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Abstract

Bayesian hierarchical modeling has a long history but did not receive wide attention until the

past few decades. Its advantages include flexible structure and capability of incorporating

uncertainty in the inference. This dissertation develops two Bayesian hierarchical models

for the following two scenarios: first, spatial data of time to disease outbreak and disease

duration, second, large or high dimensional functional data that may cause computational

burden and require rank reduction. In the first case, we use cucurbit downy mildew data, an

economically important plant disease data recorded in sentinel plot systems from 23 states

in the eastern United States in 2009. The joint model is established on the dependency of

the spatially correlated random effects, or frailty terms. We apply a parametric Weibull

distribution to the censored time to disease outbreak data, and a zero-truncated Poisson dis-

tribution to the disease duration data. We consider several competing process models for the

frailty terms in the simulation study. Given that the generalized multivariate conditionally

autoregressive (GMCAR) model, which contains correlation and spatial structure, provides

a preferred DIC and LOOIC results, we choose the GMCAR model for the real data. The

proposed joint Bayesian hierarchical model indicates that states in the mid-Atlantic region

tend to have a high risk of disease outbreak, and in the infected cases, they tend to have a

long duration of cucurbit downy mildew. The second Bayesian hierarchical model smooths

functional curves simultaneously and nonparametrically with improved computational effi-

ciency. Similar to the frequentist counterpart, principal analysis by conditional expectation,
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the second model reduces rank through the multi-resolution spline basis functions in the pro-

cess model. The proposed method outperforms the commonly used B-splines basis functions

by providing a slightly better estimation within a much shorter computing time. The perfor-

mance of this model is also examined using two real data sets, a sleeping energy expenditure

data from an obesity study conducted in Baylor College of Medicine, and a human mortality

data.
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Chapter 1

Introduction

Bayesian hierarchical modeling has been studied extensively over the recent few decades

and has been applied to a broad range of science fields. A large number of models have

been built to fulfill different purposes. This dissertation proposes two Bayesian hierarchical

models. The first model is motivated by a real data from a botanical epidemiology study.

The data has two parts, time to disease outbreak, or the survival data, and time that disease

lasts, or the duration data. The goal of this study is to explore the effects of plant type and

location on the disease. Unlike the first model that focuses on a specific data, the second

model aims to smooth and estimate functional data curves with improved computational

efficiency in general. The computational feasibility has growing importance nowadays due

to the larger size and higher dimension of the data. The rank reduction in the second model

is carried out through approximations using multi-resolution spline basis functions.

Both models in this dissertation has a three-level Bayesian hierarchical structure. It con-
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sists of data model, process model, and parameter model. At the first level, the data model

is specified based on the underlying process. This process is then modeled at the second level

with estimated parameters. Finally, the parameters can be estimated either using empirical

methods or from hyper prior distributions. Because the data model is conditional on the

process model, and the process model is conditional on the parameter model, the nested

structure refers to the Bayes’ theorem,

P (A | B) =
P (B | A)P (A)

P (B)
, (1.1)

with B be the fixed observation, and A from the underlying levels. Bayesian hierarchical

model uses the fact that the posterior probability is proportional to the product of likelihood

and prior probability. It is therefore able to incorporate uncertainty in the statistical infer-

ences and also capture complicated model specification in a hierarchy of manageable model

layers.

This chapter starts with a brief introduction of the related terms of the two models that

are needed for the succeeding chapters.

1.1 Disease Mapping

For the plant pathology data, we model spatially distributed dependent variable in the

random effects term. The spatial information is usually included in the model through

either the two-dimensional coordinates of the location or the adjacency pattern. The first

method is called geostatistical modeling by Cressie (1993). The spatial correlation is based
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on the Euclidean distance between two geographic locations. While the first method assumes

continuous space, the second method treats the space as discrete lattice, where neighbouring

locations have a higher correlation. For both cases, the spatial autocorrelation has the

assumption that

ϕ ∼ N
(
µ,Σ

)
, (1.2)

where Σ, a positive definite covariance matrix, can be derived from a distance decay function

or a spatial weight matrix, respectively. Since state information is available in the plant

pathology data, we apply the lattice modeling method in the process model.

When a neighbouring structure is exhibited in the data, conditional autoregressive (CAR)

models are frequently used to show the spatial correlation. Let ϕ = (ϕ1, ..., ϕI)
′ be the

spatial random variable from I areal units, each ϕi is conditional on a weighted sum of its

neighbouring locations with unknown variance τ 2i ,

ϕi | ϕ(−i) ∼ N (
I∑

l=1

wilϕl, τ
2
i ), (1.3)

ϕ(−i) = (ϕ1, ..., ϕi−1, ϕi+1, ..., ϕI)
′. The spatial relationship is an I × I binary matrix with 1

for neighbours and 0 otherwise, and notated asW for weights, or sometimesA for adjacency.

In CAR models, the matrix is symmetric with diagonal elements 0, which means that an

areal unit is not a neighbour of itself. A diagonal I × I matrix D is also available with

element {i, i} be the number of neighbours of location i and off-diagonal entries be 0. The

CAR model will be generalized to a bivariate case to fit the two parts of the plant pathology

data, where spatial correlation exists both within and between the two parts.
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1.2 Functional Data Modeling

Functional data is used in the second model. It takes the form of functions or curves,

Z1(t), ..., Zn(t), and is continuous over a time interval T . The functions can be treated as the

realizations of one-dimensional stochastic process in a Hilbert space L2 with mean function

µ(t) = E(Z(t)) and covariance function Σ(t, t∗) = cov(Z(t), Z(t∗)). Because real data is

usually observed with measurement errors, a random noise on the trajectory is included in

the model. We have

Yi(t) = Zi(t) + ϵi(t), t ∈ T ,

E(ϵi(t)) = 0, V ar(ϵi(t)) = σ2.

(1.4)

Functional data analysis (FDA) has been widely applied to various subjects, such as eco-

nomics trends, environmental monitoring, medical science, and much more. The challenges

include but not limited to, 1) the data is sometimes sparse or irregularly observed, 2) the data

with measurement errors requires pre-smoothing step, and 3) the data can go up to infinite

dimensions which brings theoretically difficulties and is computationally expensive. 84 FDA

application articles were studied in a research by Ullah and Finch (2013). Smoothing and

rank reducing methods were used in the majority of the papers. 72 studies (85.7%) applied

some types of smoothing methods, with 25 of them were B-spline. 51 studies (60.7%) used

functional principal component analysis (FPCA), a common tool for dimension reduction

and data imputation when data is sparse.

B-spline basis functions form a basis for a function space in which any function can be
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represented by a linear combination of the basis functions. The domain of the basis functions

is divided by a nondecreasing knot vector. Each B-spline basis function is described as ”local”

since it is only non-zero on a subinterval of the domain. There are other basis functions

available for smoothing and interpolation, including Fourier series basis functions, radial

basis functions, and wavelets basis functions. Different methods are suitable under different

circumstances. Because cubic B-spline basis functions are frequently used for Gaussian

process data, they will be used to compare with the proposed automatically adaptive multi-

resolution spline basis functions in the second half of this dissertation.

FPCA is performed to estimate initial values of the mean and covariance functions in the

second model. It is a functional version of principal component analysis of multivariate data.

It reduces dimensions for high dimensional data and interpolates for sparse data. FPCA is

executed through the spectral decomposition of covariance function

Σ(t, t∗) =
∞∑
k=1

λkϕk(t)ϕk(t
∗), (1.5)

where λk are eigenvalues in descending order and ϕk are the corresponding orthogonal eigen-

functions. The functional curve can be expressed as

Zi(t) = µ(t) +
∞∑
k=1

ξikϕk(t), (1.6)

where the ξik are uncorrelated random variables with E(ξik) = 0 and var(ξik) = λk. The

infinity in the summation term is reduced to a large enough K, so that the first K terms

provide estimation close enough to the infinite sum. With an increasing K, the estimation

bias decreases, and the variance explained increases. FPCA through conditional expectation
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(Yao et al., 2005) is available in R package fdapace. A suggested cutoff of K is to explain

99% variance of the singular value decomposition of the fitted covariance function. The

estimated mean and covariance functions will be used in the second Bayesian hierarchical

model.

1.3 Outline

The remainder of the dissertation proceeds as follows.

Chapter 2 starts with a description of the cucurbit downy mildew (CDM) data. CDM

is an economically important disease that affects plants in the family of Cucurbitaceae. It

exhibits annual extinction-colonization cycles and significant long distance spread at the

continental scale in the United States. Time to disease outbreak and epidemic duration are

often associated in some ways and understanding the nature of this association has important

implications for risk assessment and managing plant disease epidemics. In this chapter,

we develop a joint Bayesian hierarchical model with a parametric Weibull distribution for

the censored time to disease outbreak data, and a zero-truncated Poisson distribution for

the disease duration data in the data model, and a generalized multivariate conditionally

autoregressive (GMCAR) model for the spatially correlated random effects in the process

model. The proposed model is shown to have a smaller bias and outperform other three

Bayesian hierarchical models with respect to model selection criteria, DIC and LOOIC, in

the simulation study. We then apply the model to the real data and conclude that the mid-
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Atlantic region tends to have a higher risk of CDM outbreak and a longer CDM duration

than the South Central states.

Inspired by the multi-resolution spline basis functions for fixed rank kriging, Chapter

3 setup a Bayesian hierarchical framework with approximations by basis functions. The

proposed model estimates mean and covariance functions simultaneously and nonparametri-

cally with enhanced computing efficiency. The methodology is described both theoretically

and practically at the beginning. It is then examined through two simulation studies, for

one-dimensional and two-dimensional settings, respectively. Comparing with the the model

using widely accepted B-splines basis functions, the results of our model show improvement

in terms of root mean square error and computing time and memory. Two real data sets are

used in this chapter. The first one is a one-dimensional sleeping energy expenditure (SEE)

data that was collected for an obesity study in the Children’s Nutrition Research Center

of Baylor College of Medicine. The smoothed data from the proposed model is proven to

have a smaller misclassification rate and is therefore beneficial for follow-up studies. The

second one is a two-dimensional mortality data from 12 countries, which is recorded in grid

of age and year. We fit the model with half of the data and save the other half to test the

performance of the model through root mean square error.

Chapter 4 concludes this dissertation with a brief summary and discussion.
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Chapter 2

Joint Spatial Modeling of

Time to Disease Outbreak and

Epidemic Duration in Risk

Assessment of Botanical Epidemics

2.1 Introduction

Long-distance spread of invasive plant pathogens negatively impacts ecosystem function

(Crowl et al., 2008) and influences policy decisions for managing resultant disease epidemics.

Growth in global trade has been cited as one of the factors responsible for the increase in
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the frequency of these invasive pathogens. If and when such epidemics occur, containment

and eradication programs are implemented to contain these invasions and in some cases,

specific measures may also be developed to prevent potential incursions. Understanding

processes and factors that affect biological invasions in space and time is thus important

to establish and predict the risk of biological invasions (Madden et al., 2007). Knowledge

generated thereof can facilitate planning and designing effective measures to eradicate and

contain these invasions (Zadoks and Van den Bosch, 1994). Additionally, spatial effects may

identify areas that require detailed epidemiological research to inform disease intervention.

Disease surveillance programs are routinely used to monitor outbreak of epidemics caused

by new or invasive pathogens that are aerially transmitted and fundamental to these pro-

grams are data collected from sentinel surveillance systems (Edmond et al., 2011; Randri-

anasolo et al., 2010). In botanical epidemiology, sentinel surveillance systems typical consist

of fixed plots, generally planted early across the landscape and designated a priori for regular

surveillance within the disease monitoring network (Christiano and Scherm, 2007; Ojiambo

and Holmes, 2011). Systematic information is collected from the sentinel sites over time,

while disease characteristics are assessed in all locations within the monitoring network.

Consequently, records of disease outbreaks in these sentinel surveillance systems result in

time to disease outbreak data that can be used to model subject-specific fixed effects due

to various covariates (Ojiambo and Kang, 2013). Time to disease outbreak in sentinel sites

closer together may be more similar than in sites that are farther apart, which results in spa-

tial autocorrelation within the data. Thus, random effects are incorporated in time-to-event
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models within a spatial framework to account for unobserved heterogeneity in the event

time (Ojiambo and Kang, 2013). Using time to disease data from a cucurbit downy mildew

(CDM) surveillance in the United States, we observed that a Bayesian spatially structured

frailty conditionally autoregressive (CAR) model provided a better fit to the data than either

the unstructured frailty model or a model without frailty (Ojiambo and Kang, 2013). In

addition, regions with low or high risk of disease outbreak were identified whereby states in

the mid-Atlantic region were usually associated with high risk of CDM outbreak (Ojiambo

and Kang, 2013).

