387532


[87] Henry M. Levy. Capability-Based Computer Systems. USA: Butterworth-Heinemann, 1984.

isbn: 0932376223.

[88] Feng Li et al. “Distributed Data Management Using MapReduce”. In: ACM Comput. Surv.

46.3 (Jan. 2014). issn: 0360-0300. doi: 10.1145/2503009. url: https://doi-org.proxy.

libraries.uc.edu/10.1145/2503009.

[89] Mengyuan Li et al. “Exploiting Unprotected I/O Operations in AMD’s Secure Encrypted

Virtualization”. In: 28th USENIX Security Symposium (USENIX Security 19). Santa Clara,

CA: USENIX Association, Aug. 2019, pp. 1257–1272. isbn: 978-1-939133-06-9. url: https:

//www.usenix.org/conference/usenixsecurity19/presentation/li-mengyuan.

[90] Bryan Lim. Cybersecurity Young Writers Series Article 2: Data DIODES EXPLAINED. Ed.

by NyanEditor Tun Zaw. May 2021. url: https://athenadynamics.com/demystifying-

data-diodes-data-diodes-explained/.

[91] R. J. Lipton and L. Snyder. “A Linear Time Algorithm for Deciding Subject Security”. In:

J. ACM 24.3 (July 1977), pp. 455–464. issn: 0004-5411. doi: 10.1145/322017.322025.

url: https://doi.org/10.1145/322017.322025.

[92] Anna Lyons et al. “Scheduling-context capabilities: a principled, light-weight operating-

system mechanism for managing time”. In: Apr. 2018, pp. 1–16. doi: 10.1145/3190508.

3190539.

[93] SIGNAL Magazine. Enlighten IT is Providing Cyber Situational Awareness for Big Data

Platforms. urlhttps://www.afcea.org/content/enlighten-it-providing-cyber-situational-awareness-

big-data-platforms. Apr. 2021.

[94] Andrea Mattavelli. “Understanding the Redundancy of Software Systems”. In: Companion

Proceedings of the 36th International Conference on Software Engineering. ICSE Companion

2014. Hyderabad, India: Association for Computing Machinery, 2014, pp. 698–701. isbn:

9781450327688. doi: 10.1145/2591062.2591077. url: https://doi.org/10.1145/

2591062.2591077.

146

https://doi.org/10.1145/2503009
https://doi-org.proxy.libraries.uc.edu/10.1145/2503009
https://doi-org.proxy.libraries.uc.edu/10.1145/2503009
https://www.usenix.org/conference/usenixsecurity19/presentation/li-mengyuan
https://www.usenix.org/conference/usenixsecurity19/presentation/li-mengyuan
https://athenadynamics.com/demystifying-data-diodes-data-diodes-explained/
https://athenadynamics.com/demystifying-data-diodes-data-diodes-explained/
https://doi.org/10.1145/322017.322025
https://doi.org/10.1145/322017.322025
https://doi.org/10.1145/3190508.3190539
https://doi.org/10.1145/3190508.3190539
https://doi.org/10.1145/2591062.2591077
https://doi.org/10.1145/2591062.2591077
https://doi.org/10.1145/2591062.2591077


[95] Brian McGillion et al. “Open-TEE – An Open Virtual Trusted Execution Environment”. In:

2015 IEEE Trustcom/BigDataSE/ISPA. IEEE, Aug. 2015. doi: 10.1109/trustcom.2015.

400.

[96] Phillip Mestas. Securing AMD SEV. 2020.

[97] Mqtt Protocol Adapter. Sept. 2021. url: https://owlcyberdefense.com/resource/mqtt-

protocol-adapter/.

[98] Toby Murray et al. “seL4: From General Purpose to a Proof of Information Flow En-

forcement”. In: 2013 IEEE Symposium on Security and Privacy. 2013, pp. 415–429. doi:

10.1109/SP.2013.35.

[99] N.S.A. Raise The Bar. url: https : / / www . nsa . gov / Cybersecurity / Partnership /

National-Cross-Domain-Strategy-Management-Office/.

[100] Committee on National Security Systems (CNSS). Committee on National Security Sys-

tems(CNSS) Glossary. Apr. 2015.

[101] Naval-technology.com. US Navy contracts Lockheed for Radiant Mercury Intelligence Sharing

System. Feb. 2015. url: https://www.naval-technology.com/uncategorised/newsus-

navy-contracts-lockheed-for-radiant-mercury-intelligence-sharing-system-

4521866/.

[102] P. Neumann et al. A Provably Secure Operating System. 1975.

[103] G. H. Nibaldi. “Specification of a Trusted Computing Base (TCB)”. In: The Mitre Corpo-

ration. AF19628-80-C-00011. The Mitre Corporation. Bedford, Massachusetts, Nov. 1979.

[104] Leonor Prensa Nieto. “The Rely-Guarantee Method in Isabelle/HOL”. In: Programming

Languages and Systems. Ed. by Pierpaolo Degano. Berlin, Heidelberg: Springer Berlin Hei-

delberg, 2003, pp. 348–362. isbn: 978-3-540-36575-4.

[105] T. Nipkow. Hoare Logics in Isabelle/HOL. 2002. url: https://www21.in.tum.de/~nipkow/

pubs/MOD2001.pdf.

[106] Hamed Okhravi and F.T. Sheldon. “Data diodes in support of trustworthy cyber infrastruc-

ture”. In: (Jan. 2010), p. 23. doi: 10.1145/1852666.1852692.

[107] OWASP Top 10. 2021. url: https://owasp.org/Top10/.

147

https://doi.org/10.1109/trustcom.2015.400
https://doi.org/10.1109/trustcom.2015.400
https://owlcyberdefense.com/resource/mqtt-protocol-adapter/
https://owlcyberdefense.com/resource/mqtt-protocol-adapter/
https://doi.org/10.1109/SP.2013.35
https://www.nsa.gov/Cybersecurity/Partnership/National-Cross-Domain-Strategy-Management-Office/
https://www.nsa.gov/Cybersecurity/Partnership/National-Cross-Domain-Strategy-Management-Office/
https://www.naval-technology.com/uncategorised/newsus-navy-contracts-lockheed-for-radiant-mercury-intelligence-sharing-system-4521866/
https://www.naval-technology.com/uncategorised/newsus-navy-contracts-lockheed-for-radiant-mercury-intelligence-sharing-system-4521866/
https://www.naval-technology.com/uncategorised/newsus-navy-contracts-lockheed-for-radiant-mercury-intelligence-sharing-system-4521866/
https://www21.in.tum.de/~nipkow/pubs/MOD2001.pdf
https://www21.in.tum.de/~nipkow/pubs/MOD2001.pdf
https://doi.org/10.1145/1852666.1852692
https://owasp.org/Top10/


[108] QEMU. QEMU: the FAST! processor emulator. https://www.qemu.org/. 2021.

[109] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah. “Trusted Execution

Environment: What It is, and What It is Not”. In: 2015 IEEE Trustcom/BigDataSE/ISPA.

IEEE, Aug. 2015. doi: 10.1109/trustcom.2015.357.

[110] Alok Sanghavi. “What is formal verification?” In: EE Times-Asia (May 2010).

[111] K. Scarfone and P. Mell. “Guide to Intrusion and Detection and Prevention Systems and

(IDPS)”. In: Gaithersburg, Maryland: National Institute of Standards and Technology,

NIST, 2009.

[112] R. Schell, T. Tao, and M. Heckman. Designing the GEMSOS security kernel for security

and performance. 1985.

[113] Austin Scott and Richard Carbone. “Tactical Data Diodes in Industrial Automation and

Control Systems”. In: SANS Institute Information Security Reading Room. SANS Institute,

2020.

[114] seL4 Docs. 2020. url: https://docs.sel4.systems/projects/camkes/manual.html.

[115] Thomas Sewell et al. “seL4 Enforces Integrity”. In: Interactive Theorem Proving. Ed. by

Marko van Eekelen et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 325–340.

isbn: 978-3-642-22863-6.

[116] Thomas Arthur Leck Sewell, Magnus O. Myreen, and Gerwin Klein. “Translation Valida-

tion for a Verified OS Kernel”. In: Proceedings of the 34th ACM SIGPLAN Conference

on Programming Language Design and Implementation. PLDI ’13. Seattle, Washington,

USA: Association for Computing Machinery, 2013, pp. 471–482. isbn: 9781450320146. doi:

10.1145/2491956.2462183. url: https://doi.org/10.1145/2491956.2462183.

[117] Scott Smith. “Shedding Light on Cross Domain Solutions”. In: SANS Institute Information

Security Reading Room (Nov. 2015).

[118] Snort. Snort: Open Source Intrustion Prevention System. https://www.snort.org/. 2021.

[119] Green Hills Software. Safety-Critical Products: INTEGRITY-178B Real-Time Operating

System. 2005.

148

https://www.qemu.org/
https://doi.org/10.1109/trustcom.2015.357
https://docs.sel4.systems/projects/camkes/manual.html
https://doi.org/10.1145/2491956.2462183
https://doi.org/10.1145/2491956.2462183
https://www.snort.org/


[120] Waterfall Security Solutions. WF-500 DIN RAIL. July 2021. url: https://waterfall-

security.com/din-rail/.

[121] SSH File Transfer Protocol (SFTP). Mar. 2020. url: https://owlcyberdefense.com/wp-

content/uploads/2020/03/20-OWL-D080-V1-SFTP.pdf.

[122] BAE Systems. XTS-400 UK EAL5 security target - XTS-400 version 6.4(UKE). Nov. 2007.

url: https://www.commoncriteriaportal.org/files/epfiles/xts-400.pdf.

[123] BAE Systems. Data diode solution. Apr. 2020. url: https://www.baesystems.com/en/

product/data-diode-solution.

[124] BAE Systems. XTS® Guard 7. Apr. 2020. url: https://www.baesystems.com/en/

product/xts--guard-7.

[125] Data61 Trustworthy Systems Team. “seL4 Reference Manual”. In: Version 12.1.0. General

Dynamics C4 Systems. June 2021. url: https://sel4.systems/Info/Docs/seL4-manual-

latest.pdf.

[126] B. M. Thomas and N. L. Ziring. “Using Classified Intelligence to Defend Unclassified Net-

works”. In: 2015 48th Hawaii International Conference on System Sciences. Jan. 2014,

pp. 2298–2307. doi: 10.1109/HICSS.2015.275.

[127] Vado. Vado Unidirectional gateway. 2021. url: https://www.vadosecurity.com/.

[128] Dexi Wang et al. “Verification of Implementations of Cryptographic Hash Functions”. In:

IEEE Access 5 (2017), pp. 7816–7825. doi: 10.1109/ACCESS.2017.2697918.

[129] Shaun Waterman. “Assured Cross-Domain Access Through Hardware-Based Security: Spon-

sored Content”. In: SIGNAL (Aug. 2021). url: https : / / www . afcea . org / content /

assured - cross - domain - access - through- hardware - based - security - sponsored -

content.

[130] Nils Wistoff et al. “Prevention of Microarchitectural Covert Channels on an Open-Source

64-bit RISC-V Core”. In: ArXiv abs/2005.02193 (May 2020).

[131] R H Wyman and G L Johnson. Defense against common mode failures in protection system

design. Aug. 1997. url: https://www.osti.gov/biblio/358846.

149

https://waterfall-security.com/din-rail/
https://waterfall-security.com/din-rail/
https://owlcyberdefense.com/wp-content/uploads/2020/03/20-OWL-D080-V1-SFTP.pdf
https://owlcyberdefense.com/wp-content/uploads/2020/03/20-OWL-D080-V1-SFTP.pdf
https://www.commoncriteriaportal.org/files/epfiles/xts-400.pdf
https://www.baesystems.com/en/product/data-diode-solution
https://www.baesystems.com/en/product/data-diode-solution
https://www.baesystems.com/en/product/xts--guard-7
https://www.baesystems.com/en/product/xts--guard-7
https://sel4.systems/Info/Docs/seL4-manual-latest.pdf
https://sel4.systems/Info/Docs/seL4-manual-latest.pdf
https://doi.org/10.1109/HICSS.2015.275
https://www.vadosecurity.com/
https://doi.org/10.1109/ACCESS.2017.2697918
https://www.afcea.org/content/assured-cross-domain-access-through-hardware-based-security-sponsored-content
https://www.afcea.org/content/assured-cross-domain-access-through-hardware-based-security-sponsored-content
https://www.afcea.org/content/assured-cross-domain-access-through-hardware-based-security-sponsored-content
https://www.osti.gov/biblio/358846


Appendix A

Appendix A: vCDS Source Code

A.1 Root Project CMakeLists.txt

1 #********************************************************

2 #* Author: Nathan Daughety

3 #* File: CMakeLists.txt

4 #* Description: root CMake input file for building

5 #* the stream processor application

6 #*******************************************************/

7

8 cmake_minimum_required(VERSION 3.8.2)

9 project(flea_qemu)

10

11 # Edit as needed

12 set(GCC_VERSION 9) # 9 or 7.5.0

13

14 #---------

15 # Includes

16 # --------

17 # CAmkES VM

18 find_package(camkes -vm REQUIRED)

19 include(${CAMKES_VM_HELPERS_PATH })

20

21 # CAmkES VM Linux

22 find_package(camkes -vm -linux REQUIRED)
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23 include(${CAMKES_VM_LINUX_HELPERS_PATH })

24

25 # Linux Module

26 include(${CAMKES_VM_LINUX_MODULE_HELPERS_PATH })

27

28 # External

29 include(ExternalProject)

30

31 # Cross VM connection source

32 file(GLOB connectionSourceLow src/cross_vm_connections_low.c)

33 file(GLOB connectionSourceHigh src/cross_vm_connections_high.c)

34

35

36

37 # ----------------------------------

38 # Linux Kernel and File System Setup

39 # ----------------------------------

40 GetDefaultLinuxKernelFile(kernel_file)

41

42 GetDefaultLinuxRootfsFile(high_rootfs_file)

43 GetDefaultLinuxRootfsFile(low_rootfs_file)

44

45 DecompressLinuxKernel(extract_linux_kernel

46 decompressed_kernel

47 ${kernel_file}

48 )

