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Abstract

Field Programmable Gate Arrays (FPGAs) are integrated circuits designed so they can be
reprogrammed to implement any logic circuit. FPGAs are used in critical systems like mili-
tary radar and wireless communication infrastructure, making FPGA security critical. One
major threat to the security of FPGAs are Trojans. Trojans are malicious modifications
made to a circuit at any point in the design process. The reprogrammable nature of FPGAs
makes them doubly vulnerable to Trojans because even if the physical chip is secure Tro-
jans can still be inserted by compromising the bitstream that programs the FPGA. These
types of Trojans could be detected by analyzing the bitstreams of affected FPGAs. However,
FPGA manufacturers do not publish the format of bitstreams, providing a layer of inher-
ent obfuscation for attackers to exploit. Meaning that the format of an FPGA’s bitstream
must be reverse engineered before it is possible to analyze the bitstream for Trojans. Exist-
ing methodologies for reverse engineering FPGA bitstreams require expert knowledge of an
FPGA’s architecture and its associated toolchain. In this Thesis we demonstrate a method-
ology of reverse engineering FPGA Look-Up-Tables (LUTSs), the fundamental component of
FPGA reprogrammable logic. Our methodology uses generic VHDL, which allows it to be
easily ported to different FPGAs with only basic knowledge of FPGA design flow.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 What are FPGAs

FPGAs or Field Programmable Gate Arrays are integrated circuits designed so that the logic
they implement can be reprogrammed. FPGAs contain an array of logic blocks connected
by a reconfigurable grid of interconnects. The structure of these logic blocks are detailed
further in Chapter 2, but they are elements that can be programmed to implement arbitrary
logic circuits. The circuit that the FPGA implements is configured by a programming file.
The programming files used to configure FPGAs are commonly referred to as bitstreams.
These bitstreams are exactly as the name suggests, an array of ones and zeros that contain
the information to configure the FPGA to the desired circuit. The reprogrammable nature
of FPGAs makes them useful for applications that cannot be done efficiently by a general-
purpose processor, and do not have a high enough volume of end products to justify the
high upfront cost of developing an Application Specific Integrated Circuit (ASIC). FPGAs
have a significantly shorter time-to-market than traditional ASICs and they also offer more

flexibility than a traditional ASIC, with the tradeoff of usually having a higher per-unit cost.



1.1.2 What are Trojans

Trojans are malicious modifications made to a circuit at any point in the design process.
There are many different types of Trojans, some are intended as backdoors to leak secret
information or gain control over a system while others serve as kill switches to allow attackers
to disable or destroy a device. Trojans pose a major threat to the security of FPGAs because
Hardware Trojans can be physically added to an FPGA in all the same ways as ASICs,
anywhere along the design or fabrication steps. Moreover, FPGAs are reprogrammable. This
makes them doubly vulnerable to Trojans because even if the physical chip is secure Trojans
can still be inserted by compromising the bitstream. By tampering with the bitstream of an
FPGA attackers can change the circuit that the FPGA implements. Trojans can be added
to a bitstream at any point in the build process: they could be added by a malicious actor
with access to the source code, they could be added to the bitstream by a compromised
compiler, or they could be added directly to an unencrypted bitstream by tampering with
the file.

1.1.3 Reverse Engineering FPGA bitstreams

Before discussing the reasons to reverse engineer FPGA bitstreams we first need to define
what it means to reverse engineer an FPGAs bitstream. Since the bitstream defines the
circuit that an FPGA implements, it stands to reason that if you have a bitstream and you
know its formatting then you can analyze it to determine the circuit it programs an FPGA
to. This is what we mean by reverse engineering a specific bitstream. However, this assumes
that the bitstream format is known, in other words you know which bits in the bitstream
configure which components on the FPGA. If you do not know the bitstream format, then
it is first necessary to reverse engineer the bitstream format. In other words, to figure out
how bits in the bitstream map onto components of the FPGA. It is necessary to understand
the distinction between reverse engineering a specific bitstream, and reverse engineering the
bitstream format of an FPGA. The former cannot be done without first doing the latter.

This Thesis focuses on methods for reverse engineering the bitstream format.



1.1.4 Why reverse engineer FPGA bitstreams

Reverse engineering FPGA bitstreams gives designers another way of checking the bitstream
for Trojans. Trojan circuits can be very difficult to find through traditional validation testing,
they are often dormant by default and only triggered under very specific circumstances chosen
by the attacker. Reverse engineering an FPGAs bitstream is an alternative way of detecting
Trojans, it allows designers to check that the circuit contains only the intended logic and
nothing more. However, bitstream Trojan detection is made more difficult because FPGA
manufacturers do not publish the formatting of the bitstreams. In order to find Trojan

circuits in bitstreams the format of the bitstream must first be reverse engineered.

1.1.5 How have FPGAs been REd in the past

There are several public examples of successful FPGA bitstream reverse engineering efforts
2,3, 7,8, 9], a few relevant ones will be detailed in Chapter 2. However, each methodology
is tied either to a specific FPGA Architecture or a specific manufacturers toolchain. FPGA
bitstream reverse engineering requires a high level of control over the configuration of FPGA
components. Typically, this high level of control is gained by using specialty features of
toolchains to modify designs after the placement step. This means that the tools developed
for reverse engineering the FPGA bitstream end up being tied to whichever toolchain they

are targeted to and would require significant effort to port to a different toolchain.

1.1.6 What does it mean to RE FPGAs abstractly

Our goal was to come up with FPGA bitstream reverse engineering methodologies that are
not tied to a specific FPGA or toolchain. The intent is to create abstract methodologies that
are implemented in VHDL and do not rely on any macros or functions specific to any one
toolchain. This allows the method to be easily ported to different FPGAs and toolchains.
The methodology defined in this Thesis defines an abstract way to reverse engineer the LUT
programming bits of an FPGA. It is not reliant on any specialty functions of any toolchain
and therefore can easily be implemented across multiple FPGAs and toolchains. Furthermore

no specialized knowledge of the FPGA architecture is needed, the only necessary information



is the size of LUTs and number of LUTs on the target FPGA.

1.1.7 What are the benefits of an abstract approach

Implementing abstract methods that are not tied to specific toolchains would allow new
FPGA’s to be reverse engineered with significantly less effort. A comprehensive abstract
bitstream reverse engineering methodology could serve as the foundation for higher-level

Trojan detection tools.

1.2 Outline

In Chapter 2 we outline the necessary background knowledge on the general structure of
FPGAs and the typical design flow for generating bitstreams. We will also cover some of
the existing FPGA bitstream format reverse engineering methodologies. Chapter 3 discusses
how our methodology works as well as some of the challenges that the abstract approach
comes with. Chapter 4 details the testing method and results. Finally, Chapter 5 gives a

conclusion and outlines potential areas of improvement and expansion for the future.



Chapter 2

Background

In this chapter we first discuss the general architecture of FPGAs as well as the typical
design flow for bitstream generation. Then we go over prior work on the topic of FPGA

bitstream reverse engineering.