Time to disease outbreak at a sentinel site and epidemic duration in the neighbouring

locations within the monitoring network affect each other. A later outbreak implies less

time for disease duration due to seasonal cycle of plant growth, while an earlier outbreak

makes a longer duration of the epidemic possible. Conversely, sentinel sites with a longer

disease duration have an increased opportunity for pathogen reproduction, multiplication

and inoculum dispersal and will increase the risk of disease outbreak in disease-free sentinel

sites in surrounding locations compared to sentinel sites with a shorter epidemic duration.

While time to disease outbreak and disease duration data can be modelled separately, classic

models such as standard hazards models for time to disease outbreak and linear mixed models

for disease duration data do not consider dependencies between these two different types of

data which may lead to inefficient or biased results. Joint models for time to disease outbreak

and disease duration are robust methods that takes into consideration the dependency and

association between these two different types of data. A joint modeling approach confers
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several advantages including allowing simultaneous investigation of the effects of covariates

on these two different types and avoiding overestimation or underestimation of the impact

of an intervention in disease control by providing valid and efficient inferences.

Unlike on longitudinal measurement (He and Luo, 2016; Ibrahim et al., 2010; Wu et al.,

2012; Zhang et al., 2017), joint modeling method has rarely been applied to survival and dura-

tion data in botanical epidemiology to estimate risk of outbreak in plant disease surveillance

systems (Nathoo, 2010). In this chapter, we look into a considerable amount of Bayesian

hierarchical modeling literature (Lawson et al., 2014; Nathoo, 2010; Zhou et al., 2008) and

develop a joint modeling framework for time to disease outbreak and disease duration to

estimate the risk of disease in sentinel surveillance plant disease systems. Our joint model-

ing approach consists of a parametric survival model for the time-to-event outcomes and a

truncated Poisson model for the disease duration. Both models have a hierarchical structure

that incorporate individual-specific covariates and state-specific spatially correlated random

effects since random effects for states in closer proximity to each other tend to be similar.

CAR model (Besag, 1974; Carlin et al., 2003; Gelfand and Vounatsou, 2003; Kim et al.,

2001) is frequently used to describe the spatial dependence (Banerjee et al., 2003; Neelon

et al., 2013, 2014; Ojiambo and Kang, 2013). Because regions with short time to disease

outbreak are likely to have long disease duration, we model the spatial random effects in

both the survival and the truncated Poisson model components jointly via a generalized

multivariate CAR (GMCAR) model (Jin et al., 2005), which is able to describe dependence

between these two model components. We then consider several competing process models
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and select among them the best fitting model using two criteria: the deviance information

criterion, DIC (Spiegelhalter et al., 2002) and leave-one-out cross validation information

criterion, LOOIC (Vehtari et al., 2017).

The reminder of the chapter proceeds as follows. In Section 2.2, we describe the source

of data used in the project and highlight key attributes and spatial extent of the data set. In

Section 2.3, we outline the proposed joint modeling development in terms of time-to-disease

outbreak and disease duration data and compare a few possible process models for the frailty

terms. The Bayesian implementation details and model selection criteria are given in Section

2.4. We apply the final model to the simulated data in Section 2.5 and the 2009 CDM data

in Section 2.6. Section 2.7 concludes with a brief discussion and summary of our major

findings as they potential relate to policy intervention for botanical epidemics exhibiting

long distance spread at a landscape level.

2.2 Data Description

Cucurbit downy mildew is caused by the obligate oomycete Pseudoperonospora cubensis, an

economically important pathogen that affects plants within the family Cucurbitaceae (Oji-

ambo et al., 2015). The pathogen exhibits significant long distance dispersal at the landscape

level (Ojiambo and Holmes, 2011), and since its hosts are sensitive to frost, incursions of

the pathogen into northern latitudes in the United States occur annually from subtropical

overwintering areas in southern Florida (Ojiambo et al., 2015). These annual extinction-
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colonization cycles of the pathogen in northern latitudes provides a useful framework to

examine the spatial and temporal dynamics of a disease resulting from a pathogen that

exhibits long distance dispersal (Ojwang et al., 2021).

Disease epidemics recorded in the United States in 2009 were analyzed using data ob-

tained from the CDM ipmPIPE program (Ojiambo et al., 2011). The CDM ipmPIPE is

part of the United States Department of Agriculture Pest Information Platform for Exten-

sion and Education (PIPE) program. Records of confirmed outbreaks of CDM were collected

as part of the sentinel and non-sentinel plot monitoring network designed to alert growers

on the risk of CDM outbreak in the fields. Sentinel plots were fixed plots, planted early and

designated for weekly surveillance, while non-sentinel plots consisted of commercial fields,

research plots, and home gardens. A total of 85 sentinel plots from 23 states in the eastern

United Sates were monitored in 2009. A total 107 counties were affected by CDM in the

2009 epidemic. Besides spatial information and time of disease outbreak, information on

cucurbit host types was also included in the data. The host types in both sentinel and non-

sentinel plots were classified into three groups: cucumber, squash and other cucurbit species.

The latter host type category was composed of watermelon, cantaloupe, and pumpkin. The

total observation period for disease monitoring was 204 days. Data is recorded as censored

when disease outbreak is not observed within the range. In this study, epidemic duration

(days) refers to the length of time from when CDM is first reported on a host to when the

host becomes completely necrotic and is not able to produce inoculum to infect hosts in

neighbouring fields.
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The bar graph in Figure 2.1 shows the number of censored and uncensored records of

each cucurbit host type in each state. Both censored and uncensored data were highest in

Florida and North Carolina, and lowest in Massachusetts and Wisconsin. Further, disease

outbreaks were also not observed for certain host type and state combinations. For example,

uncensored data is not available in cucumber fields in Alabama, and in fields of other host

species in Louisiana. Six of the 23 states are chosen to show more details of the censoring

data in Figure 2.2. The upper panel is the box plot of survival time of the uncensored data,

which is days until disease outbreak within the 204 days period. When CDM is observed,

the corresponding duration days is recorded as well. Figure 2.2 lower panel is the box plot

of the disease duration. The count of uncensored survival and duration data match in most

cases, for instance, one CDM outbreak is observed in other species fields in Delaware in

Figure 2.2 upper panel, and therefore, one duration record is found in the same place in

Figure 2.2 lower panel. However, there are very few special cases, where disease outbreak is

observed, but epidemic duration information is not provided. For example, there were five

CDM outbreaks in Alabama for which the epidemic duration is not available due to lack

of information on the length over which these epidemics remained infective. Consequently,

fields in duration data is a subset of the fields in uncensored survival data.

A total of 551 possible cases (i.e., host type by sentinel or non-sentinel plot combination)

are monitored for 204 days in the 2009 CDM impPIPE data. Downy mildew outbreaks

are observed in 30.1% of the cases examined. The outbreak rates are 28.5% for the 158

cucumber cases, 47.4% for the 154 squash cases, and 20.1% for the 239 other hosts cases.
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Figure 2.1: Bar graph of count of the censoring data (204 days)

Disease duration is recorded for 75.3% of the infected cases. Daily infected cases and number

for each host are shown in Figure 2.3. Seasonal epidemics development, featured by a low

and sporadic start, rapid increase in the middle and a gradual decrease toward the end

(Ojiambo and Kang, 2013), is shown in the plot. Outbreaks of CDM increased rapidly for

squash cases after day 100. Numbers of infected cucumber and other cases reached a climax

at around 140 and 160, respectively. The epidemic peak lasted about 50 days for squash,

and around 20-30 days for the rest hosts. Outbreak of new disease cases gradually declined

and stopped after 190 days, due to the start of unfavorable weather for the CDM pathogen

late in the fall season..

With censored data recorded as 204, the average survival and duration days of each
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Figure 2.2: Box plots of uncensored survival days (upper panel) and disease duration days
(lower panel)
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Figure 2.3: 2009 daily number of cucurbit downy mildew infected fields

plant host are shown in the maps in Figure 2.4. The three rows indicate the plant hosts,

cucumber, squash and other hosts. Disease cases on squash plants, in general, have a shorter

survival time and longer epidemic duration, compared with the other two cucurbit hosts.

For example, squash cases in Florida are among the earliest outbreak at around 121.1 days,

and squash cases in Illinois have the longest duration of 110.7 days. For cucumber and other

hosts, several states have no disease outbreak recorded during the observation period and

these states include Texas, Louisiana, Wisconsin, and Illinois. As a result, survival data in

these states is shown as 204 in the survival map in the left panel, and the corresponding

epidemic duration is missing in map in the right panel. Due to the large amount of states

with censoring data only, the geographic pattern is not easily discernible. However, we can

still see that the outbreak of CDM in east coast and especially Mid-Atlantic region where

the CDM tends to have longer duration, is more severe than along the Gulf of Mexico.

17



Figure 2.4: Map of average survival days with censored data recorded as 204 (left), and
average duration days (right)

2.3 Model

In this section, we build a Bayesian hierarchical model to analyze the two components of the

CDM impPIPE data, i.e., the time until disease outbreak (or survival time), tij, and where

it occurs, the duration of the epidemic, yij. i = 1, ..., I is the index of state, j = 1, ..., ni

is the index of subject from state i. A two-part data model is used to fit these two types

of information. Covariates in the data model indicates different host types, while random

effects are spatial frailties defined at the state level. Four process models are used to fit
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the random effects and will be compared in Section 2.5. Parameter model lists the prior

distributions for the parameters. The three levels of the hierarchical structure, i.e., data

model, process model, and parameter model, are presented below in the same order.

2.3.1 Data Model

Survival Model

To fit the survival time until disease outbreak, we adopted the widely used proportional

hazard model. Let tij be the survival time or censoring for subject j in state i, f(t) and

F (t) are the probability density function (p.d.f.) and the cumulative distribution function

(c.d.f) of the random variable tij, respectively, the hazard at time tij, defined as h(tij) =

f(t)/(1− F (t)), has the multiplicative form

h(tij | xij) = h0(tij)exp(x
′
ijβ + ϕi), (2.1)

where xij is a vector of individual-specific covariates, β are the corresponding coefficients, ϕi

are the state-specific random effects. The first term on the right hand side, h0(tij), represents

the baseline hazard. The second term, exp(x′
ijβ+ ϕi), is relative risk, the increase/decrease

of hazard for each subject. The relative risk depends on subject and state only, thus it

remains the same throughout the epidemic period.

We adopt the Weibull model from Banerjee et al. (2003). The hazard function of this

model is parametric and can be written as

h(tij | x1ij) = ρtρ−1
ij exp(x′

1ijβ1 + ϕ1i). (2.2)
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The subscript 1 indicates the first part of the data model, the survival model. We save x2ij,

β2 and ϕ2i for the duration model in the second part. ρ > 0 is the shape parameter of

the Weibull distribution. The log hazard function is a linear regression on log time with

slope ρ− 1. In other words, the hazard monotonically increases when ρ > 1, decreases when

0 < ρ < 1, and is constant when ρ = 1. Let γij be the disease indicator for subject j in

state i, γij = 0 if not infected before censoring time, γij = 1 if infected. Then the likelihood

function is

L(tij,x1ij, γij | ρ,β1, ϕ1i) =
I∏

i=1

ni∏
j=1

h(tij)
γij(1− F (tij))

∝
I∏

i=1

ni∏
j=1

{
ρtρ−1

ij exp(x′
1ijβ1 + ϕ1i)

}γij
exp
{
− tρijexp(x

′
1ijβ1 + ϕ1i)

}
.

(2.3)

Duration Model

Disease duration is not available for the censored data. For the other cases, when disease

occurs before censoring, or to say, the disease indicator γij = 1, the data also has information

about the duration of the epidemic. Let yij be the disease duration days for subject j in state

i, yij does not exist if γij = 0. When disease outbreak is observed, the disease duration has

to be positive, and therefore, yij = 0 is excluded from the duration model. A zero-truncated

Poisson distribution is applied to yij,

p(yij | λij) =


0, if yij = 0,

λ
yij
ij exp(−λij)

yij !(1−exp(−λij))
, if yij = 1, 2, ....

(2.4)
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The parameter λij is further modeled using log link function,

log(λij) = x′
2ijβ2 + ϕ2i. (2.5)

x2ij is a vector of individual-specific covariates. We have x1ij = x2ij in the real data, which

means that the plant host covariate in the survival and the duration model are identical,

although this is in general not necessary. Similar as in the survival model above, β2 is the

corresponding coefficients, ϕ2i is the state-specific random effects of the duration model.

Recall that γij is the disease indicator, likelihood function therefore is

L(yij,x2ij, γij | β2,ϕ2i) =
I∏

i=1

ni∏
j=1

(
10(γij) + 11(γij)p(yij)

)
, (2.6)

where 1 is the indicator function defined as 1c(γij) = 1 if γij = c, and 0 otherwise.