49

50 AddToFileServer("bzImage"

51 ${decompressed_kernel}

52 DEPENDS extract_linux_kernel

53 )

54

55

56

57 # -------------------

58 # Kernel Module Setup
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59 # -------------------

60 # Compile CrossVM Dataport Connection Module

61 DefineLinuxModule(

62 ${CAMKES_VM_LINUX_DIR }/camkes -linux -artifacts/camkes -linux -modules/camkes -

connector -modules/connection

63 connection -module

64 connection -target

65 KERNEL_DIR ${CMAKE_CURRENT_SOURCE_DIR }/5.4.139/ linux -5.4.139/

66 )

67

68

69

70 # -------------

71 # LowSide Setup

72 # -------------

73 DeclareCAmkESVM(LowSide

74 EXTRA_SOURCES ${connectionSourceLow}

75 INCLUDES include

76 )

77

78 # Add dataport write binary

79 ExternalProject_Add(dataport_low -app

80 SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR }/pkgs/dataport

81 BINARY_DIR ${CMAKE_CURRENT_BINARY_DIR }/ dataport_low -app

82 INSTALL_COMMAND ""

83 BUILD_ALWAYS ON

84 EXCLUDE_FROM_ALL

85 CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}

86 )

87

88 AddExternalProjFilesToOverlay(dataport_low -app

89 ${CMAKE_CURRENT_BINARY_DIR }/ dataport_low -app

90 overlay_low

91 "usr/sbin"

92 FILES dataport_write dataport_read

93 )
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94

95

96 ExternalProject_Add(send_record -app

97 SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR }/pkgs/send_record

98 BINARY_DIR ${CMAKE_CURRENT_BINARY_DIR }/ send_record -app

99 INSTALL_COMMAND ""

100 BUILD_ALWAYS ON

101 EXCLUDE_FROM_ALL

102 )

103

104 AddExternalProjFilesToOverlay(send_record -app

105 ${CMAKE_CURRENT_BINARY_DIR }/ send_record -app

106 overlay_low

107 "usr/bin"

108 FILES send_record

109 )

110

111 AddFileToOverlayDir("connection.ko"

112 ${connection -module}

113 # "lib/modules /4.8.16/ kernel/drivers/vmm"

114 "lib/modules /5.4.139/ kernel/drivers/vmm"

115 overlay_low

116 DEPENDS

117 connection -target

118 )

119

120 AddFileToOverlayDir("S90cross_vm_module_init"

121 ${CMAKE_CURRENT_SOURCE_DIR }/ overlay_files/init_scripts/cross_vm_module_init

122 "etc/init.d"

123 overlay_low

124 )

125

126 #[[

127 AddFileToOverlayDir("pipeline_check.pcap"

128 ${CMAKE_CURRENT_SOURCE_DIR }/ overlay_files/benchmark/pipeline_check.pcap

129 "/"
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130 overlay_low

131 )

132 ]]

133

134 # Pack the overlay into the rootfs archive

135 AddOverlayDirToRootfs(

136 overlay_low

137 ${low_rootfs_file}

138 "buildroot"

139 "rootfs_install"

140 low_rootfs_file

141 low_rootfs_target

142 )

143

144

145

146 # --------------

147 # HighSide Setup

148 # --------------

149 DeclareCAmkESVM(HighSide

150 EXTRA_SOURCES ${connectionSourceHigh}

151 INCLUDES include

152 )

153

154 # Dataport Read/Write Binary

155 ExternalProject_Add(dataport_high -app

156 SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR }/pkgs/dataport

157 BINARY_DIR ${CMAKE_CURRENT_BINARY_DIR }/ dataport_high -app

158 INSTALL_COMMAND ""

159 BUILD_ALWAYS ON

160 EXCLUDE_FROM_ALL

161 CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}

162 )

163

164 AddExternalProjFilesToOverlay(dataport_high -app

165 ${CMAKE_CURRENT_BINARY_DIR }/ dataport_high -app
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166 overlay_high

167 "usr/sbin"

168 FILES dataport_read dataport_write

169 )

170

171 # Receive Record Binary

172 ExternalProject_Add(receive_record -app

173 SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR }/pkgs/receive_record

174 BINARY_DIR ${CMAKE_CURRENT_BINARY_DIR }/ receive_record -app

175 INSTALL_COMMAND ""

176 BUILD_ALWAYS ON

177 EXCLUDE_FROM_ALL

178 CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}

179 )

180

181 AddExternalProjFilesToOverlay(receive_record -app

182 ${CMAKE_CURRENT_BINARY_DIR }/ receive_record -app

183 overlay_high

184 "usr/sbin"

185 FILES receive_record

186 )

187

188 # Snort Binary

189 ExternalProject_Add(snort -app

190 SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR }/pkgs/snort

191 BINARY_DIR ${CMAKE_CURRENT_BINARY_DIR }/snort -app

192 INSTALL_COMMAND ""

193 BUILD_ALWAYS ON

194 EXCLUDE_FROM_ALL

195 )

196

197 AddExternalProjFilesToOverlay(snort -app

198 ${CMAKE_CURRENT_BINARY_DIR }/snort -app

199 overlay_high

200 "usr/sbin"

201 FILES snort
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202 )

203

204 AddFileToOverlayDir("connection.ko"

205 ${connection -module}

206 # "lib/modules /4.8.16/ kernel/drivers/vmm"

207 "lib/modules /5.4.139/ kernel/drivers/vmm"

208 overlay_high

209 DEPENDS connection -target

210 )

211

212 AddFileToOverlayDir("S90cross_vm_module_init"

213 ${CMAKE_CURRENT_SOURCE_DIR }/ overlay_files/init_scripts/cross_vm_module_init

214 "etc/init.d"

215 overlay_high

216 )

217

218

219 # Pack the overlay into the rootfs archive

220 AddOverlayDirToRootfs(

221 overlay_high

222 ${high_rootfs_file}

223 "buildroot"

224 "rootfs_install"

225 high_rootfs_file

226 high_rootfs_target

227 )

228

229

230

231 # -----------

232 # Guard Setup

233 # -----------

234 # Set files for libblake3

235 file(GLOB LIB_DIR lib/libblake3_x86 -64)

236 set(DEPS

237 ${LIB_DIR }/src/blake3.c
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238 ${LIB_DIR }/src/blake3_dispatch.c

239 ${LIB_DIR }/src/blake3_portable.c

240 ${LIB_DIR }/src/blake3_avx2_x86 -64 _unix.S

241 ${LIB_DIR }/src/blake3_avx512_x86 -64 _unix.S

242 ${LIB_DIR }/src/blake3_sse2_x86 -64 _unix.S

243 ${LIB_DIR }/src/blake3_sse41_x86 -64 _unix.S

244 )

245

246 DeclareCAmkESComponent(Guard

247 SOURCES

248 ${DEPS}

249 ${CMAKE_CURRENT_SOURCE_DIR }/ components/Guard/src/main.c

250 ${CMAKE_CURRENT_SOURCE_DIR }/ components/Guard/src/integrity.c

251 ${CMAKE_CURRENT_SOURCE_DIR }/ components/Guard/src/disposition.c

252 INCLUDES

253 include

254 ${LIB_DIR }/ include

255 /usr/lib/gcc/x86_64 -linux -gnu/${GCC_VERSION }/ include

256 )

257

258

259

260 # ---------------

261 # Temporary Files

262 # ---------------

263 AddFileToOverlayDir(

264 "S90crossvm_test"

265 ${CMAKE_CURRENT_SOURCE_DIR }/ overlay_files/init_scripts/cross_vm_test_low

266 "etc/init.d"

267 overlay_low

268 )

269

270 AddFileToOverlayDir(

271 "S90crossvm_test"

272 ${CMAKE_CURRENT_SOURCE_DIR }/ overlay_files/init_scripts/cross_vm_test_high

273 "etc/init.d"
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274 overlay_high

275 )

276

277

278

279 # --------

280 # Finalize

281 # --------

282 # Add high and low rootfs images to file server

283 AddToFileServer("low_rootfs.cpio" ${low_rootfs_file })

284 AddToFileServer("high_rootfs.cpio" ${high_rootfs_file })

285

286 # Initialise CAmkES Root Server

287 DeclareCAmkESVMRootServer(flea_qemu.camkes)

Listing A.1: CMakeLists.txt File

A.2 Root Project stream processor.camkes

1 /* *******************************************************

2 * Author: Nathan Daughety

3 * File: stream_processor.camkes

4 * Description: Define and configure components and

5 * connections

6 ****************************************************** */

7

8 #ifdef HAVE_AUTOCONF

9 #include <autoconf.h>

10 #endif

11

12 #include <configurations/vm.h>

13

14 import <VM/vm.camkes >;

15 import "components/LowSide/LowSide.camkes";

16 import "components/HighSide/HighSide.camkes";

17 import "components/Guard/Guard.camkes";

18
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19

20

21 assembly {

22 composition {

23 VM_COMPOSITION_DEF ()

24

25 VM_PER_VM_COMP_DEF(LowSide , 0) // component LowSide vm0

26 VM_PER_VM_COMP_DEF(HighSide , 1) // component HighSide vm1

27

28 component Guard guard;

29

30 connection seL4Notification readyConn(

31 from vm1.ready ,

32 to guard.ready

33 );

34 connection seL4GlobalAsynch doneConn(

35 from guard.done ,

36 to vm1.done

37 );

38

39 /* seL4SharedDataWithCaps -- connects dataport interfaces where the

40 * "to" side has access to capabilities to the frames backing the

41 * dataport -- required for cross VM dataports in order to connect

42 * processes in a VM guest to other CAmkES components

43 */

44 connection seL4SharedDataWithCaps lowToHighConn(

45 from vm0.record ,

46 to vm1.record

47 );

48

49 connection seL4SharedDataWithCaps highToGuardBridgeConn(

50 from vm1.record_bridge ,

51 to guard.record

52 );

53 }

54
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55 configuration {

56 VM_CONFIGURATION_DEF () // general vm configuration

57

58 guard.record_size = 4096;

59

60 /* Our data diode (one way communication) is defined by

61 * access rights to shared memory (dataport)

62 +----------------+--------------+

63 | Component | Access |

64 | | Rights |

65 +----------------+--------------+

66 | LowSide | write -only |

67 +----------------+--------------+

68 | HighSide | read -only |

69 +----------------+--------------+

70 | Guard | read -only |

71 +----------------+--------------+

72

73 Note: the bridged dataport accessed only by the Guard

74 and the HighSide are read/write because they are

75 at the same classification level and read/write

76 is needed to create the bridge

77 */

78 vm0.record_access = "W"; // write only

79 vm1.record_access = "R"; // read only

80 vm1.record_bridge_access = "RW"; // read/write

81 guard.record_access = "RW"; // read/write

82 }

83 }

Listing A.2: Stream Processor CAmkES File

A.3 LowSide.camkes

1 /* *******************************************************

2 * Author: Nathan Daughety

3 * File: HighSide.camkes
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4 * Description: Define LowSide component and attributes

5 * with the guest vm configurations

6 ****************************************************** */

7

8 import <VM/vm.camkes >;

9 #include <configurations/vm.h>

10

11 #define LOW_SIDE_CMDLINE "earlyprintk=ttyS0 ,115200 console=ttyS0 ,115200 \

12 i8042.nokbd=y i8042.nomux=y i8042.noaux=y io_delay=udelay \

13 noisapnp pci=nomsi debug root=/dev/mem"

14

15

16 component LowSide {

17 /* Define LowSide VM with attributes

18 * specified in "../../../../ vm/components/VM/configurations/vm.h"

19 */

20 VM_INIT_DEF ()

21

22 /* Shared memory used to write data packets

23 * which will be read by high side

24 */

25 include "record.h";

26 dataport Record record;

27 }

28

29

30 assembly {

31 composition {}

32 configuration {

33 VM_PER_VM_CONFIG_DEF (0)

34

35 vm0.simple_untyped23_pool = 21; // 2^23 (8 MB)

36 vm0.simple_untyped22_pool = 1; // 2^22 (4 MB)

37 vm0.heap_size = 0x2000000;

38 vm0.guest_ram_mb = 128;

39 vm0.kernel_cmdline = LOW_SIDE_CMDLINE;
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40 vm0.kernel_image = "bzImage";

41 vm0.kernel_relocs = "bzImage";

42 vm0.initrd_image = "low_rootfs.cpio";

43 vm0.iospace_domain = 0x0f;

44

45 // Dataport ID and size

46 vm0.record_size = 4096;

47 }

48 }

Listing A.3: Low Side CAmkES File

A.4 HighSide.camkes

1 /* *******************************************************

2 * Author: Nathan Daughety

3 * File: HighSide.camkes

4 * Description: Define HighSide component and attributes

5 * with the guest vm configurations

6 ****************************************************** */

7

8 import <VM/vm.camkes >;

9 #include <configurations/vm.h>

10

11

12 #define HIGH_SIDE_CMDLINE "earlyprintk=ttyS0 ,115200 console=ttyS0 ,115200 \

13 i8042.nokbd=y i8042.nomux=y i8042.noaux=y io_delay=udelay noisapnp \

14 pci=nomsi debug root=/dev/mem"

15

16

17 component HighSide {

18 /* Define HighSide VM with attributes

19 * specified in "../../../../ vm/components/VM/configurations/vm.h"

20 */

21 VM_INIT_DEF ()

22

23 /* HighSide emits ready to Guard to begin
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24 * init or filtering. HighSide consumes

25 * messages from Guard notifying task done

26 */

27 consumes Done done;

28 emits Ready ready;

29

30 /* Shared memory used to read data packets

31 * written from the low side

32 */

33 include "record.h";

34 dataport Record record;

35 dataport Record record_bridge;

36 }

37

38

39 assembly {

40 composition {}

41 configuration {

42 VM_PER_VM_CONFIG_DEF (1)

43

44 vm1.simple_untyped23_pool = 21; // 2^23 (8MB)

45 vm1.simple_untyped22_pool = 1; // 2^22 (4MB)

46 vm1.heap_size = 0x2000000;

47 vm1.guest_ram_mb = 128;

48 vm1.kernel_cmdline = HIGH_SIDE_CMDLINE;

49 vm1.kernel_image = "bzImage";

50 vm1.kernel_relocs = "bzImage";

51 vm1.initrd_image = "high_rootfs.cpio";

52 vm1.iospace_domain = 0x10;

53

54 // Dataport ID and size

55 vm1.record_id = 1;

56 vm1.record_size = 4096;

57 vm1.record_bridge_id = 2;

58 vm1.record_bridge_size = 4096;

59 }

163



60 }

Listing A.4: High Side CAmkES File

A.5 Guard.camkes

1 /* *******************************************************

2 * Author: Nathan Daughety

3 * File: Guard.camkes

4 * Description: Define Guard component to be a filter

5 * between HighSide and LowSide

6 ****************************************************** */

7

8 component Guard {

9 /* The control keyword makes this an

10 * active component with a run method

11 */

12 control;

13

14 /* The Guard consumes a ready event from the

15 * HighSide and checks tag. Once finished ,

16 * a Done message is emitted to the HighSide.