2.1 FPGA Background

2.1.1 FGPA Architecture

Figure 2.1 shows the typical Island-Style FPGA Architecture. It consists of logic blocks (LB)
connected with reprogrammable switch-boxes (SB) which allow any point on the FPGA to
be wired to any other point in the FPGA. Depending on the specific FPGA architecture
the logic blocks contain several reprogrammable Look-Up-Tables or LUTs allowing them to
implement any desired logic circuit. Many FPGAs also have blocks that contains specialized
components like Digital Signal Processing (DSP) modules for example. The methodology
presented in this paper focuses on standard logic blocks and reverse engineering the locations

of the LUT programming bits in the bitstream.



Figure 2.1: FPGA Island Style Architecture

2.1.2 Logic Blocks

Figure 2.2 shows a logic block from the Xilinx 7 Series FPGA architecture. We can see in
the diagram that it is composed of four 6 input LUTSs, built in carry logic for efficiently
implementing arithmetic logic, and eight storage elements that can hold the outputs of the
implemented logic. The structure of logic blocks varies depending on the FPGA Architecture,
but they all follow the same general structure of having some combination of LUTSs, storage
elements, and some form of arithmetic carry chain. Some architectures like the Cyclone
V, instead of only having a carry chain have dedicated full-adders [6]. The LUTs are the

elements critical to allowing an FPGA to arbitrarily implement any logic circuit.
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Figure 2.2: Example Logic Block from 7 Series FPGAs CLB User Guide UG474 [10]

2.1.3 Look-Up-Tables

LUTs are the core component of FPGA logic, they are used to create arbitrary combinational
logic. A LUT with N inputs can be programmed to implement any N input logic function.
Figure 2.3 shows a 3 input LUT. The Outputs X,_7 are reprogrammable memory cells which



can be set to a value either 0 or 1. We can see that if the value of the inputs {A, B, C'} are
{0,0, 1} then the LUT will output the value that memory cell X is set to. The values of
these memory cells are configured by the bitstream. The goal of the methodology presented

in this Thesis is to determine which bits in the bitstream program the LUT memory cells.

Input A | Input B | Input C Output
0 0 0 Xo
0 0 1 X,
0 1 0 X2 InputA  —
0 1 1 X, InputB  —— LUT —— Output
! 0 0 X4 InputC  —
1 0 1 X,
1 1 0 X,
1 1 1 X,

Figure 2.3: Three Input LUT

2.1.4 LUT Decomposition

Modern LUTs are designed to be decomposable, meaning that a larger LUT can be bro-
ken down into multiple smaller LUTs. LUTs are designed this way to increase total logic
utilization, making the FPGA more cost effective. For example, notice the LUTSs in figure
2.2 have two outputs. This is because the 6 input LUTSs of the 7 Series architecture can be
broken into two seperate 5 input LUTs, which can each be programmed to a unique function
so long as the functions share inputs. LUT decomposition is relevant to the methodology
presented in this paper due to the complications it causes for reverse engineering. When
reverse engineering LUT programming bits the ideal is to be able to arbitrarily configure the
LUT bits because the more control you have over how the LUTSs are configured the easier it
is to find a correlation between the configuration and the bitstream. However, the compiler

will often attempt to optimize the functions programmed to the LUTs to reduce the size of



the circuit. It is a standard feature for FPGA compilers to allow the user to disable logic
optimization. We found that even with logic optimization disabled compilers will often still
decompose LUTs whose functions do not utilize all of the LUTs inputs. This means that
when we are attempting to reverse engineer the LUT programming bits we are limited to

programming them with equations that cannot be reduced to using fewer inputs.

2.1.5 FPGA design flow

Figure 2.4 shows the general sequence for FPGA bitstream generation design flow. The
process typically begins with a Hardware Description Language (HDL) input defining the
circuit to be implemented. The HDL is typically written in either VHDL or Verilog. This
HDL is then synthesized into a RTL (Register Transfer Level) netlist representation. The
components of this netlist are then mapped to physical components on the target FPGA in
the placement step. Then the placed components are connected in the routing step. The
final step of the process is to take the placed and routed design and generate a bitstream

with which to program the FPGA.

Synthesis Routing H (?elférrzetiirgn }—;

Figure 2.4: FPGA Design Flow

2.2 Prior Work

2.2.1 Project X-Ray

Project X-Ray [8] is a reverse engineering effort targeting Xilinx 7-Series FPGAs. It is a
part of the FAPGA Project (formerly SymbiFlow) which intends to create a fully opensource
FPGA compiler. Project X-Ray is built around Vivado, Xilinx’s compiler. Their approach
consists of a collection of Fuzzers, which are scripts designed to target a specific component

on the target FPGA and generate bitstreams to find the bitstream bits that control the



targeted component. One of the Fuzzers in Project X-Ray targets the LUT programming
bits. This LUT Fuzzer functions by creating a matrix of LUTs using Verilog where the LUT's
are instantiated by using the Vivado LUT macros. The Fuzzer works by first synthesizing and
placing the LUT matrix, then it uses specialized Vivado commands to manually change the
LUT configuration bits on the placed design and regenerate new bitstreams. This allows the
Fuzzer to avoid additional noise from routing changes by ensuring that the only bits changed
between bitstreams are LUT bits. Furthermore, it uses the Vivado LOCK_PINS property to
force the compiler to not reorder the LUT bits, thereby avoiding the complications of input
pin reordering which are detailed in Chapter 3.

Project X-Ray is the most thorough implementation of FPGA bitstream reverse engi-
neering that is available publicly. It has successfully mapped the majority of the 7-Series
Xilinx FPGA bitstream architecture. However, the codebase is specifically tied to the Xilinx
Vivado toolchain. The methodology presented in this paper only targets the LUT program-
ming bits, but it does it in a way that does not require the use of Vivado specific macros
or commands, thereby allowing the method to be easily used across many different FPGAs

and toolchains.

2.2.2 Logarithmic-Time FPGA Bitstream Analysis

The paper ”Logarithmic-Time FPGA Bitstream Analysis: A step towards JIT Hardware
Compilation” [2] describes an abstract reverse engineering method at a high level. The
paper defines an algorithm that considers each component in the FPGA a ”Programmable
Point” with an associated bit or set of bits in the bitstream. This algorithm allows for the
matching of each Programmable Point to its associated bitstream bit or bits in logarithmic
time complexity, meaning that to solve N programmable points it only needs to generate
logs(N) bitstreams. However, this method requires precise control over the Programmable
Points which can be difficult or impossible to attain with some FPGA compilers. The paper
is able to demonstrate the effectiveness of the algorithm on Xilinx FPGAs by using XDL.
XDL is a Xilinx specific language that allows for low-level control of the bitstream, however
Intel does not have an equivalent tool. Therefore at the time of writing it is not possible

to use the defined algorithm on Intel FPGAs. However, the fundamental principle proposed

10



in the paper is to set the FPGA bitstreams in a way that results in the target bitstream
bits exhibiting unique patterns over the course of several bitstream generations. The exact
nature of the algorithm allows for logarithmic time performance solving the bitstream bits.
The methodology proposed in this paper uses the same principle for matching bitstream bits
to the FPGA components, however rather than using an exact configuration to achieve log
time performance we use a randomized approach to configure bits. This makes the algorithm
possible to implement on FPGAs where exact control is not possible, but results in a slight

loss of performance, only achieving log time performance in the average case.

