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ABSTRACT

Supremacy in armed conflict comes not merely from superiority in ca-
pability or numbers but from how assets are used, down to the maneu-
vers of individual vehicles andmunitions. This document outlines a re-
search plan focused on skirmish-level tactics to militarily relevant sce-
narios. Skirmish-level refers to both the size of the adversarial engage-
ment – generally one vs. one, two vs. one, and/or one vs. two – as well
as the fact that the goal or objective of each team is well-established.
The problem areas include pursuit-evasion and target guarding, either
of which may be considered as sub-problems within military missions
such as air-to-air combat, suppression/defense of ground-based assets,
etc. In most cases, the tactics considered are comprised of the control
policy of the agents (i.e., their spatial maneuvers), but may also in-
clude role assignment (e.g, whether to act as a decoy or striker) as
well as discrete decisions (e.g., whether to engage or retreat). Skirmish-
level tactics are important because they can provide insight into how
to approach larger scale conflicts (many vs. many, many objectives,
many decisions). Machine learning approaches such as reinforcement
learning and neural networks have been demonstrated to be capable of
developing controllers for large teams of agents. However, the perfor-
mance of these controllers compared to the optimal (or equilibrium)
policies is generally unknown. Differential Game Theory provides the
means to obtain a rigorous solution to relevant scenarios in the form of
saddle-point equilibriumcontrol policies and theminmax (ormaxmin)
cost / reward in the case of zero-sumgames.When the equilibrium con-
trol policies can be obtained analytically, they are suitable for onboard
/ real-time implementation. Some challenges associated with the clas-
sical Differential Game Theory approach are explored herein. These
challenges arisemainly due to the presence of singularities, whichmay
appear in even the simplest differential games. The utility of skirmish-
level solutions is demonstrated in (i) themultiple pursuer, single evader
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differential games, (ii) multi-agent turret defense scenarios, and (iii)
engage or retreat scenarios. In its culmination, this work contributes
differential game and optimal control solutions to novel scenarios, nu-
merical techniques for computing singular surfaces, approximations
for computationally-intensive solutions, and techniques for addressing
scenarios with multiple stages or outcomes.
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A man can only stumble for so long before he
either falls or stands up straight.

— Brandon Sanderson, Mistborn Trilogy
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The road must be trod, but it will be very hard. And neither strength nor
wisdom will carry us far upon it. This quest may be attempted by the weak
with as much hope as the strong. Yet it is oft the course of deeds that move
the wheels of the world: Small hands do them because they must, while the

eyes of the great are elsewhere.

— J.R.R. Tolkien, The Fellowship of the Ring

To Christina, for choosing this quest with me.



Part I

I N I T IAL COND I T IONS





Of the deluge of material written on game theory,
most concerns general theorems and results, often
of the highest calibre mathematics but very little of
usable techniques for obtaining practical answers.

— Rufus Isaacs, Differential Games [130]

1
I N TRODUCT ION

Strategy in adversarial conflict is broad in scope, ranging from mili-
tary doctrine to behaviors and adaptations found in natural organisms.
Within the myriad of applications (e.g., military, biological, economic,
games, sports) one may conceive of strategies or tactics at many lev-
els – from the organizational level (i.e., cooperation among groups of
entities) down to the individual level (the decisions of a pilot, an ani-
mal, an investor, etc.). Then there is always the challenge of the unpre-
dictable actions and response of the adversary. One may go to great
lengths to understand the setting or environment for the conflict, the
capability of the adversary, and even the current state of the adversary.
However, in the end, the outcome of the conflict generally depends on
what the adversary will do, both now and in the future.

This work is concerned with strategies and tactics at the skirmish
level with an emphasis on militarily relevant scenarios (though, most
of the reality of the end application will be abstracted out of the anal-
ysis). The term “skirmish” bears no precise mathematical definition
but is used throughout to denote a conflict between small teams of
agents, including one-versus-one (1v1) conflicts. Most of the analysis is
centered on 1v1, two-versus-one (2v1), one-versus-two (1v2), andmany-
versus-one (Mv1) conflicts. In addition to small team sizes, skirmish is
meant to connote that the scenario can be boiled down to a specific ob-
jective for each team. This is in contrast with conflicts which are larger

This paper is based on work performed at the Air Force Research Laboratory (AFRL)
Control Science Center. Distribution Unlimited. 18 Feb 2022. Case #AFRL-2022-0773.
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4 INTRODUCT ION

and broader in scope, such as a military mission which may be com-
prised of many sub-tasks or sub-goals, or even a military campaign
comprised of many missions across a wide variety of assets.

The two main problem areas of interest are pursuit-evasion and tar-
get guarding. In the former, a Pursuer (or group of Pursuers) seeks
to capture an Evader (or group of Evaders). In the latter, a Defender
seeks to prevent an Attacker from reaching a target set of states, which
could represent a region of interest or position of mobile agents. Note,
throughout the remainder of the document, the convention of capital-
izing agent names is adhered to. For both of these problem areas, the
primary concern is over the spatial maneuvers of the agents. Fig. 1.1
shows the notional relationship between various layers of autonomous
(or automatic) controlwithin an agent, e.g., aircraft. As noted in the fig-
ure, the research proposed in this document pertains mostly to the top
two layers: the Mission Manager and the Outer Loop. For example,
the analyses and algorithms proposed herein may prescribe heading
reference commands for an aircraft which are based off of, or pred-
icated upon, “higher-level” decisions such as which task the aircraft
should complete. It is assumed that a ”lower-level” (Inner Loop) con-
troller exists which sends actuator commands to the aircraft in order
to track the reference commands provided by the Outer Loop. In turn,
the Inner Loop provides vehicle state information (such as position) to
the Outer Loop. The Outer Loop provides an estimate of performance
for the assigned task which is used by the Mission Manager to assess
whether tomake an update, e.g., reassign tasks or re-form teams. Possi-
ble functions of theMissionManager, in the context of pursuit-evasion
and target guarding, may include assigning a role to the vehicle or as-
signing tasks, e.g., a particular Evader for a Pursuer to target. Other
possible roles are to act as a decoy in order to draw attention away from
a teammate, to act as a striker and aim at a target, or a blocker in or-
der to prevent cut off certain paths for the adversary, etc. Additionally,
theMissionManager may be responsible for discrete decisions such as
whether an Attacker should engage a Defender or retreat altogether.

Larger, more complex, conflicts may involve larger teams of agents
(i.e., many versus many), many different objectives, and many differ-
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Mission Manager

Outer Loop

Inner Loop

Aircraft

Task / Team Assignments

Heading Ref. Commands

Actuator CommandsSensor Signals

Aircraft Positions

Expected Performance

[ February 2, 2022 at 10:11 – classicthesis v4.6 ]

Figure 1.1: Notional block diagram describing the layers of control for, e.g., an
autonomous aircraft.

ent decisions. Moreover, the structure of the conflict may change over
time. Fig. 1.2 shows an abstract example of such a conflict taking place
between 5mobile agents, comprising the Blue team, and 5mobile agents
with 3 turrets comprising the Red team. As humans, we have a better
chance of understanding larger engagements if we can understand and
reason about what is optimal in each of the constituent skirmish-level
conflicts, which are, by comparison, “atomic”.

In the following parts, Differential Game Theory (DGT) is used to
examine these skirmish-level engagements, which provides a mech-
anism to quantitatively analyze agent performance while simultane-
ously providing insight into the underlying interactions between agents.
Solutions to problems formulated within DGT are comprised of the
saddle-point equilibrium strategies of each player as well as the Value
function which represents the equilibrium outcome of the conflict as
a function of the state of the system. These saddle-point solutions are
powerful because they give a guarantee to each player that they can do
noworse than the Value of the game if they implement the equilibrium
strategy, regardless of the actions of the adversary.

The proposed research plan may be summarized as: obtain differ-
ential game solutions to novel skirmishes, extend existing solutions
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Figure 1.2: Conceptual illustration of a conflict between a Blue team and Red
team. The Red team has 3 turrets in addition to its mobile agents.
The grey region may represent a target region for the Blue team –
they may wish to retreat there, or perhaps enter it and inflict dam-
age or find particular targets. Naturally, one may think of assign-
ments between the various agents before attempting to compute
their control; but even this may hinge on the higher mission-level
goals of each team. The Red team may, for example, wish to min-
imize casualties or minimize the number of Blue agents that can
enter the grey region.

to more complex skirmishes, develop/compare numerical techniques,
and develop approximations. Throughout, there is an emphasis on the
practical application of differential game and optimal control solutions
– the goal is for an individual agent to be able to compute its optimal/e-
quilibrium control input using onboard computational resources in an
amount of time appropriate for the particular task. Thus, the goal is
generally to obtain closed-form analytic solutions to these problems.
When this is not possible, parametric solutions with a reduced dimen-
sionality are also developed,which can be quickly and efficiently solved
using traditional root-finding methods. Lastly, when neither analytic
nor parametric solutions are feasible, suitable approximations are sought.

In the following Section, a classical pursuit-evasion scenario involv-
ing one Pursuer and one Evader is formulated and solved using DGT to
introduce some of the key concepts, such as players, cost functionals,
control variables, equilibrium, and Value. Chapter 2 contains a litera-
ture survey which provides the necessary context and identifies key
themes for the proposed research. Chapter 3 specifies the proposed
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plan as a series of research objectives; it concludes with a discussion
about the challenges and strengths of the approach taken.

1.1 A TOY EXAMPLE

In this section, some DGT concepts are demonstrated upon a classic
pursuit-evasion problem. Fig. 1.3 depicts the scenario. The Pursuer, 𝑃,
wishes to capture the Evader, 𝐸, in minimum time, while the latter
wishes to delay capture as long as possible. Capture occurs when 𝑃
is coincident with 𝐸. The environment is simply the 2-D plane (ℝ2) –
there are no obstacles or external disturbances (such as wind).

Pursuer
(𝑥𝑃, 𝑦𝑃)

Evader
(𝑥𝐸, 𝑦𝐸)

𝜙 𝜃

𝑥

𝑦

[ February 3, 2022 at 12:06 – classicthesis v4.6 ]

Figure 1.3: Schematic representation of the 1v1 pursuit-evasion problem.

1.1.1 Problem Formulation

The state of each player is simply their Cartesian coordinates on the
(𝑥, 𝑦)-plane, 𝑃 ≡ (𝑥𝑃, 𝑦𝑃) and 𝐸 ≡ (𝑥𝐸, 𝑦𝐸). The overall state of the sys-
tem, x, is the concatenation of their coordinates; its evolution through
time is given by the following set of ordinary differential equations,

̇x =
⎡⎢⎢⎢
⎣

̇𝑥𝐸
̇𝑦𝐸
̇𝑥𝑃
̇𝑦𝑃

⎤⎥⎥⎥
⎦

=
⎡⎢⎢⎢
⎣

𝑣𝐸 cos 𝜃
𝑣𝐸 sin 𝜃
𝑣𝑃 cos𝜙
𝑣𝑃 sin𝜙

⎤⎥⎥⎥
⎦

, (1.1)

where 𝑣𝐸 and 𝑣𝑃 are the speeds of the Evader and Pursuer, respectively.
Eq. (1.1) is referred to as the dynamics of the system (although, strictly
speaking, this is a kinematic model). Each player controls their instan-
taneous heading, thus they can “turn on a dime”. This motion model
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is generally referred to as simple motion (sometimes also as first-order
or single integrator). A solution to (1.1) is referred to as a trajectory 1.
For a given state, x, and particular Evader and Pursuer strategies, 𝜃(𝑡)
and 𝜙(𝑡), respectively, the cost/payoff functional is

𝐽 (𝜃(𝑡), 𝜙(𝑡); x) = ∫
𝑡𝑓

0
1d𝜏, (1.2)

where 𝑡𝑓 , the final time, is the time at which capture occurs. The Value
function, if it exists, is defined as

𝑉(x) = max
𝜃(𝑡)

min
𝜙(𝑡)

𝐽 (𝜃(𝑡), 𝜙(𝑡); x) = min
𝜙(𝑡)

max
𝜃(𝑡)

𝐽 (𝜃(𝑡), 𝜙(𝑡); x) . (1.3)

Termination of the game occurs when 𝑃 captures 𝐸 – in this case, point
capture is specified (i.e., 𝐸 and 𝑃 must be coincident). Let the terminal
surface be defined as the collection of state variables that satisfy the
point capture condition:

𝒯 = {x ∣ 𝑥𝑃 − 𝑥𝐸 = 𝑦𝑃 − 𝑦𝐸 = 0} . (1.4)

Then the terminal time is

𝑡𝑓 = min 𝑡, s.t. x(𝑡) ∈ 𝒯 . (1.5)

The Pursuer and Evader’s equilibrium control strategies are denoted
by 𝜙∗ and 𝜃∗, respectively, and obey the saddle-point equilibriumprop-
erty,

𝐽(𝜃(𝑡), 𝜙∗(𝑡); x) ≤ 𝐽(𝜃∗(𝑡), 𝜙∗(𝑡); x)⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑉

≤ 𝐽(𝜃∗(𝑡), 𝜙(𝑡); x), ∀𝜃, 𝜙, x.

(1.6)
In other words, neither player has incentive to deviate from the equi-
librium strategies.

It is clear that if 𝑣𝐸 ≥ 𝑣𝑃, there exists an Evader heading to guaran-
tee capture never occurs. Therefore, let 𝑣𝐸 < 𝑣𝑃 in order for the Value
of the game to be finite. Additionally, assume that the players’ initial
positions are not coincident. Furthermore, it is assumed that both play-

1 Lipschitz continuity of the trajectory is not necessary; clearly, with simple motion, an
agent may turn suddenly, producing a sharp corner in the path.
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ers have full state and parameter information but do not have access to
each others’ current control input.

1.1.2 Necessary Conditions for Equilibrium

The analysis begins with derivation of the first-order necessary con-
ditions for equilibrium. Note that in many places the functional argu-
ments are omitted for convenience (andwhen clarity is not hindered)2.
First, the system’s Hamiltonian is formed:

H (x, 𝝀, 𝜃, 𝜙) = 𝝀 ⋅ ẋ + 1

= 𝜆𝑥𝐸
𝑣𝐸 cos 𝜃 + 𝜆𝑦𝐸

𝑣𝐸 sin 𝜃

+ 𝜆𝑥𝑃
𝑣𝑃 cos𝜙 + 𝜆𝑦𝑃

𝑣𝑃 sin𝜙 + 1,

(1.7)

where 𝝀 ≡ [𝜆𝑥𝐸
𝜆𝑦𝐸

𝜆𝑥𝑃
𝜆𝑦𝑃]

⊤
is a vector of adjoint variables. The

equilibrium adjoint dynamics must satisfy

�̇�𝑥𝐸
= −𝜕H

𝜕𝑥𝐸
= 0

�̇�𝑥𝑦
= −𝜕H

𝜕𝑦𝐸
= 0

�̇�𝑥𝑃
= −𝜕H

𝜕𝑥𝑃
= 0

�̇�𝑦𝑃
= −𝜕H

𝜕𝑦𝑃
= 0.

(1.8)

As is typical with simple motion, the equilibrium adjoint dynamics
are zero, which implies that the adjoint variables are constant. Next,
it is necessary for the Evader and Pursuer controls to maximize and
minimize the Hamiltonian, respectively. Fortunately, H is a separable
function of 𝜃 and 𝜙, and thus these operations can be done indepen-
dently. To maximize H , 𝐸’s equilibrium control must be such that the
vector [cos 𝜃∗ sin 𝜃∗]⊤ must be parallel to [𝜆𝑥𝐸

𝜆𝑦𝐸]
⊤
, and thus

cos 𝜃∗(𝑡) =
𝜆𝑥𝐸

√𝜆2𝑥𝐸
+ 𝜆2𝑦𝐸

, sin 𝜃∗(𝑡) =
𝜆𝑦𝐸

√𝜆2𝑥𝐸
+ 𝜆2𝑦𝐸

. (1.9)

2 This practice is adopted from Y. C. Ho et al. [125].
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The equilibrium control for 𝑃, which minimizes H , is obtained simi-
larly:

cos𝜙∗(𝑡) =
−𝜆𝑥𝑃

√𝜆2𝑥𝑃
+ 𝜆2𝑦𝑃

, sin𝜙∗(𝑡) =
−𝜆𝑦𝑃

√𝜆2𝑥𝑃
+ 𝜆2𝑦𝑃

. (1.10)

Since the equilibrium adjoint variables are constant (from (1.8)), it
must be the case that the equilibrium headings are also be constant,
𝜃∗(𝑡) = 𝜃∗ and 𝜙∗(𝑡) = 𝜙∗. Thus, the paths that 𝐸 and 𝑃 take from their
initial conditions to the point of capture are straight lines.

1.1.3 Geometric Interpretation

Now that it has been established that the equilibriumpaths are straight
lines it is helpful to proceed with a more geometric analysis. For con-
venience, define 𝛼 ≡ 𝑣𝐸

𝑣𝑃
. Consider all (constant) Evader headings 𝜃 ∈

[0, 2𝜋]. There is a corresponding (constant) Pursuer heading, 𝜙, which
results in capture. For each capture point, the ratio of distances from
the initial positions of 𝐸 and 𝑃 must be 𝛼 since the players arrive at
the capture point simultaneously. It so happens that the locus of these
capture points is a circle: the Apollonius circle (AC) [259, Appendix 2].

•
𝐼subopt

𝑃 𝐸
×
𝑂

𝑅

∗𝐼𝜙 𝜃

[ February 2, 2022 at 10:12 – classicthesis v4.6 ]

Figure 1.4: AC associated with a pursuit-evasion scenario involving a faster
Pursuer and point capture (adapted from [245]).
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Fig. 1.4 shows the AC for this scenario. The AC center and radius are

𝐸𝑂 = 𝛼2

1 − 𝛼2 𝑃𝐸, 𝑅 = 𝛼
1 − 𝛼2 𝑃𝐸, (1.11)

where, e.g., 𝑃𝐸 is the Euclidean distance between the points 𝑃 and 𝐸.
Without loss of generality, Fig. 1.4 shows the Line of Sight (LOS) aligned
with the 𝑥-axis.

Now, the problem of obtaining the equilibrium headings may be dis-
tilled to finding the point on the AC which gives 𝐸 the maximum cap-
ture time. Equivalently, this is the point on the circle which is farthest
from 𝐸. It is obvious, then, that the equilibrium aim point must be the
point 𝐼 in Fig. 1.4, which is the point on the AC which is antipodal from
𝑃. Then the associated equilibrium headings are aligned with the LOS

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑃𝐸. This strategy is referred to as Pure Pursuit (PP) for the Pursuer
and Pure Evasion (PE) for the Evader. In general, the strategy may be
written as

cos 𝜃∗(x) = cos𝜙∗(x) = 𝑥𝐸 − 𝑥𝑃

𝑃𝐸
, sin 𝜃∗(x) = sin𝜙∗(x) = 𝑦𝐸 − 𝑦𝑃

𝑃𝐸
(1.12)

If both 𝑃 and 𝐸 take a straight-line path to the point 𝐼, the associated
capture time is 𝑃𝐸

𝑣𝑃−𝑣𝐸
, which gives a candidate for the Value function:

𝑉(x) =
√(𝑥𝐸 − 𝑥𝑃)2 + (𝑦𝐸 − 𝑦𝑃)2

𝑣𝑃 − 𝑣𝐸
. (1.13)

1.1.4 Sufficient Conditions

In order to verify that the candidate Value function (1.3) indeed gives
the saddle-point equilibrium value of the differential game it is suf-
ficient to show that 𝑉 is continuous and continuously differentiable3

(i.e.,𝑉 ∈ 𝒞1) and that it satisfies the associatedHamilton-Jacobi-Isaacs

3 Except along singular surfaces.
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(HJI) partial differential equation (PDE) [130]. The HJI for this differen-
tial game is

max
𝜃

min
𝜙

{∇x𝑉 ⋅ ẋ + 1} = min
𝜙

max
𝜃

{∇x𝑉 ⋅ ẋ + 1} = 0 (1.14)

The minmax terms are accounted for by substituting the equilibrium
controls (1.12) into (1.1):

∇x𝑉 ⋅ ẋ∗ + 1 = 0

⎡
⎢⎢⎢⎢⎢⎢
⎣

𝑥𝐸−𝑥𝑃
(𝑣𝑃−𝑣𝐸)𝑃𝐸

𝑦𝐸−𝑦𝑃

(𝑣𝑃−𝑣𝐸)𝑃𝐸
−(𝑥𝐸−𝑥𝑃)

(𝑣𝑃−𝑣𝐸)𝑃𝐸
−(𝑦𝐸−𝑦𝑃)

(𝑣𝑃−𝑣𝐸)𝑃𝐸

⎤
⎥⎥⎥⎥⎥⎥
⎦

⋅

⎡
⎢⎢⎢⎢⎢⎢
⎣

𝑣𝐸(𝑥𝐸−𝑥𝑃)
𝑃𝐸

𝑣𝐸(𝑦𝐸−𝑦𝑃)
𝑃𝐸

𝑣𝑃(𝑥𝐸−𝑥𝑃)
𝑃𝐸

𝑣𝑃(𝑦𝐸−𝑦𝑃)
𝑃𝐸

⎤
⎥⎥⎥⎥⎥⎥
⎦

+ 1 = 0

− (𝑣𝑃 − 𝑣𝐸) ((𝑥𝐸 − 𝑥𝑃)2 + (𝑦𝐸 − 𝑦𝑃)2)

(𝑣𝑃 − 𝑣𝐸) 𝑃𝐸
2 + 1 = 0

−1 + 1 = 0.

Additionally, it is clear that 𝑉 and ∇x𝑉 exist as long as 𝑣𝑃 ≠ 𝑣𝐸 and
𝑃𝐸 ≠ 0 – both ofwhichwere listed as assumptions earlier. Thus the can-
didate Value function is continuous and continuously differentiable
and satisfies the HJI which ensures that it is, indeed, the solution to
the game.

1.1.5 Pitfalls

It is tempting to think that the PP strategy guarantees capture on or in-
side the AC. However, the saddle-point property of the Value function
applies only to the particular cost/payoff functional, which was the
capture time. At this point, there is no guarantee of location of capture
under any Evader strategy. In particular, consider a class of Evader
strategies that involve picking a constant heading. Fig. 1.5 shows the
result when 𝑃 implements the equilibrium strategy (for the game of
minmax capture time) of Pure Pursuit. The orange curve is the locus
of capture locations, and the players’ trajectories are shown for a partic-
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ular 𝜃. The Pursuer’s trajectory happens to have a closed-form analytic
solution known as a pursuit curve (c.f. [220]). Of course, the capture
time is still less than the Value of the game, but this discussion is in-
cluded to highlight the need to carefully consider which policies offer
which guarantees.

1.1.6 A Second Pursuer

Now suppose a second Pursuer is added to the scenario; let the Pur-
suers be denoted 𝑃1 and 𝑃2. This new Pursuer “cooperates” with the
first in the sense that 𝑃1 and 𝑃2 are controlled by one “player” whose
control input consists of u𝑃 ≡ [𝜙1 𝜙2]⊤. Rufus Isaacs introduced this
problem as the “Two Cutters and Fugitive Ship” in his seminal book
on differential games [130]. Fig. 1.6 shows Isaacs’ proposed solution
for the case of simultaneous capture by both Pursuers. For simultane-
ous capture, the equilibrium strategiesmay be summarized as: all three
agents aim at the point 𝐼 which is the intersection of 𝑃1 and 𝑃2’s ACs

that is furthest from 𝐸.
Despite the clean geometric interpretation of the solution, its veri-

fication (via the process demonstrated in Section 1.1.4) is nontrivial,

×

𝑃 𝐸

𝜃

[ February 2, 2022 at 10:26 – classicthesis v4.6 ]

Figure 1.5: Pure Pursuit versus straight-line Evader paths showing “leakage”
outside of the initial AC. The solid red curve is longer than the
dashed red curve corresponding to the Pursuer’s path if it knew
𝜃(𝑡), however it is still shorter than if 𝐸 were to implement Pure
Evasion.



14 INTRODUCT ION

𝐸

𝑃1

𝑃2

𝐼

[ February 4, 2022 at 16:26 – classicthesis v4.6 ]

Figure 1.6: Simultaneous capture solution for Isaacs’ Two Cutters and Fugi-
tive Ship problem, adapted from [130].

and was only recently completed [107]. Part of the difficulty of the ver-
ification is due to the possibility for the game to degenerate into solo
capture by either 𝑃1 or 𝑃2 in particular regions of the state space. Then
there is the Dispersal Surface (DS), a singularity for which the gradi-
ent of 𝑉 does not exist. Along the DS, the equilibrium headings are
not uniquely defined; either AC intersection is equally optimal because
they are equidistant from 𝐸. This singularity occurs when 𝐸 lies on the
line segment joining the two Pursuers.

Although theDS is generally considered to be relatively benign (com-
pared to the other types of singularities which may appear in differen-
tial games, c.f., [19, Fig. 11]), this particular DS has prompted some
focused attention recently. For example, in [186], it was shown that, in
the vicinity of the DS, Isaacs’ proposed strategy can cause the Pursuers
to effectively slow down if the Evader stands still. Ultimately, the Evader
is able to achieve the Value of the game (i.e., theminmax capture time)
without even moving. The problem lies in the fact that, without know-
ing 𝐸’s instantaneous control action, the 𝑃’s cannot know which AC in-
tersection to aim at. A resolution for this particular dilemma has been
proposed in [165], however, it should be clear at this point that, com-
pared to the 1v1 game where there was only one type of termination
and no singularities, the 2v1 game is vastly more complex.



Sometimes it seems as though each new step towards AI, rather
than producing something which everyone agrees is real
intelligence, merely reveals what real intelligence is not.

— Douglas Hofstadter, Gödel, Escher, Bach:
An Eternal Golden Braid

2
L I T ERATURE SURVEY

2.1 IN TRODUCT ION

This literature survey is intended to provide an overview of research
works related to the overall topic of skirmish-level tactics from a con-
trol science and theory perspective. Along the way, the connections
to existing military (vehicle-level) tactics [211], military technology
plans [237], and military-inspired scenarios [67] will become obvious.
The survey is not intended to be exhaustive; its purpose is to provide
context for the proposed research questions and preliminary results
presented herein.

The remainder of the survey is organized as follows. Section 2.2 pro-
vides a brief description of control science and various approaches to
designing a controller. Section 2.3 contains a discussion of optimal con-
trol, from its theoretical underpinnings, to numerical methods and ap-
plications to higher-level problems such as path planning. Section 2.4
constitutes the bulk of the survey, covering DGT from its history, to ap-
plications, solution approaches, singularities, and open research ques-
tions. Finally, Section 2.5 examines several works which are particu-
larly relevant to the proposed research plan, some of which are the
bases for proposed extensions, while others are focused on related sce-
narios or apply similar methodologies.
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2.2 ENG INE ER ING APPROACHE S TO CONTROLL ER DE S I GN

An old joke that most Aerospace Engineering students have heard be-
fore goes something like this:

What did the pilot say over the intercom to the passengers
after losing control of the airplane?

“Everyone please move to the left-hand side of the plane!”

In an abstract sense, control refers to the design of an input signal
to a system in order to achieve a desired outcome based on the mea-
sured outputs of the system. The desired outcome may be to stabilize
an unstable system, reject disturbances from the environment or un-
modeled dynamics, alter the dynamic response of a system, or even
to reach some desired state. Design of a controller (or control system),
then, entails the mapping of observed outputs to an appropriate input
corresponding to the desired outcome. As mentioned in [151], stabil-
ity is always a chief concern or criteria in designing a controller. Tradi-
tional control design approaches are based on analysis in the frequency
domain and thus hinged upon the so-called gain and phase margins
(i.e., Bode plot)which, together, imply the stability and responsiveness
of the controlled system. Underneath the gain and phase margin con-
cepts lie transfer functions, which describe input/output relationships
on signals in the frequency domain. For a system to be stable, the poles
of the system’s transfer function must have negative real parts (i.e., lie
on the left-hand side of the real-complex plane – hence the joke, above).

A simple example of a traditional control system is that of a reference
governor. Its purpose is to maintain the system at some given (fixed)
reference; it can be thought of as rejecting noise or disturbances from
the environment. Thus there is some notion of an error signal which
represents a deviation from the reference, which is to be driven to zero
by the controller. A typical approach to designing a reference gover-
nor begins by linearizing the (assumed to be known) systemdynamics
about the desired reference. Then various combinations of the error sig-
nal, its derivative, and its integral may be used to stabilize the system.
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This is, of course, the famous, and ubiquitous, proportional-integral-
derivative (PID) controller (c.f. [54, 174]), which has even been ap-
plied to the control of quadrotor control [29]. The meaning of stability,
in this context, means that the error signal tends to zero (rather than
exploding), as long as the system does not stray too far from the refer-
ence. This process may be repeated for many different reference points
across the state space and the control gains may be scheduled so as to
be able to transition from one reference point to another. Many real-
world systems operate in this fashion today [149]. Indeed, approaches
similar to this have even been employed to scenarios relevant to this
research proposal, such as in [208]. There, a multi-robot cooperative
control strategy is designed to entrap a set of prey, and the nonlinear
dynamics are linearized about an operating point for each hunter.

Frequency domain analysis, however, is replacedwith linear algebra
inwhat is referred to as “modern” control. One is concernedwith states
rather than signals, and the stability of a system is governed by eigen-
values of the state transition matrix, which maps the current states to
state derivatives. Two significant branches of (linear) modern control
theory are worth mentioning at this point: optimal control (e.g., the
LinearQuadratic Regulator (LQR) [124]) and robust control (e.g.,ℋ-∞
control [275]). They represent two important design philosophies: best
possible performance, and guaranteed level of performance in spite of
uncertainty, respectively. It will become clear, later, that a saddle-point
equilibrium strategy within a game is both optimal (in some sense)
while also being robust to any action of the opponent. Note that the
LQR formulation has been applied extensively to differential games and
optimal control problems which are relevant to the current study. For
example, [208] applies LQR to obtain the pursuers’ control in an en-
trapment problem, and [147] applies LQR to the Target-Attacker-De-
fender (TAD) problem.

There are also methods for control design which do not rely on lin-
earization. In nonlinear control, the designer typically proposes a can-
didate controller and Lyapunov function, 𝒱 . The Lyapunov function
represents some notion of absolute error or energy of the system. If
it can be shown that 𝒱(𝑡 = 𝑡0) > 0 and ̇𝒱(𝑡) < 0 for all 𝑡, it is gen-
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erally sufficient for saying that the system will be stabilized around
some equilibrium. In the context of the present study, this method can
be used, e.g., to obtain a controller which can guarantee a pursuer can
capture an evader, regardless of the evader’s strategy. This type of con-
troller is robust to the evader’s inputs, but may not necessarily be opti-
mal w.r.t. any performance measure. A similar concept was employed
to guarantee capture of an evader in a bounded environment in [128].

As the field of Artificial Intelligence (AI) has grown and matured
in recent decades, many AI concepts have made their way into control
systems, control design, and applications, including (but not limited
to) Neural Network (NN), Genetic Algorithm (GA), Fuzzy Inference
System (FIS), Reinforcement Learning (RL), and other data-based ap-
proaches. Reference [149] gives an overview of the ways in which AI

can and have been applied to and integrated within control systems.
Neural networks have, for example, been used to generate inputs for
a flapping flight controller [61], adaptive flight control [173], and a
reactive driving controller for a small robot [78]. Genetic algorithms
have been applied to the control design process, e.g., in [78] to design
neural network weights, in [48] as a pre-processing step for other con-
trol design approaches, and in [9] to design an open-loop control in-
put to maneuver behind a turning opponent. Fuzzy inference systems
have also been applied to so-called tail-chase scenarios, e.g., in [10],
as well as to combat scenarios with teams of vehicles [67]. Reinforce-
ment learning is a process by which an agent, or control system, is re-
warded for taking “good” actions and penalized for taking “bad” ac-
tions; the quantity of literature on this subject is vast. Most notably,
reinforcement learning has been applied to multiple-pursuer, single-
evader games (a topic of interest in the present study) in, e.g., [28],
and more famously in DARPA’s AlphaDogfight Trials wherein agents
competed in 1v1 simulated F-16 combat [119, 194]. The application of RL

specifically to optimal control and differential games has been covered
generally in [257] and inworks by Schwartz, e.g., [14, 205]. Finally, one
of the central themes inAI andmachine learning is the balance between
exploration and exploitation. This tradeoff is ever-present in data-driven
control approaches based on Gaussian Process (GP) [56, 57, 137, 189,
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243]. There, a GP is used to model the uncertain dynamics – the model
more closely matches reality in the vicinity of points which have been
previously visited. Despite all of the work that has been done, the judi-
cious application of machine learning and AI to control remains a rich
area for further development and future research [135].

Already, the reader may sense some divergence from the original
notion of control wherein a central concern is the stability of a system.
At this point, it is important to introduce the notion of guidance, whose
definition is included, below:

“Guidance is about the determination of the maneuvering
commands to steer the vehicle to fly a trajectory that sat-
isfies the specified terminal/targeting condition as well as
other pertinent constraints, and, if required, optimizes a de-
fined performance.”

—Ping Lu, 2021 [151]

Thus, the present study is more closely related to guidance in the sense
that the chief concern is, e.g., the heading of a vehicle or turning direc-
tion of an agent on a 2-D plane. In practice, this information may be
used as a reference for a controller at a lower level of abstraction to
follow (e.g., the rudder controller may move the rudder to orient the
vehicle along the prescribed heading). The term guidance has also long
been used in connection with missiles and interception [114, 175, 220].
Obviously, missile guidance is a military relevant application, but it
also has a strong relation to pursuit-evasion, an important area within
differential games [129]. Note that one of the most widely usedmissile
guidance laws, Proportional Navigation (PN), is based upon nullify-
ing the LOS rate to the target, thereby placing it upon a collision course
(c.f., [113]). One can easily spot the relationship to classical control con-
cepts – the LOS rate, in this case, is the error signal and the control is in
proportion to the error (i.e., the ‘P’ part of PID).
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2.3 OP T IMAL CONTROL

This section is focused on optimal control in a broader sense than the
linear (LQR) approach mentioned earlier. Perhaps one of the earliest
rigorous formulations of an optimal control problem can be found in
Goddard’s rocket example [115]. Therein, the objective was to maxi-
mize the terminal altitude of a rocket with a limited fuel weight. From
a modeling perspective, the example is relatively low fidelity: there
are three states, altitude, velocity, and mass, with simple dynamics.
The biggest complication comes from the introduction of the nonlin-
ear drag force term, which is a function of altitude (due to varying
air density throughout the atmosphere), as well as velocity. Another
slight challenge comes from the fact that the control input is bounded
(a case which is not easily accounted for in the traditional LQR formu-
lation). Despite its relative simplicity, the solution of the problem is
nontrivial, involving a sequence of non-singular and singular arcs.

The main impetus for the inclusion of this discussion in the present
study is simply the fact that any adversarial scenario (i.e., game) can be
turned into an optimal control problem by assuming a particular con-
trol strategy of the opponent. Thus the theory behind optimal control
and themethods of solving these problems is relevant to, e.g., skirmish-
level tactics wherein the opponent’s strategy can safely be assumed.
One example is the scenario of evasion from a missile. There are a cou-
ple strategieswhich are particularly prevalent both in the literature and
on fielded systems: PP and PN [220]. Therefore, for certain applications,
it may be reasonable to assume the pursuer is employing one or other
of these strategies.

A second reason for including this discussion on optimal control is
that many of the analytical tools carry over to the differential game
realm, sometimes with some slight modifications (e.g., the relation be-
tween theHamilton-Jacobi-Bellman (HJB) and theHJI equations,which,
interestingly, were developed nearly concurrently). At the forefront of
the theoretical underpinnings of optimal control, are, of course, L.S.
Pontryagin, who is responsible for Pontryagin’s Maximum Principle
(PMP) (sometimes the ‘M’ is Minimum) [193], and R. Bellman, who
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is responsible for Dynamic Programming (DP) [21, 22]. The PMP ap-
proach to optimal control hinges on the (first-order) necessary condi-
tions for optimality which are obtained via the calculus of variations.
One such condition is that the optimal control input (generally de-
noted with a ∗, e.g., u∗(𝑡)) maximizes (or minimizes, whichever the
case may be) the Hamiltonian, H , of a system over the time interval of
interest, e.g., 𝑡 ∈ [𝑡0, 𝑡𝑓 ]. The first order necessary conditions for op-
timality appear also in [40, 136] for a variety of problems (i.e., state
constraints, control constraints, fixed final time, free final time, initial
boundary conditions specified, final boundary conditions specified, etc.).
Note that these variational methods have long been applied to prob-
lems of interest, such as pursuit-evasion (e.g., [125]). On the other
hand, the principle of optimality which governs DP is the idea that
an optimal state trajectory is comprised of the optimal state trajectory
in the current stage and the remainder of the optimal state trajectory.
DP expresses the recursive relationship between what is optimal now
and what is optimal for the remainder of the trajectory. The recursion
resolves at termination, meaning that if one can determine what the
optimal action was to end at a particular terminal state, one can back-
propagate a stage further and thereby chain together a sequence of
the optimal state and control trajectory. Interestingly, these two ap-
proaches were explicitly compared in the context of energy manage-
ment for a parallel hybrid electric vehicle [273]. It is important to note
that DP is built upon a discrete state and action space, however, as the
discretization becomes finer and finer, approaching a continuum, one
obtains the HJB equation which is strongly connected to the Hamilto-
nian. Lastly, note that theMarkovDecisionProcess (MDP) is the stochas-
tic version of (discrete) DP [196], which has been applied to multi-
player pursuit-evasion scenarios, e.g., in [28].

2.3.1 Direct and Numerical Methods

Optimal control solution approaches based on the first order necessary
conditions for optimality, such as the PMP, are referred to as indirect
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methods. Solution of the HJB, also, may be considered to be indirect –
one obtains an extremal trajectory via the solution of this separate equa-
tion. Indirect methods typically rely heavily upon analytical deriva-
tion of the optimality conditions for a specific problem. Often one is
faced with the challenge of guessing either the initial adjoint variables
(which represent the components of the derivative of the Value func-
tionw.r.t. the states) or the terminal states and then solving a two-point
boundary value problem (TPBVP). The optimal controlu∗(𝑡) associated
with the optimal trajectory is essentially a byproduct of this process.

Direct methods, on the other hand, optimize over the control input
directly. Generally, the time history of the control vector u(𝑡) is as-
sumed to have somemodel governed by a set of parameters or it is dis-
cretized at a set of points in time. One of the most popular direct meth-
ods is collocation, wherein the state and control trajectories are dis-
cretized at a set of points in time and treated as the variables overwhich
to optimize. In collocation, the system dynamics are treated as a con-
straint – i.e., the dynamics must be respected at each of the discrete col-
location points (but may be violated in between the points) [134, 198].
Collocation is made possible by the advancement of general-purpose
nonlinear program solvers which are capable of handling large num-
bers of optimization variables and general nonlinear constraints (e.g.,
[132], or MATLAB’s fmincon). Early works such as [31, 34, 241, 242]
provided a framework for collocation which has matured in more re-
cent times to includemesh refinement techniques amongother advance-
ments [55, 198]. A popular form of collocation, known as pseudospec-
tralmethods, approximate the continuous state and control trajectories
with Lagrange interpolating polynomials which are constrained to sat-
isfy the system dynamics at specially chosen collocation points [70].
These collocation points correspond to the roots of a Gauss-Legendre
polynomial [31]. The advantage of pseudospectralmethods is that fewer
collocation points are necessary to obtain an approximationwith some
desired accuracy (compared, e.g., with an even discretization scheme);
the promise is of lower computational burden on the nonlinear pro-
gram solver. In [261], even collocation and pseudospectral methods
are compared in the context of the TAD scenario wherein the Attacker
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and Defender strategies are given and the Target wishes to maximize
its distance from the Attacker at the time it is intercepted by the De-
fender. Additionally, collocation was used to solve an optimal engage-
ment zone avoidance scenariowherein a vehicle sought to reach a desti-
nation inminimum timewhile avoiding a dynamic keepout zone [263].
In [94] pseudospectral methods are compared with differential dy-
namic programming, which is iteratively linearizes the system around
the trajectory and then uses LQR concepts to alter the trajectory in such
a way to reduce the cost [236].

It is also worth noting some recent advances in other direct methods:
sequential convex programming and augmented Lagrangianmethods.
Sequential convex programming bears some similarity to Differential
Dynamic Programming (DDP) [93] and iterative LQR (iLQR) [236] in
that a trajectory is iteratively convexified and improved. It has been suc-
cessfully applied to, e.g., powered descent guidance for Mars land-
ing [1]. Augmented Lagrangian algorithms such as AL-iLQR and AL-
TRO [127] are moreso direct extensions of DDP and iLQR which im-
prove the numerical robustness of DDP and allow initialization of DDP

with an infeasible trajectory.

2.3.2 Path Planning

In many cases, such as in [50], the result of solving an optimal control
problem is a single open-loop state and control trajectory. Such a con-
trol may be implemented, but it may not give the desired result if the
state of the system deviates at all from the computed open-loop state
trajectory. Obtaining the solution for a different set of initial or terminal
conditions may require re-running the nonlinear program altogether.

However, in other cases, there are properties of the optimal control
whose usefulness transcend that of a single optimal trajectory. An ex-
cellent example is that of the famed Dubins vehicle – a nonholonomic
agent with constant speed and bounded turn rate. Using the first order
necessary conditions for optimality, it can be shown that time-optimal
paths for such an agent to reach a specified point are lie in a set of 6 can-
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didate paths of the type 𝐶𝑆𝐶 or 𝐶𝐶𝐶 where 𝐶 and 𝑆 denote max-turn-
rate circular arcs and straight-line segments, respectively [224]. A sim-
ilar analysis has been done for the case of a variable speed agent who
is capable of slowing down to make tighter turns [266]. Thus, the opti-
mal control analysis, in both of these cases, reveals properties of time-
optimal paths which can be leveraged in the slightly more abstract
(higher-level) task of path planning. Examples include computing the
shortest Dubins path to circles and targetsmoving on a circle [154, 156]
as well as constructing minimum-time tours for, e.g., a traveling sales-
man problem [6, 239]. In fact, the result of [224] is so powerful that it
is possible to compute instantaneous Dubins paths (time-optimal) to
a moving target in real time [7].

Part of the purpose of the present study is to draw an analogy with
the field of differential games and the utility of their solutions beyond
simply obtaining the equilibrium strategies.

2.4 D I F F E R ENT IA L GAMES

This section is devoted to the area of differential games and describes
a body of literature which is most relevant to the proposed approach
both in terms of methodology as well as application.

2.4.1 A Brief History

Around the time of the genesis of Differential Game Theory (circa
1950’s), some ground work for game-theoretic concepts had already
been laid in the context of static (i.e., single stage, discrete) games by J.
Nash [172] (and even earlier by J. vonNeumann andO.Morgernstern).
One of Nash’s central contributions was the proof of the existence of
saddle-point equilibrium strategies in 2-person games, later dubbed
the Nash equilibrium. The extension of this important concept into dy-
namic games is explored more in Section 2.4.3.

R. Isaacs is unanimously considered to be the father of Differential
Game Theory and was a contemporary of R. Bellman at the RAND
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Corporation (circa 1948). His works on DGT appeared first in a series
of internal RAND reports (e.g., [129]) which were later compiled in
his seminal book Differential Games: A Mathematical Theory with Appli-
cations to Optimization, Control, and Warfare [130]. As the title suggests,
his book introduces the underlying theory of differential games (al-
though, the book lacks rigorous mathematical proofs for some of the
statements) while also applying the theory to a vast number of in-
teresting applications and problems. Not least among these problems
are pursuit-evasion (including pursuit with two pursuers) and target
guarding, which are central to the present study. Isaacs’ works, includ-
ing [131] also grappled with the subject of singular surfaces, which
may the most challenging aspect of applying DGT – the subject of sin-
gular surfaces is discussed in Section 2.4.5. Reference [38] extensively
covers the works of R. Isaacs and their relation to the history and de-
velopment of DGT.

Later, in the 1970’s, J. V. Breakwell (along with many others) ap-
plied DGT to problems of pursuit-evasion [37], role determination in
1v1 aerial combat [177], and surveillance-evasion [145]. His student, T.
Merz, is credited with the solution of the famous Homicidal Chauf-
feur Differential Game (HCDG) in his PhD thesis [164]. In the HCDG,
a nonholonomic (turn-constrained) pursuer seeks to capture a slower,
holonomic evader. The solution involves many different types of sin-
gular surfaces and varies widely over the parameter space. Another
of Breakwell’s students, P. Bernhard, is credited with the solution of
the Isotropic Rocket Differential Game (IRDG), another 1v1 pursuit-eva-
sion game butwith different dynamics [24]. 1 Asemi-autobiographical
summary of the earlyworks by Breakwell,Merz, and Bernhard is given
in [26].

1 Interestingly, Bernhard attributes the initiation of the research topic to none other than
R. Kalman of the Kalman Filter fame, who, like J. Von Neumann, was of Hungarian
descent.
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2.4.2 Major Problem Areas: A Meta-Survey

As mentioned previously, this literature survey is, by no means, ex-
haustive in any particular topic. This Section points to several excellent
reviews of the literature which are particularly relevant to the present
study. The major problem areas include pursuit-evasion (of course),
target guarding, surveillance-evasion, and “three body”problems such
as the Target-Attacker-Defender Differential Game (TADDG). There are
large bodies of literature focused on each of these problem areas – vari-
ations on the cost functional, motion model (i.e., whether holonomic
or nonholonomic), information structure, constraints, fixed opponent
strategies, definition of capture (whether point-capture or finite cap-
ture radius), definition of termination (whether by reaching a goal
state or a specified terminal time), number of agents on either side of
the conflict, capabilities of the agents (generally, the relativemaximum
speeds of the players), and so on partly explain the quantity of works
on these topics.

Many of the results found in the literature referenced in the previ-
ous Section on Differential Game Theory applied to pursuit-evasion
is summarized in a chapter of T. Başar’s book [19]. Reference [191]
also covers pursuit-evasion differential games with a focus on two ma-
jor examples: the HCDG [164] and J. Shinar’s space interception prob-
lem [212]. The survey also includes a detailed description of the exten-
sive development of differential games (particularly having to do with
pursuit-evasion) that took place in the Soviet Union from 1960-1980. A
significant portion of the development was centered on multi-pursuer
single-evader differential games and special formulations and meth-
ods for handling cooperation among a large group; this is the subject of
S. Kumkov’s survey [139].With regards tomulti-pursuer single-evader
games, the reader is also referred to Appendix A which shows such a
formulation appearing in the popular web comic XKCD [169].

I.Weintraub’s introduction to pursuit-evasiondifferential games sum-
marizes many pursuit-evasion differential game results, particularly
for agents with simple motion [262]. In addition to surveying a large
cross-section of the literature, it also covers the two-cutters and fugitive
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ship differential game [89, 107, 183, 187, 188] (even including the solu-
tion verification step), aswell as the TADDG (c.f. [104, 184]) in a tutorial
manner. The latter problem pits an Attacker against a Target-Defender
team; the former wishes to intercept the Target, while the latter team
seeks to have the Defender intercept the Attacker far from the Target.
At the time of writing, [262] contains the most comprehensive survey
of TADDG-related literature (although the number of works on this and
related problems continues to grow rapidly).

The dissertation of D. Oyler [182] also contains a survey of pursuit-
evasion differential games, grouping the works into categories such
as environment type (2-D, 3-D, 𝑛-D, obstacles, boundaries), player dy-
namics (simplemotion,HCDG-esque (i.e., assymetrical), and “two cars”,
meaning both agents are turn-constrained [8, 112, 162]), termination/-
payoff (capture, colocation, proximity, target guarding, visibility), team
configuration (multi- or single- pursuer or evader), and even solution
method used (dynamic programming, viscosity solution, dominance
regions, etc.). Oyler’s approach to surveying the literature is system-
atic; no attempt is made here to be as exhaustive. The contributions
of [182] lie in techniques for solving 1v1, Mv1, and many-versus-multi
(MvN) pursuit-evasion games in environments containing obstacles.

Literature on the surveillance-evasion problem, wherein an agent at-
tempts to escape the sensing region of its opponent is largely contained
in the book by J. Lewin [144]. One of the problems covered therein
(also in [145]) has a similar setup to the HCDG but with a cost/reward
functional of minmax escape time. Recently, the problem area is seeing
regained interest in works such as [42, 86, 260, 264].

Finally, regarding target guarding (where the target is stationary),
was formally specified originally in Isaacs’ book [130, Example 1.9.2].
An important variant of this problem is perimeter patrol, wherein the
Defender is constrained to move along the perimeter of the target area
(echoing a similar kind of constraint which appears in the Lady in the
Lake differential game [19]). The review by Shishika [216] summarizes
a body of literature focused onmulti-agent perimeter guarding. In these
works, the Attacker(s) score by reaching an undefended point on the
target boundary, and the Defender(s) effect capture by being coinci-
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dent with an Attacker. The type of analysis ranges from rigorous dif-
ferential game-theoretic approaches to heuristics and algorithms for
coordination and cooperation among large teams of agents. Some re-
cent and important developments include the solution of the 1v1 tar-
get guarding differential game for general compact and convex tar-
gets [142] and the solution for perimeter patrol along arbitrary convex
targets [215]. It is also necessary to explicitly connect the area of target
guarding to a body of literature under the moniker reach-avoid games;
the formermay be seen as a particular case of the latter. Relevantworks
include [44, 45, 157, 209, 269].

2.4.3 Solution Concepts

This section gives a brief description of what is meant by “solution of a
differential game”. Even the term differential game has been slightly
abused in the literature at times; by “differential game” it is meant
that there are two or more players with their own cost functional with
which they wish to minimize (or maximize in the case of a utility func-
tional), the states, control and time are continuous, and termination
of the game is well-defined. The solution, then, generally comes in
the form of the players’ equilibrium strategies, the Value function (i.e.,
the equilibrium value of the cost functionals as a function of the ini-
tial state), and a region over which the solution exists. In the sense of
Isaacs [130], the solution also entails “filling the state space with equi-
librium trajectories” which, in most cases, are back-propagated from
the usable part of the terminal surface – these equilibrium trajectories
obey the HJI, which ultimately means that the Value remains constant
along the trajectory. Note the similarity between Bellman’s and Isaac’s
approaches which essentially hinge upon back-propagation.

There are three additional aspects of the formulation which must
be specified up front: the information structure (who knows what at
which times), the control structure of each player, and which type of
equilibrium is sought. The first two aspects are defined clearly in [178,
179]. Therein, distinctions are made between open-loop, closed-loop,
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Stackelberg open-loop, Stackelberg closed-loop information or control
structures and demonstrated for some simple examples. It is assumed
that the players make use of whatever information they have available
in computing their current control. In the case of open-loop, a player
observes the initial state of the system and determines their entire con-
trol trajectory. Whereas, in closed-loop, a player observes the instan-
taneous state and its strategy is typically a function of the state (i.e.,
it is a state-feedback control strategy). Finally, the Stackelberg setting
implies there is a leader, who announces their strategy, and a follower
who gets to respond accordingly. As shown in [178] the structures can
be mixed (i.e., one agent implements closed-loop while the other im-
plements open-loop); however, when the agents have the same struc-
ture, there are particular equilibriumdefinitions corresponding to each
type. Some of the equilibriumdefinitions appear in [52] and elsewhere,
and will be used later on. For certain classes of differential games (or
under certain assumptions) the various notions of equilibriummay be
coincident. For example, [199] describes a class of games for which the
open loop Nash equilibrium is coincident with the closed loop Nash
equilibrium, [73] describes a different class for which the open loop
Nash equilibrium is a degenerate feedbackNash equilibrium, and [201]
shows the coincidence of the feedbackNash equilibriumwith the Stack-
elberg equilibrium under certain assumptions.

The case of limited or asymmetric information (i.e., where one agent
knows something the other does not) is difficult. In some cases, the
scenario may be treated as a stochastic game [272], otherwise the sce-
nario may be decomposed into phases pertaining to what knowledge
is available to each agent, e.g., [217]. Especially in the latter case, some
assumptions must be made, such as what should an agent do if it can-
not sense its opponent. This particular question is heavily related to a
body of literature known as adversarial search; one such related work
is [158]. On the discrete-time side, there have been some efforts at for-
malizing and solving partially observable stochastic games [66],which
maybe considered to be an extension of the PartiallyObservableMarkov
Decision Process (POMDP), which is an extension of the MDP.
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2.4.4 Numerical Approaches

Numerical approaches to solving differential games (which are dis-
tinct from AI approaches for learning strategies in adversarial scenar-
ios) largely fall into the areas of numerical viscosity solutions, reacha-
bility analysis, and mixed direct-indirect approaches.

The article by M. Falcone [72] is one of many works on the subject
of numerical viscosity solutions to the HJI equation. These methods
may be used in cases where direct analytical solution of HJI is infea-
sible. The viscosity solution refers to a pair of smooth functions which
tightly upper- and lower-bound the Value function (which, itself may
be nonsmooth, e.g., along singular surfaces).

The reachability analysis literature is based on the numerical com-
putation of reachable sets (or sometimes level sets of some measure),
the theoretical support for which appears in [157]. An algorithm for
computing reachable sets appears in [166]. Interestingly, Mitchell et
al. utilize the solution of a terminal value HJI PDE in order to compute
reachable sets. Elsewhere, as in [232], the relationship is reversed and
numerically computed reachable sets are used to determine the equilib-
rium capture point in a pursuit-evasion game. Note that the approach
used in [232] bears a resemblance to the approach in [181, 182] which
made use of isochrones (time-dependent forward-reachable sets).

Finally, some numerical approaches leverage the information avail-
able from the first-order necessary conditions for equilibrium, which
may generally be referred to as direct-indirect methods. Notable ex-
amples include works by Horie and Conway (e.g., [48, 126]). In those
works, the semi-direct collocation with nonlinear programming (semi-
DCNLP)method is desribed and applied to pursuit-evasion scenarios.
In semi-DCNLP, the necessary conditions for equilibrium for one of
the players (e.g., pursuer) are included as constraints to the nonlinear
program which solves for the other player’s (e.g., evader) equilibrium
control via collocation.
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2.4.5 Singularities

Much could be said about singularities in differential games; this sec-
tion brieflydescribes the singularities themselves, some importantworks,
as well as somemore applied examples which prominently feature sin-
gularities. Most often, singularities appear alongmanifolds in the state
space and are thus referred to as singular surfaces in these cases. A con-
cise definition is reproduced below

“A singular surface is a manifold on which (i) the equilib-
rium strategies are not uniquely determined by the neces-
sary conditions, or (ii) the [V]alue function is not continu-
ously differentiable, or (iii) the [V]alue function is discon-
tinuous.”

— Tamer Başar [19].