17 */

18 consumes Ready ready;

19 emits Done done;

20

21 /* Shared memory used to read data packets

22 * written from the low side

23 */

24 include "record.h";

25 dataport Record record;

26 }

Listing A.5: Guard CAmkES File
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A.6 Custom Linux Kernel Config File

1 #

2 # Automatically generated file; DO NOT EDIT.

3 # Linux/x86 5.4.139 Kernel Configuration

4 #

5

6 #

7 # Compiler: gcc (Ubuntu 10.3.0 -1 ubuntu1) 10.3.0

8 ##

9 CONFIG_CC_IS_GCC=y

10 CONFIG_GCC_VERSION =100300

11 CONFIG_CLANG_VERSION =0

12 CONFIG_CC_CAN_LINK=y

13 CONFIG_CC_HAS_ASM_GOTO=y

14 CONFIG_CC_HAS_ASM_INLINE=y

15 CONFIG_IRQ_WORK=y

16 CONFIG_BUILDTIME_EXTABLE_SORT=y

17 CONFIG_THREAD_INFO_IN_TASK=y

18

19 #

20 # General setup

21 #

22 CONFIG_BROKEN_ON_SMP=y

23 CONFIG_INIT_ENV_ARG_LIMIT =32

24 CONFIG_LOCALVERSION=""

25 CONFIG_BUILD_SALT=""

26 CONFIG_HAVE_KERNEL_GZIP=y

27 CONFIG_HAVE_KERNEL_BZIP2=y

28 CONFIG_HAVE_KERNEL_LZMA=y

29 CONFIG_HAVE_KERNEL_XZ=y

30 CONFIG_HAVE_KERNEL_LZO=y

31 CONFIG_HAVE_KERNEL_LZ4=y

32 CONFIG_KERNEL_GZIP=y

33 CONFIG_DEFAULT_HOSTNAME="(none)"

34 CONFIG_SWAP=y

35 CONFIG_SYSVIPC=y
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36 CONFIG_SYSVIPC_SYSCTL=y

37 CONFIG_POSIX_MQUEUE=y

38 CONFIG_POSIX_MQUEUE_SYSCTL=y

39 CONFIG_USELIB=y

40 CONFIG_HAVE_ARCH_AUDITSYSCALL=y

41

42 #

43 # IRQ subsystem

44 #

45 CONFIG_GENERIC_IRQ_PROBE=y

46 CONFIG_GENERIC_IRQ_SHOW=y

47 CONFIG_IRQ_DOMAIN=y

48 CONFIG_GENERIC_IRQ_RESERVATION_MODE=y

49 CONFIG_IRQ_FORCED_THREADING=y

50 CONFIG_SPARSE_IRQ=y

51 # end of IRQ subsystem

52

53 CONFIG_CLOCKSOURCE_WATCHDOG=y

54 CONFIG_ARCH_CLOCKSOURCE_DATA=y

55 CONFIG_ARCH_CLOCKSOURCE_INIT=y

56 CONFIG_CLOCKSOURCE_VALIDATE_LAST_CYCLE=y

57 CONFIG_GENERIC_TIME_VSYSCALL=y

58 CONFIG_GENERIC_CLOCKEVENTS=y

59 CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST=y

60 CONFIG_GENERIC_CMOS_UPDATE=y

61

62 #

63 # Timers subsystem

64 #

65 CONFIG_TICK_ONESHOT=y

66 CONFIG_NO_HZ_COMMON=y

67 CONFIG_NO_HZ_IDLE=y

68 CONFIG_HIGH_RES_TIMERS=y

69 # end of Timers subsystem

70

71 CONFIG_PREEMPT_VOLUNTARY=y
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72

73 #

74 # CPU/Task time and stats accounting

75 #

76 CONFIG_TICK_CPU_ACCOUNTING=y

77 CONFIG_TASKSTATS=y

78 CONFIG_TASK_DELAY_ACCT=y

79 CONFIG_TASK_XACCT=y

80 CONFIG_TASK_IO_ACCOUNTING=y

81 # end of CPU/Task time and stats accounting

82

83 #

84 # RCU Subsystem

85 #

86 CONFIG_TINY_RCU=y

87 CONFIG_SRCU=y

88 CONFIG_TINY_SRCU=y

89 # end of RCU Subsystem

90

91 CONFIG_IKCONFIG=m

92 CONFIG_IKCONFIG_PROC=y

93 CONFIG_LOG_BUF_SHIFT =18

94 CONFIG_PRINTK_SAFE_LOG_BUF_SHIFT =13

95 CONFIG_HAVE_UNSTABLE_SCHED_CLOCK=y

96

97 #

98 # Scheduler features

99 #

100 # end of Scheduler features

101

102 CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH=y

103 CONFIG_CGROUPS=y

104 CONFIG_CGROUP_SCHED=y

105 CONFIG_FAIR_GROUP_SCHED=y

106 CONFIG_CGROUP_FREEZER=y

107 CONFIG_CGROUP_CPUACCT=y
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108 CONFIG_NAMESPACES=y

109 CONFIG_UTS_NS=y

110 CONFIG_IPC_NS=y

111 CONFIG_PID_NS=y

112 CONFIG_NET_NS=y

113 CONFIG_SCHED_AUTOGROUP=y

114 CONFIG_RELAY=y

115 CONFIG_BLK_DEV_INITRD=y

116 CONFIG_INITRAMFS_SOURCE=""

117 CONFIG_RD_GZIP=y

118 CONFIG_RD_BZIP2=y

119 CONFIG_RD_LZMA=y

120 CONFIG_RD_XZ=y

121 CONFIG_RD_LZO=y

122 CONFIG_RD_LZ4=y

123 CONFIG_CC_OPTIMIZE_FOR_SIZE=y

124 CONFIG_SYSCTL=y

125 CONFIG_HAVE_UID16=y

126 CONFIG_SYSCTL_EXCEPTION_TRACE=y

127 CONFIG_HAVE_PCSPKR_PLATFORM=y

128 CONFIG_BPF=y

129 CONFIG_UID16=y

130 CONFIG_MULTIUSER=y

131 CONFIG_SGETMASK_SYSCALL=y

132 CONFIG_SYSFS_SYSCALL=y

133 CONFIG_FHANDLE=y

134 CONFIG_POSIX_TIMERS=y

135 CONFIG_PRINTK=y

136 CONFIG_PRINTK_NMI=y

137 CONFIG_BUG=y

138 CONFIG_ELF_CORE=y

139 CONFIG_PCSPKR_PLATFORM=y

140 CONFIG_BASE_FULL=y

141 CONFIG_FUTEX=y

142 CONFIG_FUTEX_PI=y

143 CONFIG_EPOLL=y
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144 CONFIG_SIGNALFD=y

145 CONFIG_TIMERFD=y

146 CONFIG_EVENTFD=y

147 CONFIG_SHMEM=y

148 CONFIG_AIO=y

149 CONFIG_IO_URING=y

150 CONFIG_ADVISE_SYSCALLS=y

151 CONFIG_MEMBARRIER=y

152 CONFIG_KALLSYMS=y

153 CONFIG_KALLSYMS_BASE_RELATIVE=y

154 CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE=y

155 CONFIG_RSEQ=y

156 CONFIG_HAVE_PERF_EVENTS=y

157

158 #

159 # Kernel Performance Events And Counters

160 #

161 CONFIG_PERF_EVENTS=y

162 # end of Kernel Performance Events And Counters

163

164 CONFIG_VM_EVENT_COUNTERS=y

165 CONFIG_SLUB_DEBUG=y

166 CONFIG_SLUB=y

167 CONFIG_SLAB_MERGE_DEFAULT=y

168 CONFIG_PROFILING=y

169 # end of General setup

170

171 CONFIG_X86_32=y

172 CONFIG_X86=y

173 CONFIG_INSTRUCTION_DECODER=y

174 CONFIG_OUTPUT_FORMAT="elf32 -i386"

175 CONFIG_ARCH_DEFCONFIG="arch/x86/configs/i386_defconfig"

176 CONFIG_LOCKDEP_SUPPORT=y

177 CONFIG_STACKTRACE_SUPPORT=y

178 CONFIG_MMU=y

179 CONFIG_ARCH_MMAP_RND_BITS_MIN =8
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180 CONFIG_ARCH_MMAP_RND_BITS_MAX =16

181 CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN =8

182 CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX =16

183 CONFIG_GENERIC_ISA_DMA=y

184 CONFIG_GENERIC_BUG=y

185 CONFIG_ARCH_MAY_HAVE_PC_FDC=y

186 CONFIG_GENERIC_CALIBRATE_DELAY=y

187 CONFIG_ARCH_HAS_CPU_RELAX=y

188 CONFIG_ARCH_HAS_CACHE_LINE_SIZE=y

189 CONFIG_ARCH_HAS_FILTER_PGPROT=y

190 CONFIG_HAVE_SETUP_PER_CPU_AREA=y

191 CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK=y

192 CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK=y

193 CONFIG_ARCH_HIBERNATION_POSSIBLE=y

194 CONFIG_ARCH_SUSPEND_POSSIBLE=y

195 CONFIG_ARCH_WANT_GENERAL_HUGETLB=y

196 CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC=y

197 CONFIG_ARCH_SUPPORTS_UPROBES=y

198 CONFIG_FIX_EARLYCON_MEM=y

199 CONFIG_PGTABLE_LEVELS =2

200 CONFIG_CC_HAS_SANE_STACKPROTECTOR=y

201

202 #

203 # Processor type and features

204 #

205 CONFIG_ZONE_DMA=y

206 CONFIG_SMP=n

207 CONFIG_X86_32_SMP=n

208 CONFIG_X86_FEATURE_NAMES=y

209 CONFIG_RETPOLINE=y

210 CONFIG_X86_EXTENDED_PLATFORM=y

211 CONFIG_IOSF_MBI=y

212 CONFIG_SCHED_OMIT_FRAME_POINTER=y

213 CONFIG_M686=y

214 CONFIG_X86_GENERIC=y

215 CONFIG_X86_INTERNODE_CACHE_SHIFT =6
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216 CONFIG_X86_L1_CACHE_SHIFT =6

217 CONFIG_X86_INTEL_USERCOPY=y

218 CONFIG_X86_USE_PPRO_CHECKSUM=y

219 CONFIG_X86_TSC=y

220 CONFIG_X86_CMPXCHG64=y

221 CONFIG_X86_CMOV=y

222 CONFIG_X86_MINIMUM_CPU_FAMILY =6

223 CONFIG_X86_DEBUGCTLMSR=y

224 CONFIG_CPU_SUP_INTEL=y

225 CONFIG_CPU_SUP_AMD=y

226 CONFIG_CPU_SUP_HYGON=y

227 CONFIG_CPU_SUP_CENTAUR=y

228 CONFIG_CPU_SUP_TRANSMETA_32=y

229 CONFIG_CPU_SUP_ZHAOXIN=y

230 CONFIG_DMI=y

231 CONFIG_NR_CPUS_RANGE_BEGIN =1

232 CONFIG_NR_CPUS_RANGE_END =1

233 CONFIG_NR_CPUS_DEFAULT =1

234 CONFIG_NR_CPUS =1

235 CONFIG_X86_UP_APIC=n

236

237 #

238 # Performance monitoring

239 #

240 CONFIG_PERF_EVENTS_INTEL_UNCORE=y

241 CONFIG_PERF_EVENTS_INTEL_RAPL=y

242 CONFIG_PERF_EVENTS_INTEL_CSTATE=y

243 # end of Performance monitoring

244

245 CONFIG_X86_16BIT=y

246 CONFIG_X86_ESPFIX32=y

247 CONFIG_X86_REBOOTFIXUPS=y

248 CONFIG_MICROCODE=y

249 CONFIG_MICROCODE_INTEL=y

250 CONFIG_MICROCODE_OLD_INTERFACE=y

251 CONFIG_X86_MSR=y
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252 CONFIG_X86_CPUID=y

253 CONFIG_NOHIGHMEM=y

254 CONFIG_PAGE_OFFSET =0 xC0000000

255 CONFIG_ARCH_FLATMEM_ENABLE=y

256 CONFIG_ARCH_SPARSEMEM_ENABLE=y

257 CONFIG_ARCH_SELECT_MEMORY_MODEL=y

258 CONFIG_ILLEGAL_POINTER_VALUE =0

259 CONFIG_X86_CHECK_BIOS_CORRUPTION=y

260 CONFIG_X86_BOOTPARAM_MEMORY_CORRUPTION_CHECK=y

261 CONFIG_X86_RESERVE_LOW =64

262 CONFIG_MTRR=y

263 CONFIG_X86_PAT=y

264 CONFIG_ARCH_USES_PG_UNCACHED=y

265 CONFIG_ARCH_RANDOM=y

266 CONFIG_X86_SMAP=y

267 CONFIG_X86_INTEL_UMIP=y

268 CONFIG_X86_INTEL_TSX_MODE_OFF=y

269 CONFIG_SECCOMP=y

270 CONFIG_HZ_100=y

271 CONFIG_HZ =100

272 CONFIG_SCHED_HRTICK=y

273 CONFIG_KEXEC=y

274 CONFIG_PHYSICAL_START =0 x1000000

275 CONFIG_RELOCATABLE=y

276 CONFIG_X86_NEED_RELOCS=y

277 CONFIG_PHYSICAL_ALIGN =0 x200000

278 CONFIG_MODIFY_LDT_SYSCALL=y

279 # end of Processor type and features

280

281 #

282 # Power management and ACPI options

283 #

284 CONFIG_SUSPEND=n

285 CONFIG_HIBERNATION=n

286 CONFIG_PM=n

287 CONFIG_ARCH_SUPPORTS_ACPI=y
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288 CONFIG_ACPI=n

289

290 #

291 # CPU Frequency scaling

292 #

293 CONFIG_CPU_FREQ=y

294 CONFIG_CPU_FREQ_GOV_ATTR_SET=y

295 CONFIG_CPU_FREQ_GOV_COMMON=y

296 CONFIG_CPU_FREQ_DEFAULT_GOV_USERSPACE=y

297 CONFIG_CPU_FREQ_GOV_PERFORMANCE=y

298 CONFIG_CPU_FREQ_GOV_USERSPACE=y

299 CONFIG_CPU_FREQ_GOV_ONDEMAND=y

300

301 #

302 # CPU Idle

303 #

304 CONFIG_CPU_IDLE=y

305 CONFIG_CPU_IDLE_GOV_LADDER=y

306 CONFIG_CPU_IDLE_GOV_MENU=y

307 # end of CPU Idle

308

309 CONFIG_INTEL_IDLE=y

310 # end of Power management and ACPI options

311

312 #

313 # Bus options (PCI etc.)