2.3 Summary

We discussed the basic architecture of FPGAs specifically focusing on LUTs which are the
primary target of the reverse engineering methodology presented in this Thesis. We also
discuss two public examples of reverse engineering methodologies and outline how they differ

from our method.

11



Chapter 3

Methodology

3.1 Generic LUT Mapping

Reverse Engineering of the LUT bits requires control over the manipulation of LUT equa-
tions. In [8, Project X-Ray| LUT instantiation is done using HDL macros provided by the
tool chain. This means that the HDL written for one tool chain would not necessarily work
on another tool chain. Instead, we use VHDL case statements to infer LUTs. This means
that the code is not tied to any specific toolchain. It does however come with some limita-
tions which will be discussed in the Challenges section.

The general idea of the methodology is to use generic VHDL case statements to infer the
instantiation of LUTs. Then we wire the case statements together in a way exploits the
timing optimization of FPGA compilers to attempt to get our design consistently placed in

the same location on the FPGA.

3.1.1 Challenges

Using generic VHDL to instantiate LUTs comes with several challenging limitations. The
methodology we developed is specifically designed to overcome these limitations, so its neces-
sary to understand these limitations in order to understand why our methodology is designed
the way that it is. Therefore, we will begin by outlining the limitations of using generic VHDL
to instantiate LUTSs.

12



Input Pin Reordering Input pin reordering refers to an optimization step done during
the place-and-route stage of compilation. The compiler will often change the order of LUT
input pins to reduce timing delays. Input pin reordering makes the reverse engineering
process significantly more complicated, because it means that the values written to VHDL
case statements will not be implemented the same way on hardware, preventing direct control
of LUT bit assignment. Figure 3.1 shows an example of how this could work, demonstrated
with a 2 input LUT. In the example we use a VHDL case statement to program a 2 input
LUT with the values X(_3 but the compiler then swaps the inputs of the LUT. This results
in the values X; and X5 swapping positions in the physical LUT memory cells. The behavior
of the circuit is not affected as the LUT will still output X; when A=0 and B=1, but the

physical LUT bits have not been programmed the way that we intended.

Y

Input A Input B LUT Bits Input B Input A LUT Bits
0 0 X, 0 0 X,
0 1 X, 0 1 X,
1 0 X, >< 1 0 X,
1 1 X, 1 1 X,

Figure 3.1: Input Pin Reordering

Logic Optimization Compilers will attempt to reduce the number of logic elements uti-
lized when possible. This poses a challenge to reverse engineering because it means that it is
not guaranteed that structures implemented in HDL will be implemented the same way on
the physical FPGA. It is a standard feature for FPGA compilers to allow logic optimization
to be disabled, however even with logic optimization disabled case statements whose equa-
tions do not utilize all inputs will often be mapped to decomposed LUTs. Therefore, it is

necessary to only program LUTs with equations that are irreducible.

13



LUT Packing Some FPGAs featuring complex LUT architectures are capable of packing
two LUTSs that share multiple inputs and have the same equation into a single LUT. Most
LUTSs architectures are designed to be decomposable, meaning that a single larger LUT can
also function as two or more smaller LUTs. To achieve this LUT architectures generally
support having two outputs. Some LUT architectures can exploit this to allow them to pack
together LUTs that have the same equation and share most of their inputs. This behavior

was observed with the Cyclone V LUT architecture.

3.1.2 Method

Hamming Weight The problem of Input Pin Reordering can be solved by only program-
ming the LUTs with equations that do not change if the input pins change. Equations meet
this criterion if all programmable bits with the same hamming weight are set to the same
value. The hamming weight of a LUT bit is the number of ones in that bit’s address. Table
3.1 shows the hamming weight of the bits of a two input LUT. The intuition follows that if
you reordered the inputs i.e. swapped columns A and B in the table, the hamming weight
would not be affected. Therefore, if all the bits with an address hamming weight of 1 (bits
By and B,) are programmed to the same value, then swapping the inputs would not change
the values programmed to the physical LUT even though the values programmed to By and

B5 have technically changed positions.

A | B | Out | Hamming
00| By 0
01| By 1
110] B 1
111 Bs 2

Table 3.1: LUT Bit Hamming Weight

XOR/XNOR Functions The XOR and XNOR functions are the ideal functions to work
around both the input pin reordering problem and the logic optimization problem. Both
XOR and XNOR functions are irreducible and both functions meet the hamming weight

criterion, meaning that the LUT programming bits do not change if the inputs of the equation

14



are reordered. The LUT programming bits for an XOR equation are also the exact inverse
of an XNOR equation with the same number of inputs, this makes them especially useful

for mask generation, as described later.

3.1.3 LUT Interconnect Patterns

We use generic VHDL case statements to instantiate individual LUTSs, however this still
leaves the question of how to connect case statements together to instantiate multiple LUTs.
The goal is to maximize LUT utilization per bitstream generation, because any LUTs left
unprogrammed would not be solved. We also have the secondary goal of trying to get the
compiler to place consecutive designs in the same location on the FPGA, thereby reducing
noise from routing changes. The interconnect patterns we tested try to achieve this goal
by exploiting the compilers timing optimization during place-and-route. The idea is that if
we chain together LUTs creating a massive combinational logic structure the compiler will
find an optimal placement with minimum timing delays. The assumption being that the
compiler would find the same optimal placement from run to run. This will be discussed
further in the Results section, but we found that in the majority of tests this assumption
proved to be correct though there were some cases where routing did change. Over the course
of the research we tested three different approaches to connect the LUTSs, the Row/Column
approach, the Snake approach, and the Modified Snake approach.

Row/Column The first method tested simply instantiates a matrix of LUTs in which
the first column’s LUT inputs are initialized by I/O and the output of each LUT is wired
to the inputs of LUTs near it in the next column. This method was simple to implement,
however it had several drawbacks. It performed well at getting the compiler to place designs
consistently, which helps reduce noise. However, it suffered from the problem of LUT packing
with some FPGAs. The main issue with this methodology was that it required some tuning
to the specific architecture of the FPGA. Most FPGAs group LUTSs together into blocks
that share routing resources. These are commonly referred to as Slices. For some FPGAs
the Row/Column method required that the size of columns was a multiple of the number

of LUTs in a slice in order to maximize LUT utilization. For example, the Xilinx 7 Series

15



FPGA architecture has 4 LUTs per Slice, and we found that the size of a Column had
to be a multiple of 4 to get maximum LUT utilization. This meant that the number of
LUTs instantiate could only be changed 4 LUTs at a time. This is a problem because often
compilers are not capable of getting 100% LUT utilization, but they could place designs that
used nearly 100% of LUTs minus 1-5 or so. This means that the Row/Column method was
not ideal for getting the absolute maximum amount of LUT utilization possible because if
you have an FPGA that is capable of filling all LUTSs except 1, then with the Row/Column
method you need to remove the entire last column. The method also requires the user to
know how many LUTSs are in a slice for the target FPGA. This is typically easy information
to find, but our goal is to make FPGA REing as simple as possible, so ideally we reduce the

need for specialized knowledge wherever possible.