Singular surfaces present the following challenges in obtaining what
Isaacs referred to as the solution “in the large” [130] (meaning ob-
taining the Value function and equilibrium strategies across the whole
state space): i) discovery, ii) identification characterization of incom-
ing (or outgoing) equilibrium trajectories, and iv) identifying which
player has the authority to push the state of the system off or keep the
state of the system on the surface. In some cases, when the equilib-
rium trajectories do not admit closed-form analytic solutions, numer-
ical computation is necessary to obtain the singular surface itself [2].
All known singular surface typer with continuity in the Value function
(transition line, dispersal line, equivocal line, universal line, focal line,
and switching envelope) are depicted in [19, Fig. 11].

Proper identification and characterization of all singular surfaces
within the solution to a differential game is of paramount importance
due to the fact that singular surfaces partition the state space into re-
gions of fundamentally different equilibrium behavior [88]. A simple
example is a dispersal surface wherein a turn-constrained agent may
be able to turn left or right (at max turn rate) and achieve the same
Value in equilibrium (thereby partitioning the state space into “turn
left” and “turn right” regions). Some surfaces, such as the equivocal
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surface in the HCDG solution [164], present additional complexities,
e.g., the requirement that one of the agents know the instantaneous
control input of its opponent in order to stay on the surface. Failure to
properly characterize the singular surfacesmayhavedire consequences,
such as backwards-integrating trajectories into regions for which they
are no longer optimal/equilibrium.

It must be noted that much of the work addressing singular surfaces
was done by the early practitioners of differential games, not least of
which was Isaacs, himself [130, 131]. Additionally, Breakwell, Merz,
Bernhard, and Lewin contributed greatly to their study [24, 25, 36,
144, 164]. Lastly, the work of A.Melikyan (another Russian differential
games theorist) contributed additional necessary conditions for opti-
mality which must be satisfied along universal surfaces and equivocal
surfaces [160] as well as some properties of singular paths in the vicin-
ity of equivocal, focal, and dispersal surfaces [159, 161].

The followingworks focus specifically on singular surfaces in games
which are particularly relevant to the present study. Reference [88]
identifies a dispersal and universal surface in the solution of the TADDG

wherein theDefender is turn-constrained. In [233] the differential game
of cooperative evasion from [85] is made into an optimal control prob-
lem by fixing the strategies of the two-evader team; in this problem,
two unique dispersal surfaces are identified (one is analytic while the
other is obtained numerically). References [165, 186] both analyze the
dispersal surfacewithin the two-Pursuer, single-Evader differential game
of minmax capture time. In the former, it is shown that the classical so-
lution for the Pursuers admits chattering when the Evader stands still
on the dispersal surface. The latter work proposes a solution to this
phenomenon based on the saddle point of the initial instantaneous loss
rate, which suggests the Pursuers to implement PP for a brief period
after which the solution becomes unique or else the Evader will suf-
fer a large penalty. Interesting singularities appear also in games with
multiple evaders. In [37, 85] a singularity appears when the Pursuer is
equidistant to two Evaders. A similar singularity is present in a target
guarding game with one pursuer and two Evaders wherein the Value
of pursuing Evader 1 and then 2 is equal to that of pursuing Evader
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2 and then 1 [109]. Note, for this problem, the singularity due to se-
quence is distinct from another dispersal surface in which the players’
equilibrium headings are non-unique; there are likely configurations
for which these two singularities coincide. The singularity due to se-
quence is very much an open research problem.

2.5 R E LAT ED WORKS AND KEY THEME S

All of the aforementionedworks are relevant to the present study, how-
ever, this section of the literature survey focuses on somemore specific
themes within the literature which warrant additional work and form
the basis of some of the research objectives stated in Chapter 3. Each of
themes appear below as a subsectionwith a small collection of relevant
works; they are: parameter exploration, team composition, role selec-
tion, discrete decision making, multistage scenarios, and applications
of skirmish-level solutions. The last of these provides some foundation
for the utility of skirmish-level solutions in more complex scenarios.

2.5.1 Parameter Exploration

Exploration of the parameter space is an important undertaking in
many games as often there are regions of fundamentally different equi-
libriumbehavior in different parameter regimes. Like singular surfaces,
this theme (at least as it pertains to differential games), is best exem-
plified by the works of Merz and Lewin. In the HCDG, 12 different
“exceptional lines” (singularities) are present (or not) in the solution
in over 20 regions/subregions – not only are the equilibrium behav-
iors different in the various regions, but also the number and type
of singularities [164]. A similar style of parameter-space partitioning
appears in [146] for a surveillance-evasion differential game with a
conic surveillance region. In [229] a reinforcement learning approach
is applied to a multi-versus-multi aerial engagement; many simula-
tions are performed for varying weapon effectiveness parameter val-
ues for each team. The team with an advantage in weapon effective-
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ness generally improved compared to having equal weapon effective-
ness, as expected. Note for AI-based approaches, such as this one, that
a change in the model parameters may warrant a computationally-ex-
pensive re-training of the control policy. Another form of analysis for
which parameter exploration is prominent is that of competitive analy-
sis (e.g., [15], which analyzes a 1-D target guarding problem). A com-
petitive policy is one which can guarantee some finite competitive ra-
tio which is the ratio of optimal and guaranteed performance. There,
fundamental limits are obtained as functions of the parameters which
describe necessary conditions for achieving various levels of compet-
itive ratio. Finally, note the importance of parameter exploration as it
pertains to balance in video game applications. In [12], a Koopman-
based learning approach is used to tune four parameters for a Star-
craft 2 minigame. There, a particular set of parameters is sought which
achieves the desired level of balance according to some measure.

2.5.2 Team Composition

Team composition may be considered to be a particular instance of pa-
rameter exploration, particularly pertaining to teams of heterogenous
agents (who are heterogeneous either in role or capability). The pro-
posed extensions to [12] include more complex minigames with het-
erogenous teams (specifically, Roaches andHydralisks versusMarines
and Tanks). In addition to the much larger unit parameter set, there is
the additional question of howmany of each agent to utilize. A similar
question is explored in a perimeter defense scenario in [218], where, in
addition to perimeter-constrained Defenders, there are patrolling vehi-
cles who orbit the perimeter at some distance at constant speed, which
further constrain the trajectories of incoming Attackers. Team compo-
sition is also important in many biological systems, e.g., the allocation
of bees to guard against hornets [234], and also in the types of guard
bees deployed at the hive entrance [227].
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2.5.3 Role Selection

Role selection appears in the literature in several ways. The first is in
1v1, so-called “symmetric” [118] engagements such as in the Game of
TwoCars (G2C) (again, studied byMerz) [164]. Here, the role selection
may be better described as where/when to act as a pursuer or as an
evader (c.f. [112, 163]). This question was also investigated by Olsder
and Breakwell in [177].

Elsewhere, role selection takes the form of whether to be the leader
or follower among a team of two or more agents as in the cooperative
two-Pursuer HCDG [32]. The distinction between leader and follower
occurs repeatedly in nature as well (c.f. [225, 230]).

Still, in other works, the roles an agent can take are less well-defined
and are implicitly tied to, e.g., the sequence inwhich a Pursuer pursues
the Evaders. Examples include [85] wherein one Evader is being pur-
sued and its teammate performs a flanking maneuver to inflict a cost
upon the Pursuer, [37] wherein the Evader who is initially targeted by
the Pursuer has a component of velocity which draws the Pursuer fur-
ther from its partner, and likewise in [109]. In this examples the first
Evader may be considered to be bait, or otherwise sacrificial.

2.5.4 Discrete Decision Making

In general, discrete decision making could refer to a variety of prob-
lems under the classification of AI (c.f., e.g., [202]), including the MDP.
Here, discrete decision making in adversarial scenarios is loosely de-
fined as either 1) which agent should perform a task (or, conversely,
which task an agent should perform) or 2) which “game to play” in a
scenario with multiple outcomes.

The first definition is essentially a slight generalization of role selec-
tion, though, here, there is one clear taskwhich a teamof agentswish to
accomplish and the discrete decision pertains to which of the individ-
ual agents will complete it. For example, in [16] a single Evader is pur-
sued by multiple evaders in a relay pursuit scheme; the decision faced
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by the Pursuers is which one of the pursuers should actively pursue
the Evader in the current time instant (while all other pursuers remain
stationary, e.g., to preserve energy). There, a Voronoi-like partitioning
is utilized to aid in that decision – the active Pursuer is selected as the
one in whose cell of the partition the Evader is currently in. Another
example (which aligns with the converse description) is [121] where
a single Pursuer seeks to capture one of many evaders

Examples regarding the seconddefinition, i.e.,which “game to play”,
aremore sparse. Recently, Shishika et al. analyzed a partial information
target defense game in which the scenario may end in i) capture of the
Attacker by the Defender, ii) breach of the target by the Attacker, or iii)
escape of the Attacker into a region un-sensed by the Defender. There,
the dominance region of the slower Attacker (i.e., the Apollonius cir-
cle) is used to determine which outcomes are possible given the cur-
rent configuration, and policies are prescribed in the various regions.
Perhaps the best example, however, is in the literature on engage or re-
treat games wherein a mobile Attacker must decide between engaging
a target who may inflict damage on it, or retreat to some pre-specified
safe zone [83, 84, 87, 90, 221]. The solution of these games hinges upon
the fact that the equilibrium choice (i.e., whether the Attacker should
engage or retreat, or whether the Defender should retaliate or cooper-
ate) at the start of the scenario must remain optimal throughout the
playout, otherwise it was not the equilibrium choice in the first place.
Consequently, for, e.g., retreat to be the equilibrium choice, it must not
become advantageous for the Attacker to switch to engagement at any
point along the retreat trajectory, which gives rise to a corresponding path
constraint based upon the Value of engagement.

2.5.5 Multistage Scenarios

Multistage refers to games or scenarios inwhich there are discrete events
which naturally leads to analyzing a pre-event stage and post-event
stage. Capture-the-flag is one such example inwhich the discrete event
may be one of the players capturing the flag (after which they must re-
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turn it to their home region); such a scenario was analyzed from a dif-
ferential game theoretic standpoint, e.g., in [102]. There are also exam-
ples from the target guarding literature in which there is a distinction
between the players’ behaviors when they are far away versus when
they are in close proximity [81, 98]. Another example, which has al-
ready been briefly mentioned, is that of tasks being done in sequence
(e.g., sequential capture of Attackers in [109]). Surveillance-evasion
can be thought of as happening in stages corresponding to times at
which the Evader enters and exits the surveillance region. For exam-
ple, [264] considers the post-entrance / pre-exit stage in which the
surveilling agent wishes to maximize the time at which the Evader
exits. Finally, in [213] Shinar et al. analyze a pursuit-evasion game in
which the Pursuer can switch to a different set of dynamics once during
the game. These scenarios may benefit from a Dynamic Programming
interpretation in which the optimal action in the current stage is partly
governed by what is optimal in subsequent stages.

2.5.6 Application of Skirmish-Level Solutions

In this last section, some examples ofways inwhich skirmish-level (1v1,
2v1, 1v2, etc.) solutions may be applied tomore complex scenarios in an
effort to highlight their importance and utility. First, it must be noted
that in cases of “symmetric” engagements (where both sides are capa-
ble of capturing or destroying the other) the skirmish-level solution to
the 1v1 scenario with a priori specified roles (i.e., one agent is the Pur-
suer and the other is the Evader) is a necessary component to the over-
all solution (e.g., the G2C [162, 163]). Also, pursuit-evasion solutions
have been applied to collision avoidance (i.e., the worst possible case is
when the other vehicle is deliberately attempting to collide) (see, e.g.,
[69, 166, 240]). Decomposition of a scenario into smaller sub-games
is another area in which skirmish-level solutions are useful. For exam-
ple, in the engage or retreat scenarios described previously, one must
obtain (and use) the solution of the Game of Engagement in order to
solve the overall problem [84]. Also, in the partial information target
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guarding game in [217], the dominance region of the Evader actually
corresponds to a generic 1v1 target guarding game [103]. Similarly, 1v1
solutions are also useful for games with sequential capture, e.g., [80,
150, 231, 274].

Task assignment generally applies to larger multi-versus-multi (or
MvN) games wherein the Values of skirmish-level games are used as a
cost metric in order to make decisions on which agents or sub-teams
should “play” against each enemy agent or sub-team. The best assign-
ment is one which minimizes some overall cost metric. This process is
a heuristic approach to what would otherwise be an intractable prob-
lem (i.e., to find the equilibrium for such a large joint state and action
space). However, it benefits from the guarantees provided by the equi-
librium solutions to the skirmish-level games. Examples in the litera-
ture include [45, 100, 148, 153, 168, 214, 219, 269].

Another interesting usage is in the embedding of the solutions (or
features of the equilibrium behaviors) in AI and learning processes.
For example, in [170] the optimal control solution obtained via solu-
tion of the HJB is used as a “hot start” in an RL scheme within a more
complex autonomous racing application.Another example is that of [8]
wherein an evolutionary algorithm is used to design a controller for the
G2C; the controller switches between various behaviors that are based
off of the true equilibrium behaviors (e.g., turn with max-turn-rate to-
wards the opponent). Other examples include [210, 228, 229].

Finally, there is demonstrated utility of skirmish-level solutions in
higher-level planning tasks. In [155], the Value of the TADDG [185] is
used as a utility metric over which a Defender agent seeks to maxi-
mize over an entire path in coordination with a Target vehicle. Refer-
ence [209] analyzes a multi-Pursuer single-Evader reach-avoid game
wherein the Evader’s policy incorporates the Value of each 1v1 engage-
ment as a measure of risk.



For now, what is important is not finding the
answer, but looking for it.

— Douglas Hofstadter, Gödel, Escher, Bach:
An Eternal Golden Braid

3
RE S EARCH OUTL INE

With the context of Chapter 2 laid out, this chapter specifies the
research objectives motivating all of the work contained herein. Sec-
tion 3.1 provides a statement of the research objectiveswhich are closely
alignedwith the key themes discussed in Section 2.5. The contributions
include the formulation and differential game-theoretic or optimal con-
trol solution of novel adversarial scenarios, demonstration of how the
solutions may be used or applied, techniques for addressing singulari-
ties, approximation techniques for games, and a framework for solving
multi-stage scenarios. Sections 3.2 and 3.3 discuss the challenges and
strengths of the approach. Finally, Section 3.4 contains an outline of
the technical content in Parts II and III.

3.1 OB J E C T I V E S

The overarching goal of this work is to demonstrate a repeatable pro-
cess for obtaining equilibrium behaviors for fundamental, atomic en-
gagements and using them to reason about more and more complex
scenarios. Thus, there is an emphasis on small team sizes (1v1, 1v2, 2v1,
etc.), obtaining strategieswith provable guarantees, and computability
(ultimately, to make possible implementation in real-time, on-board
applications). Then, the solutions are composed into scenarios involv-
ing one or more of the following elements: more agents (i.e., going
from 1v1 to 2v1 to Mv1), more objectives, more stages, and the inclusion
of discrete events or decision points. The following specific Research
Objectives are aimed at addressing the technical challenges associated

39
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with the process described above as well as its demonstration. Their or-
der of appearance roughly corresponds to the order in which they’re
addressed in the technical content (which is organized by scenario). A
summary of the objectives appears in Table 3.2 in Section 3.4.

ResearchObjective 1 (Approximations). Develop approximationswhich
aid in the computability of differential game and optimal control solu-
tions.

A single open-loop control trajectory may only be useful for a par-
ticular set of initial conditions for which the trajectory was computed.
Some optimal control problems and differential games may not admit
closed-form analytic solutions (i.e., feedback strategies). Often the op-
timal or equilibrium strategy is also a function of which region the
state of the system lies. The manifolds which describe these bound-
aries may also be non-analytic, which adds additional computational
burden in implementing the optimal or equilibrium control. This ob-
jective seeks to improve the usability of computationally burdensome
solutions through the development of approximations; suitability for
real-time, on-board implementation is the ultimate goal.

Research Objective 2 (Parameters). Demonstrate the importance of
parameter exploration in adversarial scenarios.

Many cases were cited in Section 2.5.1 in which an exhaustive char-
acterization of a differential game solution over the entire parameter
space was undertaken. Often, however, this characterization over the
parameter space is missing or incomplete.

Research Objective 3 (Dispersal). Develop techniques for computing
DSs in differential games of interest.

Here the intent is to demonstrate an approach proposed by Isaacs
[130] for computing a DS in a game by finding the locus of crossings of
back-propagated equilibrium trajectories.

Research Objective 4 (Skirmish Utility). Demonstrate the utility of
skirmish-level differential game solutions in larger scale, more com-
plex adversarial scenarios.
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Part of the purpose of this objective is to expand onwhat has already
been done (e.g., the works cited in Section 2.5.6). Additionally, suc-
cessful completion of this research objective serves to further motivate
finding skirmish-level solutions for novel games. Some notional exam-
ples are the application of skirmish-level solutions i) as sub-solutions
for other differential games, ii) to obtain bounds for intractable games,
and iii) to design systems with provable guarantees.

Research Objective 5 (More Agents). Analyze the effect of increasing
the number of agents in differential games.

Of particular interest is the cooperation of multiple Pursuers in the
classical differential game of minmax capture time with simple mo-
tion and point capture. This objective seeks to address the scalability
and applicability of the concepts from the 1v1 and 2v1 [89, 107, 187]
solutions to the same problem with three or more Pursuers.

Research Objective 6 (New Scenarios). Obtain the differential game
solution (i.e., Value function and equilibrium control strategies) for
new adversarial scenarios.

There is particular interest in engagements with stationary turn-con-
strained agents (i.e., turrets). The most notable example from the liter-
ature is the Turret Defense Differential Game (TDDG) by Akilan and
Fuchs [2] wherein an Attacker moving with simple motion seeks to
collide with a Turret (or Defender); an integral cost functional is spec-
ified based on the look angle of the Turret. Such a motion model for
one of the agents can be seen as a special case of the more general
(but far more difficult) one in which the turn-constrained agent also
moves (e.g., the HCDG, G2C, and Suicidal Pedestrian Differential Game
(SPDG) [68]).

Research Objective 7 (Embedded Optimal Control). Explore meth-
ods for numerically solving optimal control problems embeddedwithin
differential games.

Optimal control is required, e.g., in cases where an opponent strat-
egy is known or assumed, and as a component ofmore complex scenar-
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ios (like the optimal constrained retreat trajectories in [84]). Thus, vari-
ous optimal control solution methodologies may or may not be appro-
priate depending on the application and nature of the solution. This
objective seeks to compare selected methods for scenarios of interest.

ResearchObjective 8 (Multi-Objective). Analyze new scenarios inwhich
agents are free to choose frommultiple strategic objectives through the
application and extension of [84].

To date, the engage or retreat game [83, 84, 90] remains one of the
most well-studied examples of games with multiple outcomes (i.e., re-
quiring discrete decisions to be made). Section 2.5.4 covered some ad-
ditional examples. The Defender model considered in the works by
Fuchs is “simple”, meaning the Defender has a discrete control signal,
𝑢(𝑡) ∈ {0, 1}, which turns on or off an integral cost term for the At-
tacker. This objective is aimed at applying the engage or retreat frame-
work to a more complex Defender model.

ResearchObjective 9 (Discrete Events). Demonstrate a systematic ap-
proach for solving differential games and optimal control problems
which have discrete events.

Particularly within the differential game literature, there is a lack of
examples containing discrete events (which naturally leads to think-
ing of multi-stage differential games). Section 2.5.5 mentions the most
prevalent example, which pertains to sequences of similar tasks (e.g.,
sequential capture of multiple Evaders). Here, the goal is to consider
more general events and to apply a DP-inspired approach to solving
such games.

3.2 CHALL ENGE S O F THE PROPOS ED APPROACH

The proposed approach is centered on DGT and thus most of the chal-
lenges are general challenges within existing DGT literature. They can
be summarized as restrictive assumptions on available information, rel-
atively low fidelity dynamic models, and relatively small numbers of
agents.
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First, as is the case in (non-stochastic) optimal control, full state infor-
mation is required. Moreover, it is assumed that both players within a
differential game have the same knowledge of key parameters (e.g., ve-
hicle speeds,maximum turning rates, etc.). Even the concept of equilib-
rium, itself, assumes that the players know the cost/payoff functional
of all other players. In the case of zero-sum differential games, this
means that the players agree on the cost/payoff functional uponwhich
they minimize and maximize, respectively. Thus, in addition to know-
ing an adversary’s capability, one must also know the adversary’s pref-
erence. Another implicit assumption inDGT is that both agents have the
same model for the system and its dynamics (an assumption which
was relaxed in the context of a discrete pursuit-evasion game in [141]).
This is indeed the setup for the examples in [130] and for many ex-
amples that have been worked out since. Having access to partial state
information would necessitate either state estimation or treatment in a
stochastic framework. As mentioned in Chapter 2, POMDPs have been
applied to games in discrete type [66], but POMDPs, themselves, are
generally computationally intensive to solve and not known to be par-
ticularly scalable. In practice, however, DGT-based solutions may still
be useful if paired with some state estimation scheme (in the case of
not having full state estimation). Furthermore, the robustness guaran-
tee of the saddle-point equilibrium applies even if one’s opponent has
a different dynamic model or cost functional; only the knowledge of
their capability is strictly necessary. Again, if some margin w.r.t. the
Value of the game is allowed, estimation may be used even for the ad-
versary capabilities.

The second challenge is in the difficulty of solving a differential game
with complex dynamics. Many examples for which DGT has been ap-
plied examine playerswho possess simplemotion (i.e., a holonomic ve-
hiclewith single integrator kinematics). Comparedwith the 1v1pursuit-
evasion differential game of minmax capture time with simple mo-
tion agents and faster Pursuer, the HCDG, wherein just the Pursuer is
turn-constrained (i.e., a non-holonomic vehicle with double integra-
tor kinematics) – a modest increase in the complexity of the kinematic
model – is vastly more difficult to solve. The full solution of the G2C
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(where both agents are turn-constrained) is considered to be an open
problem. However, in lieu of working with more complex dynamics,
it has been shown that solutions based on simple motion may still be
of practical use. For example, in [120] the simple motion solution of
the TADDG [97, 99, 184] was implemented within the Air Force simula-
tion environment AFSIM using 3-DOF vehicle models for each agent.
The simple-motion-based differential game solution was shown to out-
perform traditional guidance laws such as PP and PN. Simple motion is
also a useful approximation in cases where theminimum turning radii
of the vehicles are very small w.r.t. the initial separation distances (e.g.,
Beyond Visual Range (BVR) engagements, c.f., [105, 108]).

The last significant challenge of traditional DGT is that it suffers from
the well-known curse of dimensionality [27]. There is one exception in
what are called potential games. In potential games, there is an inherent
decoupling among all of the players’ goals and the equilibrium can
be found by solving an optimal control problem for each agent [167].
However, the scenarios of interest to the present study do not possess
the required structure to be potential games. Often, the addition of a
single additional agent to either team can drive up the complexity of
the differential game solution immensely. An excellent example is the
increase in complexity in the 1v1 pursuit-evasion game of minmax cap-
ture time with simple motion, faster pursuer, and point capture. The
1v1 solution is covered briefly in Section 1.1, while the two-Pursuer ver-
sion (and its singularity) is the subject of references [107, 165, 183, 186,
187]. Aswill be shown in Chapter 7 extending to the three-Pursuer ver-
sion presents even more challenges (some of which are still not fully
resolved). To combat this, a many-versus-many scenario’s true equilib-
rium solution may be approximated via decomposition (as covered in
Section 2.5.6).

3.3 ST R ENGTHS OF THE PROPOS ED APPROACH

In an effort to justify continuingwith a DGT-based approach, this Chap-
ter concludes with a discussion of the strengths. They can be summa-
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rized as follows: equilibrium strategies are robust to any adversarial
input, closed-form solutions are amenable to real-time, onboard im-
plementation, solution can be characterized across many parameter
combinations, and the state space partitioning can be used to address
higher-level questions.

Perhaps the most important property associated with a differential
game solution is the robustness of each player’s equilibrium strategy.
Implementation of the equilibrium strategy guarantees that a player
can do no worse than the Value of the game, regardless of anything
the adversary does. Therefore, there is no need to assume an adversary
strategy. An extreme case of this is where the strategy of one side is op-
timized against a fixed opponent strategy iteratively, back and forth,
until no (or very little) improvement can be made (see, e.g., [223]).
There is also no need to assume what knowledge the adversary has
or what rationality level their controller is based upon (see, e.g., [117,
206]). The robustness of the equilibrium strategy applies also to the
case in which an opponent is playing according to a different cost func-
tional – thus knowledge of the adversary’s exact preferences are not
necessary.

Next, when the differential game solution is obtained analytically in
closed-form it has extremely low computational complexity. In these
cases, implementation of the equilibrium strategy is suitable to imple-
ment in computation-power-constrained, real-time applications. Sim-
ple motion models yield closed-form analytic solutions to differential
games much more often than more complex models thus giving them
more practical value in this area. Even if the system dynamics of a real
system must be simplified, the resulting simple-motion-based differ-
ential game solution provides coarse guidance information.

A differential game solution is generally obtained as a function of
the system parameters (e.g., agent speeds, weapon effectiveness, turn-
rate, etc.). Thus the solutionmay apply to a variety of different vehicles
or engagements. This is in contrast with reinforcement learning and
other AI approaches wherein controllers are often trained on a specific
set of parameters. In those cases, it would be necessary to re-train the
algorithm on each new parameter setting of interest. Even then, having
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a trained controller for one or more settings of parameters does little to
help a designer understandhow the solution varies across a continuum
of parameters. This pitfall can, perhaps, be avoided via judicious non-
dimensionalization of the problem and/or proper selection of features.

Similar to the discussion on parameters, above, the differential game
solution provides a characterization of the entire state space. In particu-
lar, it yields regions of guaranteed win for one or other agent. These re-
gions would not be straight-forward to obtain if only the control policy
is available – especially if that control policy is not analytic. Moreover,
the worst-case outcome of the game is given by the Value function over
the whole state space. If only the control policy is available (as in some
RL-based approaches) then the outcome for a single set of initial condi-
tions must be obtained through simulation. Even then, the outcome
has no guarantee attached to it, as it does with DGT. These regions are
often useful in task allocation schemes for multi-versus-multi scenar-
ios – feasibility (e.g., whether a particular Pursuer can catch an Evader)
may be given directly by the associated 1v1 win region. Even the Value
associated with a 1v1 subgame may be used to assess the utility of a
particular assignment.

3.4 ORGAN I ZAT ION

The technical content is, as mentioned previously, organized by sce-
nario. All of the scenarios considered are listed in Table 3.1 along with
the chapter inwhich the scenario is addressed. Generally, the scenarios
fall under Pursuit-Evasion or Turret Defense, which comprise Parts II
and III, respectively. Within each part, the beginning is focused on the
smallest (in terms of number of agents) and most restrictive (in terms
of assumptions) instantiation of the scenario. From there, the complex-
ity increases from chapter to chapter as the agents have more freedom
in their control strategy, more agents are added to either side, or more
choices are made available to the agents.

Part II is focused on pursuit-evasion scenarios in two-dimensional,
unbounded environmentswherein the agents have simplemotion (i.e.,
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single integrator kinematics). Most of the content pertains to the ques-
tion of when capture will occur, and all of the chapters involve scenar-
ios with a single Evader. Game of Time refers to the zero-sum differ-
ential game of capture time wherein the Evader is the maximizer and
the Pursuer is the minimizer. In the final chapter, concepts developed
within the capture time chapters are applied to a border defense prob-
lemwherein the Pursuers aim to keep the Evader from reaching a goal
region.

Part III is focused on two turret defense scenarios: the TDDG and the
Turret Engage or Retreat (TEoR). Regarding the former, a distinction is
made between two different turret models: a kinetic turret which must
be alignedwith its target’s position to shoot at it (TDDGK) and awide-
beam turret which may affect its target to greater or lesser degree as a
function of its look angle (TDDGW, as in [2]). The latter is focused on
Engage or Retreat scenarios (c.f. 2.5.4) wherein the Defender agent is a
Turret with bounded turn rate. When the numbers of agents are speci-
fied in Table 3.1 the convention is (number of Turrets) versus (number
of Attackers).

Table 3.1: Adversarial Scenarios addressed in this dissertation
Scenario Description Chapter(s)
PEPP Pursuit-Evasion against PP 5, 6

MP1E GoT many-Pursuer Game of Time 7, 8
MP1E BD many-Pursuer Border Defense 9
TDDGK TDDG kinetic Turret 11
TEoRK TEoR kinetic Turret 13
TDDGW TDDG wide-beam Turret 14
TEoRW TEoR wide-beam Turret 15

Table 3.2 provides the mapping of research objectives to scenarios.
Many of the objectives are addressed in more than one scenario.
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Table 3.2: Mapping of Research Objectives to Scenarios
RO # Description Scenario
1 Approximations PEPP, TEoRW
2 Parameters PEPP, MP1E GoT, TDDGW, TEoRK
3 Dispersal TDDGW, TEoRK
4 Skirmish Utility PEPP, MP1E GoT, MP1E BD, TDDGK 1v2
5 More Agents MP1E GoT, MP1E BD, TDDGK 1v2, 2v1
6 New Scenarios TDDGK
7 Embedded OC TEoRW
8 Multi-Objective TEoRW, TEoRK, TDDGK 1v2
9 Discrete Events TEoRK, TDDGK 1v2
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4
I N TRODUCT ION TO PURSU I T- EVAS ION

4.1 BACKGROUND

The subject of one object pursuing another by aiming directly at it has
long captured the attention and imagination of mathematicians, en-
gineers, and theoretical biologists alike. The work in this Part begins
with a single Pursuer and a single Evader, each with specified strate-
gies (i.e., not a differential game; not even an optimal control problem).
The Evader takes a constant heading while the Pursuer employs PP. In
subsequent chapters, the Evader employs a control which maximizes
the time until capture against two Pursuers. It will become clear that
computing the solution to the latter is far more computationally in-
volved than the case of constant Evader heading. Later, two differential
games are addressed which pit the Evader against many Pursuers: one
pertaining to capture time, and one pertaining to reaching a target. Al-
though pursuit-evasion was mentioned in Chapter 2, some additional
background is given here regarding PP, the two-Pursuer game, and the
many-Pursuer game.

PURE PUR SU I T Generally, the curve traced by the Pursuer’s mo-
tion is referred to as a pursuit curve [18, 30]. In its purported original
incarnation, the problem was formulated by Bouguer as a pursuer (a
pirate ship) attempting to capture an evader (a merchant ship) using
PP [33]. It was assumed that the Evader’s motion is a straight line per-
pendicular to the initial LOS, i.e., a broadside shot or abeam. Since then,
many works have been published on this problem and its many vari-
ants. Most notably, the more general case in which the Evader moves
on a straight line that is not perpendicular to the initial LOS was only
recently solved in closed form by Eliezer and Barton [64, 65]. No at-
tempt at a comprehensive survey is made here; much of the history
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and pertinent works are described in [133, 171][220, Chap. 3]. Nahin’s
book [171] re-examines the “classic” pursuit problem (in which the
Evader’s path is a straight line) as well as considering more compli-
cated Evader paths (such as a circle) and cyclic pursuit (in which ring
of Pursuers pursue one another). Kamimura and Ohira’s book [133]
containsmanyof the sameproblems aswell as some three-dimensional
variants (such as helical Evader paths); it also contains chapters on col-
lective motion and group pursuit-evasion, which heavily emphasize
simulation over rigorous analysis. PP is the subject of a full chapter
in [220]; the book, which gives a general treatment of missile guidance
laws, illustrates one of the important physical applications of pursuit
curves, namely air-to-air combat. One very recent, noteworthy contri-
bution to this field is [110] wherein Gard proved that the Evader can
lead the Pursuer to any point in ℝ𝑛 while maintaining some desired
minimum separation distance for the case of equal speeds.

TWO PUR SUER S In the Two Cutters and Fugitive Ship differential
game [130], the Pursuers, acting as a team, wish to capture the Evader
in the shortest time possible, while the Evader, as in this case, wishes
to delay capture, thus making it a zero-sum differential game. Isaacs’
treatment of the problem was geometrical, based on the fact that all
three agents’ saddle point equilibrium strategies result in straight-line
paths [130]. The geometric solution to the game was then validated
in [107] by expressing theValue function associatedwith the geometric
solution analytically and showing that it satisfies the HJI equation. Ref-
erence [183] sought to show the applicability of the two-pursuer one-
evader solution to scenarios with more than two pursuers. In [187],
the solution to the Game of Kind (i.e., whether capture by the first,
or second, or both Pursuers simultaneously) is given using a reduced
state space. The consequences of the DS in the game were considered
in [186]. The case of a finite capture radius was then considered in [89,
188]. In the former, the solution is based on a system of two nonlinear
equations obtained by analytic retrograde integration of the optimal
dynamics; this solution also covers the case of Pursuers with different
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speeds. The latter provides a closed-form solution for the case where
all three agents have the same speed.

MANY PUR SUER S References [95] and [128] looked at the case of
multiple Pursuers seeking to capture an Evader. The concept of a dy-
namic Voronoi diagramwas used to define the closed domain inwhich
Evader capture occurred by these several Pursuers. Reference [63] finds
the intercept set of Evaders, assuming that the Evaders’ goals were
known to the Pursuers. A related work, where the objective is to res-
cue certain agents with interference of obstacles was modeled in the
Prey, Protector, and Predator game [181]. A full solution to the M-
on-N (or MPNE) game, even for the case of simple motion on an un-
bounded plane, is of interest; however, due to the curse of dimension-
ality, this is seemingly intractable. The same is still true for the case of
MP1E, and much of the existing literature has focused on numerical
techniques and/or sequential pursuit (as in [16, 231]). Note that many
other works have been written on the subject of multiple Pursuers and
a single Evader (c.f. 2.4.2). The works vary in terms of what motion
model is used, the cost functional specified, the type of solution sought,
and variations in the environment. For example, some have considered
obstacles and bounded environments [46, 128, 181, 182]. Alternatively,
so-called games of approach, wherein the Evader is faster than the Pur-
suers, use the payoff/cost of minimumdistance to the Evader achieved
by any Pursuer [190].

4.2 PRACT I CAL S I GN I F I CANCE

The application of differential game theory to problems of military in-
terest is immediately obvious in the context of pursuit-evasion games.
One could imagine that the solutions to simple pursuit-evasion games
in the plane may one day be expanded to equilibrium strategies for
a real-world aerial dog-fighting scenario. For now, the scenarios ex-
plored in this part are most closely related to air-to-air, BVR engage-
ments taking place between kinetic munitions and/or UAVs. The prac-
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tical implication of BVR is that the minimum turning radius of the vehi-
cles may be negligible w.r.t. the initial engagement distances and thus
may be disregarded. What is important, then are the reference course
angles, or headings, taken by the agents throughout the engagement.
There is also some merit to focusing on multiple Pursuers and one
Evader as multiple missiles are regularly fired to increase the proba-
bility of kill (see, e.g. [143]).

Concerning the last chapter on target guarding, border surveillance
and defense is a task for which UAVs are well-suited to carry out as
it requires persistent vigilance. Additionally, their relative speed com-
pared to ground vehicles and the possibility of varied terrain points
to the utility of UAVs for this purpose. One possible scenario pertain-
ing to border surveillance and defense is that of an intruder, perhaps
performing surveillance for the enemy, which, having gathered some
information, is now attempting to escape back to safety through the
border to deliver the acquired information. Thus there is interest in en-
gaging the intruderwith a number ofUAVswith the intent of capturing
the intruder or at least destroying it within the border. Conceptually,
the border may represent a physical border and thus capture of a ve-
hicle outside the border could be considered an act of war, or perhaps
the border represents the sensor range, outside of which the intruder’s
position can not be tracked. The goal, then, is for the UAVs to cooperate
in capturing the intruder based on their positions at the time the laser
fence is crossed by the intruder.

4.3 CONTR I BUT IONS

The contributions of the chapters in this part may be summarized as

• PEPP capture time for non-point capture

• PEPP simultaneous capture solution for 2 Pursuers

• PEPP approximations and capture time bounds

• PEPP optimal control solution
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• MP1EGoT computationally efficient geometric policywith Evader
performance guarantees

• MP1EGoT robust pursuit policy with Pursuer performance guar-
antees

• MP1E GoT, MP1E BD process for discarding redundant Pursuers

As indicated in Table 3.2, these contributions pertain to ResearchOb-
jectives 1, 2, 4, and 5 – namely, approximations for computationally-
intensive solutions, characterization of solutions over the parameter
space, utilization of skirmish-level solutions in more complex scenar-
ios, and adding more agents into the scenarios. Lastly, although not
included in this part, Appendix B contains an example of the solution
of the 1v1 game of minmax capture time being utilized within a larger
two-Pursuer, many-Evader scenario, further supporting Research Ob-
jective 4.





5
PURE PURSU I T AND CONSTANT EVADER COURSE

5.1 IN TRODUCT ION

This chapter is the first pertaining to pursuit-evasion against PP (PEPP)
and it covers the case in which the Evader implements a constant head-
ing (i.e., holds course). The results partly address Research Objectives
1, 2, and 5 by providing bounds for capture times, approximations of
necessary and sufficient conditions for simultaneous capture, consid-
ering all ranges for the main parameters (speed ratio, capture radius,
and initial distance), and considering more Pursuers. This material is
based upon the paper [252], which is in preparation.

Much of thework on PEPP has been focused on the case inwhich the
Evader’s path is a straight line and capture occurringwhen the Pursuer
and Evader are coincident (point capture) [18, 64, 65, 220]. This chap-
ter continues in a similar vain but with a focus on non-point capture;
that is, the Pursuer may effect capture within some specified distance.
This chapter pertains to pursuit-evasion scenarios taking place in an
unbounded, obstacle-free two-dimensional environment, i.e., the real-
istic plane. The agents’ speeds are fixed and non-zero. It is assumed
throughout that the Evader implements a constant heading in the in-
ertial (global) Cartesian frame – in some cases, the Evader heading is
assumed to be given, and in others it may be considered to be a deci-
sion made at the initial time instant. The Pursuer(s) strategy is PP; in
the case ofmultiple Pursuers, the speeds are assumed to be equal, how-
ever the results in this chapter can be readily extended to the unequal
speed case and/or the unequal effector range case. The Pursuer(s)may
be endowed with an effector of radius 𝑙. Table 5.1 lists the different sce-
narios considered; 𝜇 is the ratio of Evader and Pursuer speeds and 𝑑0

is the initial distance between the agents.
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Table 5.1: Taxonomy of Pursuit-Evasion Scenarios
# Setting Description
1 𝜇 < 1 𝑙 = 0 𝑑0 > 0 Point Capture
2 𝜇 < 1 𝑙 > 0 𝑑0 > 𝑙 Capture (slow Evader)
3 𝜇 > 1 𝑙 > 0 𝑑0 > 𝑙 Capture (fast Evader)
4 𝜇 > 1 𝑙 > 0 𝑑0 < 𝑙 Escape from surveillance

The contributions of this chapter are as follows (with parentheses
indicating towhich Scenario(s) the result applies). Aspect angle refers
to the angle that the Evader’s heading makes w.r.t. the Pursuer’s LOS.

• Solution for the Pursuer’s separation distance as a function of as-
pect angle (1–4)

• Analytic determination of head-on versus tail-chase final config-
uration (2, 3)

• Necessary and sufficient condition for capture/evasion (3)

• Solution for capture time (2, 3) and escape time (4)

• Proof of the existence of a solution for simultaneous capture (1)

• Necessary condition for simultaneous capture (1, 2) and escape
(4)

• Sufficient condition for simultaneous capture (2)

Insomuch as is possible, the results are closed-form, analytic expres-
sion. Otherwise, attention is given to numerical implementation. Note
that the results herein also apply to the interesting case of equal speeds.

The remainder of the chapter is organized as follows. Section 5.2
specifies the problem setup. Section 5.3 provides the analysis leading
to the determination of the final configuration. Section 5.4 contains the
results pertaining to final time (i.e., when capture or escape occurs).
Section 5.5 examines the case where there are two Pursuers wherein
simultaneous capture (or escape) is possible. Finally, Section 5.6 con-
tains the conclusion.
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Figure 5.1: Schematic illustration of the scenario corresponding to Scenario 2:
slow Evader and finite capture radius.

5.2 PR E L IM INAR I E S

Let the agents’ positions be specified by 𝐸 ≡ (𝑥𝐸, 𝑦𝐸) and 𝑃 ≡ (𝑥𝑃, 𝑦𝑃),
𝐸, 𝑃 ∈ ℝ2. In the case that there are 𝑀 > 1 Pursuers, the 𝑖th Pursuer
position is denoted 𝑃𝑖, where 𝑖 ∈ 1, … , 𝑀. Without loss of generality,
the Pursuer(s’) speed is fixed to 1 and the Evader’s speed is 𝜇. Addi-
tionally, w.l.o.g., consider a Cartesian frame (𝑥, 𝑦) whose origin is the
Pursuer’s initial position and whose positive 𝑦-axis is aligned with the
line segment 𝑃𝐸 at initial time (the green axes in Fig. 5.1)1. The kine-
matics, which arise from 𝑃 employing the strategy of PP are
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⎣
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𝑑

⎤
⎥
⎥
⎥
⎦

(5.1)

where 𝑑 ≡ √(𝑥𝐸 − 𝑥𝑃)2 + (𝑦𝐸 − 𝑦𝑃)2 is the instantaneous distance be-
tween the agents, and 𝜃 is the Evader’s heading angle w.r.t. the posi-
tive 𝑥-axis. The Pursuer’s effector range is 𝑙 – in the case of capture, this
corresponds to the capture radius; in the case of surveillance, this cor-
responds to observation range. Final time, 𝑡𝑓 , is defined as the time at

1 We utilize this convention in some portions of the text to match the work of [18]
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which the distance between 𝑃 and 𝐸 is equal to the effector range, i.e.,
𝑑(𝑡𝑓 ) = 𝑙.

The rotated Cartesian frame, (𝑋, 𝑌), (shown in black in Fig. 5.1) is
used here in the expression of the so-called pursuit curve [18]. In this
frame, the origin is the Evader’s position at the initial time and the
𝑌-axis is aligned with the Evader’s (constant) direction of motion, or
course. The kinematics in this frame are
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. (5.2)

Two useful expressions are given in [18], namely the tangent function
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and the solution of 𝑃’s trajectory:
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where 𝑤 ≜ 1−sin𝜃
cos𝜃 and 𝑋𝑃0

≡ 𝑋𝑃(𝑡0) = 𝑑0 cos 𝜃. Note that, at all time,
the tangent to the Pursuer’s trajectory points to 𝐸, by construction [18,
220]. The transformation to the (𝑥, 𝑦) frame is

[𝑥𝑃
𝑦𝑃

] = [ sin 𝜃 cos 𝜃
− cos 𝜃 sin 𝜃] + [ 0

𝑑0
] . (5.5)

Lastly, consider a rotating frame which is defined by the distance
from 𝑃 to 𝐸 and 𝐸’s heading w.r.t. 𝑃’s LOS. The kinematics are

[
̇𝑑
̇𝜓] = [𝜇 cos𝜓 − 1

−𝜇
𝑑 sin𝜓 ] (5.6)

where, w.l.o.g., 𝜓 ∈ [0, 𝜋]. The term 𝜓 is referred to as the aspect an-
gle, and is generally not constant even though the Evader’s heading
is constant in the inertial frame (unless 𝜓 = 0). It is clear, with the
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convention for 𝜓, that ̇𝜓 < 0 for all 𝑡 since sin𝜓 > 0 and 𝑑 > 0. This
monotonicity holds whether the Evader is slow or fast. Regarding dis-
tance, 𝑑, if the Evader is slow (𝜇 < 1) then ̇𝑑 < 0 for all 𝑡 which means
the Pursuer is always getting closer; but if the speed ratio 𝜇 > 1 then
there is a range of 𝜓 for which ̇𝑑 > 0.

Proposition 5.1. A Pursuer remains on the same half-plane in which it
started w.r.t. the Evader’s heading and initial position.

Proof. In order for the Pursuer to cross into the opposite half-plane
there must be a time at which 𝜓 = 0. It is clear from (5.6) that ̇𝜓 = 0
and thus the Pursuer will remain in a trailing configuration as long as
the Evader holds course (i.e., 𝑃 never crosses into the opposite half-
plane).

It is for this reason that the range 𝜓 ∈ [0, 𝜋] is sufficient.

5.3 F INAL CONF IGURAT ION

Before addressing the determination of final time for a particular prob-
lem instance, it is important to determine whether the Evader has a
component of velocity towards or away from the Pursuer at final time,
i.e., whether the scenario ends in a head-on or tail-chase configuration.
To do this, the solution of (5.6) is obtained. First, divide the two differ-
ential equations:

d𝑑
d𝜓 =

̇𝑑
̇𝜓
= 𝜇 cos𝜓 − 1

−𝜇
𝑑 sin𝜓

=
𝑑 ( 1

𝜇 − cos𝜓)
sin𝜓 , (5.7)
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which can be simplified as follows

1
𝑑d𝑑 = ( 1

𝜇 sin𝜓 − 1
tan𝜓)d𝜓

∫
𝑑𝑓

𝑑0

1
𝑑 d𝑑 = ∫

𝜓𝑓

𝜓0

1
𝜇 sin𝜓 d𝜓 − ∫

𝜓𝑓

𝜓0

1
tan𝜓 d𝜓

[ln 𝑑]𝑑𝑓
𝑑0

= − 1
𝜇 [ln (cot𝜓 + csc𝜓)]𝜓𝑓

𝜓0
− [ln (sin𝜓)]𝜓𝑓

𝜓0

ln 𝑑𝑓 − ln 𝑑0 = − 1
𝜇 ln (cot𝜓𝑓 + csc𝜓𝑓 )

+ 1
𝜇 ln (cot𝜓0 + csc𝜓0)

− ln sin𝜓𝑓 + ln sin𝜓0.

Taking the exponential of both sides gives

eln𝑑𝑓 −ln𝑑0 = e− 1
𝜇 ln(cot𝜓𝑓 +csc𝜓𝑓 )+ 1

𝜇 ln(cot𝜓0+csc𝜓0)−ln sin𝜓𝑓 +ln sin𝜓0 ,

which becomes

eln𝑑𝑓

eln𝑑0
= e− 1

𝜇 ln(cot𝜓𝑓 +csc𝜓𝑓 )eln
1
𝜇 (cot𝜓0+csc𝜓0) eln sin𝜓0

eln sin𝜓𝑓

𝑑𝑓
𝑑0

= (cot𝜓𝑓 + csc𝜓𝑓 )
− 1

𝜇 (cot𝜓0 + csc𝜓0)
1
𝜇 sin𝜓0
sin𝜓𝑓

,

which can be rearranged to

𝑑𝑓 (cot𝜓𝑓 + csc𝜓𝑓 )
1
𝜇 sin𝜓𝑓 = 𝑑0 (cot𝜓0 + csc𝜓0)

1
𝜇 sin𝜓0. (5.8)

This expression is the solution of the system (5.6). Given the initial
and final aspect angle and either distance, (5.8) yields a closed-form,
analytic solution for the unknown distance. Unfortunately, if either 𝜓0

or 𝜓𝑓 is unknown, then (5.8) must be solved numerically.

Proposition 5.2. The curve

𝑑⟂ (𝜓; 𝑙, 𝜇) = 𝑙 (cot𝜓 + csc𝜓)− 1
𝜇 csc𝜓 (5.9)
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partitions the state space into a region of Pursuer initial positions, (𝑑, 𝜓),
which end in head-on collision (cos𝜓𝑓 < 0), and a region for which the sce-
nario ends in a tail-chase (cos𝜓𝑓 > 0). More precisely:

sign (cos𝜓𝑓 ) =

⎧{{{
⎨{{{⎩

−1 if 𝑑 < 𝑑⟂

undef. if 𝑑 = 𝑑⟂

1 if 𝑑 > 𝑑⟂.

(5.10)

Proof. Substituting 𝑑𝑓 = 𝑙 and𝜓𝑓 = 𝜋
2 into (5.8) immediately gives (5.9).

This configuration corresponds to the Evader’s heading being perpen-
dicular to the Pursuer’s at themoment that 𝑑 → 𝑙, which is the case that
is neither head-on collision nor tail-chase. If 𝜓𝑓 = 𝜋

2 then cos𝜓𝑓 = 0,
hence sign (cos𝜓𝑓 ) is undefined as in (5.10). The remainder of the
proof is broken into two cases depending on the magnitude of 𝜇.

S LOW EVADER in this case, 𝜇 < 1 and both 𝜓 and 𝑑 are monotoni-
cally decreasing w.r.t. time. Thus, if, for the same 𝜓0, 𝑑0 < 𝑑⟂, the Pur-
suer must take a shorter time to capture the Evader. Since 𝜓 is mono-
tonic, it must be the case that 𝜓𝑓 > 𝜋

2 which implies that cos𝜓𝑓 < 0.
The case where 𝑑0 > 𝑑⟂ follows by similar logic.

FA ST EVADER in this case, 𝜇 > 1 and only 𝜓 is monotonically de-
creasing w.r.t. time. From (5.6), it is clear that

sign( ̇𝑑) =

⎧{{{{
⎨{{{{⎩

−1 if cos𝜓 < 1
𝜇

0 if cos𝜓 = 1
𝜇

1 if cos𝜓 > 1
𝜇 .

Therefore, the distance becomes monotonically increasing once cos𝜓 >
1
𝜇 . Capture, if it occurs at all, must take place while cos𝜓 < 1

𝜇 . Thus
capture can only occur in the portion of the trajectory for which 𝑑 is
monotonically decreasing. Because of this, the same logic used to prove
the case where 𝜇 < 1 can be applied to this case as well.
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Remark 1. For the escape from surveillance scenario (Scenario #4), the
final configuration is always tail-chase because for 𝐸 to escape the ob-
servation range of 𝑃 it must have 𝑑 = 𝑙 and ̇𝑑 > 0, which means
cos𝜓 > 1

𝜇 > 0.

Proposition 5.3. For the fast Evader capture scenario (𝜇 > 1, 𝑑 > 𝑙), the
curve

𝑑𝑐/𝑒 (𝜓; 𝑙, 𝜇) = 𝑙 (cot𝜓† + csc𝜓†)
1
𝜇 sin𝜓† ⋅ (cot𝜓 + csc𝜓)− 1

𝜇 csc𝜓,
(5.11)

where
𝜓† ≜ cos−1 1

𝜇, (5.12)

partitions the state space into a region of Pursuer initial positions, (𝑑, 𝜓),
which end in capture and a region for which evasion occurs. In the latter case,
𝑡𝑓 → ∞, 𝜓 → 0, and 𝑑 → ∞. Stated differently, 𝑑 < 𝑑𝑐/𝑒 is a necessary and
sufficient condition for capture.

Proof. Two things are necessary for capture: the first is that the distance
from 𝐸 to 𝑃 is equal to the latter’s effector range, 𝑙, and the second is
that 𝑃 is actually closing in on 𝐸 (i.e., ̇𝑑 < 0). If 𝑑 = 𝑙 but ̇𝑑 ≥ 0 then the
Evader is escaping since 𝑑 will increase monotonically from there on
out. This is akin to Isaacs’ notion of theUsable Part (UP) of the terminal
surface [130].

The limiting case for escape occurs when ̇𝑑 = 0, which, from (5.6)
occurs when 𝜓 = 𝜓†. For any 𝜓 < 𝜓† it would be the case that ̇𝑑 >
0. Then (5.11) follows directly from substituting 𝑑𝑓 = 𝑙 and 𝜓𝑓 = 𝜓†

into (5.8). The fact that 𝑑 < 𝑑𝑐/𝑒 follows from monotonicity arguments
akin to those in the proof of Proposition 5.2.

Proposition 5.4. Ignoring termination, the minimum inter-agent distance
in the fast Evader case (𝜇 > 1) is

𝑑min (𝑑, 𝜓; 𝜇) = 𝑑 (cot𝜓 + csc𝜓)
1
𝜇 sin𝜓⋅(cot𝜓† + csc𝜓†)− 1

𝜇 csc𝜓†,
(5.13)

if 𝜓 > 𝜓†, and 𝑑min = 𝑑 otherwise.
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Proof. Eq. (5.13) is obtained by substituting 𝑑𝑓 = 𝑑min and 𝜓𝑓 = 𝜓†

into (5.8). This corresponds to the minimum distance because, from
(5.6) ̇𝑑 = 0 when 𝜓 = 𝜓† and the fact that 𝑑 ismonotonically decreasing
while 𝜓 > 𝜓† and monotonically increasing while 𝜓 < 𝜓†. If 𝜓 < 𝜓†,
then 𝑑 is monotonically decreasing and thus the minimum distance is
the current distance.

Corollary 5.1. For the fast Evader capture scenario (𝜇 > 1, 𝑑 > 𝑙), the
capture condition, (5.11), is equivalent to 𝑑min < 𝑙.

Proof. The result follows directly from Propositions 5.2–5.4.

Following are some examples which illustrate the aforementioned
curves and regions for both the slow and fast Evader scenarios. In all
of these examples, the Evader’s heading is aligned with the positive
𝑥-axis. Fig. 5.2 shows the curve 𝑑⟂ for a slow Evader along with exam-
ple tail-chase and head-on Pursuer trajectories. Then Fig. 5.3 shows a
similar plot, but for a fast Evader; additionally, the curve 𝑑𝑐/𝑒 is shown.
In the case where 𝑃 begins outside the capture region (labeled “Miss
Example”), the trajectory is shown up to the time at which 𝑑 = 𝑑min.
Finally, Fig. 5.4 shows a map of 𝑑min as a function of 𝑃’s initial position.
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Figure 5.2: Slow Evader example; 𝜇 = 0.8, 𝑙 = 1.
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Figure 5.3: Fast Evader example; 𝜇 = 1.2, 𝑙 = 1.