314 #

315 CONFIG_PCI_GOANY=y

316 CONFIG_PCI_BIOS=y

317 CONFIG_PCI_DIRECT=y

318 CONFIG_ISA_DMA_API=y

319 CONFIG_AMD_NB=y

320 # end of Bus options (PCI etc.)

321

322 #

323 # Binary Emulations
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324 #

325 CONFIG_COMPAT_32=y

326 # end of Binary Emulations

327

328 CONFIG_HAVE_ATOMIC_IOMAP=y

329

330 #

331 # Firmware Drivers

332 #

333 CONFIG_FIRMWARE_MEMMAP=y

334 CONFIG_DMIID=y

335 CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK=y

336 # end of Firmware Drivers

337

338 CONFIG_HAVE_KVM=y

339 CONFIG_VIRTUALIZATION=y

340

341 #

342 # General architecture -dependent options

343 #

344 CONFIG_CRASH_CORE=y

345 CONFIG_KEXEC_CORE=y

346 CONFIG_OPROFILE=m

347 CONFIG_OPROFILE_EVENT_MULTIPLEX=y

348 CONFIG_HAVE_OPROFILE=y

349 CONFIG_OPROFILE_NMI_TIMER=y

350 CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS=y

351 CONFIG_ARCH_USE_BUILTIN_BSWAP=y

352 CONFIG_HAVE_IOREMAP_PROT=y

353 CONFIG_HAVE_KPROBES=y

354 CONFIG_HAVE_KRETPROBES=y

355 CONFIG_HAVE_OPTPROBES=y

356 CONFIG_HAVE_KPROBES_ON_FTRACE=y

357 CONFIG_HAVE_FUNCTION_ERROR_INJECTION=y

358 CONFIG_HAVE_NMI=y

359 CONFIG_HAVE_ARCH_TRACEHOOK=y
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360 CONFIG_HAVE_DMA_CONTIGUOUS=y

361 CONFIG_GENERIC_SMP_IDLE_THREAD=y

362 CONFIG_ARCH_HAS_FORTIFY_SOURCE=y

363 CONFIG_ARCH_HAS_SET_MEMORY=y

364 CONFIG_ARCH_HAS_SET_DIRECT_MAP=y

365 CONFIG_HAVE_ARCH_THREAD_STRUCT_WHITELIST=y

366 CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT=y

367 CONFIG_ARCH_32BIT_OFF_T=y

368 CONFIG_HAVE_ASM_MODVERSIONS=y

369 CONFIG_HAVE_REGS_AND_STACK_ACCESS_API=y

370 CONFIG_HAVE_RSEQ=y

371 CONFIG_HAVE_FUNCTION_ARG_ACCESS_API=y

372 CONFIG_HAVE_CLK=y

373 CONFIG_HAVE_HW_BREAKPOINT=y

374 CONFIG_HAVE_MIXED_BREAKPOINTS_REGS=y

375 CONFIG_HAVE_USER_RETURN_NOTIFIER=y

376 CONFIG_HAVE_PERF_EVENTS_NMI=y

377 CONFIG_HAVE_HARDLOCKUP_DETECTOR_PERF=y

378 CONFIG_HAVE_PERF_REGS=y

379 CONFIG_HAVE_PERF_USER_STACK_DUMP=y

380 CONFIG_HAVE_ARCH_JUMP_LABEL=y

381 CONFIG_HAVE_ARCH_JUMP_LABEL_RELATIVE=y

382 CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG=y

383 CONFIG_HAVE_ALIGNED_STRUCT_PAGE=y

384 CONFIG_HAVE_CMPXCHG_LOCAL=y

385 CONFIG_HAVE_CMPXCHG_DOUBLE=y

386 CONFIG_ARCH_WANT_IPC_PARSE_VERSION=y

387 CONFIG_HAVE_ARCH_SECCOMP_FILTER=y

388 CONFIG_SECCOMP_FILTER=y

389 CONFIG_HAVE_ARCH_STACKLEAK=y

390 CONFIG_HAVE_STACKPROTECTOR=y

391 CONFIG_CC_HAS_STACKPROTECTOR_NONE=y

392 CONFIG_STACKPROTECTOR=y

393 CONFIG_STACKPROTECTOR_STRONG=y

394 CONFIG_HAVE_ARCH_WITHIN_STACK_FRAMES=y

395 CONFIG_HAVE_IRQ_TIME_ACCOUNTING=y
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396 CONFIG_HAVE_MOVE_PMD=y

397 CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE=y

398 CONFIG_ARCH_WANT_HUGE_PMD_SHARE=y

399 CONFIG_HAVE_MOD_ARCH_SPECIFIC=y

400 CONFIG_MODULES_USE_ELF_REL=y

401 CONFIG_ARCH_HAS_ELF_RANDOMIZE=y

402 CONFIG_HAVE_ARCH_MMAP_RND_BITS=y

403 CONFIG_HAVE_EXIT_THREAD=y

404 CONFIG_ARCH_MMAP_RND_BITS =8

405 CONFIG_HAVE_COPY_THREAD_TLS=y

406 CONFIG_CLONE_BACKWARDS=y

407 CONFIG_OLD_SIGSUSPEND3=y

408 CONFIG_OLD_SIGACTION=y

409 CONFIG_64BIT_TIME=y

410 CONFIG_COMPAT_32BIT_TIME=y

411 CONFIG_ARCH_HAS_STRICT_KERNEL_RWX=y

412 CONFIG_STRICT_KERNEL_RWX=y

413 CONFIG_ARCH_HAS_STRICT_MODULE_RWX=y

414 CONFIG_STRICT_MODULE_RWX=y

415 CONFIG_ARCH_HAS_REFCOUNT=y

416 CONFIG_HAVE_ARCH_PREL32_RELOCATIONS=y

417 CONFIG_ARCH_HAS_MEM_ENCRYPT=y

418

419 #

420 # GCOV -based kernel profiling

421 #

422 CONFIG_ARCH_HAS_GCOV_PROFILE_ALL=y

423 # end of GCOV -based kernel profiling

424

425 CONFIG_PLUGIN_HOSTCC=""

426 CONFIG_HAVE_GCC_PLUGINS=y

427 # end of General architecture -dependent options

428

429 CONFIG_RT_MUTEXES=y

430 CONFIG_BASE_SMALL =0

431 CONFIG_MODULES=y
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432 CONFIG_MODULE_UNLOAD=y

433 CONFIG_MODULE_FORCE_UNLOAD=y

434 CONFIG_MODULES_TREE_LOOKUP=y

435 CONFIG_BLOCK=y

436 CONFIG_BLK_SCSI_REQUEST=y

437 CONFIG_BLK_DEV_BSG=y

438 CONFIG_BLK_DEBUG_FS=y

439

440 #

441 # Partition Types

442 #

443 CONFIG_PARTITION_ADVANCED=y

444 CONFIG_OSF_PARTITION=y

445 CONFIG_AMIGA_PARTITION=y

446 CONFIG_MAC_PARTITION=y

447 CONFIG_MSDOS_PARTITION=y

448 CONFIG_BSD_DISKLABEL=y

449 CONFIG_MINIX_SUBPARTITION=y

450 CONFIG_SOLARIS_X86_PARTITION=y

451 CONFIG_UNIXWARE_DISKLABEL=y

452 CONFIG_SGI_PARTITION=y

453 CONFIG_SUN_PARTITION=y

454 CONFIG_KARMA_PARTITION=y

455 CONFIG_EFI_PARTITION=y

456 # end of Partition Types

457

458 CONFIG_BLK_MQ_PCI=y

459 CONFIG_BLK_MQ_VIRTIO=y

460 CONFIG_BLK_MQ_RDMA=y

461

462 #

463 # IO Schedulers

464 #

465 CONFIG_MQ_IOSCHED_DEADLINE=y

466 CONFIG_MQ_IOSCHED_KYBER=y

467 # end of IO Schedulers
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468