Algorithm 1 2-D Row/Column Pattern

1: function LUT (A1, A2, ..., AN)

2: A= b1nary21nteger(AN , A2, A1)
3 case A = 0: Out <= MC(0 ) value

4: case A = 1: Out <= MC(1) value

5: case A = 2: Out <= MC(2) value
; .
7
8
9:

case A = 2V-1: Out <= MC(2V-1) value
cend function . ...
function 2D_Row_CoLUMN_MAP(R, C, N)

10: > R: Rows, C: Columns, N: Number of LUT inputs
11: > LUTSs near perimeter handled as special cases
12: fori=2to Cdo
13: for j =1to R do
14: if N is even then
LUT}(LUT;-nj240,-1 0 LUT)njos1-1 0 -
15:  LUT s njo(v—1),i-1())
16: else if N is odd then
LUT (LUT) - nj21ie1 (). LUT) i ()
17: . LUTj 1 nja1n,i-1())
18: end if
19: end for
20: end for

21: end FUNCUION . . .. oo
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Figure 3.2: Row/Column Method

Linear Snake The second methodology tested was the Linear Snake method. So-called
because it wires LUTSs together in a chain to form a ”Linear Snake” of LUTs. The inputs
to an N input LUT are wired to the outputs of the prior N LUTSs in the chain, as shown
in figure 3.3. The LUTSs at the start of the chain are initialized by external 1/O. We found
that this methodology preformed as well as the Row/Column method at getting consistent
placement between bitstream generations. It also has the benefit of more fine-grained control

of the number of LUTSs over the Row/Column method and does not require knowledge of the
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number of LUTs in a slice. However, it is still susceptible to the problem of LUT packing
with some FPGAs.

Algorithm 2 Linear Snake Pattern

function LINEAR_SNAKE_MAP(N, N)
> X: Number of LUTs, N:Number of LUT inputs
> Initial LUT; (j < N) handled as special cases

LUE(LUE*1<>7LU7}*2(>7 : 7LUE*N())
end for

1:

2

3:

4: for i = N+1 to X do
5

6

7: end function

Modified Linear Snake The Modified Linear Snake pattern was created to address the
issue of LUT packing. As stated in Section 3.1.1 Challenges, LUT packing occurs with some
LUT architectures if LUTs programmed with the same equation share too many inputs. The
mask generation step of the methodology requires that all LUTSs be programmed to the same
values, so to prevent LUT packing we must minimize the number of inputs shared between
LUTs. This is what the Modified Snake method seeks to accomplish. Rather than simply
using the prior N LUTSs to drive the inputs of any given LUT in the chain, the Modified

Snake method uses the series of Triangular Numbers to determine which LUTs to connect.

Algorithm 3 Modified Snake Pattern
1: function MODIFIED_SNAKE_MAP(X, N)

2 > This is a modification to the Snake Map algorithm
3 > LUT I/O ordering changed to leverage partially decomposable LB architecture
4: > Assuming N=6 (LUTG6); Initial LUTj; (j < 3N-1) handled as special cases
5: for j = 3N-1 to X do
6

7
8:

LUT]'(LUTj—l()>LUTJ'—2()7LUTJ'—4()7LUT]'—7()7' ’ '7LUT]'*(N(N*1))/2)*1())
end for
end fUNCEION . ...
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Figure 3.3: Snake Methods

3.1.4 Solving the LUTSs

LUT Mask Generation The first step of the process is to identify which bits in the
bitstream program the LUTs. The process for obtaining the LUT mask is very simple. First
two bitstreams are generated, one in which all LUTs are programmed to the XOR equation
and another where all LUTs are programmed to the XNOR equation. Then the xor of the
two bitstreams is taken, the result is the LUT mask. The logic follows that the xor of the two

bitstreams will have 1’s for any bits that changed from the first bitstream to the second, since
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the LUT equations that were programmed to the FPGA are inverses of each other. If all
LUTSs were utilized then all the LUT bits will appear as 1’s in the mask. However, they may
also contain "noise” in the form of bits that changed value but do not belong to the LUTs.
Common sources of this kind of noise include routing bits or differences in the bitstreams
header metadata. This noise can be significantly reduced if the chosen LUT interconnect
pattern succeeds in getting the tool to place the design in the exact same location, and the
next step of the process is also effective at eliminating random noise.

Figure 3.4 shows an example mask generation. For the example we imagine an extremely
small FPGA which has only two LUTs, LUT A and LUT B. Each LUT only has two inputs,
meaning each LUT has 4 programmable bits. The bitstream is also extremely short having
only 11 bits in total, 8 of which belong to the LUTs. Figure 3.4 shows how in the first
bitstream LUT A (bits B;_3) and LUT B (bits By_7) are programmed to XOR functions,
and in the second bitstream they are programmed to XNOR functions. We then compute
the xor of both the bitstreams to generate the mask. Notice that in this example there are
two unwanted noise bits that made it into the mask, bits By and Byg. The next section will

show how these noise bits are eliminated.
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LUTA LUT B

Input A Input B Programmable Bits Input A Input B Programmable Bits
0 0 B, 0 0 B,
0 1 B, 0 1 B,
1 0 B, 1 0 B,
1 1 1 1 B,

Bitstream Bits

Bitstreams B, B, B, B, B, B, By B, By By B
XOR Bitstream 0 ’ 1 0 0 1 1 0 0 1 0
XNOR Bitstream ; 0 0 1 1 0 0 1 0 0 1

XOR © XNOR = Mask 1 1

Figure 3.4: Mask Generation

Pseudo-Binary Search The Pseudo-Binary Search algorithm works off the principle that
if we repeatedly generate bitstreams in which each LUT is randomly configured to either an
XOR or XNOR function, then given enough bitstreams each individual LUT will have been
programmed to a unique sequence of XOR/XNOR equations. Once enough bitstreams have
been generated that all LUTSs have a unique sequence we can then group bits in the mask
that exhibited the same pattern. We expect bits that belong to the same LUT to exhibit
the same pattern, with the exception that the XOR vs XNOR bits will have inverse patterns
relative to each other. Meaning that half of a LUTs bits will exhibit the inverse pattern of
the other half. For example, we would expect that for a 6 input LUT (with 64 bits) there
would be two groups of 32 bits that all exhibited the same patterns and the patterns of the
two groups are the inverses of each other.