−20 −10 0 10 20

0

5

10

15

20

𝑥

𝑦

cos(𝜓𝑓 ) = 1/𝜇
cos(𝜓𝑓 ) = 0

0

5

10

15

20

25

[ February 3, 2022 at 12:29 – classicthesis v4.6 ]

Figure 5.4: Miss distance as a function of 𝑃’s initial position; 𝜇 = 1.2, 𝑙 = 1.
The yellow lines mark out a cone inside which 𝑑min = 𝑑0.
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5.4 F INAL T IME

In this section, the final time, 𝑡𝑓 , associated with each of the scenarios
is characterized. The final configuration is an important component in
the determination of the final time in the case of non-point capture (𝑙 >
0). For point capture, however, there is no need to make a distinction
between head-on and tail-chase; indeed the capture time for a slow,
fixed-course Evader and point capture is well-known, appearing in [18,
152, 220] and many other places. Given the pursuit curve in (5.4), the
final time associatedwith Scenario 1 is found by substituting in𝑋𝑃𝑓

= 0
and 𝑌𝐸𝑓

= 𝑌𝑃𝑓
and noting that 𝐸 travels from (𝑋𝐸, 𝑌𝐸) = (0, 0) to

(0, 𝑌𝐸𝑓
) in 𝑡𝑓 time at speed 𝜇. Thus,

𝑡𝑓 =
𝑌𝐸𝑓

𝜇 = 𝑌𝑃 (𝑋𝑃 = 0)
𝜇

= (1 + 𝜇 sin 𝜃
1 − 𝜇2 ) 𝑑 (5.14)

In Scenarios 2–4 the Pursuer’s effector range is 𝑙 > 0. Let the final
lateral separation in the Evader-aligned frame, (𝑋, 𝑌), be defined as
𝑋𝑃𝑓

≡ 𝐿 (see Fig. 5.1). As in every other point along 𝑃’s trajectory, the
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line-of-sight 𝑃𝑓 𝐸𝑓 , is tangent to the pursuit curve, 𝑌𝑃(𝑋𝑃) [220]. This
observation leads to a derivation for 𝐿 as follows:

tan𝜓𝑓 = d𝑋𝑃
d𝑌𝑃

∣
𝑡=𝑡𝑓

cot𝜓𝑓 = d𝑌𝑃
d𝑋𝑃

∣
𝑡=𝑡𝑓

√1 − sin2 𝜓𝑓

sin𝜓𝑓
=

𝑙√1 − 𝐿2

𝑙2

𝐿 =

𝑙2 (1 − 𝐿2

𝑙2
) = 𝐿2 ⎛⎜

⎝
d𝑌𝑃
d𝑋𝑃

∣
𝑡=𝑡𝑓

⎞⎟
⎠

2

𝑙2 − 𝐿2 =

⟹ 𝐿 = 𝑙

√1 + (d𝑌𝑃
d𝑋𝑃

∣𝑡=𝑡𝑓
)

2
. (5.15)

Evaluating (5.3) at 𝑋𝑃 = 𝐿 and substituting into the above gives

𝐿 = 𝑙

√1 + 1
4 [𝑤2 ( 𝐿

𝑋𝑃0
)

2𝜇
+ 1

𝑤2 ( 𝐿
𝑋𝑃0

)
−2𝜇

− 2]

= 𝑙

√1
4 [𝑤2 ( 𝐿

𝑋𝑃0
)

2𝜇
+ 1

𝑤2 ( 𝐿
𝑋𝑃0

)
−2𝜇

+ 2]

⟹ 𝐿 = 2𝑙

𝑤 ( 𝐿
𝑋𝑃0

)
𝜇

+ 1
𝑤 ( 𝐿

𝑋𝑃0
)

−𝜇 (5.16)

Proposition 5.5. For 𝑑 > 𝑙 > 0, 𝜇 < 1 (i.e., Scenario 2), (5.16) has a
unique fixed point on the interval 𝐿 ∈ [0,min {𝑑 cos 𝜃, 𝑙}).

Proof. Concerning the range for the solution, it must be the case that
𝐿 < 𝑙 because 𝐿 > 𝑙 would require 𝑃 being further from 𝐸 than the
capture radius. Also, it must be the case that 𝐿 = 𝑋𝑃𝑓

< 𝑋𝑃 = 𝑑 cos 𝜃
because 𝑋𝑃(𝑡) is monotonically decreasing (which follows from the
fact that 𝑃 is employing the strategy PP) and 𝑑 > 𝑙. Two conditions
were used to derive (5.16): (𝑖) 𝑑 = 𝑙 and (𝑖𝑖) the tangency equation,
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(5.3) is satisfied. The latter is true by construction, since 𝑃 is always
aiming at 𝐸’s instantaneous position. As for the former, if 𝑑 > 𝑙, then
at some point it must be the case that 𝑑 = 𝑙 because 𝑑 is monotonically
decreasing when 𝜇 < 1 (see (5.6)). Additionally, there can only be one
such instance, again, because of 𝑑’s monotonicity. Therefore, a solution
(and fixed point) to (5.16) exists and is unique.

Proposition 5.6. For 𝑑 > 𝑙 > 0, 𝜇 > 1 (i.e., Scenario 3), (5.16) has
a unique fixed point on the interval 𝐿 ∈ [0,min {𝑑 cos 𝜃, 𝑙}) if and only if
𝑑 < 𝑑𝑐/𝑒.

Proof. When 𝑑 < 𝑑𝑐/𝑒, capture must occur due to Proposition 5.3. The
distance between 𝑃 and 𝐸 must be monotonically decreasing along the
entire trajectory since, in order for capture to be possible, 𝜓 > 𝜓† for
all 𝑡. Therefore, by similar arguments as in the preceding proof, the
premise must be true.

Proposition 5.7. For 𝑑 < 𝑙, 𝜇 > 1 (i.e., Scenario 4), (5.16) has a unique
fixed point on the interval 𝐿 ∈ [0,min {𝑑 cos 𝜃, 𝑙}).

Proof. As in Scenario 3, 𝑑 is monotonically decreasing w.r.t. time while
𝜓 > 𝜓† andmonotonically increasing thereafter. Since 𝑑 < 𝑙, eventually
there must be a time at which 𝑑 = 𝑙, and this instance must be unique,
and, as in previous proofs, this implies that (5.16) is satisfied.

Remark 2. When 0 < 𝐿 ≪ 1, (5.16) suffers from some numerical insta-
bility due to the (𝐿/𝑋0)−𝜇 term. This is often the case for Scenario 4,
especially when 𝜇 is close to 1. In this case, it is generally easier to nu-
merically solve (5.8) for 𝜓𝑓 and then compute 𝐿 = 𝑙 sin𝜓𝑓 .

In the general case, since the solution of 𝐿 exists and is unique, any
root finding method is suitable for its computation. However, in some
special circumstances, as shown in the following, the problem struc-
ture may be further exploited to aid in the computation of 𝐿.

Proposition 5.8. If either (𝑖) 𝑑 > 𝑙 and 𝐸 can be captured or (𝑖𝑖) 𝑑 < 𝑙
with 𝜇 > 1, and the speed ratio 𝜇 is a rational number (that is, 𝜇 = 𝑟

𝑞 where
𝑟, 𝑞 ∈ ℕ+), then the solution of (5.16) may be obtained via the rooting of a
polynomial.
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Proof. Define L ≡ ( 𝐿
𝑋𝑃0

)
1
𝑞
and substitute into (5.16)

L 𝑞𝑋𝑃0
= 2𝑙

𝑤L 𝑟 + 1
𝑤L −𝑟

⟹ L 𝑞+𝑟𝑋𝑃0
𝑤 + L 𝑞−𝑟𝑋𝑃0

1
𝑤 − 2𝑙 = 0. (5.17)

Thus L may be obtained as the solution of a (𝑞 + 𝑟)th-order (sparse)
polynomial, and the associated final lateral separation is 𝐿 = L 𝑞𝑋𝑃0

.

If, for example, the speed ratio is 𝜇 = 1
2 , it comes down to solving a

cubic equation.

Proposition 5.9. For 𝑑 > 𝑙 > 0 (i.e., Scenarios 2 and 3), the time to capture
(if 𝐸 can be captured) is

𝑡𝑓 = 1
𝜇 (𝑌𝑃(𝐿) + sign (𝑑 − 𝑑⟂) √𝑙2 − 𝐿2) , (5.18)

where 𝐿 is obtained as the solution of (5.16), and 𝑌𝑃 is given by (5.4).

Proof. As in the point capture case, the final time is found by substi-
tuting the final conditions into the pursuit curve, (5.4), and observing
that 𝐸 traverses a distance 𝑌𝐸𝑓

in 𝑡𝑓 time:

𝑡𝑓 =
𝑌𝐸𝑓

𝜇 = 1
𝜇 (𝑌𝑃𝑓

± √𝑙2 − 𝐿2) .

The ± in the above expression is due to the fact that 𝑌𝐸𝑓
− 𝑌𝑃𝑓

can
be positive or negative. In the case of tail-chase, 𝑌𝐸𝑓

− 𝑌𝑃𝑓
> 0, and

vice versa for head-on collision. Recall, from Proposition 5.2 (partic-
ularly (5.10)), that the question of final configuration is determined
by whether 𝑑 ≶ 𝑑⟂. Hence, the sign (𝑑 − 𝑑⟂) term in (5.18) yields the
proper sign for 𝑌𝐸𝑓

− 𝑌𝑃𝑓
.
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Proposition 5.10. For 𝑑 > 𝑙 > 0 (i.e., Scenarios 2 and 3), the time to capture
(if 𝐸 can be captured) is bounded above by

̄𝑡 =

⎧{{
⎨{{⎩

(5.14) if 𝜇 < 1

1
𝜇 (𝑌𝑃 (𝑑min sin𝜓†) + sign(𝑑 − 𝑑⟂)𝑑min

𝜇 ) if 𝜇 > 1
, (5.19)

where𝑌𝑃 is given by (5.4), 𝑑min is given by (5.13), and𝜓† is given by (5.12).

Proof. For 𝜇 < 1, the distance, 𝑑, is always decreasing monotonically,
so since 𝑙 > 0, the time to capture (i.e., (5.18)) must be less than the
time to drive 𝑑 → 0, which is given by the point capture time, (5.14).
For 𝜇 > 1, the distance, 𝑑, is always decreasing monotonically until
𝜓 = 𝜓† (as described in the proof of Proposition 5.4). The premise is
that capture is possible, so 𝑑min < 𝑙 from Corollary 5.1, so, again, the
time to capture must be less than the time to drive 𝑑 → 𝑑min.

This upper bound on capture time may be especially useful in the
context of engagements between many agents wherein computational
complexity becomes a concern. For example, a particular Evader may
only need to consider the one or two Pursuers with the smallest up-
per bound, after which a more precise computation may be performed
(similar to how certain Pursuers could be ignored in [245]). Addition-
ally, for 𝜇 < 1, the minimum upper bound, min𝑖 ̄𝑡𝑖, provides an upper
bound on the value of the game of minmax capture time (c.f. [253]).

Corollary 5.2. For 𝑑 < 𝑙, 𝜇 > 1 (i.e., Scenario 4), the time to capture is

𝑡𝑓 = 1
𝜇 (𝑌𝑃(𝐿) + √𝑙2 − 𝐿2) , (5.20)

where 𝐿 is obtained as the solution of (5.16), and 𝑌𝑃 is given by (5.4).

Proof. The proof is similar to the preceding proofs. Eq. (5.20) is a spe-
cialization of (5.18) since the final configuration is always tail-chase for
Scenario 4. This is because, for escape, it must be the case that ̇𝑑𝑓 > 0,
otherwise 𝐸 is entering 𝑃’s effector range. Since 𝜇 > 1, it must be the
case that 𝜓𝑓 < 𝜓† in order for ̇𝑑𝑓 > 0, and since 𝜓† < 𝜋

2 , this must be a
tail-chase configuration.
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Using (5.18), the capture loci (i.e., the final Evader position, 𝐸𝑓 (𝜓0))
are plotted for various effector ranges, 𝑙, in Fig. 5.5. As expected, as
the Pursuer’s effector range increases, the locus shrinks towards 𝐸’s
initial position. The curve corresponding to 𝑙 = 0 is obtained analyti-
cally via (5.14). A similar figure appears in [220, Fig. 3.6], but for point
capture with varying speed ratios.
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Figure 5.5: Capture loci (final 𝐸 positions) for constant-heading Evader tra-
jectories for varying effector ranges, 𝑙; here 𝜇 = 0.8.

5.5 S IMULTANEOUS CAPTURE AND E SCAPE

In this section, a second Pursuer is considered whose speed is equal to
that of the first Pursuer2; the problem setup is shown in Fig. 5.6 (note
that 𝛼 ∈ [0, 𝜋

2 ]). For Scenarios 1 and 2, it is assumed that𝐸wishes to de-
lay capture for as long as possible while employing a constant-heading
strategy. The point capture version of this problem has been analyzed,
e.g., in [152]. A finite-capture-range version was treated in [250], how-
ever, there, the Evader was not constrained to a constant heading and
its optimal control was computed (i.e., max𝜃(𝑡) 𝑡𝑓 ). For capture by a
single Pursuer, 𝐸’s optimal heading was indeed constant (PE, in fact).
However, in the case of simultaneous capture by both Pursuers, 𝐸’s
optimal heading was not constant (except when 𝐸’s position is on the
bisector of the angle ∠𝑃1𝐸𝑃2). The solution developed here thus pro-

2 Unequal Pursuer speeds can also be handled by keeping track of, e.g., 𝜇1 and 𝜇2
throughout the derivation, and similarly for unequal effector ranges via 𝑙1 and 𝑙2.
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vides a lower bound for the optimal capture time, which, as will be
shown, requires far less computation than the optimal, in general. Note
that the solution for the differential game version of the two-Pursuer
problemwith finite capture range is given in [188]. For Scenario 3, con-
ditions for the existence of an evasive heading are developed, which
readily extend to the case of many Pursuers. For Scenario 4, it is as-
sumed that 𝐸 wishes to escape fromwithin the Pursuers’ effector range
in minimum time. The single-Pursuer case with 𝑃 implementing the
control argmax𝑢𝑃(𝑡) 𝑡𝑓 is solved in [264].

𝛼

̂𝜃

𝑑1

𝑑2

𝑃1

𝑃2

𝐸
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Figure 5.6: Schematic illustration of the two-Pursuer problem.

Let 𝑡𝑓1 and 𝑡𝑓2 be defined as the times at which 𝑑1 = 𝑙 and 𝑑2 = 𝑙, re-
spectively. Obviously, whether considering capture or escape, simul-
taneity implies that 𝑡𝑓1 = 𝑡𝑓2 . Also define ̂𝜃∗ as the associated optimal
Evader heading for each Scenario.

Proposition 5.11. The optimal Evader heading for Scenarios 1–4 lies in the
range ̂𝜃∗ ∈ [𝜋 − 𝛼, 𝜋 + 𝛼].

Proof. In all Scenarios, 𝐸 must try tomake ̇𝑑1 and ̇𝑑2 as large as possible.
Headings outside the stated range are worse for both distance rates
than headings within the range. A similar argument is given in [250]
and analyzed in more detail there.

It may be the case that one or other Pursuer is sufficiently far such
that they have no effect on the outcome. Then, it is always best for 𝐸
to employ the strategy PE against the nearer Pursuer, as in [250]. The
following Theorems establish conditions under which simultaneous
capture is optimal – they are based on checking if, while employing the
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strategy PE from a Pursuer, the other Pursuer captures 𝐸 first. Define
the hypothetical single-Pursuer capture time associated with PE as

𝑡𝑖𝑃𝐸
= ∣𝑑𝑖 − 𝑙

1 − 𝜇∣, 𝑖 = 1, 2. (5.21)

Theorem 5.1. For 𝑙 = 0, 𝜇 < 1 (i.e., Scenario 1), simultaneous capture is
optimal iff

1 + 𝜇 cos (2𝛼)
1 + 𝜇 < 𝑑1

𝑑2
< 1 + 𝜇

1 + 𝜇 cos (2𝛼) . (5.22)

Proof. First, it is required that 𝑡1𝑃𝐸
> 𝑡𝑓2( ̂𝜃 = 𝜋 − 𝛼) and 𝑡2𝑃𝐸

> 𝑡𝑓1( ̂𝜃 =
𝜋 + 𝛼) because, otherwise, it would be optimal to be captured by only
one Pursuer (c.f. [250]). Substituting (5.14) and (5.21) (with 𝑙 = 0)
into the first condition gives

𝑑1
1 − 𝜇 > ⎛⎜⎜

⎝

1 − 𝜇 cos ( ̂𝜃 − 𝛼)
1 − 𝜇2

⎞⎟⎟
⎠

𝑑2

𝑑1
𝑑2

> 1 + 𝜇 cos (2𝛼)
1 + 𝜇

Asimilar substitution for the second condition yields the inverse of this
expression. Hence (5.22) must be satisfied in order for simultaneous
capture to be optimal.

Note, an expression similar to (5.22) appears in the two-Pursuer dif-
ferential game version of the problemwherein the Pursuers select their
instantaneous headings so as to minimize capture time [187].

Theorem 5.2. For 𝑙 = 0, 𝜇 < 1 (i.e., Scenario 1), if (5.22) is satisfied, then
the (unique) optimal Evader heading is

̂𝜃∗ = sin(𝑑2 − 𝑑1
𝜇𝑑1

) − 𝛾, (5.23)

where,

sin𝛾 = (𝑑2
𝑑1

− 1) cos 𝛼, cos𝛾 = (𝑑2
𝑑1

+ 1) sin 𝛼. (5.24)

Proof. Theorem5.1 says that simultaneous capture is optimal since (5.22)
is satisfied. Thus there must be a ̂𝜃∗ for which 𝑡𝑓1 = 𝑡𝑓2 . Define 𝜃1 =
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3𝜋
2 − ̂𝜃 −𝛼 and 𝜃2 = ̂𝜃 − 𝜋

2 −𝛼. Substituting them into (5.14) and setting
the capture times equal gives

(𝑑2
𝑑1

− 1) cos ̂𝜃 cos 𝛼 + (𝑑2
𝑑1

+ 1) sin ̂𝜃 sin 𝛼 = 𝑑2 − 𝑑1
𝜇𝑑1

.

Then, using the definition for 𝛾, (5.24), along with the angle sum iden-
tity, gives (5.23). Note that, because (5.22) is satisfied, sin𝛾, cos𝛾 ≤
1. Moreover, the solution is unique because 𝑡𝑓1 and 𝑡𝑓2 are monotoni-
cally decreasing and increasing, respectively, over the range specified
in Proposition 5.11 (which can be easily shown by taking the derivative
of 𝑡𝑓1 and 𝑡𝑓2 w.r.t. ̂𝜃).

The process is the same as above for Scenario 2, where 𝑙 > 0.

Corollary 5.3. For 𝑙 > 0, 𝜇 < 1 (i.e., Scenario 2), simultaneous capture is
optimal iff

𝑡1𝑃𝐸
> 𝑡𝑓2( ̂𝜃 = 𝜋 − 𝛼; 𝑙 > 0),

𝑡2𝑃𝐸
> 𝑡𝑓1( ̂𝜃 = 𝜋 + 𝛼; 𝑙 > 0).

(5.25)

However, the computation of 𝑡𝑓1( ̂𝜃 = 𝜋 + 𝛼) and 𝑡𝑓2( ̂𝜃 = 𝜋 − 𝛼) is
more difficult (in that it requires the solution of (5.16)). A more com-
putationally efficient check involves making use of the capture time
associated with point capture at the cost of being a weaker condition.

Theorem 5.3. For 𝑙 = 0, 𝜇 < 1 (i.e., Scenario 2), simultaneous capture is
optimal if

1 + cos(2𝛼)
1 + 𝜇 < 𝑑1 − 𝑙

𝑑2 − 𝑙 < 1 + 𝜇
1 + cos(2𝛼) . (5.26)

Note, this condition is sufficient, but not necessary.

Proof. First, note that the capture time associated with 𝑙 > 0 must be
less than the capture time for 𝑙 = 0 from Proposition 5.10. So, instead
of checking for PE against Pursuer 𝑖 and computing the actual capture
time for Pursuer 𝑗, the closed-form, analytic expression for the point
capture case, (5.14), may be used. Since 𝑡𝑓𝑙=0

> 𝑡𝑓𝑙>0
, it is sufficient to

show that 𝑡𝑖𝑃𝐸
> 𝑡𝑓𝑗,𝑙=0

for 𝑖, 𝑗 ∈ {1, 2}, 𝑖 ≠ 𝑗. Then (5.26) is obtained
similarly as in the proof of Theorem 5.1.

Fig. 5.7 shows, for particular Pursuer positions, the regions forwhich
conditions (5.25) and (5.26) are satisfied. The sufficient region covers
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much of the simultaneous capture region, especially for Evader posi-
tions near the Pursuers.
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Figure 5.7: Example coverage of the sufficient condition for optimal simulta-
neous capture, (5.26), compared to the necessary and sufficient
condition, (5.25); the Pursuer positions are fixed and the regions
correspond to possible Evader positions, 𝜇 = 0.8 and 𝑙 = 2.

For Scenario 3, the situation is somewhat different since there is a
range of headings for which the Evader can guarantee evasion against
a particular Pursuer. In the event that 𝐸 has no safe headings to take
when there are two Pursuers, then Corollary 5.3 applies. The interest-
ing feature of this case thus becomes the Evader’s range of safe head-
ings. Recall that the limiting case for capture when 𝜇 > 1 corresponds
with 𝜓𝑓 = 𝜓† and 𝑑𝑓 = 𝑙 since this corresponds to the minimum dis-
tance (c.f. 5.4). Then, given the initial position of𝑃 and𝐸, the safe range
of Evader headings is given by Ψ𝑠 ≡ [−𝜓𝑠, 𝜓𝑠], where 𝜓𝑠 is the (nu-
merical) solution of (5.8). If there are many Pursuers, the safe range
associated with each Pursuer, Ψ𝑠𝑖

, may be computed, and the overall
safe range is given by their intersection:

Ψ𝑠 = ∩𝑀
𝑖=1Ψ𝑠𝑖

. (5.27)
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Of course, if Ψ𝑠 = ∅, then capture is guaranteed. Fig. 5.8 shows an
example with 𝑀 = 8 Pursuers in which the overall safe range, Ψ𝑠, is
nonempty. The Evader need only choose a heading in the clear region
in order to guarantee evasion.
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Figure 5.8: Fast capture example with many Pursuers in which the safe range
of Evader headings (shown as the clear cone) is nonempty. For the
purposes of visualization, the complement of Ψ𝑠𝑖

is shown. Here,
𝜇 = 1.2 and 𝑙 = 1.

Finally, for Scenario 4, recall that the Evader seeks to minimize the
amount of time it takes to drive 𝑑 > 𝑙; the necessary and sufficient
condition for the optimality of simultaneous escape is as follows.

Corollary 5.4. For 𝑙 > 0, 𝜇 > 1 (i.e., Scenario 4), if 𝑑1, 𝑑2 < 𝑙 then simul-
taneous escape is optimal iff

𝑡1𝑃𝐸
< 𝑡𝑓2( ̂𝜃 = 𝜋 − 𝛼; 𝑙 > 0),

𝑡2𝑃𝐸
< 𝑡𝑓1( ̂𝜃 = 𝜋 − 𝛼; 𝑙 > 0).

(5.28)

Unlike in Scenario 2 there is no obvious relaxation of this condition,
since point capture is not generally possible when 𝜇 > 1. The general
case in which 𝐸 is inside the effector range of one Pursuer but outside
the other’s is more complex, hence, above it is assumed that 𝐸 is within
𝑙 of both Pursuers. Fig. 5.9 shows an example of simultaneous escape.
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Figure 5.9: Simultaneous escape example with the numerically computed op-
timal Evader heading; 𝜇 = 1.2 and 𝑙 = 1.

5.6 CONCLUS ION

In this chapter, the results for the classical pursuit-evasion problem
have been extended into the realm of non-point capture. These results
are thus one step closer to real-world situations, such as air-to-air com-
bat, wherein a projectile need only come within some finite distance to
destroy its target. The curves governing the final configuration (tail-
chase or head-on) and whether capture happens (for 𝜇 > 1) were
obtained in closed form. An analytic expression for the minimum dis-
tance attained by the Pursuer was also derived. The final time for finite
effector range (𝑙 > 0) may be obtained via any standard root-finding
method, or (for rational 𝜇) as the rooting of a sparse polynomial. Some
of the results were applied directly to the case of 𝑀 ≥ 2 Pursuers. An-
other extension may be to utilize the safe range for Evader headings as
a constraint in an Evader path planning algorithm. The next chapter
will consider what happens when the Evader optimizes its instanta-
neous heading to maximize capture time.



Any mathematical study, such as this, must be judged,
ultimately upon its intrinsic content, and not by the
density of high-sounding pseudo-abstractions with

which a text may so easily be salted.

— Richard Bellman, Dynamic Programming [21]

6
PURE PURSU I T AND OPT IMAL EVADER

6.1 IN TRODUCT ION

The PEPP scenario is expanded in this chapter – here, the Evader is no
longer assumed to hold course, but, rather, seeks to delay capture for
as long as possible. This chapter partly addresses Research Objective 4
(demonstrate utility of skirmish-level solutions) in that the 1v1 pursuit-
evasion solution derived in Section 1.1 becomes a sub-solution for the
two Pursuer problem for a significant portion of the state space. The
contents of this chapter are based upon [250].

The biggest difference in this chapter compared with the aforemen-
tioned two-Pursuer works (c.f., Chapter 2) is the fact that, rather than
playing the game, the Pursuers’ strategy is fixed (to PP). Although DGT

is a generalization of optimal control [130], it is sometimes the case that
fixing the strategy of one of the sides can make the analysis more chal-
lenging. For example, if it is assumed that the Pursuer employs PP, the
optimal control analysis (which yields the same optimal action for the
Evader) is not trivial (c.f. [5]) due to the nonlinearity of the dynam-
ics induced by the Pursuers’ PP state-feedback strategy. This exercise
of optimizing an agent’s strategy against a particular opponent’s strat-
egy, even when the game scenario has been solved, is useful when that
opponent strategy is so widely used or well-known, as is the case for
PP. For example, in [5], a Target and Defender cooperate against an At-
tacker who employs PP. Similarly, [99, 258] consider the same scenario
but with an Attacker who employs PN (with finite capture radius and

79
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point capture, respectively). The scenario described in this chapterwas
also considered in [152] wherein it was assumed that the Pursuers em-
ploy either PP or a fixed heading strategy. There, in the PP case, point
capture was considered and the optimal control problem was solved
using numerical pseudo-spectral (collocated) methods. Here, the ana-
lytical approach is emphasized.

Themain contributions of this chapter are (1) the synthesis of the op-
timal evasion control law against dual pure pursuit with finite capture
radius, (2) characterization of the disjoint regions of the state space
corresponding to the different capture cases, (3) proofs regarding the
set of terminal Evader headings resulting in optimal dual capture, and
(4) a backwards shooting numerical method for solving the TPBVP aris-
ing where indirect optimization is employed. The chapter is organized
as follows. Section 6.2 contains the optimal control problem formula-
tion and Section 6.3 contains a derivation of the optimality conditions.
Section 6.4 characterizes the solutions for both solo and dual capture.
Section 6.6 concludes the chapter with remarks on the utility of this
solution.

6.2 PROBL EM FORMULAT ION

Let 𝐸 = (𝑥𝐸, 𝑦𝐸), 𝑃1 = (𝑥1, 𝑦1), and 𝑃2 = (𝑥2, 𝑦2) denote the Evader,
Pursuer 1, and Pursuer 2 and their respective positions in the realistic
plane ℝ2. The agents’ velocities are denoted 𝑣𝐸, and 𝑣1 = 𝑣2 = 𝑣𝑃, re-
spectively, and 𝑣𝐸 < 𝑣𝑃. In the realistic plane, the state x𝐺 ∈ ℝ6 has six
components corresponding to the coordinates of the three agents in the
Euclidean plane. For the remainder of the chapter, a relative state space
x ∈ ℝ6 based on the Evader’s instantaneous position is utilized. The
angle 𝛽 is the angle of the line 𝐸𝑃1 w.r.t. the realistic 𝑥-axis. In later op-
timality analysis, it will be shown that only the first three state compo-
nents influence the optimal solution: the Euclidean distances between
each Pursuer and the Evader, 𝑑1 and 𝑑2, and the half-angle between
the Pursuers w.r.t the Evader, 𝛼. Fig. 6.1 shows these key state compo-
nents (black) along with the remaining state components (blue) used
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to relate the relative state to the realistic (global) state. The following
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Figure 6.1: Coordinate systems for the evasion scenario with main features
and relative states in black and global states in blue.

equations relate the relative state to the global state,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥𝐸
𝑦𝐸
𝑥1
𝑦1
𝑥2
𝑦2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥
𝑦

𝑥 + 𝑑1 cos(𝛽)
𝑦 + 𝑑1 sin(𝛽)

𝑥 + 𝑑2 cos(𝛽 + 2𝛼)
𝑦 + 𝑑2 sin(𝛽 + 2𝛼)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (6.1)

The dimensional dynamics (denoted with a bar) are given as,

𝑓 =

⎡
⎢⎢⎢⎢⎢⎢⎢
⎣

̇̄𝑑1
̇̄𝑑2
̇̄𝛼
̇̄𝑥
̇̄𝑦
̇̄𝛽

⎤
⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−𝑣𝐸 cos (𝜃 + ̄𝛼) − 𝑣𝑃
−𝑣𝐸 cos (𝜃 − ̄𝛼) − 𝑣𝑃

𝑣𝐸
2 ( 1

̄𝑑1
sin (𝜃 + ̄𝛼) − 1

̄𝑑2
sin (𝜃 − ̄𝛼))

𝑣𝐸 cos ( ̄𝛽 + ̄𝛼 + 𝜃)
𝑣𝐸 sin ( ̄𝛽 + ̄𝛼 + 𝜃)
−𝑣𝐸

̄𝑑1
sin (𝜃 + ̄𝛼)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (6.2)
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6.2.1 Non-Dimensionalization

Let the capture radius be denoted 𝑑𝑐, and the ratio of Evader to Pursuer
speed be denoted 𝜇 = 𝑣𝐸/𝑣𝑃 < 1. It is useful to consider the dimen-
sionless form of the state x and its dynamics 𝑓 because, in doing so, the
number of parameters is effectively reduced from three (𝑣𝐸, 𝑣𝑃, and
𝑑𝑐) to one (𝜇). Let non-dimensional distances be defined by 𝑑 = ̄𝑑/𝑑𝑐

and non-dimensional time be defined by 𝑡 = ̄𝑡/𝑡𝑐, where 𝑡𝑐 = 𝑑𝑐/𝑣𝑃 is
the amount of time taken by a Pursuer to traverse the capture distance.
Then the non-dimensional distance dynamics are obtained from

̇̄𝑧 = d ̄𝑧
d ̄𝑡 = d(𝑑𝑐𝑧)

d(𝑡𝑐𝑡)
= 𝑑𝑐

𝑡𝑐

d𝑧
d𝑡 = 𝑑𝑐

𝑡𝑐
̇𝑧

⟹ ̇𝑧 = 𝑡𝑐
𝑑𝑐

̇̄𝑧 = 1
𝑣𝑃

̇̄𝑧, (6.3)

for 𝑧 = 𝑑1, 𝑑2, 𝑥, 𝑦 and the non-dimensional angular dynamics are ob-
tained from

̇̄𝜓 = d ̄𝜓
d ̄𝑡 = d𝜓

d(𝑡𝑐𝑡)
= 1

𝑡𝑐

d𝜓
d𝑡 = 1

𝑡𝑐
̇𝜓

⟹ ̇𝜓 = 𝑡𝑐 ̇̄𝜓 = 𝑑𝑐
𝑣𝑃

̇̄𝜓, (6.4)

for 𝜓 = 𝛼, 𝛽. Substituting Eqs. (6.3) and (6.4) into Eq. (6.2) yields the
non-dimensional form of the dynamics,

𝑓 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

̇𝑑1
̇𝑑2
̇𝛼
̇𝑥
̇𝑦
̇𝛽

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−𝜇 cos (𝜃 + 𝛼) − 1
−𝜇 cos (𝜃 − 𝛼) − 1

𝜇
2 ( 1

𝑑1
sin (𝜃 + 𝛼) − 1

𝑑2
sin (𝜃 − 𝛼))

𝜇 cos (𝛽 + 𝛼 + 𝜃)
𝜇 sin (𝛽 + 𝛼 + 𝜃)
− 𝜇

𝑑1
sin (𝜃 + 𝛼)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (6.5)

6.2.2 Problem Statement

The problem for the Evader is to select its heading control 𝜃(𝑡), 𝑡 ∈
[0, 𝑡𝑓 ] to maximize the time to capture. The cost functional is,

𝐽 = ∫
𝑡𝑓

0
(−1)d𝑡 = ∫

𝑡𝑓

0
𝐿d𝑡 = −𝑡𝑓 . (6.6)
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Note that, due to the non-dimensionalization, the scenario terminates
(capture occurs) when either one or both Pursuers come within a non-
dimensional distance of 1 to the Evader. The associated boundary con-
dition is given as

𝜙 (x0, 𝑡𝑓 , x𝑓 ) = (𝑑1𝑓
− 1) (𝑑2𝑓

− 1) = 0, (6.7)

where x0 and x𝑓 are the initial and final states, respectively. We now
express the optimal control problem as

min
𝜃(𝑡)

𝐽, s.t. ̇x = 𝑓 (x, 𝜃), 𝜙 = 0. (6.8)

6.3 OP T IMAL I T Y COND I T IONS

The Hamiltonian is given by,

H = 𝜆𝑑1
(−𝜇 cos (𝜃 + 𝛼) − 1)

+ 𝜆𝑑2
(−𝜇 cos (𝜃 − 𝛼) − 1)

+ 𝜆𝛼
𝜇
2 ( 1

𝑑1
sin (𝜃 + 𝛼) − 1

𝑑2
sin (𝜃 − 𝛼))

+ 𝜆𝑥𝜇 cos (𝛽 + 𝛼 + 𝜃) + 𝜆𝑦𝜇 sin (𝛽 + 𝛼 + 𝜃)

− 𝜆𝛽
𝜇
𝑑1

sin (𝜃 + 𝛼) − 1 (6.9)
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where 𝜆 ≡ [𝜆𝑑1
𝜆𝑑2

𝜆𝛼 𝜆𝑥 𝜆𝑦 𝜆𝛽]
⊤
are the adjoint variables, the

partial derivatives of theValue function. From the first order optimality
conditions, the optimal adjoint dynamics are

�̇�𝑑1
= −𝜕H

𝜕𝑑1
= 𝜆𝛼𝜇 sin (𝜃 + 𝛼)

2𝑑2
1

(6.10)

�̇�𝑑2
= −𝜕H

𝜕𝑑2
= 𝜆𝛼𝜇 sin (𝜃 − 𝛼)

2𝑑2
2

(6.11)

�̇�𝛼 = −𝜕H

𝜕𝛼 (6.12)

= −𝜆𝑑1
𝜇 sin (𝜃 + 𝛼) − 𝜆𝑑2

𝜇 sin (𝜃 − 𝛼)

− 𝜆𝛼
𝜇
2 ( 1

𝑑1
cos (𝜃 + 𝛼) + 1

𝑑2
cos (𝜃 − 𝛼))

(6.13)

�̇�𝑥 = −𝜕H

𝜕𝑥 = 0 (6.14)

�̇�𝑦 = −𝜕H

𝜕𝑦 = 0 (6.15)

�̇�𝛽 = −𝜕H

𝜕𝛽 = 0. (6.16)

Because this is a free final time problem with a Lagrange cost func-
tional, the transversality condition gives

𝜆⊤(𝑡𝑓 ) = 𝜈
𝜕𝜙
𝜕x𝑓

= 𝜈 [(𝑑2𝑓
− 1) (𝑑1𝑓

− 1) 0 0 0 0]
(6.17)

⟹ 𝜆𝛼𝑓
= 𝜆𝑥𝑓

= 𝜆𝑦𝑓
= 𝜆𝛽𝑓

= 0. (6.18)

Since the adjoint variables𝜆𝑥,𝜆𝑦, and𝜆𝛽 are zero at final time (Eq. (6.18))
and their derivatives are zero (Eqs. (6.14)–(6.16)) they are zero for all
time and thus the states 𝑥, 𝑦, and 𝛽 have no effect on the optimality
of the solution; only the 𝑑1, 𝑑2, and 𝛼 states are pertinent. Substituting
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𝜆𝑥 = 𝜆𝑦 = 𝜆𝛽 = 0 and using Ptolemy’s Trigonometric Identities to
expand the cosine/sine of sum terms in Eq. (6.9) yields,

H = −𝜆𝑑1
𝜇 (cos 𝜃 cos 𝛼 − sin 𝜃 sin 𝛼) − 𝜆𝑑1

−

𝜆𝑑2
𝜇 (cos 𝜃 cos 𝛼 + sin 𝜃 sin 𝛼) − 𝜆𝑑2

+

𝜆𝛼
𝜇
2 ( 1

𝑑1
(sin 𝜃 cos 𝛼 + cos 𝜃 sin 𝛼) −

1
𝑑2

(sin 𝜃 cos 𝛼 − cos 𝜃 sin 𝛼)) − 1. (6.19)

Now define the following two quantities which are the coefficients of
the cos 𝜃 and sin 𝜃 terms,

𝑐cos = 𝜇 (−𝜆𝑑1
cos 𝛼 − 𝜆𝑑2

cos 𝛼 + 𝜆𝛼
2

sin 𝛼 ( 1
𝑑1

+ 1
𝑑2

))

(6.20)

𝑐sin = 𝜇 (𝜆𝑑1
sin 𝛼 − 𝜆𝑑2

sin 𝛼 + 𝜆𝛼
2 cos 𝛼 ( 1

𝑑1
− 1

𝑑2
)) (6.21)

and substitute back into (6.19) and simplify to get,

H = 𝑐cos cos 𝜃 + 𝑐sin sin 𝜃 − 𝜆𝑑1
− 𝜆𝑑2

− 1. (6.22)

From PMP, then, the optimal heading is given by 𝜃∗ = argmin𝜃 H . To
minimize H , it must be that the vector [cos 𝜃 sin 𝜃]⊤ be antiparallel
to the vector [𝑐cos 𝑐sin], giving,

cos 𝜃∗ = −𝑐cos
√𝑐2cos + 𝑐2

sin

, sin 𝜃∗ = −𝑐sin
√𝑐2cos + 𝑐2

sin

. (6.23)

The Hamiltonian at final time is given by,

H (𝑡𝑓 ) = −𝜈 𝜕𝜙
𝜕𝑡𝑓

= 0. (6.24)

Since H is not an explicit function of time, it must also be that H (𝑡) =
0, ∀𝑡 ∈ [0, 𝑡𝑓 ].
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6.4 SOLUT ION CHARACTER I ZAT ION

We are interested in both solo and dual capture. Eq. (6.7) is satisfied for
all three terminal scenarios: both the solo capture cases (i.e., 𝑑1𝑓

> 1
and 𝑑2𝑓

= 1, or vice versa) as well as the dual capture case (𝑑1𝑓
=

𝑑2𝑓
= 1). We will develop optimal solutions for each of these cases in

the following subsections.

6.4.1 Solo Capture

The first case is solo capture where 𝑑1𝑓
= 1 and 𝑑2𝑓

> 1, or 𝑑1𝑓
> 1 and

𝑑2𝑓
= 1.

Lemma 6.1 (Solo capture trajectories). The optimal control resulting in
solo capture by 𝑃1 is 𝜃∗(𝑡) = 𝜋 − 𝛼(𝑡), ∀𝑡 ∈ [0, 𝑡𝑓 ], and for solo capture by
𝑃2 is 𝜃∗(𝑡) = 𝜋 + 𝛼(𝑡), ∀𝑡 ∈ [0, 𝑡𝑓 ].

Proof. Consider the second case: solo capture by𝑃2, which entails 𝑑2𝑓
=

1 and 𝑑1𝑓
> 1. From Eq. (6.17), 𝜆𝑑1𝑓

= 0, 𝜆𝑑2𝑓
= 𝜈 (𝑑1𝑓

− 1), and 𝜆𝛼𝑓
=

0. Substituting these terminal adjoint values into Eqs. (6.20) and (6.21)
gives,

𝑐cos = −𝜇𝜈(𝑑1𝑓
− 1) cos 𝛼𝑓 , 𝑐sin = −𝜇𝜈(𝑑1𝑓

− 1) sin 𝛼𝑓 .

Substituting these values into the optimal control Eq. (6.23) gives,

cos 𝜃∗
𝑓 = sign(𝜈) cos 𝛼𝑓 , sin 𝜃∗

𝑓 = sign(𝜈) sin 𝛼𝑓 .

If sign(𝜈) = 1 then 𝜃∗
𝑓 = 𝛼𝑓 , which implies the 𝐸 heads directly towards

𝑃2, which is clearly suboptimal. Instead, if sign(𝜈) = −1 then 𝜃∗
𝑓 = 𝜋 +

𝛼𝑓 , implying 𝐸 heads directly away from 𝑃2. Substituting this terminal
Evader heading into the adjoint dynamics Eqs. (6.10)–(6.13) gives,

�̇�𝑑1𝑓
= 0, �̇�𝑑2𝑓

= 0, �̇�𝛼𝑓
= 0,

which implies that the optimal adjoint values are constant over the tra-
jectory. Then, from the above analysis, the condition 𝜃∗ = 𝜋 + 𝛼 holds
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for all 𝑡 ∈ [0, 𝑡𝑓 ]. By symmetry, the result 𝜃∗ = 𝜋 − 𝛼 applies for solo
capture by 𝑃1.

Lemma 6.2 (Solo capture trajectory shape). In the case of solo capture, the
Evader’s and capturing Pursuer’s trajectories are straight lines in the realistic
plane.

Proof. Without loss of generality, consider solo capture by 𝑃1. From
Lemma6.1 the Evader’s optimal control is 𝜃∗(𝑡) = 𝜋−𝛼(𝑡). The Evader’s
heading in the realistic plane is given by Θ = 𝛽 + 𝛼 + 𝜃. Substituting
the optimal control in gives Θ = 𝛽+𝜋. The rate of change of the global
Evader heading is Θ̇ = ̇𝛽. From Eq. (6.5) ̇𝛽 ∝ sin (𝜃 + 𝛼). Substituting
the optimal control in makes ̇𝛽 = 0, thereby making Θ̇ = 0. Thus the
Evader’s heading in the realistic plane is constant, implying a straight-
line path. The Evader’s heading lies along the LOS 𝑃1𝐸, and thus 𝑃1’s
path is also straight.

Remark 3. Note this is also the solution to the single-Pursuer single-
Evader optimal control problem (c.f. [5]), and so the presence of the
second Pursuer did not affect the optimal trajectories.

Lemma 6.3 (Closer Pursuer). Optimal solo capture is always executed by
the Pursuer who began closer to the Evader.

Proof. Without loss of generality, consider solo capture by 𝑃1. From
Lemma 6.1 the Evader’s optimal control is 𝜃∗(𝑡) = 𝜋 − 𝛼(𝑡). Therefore,
from Eq. (6.5) and 𝜇 < 1, it is the case that 0 > ̇𝑑1(𝑡) > ̇𝑑2(𝑡), ∀𝑡 ∈
[0, 𝑡𝑓 ]. Since solo capture by 𝑃1 entails 𝑑1𝑓

= 1 < 𝑑2𝑓
it must be the case

that 𝑑2(𝑡) > 𝑑1(𝑡), ∀𝑡 ∈ [0, 𝑡𝑓 ].

There may be initial conditions for which optimal solo capture tra-
jectories do not exist. For example, if 𝐸 flees from whichever 𝑃 is closer
at initial time (following Lemmas 6.1 and 6.3) and ends up being cap-
tured by the other 𝑃, then optimal solo capture does not exist. It may
also be the case that the optimal solo capture trajectory exists but an
optimal dual capture trajectory exists.

Lemma 6.4. If, for a particular initial condition, both solo capture and dual
capture trajectories exist and satisfy all of the optimality conditions, the solo
capture trajectory is uniquely optimal.
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Proof. From the definition of 𝜙 in (6.7) the dual capture candidate solu-
tion satisfies all of the optimality conditions for solo capture. However,
Lemma 6.1 specifies the optimal control for solo capture (𝜃∗ = 𝜋 − 𝛼
for 𝑃1 or 𝜃∗ = 𝜋 + 𝛼 for 𝑃2). Any other control action would result in a
smaller 𝑡𝑓 compared to the solo capture candidate solution. Therefore,
the solo capture solution is optimal.

6.4.2 Dual Capture

In the case of dual capture both 𝑑1𝑓
, 𝑑2𝑓

= 1. However, if these terminal
distances are substituted into Eq. (6.17) then 𝜆𝑑1𝑓

= 𝜆𝑑2𝑓
= 0. Substitut-

ing these values for the terminal distance adjoints (alongwith all of the
other known terminal adjoints) gives H (𝑡𝑓 ) = −1 which contradicts
Eq. (6.24), which says that H (𝑡𝑓 ) = 0. Dual capture, thus, exhibits a
singularity, which is also evident by the fact that the terminal surface
corresponding to dual capture, {𝑑1, 𝑑2, 𝛼 ∣ 𝑑1 = 𝑑2 = 1}, is a line ∈ ℝ1.
Isaacs states [130] that a non-degenerate terminal surface be of dimen-
sion one less than the dimension of the state space. The consequence,
here, is that many different trajectories terminate at the same point on
the dual capture termination line, even for the same terminal 𝛼. In or-
der to proceed, the limiting Evader heading, 𝜃∗(𝑡), 𝑡 → 𝑡𝑓 and its re-
lationship to the limiting adjoint values is treated using a procedure
described in [89]:

tan 𝜃∗(𝑡𝑓 ) = lim
𝑡→𝑡𝑓

tan 𝜃∗ = lim
𝑡→𝑡𝑓

−𝑐sin
−𝑐cos

= lim
𝑡→𝑡𝑓

sin 𝛼𝑓 (𝜆𝑑2𝑓
− 𝜆𝑑1𝑓

)

cos 𝛼𝑓 (𝜆𝑑2𝑓
+ 𝜆𝑑1𝑓

)
.

Rearranging this expression for the adjoint variables yields

𝜅 ≡
𝜆𝑑2𝑓

𝜆𝑑1𝑓

=
tan 𝛼𝑓 + tan 𝜃∗

𝑓
tan 𝛼𝑓 − tan 𝜃∗

𝑓
. (6.25)
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Substituting the relation (6.25), along with (6.18) into Eqs. (6.9) and
(6.24) and solving for the terminal distance adjoints yields,

𝜆𝑑1𝑓
= 1

−𝜇 cos (𝜃𝑓 + 𝛼𝑓 ) − 1 + 𝜅 (−𝜇 cos (𝜃𝑓 − 𝛼𝑓 ) − 1)
(6.26)

or,

𝜆𝑑2𝑓
= 1

1
𝜅 (−𝜇 cos (𝜃𝑓 + 𝛼𝑓 ) − 1) − 𝜇 cos (𝜃𝑓 − 𝛼𝑓 ) − 1

. (6.27)

Lemma 6.5. At 𝜃𝑓 = 𝜋 ± 𝛼 the dual capture solution is equivalent to a
solo capture solution with the non-capturing Pursuer’s terminal distance ap-
proaching 1.

Proof. FromEq. (6.25), itmust be that 𝜅 = 0when 𝜃𝑓 = 𝜋−𝛼 and 𝜅 = ∞
when 𝜃𝑓 = 𝜋 + 𝛼 which imply 𝜆𝑑1𝑓

≠ 0 and 𝜆𝑑2𝑓
= 0, or 𝜆𝑑1𝑓

= 0 and
𝜆𝑑2𝑓

≠ 0, respectively. Thus, when one of the terminal distance adjoints
is zero and the other is non-zero, then from the analysis in Lemma 6.1
the optimal control is 𝜃∗(𝑡) = 𝜋 ±𝛼(𝑡) over the whole trajectory. There-
fore, the trajectories are identical to the solo capture case wherein the
non-capturing Pursuer’s terminal distance approaches 1.

Proposition 6.1 (Optimal 𝜃𝑓 for dual capture). The range

𝜃𝑓 ∈ (𝜋 − 𝛼, 𝜋 + 𝛼)

produces globally optimal trajectories, and the trajectories produced by 𝜃𝑓 ∉
(𝜋 − 𝛼, 𝜋 + 𝛼) are suboptimal.

Proof. From Eq. (6.25) whenever 𝜃𝑓 ∉ [𝜋 − 𝛼𝑓 , 𝜋 + 𝛼𝑓 ] the terminal
adjoint ratio 𝜅 < 0. This implies that the terminal distance adjoints,
𝜆𝑑1𝑓

and 𝜆𝑑2𝑓
, have different signs; thus one of either 𝜆𝑑1𝑓

> 0 or 𝜆𝑑2𝑓
>

0. Suppose, without loss of generality that 𝜆𝑑1𝑓
> 0. Equation (6.18)

states that 𝜆𝛼𝑓
= 0 – based on the optimal adjoint dynamics, Eq. (6.10),

𝜆𝑑1
is not changing at final time. Thus 𝜆𝑑1

> 0 for some nonzero time
leading up to final time due to the smoothness of Eqs. (6.10)-(6.13).
The adjoint variable 𝜆𝑑1

≡ 𝜕𝑉
𝜕𝑑1

where 𝑉 = min𝜃(𝑡) 𝐽 is the Value func-
tion. Thus if 𝜆𝑑1

> 0 the Value increases as distance from 𝑃1 increases.
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Since the cost functional is the negative of final time, increasing the
distance from 𝑃1 is a disadvantage to the 𝐸, in this case. Contrariwise,
when 𝜃𝑓 ∈ [𝜋 − 𝛼𝑓 , 𝜋 + 𝛼𝑓 ] for dual capture, and in the single capture
case, 𝜆𝑑1

, 𝜆𝑑2
≤ 0∀𝑡. Thus in the latter, optimal, cases, increasing dis-

tance from a Pursuer reduces the Value, which is advantageous for the
𝐸. In the absence of turning-rate constraints, increasing distance from
a Pursuer (whilst keeping the other distance constant) should always
benefit 𝐸. Consequently, dual capture with 𝜃𝑓 ∉ [𝜋 − 𝛼𝑓 , 𝜋 + 𝛼𝑓 ] must
be suboptimal.

Remark 4. The terminal Evader headings

𝜃𝑓 ∈ (𝛼𝑓 , 𝜋 − 𝛼𝑓 ) ∪ (𝜋 + 𝛼𝑓 , 2𝜋 − 𝛼𝑓 ) ,

although suboptimal for this scenario (i.e., when both solo and dual
capture are possible), are optimal for a scenario in which only dual
capture is desired. Suppose 𝐸 is defending some other target against
the Pursuers and, after interception, is destroyed. In that scenario, the
Evader wishes to collide with the two Pursuers simultaneously.

𝛼𝑓

𝜃𝑓
1 1

𝐸

𝑃1 𝑃2

Optimal dual capture
Suboptimal

[ February 2, 2022 at 11:47 – classicthesis v4.6 ]

Figure 6.2: Optimality of the terminal Evader heading sectors.

Fig. 6.2 summarizes Proposition 6.1, showing the sectors of 𝜃𝑓 for
optimal dual capture (green), and where dual capture is suboptimal
(red).

Lemma 6.6 (Symmetric dual capture). For initial conditions with 𝑑1 =
𝑑2, the optimal control is 𝜃(𝑡) = 𝜋, ∀𝑡 ∈ [0, 𝑡𝑓 ], 𝐸’s trajectory is straight in
the realistic plane, and the scenario terminates in dual capture.
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Proof. Suppose (𝑑1𝑓
, 𝑑2𝑓

, 𝛼𝑓 ) = (1, 1, 𝛼𝑓 ) and 𝜃𝑓 = 𝜋. From Eq. (6.25)
𝜅 = 1 and so 𝜆𝑑1𝑓

= 𝜆𝑑2𝑓
. Substituting into Eq. (6.13) with 𝜆𝛼𝑓

= 0
(from Eq. (6.17)) gives �̇�𝛼𝑓

= 0 which implies that �̇�𝑑1
= �̇�𝑑2

= �̇�𝛼 =
0. So 𝜆𝑑1

= 𝜆𝑑2
, ∀𝑡 ∈ [0, 𝑡𝑓 ]. From Eqs. (6.20)–(6.23), then, 𝜃∗(𝑡) =

𝜋, ∀𝑡 ∈ [0, 𝑡𝑓 ]. Also, Eq. (6.5) implies 𝑑1(𝑡) = 𝑑2(𝑡), ∀𝑡 ∈ [0, 𝑡𝑓 ] as
a result of this control. Thus any point that starts with 𝑑1 = 𝑑2 can
be reached (retrogressively) from such a trajectory. The global Evader
heading Θ = 𝛽 + 𝛼 + 𝜃 thus becomes Θ = 𝛽 + 𝛼 + 𝜋. Its time rate of
change is Θ̇ = ̇𝛽 + ̇𝛼, which, from Eq. (6.5), gives Θ̇ = 0 since 𝑑1 = 𝑑2

and 𝜃 = 𝜋 along the trajectory.

Suppose the initial state is s.t. dual capture is optimal. If 𝑑1 = 𝑑2,
then Lemma 6.6 applies and the Evader’s optimal control is 𝜃∗(𝑡) = 𝜋.
In the general case where 𝑑1 ≠ 𝑑2, however, the optimal control can
only be obtained by solving the TPBVP:

𝜃∗
𝑓 , 𝛼∗

𝑓 , 𝑡∗
𝑓 = argmin

𝜃𝑓 ,𝛼𝑓 ,𝑡𝑓

∥∥∥∥∥

𝑑10
− 𝑑1(0; 𝜃𝑓 , 𝛼𝑓 , 𝑡𝑓 )

𝑑20
− 𝑑2(0; 𝜃𝑓 , 𝛼𝑓 , 𝑡𝑓 )

𝛼0 − 𝛼(0; 𝜃𝑓 , 𝛼𝑓 , 𝑡𝑓 )

∥∥∥∥∥
, (6.28)

where 𝜃𝑓 ∈ [𝜋 − 𝛼𝑓 , 𝜋 + 𝛼𝑓 ] and (𝑑10
, 𝑑20

, 𝛼0) are obtainedusingEq. (6.1),
based on the initial Cartesian coordinates of the three agents. Given
𝜃𝑓 , the terminal adjoint values are obtained by Eqs. (6.25)–(6.27). The
quantities x(0; 𝜃𝑓 , 𝛼𝑓 , 𝑡𝑓 ) are obtained by integratingEqs. (6.5) and (6.10)–
(6.13) backwards from 𝑡𝑓 to 0. The trajectory obtained is then converted
to the global coordinates via Eq. (6.1) and then shifted and rotated to
match the original global configuration. This process is repeated in a
backwards shooting numerical solution scheme – NLopt is used with
the COBYLA (Constrained Optimization by Linear Approximation)
solver to solve Eq. (6.28) based on an initial guess [132, 195]. With
the solution to Eq. (6.28) in hand, the Evader may compute 𝜃(𝑡), the
optimal control along every point in the trajectory, from Eq. (6.23).
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6.4.3 Full Solution

Based on the solution characteristics established above, the state space
C ≡ {(𝑑1, 𝑑2, 𝛼) ∣ 𝑑1, 𝑑2 ≥ 1 and 0 < 𝛼 < 𝜋

2 } is partitioned into three re-
gions corresponding to the different terminal scenarios:

C = ∪

⎧{{{{
⎨{{{{⎩

ℛ1, {(𝑑1, 𝑑2, 𝛼) ∣ 𝑑1𝑓
= 1, 𝑑2𝑓

> 1}

ℛ2, {(𝑑1, 𝑑2, 𝛼) ∣ 𝑑1𝑓
> 1, 𝑑2𝑓

= 1}

ℛ1,2, {(𝑑1, 𝑑2, 𝛼) ∣ 𝑑1𝑓
= 1, 𝑑2𝑓

= 1}

, (6.29)

with the following control modes

𝜃∗(𝑡) =

⎧{{{{
⎨{{{{⎩

𝜋 − 𝛼(𝑡), (𝑑1, 𝑑2, 𝛼) ∈ ℛ1

𝜋 + 𝛼(𝑡), (𝑑1, 𝑑2, 𝛼) ∈ ℛ2

solution to TPBVP, (𝑑1, 𝑑2, 𝛼) ∈ ℛ1,2

. (6.30)

Fig. 6.3 depicts this partitioning of C . The green trajectories corre-
spond to dual capture trajectories with 𝜃𝑓 = 𝜋 − 𝛼𝑓 and the red trajec-
tories correspond to dual capture trajectories with 𝜃𝑓 = 𝜋 + 𝛼𝑓 , across
the range of 𝛼𝑓 . All of the trajectories terminate on the line

{(𝑑1𝑓
, 𝑑2𝑓

, 𝛼𝑓 ) ∣ 𝑑1𝑓
= 𝑑2𝑓

= 1} .