469 CONFIG_INLINE_SPIN_UNLOCK_IRQ=y

470 CONFIG_INLINE_READ_UNLOCK=y

471 CONFIG_INLINE_READ_UNLOCK_IRQ=y

472 CONFIG_INLINE_WRITE_UNLOCK=y

473 CONFIG_INLINE_WRITE_UNLOCK_IRQ=y

474 CONFIG_ARCH_SUPPORTS_ATOMIC_RMW=y

475 CONFIG_ARCH_USE_QUEUED_SPINLOCKS=y

476 CONFIG_ARCH_USE_QUEUED_RWLOCKS=y

477 CONFIG_ARCH_HAS_SYNC_CORE_BEFORE_USERMODE=y

478 CONFIG_FREEZER=y

479

480 #

481 # Executable file formats

482 #

483 CONFIG_BINFMT_ELF=y

484 CONFIG_ELFCORE=y

485 CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS=y

486 CONFIG_BINFMT_SCRIPT=y

487 CONFIG_BINFMT_MISC=y

488 CONFIG_COREDUMP=y

489 # end of Executable file formats

490

491 #

492 # Memory Management options

493 #

494 CONFIG_SELECT_MEMORY_MODEL=y

495 CONFIG_FLATMEM_MANUAL=y

496 CONFIG_FLATMEM=y

497 CONFIG_FLAT_NODE_MEM_MAP=y

498 CONFIG_SPARSEMEM_STATIC=y

499 CONFIG_HAVE_MEMBLOCK_NODE_MAP=y

500 CONFIG_HAVE_FAST_GUP=y

501 CONFIG_SPLIT_PTLOCK_CPUS =4

502 CONFIG_COMPACTION=y

503 CONFIG_MIGRATION=y
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504 CONFIG_BOUNCE=y

505 CONFIG_VIRT_TO_BUS=y

506 CONFIG_MMU_NOTIFIER=y

507 CONFIG_DEFAULT_MMAP_MIN_ADDR =4096

508 CONFIG_NEED_PER_CPU_KM=y

509 CONFIG_GENERIC_EARLY_IOREMAP=y

510 CONFIG_ARCH_HAS_PTE_SPECIAL=y

511 # end of Memory Management options

512

513 CONFIG_NET=y

514 CONFIG_NET_INGRESS=y

515 CONFIG_SKB_EXTENSIONS=y

516

517 #

518 # Networking options

519 #

520 CONFIG_PACKET=y

521 CONFIG_UNIX=y

522 CONFIG_UNIX_SCM=y

523 CONFIG_XFRM=y

524 CONFIG_XFRM_ALGO=y

525 CONFIG_XFRM_USER=y

526 CONFIG_INET=y

527 CONFIG_IP_MULTICAST=y

528 CONFIG_IP_ADVANCED_ROUTER=y

529 CONFIG_IP_MULTIPLE_TABLES=y

530 CONFIG_IP_ROUTE_MULTIPATH=y

531 CONFIG_IP_ROUTE_VERBOSE=y

532 CONFIG_IP_PNP=y

533 CONFIG_IP_PNP_DHCP=y

534 CONFIG_IP_PNP_BOOTP=y

535 CONFIG_IP_PNP_RARP=y

536 CONFIG_NET_IP_TUNNEL=y

537 CONFIG_IP_MROUTE_COMMON=y

538 CONFIG_IP_MROUTE=y

539 CONFIG_IP_PIMSM_V1=y
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540 CONFIG_IP_PIMSM_V2=y

541 CONFIG_SYN_COOKIES=y

542 CONFIG_INET_TUNNEL=y

543 CONFIG_TCP_CONG_ADVANCED=y

544 CONFIG_TCP_CONG_CUBIC=y

545 CONFIG_DEFAULT_CUBIC=y

546 CONFIG_DEFAULT_TCP_CONG="cubic"

547 CONFIG_TCP_MD5SIG=y

548 CONFIG_IPV6=y

549 CONFIG_INET6_AH=y

550 CONFIG_INET6_ESP=y

551 CONFIG_IPV6_SIT=y

552 CONFIG_IPV6_NDISC_NODETYPE=y

553 CONFIG_NETLABEL=y

554 CONFIG_NETWORK_SECMARK=y

555 CONFIG_NET_PTP_CLASSIFY=y

556 CONFIG_NETFILTER=y

557

558 #

559 # Core Netfilter Configuration

560 #

561 CONFIG_NETFILTER_INGRESS=y

562 CONFIG_NETFILTER_NETLINK=y

563 CONFIG_NETFILTER_NETLINK_LOG=y

564 CONFIG_NF_CONNTRACK=y

565 CONFIG_NF_LOG_COMMON=m

566 CONFIG_NF_CONNTRACK_SECMARK=y

567 CONFIG_NF_CONNTRACK_PROCFS=y

568 CONFIG_NF_CONNTRACK_FTP=y

569 CONFIG_NF_CONNTRACK_IRC=y

570 CONFIG_NF_CONNTRACK_SIP=y

571 CONFIG_NF_CT_NETLINK=y

572 CONFIG_NF_NAT=m

573 CONFIG_NF_NAT_FTP=m

574 CONFIG_NF_NAT_IRC=m

575 CONFIG_NF_NAT_SIP=m
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576 CONFIG_NF_NAT_MASQUERADE=y

577 CONFIG_NETFILTER_XTABLES=y

578

579 #

580 # Xtables combined modules

581 #

582 CONFIG_NETFILTER_XT_MARK=m

583

584 #

585 # Xtables targets

586 #

587 CONFIG_NETFILTER_XT_TARGET_CONNSECMARK=y

588 CONFIG_NETFILTER_XT_TARGET_LOG=m

589 CONFIG_NETFILTER_XT_NAT=m

590 CONFIG_NETFILTER_XT_TARGET_NFLOG=y

591 CONFIG_NETFILTER_XT_TARGET_MASQUERADE=m

592 CONFIG_NETFILTER_XT_TARGET_SECMARK=y

593 CONFIG_NETFILTER_XT_TARGET_TCPMSS=y

594

595 #

596 # Xtables matches

597 #

598 CONFIG_NETFILTER_XT_MATCH_ADDRTYPE=m

599 CONFIG_NETFILTER_XT_MATCH_CONNTRACK=y

600 CONFIG_NETFILTER_XT_MATCH_POLICY=y

601 CONFIG_NETFILTER_XT_MATCH_STATE=y

602 # end of Core Netfilter Configuration

603

604

605 #

606 # IP: Netfilter Configuration

607 #

608 CONFIG_NF_DEFRAG_IPV4=y

609 CONFIG_NF_LOG_ARP=m

610 CONFIG_NF_LOG_IPV4=m

611 CONFIG_NF_REJECT_IPV4=y
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612 CONFIG_IP_NF_IPTABLES=y

613 CONFIG_IP_NF_FILTER=y

614 CONFIG_IP_NF_TARGET_REJECT=y

615 CONFIG_IP_NF_NAT=m

616 CONFIG_IP_NF_TARGET_MASQUERADE=m

617 CONFIG_IP_NF_MANGLE=y

618 # end of IP: Netfilter Configuration

619

620 #

621 # IPv6: Netfilter Configuration

622 #

623 CONFIG_NF_REJECT_IPV6=y

624 CONFIG_NF_LOG_IPV6=m

625 CONFIG_IP6_NF_IPTABLES=y

626 CONFIG_IP6_NF_MATCH_IPV6HEADER=y

627 CONFIG_IP6_NF_FILTER=y

628 CONFIG_IP6_NF_TARGET_REJECT=y

629 CONFIG_IP6_NF_MANGLE=y

630 # end of IPv6: Netfilter Configuration

631

632 CONFIG_NF_DEFRAG_IPV6=y

633 CONFIG_HAVE_NET_DSA=y

634 CONFIG_NET_SCHED=y

635

636 #

637 # Queueing/Scheduling

638 #

639

640 #

641 # Classification

642 #

643 CONFIG_NET_CLS=y

644 CONFIG_NET_EMATCH=y

645 CONFIG_NET_EMATCH_STACK =32

646 CONFIG_NET_CLS_ACT=y

647 CONFIG_NET_SCH_FIFO=y
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648 CONFIG_DNS_RESOLVER=y

649 CONFIG_NET_RX_BUSY_POLL=y

650 CONFIG_BQL=y

651 # end of Networking options

652

653 CONFIG_CAN=m

654 CONFIG_CAN_RAW=m

655 CONFIG_CAN_BCM=m

656 CONFIG_CAN_GW=m

657

658 #

659 # CAN Device Drivers

660 #

661 CONFIG_CAN_DEV=m

662 CONFIG_CAN_CALC_BITTIMING=y

663 CONFIG_CAN_SJA1000=m

664 CONFIG_CAN_SJA1000_ISA=m

665

666 CONFIG_CAN_DEBUG_DEVICES=y

667 # end of CAN Device Drivers

668

669 CONFIG_FIB_RULES=y

670 CONFIG_DST_CACHE=y

671 CONFIG_GRO_CELLS=y

672 CONFIG_FAILOVER=y

673 CONFIG_HAVE_EBPF_JIT=y

674

675 #

676 # Device Drivers

677 #

678 CONFIG_HAVE_EISA=y

679 CONFIG_HAVE_PCI=y

680 CONFIG_PCI=y

681 CONFIG_PCI_DOMAINS=y

682 CONFIG_PCIEPORTBUS=y

683 CONFIG_PCIEASPM=y
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684 CONFIG_PCIEASPM_DEFAULT=y

685 CONFIG_PCI_MSI=n

686 CONFIG_PCI_QUIRKS=y

687 CONFIG_PCI_LOCKLESS_CONFIG=y

688 CONFIG_PCI_LABEL=y

689

690 #

691 # Generic Driver Options

692 #

693 CONFIG_UEVENT_HELPER=y

694 CONFIG_UEVENT_HELPER_PATH="/sbin/hotplug"

695 CONFIG_DEVTMPFS=y

696 CONFIG_DEVTMPFS_MOUNT=y

697

698 #

699 # Firmware loader

700 #

701 CONFIG_FW_LOADER=y

702 CONFIG_EXTRA_FIRMWARE=""

703 # end of Firmware loader

704

705 CONFIG_ALLOW_DEV_COREDUMP=y

706 CONFIG_DEBUG_DEVRES=y

707 CONFIG_GENERIC_CPU_AUTOPROBE=y

708 CONFIG_GENERIC_CPU_VULNERABILITIES=y

709 CONFIG_DMA_SHARED_BUFFER=y

710 # end of Generic Driver Options

711

712 CONFIG_CONNECTOR=y

713 CONFIG_PROC_EVENTS=y

714 CONFIG_ARCH_MIGHT_HAVE_PC_PARPORT=y

715 CONFIG_BLK_DEV=y

716 CONFIG_CDROM=y

717 CONFIG_BLK_DEV_LOOP=y

718 CONFIG_BLK_DEV_LOOP_MIN_COUNT =8

719
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720 CONFIG_HAVE_IDE=y

721

722 #

723 # SCSI device support

724 #

725 CONFIG_SCSI_MOD=y

726 CONFIG_SCSI=y

727 CONFIG_SCSI_DMA=y

728 CONFIG_SCSI_PROC_FS=y

729

730 #

731 # SCSI support type (disk , tape , CD -ROM)

732 #

733 CONFIG_BLK_DEV_SD=y

734 CONFIG_BLK_DEV_SR=y

735 CONFIG_CHR_DEV_SG=y

736 CONFIG_SCSI_CONSTANTS=y

737

738 #

739 # SCSI Transports

740 #

741 CONFIG_SCSI_SPI_ATTRS=y

742 # end of SCSI Transports

743

744 # end of SCSI device support

745

746 CONFIG_ATA=y

747 CONFIG_ATA_VERBOSE_ERROR=y

748 CONFIG_SATA_PMP=y

749

750 #

751 # Controllers with non -SFF native interface

752 #

753 CONFIG_SATA_AHCI=y

754 CONFIG_SATA_MOBILE_LPM_POLICY =0

755 CONFIG_ATA_SFF=y
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756

757 #

758 # SFF controllers with custom DMA interface

759 #

760 CONFIG_ATA_BMDMA=y

761

762 #

763 # SATA SFF controllers with BMDMA

764 #

765 CONFIG_ATA_PIIX=y

766

767 #

768 # PIO -only SFF controllers

769 #

770

771 #

772 # Generic fallback / legacy drivers

773 #

774 CONFIG_ATA_GENERIC=y

775

776 CONFIG_NETDEVICES=y

777 CONFIG_MII=y

778 CONFIG_NET_CORE=y

779 CONFIG_NETCONSOLE=y

780 CONFIG_NETPOLL=y

781 CONFIG_NET_POLL_CONTROLLER=y

782 CONFIG_VIRTIO_NET=y

783

784 #

785 # CAIF transport drivers

786 #

787

788 CONFIG_ETHERNET=y

789 CONFIG_NET_VENDOR_AGERE=y

790 CONFIG_NET_VENDOR_ALACRITECH=y

791 CONFIG_NET_VENDOR_AMAZON=y
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792 CONFIG_NET_VENDOR_AMD=y

793 CONFIG_PCNET32=y

794 CONFIG_NET_VENDOR_AQUANTIA=y

795 CONFIG_NET_VENDOR_CADENCE=y

796 CONFIG_NET_VENDOR_CAVIUM=y

797 CONFIG_NET_VENDOR_CORTINA=y

798 CONFIG_NET_VENDOR_EZCHIP=y

799 CONFIG_NET_VENDOR_GOOGLE=y

800 CONFIG_NET_VENDOR_HUAWEI=y

801 CONFIG_NET_VENDOR_I825XX=y

802 CONFIG_NET_VENDOR_INTEL=y

803 CONFIG_E100=y

804 CONFIG_E1000=y

805 CONFIG_E1000E=y

806 CONFIG_E1000E_HWTS=y

807 CONFIG_IGB=y

808 CONFIG_IGB_HWMON=y

809 CONFIG_NET_VENDOR_MICROCHIP=y

810 CONFIG_NET_VENDOR_MICROSEMI=y

811 CONFIG_NET_VENDOR_NETERION=y

812 CONFIG_NET_VENDOR_NETRONOME=y

813 CONFIG_NET_VENDOR_NI=y

814 CONFIG_NET_VENDOR_PACKET_ENGINES=y

815 CONFIG_NET_VENDOR_PENSANDO=y

816 CONFIG_NET_VENDOR_QUALCOMM=y

817 CONFIG_NET_VENDOR_RENESAS=y

818 CONFIG_NET_VENDOR_ROCKER=y

819 CONFIG_NET_VENDOR_SOLARFLARE=y

820 CONFIG_NET_VENDOR_SOCIONEXT=y

821 CONFIG_NET_VENDOR_SYNOPSYS=y

822 CONFIG_NET_VENDOR_XILINX=y

823 CONFIG_USB_NET_DRIVERS=y

824

825 #

826 # Enable WiMAX (Networking options) to see the WiMAX drivers

827 #
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828 CONFIG_NET_FAILOVER=y

829

830 #

831 # Input device support

832 #

833 CONFIG_INPUT=y

834 CONFIG_INPUT_LEDS=y

835 CONFIG_INPUT_FF_MEMLESS=y

836

837 #

838 # Userland interfaces

839 #

840 CONFIG_INPUT_EVDEV=y

841

842 #

843 # Hardware I/O ports

844 #

845 CONFIG_ARCH_MIGHT_HAVE_PC_SERIO=y

846 # end of Hardware I/O ports

847 # end of Input device support

848

849 #

850 # Character devices

851 #

852 CONFIG_TTY=y

853 CONFIG_VT=y

854 CONFIG_CONSOLE_TRANSLATIONS=y

855 CONFIG_VT_CONSOLE=y

856 CONFIG_HW_CONSOLE=y

857 CONFIG_VT_HW_CONSOLE_BINDING=y

858 CONFIG_UNIX98_PTYS=y

859 CONFIG_LDISC_AUTOLOAD=y

860 CONFIG_DEVMEM=y

861 CONFIG_DEVKMEM=y

862

863 #
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864 # Serial drivers

865 #

866 CONFIG_SERIAL_EARLYCON=y

867 CONFIG_SERIAL_8250=y

868 CONFIG_SERIAL_8250_DEPRECATED_OPTIONS=y

869 CONFIG_SERIAL_8250_CONSOLE=y

870 CONFIG_SERIAL_8250_DMA=y

871 CONFIG_SERIAL_8250_PCI=y

872 CONFIG_SERIAL_8250_EXAR=y

873 CONFIG_SERIAL_8250_NR_UARTS =32

874 CONFIG_SERIAL_8250_RUNTIME_UARTS =4

875 CONFIG_SERIAL_8250_EXTENDED=y

876 CONFIG_SERIAL_8250_SHARE_IRQ=y

877 CONFIG_SERIAL_8250_DWLIB=y

878 CONFIG_SERIAL_8250_LPSS=y

879 CONFIG_SERIAL_8250_MID=y

880

881 #

882 # Non -8250 serial port support

883 #

884 CONFIG_SERIAL_CORE=y

885 CONFIG_SERIAL_CORE_CONSOLE=y

886 # end of Serial drivers

887

888 CONFIG_SERIAL_MCTRL_GPIO=y

889 CONFIG_HW_RANDOM=y

890 CONFIG_HW_RANDOM_INTEL=y

891 CONFIG_NVRAM=y

892 CONFIG_RAW_DRIVER=y

893 CONFIG_MAX_RAW_DEVS =256

894 CONFIG_DEVPORT=y

895 # end of Character devices

896

897 #

898 # I2C support

899 #
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900 CONFIG_I2C=y

901 CONFIG_I2C_BOARDINFO=y

902 CONFIG_I2C_COMPAT=y

903 CONFIG_I2C_CHARDEV=y

904 CONFIG_I2C_MUX=y

905

906 CONFIG_I2C_HELPER_AUTO=y

907 CONFIG_I2C_SMBUS=y

908 CONFIG_I2C_ALGOBIT=y

909

910 #

911 # PC SMBus host controller drivers

912 #

913 CONFIG_I2C_I801=y

914 # end of I2C support

915

916 CONFIG_PPS=y

917

918 #

919 # PTP clock support

920 #

921 CONFIG_PTP_1588_CLOCK=y

922 # end of PTP clock support

923

924 CONFIG_GPIOLIB=y

925 CONFIG_GPIOLIB_FASTPATH_LIMIT =512

926 CONFIG_GPIO_SYSFS=y

927

928 #

929 # Memory mapped GPIO drivers

930 #

931 CONFIG_GPIO_ICH=y

932 # end of Memory mapped GPIO drivers

933

934 CONFIG_POWER_SUPPLY=y

935 CONFIG_POWER_SUPPLY_HWMON=y
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936 CONFIG_HWMON=y

937

938 #

939 # Native drivers

940 #

941 CONFIG_SENSORS_MAX6650=m

942 CONFIG_THERMAL=y

943 CONFIG_THERMAL_EMERGENCY_POWEROFF_DELAY_MS =0

944 CONFIG_THERMAL_HWMON=y

945 CONFIG_THERMAL_WRITABLE_TRIPS=y

946 CONFIG_THERMAL_DEFAULT_GOV_STEP_WISE=y

947 CONFIG_THERMAL_GOV_FAIR_SHARE=y

948 CONFIG_THERMAL_GOV_STEP_WISE=y

949 CONFIG_THERMAL_GOV_USER_SPACE=y

950

951 CONFIG_WATCHDOG=y

952 CONFIG_WATCHDOG_HANDLE_BOOT_ENABLED=y

953 CONFIG_WATCHDOG_OPEN_TIMEOUT =0

954

955 #

956 # USB -based Watchdog Cards

957 #

958 CONFIG_SSB_POSSIBLE=y

959 CONFIG_BCMA_POSSIBLE=y

960

961 #

962 # Multifunction device drivers

963 #

964 CONFIG_MFD_CORE=y

965 CONFIG_LPC_ICH=y

966 # end of Multifunction device drivers

967

968

969 #

970 # Graphics support

971 #
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972 CONFIG_INTEL_GTT=y