Continuing the prior example from Figure 3.4, Figure 3.5 shows how bits belonging to
the same LUT are paired with each other and how noise is eliminated. The table at the
top of Figure 3.5 shows four bitstreams generated. In each bitstream LUT A and LUT B

were randomly set to either the XOR or XNOR function. Below the table we see a diagram
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showing the progression of the algorithm as it processes each additional bitstream. It starts
at the top with all the mask bits, in this example it is all bits except Bg. However, in a
real world bitstream the mask eliminates a significant portion of the bitstream. Then we
begin processing the first random bitstream finding what each bit of intrest was programmed
to. Using this information the original set is split in two, the first set contains all the bits
programmed to 0 in the bitstream, the second all the bits programmed to 1. This is repeated
with the next bitstream, now splitting set 0 into set 00 and 01 where each bit was set to 0
in the first bitstream and then to 0 or 1 respectively in the second bitstream. In this stage
we can eliminate the first noise bit By, because it is in a set with fewer than 2 members.
We know that the FPGA has 2 input LUTSs, and we expect half of the bits of each LUT to
exhibit the exact same pattern. In other words, for LUTs with M bits we expect sets with
no fewer than M /2 bits that have the exact same pattern. This means that any set which
contains fewer than M/2 bits can be eliminated, meaning for our example sets with fewer

than 2 bits.
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/

Bitstream Mask

RND 4

Figure 3.5: Pseudo-Binary Search

23



Algorithm 4 Pseudo-binary Search

procedure SORT(X,N,MASK)
: var R,Tmp : table

1:

2

3 var B : bitarray

4: var T, F, TmpT, TmpF' : set

5: var newkey : string

6 var complete : boolean < False
7 while not complete do

8

9

Tmp < new table > initialize to empty table
: B « Generate Random Bitstream(X, N)
10: T < GetSetBitIndexes(Mask and B) > returns a Set of the indexes of every
bit set to 1
11: F < GetSetBitIndexes(Mask and not B)
12: if Rif empty then
13: Tmp["T”] T
14: Tmp["F”] < F
15: else
16: complete < True
17: for each (key,value) in R do
18: TmpT « value N'T
19: if GetLength(TmpT) >= N?/2 then
20: newkey <« key +"1"
21: Tmp[newkey| < TmpT
22: end if
23: TmpF < value U F
24: if GetLength(TmpF) >= N?/2 then
25: newkey < key + 7 F”
26: Tmp[newkey| < TmpF
27 end if
28: if GetLength(TmpT) > N?/2 or GetLength(TmpF) > N?/2 then
29: complete < False
30: end if
31: end for
32: end if
33: R+ Tmp
34: Delete(Tmp)
35: end while
36: return R

37: end procedure

Bit matching Upon completion of the Pseudo-Binary search, we will have sets of bitstream

bits in which all bits belong to the same LUT but each set only contains half the bits of
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a LUT. This is because we used the XOR and XNOR functions to program the LUTSs so
for any one configuration, half of a LUTSs bits were set to 1’s and the other half set to 0’s.
Because the XOR and XNOR functions are inverses of each other we expect that the two
halves of the LUT exhibit inverse patterns of each other. So, we can form completed LUTs
by matching the sets whose patterns are inverses of each other. For example, in Figure 3.5
the set By,Bs had the pattern 0100 whose inverse is 1011 which matches set By,B>. So we
then combine these sets to form a completed LUT By, B1,Bs,Bs3.

While using the patterns inverse to match sets is simple and generally reliable, it does
have one problem. Using the inverse fails if the LUT was not utilized in one or more of the
bitstreams used to create the pattern. This is because if the LUT is not utilized then the
LUT is generally set to either all zeros or all ones by default. Meaning that both halves
of the LUT are set to the same value, so the inverses of the pattern will not match. This
is only a problem if it is not possible to obtain 100% utilization on the FPGA, and the
LUT interconnect pattern does not succeed at getting the compiler to consistently place the
design.

One alternative method for matching the sets is to use the concept of hamming distance,
which looks at the number of bits that differ between the patterns. If the exact inverse does
not result in a match, then we can pair the sets with whichever set whose pattern has the
greatest hamming distance. Effectively pairing sets whose patterns have the most number

of bits that are inverses out of all the sets.

3.1.5 Sorting LUT bits

The process detailed above solves for which bits belong to the same LUT, however this is
not enough information to determine what logic equation any given LUT is programmed to.
To fully extract LUT logic equations we must determine the order in which each LUT bit
fits into the truth table. We refer to this process as sorting the LUT bits. For an N input
LUT this is done by simply programming the LUTs with the column values of an N input
truth table until we observe N unique patterns in the bits belonging to the LUT. Once these
N unique patterns are observed we arbitrarily order them 1-N and use the numerical value

that each LUT bit exhibited to place it at that index in the truth table.
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This is much easier to understand with an example. In 3.6 we have a 3 input LUT whose
bits we have solved {Bq, By, B., By, Be, By, B,, By} but we do not know the order of these
bits in the LUT. To sort them we generate three bitstreams programming the LUT with the
values Func 1-3 as shown in Figure 3.6. Notice that the programmed values are not exactly
the same as the columns of the truth table. The most significant and least significant bits are
swapped. We must do this because otherwise the function would be reducible and likely the
compiler would decompose the LUT to a smaller one or simply remove it entirely. Once the
bitstreams are generated we look at the values that the bits B,_j exhibited. We expect that
the LUTs bits will have been programmed to three distinct patterns, one for each input. If
this is the case, we can use the pattern each bit exhibited to place them in the corresponding
location in the truth table, keeping in mind that we swapped the most significant and least
significant bits. Bit B;, for example had the binary value ”7011” which is 3 in decimal, so
we sort it into index 3 in the truth table. However, some FPGAs use inverted logic to
program LUT memory cells which would result in us incorrectly reversing the order of the
bits. To check for this we look at the value that the most significant bit (MSB) and least
significant bit (LSB) were set to in the XOR mask bitstream. Since we know that the LUT
was programmed to the XOR function in this bitstream we expect the values of the MSB and
LSB to be 0s. If they are not, then we know the FPGA uses inverted logic, and we reverse
the LUTSs bit order to compensate. It should be noted that because of input pin reordering
there is no guarantee that the input ordering of our sorted LUT matches the physical pin
order of the physical LUT on the FPGA. In fact the true pin ordering is much more likely
to differ from out virtual ordering. However, the true physical order of the inputs does not
really matter, what matters is that we can distinguish between the inputs to reconstruct a
logic equation. Furthermore, also because of input pin reordering it may take more than N
bitstreams for us to observe N unique patterns in the LUTSs bits because the compiler may
reorder the inputs so that we observe a duplicate of a previous pattern. If this is the case
then we generate more bitstreams until we observe all N unique patterns, and we discard

any duplicates.