2.3.2 Process Model

Generalized multivariate conditional autoregressive (GMCAR) model is used as the process

model for the state-specific random effects, or frailty terms, ϕ1 and ϕ2, in the second stage

of the hierarchical structure. In addition, three other models, univariate conditional autore-

gressive (UniCAR) model, multivariate normal (MvNorm) model, and independent normal

(IndNorm) model, are also applied to the frailty terms as comparison models. The classifi-

cation of the four models is shown in Table 2.1. Models in the first row of the table have no

geographical information. Models in the first column assume independence between ϕ1 and

ϕ2. Therefore, IndNorm model in the upper left corner is the simplest model and has the
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Independent Dependent
Non-spatial IndNorm Model MvNorm Model
Spatial UniCAR Model GMCAR Model

Table 2.1: Four process models comparison

fewest parameters, while GMCAR model in the lower right corner is relatively complicated

and has the most parameters among the four models. The GMCAR model is chosen because

of its capability to incorporate more information without overfitting. Detailed results of

model comparison are discussed in Section 2.5.2 for the simulated data and in Section 2.6

for the 2009 CDM ipmPIPE data.

GMCAR Model

Conditional autoregressive (CAR) model was first introduced by Besag (1974) and has re-

ceived increasing attention over the past decades. Taking ϕ = (ϕ1, ..., ϕI), the local depen-

dence is shown in the fully conditional distribution,

ϕi | ϕ(−i) ∼ N (
I∑

l=1

cilϕl, τ
2
i ), (2.7)

where i, l = 1, ..., I, ϕ(−i) = (ϕ1, ..., ϕi−1, ϕi+1, ..., ϕI)
′, cii = 0, and cil = 0 if state i and l are

not next to each other.

A popular implementation of CAR is the intrinsic autoregressive (IAR) model (Besag

et al., 1991). The IAR model takes cil = wil/wi. and τ 2i = τ 2/wi., where wi. =
∑I

l=1wil.

As before, wii = 0, wil = 0 if state i and l are not next to each other. For the IAR

model, the fully conditional distribution in (2.7) becomes ϕi | ϕ(−i) ∼ N (
∑I

l=1
wil

wi.
ϕl,

τ2

wi.
). By
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Brook’s Lemma (Besag, 1974), a unique multivariate normal distribution with mean 0 and

covariance matrix [τ(D − W )]−1 can be obtained from the fully conditional distribution.

Here, W = {wil}Ii,l=1, D is an I × I diagonal matrix with diagonal elements wi.. Typically,

wil is set to be 1, if state i and l are neighbors, and 0 otherwise. W is the adjacency matrix

of the map. wi. is the total number of neighbors of state i. Since D −W is singular, and

thus non-invertible, the multivariate normal distribution is in fact improper. A smoothing

parameter, α, is then introduced to remedy this issue. Taking [τ(D − αW )]−1 as the new

variance-covariance matrix, a proper joint distribution is guaranteed if |α| < 1 (Carlin et al.,

2003).

Similar to the univariate fully conditional distribution in (2.7), the multivariate counter-

part is introduced by Mardia (1988) and takes the form

νi | ν(−i) ∼ N (
I∑

l=1

Bilνl,Γi). (2.8)

Note that νi denotes a p dimension vector of (ϕ1i, ϕ2i, ..., ϕpi)
′, i = 1, ..., I, whereas ϕk =

(ϕk1, ..., ϕkI)
′, k = 1, ..., p. The two vectors both consist of frailty terms, but are in different

dimensions. ν(−i) = (ν ′
1, ...,ν

′
i−1,ν

′
i+1, ...,ν

′
I)

′. Bil and Γi are p× p matrices. The joint mul-

tivariate CAR model, denoted as MCAR(α,Λ) (Carlin et al., 2003), can then be generalized

from the univariate case,

ν ∼ N (0, [(D − αW )⊗Λ]−1), (2.9)

ν = (ν ′
1,ν

′
2, ...,ν

′
I)

′, α is again the smoothing parameter, Λ is a p×p symmetric and positive

definite matrix. The Kronecker product of D − αW and Λ in the precision matrix ensures
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the propriety of the distribution, and shows a separable structure of the model. Taking p = 2

as an example, the bivariate CAR model can be written asϕ1

ϕ2

 ∼ N

(0

0

 ,

(D − αW )Λ11 (D − αW )Λ12

(D − αW )Λ12 (D − αW )Λ22


−1)

. (2.10)

ϕ1 = (ϕ11, ϕ12, ..., ϕ1I)
′, ϕ2 = (ϕ21, ϕ22, ..., ϕ2I)

′. 0 is an I dimensional vector of all 0’s.

In reality, the correlation between two frailties and the correlation between two states

are very likely to be different. As a result, more than one smoothing parameter, α, may

be needed to show the difference in correlation within and between ϕ’s. Several multivari-

ate CAR models are developed to include more information in the model, such as 2fCAR

(α0, α1, α2, α3, τ1, τ2) (Kim et al., 2001), MCAR (α1, α2,Λ11,Λ12,Λ22) (Carlin et al., 2003;

Gelfand and Vounatsou, 2003) and so on. Jin et al. (2005) proposed a generalized MCAR

(GMCAR) model to directly specify marginal and conditional distribution,

ϕ1 ∼ N
(
0, [τ1(D − α1W )]−1

)
,

ϕ2 | ϕ1 ∼ N
(
(η0I + η1W )ϕ1, [τ2(D − α2W )]−1

)
.

(2.11)

I is an I × I identity matrix. ϕ1 is the univariate CAR model as mentioned before. η0

and η1 are called bridging parameters. Conditional on ϕ1, ϕ2 has a conditional mean of

weighted average of ϕ1, where η0 is the weight from the same state, η1 is the weight from

neighborhood. Spatial information is thus included in, not only the precision matrix, but

also the conditional mean. α1 and α2 are the smoothing parameters and are restricted to be

between (0, 1) to ensure the positive definiteness of the variance-covariance matrix. τ1 and

τ2 controls the precision scale of the marginal and conditional distribution, respectively.
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We choose the conditional order ϕ1 and ϕ2 | ϕ1, rather than ϕ2 and ϕ1 | ϕ2 for this

particular real data for a couple of reasons. First, the causality is more obvious in the real

life this way than the other way around. Intuitively, the survival time to disease outbreak

(tij | ϕ1i) affects disease duration (yij | ϕ2i). Disease outbreaks that occur early in a state

increase opportunity for pathogen reproduction and lead to a longer duration time in this

state and its neighbouring states. While outbreaks that occur later limit the time for disease

outbreak in neighboring states due to unfavorable weather condition. Second, as mentioned

in Section 2.2, duration information from certain state/host combination is not available in

2009 CDM ipmPIPE data. Therefore, fitting survival model first is reasonable with respect

to computational efficiency. However, if another data set is used to fit the hierarchical model,

the two conditional orders can perform equally well, which will be shown in Section 2.5.2.

Alternative Process Models

Three other models are applied to the frailty terms. The first one consists of two separate

univariate CAR (UniCAR) models. ϕ1 and ϕ2 are assumed to be independent and can be

written as

ϕ1 ∼ N (0, [τ1(D − α1W )]−1),

ϕ2 ∼ N (0, [τ2(D − α2W )]−1).

(2.12)

It is actually a special case of GMCAR with η0 = η1 = 0.

The second model has no geographic information, but it takes the correlation of the

two random effects from the same state, ϕ1i and ϕ2i, into account. It has a bivariate normal
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distribution setting,

ϕ1i

ϕ2i

 ∼ N

(0

0

 ,

σ2
1 σ2

12

σ2
12 σ2

2


)
. Putting the frailty terms together,

the multivariate normal (MvNorm) model is denoted as,ϕ1

ϕ2

 ∼ N

(0

0

 ,

σ2
1 σ2

12

σ2
12 σ2

2

⊗ I

)
. (2.13)

Taking σ2
12 = 0, we have the most straightforward setting of the random effects. ϕki

is independent and identically distributed (i.i.d.). ϕki ∼ N (0, σ2
k), k = 1, 2, i = 1, ..., I.

Equivalently,

ϕ1 ∼ N (0, σ2
1I),

ϕ2 ∼ N (0, σ2
2I).

(2.14)

2.3.3 Parameter Model

The prior distributions of all the parameters are specified to complete the Bayesian hierar-

chical model. Typically, weakly informative priors are assumed to allow the data to play the

principal role in parameter estimation. Starting from the data model, a vague and proper

Gamma(1, 0.001) prior (Zhou et al., 2008), with mean 1000 and variance 106, is chosen for

the shape parameter ρ in the survival model. Weakly informative Gaussian priors are as-

signed to the coefficients, β1 and β2 (Neelon et al., 2013). For the spatial process models

(GMCAR and UniCAR), we adopt the prior setting by Jin et al. (2005), Gaussian prior with

mean 0 and variance 104 for bridging parameters η0 and η1, and Gamma(1, 0.1) distribution

with mean 10 and variance 100 for the scale parameters τ1 and τ2. Smoothing parameters,
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α1 and α2, have Unif(0, 1) distribution to ensure the propriety of the distribution. In the

non-spatial process models (MvNorm and IndNorm), standard deviation parameters have

flat prior, σ1, σ2 > 0. Covariance matrix is constrained to be symmetric and positive definite.

2.4 Model Fitting

2.4.1 Bayesian Implementation

The joint posterior distribution of the Bayesian hierarchical model, from Bayes’ theorem, is

(processes,parameters | data)

∝ (data | processes, parameters)× (process | parameters)× (parameters)

(Kang and Cressie, 2011). For the hierarchical model with the proposed GMCAR process

model, we have

p(ϕ1,ϕ2,µ1, µ2, τ1, τ2, α1, α2, η0, η1,β1,β2, ρ | t,y)

∝ L(t | ρ,β1,ϕ1)L(y | β2,ϕ2)p(ϕ1,ϕ2 | µ1, µ2, τ1, τ2, α1, α2, η0, η1)

× p(µ1)p(µ2)p(τ1)p(τ2)p(α1)p(α2)p(η0)p(η1)p(β1)p(β2)p(ρ).

(2.15)

Recall that t = {tij}, y = {yij}, i = 1, ..., I, j = 1, ..., ni are the time to disease and disease

duration data. The first two terms on the right-hand side are the likelihood functions from

27



(2.3) and (2.6). The joint distribution of ϕ1 and ϕ2 is

p(ϕ1,ϕ2 | µ1, µ2, τ1, τ2, α1, α2, η0, η1) ∝

τ
n/2
1 |D − α1W |1/2 × exp{−τ1

2
ϕ′

1(D − α1W )ϕ1} × τ
n/2
2 |D − α2W |1/2×

exp{−τ2
2
[ϕ2 − (η0I + η1W )ϕ1]

′(D − α2W )[ϕ2 − (η0I + η1W )ϕ1]}.

(2.16)

The remaining terms in (2.15) are from the prior distributions defined in Section 2.3.3.

The comparison of four process models is implemented in R (version 3.5.2) using package

RStan (version 2.18.2), the R interface of Stan. Stan generates samples from the posterior

distribution for inference by the No-U-Turn Sampler (NUTS), an extension to Hamiltonian

Monte Carlo (HMC) algorithm. HMC is a Markov chain Monte Carlo (MCMC) method

that introduces an auxiliary momentum variable and leapfrog updates to suppress the local

random walk behavior. Therefore, HMC is able to reach the target distribution more rapidly

than random walk Metropolis or Gibbs sampling. NUTS further avoids the need of choos-

ing leapfrog step parameter in HMC, so that less hand-tuning is involved in model fitting

(Hoffman and Gelman, 2014).

We run four parallel chains for each of the four models and within each chain, warm up

iterations are used to estimate the mass matrix of the posterior and allow adjustment for

correlated parameters. Trace plots, which is available in package bayesplot, are used to

examine convergence visually. In addition, split R̂ statistic is a generic diagnostic for consis-

tency of the Markov chains. RStan splits each chain into two halves, and checks consistency

by calculating the potential scale reduction statistic (Gelman et al., 1992). Let N be the
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number of simulation draws after warm up in each chain, R̂ =
√

(N−1
N

W + 1
N
B)/W , where

W and B are within-chain and cross-chain sample variances of the parameters, respectively.

R̂ will be close to 1, if all chains are at equilibrium. Values greater than 1.1 indicates prob-

lems in convergence. Besides, autocorrelation is examined by effective sample size. Effective

sample size (n̂eff ) is an estimate of neff , the approximate effective number of independent

draws of each unknown parameter (Stan Development Team, 2019a). Let M be the number

of chains (M = 4 in this case), if the draws are independent, neff = MN . However, the

simulation draws are typically positively correlated when sampled using MCMC method.

neff is then defined as MN/(1 + 2
∑∞

t=1 ρt), where ρt is the autocorrelations at lag t. The

estimation error is proportional to 1/
√
neff . Larger n̂eff indicates more reliable Bayesian

inference and therefore is preferred.