973 CONFIG_VGA_ARB=y

974 CONFIG_VGA_ARB_MAX_GPUS =16

975 CONFIG_DRM=y

976 CONFIG_DRM_MIPI_DSI=y

977 CONFIG_DRM_KMS_HELPER=y

978 CONFIG_DRM_KMS_FB_HELPER=y

979 CONFIG_DRM_FBDEV_EMULATION=y

980 CONFIG_DRM_FBDEV_OVERALLOC =100

981

982 CONFIG_DRM_I915=y

983 CONFIG_DRM_I915_FORCE_PROBE=""

984 CONFIG_DRM_I915_CAPTURE_ERROR=y

985 CONFIG_DRM_I915_COMPRESS_ERROR=y

986 CONFIG_DRM_I915_USERPTR=y

987 CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND =250

988 CONFIG_DRM_I915_SPIN_REQUEST =5

989 CONFIG_DRM_PANEL=y

990

991 CONFIG_DRM_BRIDGE=y

992 CONFIG_DRM_PANEL_BRIDGE=y

993

994 CONFIG_DRM_PANEL_ORIENTATION_QUIRKS=y

995

996 #

997 # Frame buffer Devices

998 #

999 CONFIG_FB_CMDLINE=y

1000 CONFIG_FB_NOTIFY=y

1001 CONFIG_FB=y

1002 CONFIG_FB_CFB_FILLRECT=y

1003 CONFIG_FB_CFB_COPYAREA=y

1004 CONFIG_FB_CFB_IMAGEBLIT=y

1005 CONFIG_FB_SYS_FILLRECT=y

1006 CONFIG_FB_SYS_COPYAREA=y

1007 CONFIG_FB_SYS_IMAGEBLIT=y
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1008 CONFIG_FB_SYS_FOPS=y

1009 CONFIG_FB_DEFERRED_IO=y

1010 CONFIG_FB_MODE_HELPERS=y

1011 CONFIG_FB_TILEBLITTING=y

1012

1013 CONFIG_HDMI=y

1014

1015 #

1016 # Console display driver support

1017 #

1018 CONFIG_VGA_CONSOLE=y

1019 CONFIG_DUMMY_CONSOLE=y

1020 CONFIG_DUMMY_CONSOLE_COLUMNS =80

1021 CONFIG_DUMMY_CONSOLE_ROWS =25

1022 CONFIG_FRAMEBUFFER_CONSOLE=y

1023 CONFIG_FRAMEBUFFER_CONSOLE_DETECT_PRIMARY=y

1024 # end of Console display driver support

1025

1026 # end of Graphics support

1027

1028

1029 #

1030 # HID support

1031 #

1032 CONFIG_HID=y

1033 CONFIG_HIDRAW=y

1034 CONFIG_HID_GENERIC=y

1035

1036 #

1037 # Special HID drivers

1038 #

1039 CONFIG_HID_A4TECH=y

1040 CONFIG_HID_APPLE=y

1041 CONFIG_HID_BELKIN=y

1042 CONFIG_HID_CHERRY=y

1043 CONFIG_HID_CHICONY=y
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1044 CONFIG_HID_CYPRESS=y

1045 CONFIG_HID_EZKEY=y

1046 CONFIG_HID_GYRATION=y

1047 CONFIG_HID_ITE=y

1048 CONFIG_HID_KENSINGTON=y

1049 CONFIG_HID_LOGITECH=y

1050 CONFIG_LOGITECH_FF=y

1051 CONFIG_LOGIWHEELS_FF=y

1052 CONFIG_HID_REDRAGON=y

1053 CONFIG_HID_MICROSOFT=y

1054 CONFIG_HID_MONTEREY=y

1055 CONFIG_HID_NTRIG=y

1056 CONFIG_HID_PANTHERLORD=y

1057 CONFIG_PANTHERLORD_FF=y

1058 CONFIG_HID_PETALYNX=y

1059 CONFIG_HID_SAMSUNG=y

1060 CONFIG_HID_SONY=y

1061 CONFIG_HID_SUNPLUS=y

1062 CONFIG_HID_TOPSEED=y

1063 # end of Special HID drivers

1064

1065 #

1066 # USB HID support

1067 #

1068 CONFIG_USB_HID=y

1069 CONFIG_HID_PID=y

1070 CONFIG_USB_HIDDEV=y

1071 # end of USB HID support

1072 # end of HID support

1073

1074 CONFIG_USB_OHCI_LITTLE_ENDIAN=y

1075 CONFIG_USB_SUPPORT=y

1076 CONFIG_USB_COMMON=y

1077 CONFIG_USB_ARCH_HAS_HCD=y

1078 CONFIG_USB=y

1079 CONFIG_USB_PCI=y
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1080 CONFIG_USB_ANNOUNCE_NEW_DEVICES=y

1081

1082 #

1083 # Miscellaneous USB options

1084 #

1085 CONFIG_USB_DEFAULT_PERSIST=y

1086 CONFIG_USB_AUTOSUSPEND_DELAY =2

1087 CONFIG_USB_MON=y

1088

1089 #

1090 # USB Host Controller Drivers

1091 #

1092 CONFIG_USB_EHCI_HCD=y

1093 CONFIG_USB_EHCI_PCI=y

1094 CONFIG_USB_OHCI_HCD=y

1095 CONFIG_USB_OHCI_HCD_PCI=y

1096 CONFIG_USB_UHCI_HCD=y

1097

1098 #

1099 # USB Device Class drivers

1100 #

1101 CONFIG_USB_PRINTER=y

1102

1103 #

1104 # also be needed; see USB_STORAGE Help for more info

1105 #

1106 CONFIG_USB_STORAGE=y

1107

1108 CONFIG_NEW_LEDS=y

1109 CONFIG_LEDS_CLASS=y

1110

1111 #

1112 # LED Triggers

1113 #

1114 CONFIG_LEDS_TRIGGERS=y

1115
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1116 #

1117 # iptables trigger is under Netfilter config (LED target)