26



0 0 1 1 1
0 0 0 0 1
0 1 0 1 0
0 1 = [ o 1 1
1 0 1 0 0
1 0 1 0 1
1 1 1 1 0
1 1 - L o 0 N
Bitstreams

Func 1 Bitstream

Func 2 Bitstream

Func 3 Bitstream
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Chapter 4

Results

4.1 Test Methodology

To test our methodology we chose a variety of FPGAs from both Xilinx and Intel. We
looked up the size and number of LUTs available on each FPGA from their datasheets,
as well as the number of LUTs in each logic block for the Row/Column method. Then we
attempted to generate bitstreams for each FPGA using the three LUT interconnect methods,
instantiating the maximimum number of LUTs on the FPGA. If bitstream generation failed
we reduced the LUT count by one and tried again, or in the case of Row/Column reduced the
number of rows by one. This was repeated until we had successfully generated all necessary
bitstreams for each FPGA for all three LUT interconnect methods. For the FPGAs that
did not successfully have full LUT utilization, the entire process was repeated a second time

using the next highest number of LUTs that could successfully generate a bitstream.

4.2 LUT Utilization Results

The objective of the LUT interconnect strategies was to make the placement of LUTSs con-
sistent accross multiple bitstream generations and to maximize the number of LUTSs that
could be utilized. The reason that it is important to maximize LUT utilization is that any
LUTs that are not programmed will not be solved. To solve for these missed LUTSs we repeat

the process and slightly change the number of LUTSs instantiated to force the compiler to
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place the design differently in hopes that the new placement will include the LUTSs that were
missed. The results of both runs can then be combined to obtain a full mapping. However,
because the compiler is not guaranteed to replace the design to include the missed LUTs it
is still critical to get as high LUT utilization as possible because this maximizes the chance
that all LUTs will be solved in the second run.

Table 4.1 shows the maximum number of LUTs that each method was able to instantiate
in a single run. The data shows that the snake based methods either matched or outper-
formed the utilization of the Row/Column based approach. Furthermore the modified snake
method, although it requires additional I/O resources, performed as well as the original snake

method while solving the LUT merging issue experienced with the Cyclone V architecture.

. . Max LUT Utilization
FPGA Vendor Family Part LUTs Available Row/Column Method | Snake Method | Modified Snake Method
Intel Cyclone IV | epdcgx15bflda7 14400 14380 14399 14399
Intel Cyclone V 5cebadf17i7 18480 failed failed 18479
Xilinx Artix xc7al00tfggd84-2L 63400 63384 63398 63399
Xilinx Kintex xc7k70tfbgd84-3 41000 40992 40997 40999
Xilinx Spartan xc7s15epgal96-2 8000 8000 8000 8000
Xilinx Spartan xc7s100fggad84-2 64000 63992 63999 63999
Xilinx Zynq xc7z020clg484-1 53200 53192 53199 53199

Table 4.1: Maximum Single Run LUT Utilization Achieved

4.3 Problems

Artificially Restricted FPGAs One problem encountered was that there appeared to be
some FPGAs that were being artificially restricted to utilize fewer LUTSs than were physically
available on the FPGA. This problem was found with several FPGAs from both Xilinx and
Altera. Upon further investigation it appears that both manufacturers are officially listing
some FPGAs as having fewer LUTSs available than there are physically available. Further-
more, all LUTs remain capable of being programmed, there is just an artificial restriction
in the compiler to not allow all of the LUTs to be utilized at the same time. For each of
these artificially limited FPGAs we were able to find a "larger” FPGA with the exact same
packaging and 1/O, whose bitstreams looked suspiciously similar, with the exception of the
FPGA name in the header data. It appears that FPGA manufacturers are artificially ex-
panding their product line of FPGAs by selling the exact same FPGAs with different names
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on the package and using the compilers to restrict the resource utilization allowed on the
"smaller” FPGAs. This causes a problem for our reverse engineering methodology because
it requires high LUT utilization, ideally full LUT utilization. It may be possible to RE these
FPGAs with our methodology if you manually constrained the input and output pins to
guide the placement of the LUTs to different portions of the FPGA, doing repeated runs
and combining the result. However, for the purpose of demonstrating this methodology we
did not use the FPGAs for which the compiler artificially prevented full LUT utilization.
One of the FPGAs that we suspect to be artificially restricted is the 14400-LUT xc7z007sclg400-

1 which is the FPGA found on the Cora-Z7 development board. The data we generated
suggested that it actually has 17600 LUTs, and the bitstream looked very similar to that of
the Cora-Z10’s 17600-LUT xc7z010clg400-1 FPGA. Fortunately, we had a Cora-Z7 on hand
that we were willing to risk destroying. So, we tested the theory by generating a simple
bitstream for the Cora-Z10 that blinked an LED, tampering with the bitstream header to
rename the FPGA part name, and then attempting to program our Cora-Z7 with it. It
did not work at first, but after disabling CRC error correction and identifying two other
bits that needed to be changed, we were able to successfully program the Cora-Z7 with a
bitstream that was generated for the Cora-Z10. However, this is not a thorough enough test
to declare that the FPGAs are identical, or to make the same assumption about the other
FPGAs that we identified as behaving this way. But it strongly reinforces the hypothesis
that the discrepancies we found in our data for these FPGAs stem from vendors artificially

restricting LUT utilization in the compiler.

Difficulties Obtaining Full LUT Utilization Even with the more optimized LUT in-
terconnect patterns it was still not possible to obtain full LUT utilization with all FPGAs.
With Altera FPGAs it is actually impossible to utilize all of the LUTs in a single bitstream
because it always configures a single LUT to all 0’s with the output used as ground. This
meant that for many of the FPGAs, while it was possible to solve more than 99% of LUTs in
a single run it was not possible to get 100%. The solution to this was to simply do a second
run using a slighty smaller number of LUTs. By changing the number of LUTSs this would
change the way that the LUTs were placed on the FPGA resulting in a high probablility
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that the LUTs that were not solved in the first run would be solved in the second run. In
all cases this was able to yield 100% LUTSs solved by doing no more than two runs.

Table 4.2 shows how many total LUTs were solved for each of the FPGAs tested. All the
FPGAs except the 8000 LUT Spartan required two runs to solve the full FPGA, as can be
seen in the detailed tables for each interconnect method later in this chapter. We combined
the results of two runs by taking the union of the sets of LUTs solved in each run. This is a
straightforward process, the data for each LUT is an array of bit indices so to combine the
result of two runs we simply start with the LUT data from the first run, then parse through
the LUTSs of the second run, keeping any LUTs with unique values not present in the first

dataset and discarding any that are already known.