Given aparticular initial condition, the information in Fig. 6.3 is enough
to determine the corresponding terminal scenario. Note the two sepa-
rating surfaces form a boat-hull shape inwhich the black line forms the
bottom and the trajectories along 𝛼 = 0 form the front. A more human-
readable representation is given in Fig. 6.4 wherein the initial Pursuer
positions are fixed and the Evader’s initial position is varied over the
realistic plane. The numbered blue points in Fig. 6.4 correspond to ini-
tial Evader positions for each of the example simulations contained in
the following section.
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Figure 6.3: A partitioning of the state space into regions associated with each
type of capture.
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Figure 6.4: A representation of the partitioning of C in the realistic plane for
given Pursuer initial positions for various Evader initial positions.

In lieu of storing some representation of the regions or their parti-
tioning surfaces to determine the optimal capture scenario,Algorithm 1
contains a procedure for computing the optimal control.

Algorithm 1 Optimal Evasion Against Dual Pure Pursuit
Require: (𝑑10

, 𝑑20
, 𝛼0)

if 𝑑1 = 𝑑2 then
𝜃(𝑡) ← 𝜋

else
𝑖 ← argmin1,2 𝑃𝐸
Forward shoot assuming 𝐸 flees from 𝑃𝑖 until capture
if 𝑃𝑖 captures then

𝜃(𝑡) ← 𝜋 ∓ 𝛼(𝑡) ▷ depending on 𝑖 = 1 or 2
else

𝜃(𝑡) ← solution of TPBVP ▷ Eq. (6.28)

6.5 S IMULAT IONS

In this section, four simulations are carried out, demonstrating the so-
lution characteristics described in the previous section. Fig. 6.4 shows
the Evader initial positions for each of the simulations. The Pursuers’
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Table 6.1: Example simulations parameters and description
# 𝑥 𝑦 Description
1 -7 9 Solo capture by 𝑃1
2 -5.53 6.73 Limiting solo/dual capture
3 -4 5 General dual capture
4 0 5 Symmetric dual capture

initial positions are (±10, 0) for all of the examples. Note that Figs. 6.3
and 6.4 are shown for a speed ratio of 𝜇 = 0.8. All of the simulations
contained herein are based on the same speed ratio. Table 6.1 summa-
rizes the simulation parameters and identifies the unique feature of
each example.

For the first example, the Evader’s initial position is s.t. the system
state is in ℛ1 and thus the scenario ends in solo capture by 𝑃1. As
proven in Lemma6.2, the trajectories (in the realistic plane) are straight
for 𝐸 and 𝑃1. Fig. 6.5 shows the trajectories for this example.
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Figure 6.5: Example 1: Solo capture by 𝑃1.

In the second example, the Evader’s initial position is s.t. the system
state lies on the border between ℛ1 and ℛ1,2. This is the limiting case
of solo/dual capture wherein the Pursuer who is initially further away
terminates at exactly the capture distance, but the trajectories for 𝑃1

and 𝐸 are straight (as in solo capture). Lemma 6.5 proves this behavior.
Fig. 6.6 shows the trajectories for this example.
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Figure 6.6: Example 2: Limiting solo/dual capture.

In the third example, the Evader’s initial position is s.t. the system
state lies in ℛ1,2, thus the scenario terminates with both Pursuers cap-
turing the Evader simultaneously. These trajectories were obtained via
backwards shooting to the specified initial conditions (c.f. Table 6.1).
Fig. 6.7 shows the trajectories obtained for this example.
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Figure 6.7: Example 3: General dual capture.

In the fourth example, the Evader’s initial position is equidistant to
the two Pursuers, thus satisfying the conditions of Lemma 6.6. The
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resulting Evader trajectory is straight in the realistic plane and the Pur-
suers’ trajectories are symmetric. Fig. 6.8 shows the trajectories for this
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Figure 6.8: Example 4: Symmetric dual capture.

example.

6.6 CONCLUS ION

In this chapter the optimal control problem of pursuit-evasion type
wherein an Evader seeks to maximize its life in the presence of two
faster Pursuers using PP who have a finite capture radius was solved.
The optimal control was obtained via PMP and the complete state space
was filled with optimal trajectories. Optimal trajectories terminating
in an isochronous (dual) capture by both Pursuers produce a singu-
larity which was rectified by analyzing the limiting Evader heading.
A partitioning of the state space was generated based off of the so-
lution characteristics separating into regions of capture by 𝑃1 alone,
by 𝑃2 alone, and by both simultaneously. In the dual capture case, a
TPBVP was posed and a procedure, based on backwards shooting, was
described. Compared to the solutions in the previous chapter, wherein
the Evader chooses a constant heading, this solution ismuchmore com-
putationally expensive; the former ismuchmore amenable to real-time
onboard implementation. The next chapter introduces additional com-
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plexity in that more Pursuers are considered and the Pursuers attempt
to minimize the time until capture.



7
M PURSUER GAME OF T IME

7.1 IN TRODUCT ION

Whereas the previous chapters only considered Pursuers who imple-
ment the PP policy, this chapter considers more intelligent Pursuers
who seek to capture the Evader in minimum time. Because the Evader
seeks to delay capture as long as possible, this is no longer an opti-
mal control problem, but rather a zero-sum differential game, i.e., the
MP1E GoT. The central contribution of this work is to provide open-
loop optimal pursuit and evasion strategies to the MP1E GoT, which
partly addresses Research Objectives 4 and 5 (demonstrate utility of
1v1 and 2v1 solutions in this more complex scenario, and adding more
Pursuers, respectively). This material is based on [245].

These open-loop strategies, while useful, are not necessarily the solu-
tion to theMP1EGoT in the sense of the feedback saddle-point (see [19]).
Traditional differential game analysis a la Isaacs’ method [130] is dif-
ficult, as is shown. In order to proceed, a two-person extension to the
PMP is employed to establish the necessary conditions for optimality
pertaining to the Pursuers’ strategy.

The Pursuers’ objective is to intercept the Evader in minimum time
by cooperating as a team. Works such as [43] highlight the perfor-
mance advantage of explicit cooperation among the Pursuer team. The
agents are assumed to have full access to the state of the system, namely,
the positions of each agent. It is shown that, for general initial posi-
tions of the agents, cooperation among the Pursuers can significantly
reduce the capture time of the Evader compared to operating in iso-
lation. The state of the system is of high dimension due to the num-
ber of agents – some work has been done on decomposition methods
to ameliorate this issue [74, 75, 77]. However, our approach does not
rely on decomposition and therefore considers full cooperation among

99
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Pursuers. This work extends the solution to the one-on-one and two-
on-one games by allowing the Evader to stand still when it is advanta-
geous. In these cases, the Evaderwould onlyworsen its capture time by
moving from this point. Due to the proposed Pursuer strategy which
consists of straight-line paths, the solution lends itself to a geometric in-
terpretation with many interesting properties. Several algorithms are
presented for the efficient computation of the Evader’s region of dom-
inance as well as the optimal capture point under the proposed strate-
gies.

Although the solution presented in this chapter is open-loop opti-
mal, the analysis is a useful step in fully solving and verifying the M-
Pursuer one-Evader differential game. The solution of the latter opens
up the possibility of analyzing the seemingly intractable (and ambi-
tious) M-Pursuer N-Evader differential game by breaking the game
down into instances of M-Pursuer one-Evader games and considering
combinations of Pursuer assignments. The advantage, then, is the re-
moval of the burden of a very high dimensional state space in the dif-
ferential game analysis.

The remainder of the chapter is organized as follows. Section 7.2
contains the problem formulation. Section 7.3 elaborates on the formu-
lation and introduces some solution methods. Section 7.3.3 presents
a new geometric approach, Section 7.4 defines several efficient algo-
rithms, and Section 7.5 contains simulation results. Section 7.6 sum-
marizes the results of this chapter.

7.2 PROBL EM FORMULAT ION

A pursuit-evasion scenario is considered with a single Evader, 𝐸, and
multiple Pursuers, 𝑃𝑖, for 𝑖 = 1, … , 𝑀. The interest is in the case where
𝑀 ≥ 3 as the single- and two-Pursuer scenarios have been addressed
in [107, 130]. The objective of the Pursuers is to capture the Evader in
minimum time, whereas the Evader tries to delay capture as long as
possible. The case in which the Pursuers are faster than the Evader is
considered. In the case of equal speeds (or a fast Evader) onemust first
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determine where in the state space capture is even possible (i.e., solve
the game of kind) before solving the capture time problem (the game
of degree). Accompanying the speed advantage, the Pursuers have an
advantage in numbers. There is a marked reduction in capture time in
the two-Pursuer scenario compared to having just one Pursuer [107].
The intent of this work is to show even greater improvementwhen 𝑀 >
2.

The state of the system is determined solely by the positions of each
of the agents on the Euclidean plane in two dimensions

𝐸 = (𝑥𝐸, 𝑦𝐸),

𝑃𝑖 = (𝑥𝑃𝑖
, 𝑦𝑃𝑖

), ∀𝑖 ∈ {1, … , 𝑀},

so the state space’s dimension is 2(𝑀 + 1). All the agents have sim-
ple motion, meaning their control input at every time instant is their
heading angle. For the Evader, the speed is included as a control in-
put bounded by 𝑉𝐸𝑚𝑎𝑥

; the Pursuers all share a constant velocity, 𝑉𝑃 >
𝑉𝐸𝑚𝑎𝑥

. Thus the kinematics of the system can be written as

̇𝑥𝐸 = 𝑢𝐸,

̇𝑦𝐸 = 𝑣𝐸,

̇𝑥𝑃𝑖
= 𝑢𝑖 𝑖 = 1, … , 𝑀,

̇𝑦𝑃𝑖
= 𝑣𝑖 𝑖 = 1, … , 𝑀,

𝑠.𝑡. 𝑢2
𝐸 + 𝑣2

𝐸 ≤ 𝑉𝐸𝑚𝑎𝑥
,

𝑢2
𝑖 + 𝑣2

𝑖 = 𝑉𝑃 𝑖 = 1, … , 𝑀,

(7.1)

where 𝑢𝐸 and 𝑣𝐸 are the Evader’s velocity components in the 𝑥 and 𝑦
direction, and, similarly, 𝑢𝑖 and 𝑣𝑖 for the 𝑖th Pursuer.

Remark 5. Although it appears that the Pursuers have two control vari-
ables they only have one since the choice of either 𝑢𝑖 or 𝑣𝑖 completely
determines the other by the final constraint in (7.1).

In the realistic plane, there are 2𝑀 + 2 states, 2 for each agent. How-
ever, it is possible to reduce the number of states to 2𝑀 by consider-
ing a relative coordinate system. In this relative coordinate system, the
Evader’s position is always (0, 0) and thus the 2𝑀 states correspond
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to the 𝑥 and 𝑦 coordinate of each Pursuer relative to the Evader. The
transformation is given by

𝑥𝑖 = 𝑥𝑃𝑖
− 𝑥𝐸 𝑖 = 1, … , 𝑀,

𝑦𝑖 = 𝑦𝑃𝑖
− 𝑦𝐸 𝑖 = 1, … , 𝑀,

(7.2)

where (𝑥𝑖, 𝑦𝑖) are the coordinates of the 𝑖th Pursuer relative to the Evader.
Substituting (7.1) into (7.2) yields the following expressions for the
kinematics in the reduced state space

̇𝑥𝑖 = 𝑢𝑖 − 𝑢𝐸 𝑖 = 1, … , 𝑀,

̇𝑦𝑖 = 𝑣𝑖 − 𝑣𝐸 𝑖 = 1, … , 𝑀,

𝑠.𝑡. 𝑢2
𝐸 + 𝑣2

𝐸 ≤ 𝑉𝐸𝑚𝑎𝑥
,

𝑢2
𝑖 + 𝑣2

𝑖 = 𝑉𝑃 𝑖 = 1, … , 𝑀.

(7.3)

Figure 7.1 shows the two coordinate systems and how they are related.

The agents have at their disposal the current state of the system
(i.e., full information) but not the current control action of the other
agents. One may be tempted to consider a scenario wherein the agents
also have access to the history of the system’s evolution (including past
control actions of all the agents). In this alternate formulation, agents
may form some belief about their opponent’s next action that is con-
ditioned on the state history and previous control actions. Isaacs dis-
cusses this possibility and reasons that, because the agents’ control in-
put can change abruptly without notice, it is impossible to rely on any
prediction of the opponent’s future position [130]. If an agent truly
did adhere to some behavior beyond what is specified in the kinemat-
ics, then perhaps its opponent could improve its performance if it could
correctly ascertain the behavior. What is gained in performance is lost
in robustness, as is generally the case in the real world.

Let the state of the system be represented by

x ≜ ((𝑥1, 𝑦1), … , (𝑥𝑀, 𝑦𝑀)) .



7.2 PROBL EM FORMULAT ION 103

𝑦

𝑥

(𝑥𝑃1
, 𝑦𝑃1

)
𝑃1

𝑢𝑖

𝑣𝑖

(𝑥𝑃𝑖
, 𝑦𝑃𝑖

)
𝑃𝑖

(𝑥𝑃𝑀
, 𝑦𝑃𝑀

)
𝑃𝑀

(𝑥𝐸, 𝑦𝐸)
𝑢𝐸

𝑣𝐸

𝐸

⋱

. .
.

[ February 3, 2022 at 13:25 – classicthesis v4.6 ]

(a) Global

(𝑥1, 𝑦1)
𝑃1

𝑢𝑖 − 𝑢𝐸

𝑣𝑖 − 𝑣𝐸

(𝑥𝑖, 𝑦𝑖)
𝑃𝑖

(𝑥𝑀, 𝑦𝑀)
𝑃𝑀

⋱

. .
.

(0, 0)
𝐸

[ February 3, 2022 at 13:26 – classicthesis v4.6 ]

(b) Relative

Figure 7.1: Coordinate systems
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Similarly, let

u𝐸 ≜ (𝑢𝐸, 𝑣𝐸) and u𝑃 ≜ (𝑢1, 𝑣1, … , 𝑢𝑀, 𝑣𝑀)

represent the control inputs of the Evader and Pursuers, respectively.
Note that each part of the state is a function of time, though it will
not be notated explicitly. The set of terminal states for the scenario is
defined by the requirement of point capture:

Λ = {x | ∃𝑖, 1 ≤ 𝑖 ≤ 𝑀 𝑠.𝑡. (𝑥𝑖, 𝑦𝑖) = (0, 0)} . (7.4)

Remark 6. Eq. (7.4) allows one or more Pursuers to reach the position
(0, 0) at time 𝑇.

Another way of denoting the set of the terminal conditions is by
defining

Ψ(x) =
𝑀
∏
𝑖=1

(𝑥2
𝑖 + 𝑦2

𝑖 ), (7.5)

and setting
Λ = {x | Ψ(x) = 0} . (7.6)

The condition Ψ(x) = 0 is akin to a terminal manifold of dimension
2𝑀 − 1.

The terminal time 𝑇, or capture time, is the first time such that the
system state enters Λ,

𝑇 = inf{𝑡 | x(𝑡) ∈ Λ}. (7.7)

Let the set of interceptors be those Pursuers whose positions are (0, 0)
at time 𝑇, i.e.,

ℐ = {𝑖 | (𝑥𝑖(𝑇), 𝑦𝑖(𝑇)) = (0, 0)}. (7.8)

The terminal time 𝑇 is also the cost (or payoff) of the game:

𝐽(u𝐸(x),u𝑃(x)) = ∫
𝑇

0
𝑑𝜏, (7.9)
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with u𝐸,u𝑃 subject to (7.3). The value function describes the minimax
value of the cost function starting from the point x0 = x(0) at time
𝑡 = 0 [19]

𝑉(x0) = minuP
maxuE

∫
𝑇

0
𝑑𝜏. (7.10)

For such a function to exist the min and max must be interchangeable.
The existence of this function or even of a saddle-point in the cost func-
tion is not guaranteed, however it will henceforth be assumed that at
least the saddle-point exists. That is, the control inputs that satisfies
the following is sought

𝐽(u𝐸,u∗
𝑃) ≤ 𝐽(u∗

𝐸,u∗
𝑃) ≤ 𝐽(u∗

𝐸,u𝑃). (7.11)

The control policies in (7.9) are state feedbackpolicies, and thus 𝐽(u∗
𝐸,u∗

𝑃)
represents a feedback saddle-point equilibrium. The Isaacs Equation [130]
can be written as

minu𝑃
maxu𝐸

𝑀
∑
𝑖=1

𝑉𝑥𝑖
(𝑢𝑖 − 𝑢𝐸) + 𝑉𝑦𝑖

(𝑣𝑖 − 𝑣𝐸) + 1 = 0, (7.12)

where

𝑉𝑥𝑖
= 𝜕𝑉

𝜕𝑥𝑖
,

𝑉𝑦𝑖
= 𝜕𝑉

𝜕𝑦𝑖
.

For many problems in [130], the Isaacs Equation (7.12), along with
information about the terminal surface, is sufficient to generate game-
optimal trajectories. Indeed, this is also the approach taken in [85]. If
this is attempted here, the curse of dimensionality bites us and an im-
passe is reached.

To circumvent the need to deal directly with the value function itself,
an analysis based upon open-loop strategies is utilized. As in many of
the examples in [19] the explicit dependence of the control policies on
the state is dropped

u𝑃(𝑡, x) = û𝑃(𝑡), u𝐸(𝑡, x) = û𝐸(𝑡). (7.13)
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Here, û𝑃(𝑡) and û𝐸(𝑡) represent open-loop controls for the Pursuers
and Evader, respectively.

7.2.1 Necessary Conditions for Optimality

Under the assumptions that the pair (u∗
𝑃,u∗

𝐸) provides a saddle-point
solution in feedback strategies and the corresponding open-loop repre-
sentation (û∗

𝑃, û∗
𝐸) provides a saddle-point solution in open-loop poli-

cies then Theorem 2 of [19] provides a framework for deriving the nec-
essary conditions for optimality. The procedure is based upon the two-
person extension to the PMP. First let the Hamiltonian be given by

𝐻(𝑡, 𝜆(𝑡), û𝑃, û𝐸) = 1 + 𝜆⊤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢
⎣

𝑢1 − 𝑢𝐸
𝑣1 − 𝑣𝐸
𝑢2 − 𝑢𝐸
𝑣2 − 𝑣𝐸

⋮
𝑢𝑀 − 𝑢𝐸
𝑣𝑀 − 𝑣𝐸

⎤
⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (7.14)

where 𝜆 is the costate vector in ℝ2𝑀

𝜆 = (𝜆𝑥1
, 𝜆𝑦1

, … , 𝜆𝑥𝑀
, 𝜆𝑦𝑀

).

Thus the Hamiltonian becomes

𝐻 = 1 +
𝑀
∑
𝑖=1

𝜆𝑥𝑖
(𝑢𝑖 − 𝑢𝐸) + 𝜆𝑦𝑖

(𝑣𝑖 − 𝑣𝐸), (7.15)

where the elements 𝑢𝑖 and 𝑣𝑖, 𝑖 = 1, … , 𝑀, and 𝑢𝐸 and 𝑣𝐸 are taken to
mean the corresponding elements in the open-loop policies û𝑃 and û𝐸,
respectively. The costate variables satisfy

�̇�𝑥𝑖
= −𝜕𝐻

𝜕𝑥𝑖
= 0, �̇�𝑦𝑖

= −𝜕𝐻
𝜕𝑦𝑖

= 0, for 𝑖 = 1, … , 𝑀. (7.16)

Eq. (7.14) does not depend explicitly on the state x. This is a result of
the fact that the kinematics are only a function of the control inputs.
Thus, it must be that �̇� = 0 which implies the costate variables are con-
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stant w.r.t. time (e.g., 𝜆𝑥1
(𝑡) = 𝜆𝑥1

= 𝑐𝑜𝑛𝑠𝑡). The minimizing controls
for the Pursuers can easily be obtained from (7.3) and (7.15) as

𝑢∗
𝑖 = −

𝜆𝑥𝑖
𝑉𝑃

√𝜆2𝑥𝑖
+ 𝜆2𝑦𝑖

, 𝑣∗
𝑖 = −

𝜆𝑦𝑖
𝑉𝑃

√𝜆2𝑥𝑖
+ 𝜆2𝑦𝑖

, (7.17)

which are also constant. Because the optimal control policy for the Pur-
suers is constant, their state trajectories are straight lines in the global
coordinate system. The only caveat is that the optimal control policy is
defined only if 𝜆𝑥𝑖

≠ 0 or 𝜆𝑦𝑖
≠ 0. When 𝜆𝑥𝑖

= 𝜆𝑦𝑖
= 0 the implication is

that the value of the game is not sensitive to Pursuer 𝑖.When the 𝑖th Pur-
suer participates in the capture of the Evader (i.e., 𝑥𝑖(𝑇) = 𝑦𝑖(𝑇) = 0),
either one of 𝜆𝑥𝑖

or 𝜆𝑦𝑖
must be nonzero.

7.3 SOLUT ION

Now consider the original coordinate system, and without loss of gen-
erality consider the starting position of the Evader to be the origin and
the Evader’s speed to be unity. Let the ratio of Evader’s max speed to
Pursuers’ speed be given by 𝛼 = 𝑉𝐸𝑚𝑎𝑥

/𝑉𝑃 < 1. The necessary condi-
tions for optimality derived above help to justify the following:

Proposition 7.1. The optimal trajectories of the agents are straight line paths.

Moreover, under optimal play, the Pursuers’ heading should not change;
that is, their trajectory is comprised of a single straight line segment.
Thus, the differential game problem of min-max capture time is re-
posed as finding the coordinates 𝐼 = (𝑥𝐼 , 𝑦𝐼) thatmaximize the Evader’s
life assuming all the Pursuers head directly to that point starting at
𝑡 = 0. Then the terminal time (which is also the cost/payoff of the
game in the preceding section) can be written simply as

�̄�(x, 𝐼) = min
𝑖

𝛼√(𝑥𝑃𝑖
− 𝑥𝐼)2 + (𝑦𝑃𝑖

− 𝑦𝐼)2, (7.18)

which is the smallest time for any of the Pursuers to reach the desig-
nated intercept point. There is a subtle shift here from the traditional
game-theoretic frameworkwherein the agents have absolutely no knowl-
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edge of the opponents’ present or future control action. Here, the un-
derstanding is that the point 𝐼 represents a designated intercept point
that both the Evader and Pursuers have knowledge of. Thus (7.18) is
the capture time assuming that all the agents head directly to the des-
ignated (or ’agreed upon’) point. Suppose the Evader were to choose
the point 𝐼, then (assuming 𝐼 could be reached safely by the Evader)
(7.18) gives the worst-case capture time from the perspective of the
Evader. Conversely, if the Pursuers were to select point 𝐼, it is in the
Evader’s best interest to flee from this point rather than aim towards it.
Therefore, the point 𝐼 is treated as if it is the choice of the Evader:

𝑇(x) = max
(𝑥𝐼,𝑦𝐼)

�̄�(x, 𝐼)

= max
(𝑥𝐼,𝑦𝐼)

min
𝑖

𝛼√(𝑥𝑃𝑖
− 𝑥𝐼)2 + (𝑦𝑃𝑖

− 𝑦𝐼)2,
(7.19)

wherein the Evader is selecting the best choice among all the worst-
case capture times, �̄�. Eq. (7.19) is analogous to the value of the game
in (7.10), but not necessarily equivalent. As hinted previously, the or-
der of max-min in (7.19) is not interchangeable. In fact, interchange-
ability of max and min is required to obtain a saddle point solution to a
differential game (known as Isaacs Condition) [130].

7.3.1 Constraints

Eq. (7.19) is not particularly useful because the Evader could designate
an intercept point at infinity and thus the capture timewould also be in-
finite. In otherwords, (7.19) is unconstrained. This should be amended
by stating (1) the Evader must be able to reach point 𝐼 in 𝑇 time and
(2) the Evader must be able to reach point 𝐼 safely, that is, capture of
the Evader en route to 𝐼 ought not be possible. Constraint (1) is easily
formulated as [246]

𝑥2
𝐼 + 𝑦2

𝐼 ≤ 𝑇2, (7.20)

since the Evader’s speed and starting position are one and (0, 0), re-
spectively. The need for (2) is due to the fact that if capture is possi-
ble prior to the Evader reaching 𝐼, then the associated terminal time
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Figure 7.2: AC for a single Pursuer.

𝑇 is meaningless in the sense that it is no longer analogous to a game-
theoretic solution. To formalize (2), the concept of the AC is useful. In
the context of pursuit and evasion, the AC is the locus of points such
that the ratio of distances to the Evader and Pursuer is equal to their
speed ratio [130]. Thus, the AC defines the points that can be reached
simultaneously by the Pursuer and Evader assuming they each head
directly to the point at theirmaximum speeds. Inside the circle (i.e., the
Apollonius disk) are points in which the Evader can reach before the
Pursuer under the same assumptions. When the speed ratio is unity,
the AC becomes the orthogonal bisector of the segment 𝐸𝑃. Figure 7.2
displays the AC. Note, the optimal capture point for this configuration
is marked with a +. The center of the AC, 𝑂, marked with a green ×,
lies on the line passing through the Evader and Pursuer. The defini-
tion given above stipulates that, for any point 𝐶 on the circle, the ratio
of 𝐸𝐶/𝑃𝐶 = 𝛼. This relation allows one to express the location of the
circle’s center as well as its radius

𝐸𝑂 = 𝛼2

1 − 𝛼2 𝑃𝐸, (7.21)

𝑅 = 𝛼
1 − 𝛼2 𝑃𝐸. (7.22)
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Putting the circle center associated with Pursuer 𝑖 into the global coor-
dinate system gives

𝑥𝑂𝑖
= − 𝛼2

1 − 𝛼2 𝑥𝑃𝑖
, (7.23)

𝑦𝑂𝑖
= − 𝛼2

1 − 𝛼2 𝑦𝑃𝑖
, (7.24)

𝑅𝑖 = 𝛼
1 − 𝛼2 √𝑥2

𝑃𝑖
+ 𝑦2

𝑃𝑖
. (7.25)

The set describing the Apollonius disk associated with Pursuer 𝑖 is

𝒟𝑖 = {(𝑥, 𝑦) ∣ (𝑥 − 𝑥𝑂𝑖
)2 + (𝑦 − 𝑦𝑂𝑖

)2 ≤ 𝑅2
𝑖 } . (7.26)

For a point to be safely reachable by the Evader, that is, no Pursuer
can reach the point or any point along the Evader’s path before the
Evader, the point and the Evader’s path to the point must lie inside the
Apollonius disk associated with each Pursuer

𝐼 ∈ ∩𝑀
𝑖=1𝒟𝑖,

(𝑥𝐼 − 𝑥𝑂𝑖
)2 + (𝑦𝐼 − 𝑦𝑂𝑖

)2 ≤ 𝑅𝑖, 𝑖 = 1, … , 𝑀.
(7.27)

Let the intersection of Apollonius disks be represented by 𝒮 = ∩𝑀
𝑖=1𝒟𝑖;

𝒮 is referred to as the Evader’s safety region. Eq. (7.27) is only a neces-
sary condition, however, it does not guarantee safety. First of all, it only
stipulates that the point 𝐼 is inside every Apollonius disk. It is possible
for the Evader to take a path which may leave the set 𝒮 , in which case
there exists a valid Pursuer path which leads to capture at the bound-
ary, 𝜕𝒮 . Moreover, one must recompute 𝒮 at each instant of time as
the game is played; thus under optimal play, 𝒮 shrinks over time as
the Pursuers approach the Evader. To guarantee safety, then, the point
𝐼 must lie inside the instantaneous region 𝒮(𝑡) for all 𝑡 ≤ 𝑇; at 𝑇 the
region 𝒮 collapses to a point.

Property 1. A safe Evader path is one in which, given the initial posi-
tions of all the agents, x0, and their velocities,𝑉𝐸 and𝑉𝑃, there does not
exist a Pursuer path that captures the Evader en route to its destination.

Lemma 7.1. 𝒮 is a convex set.
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Proof. 𝒮 is the intersection of Apollonius disks, and each Apollonius
disk is a convex set, thus for any two points 𝑝1, 𝑝2 ∈ 𝒮 ,

𝑝1, 𝑝2 ∈ 𝒟𝑖, 𝑖 = 1, … , 𝑀,

from the definition of set intersection and,

𝜇𝑝1 + (1 − 𝜇)𝑝2 ∈ 𝒟𝑖, 𝑖 = 1, … , 𝑀, 0 ≤ 𝑡 ≤ 1,

by convexity of the 𝒟𝑖. Therefore, by set intersection, all of these points
are also in 𝒮 , implying convexity [49].

Corollary 7.1. Any straight-line path starting inside and ending inside 𝒮
lies entirely in 𝒮 .

Theorem 7.1. Given an Evader and Pursuers at 𝑃𝑖, 𝑖 = 1, … , 𝑀 and point
𝐼 ∈ 𝒮 , if the Evader travels directly towards 𝐼 at maximum speed then the
Evader will reach 𝐼 safely. There does not exist a Pursuer path that can inter-
cept the Evader before �̄� according to (7.18).

Proof. By construction, the Evader’s initial position of (0, 0) lies inside
𝒮 . Every point along the straight-line path from (0, 0) to 𝐼 is inside 𝒮
fromCorollary 7.1. The Evader can reach 𝐼 under the prescribedEvader
policy at or before the time that any Pursuer can reach it by construc-
tion of the Apollonius disks 𝒟𝑖 and the fact that 𝐼 ∈ 𝒮 . This implies
that the point 𝐼 lies inside 𝒮(𝑡) for 𝑡 ≤ 𝑡1 where

𝑡1 = √𝑥2
𝐼 + 𝑦2

𝐼 ≤ 𝑇,

is the time atwhich the Evader reaches 𝐼. The last inequality is enforced
by (7.20). For 𝑡1 ≤ 𝑡 ≤ 𝑇 the Evader’s position 𝐸 = 𝐼, thus 𝐼 ∈ 𝒮 for
𝑡1 ≤ 𝑡 ≤ 𝑇 which completes the proof.

Theorem 7.1 specifies an Evader policy which is guaranteed to be
safe in the sense that (7.18) gives a worst-case capture time. However,
this policy is not unique and there may be many alternative policies
which are also safe [232, 246].
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Proposition 7.2. Given an Evader at 𝐸 and Pursuers at 𝑃𝑖, 𝑖 = 1, … , 𝑀
and point 𝐼 ∈ 𝒮 , if the Evader travels directly towards 𝐼 at speed 𝑠 then the
Evader will reach 𝐼 safely, where

𝑠 ≜ 1
�̄�

√𝑥2
𝐼 + 𝑦2

𝐼 . (7.28)

That is, there does not exist a Pursuer path that can intercept the Evader before
�̄� according to (7.18).

Another policy, which is analogous to the policy in Theorem 7.1 is
for the Evader to head to 𝐼 at maximum speed and then switch head-
ing between 0 and 𝜋 infinitely often while remaining at maximum
speed [246]. In fact, allowing the Evader to modulate its heading con-
tinuously alleviates entirely the need to consider its speed as a control
variable. Oddly enough, a straight-line path is not strictly necessary to
guarantee the Evader can reach 𝐼 safely (nor is it sufficient). An exam-
ple scenario is included in Section 7.5 wherein the Evader takes a safe,
non-straight-line path to 𝐼 corresponding to the argmax in (7.19). For
the remainder, the Evader is restricted to employ the policy prescribed
in Theorem 7.1 since it is safe and also consistent with Proposition 7.1.

7.3.2 Linear Program with Quadratic Constraints

The multiple Pursuer single Evader game has been re-posed as solv-
ing (7.19) subject to the constraints (7.20) and (7.27) with the under-
standing that all the agents head directly to 𝐼 corresponding to the
argmax of (7.19). In order to solve this new problem, it is formulated
as a linear program:

maxz c⊤ [zs] , (7.29)

with slack variables s = [𝑠1 𝑠2 … 𝑠𝑀]⊤ subject to the constraints

𝑔𝑖(z) = 0, 𝑖 = 1, … , 𝑀, (7.30)

−𝑔𝐸(z) ≤ 0, (7.31)

−𝑠𝑖 ≤ 0, 𝑖 = 1, … , 𝑀, (7.32)
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where c⊤ = [1 0 … 0]1×(𝑀+3), z
⊤ = [𝑚 𝑥 𝑦]. The functions 𝑔 are

defined as

𝑔𝑖(z) = 𝑚
𝛼2 − (𝑥 − 𝑥𝑃𝑖

)2 − (𝑦 − 𝑦𝑃𝑖
)2 + 𝑠𝑖, 𝑖 = 1, … , 𝑀, (7.33)

and
𝑔𝐸(z) = 𝑚 − 𝑥2 − 𝑦2. (7.34)

Note that the problem is about the maximization of a linear function
with quadratic constraints. Furthermore, the constraints (7.30) are ac-
tivewhether or not the point (𝑥, 𝑦) is on 𝜕𝒮 or 𝒮∩𝜕𝑆 (i.e., on the bound-
ary or interior of 𝒮). The set of Pursuers which intercept the Evader at
(𝑥, 𝑦) is given as,

ℐ = {𝑖 | 𝑠𝑖 = 0, 𝑖 = 1, … , 𝑀} (7.35)

hence, 𝑠𝑖 represents the remaining time required for Pursuer 𝑖 to reach
(𝑥, 𝑦) after the Evader and interceptors have reached it. Thus, (7.33)
with (7.32) is analogous to the AC constraint introduced in (7.27). In
other words, 𝑠𝑖 > 0 holds for any point inside Pursuer 𝑖’s AC. Simi-
larly, (7.34) and (7.31) correspond to the reachability constraint (7.20).
This constraint is always satisfied, however, by the definition of the AC

and the fact that (7.30) and (7.32) constrain the point to be inside 𝒮 .
This linear program is now amenable to solution using a generic nu-

merical optimization scheme. Consider the following example, whose
numerical results are shown in Figure 7.3.

Example 1.

𝑀 = 4

𝑃1 = (cos(−𝜋/6), sin(−𝜋/6))

𝑃2 = (cos(7𝜋/6), sin(7𝜋/6))

𝑃3 = (0, 1)

𝑃4 = (0, −0.5)

𝑉𝑃 = 1.5

In Figure 7.3 and those to follow the Pursuers are indicated with tri-
angles and colored according to whether or not they are in the set ℐ
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(a) Local maximum, (𝑥, 𝑦) = (0, 0.25)
and 𝑇 = 0.5.
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(b) Maximum, (𝑥, 𝑦) = (0.43, 0.25) and
𝑇 = 0.577.

Figure 7.3: Numerical results for Example 1

(red if so, yellow if not). The initial position of the Evader is marked
by a blue circle and the capture point is marked with + and 𝐸. The ACs

for those Pursuers in ℐ are shown as translucent green and for those
not in ℐ just the border is marked with yellow. Finally, the circle cen-
ters aremarkedwith ×. As previouslymentioned, the set 𝐼 is computed
from (7.35). When 𝑠𝑖 = 0, the constraints 𝑔𝐸 and 𝑔𝑖 define the AC as-
sociated with Pursuer 𝑖. Thus adding the AC constraints, (7.27), will
not change the optimization problem. In fact, once the AC constraints
are introduced, the slack variables can be removed from the problem
formulation and use 𝑔𝑖(z) ≤ 0.

For the scenario in Example 1 there is a local maxima (shown in Fig-
ure 7.3a) and two global maxima which have equal value. One of the
global maxima is shown in Figure 7.3b, and the other is symmetric
about the 𝑦 axis. The matter of local maxima and the possibility for
multiple global maxima presents a practical issue. In general, it is not
known how many maxima or local maxima may be present in (7.29).
Onemay need to initialize the numerical optimization proceduremany
times to uncover all the different maxima, and even then an upper
bound on this number is not known at this time. The two initial con-
ditions used for Example 1 are z = [0.1, 0.1, 1]⊤ and [0, 0.1, 1]⊤,
but these may not be sufficient to find the true global maximum. In
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summary, the numerical optimization process is blind to any special
structure of the problem and sensitive to the presence of local maxima.

7.3.3 Geometric Approach

The linear program introduced in the previous section must search
over a continuous space; itwasmentioned that the linear programdoes
not make use of any special structure to search the space intelligently.
Consider the following as a motivating example for finding some ad-
ditional useful information embedded in the problem:

Example 2.

𝑀 = 4

𝑃1 = (cos(−𝜋/6), sin(−𝜋/6))

𝑃2 = (cos(7𝜋/6), sin(7𝜋/6))

𝑃3 = (0, 1)

𝑉𝑃 = 1.5

Note, this example is the same as Example 1 but with 𝑃4 removed.

Now, the numerical optimization of the linear program is repeated
as before, but with initial 𝑧 = [0, 0, 1]⊤ and [0.502, 0.29, 1]⊤. Fig-
ure 7.4 shows the results of the numerical optimization. Like Example 1
there are a number of local maxima and global maxima. In this case,
there are three local maxima, one of which is shown in Figure 7.4a. The
other two local maxima are radially symmetric w.r.t the origin. Now,
the global maximum is unique and lies in 𝒮 ∩ 𝜕𝒮 , that is, in the in-
terior of the region 𝒮 whereas before the global maximum was near
(essentially on) the border 𝜕𝒮 . The former case is easy to understand
– it corresponds to the furthest distance from the Evader to a point on
𝜕𝒮 . In the latter case it becomes optimal for the Evader to not move at
all.

Remark 7. Simultaneous capture by two Pursuers, an example of which
is shown in Figure 7.4a, occurs at the intersection ofACs associatedwith
the intercepting Pursuers.
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(a) Local max, (𝑥, 𝑦) = (0.502, 0.29) and
𝑇 = 0.58.
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(b) Max, (𝑥, 𝑦) = (0, 0) and 𝑇 = 0.667.

Figure 7.4: Numerical results for Example 2 highlighting some special prop-
erties of the solution.

Figure 7.4b, on the other hand, depicts simultaneous capture by three
Pursuers.

When Isaacs first posed the two cutters and fugitive ship problem
[130] he posited that the optimal strategy would be for all the agents
to head to the further of the twoAC intersection points. Indeed, thiswas
proven to be true in certain regions of the state space [107]. Of course,
the game may also degenerate to capture by a single Pursuer, which
also holds true for the multiple Pursuer case as shall be explored later
on. The geometry and solution of the twoPursuer game is driven by the
fact that optimality dictates straight-line paths. From Proposition 7.1
and its preceding analysis, the analysis becomes primarily geometric
in which the ACs are of chief importance. However, from Figure 7.4b
it is plain that the optimal intercept point (0, 0) has little to do with
the ACs themselves. Up to now only the division of the state space into
regions dominated by the Evader and a particular Pursuer have been
considered. Now consider the region dominated by a particular Pur-
suer versus all the other Pursuers; that is, the region of the state space
where Pursuer 𝑖 can reach before any other Pursuer 𝑗 ≠ 𝑖. This parti-
tioning of the state space (which, at themoment, leaves out any consid-
eration of the Evader) is precisely a Voronoi diagram [58]. Because the
Pursuers share the same velocity, the diagram is comprised of straight
line segments which partitions the entire 𝑥𝑦 plane. Figure 7.5 shows
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Figure 7.5: Example 2 with the Pursuer Voronoi diagram overlaid. The vertex
is colored blue and the cell borders are shown as dashed lines.

the same setup but with the Pursuer Voronoi diagram overlaid.

Remark 8. The AC intersections lie on the edges of the Pursuer Voronoi
diagram. Thus, for simultaneous capture by twoPursuers to be optimal
it must occur on an edge of the Pursuer Voronoi diagram.

Remark 9. The optimal capture point for Example 7.4b which repre-
sents simultaneous capture by three Pursuers coincideswith the vertex
of the Pursuer Voronoi diagram.

This last observation, in particular, drives the remainder of the anal-
ysis and allows us to generalize the multiple Pursuer single Evader
game to any number of Pursuers. Also, note that the application of
Voronoi diagrams to the analysis of pursuit-evasion games is not novel
and has been explored extensively in the literature (c.f. [16, 46, 128,
182, 192]). The Voronoi diagram, in 2D space, defines a tessellation in
which each agent resides in their own cell defining points in space they
can reach before any other agent. This construct is particularly useful
in the present context as it has been established that the optimal tra-
jectories ought to be comprised of constant-heading paths. Define two
different Voronoi diagrams, each parameterized as a set of vertices, a
set of edges, and a set of agent positions (which correspond to so-called
generator points) [246],

𝕍𝐸 = (𝒱𝐸, ℰ𝐸, {𝐸, 𝑃1, … , 𝑃𝑀}) ,

𝕍𝑃 = (𝒱𝑃, ℰ𝑃, {𝑃1, … , 𝑃𝑀}) .
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Note, the only difference between the two is that𝕍𝐸 includes the Evader
as a generator point, and 𝕍𝑃 use only the Pursuer positions as genera-
tor points. The latter describes a partitioning wherein the Pursuers can
reach points in their own cell before any other Pursuer. Because the
Pursuers share the same velocity the edges ℰ𝑃 are segments of the per-
pendicular bisectors between neighboring Pursuers. The same is not
true, however, for the edges of the Evader’s cell in 𝕍𝐸, since 𝐸 is slower
than the neighboring Pursuers. Typically, when different weights (ve-
locities) are involved one may consider 𝕍𝐸 to be a multiplicatively-
weighted Voronoi diagram [58]. Note that the Evader’s cell in 𝕍𝐸 is
exactly the safety region, 𝒮 , which has already been defined using the
ACs. Now let 𝒮 be parameterized as

𝒮 = (𝒱𝒮 , ℰ𝒮), (7.36)

where 𝒱𝒮 is an ordered set of vertices of 𝒮 , and ℰ𝒮 is an ordered set of
arcs [246]. The ordering of these two sets is such that the 𝑖th edge in
ℰ𝒮 connects the 𝑖 − 1th and 𝑖th AC intersection in 𝒱𝒮 .

7.3.4 Types of Solutions

In the introduction it was noted that for the case of 𝑀 > 2 there is
a new type of solution over the previously derived solutions to the
one-on-one and two-on-one scenarios. First, let us briefly recount these
known solutions as they are still solutions to the 𝑀-on-one scenario
for particular configurations. As example, consider a case with 𝑀 > 2
wherein one Pursuer is very close to the Evader and the other 𝑀 − 1
Pursuers are very (let us say “infinitely”) far away. Then the solution,
obviously, degenerates to the solution of the one-on-one scenario be-
tween the close Pursuer and the Evader. The solution, in this case, is
given by pure pursuit: the Evader’s and Pursuer’s heading should be
along the line-of-sight [130]. Capture occurs on the point on the AC

which is antipodal to the Pursuer.
Hugo Steinhaus and Rufus Isaacs each proposed the case of two Pur-

suers against one Evader. Isaacs referred to this scenario as the “two
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cutters and fugitive ship problem” [130]. In his book, Isaacs posited
that the solution of the gamewas for all three agents to head to the inter-
section of ACs furthest from the Evader. Note, however, that Isaacs did
not mention the cases in which the two-on-one scenario degenerates to
one-on-one. Nonetheless, using the geometric intuition of Isaacs, the
Value function and saddle-point strategies were derived only recently
in [107].

As will be shown in the following sections, it is not necessary for
some Pursuers to be ”infinitely far” away from the Evader for the sce-
nario to degenerate to two-on-one or one-on-one. Instead, the solutions
to all of these sub-scenarios are retained as candidate solutions. Note
that each of the candidates described above necessarily occur on the
boundary of the Evader’s dominance region 𝜕𝒮 . When 𝑀 ≥ 3 new
candidate solution must be considered, one in which capture occurs
in the interior of 𝒮 , as opposed on the boundary 𝜕𝒮 . It is claimed that
when the solution to (7.19) occurs in the interior of 𝒮 , the point nec-
essarily corresponds to a vertex of 𝕍𝑃, the Voronoi diagram for the
Pursuers [246]

(𝑥∗, 𝑦∗) ∉ 𝜕𝒮 ⟹ (𝑥∗, 𝑦∗) ∈ 𝒱𝑃, (7.37)

and thus implies simultaneous capture by three ormore Pursuers.Now,
with all possible candidate solutions described, one of the main re-
sults in [246] is included which states that the solution of (7.19) is
among this finite set of candidates comprised of points representing
capture by a single Pursuer (𝒫1

𝒮), capture by two Pursuers simulta-
neously (𝒱𝒮), and capture by three or more Pursuers simultaneously
(𝒱𝑃𝒮

).

Theorem 7.2.
(𝑥∗, 𝑦∗) ∈ 𝒫1

𝒮 ∪ 𝒱𝒮 ∪ 𝒱𝑃𝒮
, (7.38)
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where
(𝑥∗, 𝑦∗) = arg max

(𝑥,𝑦)∈𝑆
min

𝑖∈{1,…,𝑀}
‖(𝑥, 𝑦) − 𝑃𝑖‖𝛼𝑃,

𝒫1
𝒮 = {𝑥𝑖, 𝑦𝑖∣𝑥𝑖, 𝑦𝑖 = 𝑅𝑖(1 + 𝛼𝑃) 𝐸 − 𝑃𝑖

‖𝐸 − 𝑃𝑖‖
,

𝑥𝑖, 𝑦𝑖 ∈ 𝒮, 𝑖 = 1, … , 𝑀} ,

𝒱𝑃𝒮
= 𝒱𝑃 ∩ 𝒮.

(7.39)

Proof. The interested reader is referred to [246].

7.3.5 Categories of Pursuers

One of the interesting consequences of Theorem 7.2 is the fact that not
all the Pursuers have an effect on the playout of the game. For example,
a Pursuer that is very far away from the Evader compared to the other
Pursuers may not be able to reach the Evader before capture occurs.
This is certainly the case when the AC of a Pursuer completely contains
the Evader’s safety region, 𝒮 . As mentioned in [246] the set of Pur-
suers can be broken up into four disjoint sets. The membership of the
Pursuers is a function of the optimal capture point 𝐼 (i.e., the solution
to the first equation in (7.39)). The first set contains those Pursuers
who reach 𝐼 at �̄�, according to (7.18). Earlier, this set was referred to
as “interceptors” using the notation ℐ . The set of Pursuers whose AC

completely contains the safety region 𝒮 is given by

ℐ− = {𝑖 | 𝜕𝒮 ∩ 𝜕𝒟𝑖 = ∅, 𝑖 = 1, … , 𝑀} . (7.40)

If capture is constrained to occur in 𝒮 , then these Pursuers have no ef-
fect on the game. They can be discarded completely; this set is referred
to as “fully redundant”. Then the set of Pursuers who share an edge of
the Evader’s cell of 𝕍𝐸 is given by

ℐ𝒮 = {1, … , 𝑀} � ℐ−. (7.41)

The set ℐ𝒮 � ℐ contains Pursuers which neighbor the Evader in 𝕍𝐸 and
can be further broken down by recomputing the solution (i.e., optimal
intercept point 𝐼 and capture time 𝑇) and checking if the new solu-
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Figure 7.6: Categories of Pursuers. The color of each Pursuer with its AC de-
note which category it belongs to. The boundary of the Evader’s
safety region is rendered in dashed magenta.

tion changed. Let the new solution of the game with the 𝑖th Pursuer
removed be denoted as 𝐼�𝑖 and 𝑇�𝑖 for the intercept point and capture
time, respectively. If 𝑇�𝑖 = 𝑇 and 𝐼�𝑖 = 𝐼, removal of Pursuer 𝑖 had
no effect on the game and thus it is “redundant”; these Pursuers are
denoted as ℐ𝑅. Alternatively, it could be 𝑇�𝑖 > 𝑇 or 𝐼�𝑖 ≠ 𝐼, and thus re-
moval of Pursuer 𝑖 led to a decrease in the Pursuers’ performance or a
change in the optimal intercept point, respectively. These Pursuers are
referred to as “escorts”, denoted ℐ𝐸. It is necessary for the escorts to
“play the game” by heading towards 𝐼; alternatively they could simply
implement pure pursuit. Their purpose is to control the dynamic shape
of 𝒮 so that no new AC intersection becomes feasible or advantageous
for the Evader. Because they do not actually participate in capture, it
is difficult to say precisely what is optimal for these Pursuers [246].
One interesting research question is what an escort could or should do
when it is an escort for more than one Evader in an 𝑀 on 𝑁 pursuit-
evasion scenario.

Figure 7.6 contains an example wherein all the categories are rep-
resented. In this example, simultaneous capture is achieved by P1, P3,
and P8. If P4 were removed from the game, the Evader could flee to
the Apollonius intersection directly to its left and reach it safely, thus
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increasing capture time. Therefore, P4 must play the game by shap-
ing 𝒮 . P6 neighbors E in 𝕍𝐸 which is homologous to stating that part
of the boundary of its AC coincides with the boundary of 𝒮 . Removal
of P6 from the game would make other AC intersections safe/feasible
for the Evader, however these points are suboptimal. Thus, P6 does
not have any effect on the solution provided P1, P3, P4, and P8 behave
optimally.

Fortunately, the set ℐ− can be determined prior to solving (7.39). In
Figure 7.6, the safety region 𝒮 lies entirely inside the interior of the
fully redundant Pursuers’ ACs. Thus, in this case 𝑀 = 10, five may be
discarded immediately. The following section presents an algorithm
for computing the set ℐ𝒮 , which are the Pursuers who are neighbors
of the Evader in 𝕍𝐸. This reduced set includes all the Pursuers who
could possibly affect the solution. Interestingly, in this example, using
the linear programmethod yields a different capture point wherein P3,
P4, and P8 are interceptors and the capture time is 0.4% worse for the
Evader.

7.4 GEOMETR I C ALGOR I THMS

For general initial conditions, the size of the set of Pursuers who are
neighbors of 𝐸 in 𝕍𝐸, namely |ℐ𝑠|, is usually close to four. This could
be true even when 𝑚 is very large (say, in the thousands). However, |𝑖𝑠|
may be large when the positions of the pursuers are highly correlated.
The extreme case would be when the pursuers lie on a ring (i.e., are
equidistant) from the evader. In that case, |𝑖𝑠| = 𝑚 and all the AC will
contribute edges to 𝑠. For the algorithm to follow, this will yield worst-
case performance. In this section, two algorithms are briefly described
and summarized: an algorithmwhich simultaneously computes 𝑖𝑠 and
𝑠, and another which computes the optimal intercept point (according
to (7.39)) given 𝑠. The paper [246] contains a complete specification
of these algorithms including some supporting lemmas and analysis
of the computational complexity.
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First note that 𝑠 corresponds to the evader’s cell of 𝕧𝑒, which is the
multiplicatively-weighted voronoi diagram consisting of all the agents
[246]. Part of the motivation for computing 𝑠 quickly is the fact that ex-
isting approaches (like computing the entiremultiplicatively-weighted
voronoi diagram) can be 𝑜(𝑚2) [11]. Note also that to construct 𝑠, the
union of𝑚disks is the essential computation, forwhich there is an algo-
rithm which takes 𝜃(𝑚 log𝑚) time [39]. The algorithm described here
differs in that no geometric transformations are used. The algorithm
which computes 𝑠 and 𝑖𝑠 is referred to as EVADERCELL. The EVADERCELL
algorithm takes as input the positions of all the agents and the speed
ratio 𝛼. First, the ACs for each Pursuer are computed. Then the Pur-
suers are ranked according to the minimum distance from the Evader
to a point on their AC. This measure is useful because it takes into
account both the distance from the Pursuer to the Evader as well as
its speed. The latter piece makes this algorithm applicable in the case
where the Pursuers have different velocities. However, for the present
case of equal-speedPursuers, Pursuers can be simply ranked according
to distance from the Evader. Note, for computational speed this rank-
ing is achieved using a heap, in lieu of a full sort, since, in the general
case, not all the Pursuers require consideration. EVADERCELL constructs
𝒮 iteratively, considering a single AC in each iteration. Initially, the re-
gion 𝒮 is initialized as the AC of the closest Pursuer. Then, as Pursuers
(and their ACs) are dequeued from the heap EVADERCELL computes the
intersection of the new AC with the current region 𝒮 . Eventually, the
closest point on a Pursuer’sACwill be further from the Evader than the
furthest point on 𝒮 , then it is known that this Pursuer, and all subse-
quent Pursuers in the heap, fall into the fully redundant category [246].
Therefore, the construction of 𝒮 is complete and ℐ𝒮 is simply the set
of Pursuers that had been dequeued previously. Thus, EVADERCELL re-
turns the ordered sets of vertices and arc segments (𝒱𝒮 , ℰ𝒮) and ℐ𝒮 .

Now, several of the lemmas from [246] are summarized which af-
firm the correctness of EVADERCELL.

1. The Pursuer closest to 𝐸 is in ℐ𝒮 and has an AC which comes the
closest to 𝐸.
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2. The closest distance of the Pursuers’ ACs is monotonically non-
decreasingwith each iteration (due to the queue/heap property).

3. The point on 𝜕𝒮 furthest from the Evader is either at the inter-
section of two ACs or corresponds to the solution to one of the
one-on-one games.

4. The distance from the Evader to the point on 𝜕𝒮 furthest away is
monotonically non-increasing with each iteration.

5. None of the remaining Pursuers’ ACs intersect 𝒮 once a Pursuer
whose AC’s minimum distance to the Evader is greater than the
furthest point from the Evader on 𝜕𝒮 is reached.