2.4.2 Model Selection Criteria

Two statistics are calculated from the RStan results to compare the performance of different

competing process models. The first one is the deviance information criterion (DIC). Similar

to Akaike information criterion (AIC) and Bayesian information criterion (BIC), DIC is a

penalized likelihood criterion that consists of the posterior expectation and effective number

of parameters (Spiegelhalter et al., 2002). It is based on the Bayesian deviance, D(θ) =

−2 log f(y | θ)+2 log h(y), where the first term is likelihood function of y given parameters θ,

and the second term is a standardizing function of y and thus irrelevant to model parameters.
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The effective number of parameter is pD = Eθ|y(D(θ)) −D(Eθ|y(θ)) = D(θ) −D(θ). DIC

is then defined as

DIC = D(θ) + pD. (2.17)

When comparing several models, smallerD indicates larger likelihood and a better fit, smaller

pD indicates smaller effective number of parameters and a simpler model. Therefore, a smaller

DIC score is preferred. Since DIC is scale-free, only the differences between DIC scores are

meaningful in model comparison.

Besides DIC, Pareto smoothed importance sampling (PSIS) leave-one-out (LOO) cross

validation has also frequently been used to compare models in recent years. The PSIS

estimate of the LOO expected log pointwise predictive density (elpd) is defined by Vehtari

et al. (2017) as

êlpdPSIS−LOO =
n∑

i=1

log
(∑S

s=1 wisp(yi | θs)∑S
s=1wis

)
, (2.18)

where i = 1, .., n is the index of data points, s = 1, ..., S is the index of iterations. θs

is the posterior estimate of parameter from the sth iteration. wis is the weight of data

point i in iteration s. While leaving one data point out each time, the calculation of the

weight wis involves importance ratio, generalized Pareto distribution fitting, and truncation.

The calculation are implemented in the package loo in R. loo returns LOOIC = −2 ×

êlpdPSIS−LOO. As with DIC, smaller LOOIC score indicates a preferred model.
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2.5 Simulation

2.5.1 Simulation Setting

The geographical information of this simulation study is based on the I = 23 states map

from the CDM impPIPE data. We take D = Diag(mi), where mi is the number of neighbors

of state i. W is the adjacency matrix with wij = 1 if state i and j are neighbors, wij = 0

otherwise. Four studies are designed, where the state-specific random effects ϕ’s are gener-

ated from the four process models, GMCAR model (2.11), UniCAR model (2.12), MvNorm

model (2.13), and IndNorm model (2.14), respectively. True values of the parameters are

listed in Table 2.2. We choose these values in order to create survival and duration data that

is close to the real data, as shown in Figure 2.2. 50 Monte Carlo run are conducted in each

of the four studies. Within each run, we assign dummy variable xkij to imitate the three

plant hosts in the real data. The collections of covariate vectors, X1 = (x′
111, ...,x

′
1In1I

)′ in

the survival model and X2 = (x′
211, ...,x

′
2In2I

)′ in the duration model, are two three-column

binary matrices, with row (1, 0, 0) indicates plant host I, (0, 1, 0) indicates plant host II, and

(0, 0, 1) indicates plant host III. Again, x1ij and x2ij, i = 1, ..., I, j = 1, ..., nki, k = 1, 2, are

not required to be the same.

For each state, we randomly generate n1i = 6 uncensored survival data (tij) with 2 for

each plant host and n2i = 3 non-zero disease duration data (yij) with 1 for each plant host
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from the data model,

tij ∼ Weibull
(
ρ, exp(ϕ1i + x1ijβ1)

)
, j = 1, ..., n1i, i = 1, ..., I,

yij ∼ Poisson
(
exp(ϕ2i + x2ijβ2)

)
, j = 1, ..., n2i, i = 1, ..., I yij > 0.

(2.19)

Top 10% of the uncensored tij are treated as censored data. Other censoring percentage

can be used as well. A possible guideline for choosing this percentage is that at least one

uncensored tij should be observed for each state.

The generated data is then fit to five different models. In addition to the four models

mentioned before, GMCAR model, UniCAR model, MvNorm model, and IndNorm model,

we also include a reverse ordered GMCAR to see if the conditional order actually matters

in the GMCAR model,

ϕ2 ∼ N
(
0, [τ2(D − α2W )]−1

)
,

ϕ1 | ϕ2 ∼ N
(
(η0I + η1W )ϕ2, [τ1(D − α1W )]−1

)
.

(2.20)

For each model fitting, four parallel chains run simultaneously. 3000 iterations are used as

warm up period in each chain. Fast convergence to stationary is observed within this period.

5000 more iterations after warm up give posterior estimation size of 5000 × 4 = 20, 000.

Because Stan algorithm has many leapfrog steps within each iteration, it needs more time

for each iteration comparing with Gibbs or Metropolis sampling. However, the leapfrog steps

provide lower autocorrelated iterations. It takes much fewer iterations to get good mixing

for Stan than other methods, such as BUGS (Stan Development Team, 2019b). Vehtari et al.

(2017) states that 4 chains run for 1000 post warm up iterations is not a large number of
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simulation draws, but is more than sufficient in many real-world settings for Stan. Therefore,

more iterations for both warm up and posterior estimation periods in this simulation study

are not necessary.

2.5.2 Simulation Results

We introduce zkij = ϕki + xkijβk. Since 50 Monte Carlo runs are executed with the true

value of the parameters known, we are able to compute average mean square error (AMSE)

of zkij. Let t be the index of the T = 50 generated data sets, ẑ
(t)
kij be the posterior mean of

the tth data set, AMSE is estimated as

ÂMSE =
1

T
∑2

k=1

∑I
i=1 nki

T∑
t=1

2∑
k=1

I∑
i=1

nki∑
j=1

(ẑ
(t)
kij − z

(t)
kij)

2. (2.21)

The associated Monte Carlo standard error is

ŝe(ÂMSE) =√√√√ 1

T
∑2

k=1

∑I
i=1 nki(T

∑2
k=1

∑I
i=1 nki − 1)

T∑
t=1

2∑
k=1

I∑
i=1

nki∑
j=1

[
(ẑ

(t)
kij − z

(t)
kij)

2 − ÂMSE
]2
.

(2.22)

Because true values of the parameters remain unknown in the real world, AMSE and its

standard error are usually not accessible. They provide an overview of how well the hier-

archical model parameters are estimated in this simulation study, but will not be used for

model selection in Section 2.6.

The AMSE, standard error (SE) and percentage change relative to the true model (∆)

are shown in Table 2.3. Column indicates which process model the data is generated from.
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Row indicates which model the simulated data is fit to. ”-” shows that data fits to the

true model, for example, when the simulated data in Study 1 fits back to GMCAR model,

a ”-” will be shown in the first row, first ∆ column. The percentage change of AMSE is

defined as ∆model = (AMSEmodel − AMSEtrue)/AMSEtrue. All the values in the table are

relatively small. AMSE are of the order of 10−1, which means that ẑ are close enough to the

real z. Standard error are of the order of 10−2, which means that the computed AMSE is

reliable. When the data is generated from GMCAR and UniCAR models (Study 1 and 2),

the two Norm models have larger AMSE, about 23%−43% more than the AMSE of the true

model, due to the missing geographic information. GMCAR model consistently performs

better, even in Study 2 where the true frailty terms are not correlated. The reverse ordered

GMCAR provides the second smallest AMSE. Besides, when the data is generated from

MvNorm and IndNorm models (Study 3 and 4), the three CAR models all outperform the

true models. They have AMSE about 7%− 32% less than the AMSE of the true model. It

suggests that some noises may be picked up by the CAR models in the process of parameter

estimation. Overfitting will be checked next with DIC and LOOIC results.

Taking log h(y) = 0 in (2.17), D(θ) = −2 log f(y, t | ϕ1,ϕ2,β1,β2, ρ). Because the

difference among the five models is in the process model, instead of the likelihood function

of data model, D(θ) is identical for all five models. For each set of the simulated data, we

computed the differences of DIC and LOOIC among the five models. Table 2.4 summarizes

the median of differences between each fit and the true model. While smaller values are

preferred, a negative value indicates that a model outperforms the true model. For example,
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Study 1 Study 2 Study 3 Study 4
(GMCAR Data) (UniCAR Data) (MvNorm Data) (IndNorm Data)

Model DIC LOOIC DIC LOOIC DIC LOOIC DIC LOOIC

GMCAR - - 2.50 1.81 3.97 2.09 2.91 1.82
(reversed) -1.40 -0.32 0.30 0.79 2.94 2.91 1.36 1.30
UniCAR -0.45 0.93 - - 4.23 3.74 1.61 0.87
MvNorm -2.47 -0.35 -0.42 1.75 - - -0.33 0.50
IndNorm 0.30 2.38 0.08 1.46 2.58 3.06 - -

”-” indicates fit of the true model

Table 2.4: Median of DIC and LOOIC difference of the simulated data

when the data is generated from IndNorm model (Study 4), fitting to MvNorm model some-

times gives small negative DIC differences (-0.33). Note that IndNorm is in fact a special

case of MvNorm with σ12 = 0. Therefore, we are able to get similar or even better DIC

scores when fitting IndNorm data to MvNorm model. In contrast, when data is generated

from MvNorm model (Study 3), fitting to IndNorm gives DIC 2.58 larger than the true

model. We noticed that the largest difference median, 4.23, can be observed when fitting

MvNorm data to UniCAR model. It may be caused by the missing correlation between

frailty terms. However, since the DIC and LOOIC scores in all four studies are around

1800 − 1900, the differences in the table are negligible. It is safe to conclude that the five

models have comparable DIC and LOOIC results.

Comparing with the differences of AMSE, the differences of DIC and LOOIC are subtle.

This is because of the setting of the simulation study, where each pair of β and ϕ has very

limited data, either one duration data or two survival data that can be censored. As a result,

the log likelihood can be similar for the true parameter and a not so well-estimated parameter.
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Although the data is sometimes not ample in the real world, the design of GMCAR model

makes it possible to borrow information from spatial structure and correlation between the

two data model parts. It has advantages when estimating parameters in all four scenarios.

Recall that in the real data, fixed effects coefficients β and frailty terms ϕ indicate plant

type and location, respectively, which are of interest to plant pathologists. Therefore, the

proposed GMCAR model is preferred among the five process models.

2.6 Real Data

We now fit CDM impPIPE data to the five hierarchical models with different process models

for the frailty terms. To be conservative, 5000 iterations are included in the warm up

period of each chain. It is more than sufficient to reach the state of convergence. A further

10, 000 ∗ 4 = 40, 000 post warm up iterations are then drawn to estimate the parameters.

Again, because the data models have the same likelihood function in all five scenario, and the

parameters have quite vague priors, DIC and LOOIC are fair in model comparison. While

the actual number of parameters in the data model is 53 (1 Weibull shape parameter ρ, 2×3

covariates coefficient β, and 2 × 23 state-specific random effects ϕ), the effective numbers

of parameters pD are much smaller than that. As shown in Table 2.5, the GMCAR model

has the smallest pD, 33.33, and thus allows more random effects smoothing. GMCAR also

has the smallest DIC, 3676.98. Following GMCAR, reverse ordered GMCAR, UniCAR, and

MvNorm models have similar DIC values, about 1 more than the GMCAR model. IndNorm
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GMCAR (reversed) UniCAR MvNorm IndNorm

D(θ) 3643.65 3640.81 3642.19 3638.82 3641.14

D(θ) 3610.33 3604.14 3606.58 3599.88 3603.11
pD 33.33 36.67 35.61 38.94 38.03
DIC 3676.98 3677.48 3677.80 3677.76 3679.18

LOOIC 3755.83 3759.71 3760.05 3761.49 3765.46

êlpdPSIS−LOO difference - -1.9 -2.1 -2.8 -4.8

SE of êlpdPSIS−LOO difference - 2.2 2.5 3.0 3.2

Table 2.5: Real data DIC and LOOIC comparison

model performs less well, about 2-3 more than the GMCAR model.

The information criterion difference gets more obvious in LOOIC (Table 2.5). LOOIC of

GMCAR model is 3755.83. It outperforms the reverse ordered GMCAR, UniCAR, MvNorm,

and IndNorm models by 4, 4, 6, and 10, respectively. The êlpdPSIS−LOO of each data point

are computed as well. Similar to the DIC results, the three CAR models are close to each

other. Although GMCAR provides the smallest absolute value of the êlpdPSIS−LOO among

the three CAR models, the differences, 1.9 and 2.1, are not significant, taking into account

that the estimated standard error of the difference is 2.2 and 2.5. On the other hand, the

êlpdPSIS−LOO difference between GMCAR and IndNorm model is larger than the estimated

standard error, which indicates that the GMCAR model has better predictive performance

than the IndNorm model for the CDM impPIPE data.

Posterior medians of the Weibull parameter ρ of the five models are about 1.98, with 95%

credible interval (1.71, 2.27). It suggests that the baseline hazard increases over time, which

is consistent with the characteristic of seasonal epidemics development. Figure 2.5 shows
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posterior median and 95% credible interval of the covariates coefficients β of five models.