. . LUTSs Solved
FPGA Vendor Family Part LUTs Available Row/Column Method | Snake Method | Modified Snake Method
Intel Cyclone IV | epdcgx15bflda7 14400 14400 14400 14400
Intel Cyclone V 5cebadf17i7 18480 failed failed 18480
Xilinx Artix xc7al00tfggd84-2L 63400 63400 63400 63400
Xilinx Kintex xc7k70tfbgd84-3 41000 41000 41000 41000
Xilinx Spartan xc7s15epgal96-2 8000 8000 8000 8000
Xilinx Spartan xc7s100fggad84-2 64000 64000 64000 64000
Xilinx Zynq xc7z020clg484-1 53200 53200 53200 53200

Table 4.2: LUT Solving Data

4.4 LUT Solving Results

Row/Column Results In order to maximize the number of LUTSs utilized with the Row/-
Column method it was often necessary to make the column height a multiple of the slice
size. For this reason the Linear Snake approaches were able to match or exceed the total
LUT utilization of the Row/Column approach on the same FPGA. As seen in Tables 4.3 and
4.4 the Row/Column approach was still able to solve the majority of LUTs on each FPGA,
with the exception of the Cyclone V, which has the issue of LUT packing.

In another notable exception with this method, the Cyclone IV had issues with inconsis-
tent placement in the the LUT Solving step. This meant that it required using the maximum
hamming distance approach to pair LUT halves. Using just the exact inverse to match LUT
halves yielded only 13819 solved LUTs in Run 1 and 13523 in Run 2. This was the only case

where the exact inverse was not sufficient in solving all instantiated LUTs.

31



LUT LUTs LUTs | Number of | LUTs | Number of

Vendor Family Part Count | Utilized | Found | Bitstreams || Sorted | Bitstreams
Intel | Cyclone IV | epdcgx15bfl4a7 14400 14380 14380 29 14380 4
Intel Cyclone V 5cebadf17i7 18480 failed failed failed failed failed
Xilinx Artix xc7al00tfggd84-2L | 63400 63384 63384 34 63384 6
Xilinx Kintex xc7k70tfbgd84-3 41000 40992 40992 33 40992 6
Xilinx Spartan xc7s1dcpgal96-2 8000 8000 8000 25 8000 6
Xilinx Spartan xc7s100fggad84-2 | 64000 63992 63992 38 63992 6
Xilinx Zynq xc7z020clgd84-1 53200 53192 53192 30 53192 6

Table 4.3: Row/Col Method: Run 1

Vendor Family Part LuT LUTs | LUTs | Number of | LUTs | Number of
Count || Utilized | Found | Bitstreams || Sorted | Bitstreams
Intel Cyclone IV | epdcgx15bfl4a7 14400 14370 14370 31 14370 4
Intel Cyclone V 5cebadf17i7 18480 failed failed failed failed failed
Xilinx Artix xc7al00tfggd84-2L | 63400 63376 63376 32 63376 6
Xilinx Kintex xc7k70ttbg484-3 41000 40984 40984 33 40984 6
Xilinx Spartan xcTs15cpgal96-2 8000 n/a n/a n/a n/a n/a
Xilinx Spartan xc7s100fggad84-2 | 64000 63984 63984 33 63984 6
Xilinx Zynq xc7z020clgd84-1 53200 53184 53184 32 53184 6

Table 4.4: Row/Col: Run 2

Linear Snake The Linear Snake method performed slightly better than the Row/Column
approach at getting maximimum single run LUT utilization. However, it also was not capable

of solving the Cyclone V due to LUT packing.

Vendor | Family Part LuT LUTs | LUTs | Number of | LUTs | Number of
Count | Utilized | Found | Bitstreams || Sorted | Bitstreams
Intel Cyclone IV | epdcgx15bfl4a7 14400 14399 14399 27 14399 4
Intel Cyclone V 5cebadf17i7 18480 failed failed failed failed failed
Xilinx Artix xc7al00tfggd84-2L | 63400 63398 63398 34 63398 6
Xilinx Kintex xc7k70tfbgd84-3 41000 40997 40997 32 40997 6
Xilinx Spartan xc7s15cpgal9e-2 8000 8000 8000 29 8000 6
Xilinx Spartan xc7s100fggad84-2 | 64000 63999 63999 32 63999 6
Xilinx Zynq xc7z020clg484-1 53200 53199 53199 32 53199 6

Table 4.5: Snake: Run 1
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LUT LUTs LUTs | Number of | LUTs | Number of

Vendor | Family Part Count || Utilized | Found | Bitstreams || Sorted | Bitstreams
Intel | Cyclone IV | epdcgx15bfl4a7 14400 14398 14398 29 14398 6
Intel Cyclone V 5cebadf17i7 18480 failed failed failed failed failed
Xilinx Artix xc7al00tfged84-2L | 63400 63397 63397 33 63397 6
Xilinx Kintex xc7k70tfbg484-3 41000 40995 40995 33 40995 6
Xilinx Spartan xc7s15cpgal9e6-2 8000 n/a n/a n/a n/a n/a
Xilinx Spartan xc7s100fggad84-2 | 64000 63997 63997 32 63997 6
Xilinx Zynq xc77z020clg484-1 53200 53198 53198 31 53198 6

Table 4.6: Snake: Run 2

Modified Linear Snake The Modified Linear Snake method performed as well as the
Snake method at maximizing single run LUT utilization while also solving the problem of
LUT packing that caused the Row/Column and Snake methods to fail at solving the Cyclone
V FPGA.

However, the Cyclone V once again posed an additional challange which we see in the
number of bitstreams required to sort the LUT bits. The Cyclone V was the only FPGA
that reordered the LUT bits with every input mask bitstream generated. This meant that
obtaining N unique patterns for every LUT required a significant number of bitstreams. The
problem is easy to imagine with an example. Say we have a 6 sided die, one side for each
input of our 6 input LUT, and we want to observe each face at least one time. If we can
pick-up and place the die then we only need to do so 6 times to observe every face. However,
if we are forced to roll the die then it could take many more than 6 rolls to observe every
face. This is what happens with the Cyclone V, and we do not just have one die, we have
18480.

This behavior of the Cyclone V was unexpected, because analysis of the XOR Mask
indicated that there was no input pin reordering that occurred between the XOR and XNOR
mask generation bitstreams, as there were very few noise bits in the mask. Furthermore,
generating multiple bitstreams setting all LUTSs to the same input mask value did not result in
random changes in the input pin order, i.e. generating the same bitstream twice yielded two
nearly identical bitstreams. This indicates that the Modified Snake pattern was successful
of obtaining consistent placement, but there is some property if the input mask functions
that results in changes to the input pin order. This meant that to solve the LUT bit order

of the Cyclone V we had to generate multiple bitstreams in which each LUT was randomly
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configured to one of the N input mask functions until we observed all N patterns in the

bitstream for every single LUT.