6. There can be at most one one-on-one optimal intercept point on
𝜕𝒮 .

7. If a one-on-one optimal intercept point lies on 𝜕𝒮 , it is the optimal
intercept point for the overall game.

Once 𝒮 has been constructed computing the optimal intercept point,
which is the solution to (7.39), is very straightforward. This process
is referred to as MPURSUER1EVADER [246]. The MPURSUER1EVADER al-
gorithm is based entirely off of Theorem 7.2, and therefore proceeds
by computing all the candidate solutions and comparing the distance
from the nearest Pursuer to each candidate. From Theorem 7.2 the op-
timal intercept point is

(𝑥∗, 𝑦∗) = argmax
(𝑥,𝑦)∈𝒫1

𝒮 ∪𝒱𝒮 ∪𝒱𝑃𝒮

min
𝑖∈{1,…,𝑀}

‖(𝑥, 𝑦) − 𝑃𝑖‖𝛼𝑃, (7.42)

where 𝒫1
𝒮 is the set of single Pursuer optimal intercept points in 𝒮 , 𝒱𝒮

are the vertices of the Evader’s region of dominance (given by EVADER-
CELL), and 𝒱𝑃𝒮

is the set of vertices of the Pursuer-only Voronoi dia-
gram inside 𝒮 . Due to the seventh item in the previous paragraph, the
first thing to do is check whether any of the one-on-one optimal inter-
cept points are on 𝜕𝒮 . Because the Pursuers share the same speed, it is
either the case that the solution to the one-on-one game between the
Pursuer closest to the Evader and the Evader is on 𝜕𝒮 or none of the
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one-on-one solutions are on 𝜕𝒮 . Thus this step is trivial. If it is not the
case that the optimal intercept point of a one-on-one game is on 𝜕𝒮 ,
then one must turn to the other candidates. As mentioned previously,
the points 𝒱𝒮 are given by EVADERCELL. The last subset of candidate so-
lutions to compute, then, is 𝒱𝑃𝒮

for which the Voronoi vertices of 𝕍𝑃

must first be computed. Because it has been assumed that EVADERCELL
is used prior to this point one can essentially forget about any of the
Pursuers not in the set ℐ𝒮 . To compute the Voronoi vertices between
the Pursuers Fortune’s Algorithm [79] is employed over the Pursuers
in ℐ𝒮 . Then, to get 𝒱𝑃𝒮

one simply checks to see if each Voronoi vertex
is inside or outside of 𝒮 . Finally, the distance from each candidate in
𝒱𝒮 ∪ 𝒱𝑃𝒮

to its nearest Pursuer is computed (RHS of (7.42)), and the
optimal intercept point is the candidate whichmaximizes this distance.
The terminal time is simply the travel time of the Pursuer nearest that
point via a straight-line path.

7.5 R E SULT S

The goal of this investigation is to consider full cooperation among the
Pursuers. Alternatively, the Pursuers could, for example, act entirely
independently of one another. In the latter case, each Pursuer may im-
plement its best strategy in the sense of one-on-one, that is PP. The ap-
proach detailed here and in [246] is referred to as the geometric (G)
policy. Note that it was not claimed that G policy, if implemented by
the Pursuers and the Evader, is a saddle-point pair of strategies in the
sense of a feedback Nash equilibrium. Therefore, some numerical sim-
ulations are included here in order to demonstrate some of the merits
of the G policy in comparison to other strategies, namely PP. The com-
parison of these two policies is done using a discrete time numerical
simulation in which agents evaluate their respective control policies
at each time step. For those agents implementing the G policy, the op-
timal intercept point (𝑥∗, 𝑦∗) is computed using the current positions
of the agents, and then those agents’ heading would aim towards this
point. Also, if the Evader, implementing G, reaches the intercept point
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Figure 7.7: Simulation results; Evader implements G and Pursuers imple-
ment G (a) or PP (b).

before any Pursuer, then it will stand still (provided that point remains
the solution to (7.42)).

Figure 7.7 displays the trajectories produced by each policy pair. In
these simulations, the time step Δ𝑡 is 0.001, the Pursuers speed is 1,
and the Evader speed is 0.8 (and 𝛼 = 0.8 as well). From 𝑡 = 0 the solu-
tion to (7.42) is the Voronoi vertex created by P1, P2, and P3. Thus, all
three Pursuers are required to achieve the capture time of 0.57 seen in
Figure 7.7a. Consequently, if the Pursuers act independently and im-
plement PP, the Evader, implementing G, can increase the capture time
to 0.86, an increase of over 50%. Observe that in Figures 7.7a and 7.7b
P2’s trajectory is quite similar. In the latter, however, P2 is not able to
catch all the way up to E because P1 and P3 do not block the Evader
from passing between them. The drastic difference between P1 and
P3’s headings with respect to E and with respect to the Voronoi ver-
tex at 𝑡 = 0 is what allows the Evader to capitalize on their behavior.
These results are included merely to highlight the benefits of coopera-
tion and to demonstrate how the G policy achieves it.

The next set of examples demonstrate the non-uniqueness of the
Evader’s trajectory in cases when the solution to (7.19) is a Voronoi
vertex, 𝑣∗. In this case, all the Evader must do is take a safe path to
𝑣∗ (according to Property 1) in order to guarantee capture at time 𝑡∗.
Meanwhile, the Pursuers will implement the G policy – that is, at every
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Figure 7.8: Examples of ‘optimal’ Evader trajectories resulting in capture at
the Voronoi vertex demonstrating non-uniqueness of the path.
Evader begins at (0.1, 0.1), 𝑉𝑃 = 1, 𝛼 = 2/3, and 𝑡∗ = 1 𝑠.

time step, they will call MPURSUER1EVADER to compute their headings.
As a consequence of the Evader taking a safe path, the point (𝑥∗, 𝑦∗)
will remain invariant and the Pursuers’ trajectories will be straight.
Figure 7.8 shows the trajectories for two different simulations. In Fig-
ures 7.8a and 7.8b, the Evader’s policy is a randomwalk with some ad-
ditional logic to ensure 𝑣∗ remains inside the instantaneous safe region
𝒮 . In Figures 7.8c and 7.8d, the Evader’s policy is such that the Evader
spirals in towards 𝑣∗; once the Evader can reach 𝑣∗ within a single time
step, it simply heads there at maximum speed. It is difficult, in general,
to guarantee the safety of a path, a priori, and hence the Evader pol-
icy prescribed by Theorem 7.1 wherein the Evader takes a straight-line
path at maximum speed to 𝑣∗ and then stands still is useful.
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The selection of the timestep Δ𝑡 certainly has an effect on the play-
out of the game, and is an important consideration not only for simu-
lation but also for real-world control implementations. For sufficiently
large timesteps, capture may not even be possible! However, for the
scenarios included in this section note that the results do not change
appreciably for Δ𝑡 = 0.01 versus Δ𝑡 = 0.001. For even smaller timesteps
(Δ𝑡 = 1𝑒 − 4), the difference is even smaller. Therefore, as Δ𝑡 → 0, the
capture time asymptotically approaches the value it would have in con-
tinuous time. The results presented for Δ𝑡 = 0.001 are sufficiently close
to this asymptotic value.

7.6 CONCLUS ION

In this chapter, the problemofmultiple agents pursuing a single Evader
wherein all the agents have simple motion was considered. This prob-
lem is a direct extension of the two-Pursuer one-Evader problem orig-
inally posed by Isaacs [130] and verified formally in [107]. The intent
is to exploit the benefits of cooperation among a team of three or more
Pursuers. Intuitively, the presence of additional Pursuers was shown
to reduce the capture time of the Evader.

The initial problem formulation and analysis highlights the difficulty
in analyzing this problem using the techniques of Isaacs. Part of the
issue is the curse of dimensionality brought about by including addi-
tional Pursuers. A general strategy in differential games is to reduce
the state-space into at most three dimensions, which cannot be done
here. In lieu of a full verified feedback-optimal differential game solu-
tion a route of analysis was pursued which yielded open-loop optimal
strategies for the Pursuers and Evader. These strategies are open-loop
in the sense that they depend only on the initial conditions and are not
necessarily robust to all other choice of opponent strategy when im-
plemented as a state-feedback policy. Isaacs’ methods pertain to anal-
ysis of regular solutions; special care must be given to singularities
wherein Isaacs’ methods may not yield an optimal control action for
one or more agents. It is likely, with the increased number of agents,
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that there are more singular surfaces in the M-Pursuer one-Evader dif-
ferential game, requiring a more careful analysis.

Subsequent analysis relies on the Pursuers taking straight-line paths
to the capture point, which is suggested by the derived necessary con-
ditions for optimality as well as the solutions to both the one-Pursuer
and two-Pursuer versions of the game. Then, a linear program was
posed to determinewhich capture location is optimal.However, a strong
geometric interpretation of the problem was observed which resulted
from the fact that Pursuers take straight-line paths. Thus, a geometric
solution was prescribed based on two Voronoi diagrams which allows
searching over a discrete set of candidate solutions, as opposed to a con-
tinuous space as in the linear program case. Finally, algorithms were
presented to compute the solution efficiently while also providing the
precise shape of the Evader’s region of dominance. The next chapter
elucidates some of the properties of the policy presented in this chap-
ter and introduces a pursuit policy which provides an upper bound on
the time until capture.
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ROBUST POL IC I E S FOR THE M PURSUER GAME

8.1 IN TRODUCT ION

This chapter presents research results pertaining to Research Objec-
tives 4 and 5which have to dowith demonstrating the utility of skirmish-
level solutions and adding agents to one or other team in a differential
game, respectively. These results are for a differential game of pur-
suit-evasion between three (or more) Pursuers and a single Evader
where the cost functional is the capture time, the Pursuers are faster,
the agents move with simple motion, and termination is defined as
point capture (i.e., the MP1E GoT). The remainder of the chapter is
based off of the paper [253], which is an extension of the previous
chapter.

In this chapter, the fact that the full solution to the MP1E GoT is
still at large is highlighted. The geometric policy proposed by [246] is
shown to be a Global Stackelberg Equilibrium strategy pair. For many
games, it is the case that the Global Stackelberg Equilibrium is coinci-
dentwith the FeedbackNashEquilibrium (i.e. the “full solution” of the
game). However, it is shown that it is not the case for the MP1E GoT:
the geometric policy violates the saddle-point condition necessary to
be a Feedback Nash Equilibrium. This is shown through a counterex-
ample which brings to light the deficiency of the geometric policy. One
redeeming property of the geometric policy, though, is that it is robust
from the Evader’s perspective. That is, the Evader can do no worse
if it implements this policy. A new pursuit policy is proposed which
carries the same sort of robustness but from the Pursuers’ side. The
deficiencies of the geometric policy are addressed in this chapter to an
extent, however, it is clear that the Feedback Nash Equilibrium strate-
gies have yet to be discovered.

131
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The remainder is organized as follows. Section 8.2 introduces the
MP1E differential game as well as the Evader’s Safe Region, a geomet-
ric construction used throughout. Section 8.3 summarizes the geomet-
ric policy introduced by [246] and gives a proof that it corresponds
to the Global Stackelberg Equilibrium. Capturability is discussed in
Section 8.4 as it is a pertinent topic when discussing non-feedback-
equilibrium strategies. Section 8.5 proposes a newpursuit policywhich
has robustness guarantees. Conclusions are contained in Section 8.8.

8.2 T ECHN ICAL PRE L IM INAR I E S

The pursuit-evasion scenario considered here is defined by the follow-
ing kinematics

̇𝑥𝐸 = 𝑉𝐸 cos𝜙

̇𝑦𝐸 = 𝑉𝐸 sin𝜙

̇𝑥𝑖 = 𝑉𝑃 cos𝜓𝑖

̇𝑦𝑖 = 𝑉𝑃 sin𝜓𝑖, 𝑖 = 1, … , 𝑀

(8.1)

where 𝐸 denotes the Evader and the subscripts 𝑖 denote the 𝑖th Pursuer,
of which there are 𝑀, 𝑉𝑘, 𝑘 = 𝐸, 𝑃 are the speeds, 𝜙 is the Evader’s
heading angle, and 𝜓𝑖 𝑖 = 1, … , 𝑀 are the Pursuers’ heading angles.
Let

x = (𝑥𝐸, 𝑦𝐸, 𝑥1, 𝑦1, … , 𝑥𝑀, 𝑦𝑀)

be the state of the system. Thus x ∈ ℝ2𝑀+2. The size of x may be re-
duced to 2𝑀 states by considering a relative coordinate systemwhich is
fixed to the Evader. This reduction is of little consequence: with 𝑀 = 3,
one still ends up with six states. Few differential games with more
than two states have been solved analytically (see, e.g., [96, 107, 164]).
Therefore, the kinematics in (8.1) are retained for the remainder. It is
assumed that 𝑉𝑃 > 𝑉𝐸 since, as will be shown in the sequel, capture
may be guaranteed for certain pursuit strategies. Let 𝛼 = 𝑉𝑃/𝑉𝐸 < 1
denote the speed ratio.
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The game is over when one or more Pursuers captures the Evader;
the final time 𝑇 is

𝑇 = min {𝑡 | ∃ 𝑖 𝑠.𝑡. (𝑥𝑖(𝑡), 𝑦𝑖(𝑡)) = (𝑥𝐸(𝑡), 𝑦𝐸(𝑡))} (8.2)

This capture criterion is commonly referred to as point capture, as op-
posed to scenarios where the Pursuers have a non-zero capture radius.
The Pursuer team seeks to minimize the time to capture while the
Evader seeks to maximize the time. The scenario is modeled as a two-
player zero-sum differential game, wherein the Pursuers, cooperating
as a single entity, and Evader seek to minimize/maximize the follow-
ing cost/payoff, respectively,

𝐽(u𝐸(x),u𝑃(x)) = ∫
𝑇

0
𝑑𝜏 (8.3)

where u𝐸 = 𝜙 is the Evader’s control policy and u𝑃 = (𝜓1, … , 𝜓𝑀) is
the Pursuers’ control policy in state-feedback form. The Value function
describes the minimax value of the cost/payoff, (8.3), when starting
from some point x0 in the state space

𝑉(x0) = minu𝑃
maxu𝐸

∫
𝑇

0
𝑑𝜏 (8.4)

Note that the min and max are interchangeable [130]. Such a function,
if it exists, is continuous and continuously differentiable in x and satis-
fies the so-called Isaacs equation [20]:

minu𝑃
maxu𝐸

[𝜕𝑉
𝜕x 𝑓 (x,u𝑃,u𝐸) + 𝑔(x,u𝑃,u𝐸)] = −𝜕𝑉

𝜕𝑡 (8.5)

where 𝜕𝑉
𝜕x is a vector of derivatives of the Value function w.r.t. each

state, 𝑓 (x,u𝑃,u𝐸) = ẋ are the kinematics (8.1), and 𝑔 is the integrand
of the cost/payoff in (8.3). Thus it must be that 𝑔 = 1 and 𝜕𝑉

𝜕𝑡 = 0. Solv-
ing a differential game entails solving the Game of Kind (determining
regions of the state space in which one or the other player wins) and
solving the Game of Degree (i.e. determining the Value of the game
in each region of the state space). For pursuit-evasion, the Game of
Kind asks whether capture is inevitable or escape is inevitable. Since
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the speed ratio has been restricted to 𝛼 < 1, the Evader cannot guaran-
tee escape; however, this does not mean that capture is guaranteed for
every pursuit strategy. In solving the Game of Degree, usually a candi-
date Value function is derived and then shown to satisfy (8.5). This is
not trivial in practice. The benefit of having a full solution is knowledge
of the saddle-point strategies u∗

𝑃 and u∗
𝐸 which satisfy

𝐽(u𝐸,u∗
𝑃) ≤ 𝐽(u∗

𝐸,u∗
𝑃) ≤ 𝐽(u∗

𝐸,u𝑃) ∀u𝐸 ∈ 𝑈𝐸, u𝑃 ∈ 𝑈𝑃 (8.6)

where 𝑈𝐸 and 𝑈𝑃 are the sets of admissable control strategies for the
Evader and Pursuers, respectively. Condition (8.6) means that the sad-
dle-point strategies are robust to any admissable opponent strategy. In
this chapter, no attempt ismade to obtain u∗

𝐸 and u∗
𝑃 directly, but rather,

in the sections to follow, policies for the Evader and Pursuers are pro-
posed which exhibit one-sided robustness.

Now the Apollonius disk is defined which is a geometric construct
utilized in all of the policies described hereafter. For agents with sim-
plemotion and zero capture radius, the Apollonius disk represents the
region in the realistic plane where the Evader can reach before a partic-
ular Pursuer. The Apollonius circle is the boundary of this region, and
it is defined as the locus of points in which the Evader and Pursuer can
reach simultaneously by taking straight-line paths at maximum speed,
respectively. For each Pursuer 𝑖 = 1, … , 𝑀, the Apollonius disk center,
𝐶𝑖, and radius, 𝑅𝑖 are,

𝑥𝐶𝑖
= 1

1 − 𝛼2 𝑥𝐸 − 𝛼2

1 − 𝛼2 𝑥𝑖 (8.7)

𝑦𝐶𝑖
= 1

1 − 𝛼2 𝑦𝐸 − 𝛼2

1 − 𝛼2 𝑦𝑖 (8.8)

𝑅𝑖 = 𝛼
1 − 𝛼2

√(𝑥𝑖 − 𝑥𝐸)2 + (𝑦𝑖 − 𝑦𝐸)2 (8.9)

The following set defines the Apollonius disk for Pursuer 𝑖,

𝐷𝑖 = {(𝑥, 𝑦) ∈ ℝ2 | (𝑥 − 𝑥𝐶𝑖
)

2
+ (𝑦 − 𝑦𝐶𝑖

)
2

≤ 𝑅2
𝑖 } (8.10)
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The intersection of all the Pursuers’ Apollonius disks defines a region
in which the Evader can reach before any of the pursuers. This region
is referred to as the Safe Region,

𝑆𝑅 = ∩𝑀
𝑖=1𝐷𝑖 (8.11)

Remark 10. The Safe Region can not be empty; the Evader position,
(𝑥𝐸, 𝑦𝐸), is inside each Apollonius disk by the definitions (8.7)–(8.10)
and so, at the very least, the Evader is inside 𝑆𝑅.

Remark 11. The Safe Region collapses to a single point – the Evader
position – when one or more Pursuers are coincident with the Evader
or the speed ratio is infinite.

The Boundary of the Safe Region (or 𝐵𝑆𝑅) will often be utilized in
the sequel. Let the 𝐵𝑆𝑅 be parameterized by a set of circular arcs corre-
sponding to segments of ACs, 𝒞 , and a set of vertices, 𝒜 , corresponding
to endpoints of the arcs (which are AC intersections),

𝐵𝑆𝑅 = (𝒞, 𝒜) (8.12)

Whether 𝐵𝑆𝑅 refers to its set of points or as its parameterization should
be clear from context.

8.3 ROBUST EVADER POL I CY

The robust Evader policy presented here is based upon Chapter 7. The
symbol 𝐺 (for “geometric”) is used to denote the policy. Note that the
𝐺 policy specifies an intercept point which is optimal, in some sense,
for both the Evader and Pursuers and thus, although it is referred to
as a robust Evader policy, it may also be implemented by the Pursuers.
The main idea in Chaper 7 is that the Evader can safely travel to any
point inside 𝑆𝑅 (defined as above) and thus the agents should take
straight-line paths to a point, 𝐼, which satisfies

𝐼 = argmax
(𝑥,𝑦)

min
𝑖

(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2

s.t. (𝑥, 𝑦) ∈ 𝑆𝑅, 𝑖 ∈ 1, … , 𝑀.
(8.13)
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The solution for the optimal intercept point is described in Sections
7.3.3 and 7.3.4 and the finite set of candidate points is stated precisely
in (7.38).

8.3.1 Properties of the 𝐺 Policy

This section provides amore detailed characterization of the policy and
identifies in what sense the policy is optimal. In order to do so, the
following are defined:

Definition 1. Apair of strategies forms a subgame perfect equilibrium
(or time consistent equilibrium) if the strategies are in equilibrium for
every subgame of the game’s playout [180]. That is, in order for the
strategy pair to be subgame perfect, it must never become advanta-
geous for one or other agent to switch strategies at any point along
the game’s trajectory.

Definition 2 (Global Stackelberg Equilibrium (GSE)). An equilibrium
over open-loop strategies wherein the leader selects a control action
(i.e. a control trajectory from 𝑡 = 0 through the game’s termination)
from a certain class of behaviors and announces the strategy to the
follower.

The role of the follower is to compute its best response to the an-
nounced leader strategy. The leader can also compute the follower’s
best response and should therefore choose a strategywhichmaximizes
its reward [59]. Also, the leader’s control is purely a function of the ini-
tial conditions.

Definition 3 (Feedback Stackelberg Equilibrium (FSE)). An equilib-
rium over feedback strategies in which, at each instant in time, the
leader selects a control action and announces the strategy to the fol-
lower.

Note that the GSE is time consistent, which is not always the case for
FSE [201]. In the open-loop case, if the leader is allowed to plan at 𝑡1 > 0,
then there is no benefit to adhere to the promised plan [201]. The terms
time consistent and subgame perfect will be used interchangeably. If
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one were to apply the GSE policies over a finite timestep Δ𝑡, then as
Δ𝑡 → 0 the FSE trajectories would be recovered.

Definition 4 (FeedbackNashEquilibrium(FNE)). Anequilibriumover
feedback strategies corresponding to the saddle point in (8.4).

The FNE is what is traditionally meant by the solution to the dif-
ferential game. For detailed description of these equilibrium concepts,
see [52].

In the context of the MP1E GoT, the Evader may be thought of as the
leader since the onus is on the Pursuers to capture him. If the Pursuers
were the leader, then, upon announcing their strategy, the Evader could
choose from a myriad of trajectories which do not collide with the
announced strategy. Define the class of leader behaviors as either a
straight-line (constant heading) path, or a straight-line path to a point
followed by stopping (dithering) at the point. In general, the follower’s
best response should satisfy the necessary conditions for optimality
that are (usually) derived via theHamiltonian. Thus the Pursuers’ best
response ought to consist of straight-line paths [246].

Theorem 8.1. The 𝐺 policy is a Global Stackelberg Equilibrium of the mul-
tiple pursuer single evader game under the kinematics in (8.1), and the class
of Evader behaviors consisting of straight-line paths which may or may not
terminate at a point.

Proof. Because of the restriction on the Evader’s behaviors, the Evader
selection of control strategy is equivalent to selecting a point 𝐼 ∈ 𝑆𝑅.
For any point (𝑥, 𝑦) ∉ 𝑆𝑅, there exists a Pursuer strategy consisting
of a straight-line path in which capture occurs on 𝐵𝑆𝑅. This follows
from the definition of the Apollonius disk, (8.10). The point 𝐼, since it
is in 𝑆𝑅 may be reached by one or more Pursuers at or later than the
Evader. Thus the Pursuers’ best response is to head directly to 𝐼; any
deviation will delay their arrival to 𝐼 and the capture of 𝐸. The objec-
tive in (8.13), which characterizes the 𝐺 policy, is akin to capture time
(Evader reward) under such a pursuit policy. Therefore, (8.13) repre-
sents a maximization over the leader’s reward given the follower’s best
response.
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Corollary 8.1. The 𝐺 policy is a robust Evader policy. That is,

𝐽(u𝐺
𝐸 ,u𝑃) ≥ max

(𝑥,𝑦)∈𝑆𝑅
min

𝑖
1

𝑉𝑃
√(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2 ∀u𝑃 ∈ 𝑈𝑃

(8.14)

Proof. The result follows from the fact that the Pursuers’ best response
is a straight-line path to the intercept point. The geometry of the prob-
lem prevents the Pursuers from doing any better.

Let the right-hand side of (8.14) be abbreviated as 𝐿𝐵(x) (for lower
bound). Note, the 𝐺 policy bears a striking resemblance to the so called
open-loop policy proposed by [150] for the single pursuer multiple
evader game. There, the Evaders jointly select their headings (assum-
ing the worst case), announce their headings to the Pursuer, and then
commit to those headings for the duration of the game. Liu indicates
that this policy is conservative from the Evaders’ perspective. Analo-
gously, Corollary 8.1 indicates that the 𝐺 policy is conservative from
the Evader’s perspective for the MP1E GoT.

Reference [201] investigated the criteria for which the FNE coincides
with a Stackelberg equilibrium (GSE or FSE) and analyzed several cases
where FNE and FSE coincide as well as cases where FNE and FSE do not
coincide. The MP1E GoT falls under the latter category: the FNE does
not coincide with the Stackelberg equilibria.

Theorem 8.2. The 𝐺 policy, although it is a global Stackelberg equilibrium,
is not a feedback Nash equilibrium. That is, 𝐺𝑆𝐸 ≠ 𝐹𝑁𝐸, which means the
𝐺 policy does not constitute a solution to the multiple pursuer single evader
differential game under the kinematics in (8.1).

Proof. (by contradiction). Suppose 𝐺𝑆𝐸 = 𝐹𝑁𝐸; that is, suppose that
the 𝐺 policy, implemented continuously in time by both teams, consti-
tutes a feedback Nash equilibrium. Then the strategy pair u𝐺

𝐸 ,u𝐺
𝑃 must

satisfy the saddle point condition,

𝐽(u𝐸,u𝐺
𝑃 ) ≤ 𝐽(u𝐺

𝐸 ,u𝐺
𝑃 ) ≤ 𝐽(u𝐺

𝐸 ,u𝑃), ∀u𝐸 ∈ 𝑈𝐸, u𝑃 ∈ 𝑈𝑃 (8.15)
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Table 8.1: Initial conditions and parameters for proof of Theorem 8.2
State/Paremeter Value
𝐸 (0, 0)
𝑃1 (0, 1)
𝑃2 (cos 7𝜋

6 , sin 7𝜋
6 )

𝑃3 (cos−𝜋
6 , sin−𝜋

6 )
𝑉𝑃 1
𝛼 0.8

Consider the casewhere the initial state andparameters are as shown
in Table 8.1. The solution to (7.39) is (0, 0), the initial position of the
Evader and the Voronoi vertex 𝑣. The predicted capture time w.r.t. this
solution is 𝐽(u𝐺

𝐸 ,u𝐺
𝑃 ) = 1. Let the Evader strategy u↓

𝐸 be defined as
u↓

𝐸(𝑡) = 3𝜋
2 . Under u↓

𝐸 the Evader’s heading angle, 𝜙, is downwards
for all time, regardless of the state of the system. Note that u↓

𝐸 falls un-
der the class of behaviors defined in Proposition 8.1 and is thus trivially
in the set of admissable controls 𝑈𝐸. Let 𝑣 and 𝑎 represent the instanta-
neous position of the Voronoi vertex and lower AC intersection, respec-
tively. Let the Pursuers implement the 𝐺 policy – thus, the Pursuers
aim towards (0, 0) initially. Because the Evader is traveling downward
(away from 𝑣 and towards 𝑎) there comes a time 0 < 𝑡1 < 1 wherein
the Value (capture time) associatedwith all agents heading to 𝑎 and all
agents heading to 𝑣 is equal. This situation is akin to a dispersal surface
in differential games wherein the solution is non-unique. Let the dis-
tance between 𝑃2 and 𝑣 be written as 𝑑𝑃2𝑣, and similarly for the point 𝑎.
If the Pursuers continue along their original trajectory for some small
𝛿𝑡 then the point 𝑎 will become the solution to (7.39) and Pursuers
𝑃2 and 𝑃3 have an incentive to switch their aim point to 𝑎. Figure 8.1
shows the configuration at this time. With the Pursuers aimed at 𝑎, the
distance 𝑑𝑃2𝑣 changes as,

̇𝑑𝑃2𝑣 = −𝑉𝑣 cos𝜓2 − 𝑉𝑃 sin(𝜋
2 − 𝜓2)

= −𝑉𝑣 cos𝜓2 − 𝑉𝑃 cos𝜓2

(8.16)

Similarly, the distance from 𝑃1 to 𝑣 changes as,

̇𝑑𝑃1𝑣 = 𝑉𝑣 − 𝑉𝑃 (8.17)
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𝑑𝑃2𝑣
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𝜓2

[ February 3, 2022 at 14:12 – classicthesis v4.6 ]

Figure 8.1: Configuration at 𝑡1 wherein the points 𝑎 and 𝑣 are equidistant from
𝑃2.

Now, since 𝑣 is the Voronoi vertex and the Pursuers share the same
speed, the distances to each of the Pursuers must remain the same,
and thus the velocity at which each Pursuer approaches 𝑣 must also
be equal. Setting (8.16) equal to (8.17) yields,

𝑉𝑣 − 𝑉𝑃 = −𝑉𝑣 cos𝜓2 − 𝑉𝑃 cos𝜓2 (8.18)

Collecting terms and solving for 𝑉𝑣,

𝑉𝑣 =
𝑉𝑃(1 − cos𝜓2)

(1 + cos𝜓2)
(8.19)

Here, 𝜓2 = 𝜋/3, and thus 𝑉𝑣 = 1/3 and ̇𝑑𝑃2𝑣 = −2/3. The distance
𝑑𝑃2𝑎 changes as,

̇𝑑𝑃2𝑎 = −𝑉𝑃 = −1 (8.20)

because the point 𝑎 is stationary when 𝑃2, 𝑃3, and 𝐸 are aimed towards
it. Therefore it must be that,

̇𝑑𝑃2𝑣 > ̇𝑑𝑃2𝑎 (8.21)

After some infinitesimally small amount of time 𝛿𝑡 itmust be that 𝑑𝑃2𝑣 >
𝑑𝑃2𝑎 and thus Pursuers 𝑃2 and 𝑃3 have incentive to switch their aim
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point back to the Voronoi vertex 𝑣. When 𝑃2 and 𝑃3 are aimed at 𝑣,
(8.21) is reversed and thus the Pursuers’ aim point chatters between 𝑎
and 𝑣 until a time 𝑡2 when 𝑣 exits the Safe Region 𝑆𝑅. This “fast switch-
ing” induced by non-optimal play by one player has been observed in
the two-pursuer one-evader differential game [186]. There, a dispersal
surface is present when the three agents are collinear and the Evader
lies between the two Pursuers. If the Evader stands still, the Pursuers’
optimal behavior is to switch aim points between the two AC intersec-
tions infinitely fast. In this case, the capture time is equal to the Value
of the game. Here, however, the two aim points 𝑎 and 𝑣 move at differ-
ent rates; the point 𝑎 is governed by the positions of 𝑃2, 𝑃3, and 𝐸 while
the point 𝑣 is solely a function of the Pursuers’ positions (see (8.19)).
Each point is stationary when the Pursuers are aimed towards it. The
result of the fast switching for 𝑡1 < 𝑡 < 𝑡2 is that 𝑡𝑓 > 1, that is, the
Evader increased its capture time under the u↓

𝐸 policy:

𝐽(u↓
𝐸,u𝐺

𝑃 ) > 𝐽(u𝐺
𝐸 ,u𝐺

𝑃 ) (8.22)

(8.22) contradicts the saddle point condition (8.6). Therefore, the strat-
egy pair u𝐺

𝐸 ,u𝐺
𝑃 is not a feedback Nash equilibrium.

Remark 12. A full treatment of this scenario requires solutions to differ-
ential equations with discontinuous right-hand sides (i.e. in the sense
of Filippov) due to the fast switching behavior of the Pursuers [76].

The scenario described above is simulatednumericallywith a timestep
of 0.005 wherein, at each time step, the Pursuers aim at the current
solution to (7.39). Figure 8.2 shows the trajectories generated from
this strategy pair along with a plot of time to capture versus simu-
lation time. If the 𝐺 policy were truly the solution to the MP1E GoT,
one would expect the time to capture to remain on or below the line
from (0, 1) to (1, 0) in Figure 8.2b if the Pursuers implement 𝐺. In other
words, under game-optimal play, one expects 𝜕𝑡𝑓

𝜕𝑡 = −1. From time 𝑡1

to 𝑡2 the points 𝑣 and 𝑎 remain nearly equidistant from 𝑃2 and 𝑃3 as
their heading chatters back and forth. The actual capture takes place
at 𝑡 = 1.2 because there is a loss of Pursuer performance during this
window of time. This loss is caused by a dilemma of choosing between
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Figure 8.2: Simulation of u↓
𝐸, u

𝐺
𝑃 starting from a symmetric configuration.

𝑎 and 𝑣 which is perpetuated from 𝑡1 to 𝑡2. Each time 𝑃2 and 𝑃3 switch
headings a small loss 𝜀 is incurred. In the limit as the timestep Δ𝑡 → 0
the Pursuers incur an infinite number of these small losses. One may
be tempted to think that the sum of these losses ∑ 𝜀 → 0 as Δ𝑡 → 0.
However, even if one considers the trajectory of 𝑃2 and 𝑃3 in a Filippov
sense in which they become smooth as opposed to piecewise continu-
ous, it is clear that the trajectories will still be curved. Thus the result
in Figure 8.2b changes negligibly for very small time steps.

Consider, again, Figure 8.1 which shows the position of all the agents
at time 𝑡1 when 𝑑𝑃2𝑎 = 𝑑𝑃2𝑣. Under the Evader strategy u↓

𝐸 it is clear
that capture must occur on the line 𝑥 = 0 at a 𝑦 < 𝐸𝑦(𝑡1). The only
way to recover the initially predicted Value of 𝑡𝑓 = 1, 𝑃2 and 𝑃3 must
either commit to heading to 𝑣 or 𝑎(𝑡1) for the remainder of the game.
Clearly, committing to 𝑣 is a poor choice since the Evader is heading
away from it. Figure 8.3 shows the case wherein at time 𝑡1 Pursuers 𝑃2

and 𝑃3 make a single switch and aim at 𝑎. The issue with this strategy
is that at any time 𝑡1 < 𝑡 < 𝑡2 the Evader could switch to heading
towards 𝑣 and guarantee a capture time 𝑡𝑓 > 1. This is evidenced by
the fact that the line corresponding to 𝑣 in Figure 8.3b lies above the
line corresponding to 𝑎.

The situation encountered when 𝑑𝑃2𝑣 = 𝑑𝑃2𝑎, as mentioned pre-
viously, is something like a singular surface. Here, the Pursuers can
only recover the predicted capture time (associatedwith (7.39)) if they
know which point, 𝑎 or 𝑣, the Evader will choose. Guessing wrong for
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Figure 8.3: Simulation of u↓
𝐸, u

𝐺
𝑃 until 𝑡1, after which Pursuers aim at 𝑎. High-

lighted segments indicate portions of the trajectory which are not
subgame perfect.

a short time does not eliminate this dilemma (see, e.g., Figure 8.2b).
Another case where the Evader’s control action is required for the Pur-
suer to play optimally is found in the HCDG. There, using the classical
parameters, an equivocal surface is present wherein the Evader has
the authority to stay or leave the surface and the Pursuer must know
the Evader’s choice in order to play optimally on the surface [164]. In
the HCDG, the Pursuer can force the system off of the equivocal surface
(not to return under optimal play) by choosing a suboptimal control
for a short time. However, in MP1E, even if the Pursuers take some
suboptimal action when 𝑑𝑃2𝑣 = 𝑑𝑃2𝑎 they cannot prevent the system
from reentering such a configuration.

Consider another 3P1E scenario that is not symmetric and the solu-
tion to (7.39) is the point 𝑎, the lower AC intersection. Figure 8.4 con-
tains the trajectories and time-to-go for the points 𝑎 and 𝑣 under the
strategy pair u𝐺

𝐸 ,u𝐺
𝑃 . The capture time predicted by the 𝐺 policy is 1.22.

Interestingly, at 𝑡1, when 𝑎 and 𝑣 are nearly equidistant from 𝑃2 and 𝑃3,
all the agents switch to the current Voronoi vertex 𝑣(𝑡1). Afterwards,
the agents have no further incentive to switch and capture occurs at
precisely 𝑡𝑓 = 1.22 as predicted, albeit not at the predicted location.
Suppose the agents adhere to their initial headings, that is they aim
towards 𝑎 for the duration of the game. Figure 8.5 shows the results
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Figure 8.4: Simulation of u𝐺
𝐸 , u𝐺

𝑃 starting from an asymmetric configuration;
𝑡𝑓 = 1.22.

of this scenario; the trajectories in Figure 8.5a correspond to the tra-
jectories predicted by the 𝐺 policy. The capture time 𝑡𝑓 is unchanged,
however in Figure 8.5b it is clear there is an incentive to switch to 𝑣 at
some time 𝑡1 < 𝑡 < 𝑡2, thus these trajectories are not subgame perfect.
The behaviors shown in Figures 8.2 and 8.3 are a symptom of the fact
that the pair u𝐺

𝐸 ,u𝐺
𝑃 is not a feedback Nash equilibrium.

8.4 CAPTURAB I L I T Y

Let 𝑅 be the distance between 𝑃 and 𝐸. Then if 𝑅(0) > 0 and �̇� < 0 for
all 𝑡 > 0, then capture is guaranteed.

�̇� = −𝑉𝑃 cos𝜓 + 𝑉𝐸 cos𝜙 (8.23)

where 𝜓 and 𝜙 are defined relative to the line-of-sight (𝑃𝐸). Now, the
Evader can choose any heading; 𝜙 = 0 maximizes (8.23), thus,

�̇� ≤ −𝑉𝑃 cos𝜓 + 𝑉𝐸 (8.24)

The critical Pursuer heading, 𝜓𝑐 thus occurs when the RHS is equal to
zero,

−𝑉𝑃 cos𝜓𝑐 + 𝑉𝐸 = 0



8.4 CAPTURAB I L I T Y 145

P1

P2

P3

E

(a) Trajectories

0.0 0.2 0.4 0.6 0.8 1.0 1.2
t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e
to

ca
pt

ur
e

t1 t2

a

v

(b) Time to capture

Figure 8.5: Simulation with same initial conditions as Fig. 8.4 but the agents
head towards 𝑎 for the duration of the game; 𝑡𝑓 = 1.22. High-
lighted segments indicate portions of the trajectory which are not
subgame perfect.

yielding,
𝜓𝑐 = cos−1 𝛼

Thus �̇� < 0when𝜓 < cos−1 𝛼. In the limit as 𝛼 → 1 the range of Pursuer
headings which guarantees capture collapses to 𝜓 = 0 The line passing
through 𝑃 that is tangent to the AC has an angle of sin−1 𝛼 w.r.t. the line
𝑃𝐸. When 𝛼 < √2

2 it must be that sin−1 𝛼 < cos−1 𝛼 and thus �̇� < 0
for any pursuit policy in which the Pursuer aims towards a point on
the AC. The canonical 2P1E Pursuer policy [130] and the 𝐺 policy both
fall into this category. However, unlike the 𝐺 policy, the 2P1E Pursuer
policy is a game-optimal policy (in the sense of FNE).

Proposition 8.1. Obtaining regular solutions to the Game of Degree over the
whole state space is sufficient to guarantee capturability in pursuit-evasion
differential games.

Garcia et al. [107] proved that the pursuit policy put forth by Isaacs
is indeed the solution for the whole state space – thus capture is guar-
anteed as long as 𝛼 < 1. Because the 𝐺 policy is not the solution to
the MP1E GoT (according to Theorem 8.2), rigorously proving that 𝐺
guarantees capture for the case that 𝛼 > √2

2 is difficult. These two is-
sues suggest the need for another Pursuit policy for MP1E with more
desirable properties.
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8.5 ROBUST PUR SU I T POL I CY

The difficulty in obtaining the solution to the MP1E differential game
is, in part, due to the curse of dimensionality [245]. Reference [148]
also notes that the traditional process of obtaining the retrograde par-
tial differential equations (c.f. [130]) is difficult because the terminal
states are unknown. To combat this issue, [148] proposes a hierarchi-
cal approach for multiplayer pursuit-evasion differential games which
is conservative from the Pursuers’ standpoint. The process is based on
exploiting the solutions to games involving only a subset of the agents.
Because the canonical 2P1E pursuit policy has been proven to be solu-
tion to the 2P1E differential game [107] the following is proposed,

𝑖∗, 𝑗∗ = argmin
𝑖,𝑗∈{1,…,𝑀}

𝑉2𝑃1𝐸(𝐸, 𝑃𝑖, 𝑃𝑗) (8.25)

𝜓𝑖∗,𝑗∗ = 𝜓2𝑃1𝐸
𝑖∗,𝑗∗ (8.26)

𝜓𝑘 = tan−1 𝑦𝐸 − 𝑦𝑘
𝑥𝐸 − 𝑥𝑘

, 𝑘 ∉ {𝑖∗, 𝑗∗} (8.27)

where 𝑉2𝑃1𝐸(𝐸, 𝑃𝑖, 𝑃𝑗) is the Value function of the corresponding 2P1E
game between 𝐸 and the 𝑃𝑖, 𝑃𝑗 Pursuer team starting from their cur-
rent positions. Let u𝑅

𝑃 denote the policy described in (8.25) to (8.27);
this policy is referred to as the 𝑅 (for robust pursuit) policy. In the 𝑅
policy, the Pursuers compare all possible 2P1E games and choose to
play the game which yields the smallest capture time from the current
positions. The headings for the chosen team, 𝑖, 𝑗, are given by the 2P1E
gamewhereas all of the other agents aim LOS (PP). The solutions to the
2P1E games are given by (7.39) (note 𝒱𝒫ℬ𝒮ℛ

= ∅). An explicit deriva-
tion of the 2P1E Value function and heading angles is given by [107].
In general, these solutions are either the further of the AC intersections
between 𝑃𝑖 and 𝑃𝑗’s circles or the 1P1E solution for one or the other Pur-
suer. The idea is that as u𝑅

𝑃 is implemented continuously in feedback
fashion the Pursuer assignments (i.e. whether each Pursuer is aiming
LOS or cooperatingwith another Pursuer in the 2P1E game)may switch
to whatever is most advantageous at that time according to (8.25).
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Theorem 8.3. The 𝑅 policy is a robust Pursuer policy. That is,

𝐽(u𝐸,u𝑅
𝑃) ≤ 𝑉2𝑃1𝐸(𝐸, 𝑃𝑖∗ , 𝑃𝑗∗) ∀u𝐸 ∈ 𝑈𝐸 (8.28)

where 𝑖∗, 𝑗∗ are given by (8.25).

Proof.

Case 1 (No switches occur): The team 𝑖∗, 𝑗∗ selected at time 𝑡 = 0 re-
mains the best team according to (8.25) for all 0 ≤ 𝑡 ≤ 𝑡𝑓 . Then the
other pursuers, 𝑘 ∉ {𝑖∗, 𝑗∗} had no effect on the game and it is as if the
scenario is an instance of the 2P1E game. In this case (8.28) is given by
the fact that the headings in (8.26) are the saddle-point strategies for
the Pursuers 𝑃𝑖∗ , 𝑃𝑗∗ in the 2P1E game.

Case 2 (One or more switches occur): Let the initial team assignment
be 𝑖∗0, 𝑗∗0. Let 𝑡1 be the time in which the first switch occurs, 0 < 𝑡1 < 𝑡𝑓 ,
and the new team assignment be 𝑖∗1, 𝑗∗1. At 𝑡1 it must be, from (8.25),

𝑉2𝑃1𝐸(𝐸, 𝑃𝑖∗1 , 𝑃𝑗∗
1
) < 𝑉2𝑃1𝐸(𝐸, 𝑃𝑖∗0 , 𝑃𝑗∗

0
)

otherwise, a switch would not have occurred. For the remainder of the
game 𝑡1 < 𝑡 ≤ 𝑡𝑓 , the scenario falls into either of these two cases.

Thus, robustness of 𝑅 is guaranteed by the robustness of the 2P1E
solution and the method of assignment, (8.25).

Theorem 8.4. The Value of the multiple pursuer single evader game under
the kinematics in (8.1) and feedback Nash equilibrium strategies u∗

𝐸, u
∗
𝑃, if

they exist, satisfies

𝐿𝐵(x) ≤ 𝐽(u𝐺
𝐸 ,u∗

𝑃) ≤ 𝐽(u∗
𝐸,u∗

𝑃) ≤ 𝐽(u∗
𝐸,u𝑅

𝑃) ≤ 𝑉2𝑃1𝐸(𝐸, 𝑃𝑖∗ , 𝑃𝑗∗)
(8.29)

where 𝑖∗, 𝑗∗ are given by (8.25). In other words, the Value of the game is
bounded.

Proof. The first inequality follows directly from (8.14) in Corollary 8.1.
The middle two inequalities follow from Definition 4. The last inequal-
ity follows directly from (8.28) in Theorem 8.3.
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Although the true solution to the MP1E GoT is not known, the ro-
bustness properties of the 𝐺 and 𝑅 policies yield a bound on the game
optimal capture time. It is also true that if the Evader implements 𝐺
and the Pursuers implement 𝑅 the following is satisfied,

𝐿𝐵(x) ≤ 𝐽(u𝐺
𝐸 ,u𝑅

𝑃) ≤ 𝑉2𝑃1𝐸(𝐸, 𝑃𝑖∗ , 𝑃𝑗∗) (8.30)

It is possible for the upper and lower bounds to be equivalent. The
following theorem identifies the conditions under which this is true as
well as the implications of such a scenario. Let the capture point asso-
ciated with the 2P1E game between 𝐸, 𝑃𝑖∗ , and 𝑃𝑗∗ be denoted 𝐼2𝑃1𝐸.

Theorem 8.5. If 𝐼2𝑃1𝐸 ∈ 𝑆𝑅, the strategy pair u𝐺
𝐸 , u

𝑅
𝑃 is a feedback Nash

equilibrium of the multiple pursuer single evader game under the kinematics
in (8.1).

Proof. Let 𝑖∗, 𝑗∗ be the solution to (8.25) corresponding to 𝐼2𝑃1𝐸. Pur-
suers 𝑃𝑖∗ and 𝑃𝑗∗ thus aim at 𝐼2𝑃1𝐸 under the 𝑅 policy according to
(8.26). Now it will be shown that 𝐼2𝑃1𝐸 is the solution to (7.39). This
statement is predicated on the point 𝐼2𝑃1𝐸 being in 𝑆𝑅. Suppose there
is another point 𝐼† = (𝑥†, 𝑦†) ∈ 𝑆𝑅 such that,

min
𝑖

(𝑥𝑖 − 𝑥†)2 + (𝑦𝑖 − 𝑦†)2 > min
𝑖

(𝑥𝑖 − 𝑥2𝑃1𝐸)2 + (𝑦𝑖 − 𝑦2𝑃1𝐸)2

that is, the point 𝐼† is further away from the nearest Pursuer than 𝐼2𝑃1𝐸.
By virtue of the fact that 𝐼† ∈ 𝑆𝑅, the Evader can safely reach 𝐼† by aim-
ing directly at it and achieve a better capture time than if it had aimed
at 𝐼2𝑃1𝐸 (i.e. the Value of the 2P1E game, 𝑉2𝑃1𝐸(𝐸, 𝑃𝑖∗ , 𝑃𝑗∗)). Then 𝐿𝐵 >
𝑉2𝑃1𝐸; but this statement contradicts (8.29) in Theorem 8.4. Therefore,
since no point in 𝑆𝑅 can yield a better capture time for the Evader, the
point 𝐼2𝑃1𝐸 must be the solution to (7.39). Thus the lower bound is
equal to the upper bound,

𝐿𝐵(x) = 𝑉2𝑃1𝐸(𝐸, 𝑃𝑖∗ , 𝑃𝑗∗) (8.31)
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Under the 𝐺 policy, then, the Evader aims at the point 𝐼2𝑃1𝐸. Thus the
strategies u𝐺

𝐸 , u𝑅
𝑃 yield the same behavior for 𝐸, 𝑃𝑖∗ , and 𝑃𝑗∗ as under

the game optimal 2P1E strategies,

𝐽(u𝐺
𝐸 ,u𝑅

𝑃) = 𝐽(u∗
𝐸,u∗

𝑃) (8.32)

where 𝑖∗, 𝑗∗ are given by (8.25).

It is unclear, however, what the relationship between 𝐽(u𝐺
𝐸 ,u𝑅

𝑃) and
𝐽(u∗

𝐸,u∗
𝑃) is in general.

8.6 CONVEX POL I CY

In this section another pursuit policy is introduced, the 𝐶 policy (for
convex) It may not have the same robustness properties of 𝑅, but is
an attempt at smoothing out the chattering behavior of 𝐺 in configura-
tions like that of Figure 8.1. The Pursuers’ loss observed in Figure 8.2b
is induced (1) by the curvature in 𝑃2 and 𝑃3’s paths and (2) by an ef-
fective slowing down while the Voronoi vertex 𝑣 and AC intersection
𝑎 are similar in value (i.e. the Pursuers headings chatter). In the case
of a discrete time implementation, this latter piece may be understood
to be the result of vector addition. Figure 8.6 illustrates the idea that

[ February 3, 2022 at 13:27 – classicthesis v4.6 ]

Figure 8.6: Red path: slower effective speed due to chattering, Blue path:
smoothed trajectory obtained by taking a convex combination of
headings.

the effect of slowing down due to chattering can be combated by using
a combination of headings. Thus the 𝐶 policy for the Pursuers is pro-
posed as an augmentation of the 𝐺 policy. Let 𝑑(𝑥, 𝑦) be the distance
from the nearest Pursuer to the point (𝑥, 𝑦),

𝑑(𝑥, 𝑦) = min
𝑖

√(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2 (8.33)
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and, let 𝑑∗ = 𝑑(𝑥∗, 𝑦∗) be the distance from the nearest Pursuer to the
aim point suggested by the 𝐺 policy be written where (𝑥∗, 𝑦∗) is the
solution to (7.39). Then, define the following set of points,

𝒞 = {(𝑥𝑘, 𝑦𝑘) | (𝑥𝑘, 𝑦𝑘) ∈ 𝑆𝐵𝑆𝑅 ∩ 𝒜 ∩ 𝒱𝑃𝐵𝑆𝑅
, |𝑑(𝑥𝑘, 𝑦𝑘) − 𝑑∗| < 𝜀}

(8.34)
which are the candidate solutions to (7.39) whose distance to the near-
est Pursuer is within some neighborhood 𝜀 of 𝑑∗. The 𝐶 policy, then,
for the 𝑖th Pursuer is to take a convex combination of headings to each
of the points in 𝒞 in which the weight associated with a point (𝑥𝑘, 𝑦𝑘)
is inversely proportional to 𝑑𝑘.

u𝐶
𝑖 =

∑|𝒞|
𝑘=1

1
𝑑𝑘

𝜓𝑖,𝑘

∑|𝒞|
𝑘=1

1
𝑑𝑘

, 𝑖 = 1, … , 𝑀 (8.35)

where 𝜓𝑖,𝑘 is the angle of the point 𝑝𝑘 ∈ 𝒞 relative to 𝑃𝑖,

𝜓𝑖,𝑘 = tan−1 𝑦𝑝𝑘
− 𝑦𝑖

𝑥𝑝𝑘
− 𝑥𝑖

, 𝑖 = 1, … , 𝑀, 𝑘 = 1, … , |𝒞| (8.36)

Remark 13. In practice it is simpler to apply the weighting in (8.35) to
the points 𝑝𝑘 directly to get the convex combination of aim points, and
then converting to a heading.

The selection of 𝜀 is of some importance.As 𝜀 → 0 only the solution to
(7.39), (𝑥∗, 𝑦∗), is considered, and all other candidates ignored; in this
case, the 𝐶 policy is identical to the 𝐺 policy. It is possible for there to
be more than one solution to (7.39), however this almost never occurs
in reality. For such a configuration to occur, the agents would either
need to begin as such or implement their control in continuous time
with infinite precision. For very large 𝜀 the set 𝒞 is equivalent to the
set of candidates 𝑆𝐵𝑆𝑅 ∪ 𝒜 ∪ 𝒱𝑃𝐵𝑆𝑅

. Pursuer performance in this case
can be very poor, especially in the case when 𝐸 is between and nearly
collinearwith two of the Pursuers. Therefore, in order to improve upon
the 𝐺 policy, the neighborhood should generally be set such that,

0 < 𝜀 ≪ 1 (8.37)
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For discrete time implementations, the size of 𝜀 should be larger for
large Δ𝑡. This is because, in a single time step, the system state x may
very well jump across the neighborhoodwherein the solution to (7.39)
is different. As previously mentioned, there are no obvious analytical
properties of the 𝐶 policy (e.g. in theway of robustness), but, as will be
shown in the sequel, its performance is the best out of any of the pursuit
policies presented herein for some particular Evader behaviors.

8.7 R E SULT S

Because none of the policies presented in this chapter are feedback
Nash equilibrium strategies, it is interesting to compare the performance
of the different policies via simulation. The limitation of this approach
is that one may never be certain whether a particular policy performs
better than another for all cases. A framework for comparing themerits
or de-merits of non-FNE strategies via simulation is out of the scope of
the present work, although it represents an interesting area of research
in the case that the FNE strategies are not known (or do not exist). Here,
in order to compare the 𝐺, 𝑅, and 𝐶 policies initial conditions like those
in Figure 8.2a are utilized and the Evader’s control input 𝜙 is restricted
to be constant over the course of a single playout:

u𝜙
𝐸(𝑡) ∶= 𝜙𝑐, 𝜙𝑐 ∈ [0, 2𝜋] (8.38)

Then, 𝜙 is swept from 0 to 2𝜋 and simulate the game for each constant
evader heading. For all of the simulations in this section the following
settings are used: 𝑉𝑃 = 1, 𝛼 = 0.9, and Δ𝑡 = 5𝑒 − 3. Figure 8.7 depicts
the location in which the Evader is captured for each of the pursuit
policies. The 𝐵𝑆𝑅 shown (and hereafter mentioned) is the 𝐵𝑆𝑅 corre-
sponding to 𝑡 = 0 – the 𝐵𝑆𝑅 changes as a function of the instantaneous
position of the agents. Because the Evader is implementing a constant
heading policy, the best performance the Pursuers can achieve is cap-
ture on the 𝐵𝑆𝑅. Capture on the 𝐵𝑆𝑅 can only be achieved if the inter-
cepting Pursuer takes a constant-heading path to the intercept point.
In general, the Pursuers would need to know 𝜙𝑐 from 𝑡 = 0 in order to
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Figure 8.7: Capture locations under Evader constant-heading policy u𝜙
𝐸

against Pursuers’ geometric policy u𝐺
𝑃 , convex policy u𝐶

𝑃 , and ro-
bust policy u𝑅

𝑃 .

accomplish this. Nonetheless, the closer the intercept points are to the
𝐵𝑆𝑅 the “better”, in this case.

Figure 8.8 shows the capture times associated with the playouts in
Figure 8.7. The upper bound for the capture time is given by the two-
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Figure 8.8: Capture times under Evader constant-heading policy u𝜙
𝐸 against

Pursuers’ geometric policy u𝐺
𝑃 , convex policy u𝐶

𝑃 , and robust pol-
icy u𝑅

𝑃 .

on-one game with the smallest capture time, 𝑉2𝑃1𝐸(𝐸, 𝑃𝑖∗ , 𝑃𝑗∗). The
lower bound for the capture time is simply the smallest time required
for a Pursuer to each the Evader if the Evader were to take a collision
course with that Pursuer:

𝑡 = min
𝑖

𝐸𝑃𝑖
𝑉𝐸 + 𝑉𝑃
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Note, this lower bound is not to be confused with the Evader’s robust
bound, defined in (8.14). The value of the Evader’s robust bound is
1 and corresponds to the Evader standing still at (0, 0), which is the
Voronoi vertex at 𝑡 = 0. If this bound were equal to the Value of the
game (i.e. if 𝐺 were the Evader’s FNE strategy), then one would ex-
pect an FNE pursuit strategy to achieve capture times at or below 1 for
these playouts. The fact that none of the pursuit policies meet this con-
dition for all 𝜙𝑐 ∈ [0, 2𝜋] means that 𝐺 is not the Evader’s FNE strategy
and/or none of the pursuit strategies presented herein are FNE pursuit
strategies. It is likely that both are true, and likely that the inequalities
in (8.30) are strict equalities.