The estimate of the parameters are rather similar across the models. The credible intervals

have similar width in the survival model. In the duration model, the two Norm models have

the narrowest width due to the lack of spatial information in the frailty terms. The two

GMCAR models have narrower credible interval width than the UniCAR model because of

the correlated survival and duration parts. A similar contour can be found in both survival

model and duration model that squash has the largest value among the three plant hosts

and other hosts has the smallest value, or βk2 > βk1 > βk3, k = 1, 2. While higher β1

indicates a higher hazard, which leads to less survival time, and higher β2 indicates a longer

duration time, it confirms the connection between the two parts of the data model that

shorter survival time comes with longer duration, and vice versa. In this case, squash has

the highest hazard of disease outbreak and is expected to have the longest duration time,

which is coincident with the count in Figure 2.3.

We further looked into the differences between estimated coefficients β of the three host

groups. Since the five models have rather similar estimates of the coefficients, we list 2.5, 50

and 97.5 percentiles of coefficients differences from the proposed GMCAR model in Table

2.6. Cucumber v.s. squash in the survival model denotes β11 − β12, cucumber v.s. others

in the survival model denotes β11 − β13, and so on. Because 0 is not included in any of the

six 95% interval, the differences between plant host groups are all significant at 0.05 level.

Taking the ”Others” host type as a reference group, cucumber increases the hazard rate by

a factor of e0.03 = 1.03 to e0.85 = 2.34, squash increases the hazard rate by e0.78 = 2.18 to
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Figure 2.5: Posterior median (black line) and 95% credible interval (box) of the covariates
coefficients: β1 (upper panel) and β2 (lower panel)
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2.5% 50% 97.5%

Survival
Cucumber v.s. Squash -1.08 -0.70 -0.33
Cucumber v.s. Others 0.03 0.44 0.85
Squash v.s. Others 0.78 1.14 1.51

Duration
Cucumber v.s. Squash -0.33 -0.27 -0.20
Cucumber v.s. Others 0.18 0.25 0.33
Squash v.s. Others 0.45 0.52 0.59

Table 2.6: Coefficients difference of GMCAR model

e1.51 = 4.53 and has the highest CDM outbreak hazard among the three host groups. In the

duration model, cucumber increases the estimated duration days by a factor of e0.18 = 1.20

to e0.33 = 1.39, squash increases by e0.45 = 1.57 to e0.59 = 1.80 and therefore is expected to

have the longest epidemic duration time among the three host groups examined.

We obtained the posterior median and 95% equal-tail interval of the rest GMCAR re-

lated parameters. The point and interval estimate of the smoothing parameters are 0.75

and (0.09, 0.98) for α1 and 0.70 and (0.06, 0.99) for α2. Because the parameter is set to be

between (0, 1), the wide credible intervals, caused by large censoring rate and sparse duration

data, denotes limited spatial association between the state-specific random effects. The esti-

mate of the precision parameters are 3.26 and (1.05, 14.64) for τ1 and 7.74 and (2.96, 19.42)

for τ2. These values suggest larger covariances between the survival frailty than the dura-

tion frailty, which can be from the setting that τ1 is a marginal precision parameter while

τ2 is a conditional precision parameter. The estimated bridging parameters are 0.05 and

(−0.63, 0.69) for η0, and 0.38 and (0.11, 0.92) for η1. Since 0 is included in the 95% interval

of η0 but not the interval of η1, it suggests that the connection between ϕ2i and ϕ1i is weaker
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than the connection between ϕ2i and ϕ1j, where i and j are neighbouring states. Besides, η0

and η1 take mostly positive values, which proves that the survival frailty and duration frailty

are positively correlated. The posterior median of ϕ using the GMCAR process model is

shown in the map in Figure 2.6. The positive correlation can be observed in many of the

states. For example, Louisiana has a smaller posterior median of ϕ1, −0.79, which implies

smaller hazard and longer survival, and a smaller value of ϕ2, −0.56, which indicates shorter

duration, while Massachusetts has a larger posterior median of ϕ1, 0.16, which implies larger

hazard and shorter survival, and a larger value of ϕ2, 0.50, which indicates longer epidemic

duration. Overall, states along the mid-Atlantic region of the United States (e.g., North

Carolina, New York, Pennsylvania) have larger values of the survival and duration frailty

terms, and states in southwest of the United States (e.g., Texas, Louisiana) have smaller

values of the survival and duration frailty terms, which matches the conclusions from Figure

2.4.

2.7 Conclusion

In this chapter, we have developed a joint model that consists of a censored Weibull model

for survival data and a zero truncated Poisson model for duration data. The two models

are linked together by spatially correlated random effects. GMCAR and a few other process

models are applied to the random effects. The simulated data demonstrates the advantage

of GMCAR model through AMSE, DIC and LOOIC criteria when the data has spatial
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Figure 2.6: Posterior median of state-specific random effects, ϕ1 (left) and ϕ2 (right)

correlation. We further illustrated this hierarchical joint model with the 2009 CDM ipmPIPE

data from 23 states in the eastern United States. Bayesian methods are implemented using

Stan’s no-U-turn sampling (NUTS). Full posterior inference is available, including plant

host type coefficients and state level frailties. The positive correlation between the survival

and duration part of the model is confirmed by the posterior inference. The joint model

brings the two pieces of information together and helps botanical epidemiologists explain the

pattern of the disease and predict when certain data is missing. The 2009 CDM ipmPIPE

data indicates risk of disease outbreak is high in states along the mid-Atlantic region in

the United States as reported in previous studies (Ojiambo and Kang, 2013). Thus, disease

surveillance efforts should be concentrated in these states once initial outbreaks are reported

in areas close to overwintering sources in southern Florida and along the Gulf of Mexico.

The GMCAR model can be applied to other plant disease systems whose pathogens exhibit
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significant long-distance dispersal at the landscape level to asses the risk of disease outbreak

during the disease monitoring season. While the importance of joint models has increasingly

been recognized in medical literature (e.g., He and Luo 2016; Papageorgiou et al. 2019;

Zhang et al. 2017), joint models are still not widely used in botanical epidemiology due to

computational limitations. The availability of softwares within open source packages that

can fit joint models (Rizopoulos et al., 2016) should further facilitate the application of these

models in botanical epidemiology.

We are also aware of the possibility of data model extension. Comparing with the para-

metric Weibull survival model, nonparametric counterparts are available for the hazard func-

tion (2.1). Carlin and Hodges (1999) investigate parametric Weibull and semiparameteric

model with mixture of monotone baseline hazard functions on highly stratified data. Mixture

model of logistic regression and proportional hazard function is also possible and studied by

Kuk and Chen (1992) and Peng and Dear (2000). For the duration part of the data model,

a point mass at zero and the truncated Poisson distribution for the non-zero observations

can be combined to form a Poisson hurdle model that accounts for zero inflation in the data

(Neelon et al., 2013). These extensions are suitable for different real data situations and will

be explored in our future investigation.

Finally, the study of parameters’ distribution and model comparison of a Bayesian hi-

erarchical framework with latent Gaussian model can also be implemented using integrated

nested Laplace approximations (INLA) (Rue et al., 2009). INLA is a computationally ef-

ficient alternative to MCMC and is available to researchers in R package INLA. Instead of

45



drawing samples from multivariate joint posterior distribution, INLA focuses on estimating

univariate marginal posterior distribution of the model parameters. Details of the method

can be found in Lindgren et al. (2011) and Lindgren and Rue (2015). Several spatial and

spatial-temporal model applications of INLA include: counts of salmonellosis in cattle from

184 regions of Switzerland (Schrödle and Held, 2011), suicide mortality from 32 boroughs

of London, and counts of low birth weight from 159 counties in Georgia (Blangiardo et al.,

2013).It is worth to explore the alternative implementation of joint Bayesian hierarchical

model in the following studies.
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Chapter 3

Bayesian Hierarchical Functional Data

Analysis with Automatically Adaptive

Multi-Resolution Spline

Basis Functions

3.1 Introduction

Functional data analysis (FDA) has been applied to a wide range of data, such as spatial,

longitudinal, and image data, and has therefore received increasing attention over the past

decades. Since the functional data is recorded on a discrete grid t over a continuum T with
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measurement error, revealing the underlying continuous function free from noise, or smooth-

ing, is crucial for FDA. A vast amount of literature exists regarding to FDA methods. One

class of methods extends linear regression to functional data and regresses the functional re-

sponse on a set of predictors (Guo, 2002; Morris and Carroll, 2006; Zhu et al., 2011); another

class, called functional principal component analysis (FPCA), aims to characterize variation

and reduce dimension (Silverman, 1996; Yao et al., 2005; Chiou, 2012). However, many of

the FDA approaches work on point estimation and lack reliable uncertainty quantification.

Bayesian methods, on the other hand, handle uncertainty quantification with full probability

models. Yang et al. (2016) proposed a Bayesian counterpart of functional principal analy-

sis by conditional expectation. Instead of treating each curve independently, the Bayesian

hierarchical model smooths functional curves simultaneously and nonparametrically. The

spontaneity borrows information from all curves and is therefore capable to keep the sys-

tematic patterns. The nonparametrical characteristic of the model ensures the estimation

flexibility.

As real functional data has been collected in increasingly larger size and higher dimen-

sions, the Bayesian hierarchical model shows greater computational complexity. Several

well-developed kriging methods are available to reduce rank, including approximation using

predictive process (Banerjee et al., 2008; Finley et al., 2009; Banerjee et al., 2010), fixed

rank kriging (Cressie and Johannesson, 2008; Cressie et al., 2010; Kang and Cressie, 2011),

and imposing parametric assumptions on the random process precision matrix (Lindgren

et al., 2011; Nychka et al., 2015). Some combination and comparison of the existing kriging
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methods can be found in Bradley et al. (2015, 2016). Because many of the kriging meth-

ods rely heavily on the tuning parameters, which, when selected inappropriately, lead to

biased or unstable results, Tzeng and Huang (2018) improved the fixed rank kriging (FRK)

by defining a class of basis function from thin-plate splines that avoids knot allocation and

scale selection.

Motivated by this novel FRK moethod, we applied the so-called multi-resolution spline

basis functions to the Bayesian hierarchical function data analysis model. The proposed

model has the following advantages. First, it keeps the characteristics of the Bayesian hier-

archical model that estimates mean and covariance functions simultaneously and nonpara-

metrically. Second, because the multi-resolution spline basis functions are sorted in the order

of smoothness and the number of basis functions is selected by Akaike information criterion

(AIC), it reduces computational burden without sacrificing the precision. The conclusion is

confirmed by the comparison of root mean square error (RMSE) and the number of basis

functions between the proposed model and the same Bayesian hierarchical structure using

B-splines basis functions approximations (Yang et al., 2017). Third, it can be expanded

directly to higher dimensions, which will be shown in the numerical studies.

The reminder of the chapter proceeds as follows. Section 3.2 consists of two parts. The

first half outlines the Bayesian hierarchical model and the steps of Markov chain Monte

Carlo (MCMC) procedure. The second half illustrates the FRK multi-resolution spline basis

function, both theoretically and visually, and how it is executed in the hierarchical model.

The proposed model is then applied to the simulated data in Section 3.3 and the real data
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in Section 3.4. The simulated data is generated in one-dimensional and two-dimensional t

settings. Different combinations of stationarity and observation grid are examined in the

one-dimensional t setting. The selection of number of basis functions is studied in the two-

dimensional t setting. The results from the FRK multi-resolution spline basis functions are

compared with the ones from the commonly used B-splines basis functions. Two real data

sets are used to test the model prediction performance. Section 3.4.1 is sleeping energy

expenditure (SEE) data, a one-dimensional functional data that collected for obesity study

by the Children’s Nutrition Research Center (CNRC) of Baylor College of Medicine. Sec-

tion 3.4.2 is mortality data, which is in two-dimensional grid of age and year. Section 3.5

summarizes our major findings and concludes with a brief discussion.

3.2 Method

3.2.1 Bayesian Hierarchical Model

The Bayesian hierarchical model consists of data model, process model, and parameter

model. In the data model, we use the widely accepted functional data with general mea-

surement error model. Let Yi(t) be the observed functional data, i = 1, ..., n is the index of

subjects, t is the observation time points over interval T , the model with measurement error
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is given by

Yi(t) = Zi(t) + ϵi(t), t ∈ T ,

Zi(t) ∼ GP
(
µz(t), Σz(t, t)

)
, ϵi(t) ∼ N(0, σ2

ϵ ).