1118 #

1119 CONFIG_INFINIBAND=y

1120 CONFIG_INFINIBAND_ADDR_TRANS=y

1121 CONFIG_INFINIBAND_VIRT_DMA=y

1122 CONFIG_EDAC_ATOMIC_SCRUB=y

1123 CONFIG_EDAC_SUPPORT=y

1124 CONFIG_RTC_LIB=y

1125 CONFIG_RTC_MC146818_LIB=y

1126 CONFIG_RTC_CLASS=y

1127 CONFIG_RTC_SYSTOHC=y

1128 CONFIG_RTC_SYSTOHC_DEVICE="rtc0"

1129 CONFIG_RTC_NVMEM=y

1130

1131 #

1132 # RTC interfaces

1133 #

1134 CONFIG_RTC_INTF_SYSFS=y

1135 CONFIG_RTC_INTF_PROC=y

1136 CONFIG_RTC_INTF_DEV=y

1137

1138 #

1139 # I2C RTC drivers

1140 #

1141

1142 #

1143 # SPI RTC drivers

1144 #

1145 CONFIG_RTC_I2C_AND_SPI=y

1146

1147 #

1148 # Platform RTC drivers

1149 #

1150 CONFIG_RTC_DRV_CMOS=y

1151

196



1152 #

1153 # HID Sensor RTC drivers

1154 #

1155 CONFIG_DMADEVICES=y

1156

1157 #

1158 # DMA Devices

1159 #

1160 CONFIG_DMA_ENGINE=y

1161 CONFIG_DMA_VIRTUAL_CHANNELS=y

1162 CONFIG_DW_DMAC_CORE=y

1163 CONFIG_HSU_DMA=y

1164

1165 #

1166 # DMA Clients

1167 #

1168

1169 #

1170 # DMABUF options

1171 #

1172 CONFIG_SYNC_FILE=y

1173 # end of DMABUF options

1174

1175 CONFIG_UIO=y

1176 CONFIG_UIO_PDRV_GENIRQ=y

1177 CONFIG_UIO_DMEM_GENIRQ=y

1178 CONFIG_UIO_PCI_GENERIC=y

1179 CONFIG_VIRT_DRIVERS=y

1180 CONFIG_VIRTIO=y

1181 CONFIG_VIRTIO_MENU=y

1182 CONFIG_VIRTIO_PCI=y

1183 CONFIG_VIRTIO_PCI_LEGACY=y

1184

1185 CONFIG_PMC_ATOM=y

1186 CONFIG_CLKDEV_LOOKUP=y

1187 CONFIG_HAVE_CLK_PREPARE=y
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1188 CONFIG_COMMON_CLK=y

1189

1190

1191 #

1192 # Clock Source drivers

1193 #

1194 CONFIG_CLKSRC_I8253=y

1195 CONFIG_CLKEVT_I8253=y

1196 CONFIG_I8253_LOCK=y

1197 CONFIG_CLKBLD_I8253=y

1198 # end of Clock Source drivers

1199 # end of SOC (System On Chip) specific Drivers

1200

1201 CONFIG_VME_BUS=y

1202

1203 #

1204 # VME Bridge Drivers

1205 #

1206 CONFIG_VME_TSI148=m

1207

1208 #

1209 # VME Board Drivers

1210 #

1211

1212 #

1213 # VME Device Drivers

1214 #

1215

1216 CONFIG_NVMEM=y

1217 CONFIG_NVMEM_SYSFS=y

1218 # end of Device Drivers

1219

1220 #

1221 # File systems

1222 #

1223 CONFIG_DCACHE_WORD_ACCESS=y
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1224 CONFIG_FS_IOMAP=y

1225 CONFIG_EXT4_FS=y

1226 CONFIG_EXT4_USE_FOR_EXT2=y

1227 CONFIG_EXT4_FS_POSIX_ACL=y

1228 CONFIG_EXT4_FS_SECURITY=y

1229 CONFIG_JBD2=y

1230 CONFIG_FS_MBCACHE=y

1231 CONFIG_FS_POSIX_ACL=y

1232 CONFIG_EXPORTFS=y

1233 CONFIG_FILE_LOCKING=y

1234 CONFIG_MANDATORY_FILE_LOCKING=y

1235 CONFIG_FSNOTIFY=y

1236 CONFIG_DNOTIFY=y

1237 CONFIG_INOTIFY_USER=y

1238 CONFIG_QUOTA=y

1239 CONFIG_QUOTA_NETLINK_INTERFACE=y

1240 CONFIG_QUOTA_TREE=y

1241 CONFIG_QFMT_V2=y

1242 CONFIG_QUOTACTL=y

1243 CONFIG_AUTOFS4_FS=y

1244 CONFIG_AUTOFS_FS=y

1245 CONFIG_OVERLAY_FS=y

1246 CONFIG_OVERLAY_FS_REDIRECT_ALWAYS_FOLLOW=y

1247

1248 #

1249 # CD -ROM/DVD Filesystems

1250 #

1251 CONFIG_ISO9660_FS=y

1252 CONFIG_JOLIET=y

1253 CONFIG_ZISOFS=y

1254 # end of CD -ROM/DVD Filesystems

1255

1256 #

1257 # DOS/FAT/NT Filesystems

1258 #

1259 CONFIG_FAT_FS=y
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1260 CONFIG_MSDOS_FS=y

1261 CONFIG_VFAT_FS=y

1262 CONFIG_FAT_DEFAULT_CODEPAGE =437

1263 CONFIG_FAT_DEFAULT_IOCHARSET="iso8859 -1"

1264 # end of DOS/FAT/NT Filesystems

1265

1266 #

1267 # Pseudo filesystems

1268 #

1269 CONFIG_PROC_FS=y

1270 CONFIG_PROC_KCORE=y

1271 CONFIG_PROC_SYSCTL=y

1272 CONFIG_PROC_PAGE_MONITOR=y

1273 CONFIG_PROC_PID_ARCH_STATUS=y

1274 CONFIG_KERNFS=y

1275 CONFIG_SYSFS=y

1276 CONFIG_TMPFS=y

1277 CONFIG_TMPFS_POSIX_ACL=y

1278 CONFIG_TMPFS_XATTR=y

1279 CONFIG_HUGETLBFS=y

1280 CONFIG_HUGETLB_PAGE=y

1281 CONFIG_MEMFD_CREATE=y

1282 # end of Pseudo filesystems

1283

1284 CONFIG_MISC_FILESYSTEMS=y

1285 CONFIG_SQUASHFS=y

1286 CONFIG_SQUASHFS_FILE_CACHE=y

1287 CONFIG_SQUASHFS_DECOMP_SINGLE=y

1288 CONFIG_SQUASHFS_XATTR=y

1289 CONFIG_SQUASHFS_ZLIB=y

1290 CONFIG_SQUASHFS_LZ4=y

1291 CONFIG_SQUASHFS_XZ=y

1292 CONFIG_SQUASHFS_4K_DEVBLK_SIZE=y

1293 CONFIG_SQUASHFS_EMBEDDED=y

1294 CONFIG_SQUASHFS_FRAGMENT_CACHE_SIZE =3

1295 CONFIG_NETWORK_FILESYSTEMS=y
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1296 CONFIG_NFS_FS=y

1297 CONFIG_NFS_V2=y

1298 CONFIG_NFS_V3=y

1299 CONFIG_NFS_V3_ACL=y

1300 CONFIG_NFS_V4=y

1301 CONFIG_ROOT_NFS=y

1302 CONFIG_NFS_USE_KERNEL_DNS=y

1303 CONFIG_GRACE_PERIOD=y

1304 CONFIG_LOCKD=y

1305 CONFIG_LOCKD_V4=y

1306 CONFIG_NFS_ACL_SUPPORT=y

1307 CONFIG_NFS_COMMON=y

1308 CONFIG_SUNRPC=y

1309 CONFIG_SUNRPC_GSS=y

1310 CONFIG_SUNRPC_XPRT_RDMA=y

1311 CONFIG_NLS=y

1312 CONFIG_NLS_DEFAULT="utf8"

1313 CONFIG_NLS_CODEPAGE_437=y

1314 CONFIG_NLS_ASCII=y

1315 CONFIG_NLS_ISO8859_1=y

1316 CONFIG_NLS_UTF8=y

1317 # end of File systems

1318

1319 #

1320 # Security options

1321 #

1322 CONFIG_KEYS=y

1323 CONFIG_SECURITY=y

1324 CONFIG_SECURITY_NETWORK=y

1325 CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR=y

1326 CONFIG_INTEGRITY=y

1327 CONFIG_DEFAULT_SECURITY_DAC=y

1328 CONFIG_LSM="lockdown ,yama ,loadpin ,safesetid ,integrity"

1329

1330 #

1331 # Memory initialization
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1332 #

1333 CONFIG_INIT_STACK_NONE=y

1334 # end of Memory initialization

1335 # end of Kernel hardening options

1336 # end of Security options

1337

1338 CONFIG_CRYPTO=y

1339

1340 #

1341 # Crypto core or helper

1342 #

1343 CONFIG_CRYPTO_ALGAPI=y

1344 CONFIG_CRYPTO_ALGAPI2=y

1345 CONFIG_CRYPTO_AEAD=y

1346 CONFIG_CRYPTO_AEAD2=y

1347 CONFIG_CRYPTO_BLKCIPHER=y

1348 CONFIG_CRYPTO_BLKCIPHER2=y

1349 CONFIG_CRYPTO_HASH=y

1350 CONFIG_CRYPTO_HASH2=y

1351 CONFIG_CRYPTO_RNG=y

1352 CONFIG_CRYPTO_RNG2=y

1353 CONFIG_CRYPTO_RNG_DEFAULT=y

1354 CONFIG_CRYPTO_AKCIPHER2=y

1355 CONFIG_CRYPTO_KPP2=y

1356 CONFIG_CRYPTO_ACOMP2=y

1357 CONFIG_CRYPTO_MANAGER=y

1358 CONFIG_CRYPTO_MANAGER2=y

1359 CONFIG_CRYPTO_MANAGER_DISABLE_TESTS=y

1360 CONFIG_CRYPTO_NULL=y

1361 CONFIG_CRYPTO_NULL2=y

1362 CONFIG_CRYPTO_AUTHENC=y

1363 CONFIG_CRYPTO_ENGINE=m

1364

1365 #

1366 # Public -key cryptography

1367 #
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1368

1369 #

1370 # Authenticated Encryption with Associated Data

1371 #

1372 CONFIG_CRYPTO_CCM=y

1373 CONFIG_CRYPTO_SEQIV=y

1374 CONFIG_CRYPTO_ECHAINIV=y

1375

1376 #

1377 # Block modes

1378 #

1379 CONFIG_CRYPTO_CBC=y

1380 CONFIG_CRYPTO_CTR=y

1381

1382 #

1383 # Hash modes

1384 #

1385 CONFIG_CRYPTO_HMAC=y

1386

1387 #

1388 # Digest

1389 #

1390 CONFIG_CRYPTO_CRC32C=y

1391 CONFIG_CRYPTO_MD5=y

1392 CONFIG_CRYPTO_SHA1=y

1393 CONFIG_CRYPTO_LIB_SHA256=y

1394 CONFIG_CRYPTO_SHA256=y

1395

1396 #

1397 # Ciphers

1398 #

1399 CONFIG_CRYPTO_LIB_AES=y

1400 CONFIG_CRYPTO_AES=y

1401 CONFIG_CRYPTO_LIB_ARC4=y

1402 CONFIG_CRYPTO_ARC4=y

1403 CONFIG_CRYPTO_LIB_DES=y
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1404 CONFIG_CRYPTO_DES=y

1405

1406 #

1407 # Compression

1408 #

1409

1410 #

1411 # Random Number Generation

1412 #

1413 CONFIG_CRYPTO_DRBG_MENU=y

1414 CONFIG_CRYPTO_DRBG_HMAC=y

1415 CONFIG_CRYPTO_DRBG=y

1416 CONFIG_CRYPTO_JITTERENTROPY=y

1417 CONFIG_CRYPTO_HW=y

1418 CONFIG_CRYPTO_DEV_VIRTIO=m

1419

1420 #

1421 # Library routines

1422 #

1423 CONFIG_BITREVERSE=y

1424 CONFIG_GENERIC_STRNCPY_FROM_USER=y

1425 CONFIG_GENERIC_STRNLEN_USER=y

1426 CONFIG_GENERIC_NET_UTILS=y

1427 CONFIG_GENERIC_FIND_FIRST_BIT=y

1428 CONFIG_RATIONAL=y

1429 CONFIG_GENERIC_PCI_IOMAP=y

1430 CONFIG_GENERIC_IOMAP=y

1431 CONFIG_ARCH_HAS_FAST_MULTIPLIER=y

1432 CONFIG_CRC_CCITT=y

1433 CONFIG_CRC16=y

1434 CONFIG_CRC32=y

1435 CONFIG_CRC32_SLICEBY8=y

1436 CONFIG_ZLIB_INFLATE=y

1437 CONFIG_ZLIB_DEFLATE=y

1438 CONFIG_LZO_DECOMPRESS=y

1439 CONFIG_LZ4_DECOMPRESS=y
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1440 CONFIG_XZ_DEC=y

1441 CONFIG_XZ_DEC_X86=y

1442 CONFIG_XZ_DEC_POWERPC=y

1443 CONFIG_XZ_DEC_IA64=y

1444 CONFIG_XZ_DEC_ARM=y

1445 CONFIG_XZ_DEC_ARMTHUMB=y

1446 CONFIG_XZ_DEC_SPARC=y

1447 CONFIG_XZ_DEC_BCJ=y

1448 CONFIG_DECOMPRESS_GZIP=y

1449 CONFIG_DECOMPRESS_BZIP2=y

1450 CONFIG_DECOMPRESS_LZMA=y

1451 CONFIG_DECOMPRESS_XZ=y

1452 CONFIG_DECOMPRESS_LZO=y

1453 CONFIG_DECOMPRESS_LZ4=y

1454 CONFIG_GENERIC_ALLOCATOR=y

1455 CONFIG_INTERVAL_TREE=y

1456 CONFIG_ASSOCIATIVE_ARRAY=y

1457 CONFIG_HAS_IOMEM=y

1458 CONFIG_HAS_IOPORT_MAP=y

1459 CONFIG_HAS_DMA=y

1460 CONFIG_NEED_SG_DMA_LENGTH=y

1461 CONFIG_SGL_ALLOC=y

1462 CONFIG_CHECK_SIGNATURE=y

1463 CONFIG_DQL=y

1464 CONFIG_GLOB=y

1465 CONFIG_NLATTR=y

1466 CONFIG_IRQ_POLL=y

1467 CONFIG_DIMLIB=y

1468 CONFIG_OID_REGISTRY=y

1469 CONFIG_HAVE_GENERIC_VDSO=y

1470 CONFIG_GENERIC_GETTIMEOFDAY=y

1471 CONFIG_GENERIC_VDSO_32=y

1472 CONFIG_FONT_SUPPORT=y

1473 CONFIG_FONT_8x8=y

1474 CONFIG_FONT_8x16=y

1475 CONFIG_SG_POOL=y
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1476 CONFIG_ARCH_STACKWALK=y

1477 CONFIG_SBITMAP=y

1478 # end of Library routines

1479

1480 #

1481 # printk and dmesg options

1482 #

1483 CONFIG_PRINTK_TIME=y

1484 CONFIG_CONSOLE_LOGLEVEL_DEFAULT =7

1485 CONFIG_CONSOLE_LOGLEVEL_QUIET =4

1486 CONFIG_MESSAGE_LOGLEVEL_DEFAULT =4

1487 # end of printk and dmesg options

1488

1489 #

1490 # Compile -time checks and compiler options

1491 #

1492 CONFIG_ENABLE_MUST_CHECK=y

1493 CONFIG_FRAME_WARN =2048

1494 CONFIG_DEBUG_FS=y

1495 CONFIG_OPTIMIZE_INLINING=y

1496 CONFIG_SECTION_MISMATCH_WARN_ONLY=y

1497 CONFIG_FRAME_POINTER=y

1498 # end of Compile -time checks and compiler options

1499

1500 CONFIG_MAGIC_SYSRQ=y

1501 CONFIG_MAGIC_SYSRQ_DEFAULT_ENABLE =0x1

1502 CONFIG_MAGIC_SYSRQ_SERIAL=y

1503 CONFIG_DEBUG_KERNEL=y

1504 CONFIG_DEBUG_MISC=y

1505

1506 #

1507 # Memory Debugging

1508 #

1509 CONFIG_HAVE_DEBUG_KMEMLEAK=y

1510 CONFIG_DEBUG_STACK_USAGE=y

1511 CONFIG_ARCH_HAS_DEBUG_VIRTUAL=y
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1512 CONFIG_DEBUG_MEMORY_INIT=y

1513 CONFIG_HAVE_DEBUG_STACKOVERFLOW=y

1514 CONFIG_DEBUG_STACKOVERFLOW=y

1515 CONFIG_CC_HAS_KASAN_GENERIC=y

1516 CONFIG_KASAN_STACK =1

1517 # end of Memory Debugging

1518

1519 CONFIG_CC_HAS_SANCOV_TRACE_PC=y

1520

1521 CONFIG_PANIC_ON_OOPS_VALUE =0

1522 CONFIG_PANIC_TIMEOUT =0

1523 CONFIG_SCHED_INFO=y

1524 CONFIG_SCHEDSTATS=y

1525

1526 #

1527 # Lock Debugging (spinlocks , mutexes , etc ...)

1528 #

1529 CONFIG_LOCK_DEBUGGING_SUPPORT=y

1530 # end of Lock Debugging (spinlocks , mutexes , etc ...)

1531

1532 CONFIG_STACKTRACE=y

1533 CONFIG_DEBUG_BUGVERBOSE=y

1534

1535 CONFIG_USER_STACKTRACE_SUPPORT=y

1536 CONFIG_HAVE_FUNCTION_TRACER=y

1537 CONFIG_HAVE_FUNCTION_GRAPH_TRACER=y

1538 CONFIG_HAVE_DYNAMIC_FTRACE=y

1539 CONFIG_HAVE_DYNAMIC_FTRACE_WITH_REGS=y

1540 CONFIG_HAVE_FTRACE_MCOUNT_RECORD=y

1541 CONFIG_HAVE_SYSCALL_TRACEPOINTS=y

1542 CONFIG_HAVE_C_RECORDMCOUNT=y

1543 CONFIG_TRACE_CLOCK=y

1544 CONFIG_RING_BUFFER=y

1545 CONFIG_RING_BUFFER_ALLOW_SWAP=y

1546 CONFIG_TRACING_SUPPORT=y

1547 CONFIG_PROVIDE_OHCI1394_DMA_INIT=y
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1548 CONFIG_RUNTIME_TESTING_MENU=y

1549 CONFIG_HAVE_ARCH_KGDB=y

1550 CONFIG_ARCH_HAS_UBSAN_SANITIZE_ALL=y

1551 CONFIG_UBSAN_ALIGNMENT=y

1552 CONFIG_ARCH_HAS_DEVMEM_IS_ALLOWED=y

1553 CONFIG_TRACE_IRQFLAGS_SUPPORT=y

1554 CONFIG_EARLY_PRINTK_USB=y

1555 CONFIG_X86_VERBOSE_BOOTUP=y

1556 CONFIG_EARLY_PRINTK=y

1557 CONFIG_EARLY_PRINTK_DBGP=y

1558 CONFIG_DOUBLEFAULT=y

1559 CONFIG_HAVE_MMIOTRACE_SUPPORT=y

1560 CONFIG_IO_DELAY_0X80=y

1561 CONFIG_DEBUG_BOOT_PARAMS=y

1562 CONFIG_X86_DEBUG_FPU=y

1563 CONFIG_UNWINDER_FRAME_POINTER=y

1564 # end of Kernel hacking

Listing A.6: Kernel Build Config

208



Appendix B

Appendix B: Auditor Code

B.1 Lipton and Snyder and Elkaduwe et al.: Condition 1/Theo-

rem 1

Essentially, Condition 1 of Lipton and Snyder, [91], and Theorem 1 of Elkaduwe et al., [44], are

the same. Lipton and Snyder’s Condition 1 states that a node, p, and a node, q, are connected

in graph G = (V,E), i.e. a path exists between p and q independent of directionality. Elkaduwe

et al. state that if two existing entities are not connected, then they will never be able to leak

authority to one another. While the former focuses on establishing the existence of a connection,

the later states that the absence of a connection means leakage cannot occur. Listing B.1 shows

the implementation of Condition 1/Theorem 1.