The thickness in the 𝑅 line in the above plots is due to the fact that
at 𝑡 = 0 all three Pursuer pairings yield the same two-on-one cap-
ture time. Whenever it is true that the Pursuer team pairing 𝑖∗, 𝑗∗ is
not unique the simulation selects a pairing from among the minima
at random. Thus, for the 𝑅 policy, the simulations were repeated five
times and the minimum and maximum capture times recorded and
displayed. From Figure 8.8 it is clear that the 𝐶 policy always out per-
forms the 𝐺 policywhich almost always outperforms the 𝑅 policy. This
is, perhaps, due to fact that the 𝐺 and 𝐶 policies consider explicit coop-
eration amongmultiple (> 2) pursuerswhereas the𝑅policy addresses
cooperation between 2 pursuers (since the other 𝑀 − 2 pursuers op-
erate independently). So although the 𝐺 and 𝐶 policies do not come
with any robustness guarantees from the Pursuers’ perspective, they
typically perform much better. This is especially comforting consider-
ing this configuration was used to disprove that the 𝐺 policy is an FNE

pursuit strategy (see Theorem 8.2)! Note that, for this particular sce-
nario, the Pursuers’ robust (upper) bound is quite high compared to
the capture times, even under the 𝑅 policy. Thus, if one were to choose
a pursuit policy, the relative benefit of robustness must be weighed
against typical performance. One should expect that multi-pursuer co-
operationwill improve the performance of the Pursuer team.However,
analysis of cooperation among multiple (> 2) pursuers is more chal-
lenging and the FNE is not easy to obtain.
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Lastly, Figure 8.9 shows the agents’ trajectories for the case where
𝜙𝑐 = 3𝜋

2 . The capture times corresponding to the trajectories in Fig-

P1

P2 P3

E

C

G

R

Figure 8.9: Comparison of Pursuer trajectories under the robust (𝑅), geomet-
ric (𝐺), and convex (𝐶) policies against an evader implementing
a constant heading of 𝜙𝑐 = 3𝜋

2 .

ure 8.9 are given in Table 8.2 alongwith the relative performance penalty
w.r.t. the 𝐶 policy. Notice the trajectories generated by the 𝐶 policy and

Table 8.2: Capture times for different pursuit policies
Policy 𝑡𝑓 Penalty

𝐶 1.28 0%
𝐺 1.40 10%
𝑅 2.19 64%

how 𝑃2 and 𝑃3 tend towards the 𝑦-axis much moreso than 𝐺 or 𝑅 and
thus capture 𝐸 much sooner. Under the 𝑅 policy, pursuers 𝑃2 and 𝑃3

begin by aiming to the intersection of their AC intersections which is
further away from the Evader (far above the plot shown). They stay
on this course until they become collinear with the Evader. After this
point, the game plays out as a normal two-on-one game between 𝑃2,
𝑃3, and 𝐸 (as these three agents are now headed towards the furthest
AC intersection).
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8.8 CONCLUS ION

In this chapter the Multiple Pursuer Single Evader Differential Game
comprised of agents with simple motion and a slow Evader was pre-
sented. Itwas shown that the recently proposed geometric policy based
on comparing distances to relevant single-pursuer solutions, AC inter-
sections, and Voronoi vertices is a Global Stackelberg (i.e., open-loop)
Equilibrium when both the Evader and Pursuers implement it. This
policy was also shown to not be a Feedback Nash Equilibrium strategy
pair. The true Feedback Nash Equilibrium strategies correspond to the
solution of this differential game; if they exist, they are not currently
known. Despite the geometric policy not being a Feedback Nash Equi-
librium strategy, the fact that the policy is robust from the perspective
of the Evader was identified. Similarly, a new pursuit strategy was pro-
posed based on the solution to differential games between subsets of
the agents which is robust from the Pursers’ perspective. Alterations
to the geometric policy were proposed and shown to improve perfor-
mance for a particular test scenario. In the next chapter, these many-
Pursuer concepts are applied to a scenario with a different cost func-
tional which is based on distance to a target.





9
M PURSUER BORDER DEFENSE

9.1 IN TRODUCT ION

This chapter applies concepts from theMP1EGoT to amultiple-Pursuer,
single-Evader border defense differential game (MP1E BD). Here, the
Pursuers (henceforth referred to as theUAVs) seek to prevent the Evader
from reaching a specified goal (henceforth referred to as the border).
In the case that the Evader cannot be guaranteed to reach the border, a
zero-sum differential game is posed in which the cost functional is the
terminal distance to the border at the time of capture (i.e., the Game
of Distance). The results partly address Research Objectives 4 and 5
by demonstrating the utility of the 1v1 MP1E BD solution in a scenario
with many Pursuers. This chapter is based on [251].

Two questions (or games) may be considered in this scenario: (1) is
escape possible for the Evader (the game of kind) and (2) how close
can the Evader get to the border before being captured (the game of
degree). In the remainder of the paper, both games will be addressed.
Section 9.2 expresses the problem formulation of the game of degree.
Section 9.3 describes the game of kind and characterizes the win re-
gions for the single and multiple Pursuer cases. Section 9.4 discusses
the possibility for a dispersal surface in the game and some practical
consequences. Lastly, Section 9.5 concludes this chapter.

157
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9.2 GAME OF DEGRE E

Here the game of degree is considered wherein escape through the
border is not possible for Evader. Consider 𝑀 Pursuers and an Evader,
with simple motion in the ℝ2 plane:

̇𝑥𝐸 = 𝛼 cos𝜙,

̇𝑦𝐸 = 𝛼 sin𝜙,

̇𝑥𝑃𝑖
= cos𝜓𝑖, 𝑖 = 1, … , 𝑀

̇𝑦𝑃𝑖
= sin𝜓𝑖, 𝑖 = 1, … , 𝑀

(9.1)

where 𝛼 = 𝑉𝐸/𝑉𝑃 < 1 is the speed ratio constant; note, the Pursuers
share the same velocity 𝑉𝑃𝑖

= 𝑉𝑃, 𝑖 = 1, … , 𝑀. The admissible controls
are given by 𝜙, 𝜓𝑖 ∈ [−𝜋, 𝜋]. The cost/payoff function is the terminal
distance, at the time of interception, between the Evader and the border.
The Pursuer strives to capture the Evader andmaximize this separation
while the Evader wants to minimize it. The cost/payoff function can be
written as follows:

𝐽 = √(𝑥𝐸𝑓
− 𝑥𝐹)2 + (𝑦𝐸𝑓

− 𝑦𝐹)2. (9.2)

where the point 𝐹 ∶ (𝑥𝐹, 𝑦𝐹) is defined as the point on (any segment of)
the border which is the closest to the terminal position of the Evader.

Interception is defined by point capture, that is, the game terminates
when the state of the system enters the set

𝒞 ∶= {x ∣ ∃𝑖 𝑠.𝑡. √(𝑥𝑃𝑖
− 𝑥𝐸)2 + (𝑦𝑃𝑖

− 𝑦𝐸)2 = 0} (9.3)

Figure 9.1 specifies the coordinate system as well as the payoff/cost
for a given interception point (𝑥𝐸𝑓

, 𝑦𝐸𝑓
). The main point of defining the

objective in (9.2) this way is robustness to uncertainty, both in terms
of the opponents’ strategy as well as the environment. The Pursuers
want to keep the Evader as far from the border as possible in case a
Pursuer is incapacitated or blown off-course by wind, which could al-
low the Evader to get closer to the border or even escape. For some
applications, whether or not escape occurs is the only thing that mat-
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•(𝑥𝐸𝑓
, 𝑦𝐸𝑓

)

(𝑥𝐸, 𝑦𝐸)
𝜙

(𝑥𝑃1
, 𝑦𝑃1

)
𝜓1

…
(𝑥𝑃𝑀

, 𝑦𝑃𝑀
)

𝜓𝑀

•
(𝑥𝐹, 𝑦𝐹)

𝐽

𝑦

𝑥

[ February 3, 2022 at 14:13 – classicthesis v4.6 ]

Figure 9.1: Definition of scenario, coordinate system, and payoff/cost. Red tri-
angles represent Pursuers, the blue circle is the Evader, the blue
line is the laser fence, and the red line is the border.

ters. However, by solving the Game of Degree, the Pursuers give them-
selves the best shot at capturing the Evader in the face of uncertainty
in the environment and in the Evader’s implemented control.

9.2.1 Single Pursuer Solution and Verification

In this differential game one can then define an AC using the instanta-
neous separation between 𝑃 (Pursuer) and 𝐸 (Evader) and the speed
ratio parameter 𝛼 = 𝑉𝐸/𝑉𝑃 < 1. Let 𝐶 denote the center of the circle.
The three points: 𝑃, 𝐸, and 𝐶 are located on the same line, see Fig. 9.2.
Also in this figure one can see that the Borderline separates the plane
into two regions. The game is played in the region of the Euclidean
plane 𝒢 where both the Pursuer and the Evader are initially located.
This region is further divided into the region of win for the Pursuers
and the region of win of the Evader.

Define 𝑑 = √(𝑥𝐸 − 𝑥𝑃)2 + (𝑦𝐸 − 𝑦𝑃)2 as the distance between play-
ers 𝑃 and 𝐸. Also, let 𝑟 be the radius of the AC. Then, 𝑟 is given by

𝑟 = 𝛼
1 − 𝛼2 𝑑. (9.4)

Assume that the parameters (𝑚𝑖, 𝑛𝑖) of each border segment are given,
where the segment 𝑖 is given by 𝑦 = 𝑚𝑖𝑥 + 𝑛𝑖. Also assume that the
x ∈ ℛ𝑃, that is, in the region of win of the Pursuer. ℛ𝑃 can be deter-
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𝛼

1

𝐸

𝑃

•
𝐶

𝐼

𝜂

𝒢

𝑦 = 𝑚1𝑥 + 𝑛1

𝑦 = 𝑚2𝑥 + 𝑛2

𝑦 = 𝑚3𝑥 + 𝑛3

[ February 2, 2022 at 11:00 – classicthesis v4.6 ]

Figure 9.2: Border defense scenario 1 Pursuer - 1 Evader

mined by analyzing whether or not the AC intersects any segment of
the border.

Proposition 9.1. Consider the differential game of border defense (9.1)–(9.3).
The Value function is given by 𝑉(x) = 𝑉𝑖∗(x) where 𝑖∗ = argmin𝑖 𝑉𝑖(x)
and

𝑉𝑖(x) =

1
1 − 𝛼2

⎡⎢
⎣
⎛⎜
⎝

𝑥𝐸 − 𝛼2𝑥𝑃 − 𝑚𝑖
𝑦𝐸 − �̄�𝑖𝑥𝐸 − 𝛼2(𝑦𝑃 − �̄�𝑖𝑥𝑃) − (1 − 𝛼2)𝑛𝑖

𝑚2
𝑖 + 1

⎞⎟
⎠

2

+
⎛⎜⎜⎜⎜
⎝

𝑦𝐸 − 𝛼2𝑦𝑃 − 𝑚2
𝑖

𝑦𝐸 − �̄�𝑖𝑥𝐸 − 𝛼2(𝑦𝑃 − �̄�𝑖𝑥𝑃) + 1−𝛼2

𝑚2
𝑖

𝑛𝑖

𝑚2
𝑖 + 1

⎞⎟⎟⎟⎟
⎠

2
⎤⎥⎥⎥
⎦

1/2

− 𝛼
1 − 𝛼2 [(𝑥𝐸 − 𝑥𝑃)2 + (𝑦𝐸 − 𝑦𝑃)2]1/2

(9.5)
where x = [𝑥𝐸 𝑦𝐸 𝑥𝑃 𝑦𝑃]⊤.

Proof. The optimal cost/payoff is obtained when 𝐸 is intercepted by 𝑃
at the point on the AC closest to the border. For each segment of the
border, the closest point between the circle and the border segment is
given by the orthogonal line to the border segment that passes by the
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center of the circle 𝐶 as shown in Fig. 9.3. The distance between points
𝐼𝑖 and 𝐹𝑖 is given by

𝑉𝑖(x) = √(𝑥𝑐 − 𝑥𝐹)2 + (𝑦𝑐 − 𝑦𝐹)2 − 𝑟 (9.6)

where the center of the circle is explicitly given by:

𝑥𝑐 = 1
1 − 𝛼2 (𝑥𝐸 − 𝛼2𝑥𝑃) , 𝑦𝑐 = 1

1 − 𝛼2 (𝑦𝐸 − 𝛼2𝑦𝑃) (9.7)

In order to write the Value function directly in terms of the state x the
point 𝐹 ∶ (𝑥𝐹, 𝑦𝐹)must be evaluated in terms of the state x. The equation
of the orthogonal line to segment 𝑖 passing through 𝐶 is 𝑦 = �̄�𝑖𝑥 + ̄𝑛𝑖

where �̄�𝑖 = − 1
𝑚𝑖

and

̄𝑛𝑖(x) = 𝑦𝑐 − �̄�𝑖𝑥𝑐

= 1
1 − 𝛼2 (𝑦𝐸 − 𝛼2𝑦𝑃 − �̄�𝑖 (𝑥𝐸 − 𝛼2𝑥𝑃))

(9.8)

Now solve the following linear equation to determine 𝑥𝐹

𝑚𝑖𝑥𝐹 + 𝑛𝑖 = �̄�𝑖𝑥𝐹 + ̄𝑛𝑖

The coordinate 𝑥𝐹 is explicitly given by:

𝑥𝐹(x) = ̄𝑛𝑖 − 𝑛𝑖
𝑚𝑖 − �̄�𝑖

= 𝑚𝑖
1 − 𝛼2 ⋅

𝑦𝐸 − �̄�𝑖𝑥𝐸 − 𝛼2(𝑦𝑃 − �̄�𝑖𝑥𝑃) − (1 − 𝛼2) 𝑛𝑖
𝑚2

𝑖 + 1
(9.9)

and 𝑦𝐹 is given by:

𝑦𝐹(x) = 𝑚𝑖𝑥𝐹 + 𝑛𝑖 =
𝑚2

𝑖
1 − 𝛼2 ⋅

𝑦𝐸 − �̄�𝑖𝑥𝐸 − 𝛼2(𝑦𝑃 − �̄�𝑖𝑥𝑃) + 1−𝛼2

𝑚2
𝑖

𝑛𝑖

𝑚2
𝑖 + 1

(9.10)

Substitute (9.4), (9.7), (9.9), (9.10) into (9.6) to obtain eq. (9.5). The
problem of finding the closest point on the border to the AC has been
simplified by obtaining the closest point of each segment of the border
to the AC. Then, the solution is given by 𝑖∗ = argmin𝑖 𝑉𝑖(x).
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𝐸

𝑃

•
𝐶

•
𝐼𝑖

•
𝐹𝑖 𝑦 = 𝑚𝑖𝑥 + 𝑛𝑖

𝜂

[ February 3, 2022 at 14:13 – classicthesis v4.6 ]

Figure 9.3: Derivation of 𝑉(x)

In the next theorem the subscript 𝑖 is removed for simplicity, that is,
it is assumed that the optimal segment 𝑖 has been determined.

Theorem 9.1. Consider the differential game of border defense (9.1)–(9.3).
The saddle point strategies of the Evader and the Pursuer are

cos𝜙∗ = 𝑥𝐼 − 𝑥𝐸

√(𝑥𝐼 − 𝑥𝐸)2 + (𝑦𝐼 − 𝑦𝐸)2

sin𝜙∗ = 𝑦𝐼 − 𝑦𝐸

√(𝑥𝐼 − 𝑥𝐸)2 + (𝑦𝐼 − 𝑦𝐸)2

cos𝜓∗ = 𝑥𝐼 − 𝑥𝑃

√(𝑥𝐼 − 𝑥𝑃)2 + (𝑦𝐼 − 𝑦𝑃)2

sin𝜓∗ = 𝑦𝐼 − 𝑦𝑃

√(𝑥𝐼 − 𝑥𝑃)2 + (𝑦𝐼 − 𝑦𝑃)2
.

(9.11)

In addition, 𝑉(x) is continuous and continuously differentiable (except at
singular surfaces) and 𝑉(x) satisfies the HJI equation.
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Proof. One can obtain the partial derivatives of 𝑉 with respect to each
element of the state. They are given by

𝜕𝑉
𝜕𝑥𝐸

= 𝑚
(1 − 𝛼2)(𝑚2 + 1)

⋅ 𝑚(𝑥𝑐 − 𝑥𝐹) − (𝑦𝑐 − 𝑦𝐹)
√(𝑥𝑐 − 𝑥𝐹)2 + (𝑦𝑐 − 𝑦𝐹)2

− 𝛼
1 − 𝛼2 ⋅ 𝑥𝐸 − 𝑥𝑃

√(𝑥𝐸 − 𝑥𝑃)2 + (𝑦𝐸 − 𝑦𝑃)2

𝜕𝑉
𝜕𝑦𝐸

= 1
(1 − 𝛼2)(𝑚2 + 1)

⋅ −𝑚(𝑥𝑐 − 𝑥𝐹) + (𝑦𝑐 − 𝑦𝐹)
√(𝑥𝑐 − 𝑥𝐹)2 + (𝑦𝑐 − 𝑦𝐹)2

− 𝛼
1 − 𝛼2 ⋅ 𝑦𝐸 − 𝑦𝑃

√(𝑥𝐸 − 𝑥𝑃)2 + (𝑦𝐸 − 𝑦𝑃)2

𝜕𝑉
𝜕𝑥𝑃

= 𝛼2𝑚
(1 − 𝛼2)(𝑚2 + 1)

⋅ −𝑚(𝑥𝑐 − 𝑥𝐹) + (𝑦𝑐 − 𝑦𝐹)
√(𝑥𝑐 − 𝑥𝐹)2 + (𝑦𝑐 − 𝑦𝐹)2

+ 𝛼
1 − 𝛼2 ⋅ 𝑥𝐸 − 𝑥𝑃

√(𝑥𝐸 − 𝑥𝑃)2 + (𝑦𝐸 − 𝑦𝑃)2

𝜕𝑉
𝜕𝑦𝑃

= 𝛼2

(1 − 𝛼2)(𝑚2 + 1)
⋅ 𝑚(𝑥𝑐 − 𝑥𝐹) − (𝑦𝑐 − 𝑦𝐹)

√(𝑥𝑐 − 𝑥𝐹)2 + (𝑦𝑐 − 𝑦𝐹)2

+ 𝛼
1 − 𝛼2 ⋅ 𝑦𝐸 − 𝑦𝑃

√(𝑥𝐸 − 𝑥𝑃)2 + (𝑦𝐸 − 𝑦𝑃)2
.

(9.12)

Define the following

cos 𝜂 = 𝑥𝐹−𝑥𝑐

√(𝑥𝐹−𝑥𝑐)2+(𝑦𝐹−𝑦𝑐)2
, sin 𝜂 = 𝑦𝐹−𝑦𝑐

√(𝑥𝐹−𝑥𝑐)2+(𝑦𝐹−𝑦𝑐)2 (9.13)

so that tan 𝜂 = �̄� as it can be seen in Fig. 9.3. Also define

cos𝜆 = 𝑥𝐸−𝑥𝑃

√(𝑥𝐸−𝑥𝑃)2+(𝑦𝐸−𝑦𝑃)2
, sin𝜆 = 𝑦𝐸−𝑦𝑃

√(𝑥𝐸−𝑥𝑃)2+(𝑦𝐸−𝑦𝑃)2 (9.14)

where 𝜆 is the LOS angle from 𝑃 to 𝐸.
Then, equations (9.12) can be written as follows

𝜕𝑉
𝜕𝑥𝐸

= 1
1 − 𝛼2 [ 𝑚

𝑚2 + 1
(−𝑚 cos 𝜂 + sin 𝜂) − 𝛼 cos𝜆]

𝜕𝑉
𝜕𝑦𝐸

= 1
1 − 𝛼2 [ 1

𝑚2 + 1
(𝑚 cos 𝜂 − sin 𝜂) − 𝛼 sin𝜆]

𝜕𝑉
𝜕𝑥𝑃

= 𝛼
1 − 𝛼2 [ 𝛼𝑚

𝑚2 + 1
(𝑚 cos 𝜂 − sin 𝜂) + cos𝜆]

𝜕𝑉
𝜕𝑦𝑃

= 𝛼
1 − 𝛼2 [ 𝛼

𝑚2 + 1
(−𝑚 cos 𝜂 + sin 𝜂) + sin𝜆]

(9.15)
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Note that �̄� = tan 𝜂 = sin𝜂
cos𝜂 . Then 𝑚 = − 1

�̄� = − cos𝜂
sin𝜂 and 𝑚2 + 1 = 1

sin2 𝜂
.

Additionally, 𝑚 cos 𝜂 − sin 𝜂 = − 1
sin𝜂 and (9.15) can be written in the

simplified form:

𝜕𝑉
𝜕𝑥𝐸

= − 1
1 − 𝛼2 (cos 𝜂 + 𝛼 cos𝜆)

𝜕𝑉
𝜕𝑦𝐸

= − 1
1 − 𝛼2 (sin 𝜂 + 𝛼 sin𝜆)

𝜕𝑉
𝜕𝑥𝑃

= 𝛼
1 − 𝛼2 (𝛼 cos 𝜂 + cos𝜆)

𝜕𝑉
𝜕𝑦𝑃

= 𝛼
1 − 𝛼2 (𝛼 sin 𝜂 + sin𝜆)

(9.16)

Note that the coordinates of the interception point 𝐼 can be written as
follows: 𝑥𝐼 = 𝑥𝑐 + 𝑟 cos 𝜂 and 𝑦𝐼 = 𝑦𝑐 + 𝑟 sin 𝜂. One can write

𝑥𝐼 − 𝑥𝐸
𝑟 = 𝛼 cos𝜆 + cos 𝜂

𝑦𝐼 − 𝑦𝐸
𝑟 = 𝛼 sin𝜆 + sin 𝜂

𝑥𝐼 − 𝑥𝑃
𝑟 = 1

𝛼 cos𝜆 + cos 𝜂
𝑦𝐼 − 𝑦𝑃

𝑟 = 1
𝛼 sin𝜆 + sin 𝜂

(9.17)

By multiplying and dividing each equation in (9.11) by 1/𝑟 gives

cos𝜙∗ = 𝛼 cos𝜆 + cos 𝜂
√(𝛼 cos𝜆 + cos 𝜂)2 + (𝛼 sin𝜆 + sin 𝜂)2

sin𝜙∗ = 𝛼 sin𝜆 + sin 𝜂
√(𝛼 cos𝜆 + cos 𝜂)2 + (𝛼 sin𝜆 + sin 𝜂)2

cos𝜓∗ =
1
𝛼 cos𝜆 + cos 𝜂

√( 1
𝛼 cos𝜆 + cos 𝜂)2 + ( 1

𝛼 sin𝜆 + sin 𝜂)2

sin𝜓∗ =
1
𝛼 sin𝜆 + sin 𝜂

√( 1
𝛼 cos𝜆 + cos 𝜂)2 + ( 1

𝛼 sin𝜆 + sin 𝜂)2

(9.18)

In general, the HJI equation is given by

− 𝜕𝑉
𝜕𝑡 = 𝜕𝑉

𝜕x ⋅ f(x, 𝜓∗, 𝜙∗) + 𝑔(𝑡, x, 𝜓∗, 𝜙∗) (9.19)
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𝑦 = 𝑚𝑗𝑥 + 𝑛𝑗

𝑦 = 𝑚𝑘 + 𝑛𝑘

𝒢

𝐸
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[ February 3, 2022 at 14:05 – classicthesis v4.6 ]

Figure 9.4: Convex Border

In this problem it must be that 𝜕𝑉
𝜕𝑡 = 0 and 𝑔(𝑡, x, 𝜓∗, 𝜙∗) = 0. Then, the

following is computed,

𝜕𝑉
𝜕𝑥𝐸

𝛼 cos𝜙∗ + 𝜕𝑉
𝜕𝑦𝐸

𝛼 sin𝜙∗ + 𝜕𝑉
𝜕𝑥𝑃

cos𝜓∗ + 𝜕𝑉
𝜕𝑦𝑃

sin𝜓∗

= − 𝛼
1 − 𝛼2 ⋅ (cos 𝜂 + 𝛼 cos𝜆)2 + (sin 𝜂 + 𝛼 sin𝜆)2

√1 + 𝛼2 + 2𝛼(cos𝜆 cos 𝜂 + sin𝜆 sin 𝜂)

+ 𝛼2

1 − 𝛼2 ⋅
1

𝛼2 (𝛼 cos 𝜂 + cos𝜆)2 + 1
𝛼2 (𝛼 sin 𝜂 + sin𝜆)2

1
𝛼√1 + 𝛼2 + 2𝛼(cos𝜆 cos 𝜂 + sin𝜆 sin 𝜂)

= 𝛼
1−𝛼2 ⋅ −(1+𝛼2+2𝛼(cos𝜆 cos𝜂+sin𝜆 sin𝜂))+1+𝛼2+2𝛼(cos𝜆 cos𝜂+sin𝜆 sin𝜂)

√1+𝛼2+2𝛼(cos𝜆 cos𝜂+sin𝜆 sin𝜂)

= 0
(9.20)

In summary, the Value function 𝑉(x) was obtained, it is continuous
and continuously differentiable (outside dispersal surfaces), and it sat-
isfies the HJI equation.

Recall that the optimal strategies, as obtained in Proposition 9.1,were
obtained from candidate strategies corresponding to each segment of
the border. Each candidate solution is obtained by finding the closest
point on the segment to the AC whose radius and center are given by
(9.4) and (9.7), respectively. The closest point to the circle is obtained
by means of the orthogonality condition in Proposition 9.1.
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𝑦 = 𝑚𝑗 + 𝑛𝑗
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Figure 9.5: Non-convex Border

When considering the candidate solution in the Euclidean plane and
when the border is convex, there exist two cases: the closest point on
segment 𝑗 is such that 𝐹𝑗 ∈ 𝜕𝒢 and the case where the point on the
extended segment is such that 𝐹𝑗 ∉ 𝒢 . The second case is illustrated in
Fig. 9.4 by drawing the extended line corresponding to segment 𝑗.

Corollary 9.1. If the closest point on segment 𝑗 is such that 𝐹𝑗 ∉ 𝒢 , there
exists 𝐹𝑘 ∈ 𝒢 such that𝑉𝑘(x) < 𝑉𝑗(x). Hence, the point 𝐹𝑗 is not the solution
of the game and need not be considered in order to obtain the optimal strategies.

Proof. Consider x ∈ ℛ𝑝 and consider the candidate solution 𝐹𝑗 ∉ 𝒢 . As
it is shown in Fig. 9.4, it holds that 𝑉𝑗(x) = 𝐹𝑗𝐼𝑗 > 𝑃𝑘𝐼𝑗 > 𝐹𝑘𝐼𝑘 = 𝑉𝑘(x),
where 𝑃𝑘 is the intersection point between segment 𝑘 of the border and
the line segment 𝐹𝑗𝐼𝑗. By the previous relationship, one can also discard
any other point on segment 𝑗. For instance, since 𝐹𝑗 ∉ 𝒢 is an infeasible
solution, the point 𝐹′

𝑗 ∈ 𝜕𝒢 (in segment 𝑗) is the closest feasible point
to the circle (to the corresponding point 𝐼′

𝑗 on the circle) and one may
be tempted to consider this choice. However, it must be that 𝐹′

𝑗𝐼′
𝑗 > 𝐹𝑗𝐼𝑗

by definition of 𝐹𝑗, then, 𝐹′
𝑗𝐼′

𝑗 > 𝐹𝑘𝐼𝑘 = 𝑉𝑘(x).
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9.2.2 Non-convex Border

In this section, the existence of a non-convex border is considered.When
the border is non-convex, the case where the closest point on the ex-
tended segment 𝑗 is such that 𝐹𝑗 ∈ 𝒢 is possible. This is now illustrated
in Fig. 9.5. Point 𝐹𝑗 ∈ 𝒢 is an infeasible solution since it does not lead
the Evader directly into safe haven. However, one can still consider the
closest feasible point on segment 𝑗 which is point 𝑁 ∈ 𝜕𝒢 in Fig. 9.5,
the ‘corner’ of the non-convex border into consideration. Under this
scenario, define

𝑉𝑗(x) = √( 1
1−𝛼2 (𝑥𝐸 − 𝛼2𝑥𝑃) − 𝑥𝑁)

2
+ ( 1

1−𝛼2 (𝑦𝐸 − 𝛼2𝑦𝑃) − 𝑦𝑁)
2

− 𝛼
1−𝛼2 √(𝑥𝐸 − 𝑥𝑃)2 + (𝑦𝐸 − 𝑦𝑃)2

(9.21)
where the coordinates of point 𝑁 are (𝑥𝑁 , 𝑦𝑁).

Corollary 9.2. Consider x ∈ ℛ𝑝 and a non-convex border where each seg-
ment 𝑗 has an associated𝑉𝑗(x) as defined in (9.21). In addition, the case where
𝑖∗ = 𝑗 is considered, that is, the closest point on the border to the AC is point 𝑁.
Then, the Value function (9.21) is continuous and continuously differentiable
(except at singular surfaces) and it satisfies the HJI equation.
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Proof. The partial derivatives of the Value functionwith respect to each
element of the state are given by

𝜕𝑉
𝜕𝑥𝐸

= 1
1 − 𝛼2 ⋅ 𝑥𝑐 − 𝑥𝑁

√(𝑥𝑐 − 𝑥𝑁)2 + (𝑦𝑐 − 𝑦𝑁)2

− 𝛼
1 − 𝛼2 ⋅ 𝑥𝐸 − 𝑥𝑃

√(𝑥𝐸 − 𝑥𝑃)2 + (𝑦𝐸 − 𝑦𝑃)2

𝜕𝑉
𝜕𝑦𝐸

= 1
1 − 𝛼2 ⋅ 𝑦𝑐 − 𝑦𝑁

√(𝑥𝑐 − 𝑥𝑁)2 + (𝑦𝑐 − 𝑦𝑁)2

− 𝛼
1 − 𝛼2 ⋅ 𝑦𝐸 − 𝑦𝑃

√(𝑥𝐸 − 𝑥𝑃)2 + (𝑦𝐸 − 𝑦𝑃)2

𝜕𝑉
𝜕𝑥𝑃

= − 𝛼2

1 − 𝛼2 ⋅ 𝑥𝑐 − 𝑥𝑁

√(𝑥𝑐 − 𝑥𝑁)2 + (𝑦𝑐 − 𝑦𝑁)2

+ 𝛼
1 − 𝛼2 ⋅ 𝑥𝐸 − 𝑥𝑃

√(𝑥𝐸 − 𝑥𝑃)2 + (𝑦𝐸 − 𝑦𝑃)2

𝜕𝑉
𝜕𝑦𝑃

= − 𝛼2

1 − 𝛼2 ⋅ 𝑦𝑐 − 𝑦𝑁

√(𝑥𝑐 − 𝑥𝑁)2 + (𝑦𝑐 − 𝑦𝑁)2

+ 𝛼
1 − 𝛼2 ⋅ 𝑦𝐸 − 𝑦𝑃

√(𝑥𝐸 − 𝑥𝑃)2 + (𝑦𝐸 − 𝑦𝑃)2
.

(9.22)

In this case, define

cos 𝜂𝑁 = 𝑥𝑁 − 𝑥𝑐

√(𝑥𝑁 − 𝑥𝑐)2 + (𝑦𝑁 − 𝑦𝑐)2
,

sin 𝜂𝑁 = 𝑦𝑁 − 𝑦𝑐

√(𝑥𝑁 − 𝑥𝑐)2 + (𝑦𝑁 − 𝑦𝑐)2

(9.23)

and one can write (9.22) as follows

𝜕𝑉
𝜕𝑥𝐸

= − 1
1 − 𝛼2 (cos 𝜂𝑁 + 𝛼 cos𝜆)

𝜕𝑉
𝜕𝑦𝐸

= − 1
1 − 𝛼2 (sin 𝜂𝑁 + 𝛼 sin𝜆)

𝜕𝑉
𝜕𝑥𝑃

= 𝛼
1 − 𝛼2 (𝛼 cos 𝜂𝑁 + cos𝜆)

𝜕𝑉
𝜕𝑦𝑃

= 𝛼
1 − 𝛼2 (𝛼 sin 𝜂𝑁 + sin𝜆) .

(9.24)

The coordinates of point 𝐼𝑁 in Fig. 9.5 can be written as follows: 𝑥𝐼𝑁
=

𝑥𝑐 + 𝑟 cos 𝜂𝑁 and 𝑦𝐼𝑁
= 𝑦𝑐 + 𝑟 sin 𝜂𝑁 . In addition, one can also obtain
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similar expressions to (9.17)-(9.18) but in terms of 𝜂𝑁 . Finally, the HJI

equation is satisfied in a similar form to (9.20).

9.2.3 Multiple Pursuer Solution

The results from the previous section are now extended to the case of
multiple Pursuers. This is done primarily bymaking use of the solution
to the minimum capture time problem for the two-Pursuer [107, 130]
and multiple-Pursuer [246] scenarios. In the minimum capture time
two-Pursuer one-Evader problem, depending on the initial conditions,
the solution is for all three agents to head to the further of the two
AC intersections. For that game, it is also possible for the solution to
degenerate to capture by a single Pursuer; in this case, the presence
of the second Pursuer does not affect the outcome of the game. For
more than two Pursuers, [246] characterized the feasible region for
the Evader; that is, the set of points reachable by the Evader before any
of the Pursuers. Let the Apollonius disk (i.e. the AC and its interior) for
the 𝑖th Pursuer be given as

𝐷𝑖 = (𝑟𝑖, (𝑥𝐶𝑖
, 𝑦𝐶𝑖

)) (9.25)

where 𝑟𝑖 is the radius of the AC from (9.4) and (𝑥𝐶𝑖
, 𝑦𝐶𝑖

) is the center
of the AC from (9.7). Then the Evader’s feasible region is defined as

𝑆 = ∩𝑀
𝑖=1𝐷𝑖, 𝑖 = 1, … , 𝑀 (9.26)

where 𝑀 is the number of Pursuers. Then let 𝜕𝑆 be the (inclusive)
boundary of the region.

Proposition 9.2. Optimal capture must occur in 𝑆

For any point outside of 𝑆, it cannot be guaranteed that the Evader
can reach the point before being captured (see [46, 246]). Up to a
point, increasing the number of Pursuers has the effect of reducing
the Evader’s feasible region which is generally advantageous for the
Pursuers.
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For the purposes of computing the multiple Pursuer solution it is
useful to reparameterize the border using an ordered set of points with
a line segment joining consecutive points. Let 𝐵𝑖 represent one such
point, then the border is comprised of line segments𝐵𝑖,𝑖+1 for 0 < 𝑖 < 𝐾
where 𝐾 is the total number of corners of the border, including end-
points. Thus the border, 𝐵, is defined as a set of points along these line
segments:

𝐵 ≡ {(𝑥, 𝑦) | ∃𝑖 s.t. (𝑥, 𝑦) ∈ 𝐵𝑖,𝑖+1} (9.27)

It is also assumed that the border is open, that is 𝐵𝐾 ≠ 𝐵1, and free of
any self intersections (i.e. no two segments cross).

In Section 9.2.1 it was shown that the closest point on a circle to line,
say 𝐵𝑗,𝑗+1, can be found by drawing a line segment perpendicular to
𝐵𝑗,𝑗+1 that terminates at the circle’s center. The closest point 𝐼𝑗 is then
the intersection between this line segment and the circle. Similarly, 𝐹𝑗 is
the other endpoint of this line segment, incident to 𝐵𝑗,𝑗+1. Repeating for
all border segments 0 < 𝑗 < 𝐾 for a Pursuer (say, Pursuer 𝑖) yields a set
of candidate capture points ℐ𝑖 = {𝐼1, … , 𝐼𝐾−1} and their corresponding
projection onto the border segment ℱ𝑖 = {𝐹1, … , 𝐹𝐾−1}. The optimal
capture point for the single-Pursuer problem is then given as

𝐼∗ = argmin
𝐼𝑗∈ℐ𝑖

‖𝐼𝑗 − 𝐹𝑗‖ (9.28)

For themultiple Pursuer case, the above procedure is repeated for each
Pursuer, but there are some additional caveats. As was shown in [107,
130, 246] optimal capture for the multiple Pursuer case may occur at
the intersection of ACs. For the minimum capture time problem, it was
also shown in [246] that capture may occur in the interior of 𝑆 (i.e. in
𝑆 ∩ 𝜕𝑆) with three or more Pursuers, but that is not the case here:

Lemma 9.1. Under optimal play, capture occurs on 𝜕𝑆.

Proof. The distance from a point in any shape (e.g. 𝑆) to a point out-
side that shape (e.g. (𝑥, 𝑦) ∈ 𝐵) is minimized at the boundary of that
shape (e.g. 𝜕𝑆). Since the Evader’s cost is the distance from the point of
capture to the closest border segment, the Evader would incur a loss
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by choosing a point on the interior of 𝑆. Points beyond 𝜕𝑆 cannot be
optimal capture locations as stated in Proposition 9.2.

One consequence of Lemma 9.1 is that the closest point on a Pur-
suer’s AC does not correspond to a candidate capture point if that point
is not in 𝜕𝑆. Thus it is also required for all 𝐼 in ℐ𝑖 that 𝐼 ∈ 𝜕𝑆. Sec-
ond, since capture may occur at an intersection of ACs, one must also
consider each of these points as candidate solutions by computing the
smallest distance from each AC intersection to each border segment.
This is done similarly as before: draw a line segment which is perpen-
dicular to the border segmentwhose endpoints are the border segment
and the AC intersection; the length of this line segment is the cost/pay-
off associated with this candidate solution. Let the set of AC intersec-
tions be denoted as ℐ𝐶. Lastly, the orthogonality condition may yield
a point 𝐹𝑗 which lies beyond one of the endpoints of the line segment.
In these cases, 𝐹𝑗 may be moved to the nearest end point (either 𝐵𝑗 or
𝐵𝑗+1). The corresponding 𝐼𝑗 (for an AC) is the point on the circle that
lies on the line connecting the circle center to 𝐹𝑗. This is especially perti-
nent in the case of a non-convex border as these candidatesmay indeed
be optimal. Algorithm 2 gives a sketch of the solution process.

9.2.4 Examples

The first example, shown in Fig. 9.6, utilizes the same setup as in Fig. 9.1
with 𝛼 = 0.6. Essentially, the Value of the game is determined by com-
paring the lengths of all of the dotted gray lines emanating from the
candidates. These are the lines of shortest length connecting the can-
didate to each border segment. It is clear by inspection of Fig. 9.6 that
Algorithm 2 is inefficient: there are some lines which could not pos-
sibly be the shortest distance. Algorithm 2 contains a nested for-loop
which has complexity 𝑂(𝑀𝐾), since the number of AC intersections
is at most 𝑀 (i.e. |ℐ𝐶| ≤ 𝑀). Using the parameterization of 𝑆 given
in [246], Algorithm 2 may be redesigned to achieve better worst-case
performance (in a computational sense). This exercise is left for future
work.
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Algorithm 2 MP1E Border Solution
procedure MP1E-BORDER(x, 𝛼, 𝐵)

𝑆 ← Compute Evader’s feasible region ▷ see (9.26) and [246]
ℐ𝐶 ← vertices of 𝑆 ▷ see [246]
if 𝑆 ∩ 𝐵 then

return ▷ escape is possible
𝑑 ← ∞
𝐼∗ ← (0, 0) ▷ dummy initialization
for all 𝐷𝑖 ACs and 𝐼𝑘 vertices ∈ ℐ𝒞 do

for 𝑗 = 1, … , 𝐾 − 1 do ▷ for each border segment
Compute 𝐹 ▷ Eqs. (9.9) and (9.10) for ACs
if 𝐹 lies off of 𝐵𝑗,𝑗+1 then

𝐹 ← argminℎ∈𝑗,𝑗+1 𝐹𝐵ℎ

if AC, 𝐷𝑖 then
𝐼 ← Compute the intersection of 𝐹𝐶 and 𝜕𝐷𝑖

elseVertex, 𝐼𝑘 ∈ ℐ𝒞
𝐼 ← 𝐼𝑘

if 𝐼 ∈ 𝜕𝑆 then
𝑑′ ← ‖𝐼 − 𝐹‖
if 𝑑′ < 𝑑 then ▷ update solution

𝑑 ← 𝑑′

𝐼∗ ← 𝐼
else if 𝑑′ = 𝑑 then

𝐼∗ ← [𝐼∗, 𝐼] ▷ non-unique solution
return 𝑑, 𝐼∗ ▷ Value and capture point(s)

P1

P2

Pursuer

Evader

B

∂S
Di

Ci

Fj

Ij not in ∂S

Candidate

I∗

Figure 9.6: 2P1E scenario highlighting salient features in the solution process.
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P1

P2

Figure 9.7: 2P1E scenario highlighting a non-convex border as well as degen-
eracy to capture by a single Pursuer. P1 and its AC are shown in
yellow to signify that P1 does not participate in capture.

The next example highlights the casewhere the border is non-convex
w.r.t the Evader as well as degeneracy to capture by a single Pursuer.
Note the optimal capture point 𝐼∗ is closest to to the corner of the bor-
der 𝐵2. Incidentally, the line 𝐹1𝐼∗ is not perpendicular to either border
segment. In Fig. 9.7 Pursuer P1 is not able to reach the optimal capture
point at the same time as the Evader and P2, and thus P1 and its AC

are shown in yellow. It just so happens that the AC for P2 is contained
entirely inside that of P1, and so 𝜕𝑆 is simply P2’s AC. Because of the
shape of the border there is only one candidate solution. Here, P1 is
free to do anything (including flee from the Evader) without affecting
the outcome of the game. These conditions are not necessary for degen-
eracy to capture by a single Pursuer, however. Indeed it is possible for
𝜕𝑆 to be determined by several Pursuers but still capture is undertaken
by a single Pursuer. In the latter case, the non-capturing Pursuers may
still need to aim for the optimal capture point. The non-capturing Pur-
suers cannot reduce the capture time. That is, they cannot improve the
Pursuers’ objective. However, if the non-capturing Pursuer(s) were to,
e.g., flee from the Evader, it could be the case that a different point on
𝜕𝑆 becomes optimal. Such a switch may be beneficial (but never detri-
mental) to the Evader. Reference [246] contains a more complete cat-
egorization of the Pursuers in a MP1E scenario, which applies here as
well. For the remainder, however, only a distinction between capturing
(red) and non-capturing Pursuers (yellow) is made.
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P1

P2

P3

P4

P5

P6

P7

P8
P9

P10

Figure 9.8: 10P1E example highlighting that capture is carried out by two Pur-
suers.

P1

(a) Evader chooses the suboptimal
candidate; 𝑉 = 0.068 and
𝐽 = 0.177

P1

(b) Evader mixes pure evasion with
heading to nearest border; 𝑉 =
0.068 and 𝐽 = 0.073

Figure 9.9: Optimal pursuit strategy against two different suboptimal Evader
strategies demonstrating robustness.

Figure 9.8, shows that even for large 𝑀 (e.g. 10, in this case) capture
is almost always carried out by two or one Pursuers.

Remark 14. It is clear that only those Pursuers whose ACs are a part of
𝜕𝑆 are pertinent to the solution of the game. Thus Pursuers for which
the following holds are discarded prior to invoking Algorithm 2,

𝜕𝐷𝑖 ∩ 𝜕𝑆 = ∅ (9.29)

The last example in this section, shown in Fig. 9.9, demonstrates the
robustness of the policy from the perspective of the Pursuer team. For
this example, the agents’ controllers are implemented in a discretized
manner in order to visualize the response of the players to this type
of implementation constraint. At each discrete timestep, the Pursuer
recomputes the optimal capture point via Algorithm 2 and chooses its
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heading accordingly. In Fig. 9.9a the Evader chooses to head straight
to the border segment on the right, a choice which has some merit as
it initially aims directly away from the Pursuer and directly towards
a border segment. Initially, the Pursuer, unaware of the Evader’s im-
plemented heading, heads towards the optimal capture point which is
associated with the border segment on the left. At the fifth timestep,
there is a discrete switch to heading to a capture point associated with
the border segment on the right. Although the suboptimal Evader strat-
egy allowed the Evader to reach a point beyond 𝑆, the Evader was
not allowed to enter the red shaded region. In fact, the saddle-point
property of the Value function ((9.5)) guarantees this robustness. The
same is true for the scenario in Fig. 9.9b where the Evader balances
fleeing directly from the Pursuer to avoid capture and heading directly
towards the nearest border. Without solving the differential game, this
latter strategy may seem like a good heuristic approach, however, the
Evader’s cost is greater than the Value of the game.

9.3 GAME OF K IND

This section addresses the game of kind within the border defense dif-
ferential game.

9.3.1 Single Pursuer

The solution of the gameof kind characterizes the barrier surface𝐻(x; 𝛼, 𝑚𝑖, 𝑛𝑖)
that separates the state space into the two regionsℛ𝑃, the region ofwin
of the Pursuer, and ℛ𝐸, the region of win of the Evader. If x ∈ ℛ𝑃 the
Pursuer, playing optimally, is guaranteed to capture the Evader before
the latter reaches the border. On the other hand, if x ∈ ℛ𝐸 the Evader,
playing optimally, is guaranteed to escape and reach the border before
being captured by the Pursuer.

A visual representation is provided on the Cartesian plane of the
function 𝐻(x; 𝛼, 𝑚𝑖, 𝑛𝑖) which specifies the surface that separates ℛ𝑃

from ℛ𝐸. By fixing the Pursuer coordinates (𝑥𝑃, 𝑦𝑃) the closed form of
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the barrier surface 𝐻(𝑥, 𝑦; 𝑥𝑃, 𝑦𝑃, 𝛼, 𝑚𝑖, 𝑛𝑖) = 0 is constructed. In other
words, the barrier surface is comprised of the coordinate pairs (𝑥, 𝑦) of
the possible Evader position with respect to the Pursuer coordinates
which guarantee that 𝐸 will escape 𝑃 if 𝐸 plays optimally. Let ℛ𝑃, ℛ𝐸 ⊂
ℝ2 denote the region of win of the Pursuer and of the Evader, respec-
tively, in the Cartesian plane when 𝑃 coordinates are fixed.

Theorem 9.2. Given the parameters (𝑚𝑖, 𝑛𝑖) of segment 𝑖, for a given speed
ratio parameter 0 < 𝛼 < 1 and Pursuer coordinates (𝑥𝑃, 𝑦𝑃), the barrier
surface cross section that divides the Cartesian plane into the two regions 𝑅𝑃

and 𝑅𝐸 with respect to segment 𝑖 is given by the Pursuer’s side branch of the
hyperbola

ℎ𝑥𝑥𝑥2 + ℎ𝑦𝑦𝑦2 + 2ℎ𝑥𝑦𝑥𝑦 + 2ℎ𝑥𝑥 + 2ℎ𝑦𝑦 + ℎ = 0 (9.30)

where

ℎ𝑥𝑥 = (1 − 𝛼2) (𝑚2
𝑖 + 1) − 1,

ℎ𝑦𝑦 = (1 − 𝛼2) (𝑚2
𝑖 + 1) − 𝑚2

𝑖 ,

ℎ𝑥𝑦 = −𝑚𝑖,

ℎ𝑥 = 𝛼2 (𝑥𝑃 + 𝑚𝑖𝑦𝑃) + (1 − 𝛼2) 𝑚𝑖𝑛𝑖,

ℎ𝑦 = 𝛼2 (𝑥𝑃 + 𝑚𝑖𝑦𝑃) 𝑚𝑖 − (1 − 𝛼2) 𝑛𝑖,

ℎ = (1 − 𝛼2) 𝑛2
𝑖 + 𝛼2 (1 − 𝛼2) [2𝑛𝑖 (𝑦𝑃 − 𝑚𝑥𝑃)

− (𝑚2
𝑖 + 1) (𝑥2

𝑃 + 𝑦2
𝑃)] − 𝛼4 (𝑥𝑃 + 𝑚𝑖𝑦𝑃)2

(9.31)

Proof. In order to determine the barrier surfacewith respect to segment
𝑖 consider the case where the AC is tangent to segment 𝑖. The following
condition holds

(𝑥𝑐 − 𝑥𝐹)2 + (𝑦𝑐 − 𝑦𝐹)2 = 𝛼2

(1−𝛼2)2 [(𝑥 − 𝑥𝑃)2 + (𝑦 − 𝑦𝑃)2] (9.32)

where the potential position of 𝐸 is denoted by (𝑥, 𝑦). Equation (9.32)
can be written as follows

1
1−𝛼2 (𝑥2 + 𝑦2) − 𝛼2

1−𝛼2 (𝑥2
𝑃 + 𝑦2

𝑃) + 𝑥2
𝐹𝑦2

𝐹 − 2 (𝑥𝑐𝑥𝐹 + 𝑦𝑐𝑦𝐹) = 0 (9.33)
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Further, writing (𝑥𝑐, 𝑦𝑐, 𝑥𝐹, 𝑦𝐹) in terms of (𝑥, 𝑦, 𝑥𝑃, 𝑦𝑃) and simplifying
the resulting expression gives

1
1 − 𝛼2 (𝑥2 + 𝑦2) − 𝛼2

1 − 𝛼2 (𝑥2
𝑃 + 𝑦2

𝑃) +
𝑛2

𝑖
𝑚2

𝑖 + 1

−
(𝑥 + 𝑚𝑖𝑦 − 𝛼2(𝑥𝑃 + 𝑚𝑖𝑦𝑃))2 + 2 (1 − 𝛼2)𝑛𝑖(𝑦 − 𝑚𝑖𝑥 + 𝛼2(𝑚𝑖𝑥𝑃 − 𝑦𝑃))

(1 − 𝛼2)2(𝑚2
𝑖 + 1)

= 0 (9.34)

Multiplying the previous equation by (1 − 𝛼2)2(𝑚2
𝑖 + 1) and grouping

the corresponding terms the quadratic equation (9.30) is obtained. The
discriminant of the quadratic equation (9.30) is given by

𝐷 = ∣(1 − 𝛼2) (𝑚2
𝑖 + 1) − 1 −𝑚

−𝑚 (1 − 𝛼2) (𝑚2
𝑖 + 1) − 𝑚2

𝑖
∣

= (1 − 𝛼2)2 (𝑚2
𝑖 + 1)2 − (1 − 𝛼2) (𝑚2

𝑖 + 1)2

= −𝛼2 (1 − 𝛼2) (𝑚2
𝑖 + 1)2

< 0

hence, equation (9.30) represents an hyperbola.

Corollary 9.3. Given a point 𝑁 of a non-convex border, a given speed ratio
parameter 0 < 𝛼 < 1, and Pursuer coordinates (𝑥𝑃, 𝑦𝑃), the barrier surface
cross section that divides the Cartesian plane into the two regions 𝑅𝑃 and 𝑅𝐸

with respect to point 𝑁 is an arc of the circle

(𝑥 − 𝑥𝑁)2 + (𝑦 − 𝑦𝑁)2 = 𝛼2 [(𝑥𝑃 − 𝑥𝑁)2 + (𝑦𝑃 − 𝑦𝑁)2] (9.35)

Proof. The proof is similar to the proof for Theorem 9.2 and is omitted.

In order to obtain the barrier surface for a collection of segments
forming a convex border one needs to compute the intersection of the
correspondinghyperbolas / circles to each couple of adjacent segments.
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9.3.2 Multiple Pursuers

Theorem 9.3 expresses a more general condition that determines the
game of kind, which is applicable for both the single and multiple Pur-
suer cases.

Theorem 9.3. Given the initial positions of the Evader and Pursuers, x, and
their respective speeds, if the border intersects the Evader’s feasible region, the
Evader is able to escape:

𝐵 ∩ 𝑆 ≠ ∅ ⟹ x ∈ ℛ𝐸 (9.36)

where ℛ𝐸 is the region of win for the Evader.

Proof. The Apollonius disk defines points that can be reached by the
Evader at or before a particular Pursuer. Since, 𝑆 is defined as the set
intersection of all of the Apollonius disks (c.f. (9.26)) the points in
𝑆 are reachable by the Evader at or before any Pursuer, provided the
Evader takes an appropriate action. If the Evader takes a straight-line
path to the point, then every point along its path is also inside 𝑆 due
to the convexity of the region. Thus there always exists an evasive path
(in the sense of [46]) for the Evader to travel to a point in 𝑆. Therefore,
since 𝐵 ∩ 𝑆 ≠ ∅ there exists (𝑥, 𝑦) ∈ 𝐵 that is also in 𝑆 so the Evader
can escape safely, that is, the Pursuers can not guarantee capture.

Remark 15. If there is only one such point that meets the condition
stated in Theorem 9.3 the border is tangent to 𝑆 and capture occurs
precisely at that point on the border.

9.3.2.1 Example Problem

Now these results are used to solve an example problem. Consider a
border comprised of a single, infinitely long line with equally spaced
UAVs flying along it in synchronized fashion, such that their spacing
is always constant; the scenario is depicted in Fig. 9.10. The objective
of the design problem is to defend the border by guaranteeing capture
of any single intruder while minimizing cost. Cost, here, is monoton-
ically increasing with the number of UAVs required (i.e. the density
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P1 P2

(C1x, C1y)(0, C1y)

(0, 0)

(0, d)

(−w, d)

Figure 9.10: Critical point in the example problem

of UAVs along the border), the speed of the UAVs, and the sensing ca-
pabilities at the border. The cost may be considered as the monetary
cost required to implement the border defense system. Thus the de-
sign variables are 𝑤, the half-distance between each UAV, 𝛼, the ratio
of UAV speed to intruder speed, and 𝑑 the sensor range at the border.
The spacing 𝑤 is essentially half of the inverse of UAV density along
the border; smaller 𝑤 means more UAVs and higher cost. The variable
𝑑 determines the distance inside the border that the laser fence is lo-
cated; this distance essentially determines when the pursuit begins. In
addition, for closed-loop optimal control in the sense of the differential
game solution, all the positions of the agents must be known; thus the
border’s tracking sensors must have full coverage of the space between
the laser fence and the border.