(3.1)

Zi(t) indicates the true functional curve with shared mean function µz(t) and covariance

function Σz(t, t). ϵi(t) is the measurement error with mean 0 and variance σ2
ϵ that follows

inverse Gamma distribution, IG(aϵ, bϵ). t usually represents time points, and therefore is one-

dimensional. But it can also be in higher dimensions, for example, two-dimensional latitude

and longitude, or a vector of covariates. Yang et al. (2016) proposed a Gaussian-Wishart

process model for the shared mean and covariance functions of Zi(t). It uses Gaussian

process (GP) for µz(t) to smooth functional curves simultaneously and inverse Wishart

process (IWP) (Dawid, 1981) for Σz(t, t) to estimate covariance nonparametrically. It is

denoted by

µz(t)|Σz(t, t) ∼ GP
(
µ0(t), cΣz(t, t)

)
,

Σz(t, t) ∼ IWP
(
δ, σ2

sA(t, t)
)
.

(3.2)

{µ0, c, δ, A(t, t)} are hyper-prior parameters and are determined empirically. µ0 is set to be

the smoothed sample mean. c = 1, δ = 5 are uninformative priors for the mean-covariance

functions. We use Matérn covariance function (Matérn, 1960) for A(t, t) in this chapter,

while smoothed covariance estimate is another possible choice. σ2
s ∼ Gamma(as, bs) is the

scale parameter when estimating the covariance structure A(t, t). The inverse Gamma and

Gamma parameters, {aϵ, bϵ, as, bs}, can be decided using heuristic Bayesian approach (Yang

et al., 2016).
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Yang et al. (2017) suggested a rank reduction method to solve the computational com-

plexity when the functional data is observed on random grid or in high dimension. With the

data model in (3.1), approximations by basis functions were introduced to the process model

of the true signal Zi(t) in (3.2). Let τ be a working grid with τ = (τ1, τ2, ..., τL)
T ⊂ T and

L << p pooled observation grid points, and B(τ ) = [b1(τ ), b2(τ ), ..., bK(τ )] is K selected

basis functions with coefficients ζi = (ζi1, ζi2, ..., ζiK)
T , the true signal on the working grid

Zi(τ ) can be written as

Zi(τ ) =
K∑
k=1

ζikbk(τ ) = B(τ )ζi. (3.3)

B(τ )−1 is the inverse of the basis matrix B(τ ) when K = L and is the generalized inverse

of B(τ ) when K ̸= L or when B(τ ) is singular. By multiplying B(τ )−1 to both sides of

(3.3), we have ζi = B(τ )−1Zi(τ ). ζi is therefore a linear transformation of Zi(τ ) and

ζi ∼ GP
(
µζ = B(τ )−1µz(τ ), Σζ = B(τ )−1Σz(τ , τ )B(τ )−T

)
. (3.4)

The process model in (3.2) can be rewritten in terms of ζ,

µζ |Σζ ∼ GP
(
B(τ )−1µ0(τ ), cΣζ

)
,

Σζ ∼ IWP
(
δ, σ2

sB(τ )−1A(τ , τ )B(τ )−T
)
.

(3.5)

The updated Bayesian hierarchical model gives the following joint posterior distribution

f(ζ,µζ ,Σζ , σ
2
ϵ , σ

2
s |Y ) ∝

f(Y |ζ, σ2
ϵ )f(σ

2
ϵ )f(ζ|µζ ,Σζ)f(µζ |Σζ)f(Σζ |σ2

s)f(σ
2
s).

(3.6)
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f(Y |ζ, σ2
ϵ ), f(ζ|µζ ,Σζ) and f(µζ |Σζ) on the left hand side are probability density functions

of GP in (3.1), (3.4), and (3.5). f(Σζ |σ2
s) is the inverse Wishart distribution. f(σ2

s) and

f(σ2
ϵ ) are Gamma and inverse Gamma distribution, respectively. The MCMC procedure

then samples from the full conditional distribution.

Step 0: After setting initial values of the hyper-prior parameters in the parameter model

and selecting basis functions, details will be covered in Section 3.2.2, we get µζ and

Σζ from (3.5).

Step 1: From f(ζ|Y,µζ ,Σζ) ∝ f(Y |ζ, σ2
ϵ )f(ζ|µζ ,Σζ), we update ζ based on the full con-

ditional multivariate normal distribution using µζ , Σζ , σ
2
ϵ and the observed data

Y (t),

ζi|(Yi(ti),µζ ,Σζ , σ
2
ϵ ) ∼

MVN
(
(
B(ti)

TB(ti)

σ2
ϵ

+Σ−1
ζ

)−1
(
B(ti)

TYi(ti)

σ2
ϵ

+Σ−1
ζ µζ

)
, (

B(ti)
TB(ti)

σ2
ϵ

+Σ−1
ζ

)−1
),

(3.7)

where ti is the observed time points of the ith curve.

Step 2: From f(µζ ,Σζ |ζ, σ2
s) ∝

∏n
i=1 f(ζi|µζ ,Σζ)f(µζ |Σζ)f(Σζ |σ2

s), we update µζ and Σζ

conditioning on ζ in (3.7),

µζ |(Σζ , ζ1, ..., ζn) ∼ NM
( 1

n+ c
(

n∑
i=1

ζi + cB(τ )−1µ0(τ )),
1

n+ c
Σζ

)
Σζ |(µζ , ζ1, ..., ζn) ∼ IW

(
n+ 1 + δ,

n∑
i=1

(ζi − µζ)(ζi − µζ)
T+

c(µζ −B(τ )−1µ0(τ ))(µζ −B(τ )−1µ0(τ ))
T + σ2

sB(τ )−1A(τ , τ )B(τ )−T
)
.

(3.8)
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Step 3: From f(σ2
ϵ |Y, Z) ∝

∏n
i=1 f(Yi(ti)|Zi(ti), σ

2
ϵ )f(σ

2
ϵ ), we update the noise term σ2

ϵ using

the observed data Yi(t) and the estimated true signal Zi = B(ti)ζi

σ2
ϵ |(Y, Z) ∼ IG

(
aϵ +

1

2

n∑
i=1

pi, bϵ +
1

2

n∑
i=1

(Yi(ti)− Zi(ti))
T (Yi(ti)− Zi(ti))

)
, (3.9)

where pi is the number of observed time points of the ith signal.

Step 4: From f(σ2
s |ΣZ(τ , τ )) ∝ f(ΣZ(τ , τ )|σ2

s)f(σ
2
s), we update σ2

s by

σ2
s |ΣZ(τ , τ ) ∼ Gamma

(
as +

(δ +K − 1)K

2
, bs +

1

2
trace(A(τ , τ )ΣZ(τ , τ )

−1)
)
,(3.10)

where ΣZ(τ , τ ) = B(τ )ΣζB(τ )T .

MCMC then loops over posterior distributions in Step 1 - 4 with updated {ζ,µζ ,Σζ , σ
2
ϵ , σ

2
s}

from previous iteration. The posterior means of the iterations after warm up period for

{Zi(t), µz(t),Σz(t, t), σ
2
ϵ} are used for model comparison and data prediction in the numerical

studies.

3.2.2 Basis Function Selection

For the basis function approximation in the process model in Section 3.2.1, quite a few

methods are available to select the basis functions, for example, B-splines (De Boor et al.,

1978; Ramsay et al., 1988; Meyer et al., 2008) is frequently used for Gaussian process data,

and Fourier series is usually chosen for periodic data. In this chapter, we apply resolution

adaptive fixed rank kriging (FRK) method to the basis function selection because of the

following advantages: first, resolution adaptive FRK uses multi-resolution spline (MRS)
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basis functions, which sorts basis functions in descending order with regard to smoothness,

second, instead of using t only as in B-splines, resolution adaptive FRK takes both t and the

observed functional data Y into account and selects the optimal number of basis functions K

automatically by AIC, third, resolution adaptive FRK is able to extend to higher dimensional

t directly. We start with some introduction of the FRK method.

FRK is developed from the spatial random effects model,

Zi(t) = µi(t) +wT
i f(t) + ξi(t)

= µi(t) + ΣK
k=1wikfk(t) + ξi(t), t ∈ D, i = 1, ..., n.

(3.11)

We use t to keep notation consistent. But s is usually used in the spatial random effects

model. Zi(t) = (Zi(t1), ..., Zi(tp)) is an independent spatial process observed at p locations on

d dimensional domain D ⊂ Rd. n ≥ 1, with n = 1 for single realization in geostatistics. Zi(t)

has mean µi(t) and spatial covariance C(t, t∗) = cov(Zi(t), Zi(t
∗)). f(t) = (f1(t), ..., fK(t))

T

are K prespecified basis functions with K ≤ p. wi = (wi1, ..., wiK)
T are unobservable

random weights that follows N(0,M) with M be an unkown nonnegative definite covariance

matrix. ξi(t) ∼ N(0, σ2
ξ ) is a white-noise process and is uncorrelated with wi. We get

C(t, t∗) = f(t)TMf(t∗)+σ2
ξI, where I is a p×p identity matrix with 1 on the diagonal and

0 elsewhere. Let F be the p×K matrix [f(t1), ...,f(tp)]
T , Cressie and Johannesson (2008)

coined the term fixed rank, because the rank of FMF T is less than or equal to the number

of basis functions K.

Resolution adaptive FRK extracts basis functions from thin-plate splines (Green and

Silverman, 1993) that balances the distance between noisy data Z and thin-plate splines
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functions f and the smoothness penalty J ,

f = arg min
∑
t∈D

(Z(t)− f(t))2 + ρJ(f). (3.12)

ρ ≥ 0 is a tuning parameter. J(f) is the penalty with a smaller value indicating a smoother

function. Given t = (x1, ..., xd)
T , the solution of (3.12) can be written in the form of

f(t) = αTϕ(t) + β0 +
∑d

j=1 βjxj, where ϕ(t) = (ϕ1(t), ..., ϕp(t))
T are functions of spatial

distance, β = (β0, β1, ..., βd)
T ∈ Rd+1, α ∈ Rp and XTα = 0 with

X =


1 x11 ... x1d

...
. . .

1 xp1 ... xpd

 .

MRS basis functions are a set of basis functions that requires no knot allocation and is

in descending order in terms of degrees of smoothness. Tzeng and Huang (2018) gave the

definition of MRS basis functions,

fk(t) =



1; k = 1,

xk−1; k = 2, ..., d+ 1,

λ−1
k−d−1(ϕ(t)− ΦX(XTX)−1x)Tvk−d−1; k = d+ 2, ..., p,

(3.13)

where x is the row of matrix X, and Φ is a p × p matrix of the spatial distance functions,

[ϕ(t1), ...,ϕ(tp)]
T . Let Q = I − X(XTX)−1XT , λk and vk are the kth eigenvalue and the

corresponding eigenvector of QΦQ with λ1 ≥ ... ≥ λp. In the ordered function set, higher

order functions show shape of the data in a larger scale, and lower order functions capture
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more details of the data. When certain number of basis functions are selected, ordered

function set includes basis functions that have more information of the data first. As a

result, it represents data better with a relatively small number of basis functions.

Figure 3.1 and 3.2 are two examples of the MRS basis functions. Figure 3.1 has one-

dimensional (t1, ..., t40) from Uniform(0, 1). The irregularly spaced points are shown at the

bottom of each subplot. We can see that the first 20 basis functions are in descending order of

smoothness. Besides, more structures can be found at the locations where more data points

are observed. It is ideal for nonparametric models, because MRS basis functions are able to

show more details when there are more data, but also keep simple when there are fewer data

in that area. Similarly, Figure 3.2 is the first 20 basis functions of 40 randomly generated

points from two-dimensional space [0, 1]× [0, 1]. The descending order of smoothness can be

observed from f1 to f20. Finer structures can be found at locations of more data points, see

the black points in the subplots.

Assuming that µ(t) = 0 in (3.11) for simplicity, the maximum likelihood estimator of

M and σ2
ξ have closed form expressions and can be implemented using R package autoFRK

(Tzeng et al., 2020). The number of basis functions is selected from [d+1, K∗] automatically

using Akaike’s information criterion (AIC) (Akaike, 1973), K̂ = arg mind+1≤K≤K∗AIC(K).

K∗ is a user defined sufficiently large value with default K∗ = p when p ≤ 100, and K∗ =

10
√
p when p > 100. AIC contains both variance and the number of free parameters. Thus,

it provides optimal solution that balances both model precision and model simplicity.
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Figure 3.1: First 20 MRS basis functions of one-dimensional t from Uniform(0, 1)
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Figure 3.2: First 20 MRS basis functions of two-dimensional t randomly generated from
[0, 1]× [0, 1]

3.3 Simulation

Two simulation studies are conducted in this section to compare the Bayesian hierarchical

models with approximations by the widely accepted B-splines (BSP) basis functions and

by the proposed resolution adaptive fixed rank kriging (FRK) basis functions. Simulation

Study I has one-dimensional tij, i = 1, ..., n, j = 1, ..., ni, while Simulation Study II has

two-dimensional tkij, k = 1, 2 and can be extended to higher dimensions. MCMC samples of
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both studies consist of 2,000 burn-in and 10,000 post warm up iterations. Posterior means

of BSP and FRK methods are calculated and shown in the plots in this section alongside

with the true values. Root mean square error (RMSE) is used to evaluate the performance

of the two methods. In Simulation Study I, BSP and FRK produce similar results when raw

data is observed on equally-spaced grid. But FRK has smaller RMSE than BSP when data

is observed on randomly generated grid. It implies that FRK estimations are closer to the

true value than BSP on random grid. In Simulation Study II, BSP and FRK have about

the same RMSE value, but FRK selects a smaller number of basis functions and thus has

higher computational efficiency.