1 def condition1(graph , p, q):

2 if not has_path(graph.to_undirected (), p, q):

3 print('Failed: Condition 1.')

4 return False

5

6 return True

Listing B.1: Condition 1/Theorem 1
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B.2 Lipton and Snyder: Condition 2

Condition 2 states that there exists a node, x, in graph, G = (V,E), with some arc to q. A problem

is manifested in the following example pertaining to vCDS: Given a node, Low, with W (write)

authority to a node, High, and a node, Guard where there exists a path between High and Guard

with RW (read/write) authority, then Low is able to take the ability to RW to the Guard from

the High component. This results in Low being able to read from a high component, the Guard.

This is why vCDS does not allow the use of the take rule. Listing B.2 shows the implementation

of Condition 2.

1 def lipton_cond2(graph , p, q, access):

2 in_edges = list(graph.in_edges(q)) # if in_edges == [], q has no incoming

edges

3

4 for i in range(0, len(in_edges)):

5 a = graph.get_edge_data(in_edges[i][0], q)[i]['label']

6

7 if access in graph.get_edge_data(in_edges[i][0], q)[i]['label '].lower ():

8 return True

9

10 return False

Listing B.2: Condition 2

B.3 Elkaduwe et al.: Theorem 2

Theorem 2, presented by Elkaduwe et al., [44], states: if there exists a nonempty set of outgoing

edges from a node, and there is a labeled arc along an edge, then the authority given by the label

along that arc will not be exceeded in any future graph state. Listing B.3 shows the implementation

of Theorem 2.

1 def elkaduwe_theorem2(graph , p, q, access):

2 for i in range(0, graph.number_of_edges(p, q)):

3 if list(graph.out_edges(p)) != [] and \

4 graph.get_edge_data(p, q) and \

5 access in graph.get_edge_data(p, q)[i]['label ']. lower():
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6 return True

7

8 return False

Listing B.3: Theorem 2
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Appendix C

Appendix C: Towards Trustworthy

Cross-Domain Technologies

Below is an article which I have prepared for SIGNAL magazine in response to an article written

by Shaun Waterman on August 1, 2021: Assured Cross-Domain Access Through Hardware-Based

Security: Sponsored Content [129].

C.1 The Problem of Cross Domain Technology

The DoD is continually battling for faster and more secure CDS technology and recent cloud-

based security operations have reinforced the need for reliable and secure cross domain solutions

(CDS). Furthermore, the NSA expressly desires more rigorously designed CDS solutions (NSA,

2021). These facts are common knowledge in spaces where immediate, and often remote, access

to highly classified information is required. In this article, we appeal to the best interests of the

DoD by claiming that any system composed of hardware and/or software which has not been

formally verified should not claim to provide high assurance. In other words, any system that is

not trustworthy cannot and should not be relied upon. All security components are required to

be relied upon, yet the status quo security systems and technologies often do not provide formal

verification proofs. The gap between reliability and reality is marked by the difference between trust

and trustworthiness, which we describe and clarify below. Additionally in this article, we address

the pious claims of previous work regarding hardware and software CDS technology. Our purpose
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is to show the necessity of trustworthy CDS technology including the long-term time-to-market

benefits, while fulfilling the best interests of the DoD.

C.1.1 Status Quo

The status quo in CDS technology can be described as being ad hoc solutions which lack provable

assurance (U.S. Army, 2018; Farroha et al, 2009). CDSs are generally physically isolated solutions,

not lending themselves to use in offsite computing environments which are commonplace (Looking

Glass, 2019). When it comes to evaluation, vendors are limited by government requirements and

processes (Daughety, 2021). Specifically, usability, i.e. the service provided by the system, is

ignored when it should be the central focus; the paperwork is evaluated rather than the product;

and the evaluation system squeezes “a very volatile and competitive industry into a bureaucratic

straightjacket, in order to provide purchasers with the illusion of stability” (Anderson, 2008).

C.1.2 Definitions/Background

In order to better understand the goal of this article, we will first review the differences between

trust and trustworthiness in the context of CDSs. A trusted CDS is a solution that is assumed to be

reliable and effective during a security event. On the other hand, a trustworthy CDS is a solution

which has been formally and mathematically proven reliable and effective during a security event.

Therefore, trustworthiness requires comprehensive formal verification. In short, “formal verification

is the use of mathematical techniques to ensure that a design conforms to some precisely expressed

notion of functional correctness” (Sanghavi, 2010). In other words, a formally verified software

program is one that is proven not to violate the specification for which the software was intended

to fulfill, i.e. the software is functionally correct and free from vulnerabilities. Furthermore, software

and hardware can be formally verified to enforce security properties of confidentiality, integrity, and

availability for example. One such evaluation system is the Common Criteria’s (CC) Evaluation

Assurance Level (EAL). The EAL is a grade assigned to a hardware or software system based on a

security evaluation. The level ranges from EAL1, “functionally tested”, to EAL7, “formally verified

design and tested” (Common Criteria, 2009). Knowing the definitions of trust and trustworthiness,

we present the following claim: any system less than EAL6 should not be trusted. More specifically,

no system evaluated below EAL6 should be trusted, and no system below EAL7 is trustworthy. It

213



should additionally be noted that, due to the faults associated with the CC’s evaluation system,

just because a system is evaluated to EAL7 does not necessarily mean it is in fact trustworthy. We

will discuss ways to improve the reliability of the evaluation later in this article.

The importance of evaluation is clear when functionality and security is seen through the lens of

trust and trustworthiness. However, as we previously addressed, the evaluation system itself leaves

much to be desired. Contrary to the concept of security through obscurity, we have Shannon’s

Maxim (Shannon, 1949). Shannon’s Maxim is closely related to Kerckoff’s principle of cryptog-

raphy, and, in the context of a trusted computing base (TCB), can be formulated as follows: a

system should remain secure even when the enemy has access to the source code. After all, if a

system is completely secure, an attacker would not be able to find a vulnerability if he/she were

provided with the source code. Given that, in many real-world cases, the security and tactics of a

use-case instance should be closely guarded, the extent to which Shannon’s Maxim should apply is

to the TCB, i.e. the smallest set of services necessary to provide the security properties of a CDS.

We further discuss this point below.

C.2 Misconception 1: Software-based security CDSs are inade-

quate while hardware-based CDSs are more secure

Vendors have claimed that software-based security CDSs are inadequate while arguing that hardware-

based CDSs are more secure. However, all-in approaches, i.e. either hardware-only or software-only

approaches, to CDS systems are cause for ad hoc, high risk solutions (B. M. Thomas and N. L.

Ziring, 2014; R. J. Anderson, 2008). In reality, security must be architected into the hardware and

software in order to build secure, trustworthy CDS systems. As established, the only way a system

can be proven secure and trustworthy is through comprehensive formal verification of functional

correctness and of security. In contrast, vendors often do not provide any mathematical proofs or

mention of formal verification for their systems. This includes vendors who produce hardware-only

CDS solutions and claim that hardware is secure, once again, without providing mathematical

proofs. Furthermore, claims which have been made, specifically about the vulnerability of all soft-

ware and that software security cannot be guaranteed, assume that some subset of all software,

current and future, will never be comprehensively formally verified for functional correctness or se-
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curity guarantees. This is obviously incorrect as the following sources present such solutions which

are additionally available for independent verification: (Daughety, 2021; Heiser, 2020; Klein, 2014).

C.3 Misconception 2: Formal verification is too hard and expen-

sive

One of the arguments against formal verification is that the complexity of software makes it dif-

ficult and expensive to formally verify security-critical solutions. While this reasoning is sound, a

formally verified software-based CDS exists, and, once again, is available for independent verifica-

tion (Daughety, 2021). Furthermore, the seL4 microkernel is a comprehensively formally verified

(for functional correctness and security guarantees, i.e. confidentiality, integrity, and availability)

microkernel and hypervisor which is also available for independent formal verification. We will

further discuss the need for independent formal verification shortly.

The DoD is aware that the pace of operations and high demand of cross domain technology

pressures engineers into high risk, ad hoc solutions (B. M. Thomas and N. L. Ziring, 2014; R. J.

Anderson, 2008). Furthermore, the time to market is at odds with the goal of achieving the highest

level of security using formal verification, i.e. time to market is not aligned with the DoD’s best

interest. Because the formal verification process is difficult and expensive, these factors should be

considered when developing systems which process and transmit classified information, considering

the devastating impact of such information being leaked.

To counter the cost and difficulty of the verification process, the experts, (Heiser, 2020; Klein,

2018), see the value in pressing on and winning the battle for proving the correctness of security and

functionality of software. Furthermore, once a system has been formally verified, reusing formally

verified building blocks (verify once, reuse many) would mitigate both cost and time to market

while making security verification faster. To this point, there exists a CDS auditing tool which

verifies the security configuration of vCDS, a CDS built upon a formally verified TCB (Daughety,

2021).
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C.4 Misconception 3: It is sufficient for vendors to self-promote

the security of their own products

Vendors often self-promote the security of their own products without undergoing rigorous indepen-

dent verification. These overreaching claims are not the only issue, however. Recall from the review

of the status quo that the evaluation system and processes are also flawed; in order for a system to

be evaluated, vendors can effectively “game” the evaluation system by exploiting vulnerabilities in

the evaluation requirements and processes.

Independent verification means that the proofs are publicly available for confirmation such

that any entity can verify the security of the system. As discussed, the EAL alone does not

necessarily prove trustworthiness, however, the independent evaluation of a system can verify a

system to be trustworthy. The point of contention here is that, because the DoD has not historically

been proficient at keeping secrets, they now have few artifacts openly available for independent

evaluation.

A better way to combat the bias of self-promotion and lack of independent verification is through

the adherence to Shannon’s Maxim. Specifically, the TCB should be available for independent

verification while the tactics of a particular use-case instance, including data and computations,

should remain closed. Transparency should be embraced about artifact security and limitations so

that decision makers can calculate better risk analysis.

C.5 Time for Disruption

Due to latest advances in formally verified TCBs, a cyber operations paradigm shift has begun and

vCDS is leading the way as a step in the right direction (Daughety, 2021). vCDS leverages the

latest advances in trustworthy systems while remaining open to independent, formal verification.

Furthermore, all risks and limitations of the system are known so that better risk analysis may be

calculated. The need is clear – for any CDS to be relied upon, it must be comprehensively proven

trustworthy. Furthermore, for any CDS to be provably secure, it must be available for independent

verification. vCDS checks both boxes and serves as proof to counter previous claims that software-

based security CDSs are inadequate while hardware-based CDSs are more secure. Additionally,
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vCDS shows that the common belief that formal verification is too hard and expensive is simply

an excuse resulting in high risk, ad hoc solutions (U.S. Army, 2018; Farroha et al, 2009).
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Appendix D

Appendix D: Correspondence

D.1 seL4 Developer Correspondence

The following is an email to the seL4 developers with specific questions I had relating to Dataports

as they pertain to access rights and data diode implementations. Matthew Fernandez confirmed

my suspicions and answered my questions.

D.1.1 Inquiry to seL4 Developers

To whom it may concern,

I am learning about CAmkES Dataports and potentially using it as a data diode to allow one

component to write to shared memory, and a second component to read from the shared memory.

Question 1: I noticed that in aeroplage.camkes, the KeyboardDriver component has the data-

port char out while the Switch has char in. Char in is given read-only access, but, based on the

CAmkES manual, char out would have rwx privileges (if I understand correctly). So, how is the

dataport with rwx (keyboarddriver) and r (switch) a data diode when the keyboarddriver has read,

write, and execute privileges (the data can be read back by the keyboarddriver?)?

It seems to me that giving the switch read-only access does make the connection “act” as a data

diode but it is not a strict data diode? The CAmkES manual (ref below) does not explicitly say
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that write only is allowed but does suggest it can be done. The Intel manual (ref below, section

5.11) says that pages are either read-only or read/write-only (no write-only). In fact, the page

setting for access is only one bit.

Question 2: Is write-only possible with dataports and what would * access = “W” do in CAmkES?

Could the “data diode” be affected by the hardware read/write if the memory is write-only?

Currently, I have not thought of a case where the read/write access of the keyboarddriver would

compromise the function of a data diode if the switch is read-only.

Thanks, Nathan

References:

https://github.com/seL4/camkes/blob/master/apps/aeroplage/aeroplage.camkes

https://docs.sel4.systems/projects/camkes/manual.html Port Privileges Section

https://software.intel.com/sites/default/files/managed/7c/f1/253668-sdm-vol-3a.pdf Section 5.11

D.1.2 Response from Matthew Fernandez

Hi Nathan,

I can give some historical context about this, but you’re probably better off asking the current

maintainers on the seL4 mailing list.

For question 1, yes, I think you’re correct that the char out port has RWX access. When we

were implementing (or rather re-implementing) CAmkES, I made the dataport permissions map

directly to the seL4 page mapping flags. It didn’t occur to me until later that “write-only” has

no equivalent in the paging models of most hardware. I then started to wonder what was actually

going on. Looking into the kernel source I found seL4 was silently downgrading these to kernel-only

mappings.

219



This isn’t a bug, but it is unexpected to CAmkES users. We had some discussion about how

to resolve this and ended up working around this in the loader [0]. This resulted in the least sur-

prise to users, but it is still not quite intuitive.

[0]: https://github.com/seL4/capdl/blob/master/capdl-loader-app/src/main.c#L1457-L1463

For question 2, the answer for most practical purposes is no. I’m not aware of any standard

hardware that accepts write-only mappings. You sort of have this with some types of I/O memory,

but your compiler needs to be explicitly aware of this (i.e. volatile pointers). To achieve true

write-only, you could have an arbitrator process that unmaps memory from the writer once it’s

done and then maps it into the reader. But then you obviously have the overheads of coordination

and remapping operations.

As you’ve said, in this single-writer case, giving the writer R as well does not seem to convey

any extra abilities.

Thanks, Matt
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