To solve the design problem, the solution of the game of kind for
multiple Pursuers is utilized. In particular, the critical point where cap-
ture occurs exactly at the border in the worst case is found. This criti-
cal point occurs when 𝜕𝑆 is tangent to the border, according to Theo-
rem 9.3 and the subsequent remark. The best the Evader can do is to
start halfway in between the two Pursuers; if Evader starts any closer
to either Pursuer it will be captured further inside the border. This is
due to the fact that simultaneous capture occurs on the perpendicular
bisector of 𝑃1 𝑃2 (c.f. [187]). Thus, in order for the Evader to minimize
distance to the border at capture (i.e. maximize 𝐼𝑦), the Evader must
begin on the bisector. Any amount of horizontal distance traveled is
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akin to wasted time. For interception to occur exactly on the border,
the following condition must hold:

𝐶2
1𝑥

+ (𝑑 − 𝐶1𝑦
)

2
= 𝑅2

1 (9.37)

where,

𝐶1𝑥
= 𝑤𝛼2

1 − 𝛼2

𝐶1𝑦
= −𝑑𝛼2

1 − 𝛼2

𝑅1 = 𝛼
1 − 𝛼2

√𝑤2 + 𝑑2

(9.38)

Note, (9.38) comes from the definition of the AC. Substituting (9.38)
into 9.37 and simplifying gives

𝛼 = 𝑑
𝑤 (9.39)

Eq. (9.39) also comes from the fact that the time of travel for Pursuers
andEvadermust be the same.At the critical point, the distance traveled
by each Pursuer is 𝑤 and the distance traveled by Evader is 𝑑, so 𝑤𝛼 = 𝑑.
Therefore, given all but one of the parameters 𝛼, 𝑤, 𝑑 one can determine
the value of the free parameter from (9.39). If the design parameters
do not satisfy (9.39) the system is either over-designed (i.e. more costly
than it ought to be) or cannot guarantee capture for all possible Evader
initial conditions.

9.4 D I S P ER SAL SUR FACE

9.4.1 Single Pursuer

For the single Pursuer case, when 𝑉(x) = min𝑖 𝑉𝑖(x) = 𝑉𝑘(x) = 𝑉𝑙(x)
for 𝑘 ≠ 𝑙 then a dispersal surface exists since more than one optimal
solution exists. In general, there could be any number of optimal so-
lutions where the region 𝑆 is equidistant to multiple segments of the
border and these distances are also the minimum. In such a case the
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P1

(a)
P1

(b)
P1

(c)

Figure 9.11: Dispersal surface in a 1P1E scenario with three optimal capture
points. Demonstration of agents choosing differently with Δ𝑡 =
0.05 and 𝑉 = 0.094.

Table 9.1: Cost/Payoff (𝐽 ⋅ 103) for initial control action in Fig. 9.11
P \ E West North East
West 94 71 25
North 75 94 75
East 25 71 94

Value function is continuous but it is not continuously differentiable
since 𝜕𝑉𝑘

𝜕x ≠ 𝜕𝑉𝑙
𝜕x , for instance

𝜕𝑉𝑘
𝜕𝑥𝐸

= 𝑚𝑘
(1−𝛼2)(𝑚2

𝑘+1) ⋅
𝑚𝑘(𝑥𝑐−𝑥𝐹𝑘

)−(𝑦𝑐−𝑦𝐹𝑘
)

√(𝑥𝑐−𝑥𝐹𝑘
)2+(𝑦𝑐−𝑦𝐹𝑘

)2
− 𝛼

1−𝛼2 ⋅ 𝑥𝐸−𝑥𝑃

√(𝑥𝐸−𝑥𝑃)2+(𝑦𝐸−𝑦𝑃)2

≠ 𝑚𝑙
(1−𝛼2)(𝑚2

𝑙 +1) ⋅
𝑚𝑙(𝑥𝑐−𝑥𝐹𝑙

)−(𝑦𝑐−𝑦𝐹𝑙
)

√(𝑥𝑐−𝑥𝐹𝑙
)2+(𝑦𝑐−𝑦𝐹𝑙

)2
− 𝛼

1−𝛼2 ⋅ 𝑥𝐸−𝑥𝑃

√(𝑥𝐸−𝑥𝑃)2+(𝑦𝐸−𝑦𝑃)2
= 𝜕𝑉𝑙

𝜕𝑥𝐸

(9.40)

The main consequence is that the Pursuers will see a small decrease
of performance if they choose different than the Evader. This is seen
clearly in Fig. 9.11 where the Evader is able to breach the red shaded
region if the Pursuer aims at a different optima initially. Note that the
cost/payoff, 𝐽, is equal to 𝑉 if the agents aim at the same optima ini-
tially. In all other cases, 𝐽 < 𝑉 representing a loss for the Pursuer. In-
terestingly, the loss in performance varies with the actual choices of
the agents. Table 9.1 gives the cost/payoff for every combination of ini-
tial control action. West, North, and East denote aiming at the optima
associated with these directions, respectively. Now the choice of initial
heading and the values in Table 9.1 may be treated as a matrix game to
determine the best choice of initial heading for the agents. The optimal
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Table 9.2: Cost/Payoff (𝐽 ⋅ 103) for initial control action in Fig. 9.12
Δ𝑡 = 0.10 Δ𝑡 = 0.15

P1/P2 \ E W E P1/P2 \ E W E
W/W 211 206 W/W 211 201
W/E 208 208 W/E 206 206
E/W 208 208 E/W 206 206
E/E 206 211 E/E 201 211

strategies come from the Nash equilibrium (or equilibria) which may
suggest either a pure strategy or mixed strategy is optimal. It is obvi-
ous, in this case, that the Pursuer’s optimal strategy is to aim North,
whereas the Evader chooses either West or East with equal probability.
Thus the optimal playout of the full game appears as in Fig. 9.11a or
its mirror image. Although the Value of the differential game is 0.094,
the presence of the dispersal surface results in a cost/payoff of 0.075,
assuming optimal play of this matrix game followed by optimal play
in the differential game. The values in Table 9.1 are dependent upon
the timestep. Smaller timesteps will yield smaller losses relative to the
Value of the game. However, for the scenario shown in Fig. 9.11 the
Nash equilibrium, and thus the optimal strategies, of the initial matrix
game are independent of the timestep (unless, of course, the timestep
is so large that reaching the border can be achieved in a single step).

9.4.2 Multiple Pursuers

The possibility for a dispersal surface exists also for the multiple Pur-
suer case. As in the single Pursuer case, the dispersal surface is the re-
sult of multiple segments of the border. That is, this dispersal surface
does not arise from the presence of multiple Pursuers. If the border is
made up of only one single segment, then the multi-Pursuer case does
not contain a singular surface. Consider the scenario shown in Fig. 9.12
which has two Pursuers and two optima. There is a horizontal border
segment joining the two vertical segments far above which does not
affect the solution of the game. The Pursuers, in addition to having to
choose East or West, also must choose whether to agree on a direction
or split up. Table 9.2 contains the values of the cost/payoff for two dif-
ferent timestep sizes. For the matrix gamewith Δ𝑡 = 0.10, there is a sin-
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P1

P2

Figure 9.12: Dispersal surface in a 2P1E scenario with two optimal capture
points.

gle equilibrium wherein the Pursuers’ strategy is to both choose West
or both choose East with equal probability, while the Evader’s strategy
is to chooseWest or East with equal probability. This is not the case for
Δ𝑡 = 0.15. Using vertex enumeration (c.f. [13]) to compute the equi-
libria of the matrix game yields four different equilibria. Now there
is the issue that a strategy is only optimal against the corresponding
opponent strategy associated with a particular equilibrium. In some
scenarios, there may exist a focal point (see [203]) wherein there is
a particular equilibrium that is sensible for the players to agree upon.
Interestingly, for the present case, all four equilibria have a Pursuer
strategy of splitting up! This is intuitive – the potential loss associated
with both Pursuers choosing opposite the Evader is much greater for
Δ𝑡 = 0.15 than it is for Δ𝑡 = 0.10; thus, splitting up is the best option
here.

Finally, note that the perpetual dilemma, as described by Isaacs [130],
does not appear to occur in this game. That is to say, after the agents
make a choice of initial heading, regardless of the choices made, the
system state will move off of the dispersal surface.

9.5 CONCLUS ION

In this chapter amultiple Pursuer single Evader differential gamewith
a practical application to border defense was formulated and solved.
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An intruderwho is attempting to escape through the borderwith some
valuable intelligence was considered; the border is guarded by one or
more UAVs whose goal is to capture the Evader (if possible) as far in-
side the border as possible. For the case of multiple UAVs, or Pursuers,
strategies which maximize the cooperation were sought. Treating the
scenario as a two-player differential game played by the intruder and
the team of UAVs allowed just that. In the game of degree, capture can
be guaranteed, and the cost/payoff is the smallest distance from the
point of capture to any segment of the border. Using the well-known
AC, the Value function for the single Pursuer single Evader game was
expressed analytically and shown to satisfy theHamilton-Jacobi-Isaacs
equation. In this way, the solution was verified. The single Pursuer so-
lution tomultiple Pursuerswas extended by considering simultaneous
capture by two or more Pursuers at the intersection of their ACs. These
candidate solutions behave much the same way as the single Pursuer
candidate solutions. A simple approach was presented to determine
the optimal capture point for given initial conditions, which, in turn,
determines the Value of the game and the optimal headings for all the
agents. For the game of kind, conditions were expressed, which can be
easily checked, to determine in which region a given initial condition
lies (whether in the Evader or Pursuers’ win region). Finally, the dis-
persal surface in this game was characterized and optimal strategies
for the Evader and Pursuers for choosing an initial heading were pre-
sented.
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TURRET DEFENSE





10
I N TRODUCT ION TO TURRET DEFENSE

10.1 BACKGROUND

In comparison to the field of pursuit-evasion, turret defense is smaller
and newer. Turret defense (and the closely related problem of perime-
ter patrol and defense) has a direct application to many military sce-
narios. In all of the work in this part, the Turret is pitted against one
or more mobile agents referred to as Attackers. This part considers
two different models for the Turret: 1) a kinetic Turret which must be
aligned the Attacker in order to fire upon it, and 2) a wide-beam Tur-
ret which may affect the Attacker more or less as a function of the At-
tacker’s distance and relative azimuth. The circle centered on the Tur-
ret with some particular radius is referred to henceforth as the target.
The Attacker is successful in engaging the Turret if it is able to con-
tact the target. Note that the kinetic Turret is, in essence, equivalent to
a Defender agent who is constrained to move on a circular perimeter
(in fact, this description is used in one of the following chapters); gen-
erally, the names Turret and Defender are interchangeable. The two
Turret models are analyzed in the context of two different scenarios,
one which is generally referred to as the TDDG wherein one or more
mobile Attackers seek to collide with the Turret, and the other is the
TEoR, wherein the Attacker has a choice between engaging the Turret
or retreating to some other zone. Some of the work is focused on build-
ing up results from 1v1 versions of the problems to 1v2 and 2v1 versions;
much of the rest is focused on higher-level decision-making and dis-
crete events. This section contains some additional background on the
two models and scenarios.

TURRE T DE F ENS E D I F F E R ENT IA L GAME Turret defensemaybe con-
sidered to be a subclass of target guarding (c.f. [130, 142, 147]), or even

187
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more generally, reach-avoid problems (e.g., [157, 270]). The work on
reach-avoid games ranges from numerical computation of the reach-
able sets for each player to extensions to teams of players via decompo-
sition [44, 45, 157]. Some recent works build up the solution to two-on-
one scenarios using a rigorous differential game formulation with the
one-on-one solution as a basis. For example, [268] derives the analyti-
cal barrier between Attacker and Defenders winning for a reach-avoid
game which takes place inside a rectangular domain. A similar result
has been obtained for a blocking game where two Defenders seek to
prevent an Attacker from reaching a line segment [106]. Finally, sev-
eral recent works have analyzed reach-avoid games inside a circular
domain but with freely moving Defenders [103, 267]. The utility of
these rigorous analytical results have been highlighted in task alloca-
tion schemeswhich are capable of handling teams ofmany agents [269].

Various turret and turret-like defense scenarios have been explored
in recent literature. In [2], the authors formulated and solved the TDDG

(along with all of its singularities) for the wide-beam Turret model,
wherein the cost functional included a state-dependent integral cost.
There, a single mobile Attacker sought to balance time-to-target with
avoiding the LOS of the Turret; the resulting Attacker trajectories are
generally curved in the Cartesian frame. Additionally, the three singu-
lar surfaces were analyzed: the Defender (Turret) Universal Surface,
the Defender DS, and the Attacker DS wherein the Attacker chooses
from a direct and indirect route to termination. Reference [214] ana-
lyzed a perimeter patrol scenario wherein termination occurs either
when the Attacker reaches the target or when the Defender and At-
tacker are coincident. The solution characteristics of the single-Attacker,
single-Defender and single-Attacker, two-Defender scenarioswere then
extended to amany-Attacker,many-Defender variantwherein the teams
maximize (minimize, respectively) the number of hits on the target.
An extension considered a heterogeneous Defender team comprised
of uncontrolled and controlled patrollers [218], and also arbitrary con-
vex targets [215].

For the scenarios with either multiple collocated Turrets or multi-
ple Attackers, it is essential to understand how the agents on a team
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can cooperate to achieve a common goal. Certain outcomes may only
possible through cooperation; victory could even be contingent on the
sacrifice of a particular agent. In Chapter 12 a particular sub-case is
considered within the two-Attacker TDDG wherein one of the Attack-
ers must sacrifice itself in order for the other Attacker to reach the tar-
get unhindered. Because the Attackers essentially have different roles,
this problem is also related to other “three-body” problems in the liter-
ature, such as the TADDG [101, 184]. There, the Defender/Target team
seek to cooperativelymaneuver in such away for the Defender to inter-
cept the Attacker as far from the Target as possible. Another example is
the single-pursuer, two-evader cooperative defense scenario presented
in [85] wherein one of the Evaders performs a flanking maneuver on
the Pursuer to drive up the Pursuer’s cost. This scenario is also related
to the problem of capture of evaders in succession [37, 109, 150, 270]
since the Turret is free to aim at another Attacker once one is neutral-
ized. The role selection portion of the analysis pertains to the determi-
nation of which Attacker will be pursued by the Turret first thereby
fixing that Attacker to be the sacrificial one. This type of question (i.e.,
whether to behave as a ‘Runner’ or ‘Penetrator’) appears elsewhere in
the differential game literature. For example, whether to behave as the
Pursuer or Evader in symmetric engagements [118], e.g., the Game of
Two Cars [112, 163], and in [177]. Other examples include the determi-
nation of which agent is the leader and which is the follower, as in the
cooperative HCDG studied in [32].

TURRE T ENGAGE OR RE TR EAT In the TEoR scenario, the Attacker
must decide whether to engage (and destroy) the Defender or retreat
to a safe zone. The objective is, therefore, not only to obtain the equilib-
rium control strategies for the agents (i.e., instantaneous heading and
turning direction), but also to determine the optimal choice or inten-
tion over the whole state space.

In the case of the kinetic Turretmodel, 𝐷 can only deal damagewhen
its turret’s aim is fixed upon the 𝐴. Thus there are potentially two seg-
ments of the scenario: (1) 𝐷 seeks to “lock on” to 𝐴 while the latter
has some interest in avoiding the turret’s LOS, and (2) after lock, 𝐴 ulti-
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mately proceeds with its intent to engage or retreat. Prior to lock-on, 𝐴
accumulates no cost; afterwards, it has a control- and time-dependent
running cost. It is possible that lock-on does not occur at all, in which
case, there is no running cost. This scenario is referred to as the Kinetic
Turret Engage or Retreat (TEoRK) game.

In the case of the wide-beam Turret model, 𝐷 can deal some amount
of damage to 𝐴 for any look angle. The analysis is simpler than the lat-
ter case in the sense that there are fewer distinct outcomes or situations
(i.e., there are no ”unlocked” cases), but the also more complex in the
sense that the solutions are more difficult to compute. This scenario is
referred to as theWide-Beam Turret Engage or Retreat (TEoRW) game.

Many different approaches have been used to ascertain an adver-
sary’s intent. For example, in [206], the authors maintain a representa-
tion of an agent’s belief of its adversary’s most likely spatial trajectories
as a probabilistic program. The agent’s reasoning is “nested” (or recur-
sive) in the sense that it then reasons about its adversary’s belief of its
own actions. Alternatively, in [117], the approach is based on estimat-
ing the rationality level of the adversary. The rationality level refers
to the number of levels to which an agent is capable of computing a
best response, back and forth. A rationality level of 2 means an agent
can compute its best response to its adversary’s best response of the
initial strategy. The main difficulty in this approach is the estimation
of the adversary’s rationality level, assuming it is unknown. In lieu of
methods based on inference (whether probability-based or estimation-
based), this chapter is based upon game theory. The main advantage
game theory offers is that, if an equilibrium can be found, then the as-
sociated equilibrium strategies yield robust performance regardless of
what the adversary implements.

Existing game-theoretic literature has focused on larger scale con-
flicts with more agents, but in a discrete-time discrete-action space for-
mulation [53, 71], or on pursuit-evasion engagements where there is
one clearly specified goal [101, 147]. Of these two areas within the liter-
ature, the latter is most applicable to the current study as the primary
concern the (continuous) spatial maneuvers of the players in continu-
ous time.
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The topic of intent selection has appeared within differential game
literature most often under the guise of “role” selection (c.f. 2.5.3).
Additionally, determination of intent (and, often, deliberate signaling
of intent) occurs in natural adversarial scenarios [207]. For example,
in [234], Tan et al. conclude that Asian honeybees signal their intent to
retaliate against hornets should they decide to attack their hive. Addi-
tionally, some bird species are known to make alarm calls when preda-
tors are detected – the call serves a twofold purpose: to warn and rally
nearby birds, and to signal to the predator that its presence is known
[23]. In the latter case, the bird is indicating to the predator that it has
sufficient time to escape should the predator decide to pursue. The par-
allel for the scenario of interest is that, even if 𝐷 decides not to fire upon
𝐴, by aiming its turret to lock onto 𝐴 it is indicating its ability to inflict
damage.

More specifically, the work in the TEoR chapters is closely related to
literature on engage or retreat differential games [83, 84, 90]. In the ini-
tial formulation, the Defender agent had no state and its control was
whether or not to “turn on” its (omnidirectional, infinite range) de-
fensive capability. The solution for the simple Defender case is mostly
analytic [90]. Reference [84] abstracts the particulars of the agents and
gives amore general framework for addressing engage or retreat games.
In [248], the Defender was modeled as a turn-constrained turret (as in
this part). Rather than having to lock onto 𝐴’s position, 𝐷 could inflict
a “soft” cost as a function of its look angle. Consequently, there was no
discrete switch in the cost or equilibrium behaviors. Generally, the en-
gage or retreat problem is solved by breaking it into two subproblems:
the Game of Engagement (GoE), which corresponds to the differential
game that plays out when the Attacker intends to collide with the Tur-
ret, and Optimal Constrained Retreat (OCR), which corresponds to the
optimal control problem that arises when the Attacker intends to re-
treat. Using this method, it was shown that switching intents (from re-
treat to engage, or vice versa) within the engage or retreat game does
not yield a better utility [84]. To ensure that switching to engagement
does not yield a better utility while retreating, a path constraint is im-
posed.
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10.2 PRACT I CAL S I GN I F I CANCE

One real-world example of target guarding is the protection of a build-
ing’s perimeter from mobile infiltrators, which may be considered to
be people, ground vehicles, air vehicles, or even certain types of mu-
nitions. While protection from a single adversary is necessary, a more
likely scenario is that multiple adversaries are present. With the pro-
liferation of lower-cost unmanned vehicles and guided munitions, it
is not unreasonable to imagine an attack comprised of tens or hun-
dreds of agents. See, for example, the following excerpt from the Air
Force 2030 Science & Technology Strategy document [237] (emphasis
added):

Swarms of low-cost, autonomous air and space systems can
... absorb losses that manned systems cannot... Low-end
systems can restore the agility to attack adversary weak-
nesses in unexpectedways by exploitingnumbers and com-
plexity.

Thus the analysis of the two-Attacker case is a step towards analyzing
the defense of a static location or asset against “swarms” of Attackers
with a directional defensive weapon. There, the Turret must destroy
all (or as many as is possible) Attackers in succession; the Attackers,
meanwhile, coordinate their attack to maximize successful hits.

Moreover, real-world adversarial conflicts are complex andmay evolve
through many, fundamentally different, stages. Consider, for example,
a ground-based defensive site or sensor. The sitemay be equippedwith
a radar system which is responsible for detecting targets [17], which,
upon detection, may then estimate the position and pose of the tar-
get [82], and subsequently track the target over time [92]. In the case
that the site has defensive capability, there may be more stages eventu-
ally leading up to the decision to fire itsweapons or not. The decision of
whether to fire may depend onwhat the target is doing, as well as what
the ground-based site believes the target’s intentions are. If, for exam-
ple, the defensive site believes the target intends to engage and destroy
the site, then it might decide to retaliate in the hopes of damaging the
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target prior to its arrival. On the other hand, if the target appears as
if it has no interest in engaging the site, then it may be best to hold
fire. One could imagine that, if the target truly intends to fly past the
site without engaging it that firing upon it could cause the target to
reconsider.

The TEoR scenarios consideredhere have application to defense against
risk-conscious attackers (e.g. vehicles, or otherwise expensive muni-
tions) by a stationary platform. TheTurret itselfmay represent aweapons
platform of some kind or even a surveillance asset seeking to steer
its sensor to maximize observation of the incoming Attacker. Gener-
ally speaking, the methodology itself is important because real-world
conflicts of warfare rarely entail a single well-defined objective. There-
fore, the ability to systematically consider multiple layers of decision-
making and control available to both sides is highly desirable.

10.3 CONTR I BUT IONS

The contributions of the chapters in this part may be summarized as

• TDDGK solution for 1v1, 1v2, and 2v1 cases

• TDDGK Attacker(s) and Turret(s) winning regions

• TEoRK solution

• TEoRK engage, retreat, locked, unlocked regions

• TEoRK procedure for computing DSs

• TDDGW parameter exploration

• TDDGW procedure for computing DS

• TEoRW OCR solution

• Framework for treating two-stagedifferential games (demonstrated
on TDDGK 2v1 and TEoRK)

Table 3.2 indicates that these contributions pertain to all nine of the
Research Objectives laid out in Section 3.1. The chapter on the TEoR
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game have a heavy focus on Research Objective 8, which is concerned
with multi-objective scenarios. Additionally, the chapters for which
the kinetic Turret model is analyzed heavily emphasize discrete events
(i.e., Research Objective 9) – these discrete events largely correspond
to the moment at which the Turret’s look angle is aligned with an At-
tacker’s position. Finally, a variety of DSs appear in these turret de-
fense scenarios and this part details their construction and computa-
tion (which pertains to Research Objective 3).
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S INGLE ATTACKER AND K INET I C TURRET ( S )

11.1 IN TRODUCT ION

This chapter is the first pertaining to kinetic turret defense, (TDDGK)
and it covers the case wherein the Attacker seeks to reach the target
circle centered on the Turret while avoiding alignment with its LOS. To
start, a single Attacker is pitted against a kinetic turret (the Defender)
– in the case that the Attacker can win (i.e., reach the target) a zero-
sum differential game is formulated over the terminal angle relative
to the Defender’s LOS; in the case that the Defender can win a zero-
sum differential game is formulated over the Attacker’s distance to the
target at terminal time. A second Defender is also considered, which
is collocated with the first; the presence of this second turret reduces
the size of the region from where the Attacker can guarantee reach-
ing the target. The results partly address Research Objectives 5 and 6
(adding more agents to a scenario and solving novel scenarios, respec-
tively). Results for closely related problems exist, however the partic-
ular model used here, wherein the Attacker is neutralized upon align-
ment with the Defender’s LOS, is novel. This material is based on the
paper [255], which is in review.

This chapter contains the following contributions: (i) the one-on-one
Attacker-win and Defender-win scenarios are formulated and solved
rigorously using a differential game theoretic approach, verifying the
saddle-point equilibrium status of strategies existing in the literature
[214]; (ii) analytic expressions for the Value functions are derived for
both one-on-one scenarios; (iii) the two-Defender, one-Attacker sce-
narios are formulated and the equilibrium strategies and Value func-
tions are derived; (iv) the entire state space is partitioned based on all
of the different terminal scenarios, and analytic expressions for the sep-
arating surfaces are derived; (v) an alternative scenario in which the

195
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Attacker seeks to reach the target in minimum time is solved. The em-
phasis is on the analysis and proof methods, which are based on differ-
ential game theory, in comparison to the geometric methods used pre-
viously [214]. Sections 11.2 and 11.3 cover the one- and two-Defender
cases, respectively. In each of those sections, both the Attacker-win and
Defender(s)-win scenarios are formulated and solved. Section 11.4 con-
cludes the chapter.

11.2 ONE DE F ENDER

This section formulates the target guarding problem wherein the De-
fender (𝐷) is constrained to move along the circular target perime-
ter and the Attacker (𝐴) moves in the plane with simple motion. Fig-
ure 11.1 shows the local coordinate system (black) used in much of
the analysis to appear, as well as the global (inertial) (𝑥, 𝑦)-coordinate
system (green). The following assumptions are made on the problem

𝑥

𝑦

𝛽 𝐷
𝑙

𝑣𝐷

�̄�

𝑣𝐴

̃𝜓
𝐴

𝜓

𝜃

[ February 3, 2022 at 14:05 – classicthesis v4.6 ]

Figure 11.1: Circular perimeter patrol with one Defender and one Attacker.

setup:

Assumption 1. The players’ speeds are such that 0 < 𝑣𝐴 ≤ 𝑣𝐷, where
𝑣𝐴 and 𝑣𝐷 are the speeds of the Attacker and Defender, respectively.

Assumption 2. The initial separation angle is such that 𝜃(𝑡0) = 𝜃0 ∈
[0, 𝜋).
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Assumption 3. The initial Attacker distance is such that 𝑅(𝑡0) > 1 –
that is, 𝐴 begins outside the target circle.

Assumption 2will be lifted after the equilibrium strategies have been
derived and the symmetry (and attendant singularity) identified. The
(dimensional) kinematics, based on Fig. 11.1 are

̄𝑓 (x̄, ̄𝑢, ̄𝑡) = ̇x̄ =
⎡⎢⎢
⎣

̇�̄�
̇̄𝜃
̇̄𝛽

⎤⎥⎥
⎦

=
⎡⎢⎢
⎣

−𝑣𝐴 cos𝜓
𝑣𝐴
�̄� sin𝜓 − 𝑣𝐷

𝑙𝑣𝐷
𝑙

⎤⎥⎥
⎦

, (11.1)

where ̄𝜃 ∈ [−𝜋, 𝜋] is the angle of 𝐴’s position w.r.t. 𝐷 and 𝛽 ∈ [0, 2𝜋]
represents the rotation of𝐷 about the circle’s centerw.r.t. a global (𝑥, 𝑦)-
plane. With the following definitions,

𝑅 ≡ �̄�
𝑙 , 𝑡 ≡

𝑣𝐷max

𝑙
̄𝑡, 𝑢𝐷 ≡ 𝑣𝐷

𝑣𝐷max

, 𝜈 = 𝑣𝐴
𝑣𝐷max

,

where 𝑣𝐷max
is the maximum Defender speed and the speed ratio 0 <

𝜈 ≤ 1, the kinematics in (11.1) are non-dimensionalized:

𝑓 (x, 𝑢, 𝑡) = ẋ = ⎡⎢⎢
⎣

�̇�
̇𝜃
̇𝛽

⎤⎥⎥
⎦

=
⎡⎢⎢
⎣

−𝜈 cos𝜓
𝜈 1

𝑅 sin𝜓 − 𝑢𝐷
𝑢𝐷

⎤⎥⎥
⎦

. (11.2)

The Defender control lies in the range 𝑢𝐷 ∈ [−1, 1], and the Attacker
control lies in the range 𝜓 ∈ [−𝜋, 𝜋]. Note 𝜃 and ̄𝜃 are equivalent, but
their time derivatives differ due to the scaling of time.

The Game of Kind is defined as the question of whether Attacker can
reach the perimeter (𝑅 → 1) with non-zero terminal separation angle
(Attacker ‘wins’) or the Defender can drive 𝜃 → 0 before the Attacker
reaches the perimeter (Defender ‘wins’). The subscript 𝑓 refers to con-
ditions at termination (e.g., 𝑡𝑓 is the terminal time). In the following
sections, the surface separating these two cases is derived and a Game
of Degree is specified and solved for each case.

Note that if 𝑣𝐴 > 𝑣𝐷, the Attacker need only come within some dis-
tance 𝑙 < �̄� < 𝑙 𝑣𝐴

𝑣𝐷
wherein the Attacker has the control authority to

force 𝜃 → 𝜋. Similarly, when 𝑣𝐴 ≤ 𝑣𝐷, if at some point 𝜃 = 0 the game
is over because the Defender has sufficient control authority to keep
𝜃 = 0 regardless of the Attacker’s control. It is assumed that if 𝜃𝑓 = 0
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the Defender has successfully intercepted the Attacker and thwarted
its attack. The question of whether the Attacker wins (i.e. 𝜃𝑓 > 0) or
the Defender wins (𝜃𝑓 = 0) is referred to as the Game of Kind.

11.2.1 Defender Win Scenario

This section is focused on the Game of Degree which takes place when
𝐷 is able to drive 𝜃 → 0 before 𝐴 can reach the target. Here, the initial
condition of the system lies in the region R𝐷, which is the region of
win for the Defender (see (11.28)). In this case, it is sensible for the
agents to play a zero-sum game over the cost functional

𝐽𝑑 = Φ𝑑 (x𝑓 , 𝑡𝑓 ) = −𝑅𝑓 , (11.3)

where the subscript 𝑓 denotes conditions at termination. The negative
sign in (11.3) is present so that the Defender is the minimizing player
and theAttacker is themaximizing player. That is, theAttacker seeks to
get as close as possible to 𝑅𝑓 = 1 and the Defender seeks to maximize
the terminal distance. This game is referred to as the Game of Distance,
and it is denoted with subscript 𝑑, in general. The Value of the game,
if it exists, is the saddle-point equilibrium of the cost functional over
state-feedback strategies

𝑉𝑑 = min
𝑢𝐷(⋅)

max
𝜓(⋅)

𝐽𝑑 = max
𝜓(⋅)

min
𝑢𝐷(⋅)

𝐽𝑑. (11.4)

The terminal constraint for the Game of Distance is

𝜙𝑑 (x𝑓 , 𝑡𝑓 ) = 𝜃𝑓 = 0. (11.5)

The final time, 𝑡𝑓 , is the first time forwhich 𝜃(𝑡) = 0. Thus, the Terminal
Surface is defined as the set of states satisfying (11.5)

T𝑑 = {x ∣ 𝑅 > 1 and 𝜃 = 0} . (11.6)

Assumptions 1 and 2 are retained for this analysis.
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11.2.1.1 First Order Necessary Conditions for Optimality

The analysis is carried out according to a classical differential game ap-
proach [20, 130]. The kinematics remain unchanged from the previous
analysis; the Hamiltonian for the Game of Distance is

H𝑑 = −𝜎𝑅𝜈 cos𝜓 + 𝜎𝜃 (𝜈 1
𝑅 sin𝜓 − 𝑢𝐷) + 𝜎𝛽𝑢𝐷, (11.7)

where 𝝈 ≡ [𝜎𝑅 𝜎𝜃 𝜎𝛽]
⊤
is the adjoint vector for theGame of Distance.

The Hamiltonian is a separable function of the controls 𝑢𝐷 and 𝜓, and
thus Isaacs’ condition [20, 130] holds:

min𝑢𝐷
max

𝜓
H𝑑 = max

𝜓
min𝑢𝐷

H𝑑, ∀x,

where 𝑢𝐷 ∈ [−1, 1] and 𝜓 ∈ [−𝜋, 𝜋]. The equilibrium adjoint dynam-
ics are given by

�̇�𝑅 = −𝜕H𝑑
𝜕𝑅 = 𝜈𝜎𝜃

1
𝑅2 sin𝜓, (11.8)

�̇�𝜃 = −𝜕H𝑑
𝜕𝜃 = 0, (11.9)

�̇�𝛽 = −𝜕H𝑑
𝜕𝛽 = 0. (11.10)

The terminal adjoint values are obtained from the transversality condi-
tion [40, pg. 89]

𝝈⊤(𝑡𝑓 ) = 𝜕Φ𝑑
𝜕x𝑓

+ 𝜂
𝜕𝜙𝑑
𝜕x𝑓

= [−1 0 0] + 𝜂 [0 1 0]

⟹

𝜎𝑅𝑓
= −1

𝜎𝜃𝑓
= 𝜂

𝜎𝛽𝑓
= 0,

(11.11)
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where 𝜂 is an additional adjoint variable whose value will be deter-
mined later in the analysis. Therefore, with (11.9)–(11.11), the follow-
ing hold

𝜎𝜃(𝑡) = 𝜂, ∀𝑡 ∈ [𝑡0, 𝑡𝑓 ] (11.12)

𝜎𝛽(𝑡) = 0, ∀𝑡 ∈ [𝑡0, 𝑡𝑓 ] . (11.13)

Once again, since 𝜎𝛽(𝑡) = 0 for all 𝑡 ∈ [𝑡0, 𝑡𝑓 ], the state component 𝛽
has no effect on the equilibrium trajectory or the equilibrium control
strategies. The terminal Hamiltonian satisfies [40]

H𝑑(𝑡𝑓 ) = −𝜕Φ𝑑
𝜕𝑡𝑓

− 𝜂𝜕𝜙𝑑
𝜕𝑡𝑓

= 0, (11.14)

and dH𝑑
d𝑡 = 0, so H𝑑(𝑡) = 0 for all 𝑡 ∈ [𝑡0, 𝑡𝑓 ].

The equilibrium control actions of the Attacker and Defender maxi-
mize and minimize (11.7), respectively: H ∗

𝑑 = max𝜓 min𝑢𝐷
H𝑑. In or-

der to maximize (11.7) (with (11.12)), the vector [cos𝜓 sin𝜓] must
be parallel to the vector [𝜎𝑅

𝜂
𝑅], giving

cos𝜓∗ = −𝜎𝑅

√𝜎2
𝑅 + 𝜂2

𝑅2

, sin𝜓∗ = 𝜂

𝑅√𝜎2
𝑅 + 𝜂2

𝑅2

. (11.15)

If 𝜂 < 0, this implies sin𝜓∗ < 0 due to (11.15). However, this would
mean the Attacker has a component of its motion that points towards
the Defender due to Assumption 2 (see, e.g., Fig. 11.1). Thus, it must
be the case that 𝜂 > 0. In order to minimize (11.7) (with (11.12)), the
Defender’s control must satisfy

𝑢∗
𝐷 = sign 𝜂 = 1, (11.16)

since 𝜂 > 0.
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Substituting the equilibrium controls, (11.15) and (11.16), into the
Hamiltonian, (11.7), and evaluating at final timewith (11.11) and (11.14)
gives

H ∗
𝑑 (𝑡𝑓 ) = 0 =

𝜈𝜎2
𝑅𝑓

√𝜎2
𝑅𝑓

+ 𝜂2

𝑅2
𝑓

+ 𝜈𝜂2

𝑅2
𝑓 √𝜎2

𝑅𝑓
+ 𝜂2

𝑅2
𝑓

− 𝜂

⟹ 𝜂 = ±𝜈𝑅𝑓

√
√√
⎷

1
𝑅2

𝑓 − 𝜈2 .

Since 𝜂 > 0, it must be that

𝜂 = 𝜈𝑅𝑓

√
√√
⎷

1
𝑅2

𝑓 − 𝜈2 . (11.17)

11.2.1.2 Solution Characteristics

An expression for 𝜎𝑅 is obtained by considering the Hamiltonian at a
general time, making the same substitutions as before, with the addi-
tional substitution of (11.17):

H ∗
𝑑 (𝑡) = 0 = 𝜈√𝜎2

𝑅 + 𝜂2

𝑅2 − 𝜂

⟹ 𝜎𝑅 = ±√𝜂2

𝜈2 − 𝜂2

𝑅2

= ±
𝑅𝑓
𝑅

√
√√
⎷

𝑅2 − 𝜈2

𝑅2
𝑓 − 𝜈2 .

Since 𝜎𝑅𝑓
< 0 (due to (11.11)) and �̇�𝑅 > 0 (due to (11.8) with (11.15)

and 𝜂 > 0) it must be that 𝜎𝑅(𝑡) < 0 for all 𝑡 ∈ [𝑡0, 𝑡𝑓 ], thus

𝜎𝑅 = −
𝑅𝑓
𝑅

√
√√
⎷

𝑅2 − 𝜈2

𝑅2
𝑓 − 𝜈2 . (11.18)

The retrograde equilibrium kinematics (denoted by x̊∗, where x̊∗ =
−ẋ∗) can be obtained by substituting the equilibrium controls, (11.15)
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and (11.16), along with the adjoints, (11.12), (11.13), and (11.18), into
(11.2) which yields

�̊�∗ = 𝜈√1 − 𝜈2

𝑅2 , ̊𝜃∗ = 1 − 𝜈2

𝑅2 , (11.19)

with the following boundary conditions

𝑅(𝑡𝑓 ) > 1, 𝜃(𝑡𝑓 ) = 0. (11.20)

Note that both �̊� and ̊𝜃 are monotonically increasing according to
(11.19). Consider the differential equation obtained by dividing the
equations in (11.19)

d𝑅
d𝜃 = 𝜈

√1 − 𝜈2

𝑅2

⟹ 𝜈 ⎡⎢
⎣
√𝑅2

𝜈2 − 1 + sin−1 ( 𝜈
𝑅)⎤⎥

⎦

𝑅

𝑅𝑓

= 𝜈 (𝜃 − 𝜃𝑓 ) .

Define

𝑔(𝑅) = √𝑅2

𝜈2 − 1 + sin−1 ( 𝜈
𝑅) , (11.21)

⟹ 𝜈 (𝑔(𝑅) − 𝑔(𝑅𝑓 )) = 𝜈 (𝜃 − 𝜃𝑓 )

⟹ 𝜃 (𝑅; 𝑅𝑓 , 𝜃𝑓 ) = 𝑔(𝑅) − 𝑔(𝑅𝑓 ) + 𝜃𝑓 , 𝜃𝑓 ≤ 𝜃 < 𝜋. (11.22)

Setting 𝜃𝑓 = 0 in (11.22) (i.e., 𝜃(𝑅; 𝑅𝑓 , 0)) describes the equilibrium
flow field for the Game of Distance (i.e., assuming the Defender can
drive 𝜃 → 0 before the Attacker can reach the target). The curve in
(11.22) is the involute of a circle of radius 𝜈.

Up until now, 𝜃 has been assumed to be in the range [0, 𝜋), however,
the results apply to the range (−𝜋, 0] with some slight modification.

Lemma 11.1. The surface

D ≡ {x ∣ 𝜃 = 𝜋} , (11.23)
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is a DS (c.f. [130]) wherein the Defender can choose either 𝑢𝐷 = 1 or 𝑢𝐷 =
−1 and both choices are optimal. Furthermore, when 𝜃 < 0, the equilibrium
controls are given by 𝑢∗

𝐷 = −1 and sin𝜓∗ < 0.

Proof. Bydefinition, points on aDShave two ormore associated equilib-
rium trajectories which yield the same Value. It will shown that (11.23)
is indeed a DS by constructing a pair of equilibrium trajectories that in-
tegrate back to the same point on D . Consider an initial state on the DS,
xD = (𝑅0, 𝜋) ∈ D . The system (11.19) describes the evolution of 𝑅 and
𝜃 in backwards time assuming 𝜂 > 0. Now, let x𝑓 ≡ (𝑅𝑓 , 𝜃𝑓 ) (where
𝑅𝑓 > 1, 𝜃𝑓 ≥ 0) be the terminal state, which, when integrated through
the retrograde kinematics (11.19), yields the initial point xD . A symmet-
ric solution can be constructed by switching the sign of 𝜂 and 𝜃𝑓 , then
integrating the retrograde kinematics back to xD . Now, let 𝜂 < 0; then
sin𝜓∗ < 0 from (11.15), and 𝑢∗

𝐷 = −1 from (11.16). Substitution into
the Hamiltonian at final time yields 𝜂 = −𝜈𝑅𝑓 √ 1

𝑅2
𝑓 −𝜈2 . Substituting all

of these into the Hamiltonian at general time yields the same expres-
sion for 𝜎𝑅 as in (11.18). Then, from (11.2), the retrograde kinematics
are

�̊� = 𝜈√1 − 𝜈2

𝑅2 , ̊𝜃 = 𝜈2

𝑅2 − 1.

Clearly, these are the same kinematics as in (11.19) except the sign of
̊𝜃 is reversed. These kinematics can be integrated back from the sym-

metric terminal point (𝑅𝑓 , −𝜃𝑓 ) to the point (𝑅0, −𝜋), which is equiv-
alent to xD . This pair of trajectories emanating (forward in time) from
xD have the same Value for all terminal cost functionals of 𝑅𝑓 and |𝜃𝑓 |.
Note this method for proving the presence of a DS is similar to the one
used for a problem with similar dynamics in [2].

As a consequence, Assumption 2may be relaxed, and the state space
may be expanded to 𝜃 ∈ [−𝜋, 𝜋].

Theorem 11.1 (Game of Distance Solution). The equilibrium state feedback
control strategies for the Game of Distance are given by

𝜓∗ = sign (𝜃) sin−1 ( 𝜈
𝑅) , 𝑢∗

𝐷 = sign (𝜃) . (11.24)
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The Value of the game is

𝑉𝑑(𝑅, 𝜃) = −𝑅𝑓 = −𝑔−1 (𝑔(𝑅) − |𝜃|) . (11.25)

Proof. The expression for 𝜓∗ is obtained by substituting (11.17) and
(11.18) into (11.15), taking into account the sign of 𝜃 (due to Lemma 11.1).
Similarly, theDefender strategy is given by (11.16), accounting for Lemma
11.1. The corresponding form of (11.22) for the Game of Distance is

𝜃 (𝑅; 𝑅𝑓 ) = 𝑔(𝑅) − 𝑔(𝑅𝑓 ). (11.26)

Thus, (11.25) is obtained by rearranging this expression and solving
for 𝑅𝑓 , with 𝑔(⋅) defined as in (11.21). Because 𝑉𝑑 is defined using the
inverse of the function 𝑔, it is necessary to show that 𝑔(𝑅) is monotonic.
Taking the derivative of (11.21) w.r.t. 𝑅 gives

d𝑔
d𝑅 =

√𝑅2 − 𝜈2

𝜈𝑅 .

FromAssumption 1, it must be that 0 < 𝜈 < 1, and fromAssumption 3
it must be that 𝑅 > 1 throughout the game. So we have 𝑅 > 𝜈 and
𝑅, 𝜈 > 0, which implies that 𝑔(𝑅) is monotonic.

The Value function does not have a closed form analytic expression
since 𝑔−1 cannot be expressed in closed form.

The limiting case for the Game of Distance is one in which 𝑅𝑓 → 1;
thus the surface

𝜃𝐺𝑜𝐾 (𝑅) = 𝑔(𝑅) − 𝑔(1) (11.27)

partitions the state space into regions of win for the Defender and At-
tacker, respectively,

R𝐷 = {x ∣ |𝜃| ≤ 𝜃𝐺𝑜𝐾(𝑅)} (11.28)

R𝐴 = {x ∣ |𝜃| > 𝜃𝐺𝑜𝐾(𝑅)} . (11.29)

Note that the value domain of 𝑔(𝑅) is [𝑔(1), ∞) since 𝑅 ≥ 1 and 𝑔 is
monotonic; from (11.28) |𝜃| ≤ 𝜃𝐺𝑜𝐾(𝑅) in R𝐷, so the argument to 𝑔−1
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in (11.25) is 𝑔(𝑅) − |𝜃| ≥ 𝑔(𝑅) − (𝑔(𝑅) − 𝑔(1)) = 𝑔(1) which is in the
value domain of 𝑔(𝑅).

11.2.2 Attacker Win Scenario

In the region of the state space in which the Attacker ‘wins’ (i.e., can
reach 𝑅 = 1 while avoiding 𝜃 = 0), a Game of Degree is considered
wherein the players max/min the terminal separation angle; this is re-
ferred to as the Game of Angle. The cost/payoff functional is given as

𝐽 = Φ (x𝑓 , 𝑡𝑓 ) = 𝜃𝑓 . (11.30)

The Attacker seeks tomaximize the terminal separation angle whereas
theDefender seeks tominimize. Termination occurswhen theAttacker
penetrates the target circle,

𝜙 (x𝑓 , 𝑡𝑓 ) = 𝑅𝑓 − 1 = 0. (11.31)

Theorem 11.2 (Game of Angle Solution). The equilibrium state feedback
strategies for the Game of Angle match those of the Game of Distance, i.e., are
given by (11.24). The Value function is given by

𝑉(𝑅, 𝜃) = 𝜃𝑓 = 𝜃 − 𝑔 (𝑅) + 𝑔 (1) . (11.32)

Proof. This proof is based upon showing satisfaction of the sufficient
condition for equilibrium via substitution of the proposed equilibrium
strategies and Value function into the HJI equation [130],

min𝑢𝐷
max

𝜓
{𝑙 (x, 𝑢𝐷, 𝜓, 𝑡) + 𝜕𝑉

𝜕𝑡 + 𝑉x ⋅ 𝑓 (x, 𝑢𝐷, 𝜓, 𝑡)}

= 0,
(11.33)

where 𝑉x is the vector [𝜕𝑉
𝜕𝑅

𝜕𝑉
𝜕𝜃

𝜕𝑉
𝜕𝛽 ]

⊤
, and 𝑙 represents an integral

cost component. First, note that the cost, (11.30), has no integral com-
ponent, and thus 𝑙 = 0. Also, the proposed Value function, (11.32) is
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Figure 11.2: Full equilibrium flow field with 𝜈 = 0.8

not an explicit function of time and thus 𝜕𝑉
𝜕𝑡 = 0. The vector 𝑉x is ob-

tained by differentiating (11.32) w.r.t. each state,

𝑉x = [−√𝑅2−𝜈2

𝑅𝜈 1 0] .

The (forward) equilibrium dynamics, 𝑓 , are given by the negative of
(11.19). Substituting all of these expressions into (11.33) gives

𝜕𝑉
𝜕𝑅 �̇� + 𝜕𝑉

𝜕𝜃
̇𝜃 =

⎛⎜⎜
⎝

−√𝑅2 − 𝜈2

𝑅𝜈
⎞⎟⎟
⎠

⎛⎜⎜
⎝

−𝜈√1 − 𝜈2

𝑅2
⎞⎟⎟
⎠

+ ( 𝜈2

𝑅2 − 1
) = 0.

The proposed Value function is continuous and continuously differen-
tiable (except on the DS, D), and it satisfies the HJI hyperbolic PDE.

Remark 16. Theorem 11.1 (as well as Theorems 11.3 and 11.4) can be
verified in a similar fashion (i.e., by substituting the respective Value
functions into the HJI to show it is satisfied). The analysis would be
nearly identical to the above proof and is therefore omitted.

11.2.3 Full Equilibrium Flow Field

With the analysis in Sections 11.2.1 and 11.2.2, the entire (usable) state
space can befilledwith equilibrium trajectories. Figure 11.2 shows (11.22)
and (11.26) in the Attacker win and lose regions, respectively.
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Lemma 11.2. The Attacker’s equilibrium trajectory is a straight line in the
inertial (non-rotating) (𝑥, 𝑦)-plane.

Proof. Consider Fig. 11.1 which shows the Attacker’s heading angle, ̃𝜓,
w.r.t. the inertial (𝑥, 𝑦)-plane. The following relation holds

̃𝜓 = 𝛽 + 𝜃 + 𝜋 − 𝜓

Thus, the time derivative of the global Attacker heading angle is given
as

̇̃𝜓 = ̇𝛽 + ̇𝜃 − ̇𝜓

Substituting (11.24) and (11.19) into the above gives

̇̃𝜓 = 1 + 𝜈2

𝑅2 − 1 − 𝜕
𝜕𝑡 sin

−1 ( 𝜈
𝑅)

= 𝜈2

𝑅2 −
⎛⎜⎜⎜⎜
⎝

−1

√1 − 𝜈2

𝑅2

⎞⎟⎟⎟⎟
⎠

( 𝜈
𝑅2 ) �̇�

= 𝜈2

𝑅2 +
⎛⎜⎜⎜⎜
⎝

1

√1 − 𝜈2

𝑅2

⎞⎟⎟⎟⎟
⎠

( 𝜈
𝑅2 ) ⎛⎜⎜

⎝
−𝜈√1 − 𝜈2

𝑅2
⎞⎟⎟
⎠

= 0.

Because ̇̃𝜓 = 0, the global Attacker heading angle is constant, and thus
the Attacker’s path is a straight-line in the inertial (𝑥, 𝑦)-plane.

11.2.4 Alternative Attacker Win Scenario

Depending on the particular physical application or interpretation of
the scenario, the Attacker may be interested in penetrating the target
circle in minimum time. For example, if the Attacker is a munition of
some kind, it may not matter how far or close the Defender is at the
time of penetration. Formulating a game ofmin /max terminal angular
separation, on the other hand, may make sense when the Attacker is
some kind of vehicle or person who seeks to intrude inside the target
circle while avoiding, as much as possible, coming into contact with
the Defender.
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The cost functional considered here is

𝐽 = Φ (x𝑓 , 𝑡𝑓 ) = −𝑡𝑓 . (11.34)

Once again, the negative sign is used to adhere to the convention estab-
lished in previous sections in which the Attacker and Defender are the
maximizer and minimizer, respectively. Since penetration is assumed
to occur, the termination condition is given by (11.31), i.e., when the
Attacker reaches the target, and it must be ensured that 𝜃(𝑡) ≠ 0 en
route. This scenario is referred to as the Game of Min Time.

Proposition 11.1. For the zero-sum differential game whose cost is given
by (11.34), the Defender’s equilibrium control is

𝑢∗
𝐷 = sign (𝜃) . (11.35)

Proof. First, note the proposed Defender control is the same as in both
of the Games of Degree considered previously (c.f. Theorems 11.1 and
11.2). The Defender’s essential goal in all of these scenarios is to align
with the Attacker, if possible, or otherwise impede the Attacker some-
how. Likewise, the Attacker must avoid alignment with the Defender
in order to achieve its objectives. Thus the Defender is always inter-
ested in driving 𝜃 → 0 as quickly as possible. From (11.2), the fastest
way to achieve this is traversing, at maximum speed, in the direction
of the Attacker, i.e., by implementing (11.35).

Lemma 11.3. For any scenario in which the Defender implements 𝑢𝐷 =
sign (𝜃), it is necessary for x ∈ R𝐴 for all 𝑡 ∈ [0, 𝑡𝑓 ] in order for the Attacker
to achieve penetration, i.e., 𝑅𝑓 = 1 with 𝜃 > 0 for all 𝑡 ∈ [0, 𝑡𝑓 ].

Proof. This Defender control is the equilibrium control for the Game of
Distance. In the Game of Distance, which is played when x ∉ R𝐴, the At-
tacker seeks to come as close to the target circle before alignment with
the Defender occurs. The limiting case is when the Attacker reaches
the target circle at the exact moment alignment occurs. If it had gotten
there sooner, then it must have been the case that x ∈ R𝐴 since the
equilibrium controls are the same as in the Game of Angle. In general,
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𝑅𝑓 > 1, which means that the Defender achieves alignment before the
Attacker achieves penetration under the best possible Attacker control.

Lemma 11.3 expresses the necessary condition for the Attacker to
penetrate the target circle, which is applicable to any scenario in which
the Defender seeks to align with the Attacker. Thus the Game of Min
Time takes place in R𝐴. Let us focus on the case where 𝜃 ∈ [0, 𝜋]. The
terminal condition is

𝜙 (x𝑓 , 𝑡𝑓 ) = 𝑅𝑓 − 1 = 0, 𝜃 ∈ [0, 𝜋] . (11.36)

Thus the terminal surface is the zero-level set of𝜙 and is left-discontinuous
at 𝜃 = 0. Additionally, the boundary of the terminal surface, (𝑅, 𝜃) =
(1, 0), lies on the boundary of the state space, 𝜕R𝐴.

The Hamiltonian is

H = −𝜆𝑅𝜈 cos𝜓 + 𝜆𝜃 ( 𝜈
𝑅 sin𝜓 − 1) + 𝜆𝛽, (11.37)

where 𝝀 ≡ [𝜆𝑅 𝜆𝜃 𝜆𝛽]. Both 𝜆𝜃 and 𝜆𝛽 are constant since 𝜕H
𝜕𝜃 = 0

and 𝜕H
𝜕𝛽 = 0, respectively. In general, the transversality condition [40]

is
𝝀⊤ (𝑡𝑓 ) = 𝜕Φ

𝜕x𝑓
+ 𝜇

𝜕𝜙
𝜕x𝑓

. (11.38)

The term 𝜕𝜙
𝜕𝜃 is well-defined when 𝜃 ∈ (0, 𝜋), but it is undefined at the

“corner point” (𝑅, 𝜃) = (1, 0). The former case is treated first.

11.2.5 General Case

Lemma11.4. For the zero-sumdifferential gamewhose cost is given by (11.34),
the equilibrium Attacker control is

𝜓∗ = 0, ∀x s.t. 𝜃 > 𝑅 − 1
𝜈 . (11.39)

Proof. Specializing (11.38) gives

𝝀⊤(𝑡𝑓 ) = 0 + 𝜇 [1 0 0] , (11.40)
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thus 𝜆𝜃, 𝜆𝛽 = 0 for all 𝑡 ∈ [0, 𝑡𝑓 ]. Note that it has been assumed that
𝜃𝑓 > 0 which implies that 𝜕𝜙

𝜕𝜃𝑓
exists and equals 0. Substituting into the

Hamiltonian, (11.37), gives

H = −𝜆𝑅𝜈 cos𝜓,

which is maximized for cos𝜓∗ = − sign(𝜆𝑅) = ±1. It is obvious that
the Attacker must run toward the target circle, hence (11.39) holds.

Now, it must ensured that the assumption 𝜃𝑓 > 0 is valid. Under the
equilibrium control strategies 𝑢∗

𝐷 = sign(𝜃) and 𝜓∗ = 0 the 𝑅 and 𝜃
dynamics are

�̇� = −𝜈, ̇𝜃 = −1, (11.41)

and thus d𝜃
d𝑅 = 1

𝜈 , implying that the trajectories are straight lines in the
(𝑅, 𝜃) plane. Furthermore, the unconstrained equilibrium flowfield is

𝜃(𝑅) = 1
𝜈 (𝑅 − 𝑅0) + 𝜃0. (11.42)

The critical case occurs when the constraint activates at the precise mo-
ment that the Attacker reaches the target (i.e., 𝜃𝑓 = 0). The time to
traverse from their initial positions must be equal, giving

𝜃𝑐(𝑅) = 𝑅 − 1
𝜈 . (11.43)

If 𝜃 > 𝜃𝑐, then 𝜃𝑓 > 0 under equilibrium play, hence the specification
in (11.39).

However, if 𝜃 < 𝜃𝑐 and the Attacker aims at the circle center, the
Defender can drive 𝜃 → 0 before the Attacker reaches the target.