3.3.1 Simulation Study I

We consider four scenarios in this study, (1) stationary data on common grid, (2) nonsta-

tionary data on common grid, (3) stationary data on random grid, and (4) nonstationary

data on random grid. Common grid has p = 40 equally spaced points over the time interval

T = (0, π/2) for all curves. Random gird indicates that each curve has different p = 40

randomly generated points from Uniform(0, π/2). n = 30 functional curves are generated

for each scenario. For stationary data, the Gaussian process of the true signal is

Zi(t) ∼ GP
(
µ(t) = 3 sin (4t), Σ(t, t∗) = 5M(|t− t∗|; ρ, ν)

)
, i = 1, ..., 30, (3.14)

where M is Matérn covariance function M(d; ρ, ν) = 1
Γ(ν)2ν−1 (

√
2ν d

ρ
)νKν(

√
2ν d

ρ
), with scale

parameter ρ = 0.5 and order of smoothness parameter ν = 3.5. Γ(.) is Gamma function, and
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Kν(.) is the second kind modified Bessel function. For nonstationary data, the true signal is

a nonlinear transformation of the stationary signal and has the form

Z̃i(t) = h(t)Z(s(t)), h(t) = t+ 1/2, s(t) = t2/3. (3.15)

Equivalently, the nonstationary signal has mean function µ̃(t) = 3(t + 1/2) sin (4t2/3) and

covariance function Σ̃(t, t∗) = 5(t+ 1/2)(t∗ + 1/2)M(|t2/3 − t∗2/3|; ρ, ν). For both stationary

and nonstationary cases, the noise term ϵi(t) in (3.1) follows N(0, (
√
5/2)2) and is included

to get the raw functional data Yi(t) = Zi(t) + ϵi(t).

The initial values of mean function µz(τ) and covariance function Σz(τ, τ) are estimated

using Principle Analysis by Conditional Expectation (PACE) (Yao et al., 2005) with the

number of principle functions being selected by default to explain 99% fraction of variance.

Next, we interpolate the PACE results on a L = 20 equally spaced working gird over T for

common grid and a ( 0
L−1

, ..., L−1
L−1

) percentiles of the pooled observation grid for random grid.

For BSP method, we specify the B-spline degree of freedom to be the number of time points

on the working gird, K = L. The number of basis functions is therefore fixed at 20. For

FRK method, K is selected by AIC and changes with the simulated data. For example, we

get K = 7 for a stationary common grid data set, K = 10 for a nonstationary common grid

data set, and K = 18 for a stationary and a nonstationary random grid data sets. Figure

3.3 shows one example of raw functional data (Yi) and true signal curve (Zi) from the 30

curves on the left panel, and mean function (µ) of the 30 curves on the right panel. Plots

are arranged into four rows, which correspond to the four scenarios. In each row, the raw
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functional data are shown in black dots, the true signal and the true mean of the 30 signals

are shown in black lines. Estimations using BSP and FRK methods are in blue and red,

respectively, with shaded bands indicating 95% credible intervals. The two methods both

produce accurate results as the shaded areas cover most of the true value. BSP and FRK are

almost overlapped when data is generated from common grid, while the latter has smoother

curves toward the end of the first four plots. The two methods separate a little for the

random grid data in the bottom two rows. FRK method provides mean estimates closer to

the true mean curves than BSP in the second half of Figure 3.3f and 3.3h.

The simulation is repeated 100 times for each of the four scenarios. The mean and

standard deviation of the 100 RMSE are calculated and shown in Table 3.1 with standard

deviation in parenthesis and difference between average RMSE of BSP and FRK in ∆ column.

Mean function µ and covariance surface Σ are evaluated on the observation grid for common

grid data, and on an equally spaced grid of length 40 over the range of pooled observation

time for random grid data. Features that observed in Figure 3.3 can be found in the RMSE

table. For the common grid data, basis functions using both methods perform equally well.

FRK has RMSE about 0.01 less than BSP for Zi and µ of both stationary and nonstationary

data. The RMSE difference between the two methods is negligible for Σ and the noise term

variance σ2
ϵ . As shown in Figure 3.3, the difference increases when raw data is generated

from random grid. FRK outperforms BSP by providing RMSE 0.05 and 0.08 less than BSP

for stationary and nonstationary, respectively, for Zi, and 0.08 and 0.28 less than BSP for

µ. Σ of FRK has not only RMSE 0.29 and 0.56 less than BSP, it also has smaller standard
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(a) Stationary curve estimates common grid (b) Stationary mean estimates common grid

(c) Nonstationary curve estimates common grid (d) Nonstationary mean estimates common grid

(e) Stationary curve estimates random grid (f) Stationary mean estimates random grid

(g) Nonstationary curve estimates random grid (h) Nonstationary mean estimates random grid

Figure 3.3: Example curve and mean estimate plots with 95% credible intervals
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deviations, shown in parenthesis in the second last row of the table, and thus more stable

performance. Looking at the table vertically, FRK gets similar results no matter the data is

observed on common grid or random grid, for example, RMSE of Zi is around 0.41−0.42 for

stationary data, and 0.48 − 0.49 for nonstationary data, RMSE of Σ increases a little from

0.96 to 0.98 for stationary data, and 1.78 to 1.84 for nonstationary data. However, BSP is

more sensitive to the observation grid. Using BSP basis function, RMSE of Zi increases from

0.43 to 0.46 for stationary data, and 0.50 to 0.56 for nonstationary data, and Σ increases from

0.96 to 1.27 for stationary data, and 1.78 to 2.40 for nonstationary data. We conclude that

FRK basis functions provide similar results to BSP basis functions when data is observed

on common grid, and have better estimations when data is observed on random grid.

3.3.2 Simulation Study II

In the second simulation study, we generate n = 10 two-dimensional t functional data. The

observation grid consists of t1, p1 = 30 equally spaced points over T1 = (0, π/2), and t2,

p2 = 20 randomly generated points from T2 = (0, 1) uniform distribution. The true signal

follows

Zi(t) ∼ GP
(
µ(t1, t2) = 3

(
t2 sin (4t1) + (1− t2) cos (4t1)

)
,

Σ(t1, t
∗
1, t2, t

∗
2) = Σ(t1, t

∗
1)⊗ Σ(t2, t

∗
2)
)
, i = 1, ..., 10.

(3.16)

Covariance function Σ(t, t∗) = 2M(|t − t∗|; ρ, ν). Same as in Simulation Study I, M is the

Matérn covariance function with ρ = 0.5 and ν = 3.5. Σ(t1, t
∗
1, t2, t

∗
2) is the Kronecher
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product of the two covariance matrices. Raw data is generated by adding the noise term

ϵi(t) ∼ N(0, 1/2) to the true signal Zi(t).

Because of the two-dimensional t, BSP method used in the Simulation Study I cannot be

applied to this data directly. We first estimate mean function µz(τ) and covariance function

Σz(τ, τ) using FRK instead of PACE and predict on a 10 × 10 working grid based on data

density for the initial values. For BSP method, we get a B-spline basis matrix for each

dimension, t1 and t2, with degree of freedom 10 from the working grid. The Kronecker

product of the two basis matrices is used as the basis functions of the two-dimensional t. For

FRK method, we predict basis functions for the working grid with K selected automatically

by AIC. That is to say, K is fixed at 100 when using BSP method, and the value ofK depends

on the data when using FRK method, for example, K = 28 for one of the simulated data

sets. Because the computational complexity is O(nK3m) for n curves, K basis functions,

and m MCMC iterations, the difference of K makes great impact on computing time and

memory usage. For the data size and number of iterations in this simulation study, the

reduction of K from 100 to 28 shortens MCMC sampling time from 21.8 minutes to 3.3

minutes by about 85%.

The results estimated using BSP and FRK basis functions are shown in Figure 3.4 on the

30×20 grid. Figure 3.4a is the heat map of one example true signals Zi from the 10 generated

surfaces. Figure 3.4b is the heat map of the true mean function µ of the 10 surfaces. The

second row of Figure 3.4 is posterior mean of Zi and µ using BSP basis function. The last

row of Figure 3.4 is posterior mean of Zi and µ using FRK basis function. The two methods
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both give satisfying results for µ, as the three plots on the right hand side are similar. Zi

estimated by BSP and FRK basis functions are both able to reveal the color pattern of the

true signal shown in Figure 3.4a. However, the color of BSP method becomes less clear at

the edges of Figure 3.4c, or at the ends of the observation grid. It is coincident with what we

saw in the one-dimensional counterpart in Figure 3.3, where BSP has less smooth estimates

at the end of the curve than FRK.

We again replicate the simulation 100 times as we did in Simulation Study I and calculate

the average RMSE and its standard deviation of the two methods, shown in Table 3.2. FRK

has RMSE 0.07 less than BSP for Zi and 0.04 less than BSP for σ2
ϵ . FRK and BSP has

similar RMSE that are 0.01 apart for µ. Besides, because the numbers of basis functions are

different for the two methods, we include K in Table 3.2 as well. BSP has K fixed at 100.

Therefore it has standard deviation 0, shown in parenthesis. FRK has an average K 31.7

with standard deviation 7.9. The average computing time is 21.4 minutes for BSP method

and 3.1 minutes for FRK. In the 100 simulations, the maximum number of basis functions

for FRK is 53, which shortens the computing time from 21.7 to 6 minutes by 72.3%. The

minimum number of basis functions is 3. It shortens the computing time from 18.6 to 1

minute by 94.6%, but it also brings higher RMSE. A smaller number of K without losing

precision of estimation is important, especially when the observation grid is large or in higher

dimensions.
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(a) True signal surface (b) True mean surface

(c) Signal estimated by BSP basis functions (d) Mean estimated by BSP basis functions

(e) Signal estimated by FRK basis functions (f) Mean estimated by FRK basis functions

Figure 3.4: True and estimated signal (Zi) and mean (µ) plots
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BSP FRK ∆

K 100 (0) 31.670 (7.897) -68.330

Zi(t) 0.252 (0.160) 0.187 (0.125) -0.065
µ(t) 0.604 (0.197) 0.612 (0.214) 0.009
σ2
ϵ 0.068 (0.168) 0.031 (0.201) -0.037

Table 3.2: Average number of basis functions (K) and average RMSEs and their differences
(∆)

3.4 Real Data

3.4.1 SEE Data

Sleeping energy expenditure (SEE) data set is from an obesity study conducted by the

Children’s Nutrition Research Center (CNRC) of Baylor College of Medicine in Houston,

Texas (Lee et al., 2017). It measures SEE in unit of kcal for 5-19 years old children and

adolescents. Data was recorded every minute during 12:00-7:00am using room respiration

calorimeters. n = 106 subjects, including 44 obese cases and 62 nonobeses cases as control

group, were measured at p = 405 time points. We take common grid t from T = [1 : 405],

and working grid τ as L = 20 equally spaced points over T . The Bayesian hierarchical models

with BSP and FRK basis functions are applied to nonobese and obese groups seperately. In

this case, K = 20 for the two groups when using BSP basis function, K, suggested by AIC,

is 15 and 19 for nonobese and obese groups respectively when using FRK basis function.

Figure 3.5 shows one example curve and the sample mean from both groups in black cir-

cles. Posterior estimates of BSP and FRK are shown in the plot in blue and red, respectively.
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For the example curves in Figure 3.5a and Figure 3.5c, we can see more periodic pattern in

the nonobese case, while the points of the obese case is more scattered. FRK gives smoother

posterior mean towards the end of the nonobese curve, and keeps more details from the first

half of the obese data. For the sample mean curves in Figure 3.5b and Figure 3.5d, BSP and

FRK give similar posterior means. However, 95% credible interval of BSP, shown between

the blue dashed lines, oscillates a little at the beginning and the end of the mean curves. It

is more obvious in the obese cases due to the characteristics of the obese SEE data.

SEE difference between the nonobese and obese groups is also examined in this study.

Using the leave-one-out cross-validataion (LOOCV), we compare the misclassification rate

among raw data, BSP smoothed data, and FRK smoothed data. For each curve, we train a

support-vector machines (SVM) model (Cortes and Vapnik, 1995) with the rest of the curves,

and predict if the curve belongs to nonobese or obese group. SVM prediction is implemented

using R package e1071 Version 1.7-4. Raw data gives a misclassification rate of 49.06%.