Vendor Family Part LUT LFJ:TS LUTs N}lmber of | LUTs N}lmber of

Count || Utilized | Found | Bitstreams || Sorted | Bitstreams
Intel Cyclone IV | epdcgx15bfl4a7 14400 14399 14399 31 14399 4
Intel Cyclone V 5cebadfl7i7 18480 18479 18479 28 18479 68
Xilinx Artix xc7al00tfggd84-2L | 63400 63399 63399 33 63399 6
Xilinx Kintex xc7k70tfbg484-3 41000 40999 40999 35 40999 6
Xilinx Spartan xc7s1dcpgal96-2 8000 8000 8000 26 8000 6
Xilinx Spartan xc7s100fggad84-2 | 64000 63999 63999 32 63999 6
Xilinx Zynq xc7z020clg484-1 53200 53199 53199 31 53199 6

Table 4.7: Modified Snake: Run 1

Vendor Family Part LuT LUTs | LUTs | Number of | LUTs | Number of
Count || Utilized | Found | Bitstreams | Sorted | Bitstreams
Intel Cyclone IV |  epdcgx15bflda? 14400 14398 14398 29 14398 4
Intel Cyclone V 5cebadfl7i7 18480 18478 18478 29 18478 62
Xilinx Artix xc7al00tfggd84-2L | 63400 63398 63398 34 63398 6
Xilinx Kintex xc7k70tfbgd84-3 41000 40995 40995 31 40995 6
Xilinx Spartan xc7s15cpgal9d6-2 8000 n/a n/a n/a n/a n/a
Xilinx Spartan xc7s100fggad84-2 | 64000 63998 63998 31 63998 6
Xilinx Zynq xc7z020clg484-1 53200 53198 53198 32 53198 6

Table 4.8: Modified Snake: Run 2

4.5 Summary

In summary, we found that the data shows that the Modified-Snake LUT interconnect ap-
proach was the most effective interconnect pattern of the three, being able to solve the
Cyclone V which the other two methods failed at. We demonstrated that Modified-Snake
method was successful at consistently placing LUTs on the FPGAs that we tested. We
also demonstrated that it is possible to reverse engineer the LUT programming bits by us-
ing generic VHDL while still maintaining reasonable efficiency in the number of bitstreams

required.
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Chapter 5

Conclusion

5.1 Future Work

This method could be improved by being formally verified or proved on physical hardware
to test it’s accuracy. We did not have access to physical versions of most of the FPGAs
we tested on, rather relying on the consistency of the data to indicate that the mapping is
accurate. Future work could also expand the concept of using VHDL to infer the instanti-
ation of components to other portions of the FPGA like Block Ram (BRAM), Flip-Flops,
Multiplexers. Modern compilers like Vivado and Quartus both support inferred BRAM. We
have done some preliminary testing on REing BRAM bits using VHDL to infer and configure
BRAM and it has shown promising results. Future work also includes attempting to reverse
engineer the routing components such as Switch-Boxes to be able to reconstruct a netlist.
Routing components pose a significantly more challenging problem than LUTSs because using
only VHDL there is little to no control over how the compiler chooses to route the design.
Reverse engineering the LUTs by themselves does not provide enough information to
verify the integrity of a bitstream. However, it could be used for very primitive Trojan
detection. For example, using the LUT mapping data one can determine the number of LUT's
that are being utilized in a bitstream. FPGA compilers report the resource utilization of an
FPGA after compilation, this includes the number of LUTs utilized. Using our methodology,
one could compare the expected LUT utilization as reported by the tool with the actual LUT

utilization on the resultant bitstream. Thereby providing a primitive way to check if any
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unexpected logic was added directly to a bitstream. There could be some benefit in testing
how effective such a strategy is at finding Trojans, though likely it would only work for a

narrow subset of Trojans.

5.2 Closing Thoughts

While the methodology presented in this paper is limited in scope to targeting LUTSs, the
results show that it is possible to reverse engineer portions of the FPGA bitstream without
needing to use specialty functions of a toolchain. The novel contributions of this methodology
are the use of generic VHDL to instantiate and configure LUTs and the analysis that lets
us overcome the challenges posed by input pin reordering and compiler optimizations. Our
work shows that it is possible to reverse engineer portions of the bitstream format using
generic VHDL which significantly reduces the effort required to implement the method on
new FPGAs as compared to existing methods discussed in Chapter 2.

There probably will never be a truly generic way to reverse engineer all components on all
FPGASs, but our research shows that it is possible to target ubiquitous components like LUT's
with a generic methodology that can be applied to a wide variety of FPGAs. With additional
research targeting other common FPGA components like BRAM, Flip-Flops, Multiplexers,
and Switch-Boxes, it may be possible to have a generic method capable of reverse engineering
the majority of an FPGAs bitstream with little upfront effort. Targeting these common
FPGA components may allow for enough of a bitstreams netlist to be reconstructed to allow
for the detection of some types of Trojans. Once the netlist or partial netlist is reconstructed,
there is already significant research available on Trojan detection at the netlist level. It would
be possible to use public tools like HAL [1] to do Trojan detection directly on the FPGA
bitstream. There are existing methods [4] that have shown success in detecting FPGA
Trojans by doing analysis on the gate-level netlists generated by the compiler, allowing for
the detection of Trojans added at the design level. These existing methods could be applied
to netlists extracted from the actual FPGA bitsreams, thereby also allowing for the detection

of Trojans inserted directly into the bitstream.

36



Appendix A

A.1 Acronyms

ASIC - Application Specific Integrated Circuit
BRAM - Block Random-Access Memory

CB - Connector-Box

FPGA - Field Programmable Gate Array
HDL - Hardware Description Language

IP - Intellectual Property

LB - Logic Block

LUT - Look-Up-Table

RTL - Register Transfer Level

SB - Switch-Box
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Appendix B

B.1 Quartus

VHDL parameter used to disable logic optimization on LUT interconnect net:

attribute keep : boolean;

attribute keep of NET : signal is true;

B.1.1 Quartus Build Script

# Software Used:
# Quartus Prime Design Software Version 20.1.0

project_new —revision logmap —overwrite logmap

set PART [lindex $argv 0]

set BITFILE [lindex S$argv 1]

set_global_assignment —name DEVICE $PART
set_global_assignment —name VHDL_FILE LUT_Matrix.vhd
set_global_assignment —name VHDL_FILE LUT _case.vhd
set_global_assignment —mame TOP_LEVELENTITY LUT _Matrix
load _package flow

execute_module —tool map

execute_module —tool fit —args 7 ——effort=standard”
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7

execute_module —tool asm —args 7 ——write_settings_file=on.——read_settings_file-
exec cp logmap.sof $BITFILE

load_package report

load_report

puts [get_fitter_resource_usage —utilization |

project_close

B.2 Vivado

VHDL parameter used to disable logic optimization on LUT interconnect net:

attribute dont_touch : string;

attribute dont_touch of NET : signal is "true”;

B.2.1 Vivado Build Script

# Software Used:
# Vivado v2020.2 (64—bit)

set PART [lindex $argv 0]

create_project —in_memory —part $SPART

set_param general.maxThreads 6

read_vhdl —library xil_defaultlib {LUT_Matrix.vhd LUT _case.vhd}
synth_design —top LUT_Matrix —part $PART —flatten_hierarchy none
set_property SEVERITY {Warning} [get_drc_checks UCIO—1]
set_property SEVERITY {Warning} [get_drc_checks NSTD—I1]
set_property BITSTREAM.GENERAL.CRC DISABLE |[current_design |
place_design

route_design

write_bitstream —force [lindex $argv 1]
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