Because the data is highly fluctuanting, as shown in the black circles in Figure 3.5a, it is

reasonable that the two groups get mixed up and the classification is almost random. Using

the posterior mean of signal from BSP and FRK methods, the misclassification rate drops

to 41.51% and 31.13%, respectively. It suggests that, by removing noises, the smoothed

data reveals underlying pattern of the obese and nonobese cases and therefore is beneficial

to future research.
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(a) Example curve of nonobese case (b) Mean curve of nonobese data

(c) Example curve of obese case (d) Mean curve of obese data

Figure 3.5: Posterior mean and 95% credible interval of example and mean curves of SEE
Data

3.4.2 Mortality Data

The Human Mortality Database (HMD) (University of California, Berkeley, and Max Planck

Institute for Demographic Research, 2020) contains original calculations of death rates and

life tables from 41 countries and areas. Due to insufficient data, we use mortality rate of

age 0-100 between 1998 and 2017 for the following n = 12 countries, the United States of

America, Japan, Germany, France, Italy, Australia, Netherlands, Belgium, Greece, Czechia,
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(a) Original sample mean (b) Log transformed sample mean

Figure 3.6: Original and log transformed sample mean of mortality data

Sweden, and Portugal, in this study. The sample mean of the 12 countries is shown in Figure

3.6a. Mortality rate increases dramatically after age 60. A small peak happens at age 0.

Although it is almost invisible at current scale, it is obvious in the log transformation plot in

Figure 3.6b. To avoid abrupt changes in the direction of the surface during the infant stage

and to flatten the ascending slope at the senior stage, we use the log transformed data from

age 2-100 in this section. Results of age 0-100 will be shown in Appendix B. We therefore

have the two-dimensional common grid t with t1, 99 equally spaced points over T1 = [2, 100],

and t2, 20 equally spaced points over T2 = [1998, 2017].

To study the application of our proposed method, we fit half of the data, with t1 =

2, 4, 6, ..., 100, to the Bayesian hierarchical model. We set BSP basis functions as Kronecker

product of two B-Spline basis matrices with degree of freedom 20 and 10 for t1 and t2,

respectively. The number of basis functions is K = 200 from the dimension of the two basis

matrices product. Figure 3.7 shows AIC of FRK for selected Ks. Suggested by the AIC
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Figure 3.7: AIC of selected Ks of the 12 countries mortality data

results, K = 108 for this data. We then estimate the mortality rate at age 3, 5, ..., 99 between

year 1998 and 2017 for the 12 countries using the two methods. The RMSE between real

data and the estimated values using BSP basis functions is 0.2333. Decreasing by 38.41%,

the RMSE between real data and the estimated values using FRK basis functions is 0.1437.

67.02% of the 49× 20× 12 = 11760 testing data points are covered within the 95% credible

interval using BSP basis functions, while the rate increases to 81.67% using FRK basis

functions. BSP method can be improved by increasing the number of knots that define the

splines. It will, however, greatly increase the computational complexity and the required

memory size.

Taking the United States as an example, the predicted values are shown in Figure 3.8.

In general, both methods predict mortality rates close to the real data. We can see the

blue to red color gradient from bottom to top of the three plots, which means that the

mortality rate increases with respect to age. Besides, the color are slightly tilted with lower
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Figure 3.8: USA real and estimated mortality rate of age 2-100

left hand side and higher right hand side, which indicates that the mortality rate decreases

with respect to year due to the development of medical science and social welfare. However,

BSP (Figure 3.8 center panel) provides higher estimated mortality rate than the real data

at the bottom edge of the plot. It does not get similar results until around age 9. BSP also

shows a periodic pattern horizontally between age 20-30, which is not observed in the real

data. Similar situation happens in mortality rates prediction of other countries. FRK basis

functions are preferred for this Bayesian hierarchical model, because it maintains a more

stable performance in prediction.
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3.5 Conclusion

Inspired by the resolution adaptive fixed rank kriging and its corresponding class of basis

functions, this chapter develops a Bayesian hierarchical model that estimates mean and

covariance functions simultaneously and nonparametrically with reduced dimension through

approximations by multi-resolution spline basis functions. Some features of the basis function

include that they are sorted in the descending order of smoothness, and the number of basis

functions is suggested based on AIC. The model thus has improved computational efficiency

while keeping the precision of the posterior inference. The advantage is demonstrated in

the numerical studies through comparison between the proposed model and the model using

B-splines basis functions.

In the simulation studies, the model with FRK basis functions not only provides a pre-

ferred results for RMSE, it also has a smoother estimate while approaching to the endpoints

in the one dimensional case and to the edges in the two dimensional case. When RMSE

is not available in the SEE data, the signals estimated by the proposed model decreases

misclassification rate of obese and control groups, comparing with the original data and

the estimate from model using BSP basis functions. The proposed model once again gets

smaller RMSE and covers more true values in 95% credible interval for the two-dimensional

mortality data, while using about half of the number of basis functions that is used in BSP

method.

As shown in the two-dimensional simulated data example in Section 3.3.2 and the mor-
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tality data example that recorded on grid of age and year in Section 3.4.2, the Bayesian

hierarchical model with basis functions approximations can be expanded to two or higher

dimensions directly. It is noteworthy that Yang et al. (2017)’s model of functional data can

be applied to curves in R3. In a recent brain fiber bundles study by Zhang et al. (2019),

each fiber connecting a pair of brain regions is viewed as a parameterized curve from the

tractography data set. The fiber curves are decomposed to shape, translation, and rotation

components. Each coordinates are then fitted to the Bayesian hierarchical model indepen-

dently.
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Chapter 4

Summary

This dissertation consists of two projects. Each project develops a Bayesian hierarchical

model for a certain scenario. The set up of the model and the procedures to get the posterior

inference are given in details. The advantages of the models are proved both theoretically

and numerically. Simulated data sets are used to compare the proposed models with a

few alternative models. The proposed models are also applied to several real data sets for

illustration.

We start with a brief introduction of the background of the related topics in Chapter

1. These topics include Bayesian hierarchical modeling, the spatial frailty terms in disease

mapping, conditional autoregressive modeling, functional data analysis, functional principal

component analysis, and spline basis functions.

Chapter 2 is motivated by the cucurbit downy mildew (CDM) impPIPE data. The data

has information about plant type, state, survival days within the 204 days observation pe-

77



riod, and duration days if outbreak. We, accordingly, develop a joint Bayesian hierarchical

model with Weibull distribution for the censored time to disease outbreak data, a zero-

truncated Poisson distribution for the disease duration data, and a generalized multivariate

conditionally autoregressive (GMCAR) model for the spatial frailty terms. The model is ap-

propriate because of the annual extinction-colonization cycles and significant long distance

spread at the continental scale of the CDM disease. It is then compared with three other

models that have no dependency or spatial information, namely, univariate conditional au-

toregressive (UniCAR) model, multivariate normal (MvNorm) model, and independent nor-

mal (IndNorm) model. The models are selected using average mean square error (AMSE),

for simulated data, and deviance information criterion (DIC) and leave-one-out information

criterion (LOOIC). The proposed hierarchical model in general outperforms the other three

models by providing smaller bias and preferred DIC and LOOIC results. Applying the model

to the 2009 CDM impPIPE data, we conclude that states in the mid-Atlantic region tend

to have a higher risk of disease outbreak, and in the infected cases, they are likely to have a

longer duration of CDM among the 23 states in the eastern United States.

We propose another Bayesian hierarchical model in Chapter 3. The framework uses

approximations by basis functions to estimate underlying functional signals. The Markov

chain Monte Carlo (MCMC) steps are therefore conducted in a reduced rank space gener-

ated by the basis functions. The data model is the common functional data model with

measurement error. The true signals have shared mean and covariance functions that follow

Gaussian-Wishart distributions in the process model. The mean and covariance functions
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are transformed by the multi-resolution spline basis functions with the full conditional distri-

bution and the algorithm given explicitly in Section 3.2.1. The performance of the proposed

model is compared with the model using B-splines basis functions. It provides a smaller

root mean square error (RMSE) with a smaller number of basis functions for the simulated

data. The improvement in computational efficiency is important in high dimensional func-

tional data analysis. It later shows that using the proposed model, the smoothed data has a

smaller misclassification rate for the sleeping energy expenditure (SEE) data. It also has a

smaller RMSE and a preferred credible interval coverage for the 12 countries mortality data.
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Appendix A

Appendix for Chapter 2

This section gives some extra details for the joint spatial model study in Chapter 2. Figure

A.1 and A.2 are supplements to Figure 2.2. Other than the six states chosen for Figure

2.2 where more observations are available, figure A.1 and A.2 are box plots of the full data

set. Figure A.1 shows the uncensored survival data before the period of 204 days ends.

Disease outbreak is not observed for certain hosts in a few states, such as Alabama and

Massachusetts. Some states have very limited observations, such as Louisiana and Wisconsin.

Figure A.2 shows the duration days when the outbreak happens. Less data is available for

the duration part. For example, Louisiana, Mississippi, and Texas have only one observation,

Alabama, New York, and Ohio have no data recorded at all. In this case, the estimation

needs information from the neighbouring states or the survival part of the model.

Apart from AMSE of ẑ
(t)
kij, DIC, and LOOIC that evaluate fixed and random effects at

the same time, we also examine the fixed effects coefficients only, which corresponds to hosts
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Figure A.1: Box plots of uncensored survival days data from 23 states
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Figure A.2: Box plots of disease duration days data from 23 states

93



and is of interest to plant pathologists, in the simulation studies. Figure A.3 is a box plot

of 50 posterior means of β for each of the four studies. X-axis indicates the true model,

color indicates the fitted model, and a black horizontal line shows the true value. The left

panel is the three coefficients in the survival model, the right panel is the three coefficients

in the duration model. Fitting to the five models gives similar results in terms of median

and interquartile range. The two Norm models has medians of β̂1 slightly farther away from

the true value than the ones of the three CAR models. Unlike β̂1 in the survival model that

is estimated using censoring data, β̂2 in the duration model is easier to estimate and has

posterior means very close to the true values, which is shown by the narrower ranges and

overlapped black lines. We also have shorter boxes for Study 3 and 4 in Figure A.3 right

panel due to the simulation parameter setting. When the true model is GMCAR, UniCAR

has a little bit wider β̂2 interquartile range comparing to the other four models, same as the

reverse ordered GMCAR when the true model is UniCAR. However, they are only visible

for the interquartile range and become indifferent in terms of the range of the 50 posterior

means. Putting β̂1 and β̂2 together, the posterior means confirm the AMSE conclusion in

Table 2.3 that CAR models in general give preferable results in these four scenarios.

94



Figure A.3: Box plots of posterior means of the 50 Monte Carlo runs in the simulation study

95



Appendix B

Appendix for Chapter 3

In Section 3.4.2, we used the log transformation of the mortality data from age 2-100, in

order to avoid abrupt changes in the direction of the surface during the infant stage. We now

try fitting the Bayesian hierarchical model with age 0-100 log transformed data and compare

the performance of BSP and FRK methods when functional surfaces show steep slope and

direction change. Again, we train the model with half of the data, t1 = 0, 2, 4, ..., 100. With

the same setting as in Section 3.4.2, the number of basis function is K = 200 for the BSP

method. Selected by AIC, K = 190 for the FRK method. The mortality rate is then

estimated at age 1, 3, 5, ..., 99 between year 1998 and 2017 for the 12 countries using the two

methods. The RMSE between real data and the estimated values using BSP basis functions

is 0.3671. The RMSE between real data and the estimated values using FRK basis functions

is 0.1772, less than half of the RMSE of BSP. 58.1% of the 12000 testing data points are

covered within the 95% credible interval using BSP basis functions. The rate increases to
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74.55% using FRK basis functions.

Figure B.1 shows the real and predicted values of the mortality rate of the United States.

Both methods display the pattern from blue (bottom) to red (top), or mortality rate from

low to high, which is similar to the real data plot. BSP has a periodic pattern horizontally

between age 20-35, which is not observed in the plots of real data and FRK estimate. In

contrast to the ascending trend of mortality rate with respect to age, age 1 has a higher

mortality rate comparing to the following few years. It is not well represented using both

methods. While the true mean of log mortality rate of age 1 in 1998-2017 is −3.09, the

average posterior mean is −0.83 for BSP method and −2.07 for FRK method. Figure B.2

shows the real and predicted values of the mortality rate of Japan as another example. In

the left panel, a lighter blue color, indicating a higher mortality rate, can be observed in

2011 in the lower half of the plot. However, both BSP and FRK smooth the data and are

not able to show the characteristic. The RMSE between fitted value using BSP and the true

value in the year of 2011 is 0.086. It decreases to 0.071 using FRK.
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Figure B.1: USA real and estimated mortality rate of age 0-100

Figure B.2: Japan real and estimated mortality rate of age 0-100
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