11.2.6 Corner Case

Now the case wherein the game terminates on “corner point” (𝑅, 𝜃) =
(1, 0) is treated. Recall the fact that 𝜕𝜙

𝜕𝜃𝑓
is undefinedwhen 𝜃𝑓 = 0 which

results in 𝜆𝜃𝑓
being free. The consequence is that the incoming equilib-

rium trajectory to the corner point is not unique, unlike elsewhere in
the terminal surface. Therefore, a family of trajectories, beginning from
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a range of initial conditions all terminate at (𝑅, 𝜃) = (1, 0). A similar
situation arises in pursuit-evasion scenarios with a finite capture ra-
dius [89, 271] (see, also, Chapter 6). For notational convenience, let
𝜆𝑅𝑓

≡ 𝜇 and 𝜆𝜃𝑓
≡ 𝜂; 𝜆𝛽𝑓

= 0, as before.

Lemma11.5. For the zero-sumdifferential gamewhose cost is given by (11.34)
the equilibrium Attacker control is

𝜓∗ = sin−1 ( 𝜅
𝑅) , 𝜅 ∈ [0, 𝜈] ,

∀x ∈ R𝐴 s.t. 𝜃 ≤ 𝑅 − 1
𝜈 ,

(11.44)

where 𝜅 satisfies

0 = 1
𝜈 (√𝑅2 − 𝜅2 − √1 − 𝜅2) − 𝜃 − sin−1 𝜅 + sin−1 ( 𝜅

𝑅) . (11.45)

The Attacker trajectory is a straight line terminating at (𝑅, 𝜃) = (1, 0).

Proof. The Hamiltonian, (11.37), evaluated at final time is

H𝑓 = −𝜇𝜈 cos𝜓𝑓 + 𝜂 (𝜈 sin𝜓𝑓 − 1) . (11.46)

The equilibrium Attacker heading must maximize H𝑓 , thus

cos𝜓∗
𝑓 = −𝜇

√𝜇2 + 𝜂2
, sin𝜓∗

𝑓 = 𝜂
√𝜇2 + 𝜂2

. (11.47)

Substituting this terminal Attacker heading back into (11.46) gives

H𝑓 = 𝜈√𝜇2 + 𝜂2 − 𝜂. (11.48)

The terminal Hamiltonian value is also specified by [40]

H𝑓 = −𝜕Φ
𝜕𝑡𝑓

− 𝜇 𝜕𝜙
𝜕𝑡𝑓

= − (−1) − 0 = 1 (11.49)

Substituting back into (11.48) and rearranging gives

sin𝜓∗
𝑓 = 𝜈𝜂

1 + 𝜂. (11.50)
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Define, for convenience, 𝜅 ≡ sin𝜓𝑓 . The value of 𝜅 is bounded,

𝜅 ∈ [0, 𝜈] . (11.51)

The lower bound is due to the fact that 𝐴 ought not aim towards 𝐷; the
upper bound is due to the fact that 𝜅 > 𝜈 would immediately push the
state of the system out of R𝐴.

Because the system is time-autonomous, the value of the Hamilto-
nian is constant, i.e., H (𝑡) = 1 for all 𝑡 ∈ [0, 𝑡𝑓 ]. Rewriting (11.46)
and (11.47) at general time and solving for 𝜆2

𝑅 gives

𝜆2
𝑅 = (1 + 𝜂

𝜈 )
2

− 𝜂2

𝑅2 . (11.52)

Similarly, the Attacker heading at general time is

sin𝜓 = 𝜂

𝑅√𝜆2
𝑅 + 𝜂2

𝑅2

= 𝜈𝜂
𝑅 (1 + 𝜂) =

sin𝜓𝑓
𝑅 = 𝜅

𝑅 (11.53)

Therefore, Lemma 11.2 holds here as well since 𝜅 is a constant; that is,
the Attacker’s path is a straight line in the non-rotating (𝑥, 𝑦)-frame.

Concerning the determination of 𝜅 for a general position 𝑅 > 1 and
𝜃 ∈ [𝜃𝐺𝑜𝐾, 𝜃𝑐], it is useful to consider the geometry. Let the point 𝐼 be
the point on the target circle in which 𝐴 will terminate; by construc-
tion, this must be the point 𝐷 terminates as well. A right triangle is
formed by △𝐴𝑇𝑂 where 𝑇 is the tangent point of the extension of 𝐴’s
trajectory on a circle of radius 𝜅, and 𝑂 is the target circle’s center. The
hypotenuse of △𝐴𝑇𝑂 is 𝑅. Another right triangle is formed by △𝐼𝑇𝑂;
its hypotenuse is 1. See Fig. 11.3 for a representation of the geometry.
The distance traveled by the Attacker is

𝐴𝐼 = 𝐴𝑇 − 𝑇𝐼

= √𝑅2 − 𝜅2 − √1 − 𝜅2.
(11.54)
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The Defender must cover an angular distance 𝜃 as well as the circular
sector between 𝐴 and 𝐼. Define 𝜌 ≡ ∠𝐴𝑂𝐼, which is given by

𝜌 = sin−1 𝜅 − sin−1 ( 𝜅
𝑅) . (11.55)

Define 𝑚 as the difference in Attacker and Defender travel times to the
point 𝐼:

𝑚 (𝜅) = 1
𝜈 𝐴𝐼 − (𝜃 + 𝜌) . (11.56)

Then (11.45) is obtained by substituting in (11.54) and (11.55) and set-
ting equal to zero, which represents simultaneous arrival to the point 𝐼.
The value of 𝜅 for which this occurs may be obtained numerically.

𝐷

1
𝑅

𝐴

𝜃
𝜅

𝑇

𝐼

𝑂

𝜌

𝜈

[ February 3, 2022 at 13:38 – classicthesis v4.6 ]

Figure 11.3: Schematic of the Game of Min Time scenario in which 𝐴 takes an
“evasive” path in order to arrive at the point 𝐼 simultaneously
with 𝐷.

In the Game of Min Time nothing is gained by increasing 𝜃𝑓 ; the At-
tacker either heads directly towards the Target without regard for the
Defender or performs the minimum “evasion” necessary to reach the
Target, whereupon 𝜃𝑓 = 0. The equilibrium kinematics may obtained
by substituting (11.44) into (11.2). A closed form expression of the
equilibrium trajectory through the (𝑅, 𝜃) space is obtained via a pro-
cess similar to (11.19)–(11.22) in Section 11.2.1.2:

𝜃(𝑅; 𝜅) =
√𝑅2 − 𝜅2

𝜈 + sin−1 𝜅
𝑅 −

√1 − 𝜅2

𝜈 − sin−1 𝜅 (11.57)

The full solution of the Game of Min Time is depicted in Fig. 11.4.
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θc
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Dispersal Surface

Figure 11.4: Equilibrium flowfield for the Game of Min Time with 𝜈 = 0.8. The
“direct” trajectories are straight lines with slope 1

𝜈 . The “evasive”
trajectories are described by (11.57) with various 𝜅. The dashed
black line is the critical trajectory described by (11.43).

11.3 TWO DE F ENDER S

In this section, the circular target guarding game with two Defenders,
𝐷1 and 𝐷2, is considered with the following assumption:

Assumption 4. The two Defenders share the same maximum speed:
𝑣𝐷1max

= 𝑣𝐷2max
= 𝑣𝐷max

.

𝑥

𝑦

𝛽 𝐷1

𝑙

𝑣𝐷1

𝐷2𝑣𝐷2

𝛼

�̄�
×
𝐼

𝑣𝐴 ̃𝜓

𝐴 𝜓

𝛾

[ February 3, 2022 at 14:06 – classicthesis v4.6 ]

Figure 11.5: Circular perimeter patrol with two Defenders and one Attacker.
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The scenario is depicted in Fig. 11.5, and the (nondimensional) kine-
matics of the system are given as

𝑓 (x,u, 𝑡) = ẋ =
⎡⎢⎢⎢
⎣

�̇�
�̇�

̇𝛼
̇𝛽

⎤⎥⎥⎥
⎦

=
⎡⎢⎢⎢⎢
⎣

−𝜈 cos𝜓
𝜈
𝑅 sin𝜓 − 1

2 (𝑢𝐷1
+ 𝑢𝐷2

)
1
2 (𝑢𝐷1

− 𝑢𝐷2
)

𝑢𝐷1

⎤⎥⎥⎥⎥
⎦

. (11.58)

The angle 𝛼 is measured from 𝐷2 to the angular bisector (on the side
of 𝐴) of the positions of 𝐷1 and 𝐷2. Similarly, the angle 𝛾 is measured
as 𝐴’s angular offset w.r.t. this bisector.

Assumption 5. The relative angular position of theAttacker is bounded
such that −𝛼 ≤ 𝛾 ≤ 𝛼.

AlthoughAssumption 5 has been imposed, it is of little consequence
since the forthcoming solutionwould still apply for𝛾 outside this range
by, for example, switching the designation of 𝐷1 and 𝐷2. Just as in the
analysis of the one-on-one game, there are three “games” or questions
of interest: 1) can the Attacker reach the target (the Game of Kind), 2)
what is the equilibrium terminal angular separation between the At-
tacker and the closest Defender (the Game of Angle), and 3) what is
the equilibrium terminal distance from the target center (the Game of
Distance).

Note that the rotation of the system w.r.t. the global 𝑥-axis, 𝛽, has no
effect on the optimality of the trajectories as in the one-on-one analysis
and is therefore omitted in the following.

11.3.1 Game of Degree When Attacker Wins

Here, the Game of Angle, which applies to the scenario when the At-
tacker is able to reach the target (𝑅𝑓 = 1), is treated. The cost functional
is given as

𝐽 = Φ (x𝑓 , 𝑡𝑓 ) = 𝛼𝑓 − |𝛾𝑓 |, (11.59)

and the goal is to obtain the Value of the game:

𝑉 (x) = min
u(⋅)

max
𝜓(⋅)

𝐽 = max
𝜓(⋅)

min
u(⋅)

𝐽. (11.60)
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This game terminates when the following condition is satisfied

𝜙 (x𝑓 , 𝑡𝑓 ) = 𝑅𝑓 − 1 = 0. (11.61)

11.3.1.1 First Order Necessary Conditions for Optimality

First, form the Hamiltonian as

H = −𝜆𝑅𝜈 cos𝜓 + 𝜆𝛾 ( 𝜈
𝑅 sin𝜓 − 1

2 (𝑢𝐷1
+ 𝑢𝐷2

))

+𝜆𝛼
1
2 (𝑢𝐷1

− 𝑢𝐷2
) .

(11.62)

The equilibrium adjoint dynamics obey [40]

�̇�𝑅 = −𝜕H

𝜕𝑅 = 𝜆𝛾
𝜈

𝑅2 sin𝜓, (11.63)

�̇�𝛾 = −𝜕H

𝜕𝛾 = 0, (11.64)

�̇�𝛼 = −𝜕H

𝜕𝛼 = 0. (11.65)

From the transversality condition [40], the equilibrium terminal ad-
joint values satisfy

𝝀⊤(𝑡𝑓 ) = 𝜕Φ
𝜕x𝑓

+ 𝜇
𝜕𝜙
𝜕x𝑓

⟹

𝜆𝑅(𝑡𝑓 ) = 𝜇,

𝜆𝛾(𝑡𝑓 ) = − sign(𝛾𝑓 ),

𝜆𝛼(𝑡𝑓 ) = 1.

(11.66)

Because �̇�𝛾 = �̇�𝛼 = 0 it must be that 𝜆𝛾(𝑡) = − sign(𝛾𝑓 ) and 𝜆𝛼(𝑡) = 1
for all 𝑡 ∈ [𝑡0, 𝑡𝑓 ].

11.3.1.2 Solution Characteristics

Lemma 11.6. For games terminating with 𝛾𝑓 ≠ 0, the game’s Value function
and optimal strategies are that of the one-on-one game: 𝑉 = 𝛼 − |𝛾| − 𝑔(𝑅) +
𝑔(1), and 𝜓∗ = sin−1 (− 𝜈

𝑅 sign(𝛾𝑓 )). The second Defender is redundant.
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Proof. Suppose that 𝛾𝑓 < 0; substituting the corresponding 𝜆𝛾 and 𝜆𝛼

values into (11.62) gives

H = −𝜆𝑅𝜈 cos𝜓 − 𝜈
𝑅 sin𝜓 − 𝑢𝐷2

. (11.67)

Note that 𝑢𝐷1
does not appear in (11.67) and thus 𝐷1 has no effect

on the optimality of the trajectory and is therefore redundant. Again,
since the final time is free, the Hamiltonian, at terminal time, is subject
to (11.14) [40]; that is, H (𝑡𝑓 ) = 0. Since (11.58) are autonomous, it
must be that H (𝑡) = 0 for all 𝑡 ∈ [𝑡0, 𝑡𝑓 ]. Therefore, (11.67) is iden-
tical to the Hamiltonian for the one-on-one case between the Attacker
and 𝐷2. Furthermore, the terminal condition is the same, and the cost
functional is identical since 𝜃 = 𝛼−|𝛾| = 𝐽, in this case. Thus, the Value
function for the one-on-one case, (11.32), and the equilibriumAttacker
heading control, (11.24) are the solution for this game (making the ap-
propriate substitution of 𝜃 = 𝛼 − |𝛾|). The − sign in the 𝜓∗ expression,
in this case, accounts for the case when 𝛾𝑓 > 0 in which the game plays
out between the Attacker and 𝐷1, by symmetry. In that case, the sce-
nario is a mirror image of Fig. 11.1 and the sign of 𝑢𝐷1

is reversed (i.e.,
𝐷1 moves clockwise) as is the sign of sin𝜓∗.

Since 𝛾𝑓 ≠ 0 corresponds to either one-on-one game, special atten-
tion is given to the case when 𝛾𝑓 = 0. When 𝛾𝑓 = 0, the Attacker termi-
nates at a position which is equidistant from the two defenders. Note
that, according to (11.66), 𝜆𝛾(𝑡𝑓 ) = 𝜆𝛾𝑓

is undefined when 𝛾𝑓 = 0. As
before, the Defenders seek to minimize the Hamiltonian, (11.62):

𝑢∗
𝐷1

, 𝑢∗
𝐷2

= argmin
𝑢𝐷1 ,𝑢𝐷2

H

= argmin
𝑢𝐷1 ,𝑢𝐷2

𝑢𝐷1
(1 − 𝜆𝛾) + 𝑢𝐷2

(−1 − 𝜆𝛾) .
(11.68)

Now, according to (11.68), if 𝜆𝛾 > 1 or 𝜆𝛾 < −1 then 𝑢∗
𝐷1

= 𝑢∗
𝐷2

which
means the Defenders should move in the same direction. However, if
this were the case then ̇𝛼 = 0 which is clearly undesirable since 𝛼 ap-
pears in the cost, 𝐽. Thus the value of 𝜆𝛾 is bounded:

− 1 ≤ 𝜆𝛾 ≤ 1. (11.69)
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By inspection, it is clear that the Defenders should seek to minimize ̇𝛼
which occurs for

𝑢∗
𝐷1

= −1, 𝑢∗
𝐷2

= 1. (11.70)

substituting in (11.66) and (11.70) into (11.62) leads to an expression
for 𝜆𝑅:

H (𝑡) = 0 = 𝜈√𝜆2
𝑅 +

𝜆2𝛾

𝑅2 − 1

⟹ 𝜆𝑅 = ±√ 1
𝜈2 −

𝜆2𝛾

𝑅2 .

Since �̇�𝑓 ∝ cos𝜓𝑓 ∝ 𝜈 it must be that 𝜆𝑅𝑓
, 𝜈 < 0 in order for the state of

the system to penetrate the boundary. In order to maximize the Hamil-
tonian, it must be that sin𝜓∗ ∝ 𝜆𝛾; thus, from (11.63), �̇�𝑅(𝑡) < 0 for all
𝑡 ∈ [𝑡0, 𝑡𝑓 ]. Therefore, 𝜆𝑅(𝑡) < 0 for all 𝑡 ∈ [𝑡0, 𝑡𝑓 ], which leads to

𝜆𝑅 = −√ 1
𝜈2 −

𝜆2𝛾

𝑅2 . (11.71)

Lemma 11.7. For games terminating with 𝛾𝑓 = 0, the equilibrium heading
angle is

𝜓∗ = sin−1 (𝜆𝛾
𝜈
𝑅) , (11.72)

and is bounded by − sin−1 ( 𝜈
𝑅) ≤ 𝜓∗ ≤ sin−1 ( 𝜈

𝑅).

Proof. Substituting (11.71) with (11.70) into (11.62) gives

H = 0 = −𝜈√ 1
𝜈2 −

𝜆2𝛾

𝑅2 cos𝜓 + 𝜆𝛾
𝜈
𝑅 sin𝜓. (11.73)

The Attacker seeks to maximize the Hamiltonian, and thus

cos𝜓∗ = −√1 −
𝜈2𝜆2𝛾

𝑅2 , sin𝜓∗ = 𝜆𝛾
𝜈
𝑅, (11.74)

and −1 ≤ 𝜆𝛾 ≤ 1 according to (11.69), hence − 𝜈
𝑅 ≤ sin𝜓∗ ≤ 𝜈

𝑅 .

Lemma 11.8. The trajectories corresponding to 𝜆𝛾 = ±1 separate the state
space into regions of asymmetric termination (𝛾𝑓 ≠ 0) and symmetric termi-
nation (𝛾𝑓 = 0).
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Proof. Suppose 𝜆𝛾 = 1, then theAttacker’s equilibrium strategy is iden-
tical to the one-on-one game with 𝐷2 (c.f. (11.24)). The trajectory is a
straight line in the global (𝑥, 𝑦)-frame since the one-on-one game At-
tacker trajectories are straight (due to Lemma 11.2). Trajectories with
𝜆𝛾 < 1 lie on one side of this surface andone-on-one trajectories (against
𝐷2) lie on the other side.

Lemma11.9. Attacker trajectories resulting in symmetric termination (𝛾𝑓 =
0) are straight lines in the (𝑥, 𝑦)-plane terminating at a point 𝐼, where

𝐼 = [𝐼𝑥
𝐼𝑦

] = [cos (𝛽0 − 𝛼0)
sin (𝛽0 − 𝛼0)] . (11.75)

Proof. Just as in Lemma 11.2, the Attacker trajectory is shown to be a
straight line in the inertial frame via direct substitution of the equilib-
rium strategies. Consider Fig. 11.5 which shows the Attacker’s heading
angle ̃𝜓, w.r.t. the inertial (𝑥, 𝑦)-plane. It is expressed

̃𝜓 = 𝛽 + (2𝜋 − 2𝛼) + 𝛼 + 𝛾 − 𝜓,

and its time derivative is

̃𝜓 = ̇𝛽 − ̇𝛼 + �̇� − ̇𝜓.

Substitution of the kinematics, (11.58), and the equilibrium controls,
(11.70) and (11.72), gives

̇̃𝜓 = 𝑢𝐷1
− 1

2 (𝑢𝐷1
− 𝑢𝐷2

) + 𝜈
𝑅 sin𝜓−

1
2 (𝑢𝐷1

+ 𝑢𝐷2
) − 𝜕

𝜕𝑡 sin
−1 𝜆𝛾

𝜈
𝑅

= −1 + 1 +
𝜆𝛾𝜈2

𝑅2 − 0 −
⎛⎜⎜⎜⎜⎜⎜
⎝

−𝜆𝛾𝜈

𝑅2√1 − 𝜆2𝛾𝜈2

𝑅2

⎞⎟⎟⎟⎟⎟⎟
⎠

(−𝜈 cos𝜓)

=
𝜆𝛾𝜈2

𝑅2 −
𝜆𝛾𝜈2

𝑅2 = 0

Since the Attacker heading in the inertial (𝑥, 𝑦)-plane is constant, the
Attacker path is a straight line. For symmetric termination, the state
of the system lies at 𝑅 = 1 and 𝛾 = 0. The 𝛾 = 0 angle corresponds
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to 𝛽 − 𝛼. Because 𝑢∗
𝐷1

= −1 and 𝑢∗
𝐷2

= 1 (due to (11.74)) it must be
that ̇𝛼 = −1 = ̇𝛽 and thus the angle 𝛽 − 𝛼 is invariant in the global
(𝑥, 𝑦)-plane.

Lemma 11.10. For symmetric termination (𝛾𝑓 = 0), the separating surface
of the Game of Kind in the global (𝑥, 𝑦)-plane is given by a circular arc cen-
tered 𝐼 with radius 𝜈𝛼0 whose bounds are defined by sin−1(−𝜈) and sin−1(𝜈)
relative to the 𝛾 = 0 axis.

Proof. Symmetric termination trajectories terminate at 𝐼, defined and
according to Lemma 11.9. The limiting case occurs when the Attacker
reaches the target circle at the exact moment in which the Defenders
reach 𝐼 (i.e. 𝛼𝑓 → 0). Due to (11.70), it must be that ̇𝛼 = −1. Therefore,
the Defenders reach 𝛼 = 0 in 𝛼0 time. Symmetric termination trajecto-
ries may thus extend from 𝐼 for a maximum distance of 𝜈𝛼0; beyond
this distance, the Attacker cannot reach the target. The Attacker trajec-
tories are straight, also due to Lemma 11.9, thus the Game of Kind sur-
face is a circular arc. The bounds of the circular arc are given directly
by the range of 𝜓∗

𝑓 which is obtained by substituting 𝑅 = 1 into (11.72)
and applying the bounds stated in Lemma 11.7.

The regions R𝐴1
and R𝐴2

are the sets of states for which the game
terminates with 𝛾𝑓 > 0 (one-on-one with 𝐷1) and 𝛾𝑓 < 0 (one-on-one
with 𝐷2), respectively (c.f. Lemma 11.6). Similarly, the region R𝐴1,2

is
the set of states for which the game terminates with 𝛾𝑓 = 0 and is com-
pletely specified by Lemmas 11.8–11.10. The polar distance atwhich the
Game of Kind surface switches from the one-on-one surface, governed
by (11.27), and the two-on-one surface, described in Lemma 11.10, is
given by

𝑅𝑠 = +√𝜈2𝛼2 + 1 + 2𝜈𝛼√1 − 𝜈2, (11.76)

which is derived from the Law of Cosines (see Fig. 11.7).

Theorem 11.3. In the region R𝐴1,2
, the equilibrium Attacker heading angle

is given by
𝜓∗ = sin−1 (sin𝛾

𝑝 ) , (11.77)
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and the associated Value function is

𝑉 (x) = 𝛼𝑓 = 𝛼 − 𝑝
𝜈 , (11.78)

where
𝑝 = +√𝑅2 + 1 − 2𝑅 cos𝛾.

Proof. Consider the triangle formed by the Attacker’s position, the tar-
get circle center, and the point 𝐼 as defined in (11.75). By construction,
the Attacker starts in R𝐴1,2

and its equilibrium trajectory must termi-
nate at 𝐼 due to Lemma 11.9. Let the distance traveled from 𝐴0 to 𝐼 be
𝑝, which can be obtained from the Law of Cosines (as defined above).
Then, (11.77) can be obtained from the Law of Sines. The time taken
to traverse this path is 𝑝/𝜈, and ̇𝛼 = −1 (due to (11.70)), thus (11.78)
follows.

11.3.2 Game of Degree When Attacker Loses

In this section, theGame of Distance, which applies to the scenariowhen
𝐴 is not able to reach the target before one or both Defenders can align
with 𝐴 (i.e. 𝛼 − |𝛾| = 0), is treated. The cost functional is the same
as in the one-on-one case, i.e., (11.3). This game terminates when the
following condition is satisfied

𝜙𝑑 (x𝑓 , 𝑡𝑓 ) = 𝛼𝑓 − |𝛾𝑓 | = 0. (11.79)

11.3.2.1 First Order Necessary Conditions

The Hamiltonian is

H𝑑 = − 𝜎𝑅𝜈 cos𝜓 + 𝜎𝛾 ( 𝜈
𝑅 sin𝜓 − 1

2 (𝑢𝐷1
+ 𝑢𝐷2

)) +

𝜎𝛼
1
2 (𝑢𝐷1

− 𝑢𝐷2
) ,

(11.80)
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and thus the equilibrium adjoint dynamics are

�̇�𝑅 = −𝜕H𝑑
𝜕𝑅 = 𝜎𝛾

𝜈
𝑅2 sin𝜓 (11.81)

�̇�𝛾 = −𝜕H𝑑
𝜕𝛾 = 0 (11.82)

�̇�𝛼 = −𝜕H𝑑
𝜕𝛼 = 0. (11.83)

From the transversality condition [40], the terminal adjoint values are

𝜎⊤(𝑡𝑓 ) = 𝜕Φ𝑑
𝜕x𝑓

+ 𝜂
𝜕𝜙𝑑
𝜕x𝑓

(11.84)

= [−1 0 0] + 𝜂 [0 ±1 1] . (11.85)

When 𝛾𝑓 = 0, however, the derivative 𝜕𝜙𝑑
𝜕𝛾𝑓

, and thus 𝜎𝛾𝑓
, is not de-

fined. Evaluating (11.80) at final time and substituting in the terminal
adjoint values gives

H𝑑(𝑡𝑓 ) = 𝜈 cos𝜓𝑓 + 𝜎𝛾𝑓
⎛⎜
⎝

𝜈
𝑅𝑓

sin𝜓𝑓 − 1
2 (𝑢𝐷1

+ 𝑢𝐷2
)⎞⎟
⎠

+ 𝜂
2 (𝑢𝐷1

− 𝑢𝐷2
)

(11.86)

The Hamiltonian at terminal time is given by [40]

H𝑑(𝑡𝑓 ) = −𝜕Φ𝑑
𝜕𝑡𝑓

− 𝜂𝜕𝜙𝑑
𝜕𝑡𝑓

= 0. (11.87)

11.3.2.2 Solution Characteristics

Lemma 11.11. For games terminating with 𝛾𝑓 ≠ 0, the game’s Value func-
tion and optimal strategies correspond to the one-on-one game (c.f. Theorem 11.1).
The second Defender is redundant.

Proof. The proof is similar to that of Lemma 11.6 in that the Hamilto-
nian is formed and a particular sign of 𝛾𝑓 is assumed, which results in
reduction to the one-on-one Hamiltonian with identical cost and ter-
minal boundary condition. If, for example, 𝛾𝑓 < 0 then 𝜎𝛾𝑓

= 𝜂 and is
𝜎𝛾 is constant since �̇�𝛾 = 0. The Hamiltonian would be reduced to

H𝑑 = −𝜎𝑅𝜈 cos𝜓 + 𝜂 ( 𝜈
𝑅 sin𝜓 − 𝑢𝐷2

) ,
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which matches exactly with the one-Attacker one-Defender Hamilto-
nian, (11.7). The cost functional (based on terminal distance, (11.3)) is
the same and thus the two-Defender scenario reduces to the one-De-
fender scenario whenever 𝛾𝑓 ≠ 0, by symmetry.

Lemma 11.12. For games terminating with 𝛾𝑓 = 0, the equilibriumAttacker
heading angle is

𝜓∗ = sin−1 (𝜒 𝜈
𝑅) , 𝜒 ∈ [−1, 1] . (11.88)

Proof. The proof is similar to that of Lemma 11.7, but with the associ-
ated first order necessary conditions for the Game of Distance from the
previous section. Now, if 𝐴 and 𝐷2 were to play the one-on-one Game
of Distance 𝐷2 would move counterclockwise, i.e., 𝑢𝐷2

= 1. The pres-
ence of 𝐷1 ought not change the control of 𝐷2 – counterclockwise is
still the direction which closes the angular gap the between 𝐷2 and 𝐴
the fastest. Therefore, let 𝑢∗

𝐷1𝑓
= −1 and 𝑢∗

𝐷2𝑓
= 1. As before, the De-

fenders must minimize the Hamiltonian, including at final time. Thus
from (11.87) the Defenders’ control can be written as

𝑢∗
𝐷1𝑓

, 𝑢∗
𝐷2𝑓

= argmin
𝑢𝐷1𝑓

,𝑢𝐷2𝑓

H

= argmin
𝑢𝐷1𝑓

,𝑢𝐷2𝑓

(−𝜎𝛾𝑓
+ 𝜂) 𝑢𝐷1𝑓

+

(−𝜎𝛾𝑓
− 𝜂) 𝑢𝐷2𝑓

⟹ 𝑢∗
𝐷1𝑓

= − sign(−𝜎𝛾𝑓
+ 𝜂) = −1,

𝑢∗
𝐷2𝑓

= − sign(−𝜎𝛾𝑓
− 𝜂) = 1.

The last two expressions, together, imply

−𝜂 ≤ 𝜎𝛾𝑓
≤ 𝜂

Since −𝜂 ≤ 𝜎𝛾𝑓
≤ 𝜂 define 𝜎𝛾𝑓

≡ 𝜒𝜂 for 𝜒 ∈ [−1, 1]. Substitution of
the Defender controls into the terminal Hamiltonian gives

H𝑑(𝑡𝑓 ) = 𝜈 cos𝜓𝑓 + 𝜒𝜂 𝜈
𝑅𝑓

sin𝜓𝑓 − 𝜂 = 0.
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The Attacker must maximize the Hamiltonian, and thus

cos𝜓∗
𝑓 = 1

√1 + 𝜒2𝜂2

𝑅2
𝑓

, sin𝜓∗
𝑓 = 𝜒𝜂

𝑅𝑓 √1 + 𝜒2𝜂2

𝑅2
𝑓

.

The terminal Hamiltonian becomes

H𝑑(𝑡𝑓 )∗ = 𝜈
√
√√
⎷

1 + 𝜒2𝜂2

𝑅2
𝑓

− 𝜂 = 0.

Solving for 𝜂:

𝜂 = 𝜈
√
√√
⎷

1 + 𝜒2𝜂2

𝑅2
𝑓

𝜂2 = 𝜈2 ⎛⎜⎜
⎝

1 + 𝜒2𝜂2

𝑅2
𝑓

⎞⎟⎟
⎠

⟹ 𝜂 = ±
𝜈𝑅𝑓

√𝑅2
𝑓 − 𝜒2

Recall 𝜂 ≡ 𝜎𝛼 ≡ 𝜕𝑉
𝜕𝛼 ; thus an increase in 𝛼 should give advantage to the

Attacker which implies 𝜂 > 0. At general time, the Hamiltonian is

H𝑑(𝑡) = 0

= −𝜎𝑅𝜈 cos𝜓 +
𝜈2𝜒𝑅𝑓

𝑅√𝑅2
𝑓 − 𝜒2

sin𝜓 −
𝜈𝑅𝑓

√𝑅2
𝑓 − 𝜒2

Again, the Attacker maximizes the Hamiltonian,

cos𝜓∗ = −𝜎𝑅

√𝜎2
𝑅 +

𝜒2𝜈2𝑅2
𝑓

𝑅2(𝑅2
𝑓 −𝜒2)

,

sin𝜓∗ =
𝜈𝜒𝑅𝑓

𝑅√𝑅2
𝑓 − 𝜒2√𝜎2

𝑅 +
𝜈2𝜒2𝑅2

𝑓

𝑅2(𝑅2
𝑓 −𝜒2)

.

Substituting back into the Hamiltonian and solving for 𝜎𝑅:

𝜎𝑅 = ±
√
√
√
⎷

𝑅2𝑅2
𝑓 − 𝜈2𝜒2𝑅2

𝑓

𝑅2 (𝑅2
𝑓 − 𝜒2)

.
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Finally, substitution into the equilibrium Attacker control gives

sin𝜓∗ = 𝜒 𝜈
𝑅.

Note that the form of the Attacker equilibrium control for this sce-
nario is identical to that of the Game of Angle scenario.

Lemma 11.13. The trajectories corresponding to 𝜒 = ±1 separate the state
space into regions of solo capture (𝛾𝑓 ≠ 0) and dual capture (𝛾𝑓 = 0).

Proof. The result follows from substitution of 𝜒 = 1 or 𝜒 = −1 into
(11.88).

Lemma 11.14. Attacker trajectories resulting in dual capture (𝛾𝑓 = 0) are
straight lines in the (𝑥, 𝑦)-plane terminating at a point 𝐼′ where

𝐼′ = [𝐼′
𝑥

𝐼′
𝑦
] = [𝑅𝑓 cos (𝛽0 − 𝛼0)

𝑅𝑓 sin (𝛽0 − 𝛼0)] . (11.89)

Proof. The Attacker equilibrium control, (11.88), is identical in form to
that of theGame of Angle solution, (11.74), and thus theAttacker path is
a straight line for the same arguments as presented in Lemma 11.9. The
angle 𝛽0 − 𝛼0 corresponds to the 𝛾 = 0 axis, which, as in Lemma 11.9,
is invariant under equilibrium play.

Lemma 11.15. The surfaces separating solo and dual capture are given by
the expression

𝑤 (�̂�) = ±𝜈2𝛼
𝑅𝑓

, (11.90)

where �̂� = 𝑅 cos (𝛾) = 𝑅𝑓 + 𝜈𝛼√1 − 𝜈2

𝑅2
𝑓
is the polar distance measured

along the 𝛾 = 0 axis and 𝑤 is measured perpendicular to the 𝛾 = 0 axis, and
�̂� ∈ [1 + 𝜈𝛼0√1 − 𝜈2, ∞].

Proof. As in Lemma 11.10, the dual capture trajectory terminates in 𝛼
time (since ̇𝛼∗ = −1 and 𝛼 = 0 in the dual capture scenario). The
dual capture trajectories are thus straight lines (due to Lemma 11.14) of
length 𝜈𝛼0 which terminate at 𝐼′, as defined in Lemma 11.14. Consider
the upper limit of 𝜓∗

𝑓 , which is given by (11.88) with 𝜒 = 1 to be 𝜓∗ =
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sin−1 ( 𝜈
𝑅𝑓

). The corresponding distance perpendicular to the 𝛾 = 0

axis is 𝑤 = sin sin−1 ( 𝜈
𝑅𝑓

)⋅𝜈𝛼0 = 𝜈2𝛼0
𝑅𝑓

. This 𝑤 corresponds to a position

which is 𝜈𝛼0√1 − 𝜈2

𝑅𝑓
further than 𝑅𝑓 , i.e., �̂� = 𝑅𝑓 +𝜈𝛼0√1 − 𝜈2

𝑅2
𝑓
. Taking

the lower limit of 𝜓∗
𝑓 gives the corresponding negative width.

The regions R𝐷1
and R𝐷2

are defined as the sets of states for which
the game terminates with 𝛾𝑓 > 0 (one-on-one with 𝐷1) and 𝛾𝑓 < 0
(one-on-one with 𝐷2), respectively (c.f. Lemma 11.11). Similarly, the
region R𝐷1,2

is defined as the set of states for which the game termi-
nates with 𝛾𝑓 = 0 which is completely specified by Lemma 11.10 and
Lemmas 11.13–11.13.

Theorem 11.4. For states in the region R𝐷1,2
the equilibrium Attacker head-

ing angle is
𝜓∗ = 𝛾 + sin−1 (𝑅 sin𝛾

𝜈𝛼 ) (11.91)

and the Value function is

𝑉(x) = −𝑅𝑓 = 𝜈𝛼sin𝜓∗

sin𝛾 . (11.92)

Proof. The result follows fromLemmas 11.12–11.14 via a geometric proof
process similar to Theorem11.3. Consider the triangle△𝐴𝐼′𝐶, as shown
in Fig. 11.6, where 𝐶 is the target circle’s center. Since the system begins
in R𝐷1,2

, the scenario terminates with 𝛼𝑓 = 𝛾𝑓 = 0. The time for each
Defender to traverse an angle 𝛼 around the perimeter of the target cir-
cle is 𝛼, since ̇𝛼 = −1. Therefore, 𝐴𝐼′ = 𝜈𝛼. Using the Law of Sines, the
quantities are related as follows

𝑅𝑓
sin (2𝜋 − 𝜓) = 𝜈𝛼

sin𝛾 = 𝑅
sin (𝜓 − 𝛾)

⟹
𝑅𝑓

− sin𝜓 = 𝜈𝛼
sin𝛾 = 𝑅

sin (𝜓 − 𝛾).

The second equality may be rearranged to obtain (11.91). Likewise, the
first equality may be rearranged to obtain (11.92).
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𝐷1

𝐷2

𝛼

𝑅

×
𝐼′

𝜈𝛼

𝐴𝜓

𝛾𝑅𝑓

[ February 2, 2022 at 11:03 – classicthesis v4.6 ]

Figure 11.6: Illustration of the derivation of the equilibrium Attacker heading
and Value function for the two-Defender Game of Distance with
symmetric termination.

11.3.3 Full Solution

The twoDefender game is truly three dimensional (in the reduced state
space, i.e., 𝑅, 𝛾, 𝛼). Although one may obtain the equilibrium flowfield
over the whole state space by substituting the equilibrium strategies
into the kinematics, it is more illustrative to visualize the solution in
the (𝑥, 𝑦)-plane for a particular 𝛼. Figure 11.7 shows the full solution of
the two-Defender one-Attacker game, including all of the separating
surfaces, regions, and salient features alongwith several representative
Attacker trajectories. Note that the solution may be generalized to any
number of Defenders simply by considering the twoDefenders nearest
to the Attacker’s initial position.

11.3.4 Alternative Attacker Win Scenario

As in the one-Defender case, here, the solution of theGame of Min Time
wherein the cost functional is minmax−𝑡𝑓 , i.e., (11.34) is given. The
analysis follows quite closely with those in the preceding sections. Fig-
ure 11.8 shows the solution with several representative trajectories.

“Cooperation” among the Defenders, i.e., where neither Defender is
redundant, only occurs when the Attacker begins on the purple semi-
circular section of 𝜕R𝐴1

and 𝜕R𝐴2
. Otherwise, the Attacker plays the

single-Defender version of the game with the nearest Defender. The
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να

sin−1 ν

α D1

D2

RA2

RA1

RA1,2

RD2

RD1

RD1,2

I

I ′

Rs

Figure 11.7: Separating surfaces for the two Defender game in the realistic
plane for 𝛼0 = 3𝜋

4 and 𝜈 = 0.8. Representative Attacker trajec-
tories are shown in the symmetric termination regions and De-
fender 1 regions. Open black circles denote different Attacker ini-
tial positions, black ×’s denote the corresponding terminal At-
tacker positions.
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να

sin−1 ν

α
D1

D2

RA2

RA1

Figure 11.8: TwoDefenderGame ofMin Time state space for a particular 𝛼 with
𝜈 = 0.8. The 3 Attacker trajectories, left-to-right, are 1) limiting,
symmetric termination, 2) evasive (𝐴 cannot aim directly at the
target circle center), and 3) direct (𝐴 aims at the circle center).
Initial conditions in the light shaded regions result in direct tra-
jectories, whereas the dark shaded regions represent initial con-
ditions resulting in evasive trajectories.
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main advantage for having two Defenders is that the state space R𝐴1
∪

R𝐴2
is strictly smaller than the single-Defender state space,R𝐴 (which

is true for the Game of Angle as well).

11.4 CONCLUS ION

The problem of guarding a circular target by patrolling its perimeter
was considered. The one-Defender one-Attacker and two-Defender one-
Attacker scenarioswere formulated as zero-sumdifferential gameswith
different cost/payoff functionals depending on whether the Attacker
could reach the target’s perimeter before the Defender(s) could ‘lock
on’. The analysis formally verifies that the Attacker heading strategy
given in the literature for the one-Defender scenario is indeed the sad-
dle-point equilibrium strategy for the games posed here [214]. For the
two-Defender scenario, the state space was partitioned into regions
based on the equilibrium termination condition. Analytic expressions
for the separating surfaces between these regions and Value functions
for each case were derived. The Attacker strategy in the Defenders-
win, symmetric termination region differs from that of [214], partly
due to differences in the termination condition and cost/payoff func-
tional. An alternative scenario in which the Attacker seeks to reach the
target in minimum time was also solved for both the one- and two-De-
fender cases. In the next chapter, the one-Defender will be expanded
by adding a second Attacker.
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TWO ATTACKER S AND A K INET I C TURRET

12.1 IN TRODUCT ION

This chapter extends the results of the previous to the case of two At-
tackers against a single Turret. It will become clear that the 1v1 solution
is a vital component of the solution for this case, thereby addressing
Research Objective 4. Additionally, the introduction of the second At-
tacker pertains to Research Objective 5. For the cases analyzed in this
chapter, one Attacker must sacrifice itself for the other to reach the tar-
get; this Attacker’s objective thus becomes to provide distraction (thus
relating to ResearchObjective 8). Finally, themoment inwhich the first
Attacker is taken out of action serves as a discrete event in the game
which crucially affects the equilibrium strategies (i.e., Research Objec-
tive 9). This material is based upon the paper [256], which is in review.

The two-Attacker, single-Turret problem is formulated and solved
(for a particular region of the state space) using the framework of DGT.
In particular, the case in which neither Attacker can guarantee to reach
the target individually, but, through their cooperation, the Attackers
can guarantee that one can is addressed. Thus the Turret-Runner-Pen-
etrator Differential Game (TRPDG) is posed and solved, and both the
Value function and equilibrium strategies are provided. Within the
TRPDG, two cases are considered: the case where the Runner is neutral-
ized before the Penetrator reaches the target, and the case where the
Penetrator reaches the target first. Section 12.2 provides a formulation
for the overall two-Attacker, single-Turret problem and breaks the gen-
eral problem up based on how many Attackers can be guaranteed to
reach the target. Section 12.4 specifies the TRPDG with Runner neutral-
ization which takes place in the state space region where exactly one
Attacker can be guaranteed to reach the target; this version of the game
ends when the Runner is neutralized. Section 12.5 provides a formula-

231
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tion and solution for the TRPDG with early penetration; in this version
of the game, the Penetrator reaches the target circle before the Runner
is neutralized. Section 12.6 considers the case where the Turret is al-
lowed to choose either Attacker to pursue (at any time). Section 12.8
provides some conclusions.

12.2 PROBL EM FORMULAT ION

In general, there are two scenarios onemay consider: upon anAttacker’s
arrival to the target circle 1) the Turret is destroyed or 2) the Turret
is not destroyed. Focus is given to the latter scenario. Concerning a
measure of performance, there are two obvious metrics that may be
considered: time (e.g., time to neutralize, time to penetrate, etc.) or an-
gular separation (i.e., at the time of penetration), either of which are
perfectly valid. The former makes sense if, for example, the Attackers
represent some kind ofmunition and thereby angular separation is not
as critical. Meanwhile, the latter maymake sense if the Attackers repre-
sent intruders that have secondary objectives upon reaching the target
circle. Both metrics are considered, e.g., in Chapter 11. In this chapter
angular separation is considered to be the metric of interest.

In this formulation, the speed of the two Attackers are equal. Let
𝜈 < 1 be the ratio of the Attackers’ speed and Turret’s maximum turn
rate, the latter of which is normalized to 1. Let ̂z = (𝑥𝑅, 𝑦𝑅, 𝑥𝑃, 𝑦𝑃, 𝛽) be
the state of the system wherein the two Attackers’ positions are repre-
sented by their 2-D Cartesian coordinates and the Turret’s look angle
is 𝛽 w.r.t. the positive 𝑥-axis. The subscript 𝑅 denotes Runner, and the
subscript 𝑃 denotes Penetrator. The target circle has a perimeter of 1;
thus the Turret has an angular velocity advantage. The kinematics are
thus

̂𝑓 (ẑ) =

⎡⎢⎢⎢⎢⎢
⎣

̇𝑥𝑅
̇𝑦𝑅
̇𝑥𝑃
̇𝑦𝑃
̇𝛽

⎤⎥⎥⎥⎥⎥
⎦

=

⎡⎢⎢⎢⎢⎢
⎣

𝜈 cos ̂𝜓𝑅
𝜈 sin ̂𝜓𝑅
𝜈 cos ̂𝜓𝑃
𝜈 sin ̂𝜓𝑃

𝑢𝑇

⎤⎥⎥⎥⎥⎥
⎦

, (12.1)

where ̂𝜓𝑅, ̂𝜓𝑃 are the Attackers’ headings measured w.r.t. the positive
𝑥-axis, and 𝑢𝑇 ∈ [−1, 1] is the Turret’s angular velocity input (with
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positive 𝑢𝑇 corresponding to counterclockwise motion). Alternatively,
the Attackers’ positions may be expressed in a polar coordinate sys-
tem centered on the target circle’s center. Define z = (𝑟𝑅, 𝜃𝑅, 𝑟𝑃, 𝜃𝑃, 𝛽)
where 𝜃𝑅, 𝜃𝑃 are measured relative to the Turret’s look angle. Also let
𝐴𝑅 ≡ (𝑟𝑅, 𝜃𝑅) and 𝐴𝑃 ≡ (𝑟𝑃, 𝜃𝑃); the Turret is also denoted 𝑇. The
associated kinematics are

𝑓 (z) =

⎡⎢⎢⎢⎢⎢
⎣

̇𝑟𝑅
̇𝜃𝑅
̇𝑟𝑃
̇𝜃𝑃
̇𝛽

⎤⎥⎥⎥⎥⎥
⎦

=

⎡
⎢⎢⎢⎢⎢
⎣

−𝜈 cos𝜓𝑅𝜈
𝑟𝑅

sin𝜓𝑅 − 𝑢𝑇
−𝜈 cos𝜓𝑃𝜈

𝑟𝑃
sin𝜓𝑃 − 𝑢𝑇

𝑢𝑇

⎤
⎥⎥⎥⎥⎥
⎦

(12.2)

where 𝜓𝑅, 𝜓𝑃 are measured clockwise w.r.t. the line from the respec-
tive Attacker to the target circle center. Figure 12.1 depicts the scenario,
showing both coordinate systems specified above.

𝑥

𝑦

𝛽1

𝑟𝑅

𝜈 ̂𝜓𝑅

𝐴𝑅𝜓𝑅

𝜃𝑅

𝑟𝑃

𝜈
̂𝜓𝑃

𝐴𝑃

𝜓𝑃

𝜃𝑃

[ February 3, 2022 at 14:06 – classicthesis v4.6 ]

Figure 12.1: Two Attacker Scenario – the green color indicates the Cartesian
coordinate system; black represents the polar coordinate system.
The Attacker position angles, 𝜃𝑅 and 𝜃𝑃, are measured w.r.t. 𝑇’s
look angle and are positive in the CCWdirection (thus 𝜃𝑃 < 0, as
shown).

An Attacker 𝐴𝑖 is considered to be neutralized (and removed from
the remainder of the playout, if any) if at any time 𝜃𝑖 = 0. Conversely,
𝐴𝑖 is said to penetrate the target if it can maneuver all the way to the
target circle (𝑟𝑖 = 1) while avoiding the Turret’s line-of-sight. Ideally,
both Attackers would like to penetrate the target without being neu-
tralized.
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In the general case, there are three termination cases: (𝑖) both At-
tackers penetrate the target, (𝑖𝑖) one Attacker is neutralized and one
penetrates, or (𝑖𝑖𝑖) both Attackers are neutralized. Cases (𝑖) and (𝑖𝑖𝑖)
are discussed briefly in the following section. The remainder of the pa-
per focuses on the state space region wherein 𝐴𝑅, 𝐴𝑃 ∉ R𝐴 at initial
time, where R𝐴 is the single-Attacker, single-Turret Attacker’s win re-
gion, defined in (12.5). This is the region in which a single Attacker
can be guaranteed to penetrate the target. When 𝐴𝑅, 𝐴𝑃 ∉ R𝐴, neither
Attacker can guarantee successful penetration of the target by itself; a
subset of this region is will be constructed in which, through their co-
operation and superiority in numbers, one of theAttackers can success-
fully penetrate. Let the region of interest for this state space be defined
as

Ω ∶= {z ∣ 𝐴𝑅, 𝐴𝑃 ∉ R𝐴, 𝑟𝑅, 𝑟𝑃 ≥ 1} . (12.3)

Phase 1 (TRPDG)

T

AR

AP

Phase 2 (Chap. 11)

T

×

AP

𝐴𝑅
neutralized

𝑡0 𝑡𝑐 𝑡𝑐 𝑡𝑓

Figure 12.2: Abstract depiction of the scenario; in Phase 1 𝑇 pursues 𝐴𝑅 while
𝐴𝑃 seeks advantageous position for Phase 2, and Phase 2 is the
remaining single-Attacker Game of Angle.

Asmentioned previously, angular separation is themetric of interest,
therefore, when it is possible for the Penetrator to reach the target, the
cost functional takes the form

𝐽 (z; 𝑢𝑇(⋅), 𝜓𝑅(⋅), 𝜓𝑃(⋅)) = |𝜃𝑃(𝑡𝑓 )|. (12.4)

The overall scenario may be broken down into two phases. In Phase
1, without loss of generality, the Turret pursues 𝐴𝑅 until it’s aim is
aligned with 𝐴𝑅’s position, at which time 𝐴𝑅 is taken out of action.
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Thereby, Phase 2 commences, wherein the Turret begins pursuing 𝐴𝑃.
Figure 12.2 depicts these two phases.

It may also be the case that the 𝐴𝑃 is able to reach the target circle
prior to 𝐴𝑅’s demise, whereby 𝑡𝑓 ≤ 𝑡𝑐. In this case, there is no Phase
2. This case is referred to as the Early Penetrator (EP) case. The case
depicted in Fig. 12.2 is analyzed in Section 12.4, and the Early Penetra-
tor is the focus of Section 12.5. Both of these cases fall under the TRPDG.
The following Section covers all other possible cases.

12.3 OTHER CAS E S

12.3.1 Both Attackers Win

Consider the single-Attacker, single-Turret scenario analyzed in [214]
and Chapter 11. The region of win for the Attacker, i.e., wherein the
Attacker is guaranteed to reach the target circle under optimal play is
defined as

R𝐴 ≡ {(𝑟, 𝜃) ∣ 𝜃 > 𝜃𝐺𝑜𝐾(𝑟)} , (12.5)

where

𝜃𝐺𝑜𝐾(𝑟) = √ 𝑟2

𝜈2 − 1 + sin−1 (𝜈
𝑟 ) − √ 1

𝜈2 − 1 − sin−1 𝜈 (12.6)

Lemma 12.1. In the two-Attacker, single-Turret scenario with kinematics
given by (12.2), both Attackers are guaranteed to reach the target circle under
optimal play, that is, 𝑟𝑅𝑓

= 𝑟𝑃𝑓
= 1 if and only if 𝐴𝑅, 𝐴𝑃 ∈ R𝐴.

Proof. Optimal play is given by the respective single-Attacker, single-
Turret equilibrium control [214] (see also Chapter 11)

sin𝜓∗
𝑖 = sign (sin 𝜃𝑖) ( 𝜈

𝑟𝑖
) .

The fact that 𝐴𝑅, 𝐴𝑃 ∈ R𝐴 ⟹ 𝑟𝑅𝑓
= 𝑟𝑃𝑓

= 1 is due to each Attacker
being able to win individually; the presence of additional Attackers
does not aid the Turret in any way – both 𝐴𝑅 and 𝐴𝑃 are able to win.
Now, it will be proven that 𝑟𝑅𝑓

= 𝑟𝑅𝑓
= 1 ⟹ 𝐴𝑅, 𝐴𝑃 ∈ R𝐴. Suppose
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𝐴𝑖 ∉ R𝐴, the Turret could choose to implement its one-on-one strategy
𝑢𝑇 = sign (sin 𝜃𝑖) against 𝐴𝑖 and be guaranteed to neutralize 𝐴𝑖 with
𝑟𝑖 > 1.

12.3.2 One or more Attackers Lose

Let the Turret’s one-on-onewin region be definedR𝑇 = R𝑐
𝐴. The trivial

case occurs when 𝐴𝑖 ∈ R𝐴 and 𝐴𝑗 ∉ R𝐴 for 𝑖, 𝑗 ∈ {𝑅, 𝑃}, 𝑖 ≠ 𝑗. Clearly,
𝐴𝑖 can guarantee a win while 𝑇 can guarantee neutralization of 𝐴𝑗. The
construction and solution of a Game of Degree in this region of the state
space is left for future work.

When 𝐴𝑅, 𝐴𝑃 ∉ R𝐴, there is a region of the state space in which
one the Attackers can win and a region in which neither can win. The
former is analyzed in this chapter in detail; the analysis of what the
agents should do in the latter region is left for future work.

12.3.3 The One-Attacker, One-Turret Differential Game

This subject was covered in the previous chapter, however, the follow-
ing derivation was absent (for the case of Attacker win), so it is in-
cluded here because it is useful in later analyses.

Lemma 12.2 (Form of the single-Attacker strategy). The single-Attacker
game, with kinematics ̇̃z = [ ̇𝑟𝑃 ̇𝜃𝑃 ̇𝛽]⊤, Value function𝑉𝐴𝑃

= max𝜓𝑃
min𝑢𝑇

|𝜃𝑃𝑓
|,

and terminal surface 𝜙 = 𝑟𝑃𝑓
−1 = 0 has an equilibrium the Penetrator strat-

egy of the form
sin𝜓∗ = sign (𝜎𝜃) 𝜈

𝑟𝑃
. (12.7)

Proof. The Hamiltonian is

H = −𝜎𝑟𝜈 cos𝜓𝑃 + 𝜎𝜃 ( 𝜈
𝑟𝑃

sin𝜓𝑃 − 𝑢𝑇) + 𝜎𝛽𝑢𝑇 , (12.8)

and the adjoint dynamics for the 𝜃𝑃 and 𝛽 states are

�̇�𝜃 = −𝜕H

𝜕𝜃𝑃
= 0, �̇�𝛽 = −𝜕H

𝜕𝛽 = 0. (12.9)
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At final time 𝑡 = 𝑡𝑓 , the transversality condition yields the terminal
adjoint value for the 𝛽 state

𝜎𝛽𝑓
= 𝜕Φ

𝜕𝛽𝑓
+ 𝜇 𝜕𝜙

𝜕𝛽𝑓
= 0, (12.10)

where Φ ≡ |𝜃2𝑓
|. Thus 𝜎𝛽 = 0 for all 𝑡 ∈ [0, 𝑡𝑓 ]. The Penetrator wishes

to maximize the Hamiltonian, while the Turret seeks to minimize it,
giving

sin𝜓∗
𝑃 = 𝜎𝜃

𝑟𝑃√𝜎2𝑟 + 𝜎2
𝜃

𝑟2
𝑃

, 𝑢∗
𝑇 = sign (𝜎𝜃) . (12.11)

Substituting (12.10) and (12.11) into (12.8) gives

H = 𝜈
√
√√
⎷

𝜎2𝑟 +
𝜎2

𝜃
𝑟2
𝑃

− |𝜎𝜃| (12.12)

The terminal Hamiltonian value is

H𝑓 = −𝜕Φ
𝜕𝑡𝑓

− 𝜇 𝜕𝜙
𝜕𝑡𝑓

= 0. (12.13)

Since the state dynamics are time-autonomous, H = 0 for all 𝑡 ∈
[0, 𝑡𝑓 ]. Substituting into (12.12) and solving for 𝜎2

𝑟 gives

𝜎2
𝑟 =

𝜎2
𝜃

𝜈2 −
𝜎2

𝜃
𝑟2
𝑃

. (12.14)

Substituting into (12.11) yields (12.7).

12.4 TR PDG W I TH RUNNER NEUTRAL I ZAT ION

In this section a differential game is constructed representing Phase 1 in
Fig. 12.2 wherein it is assumed that 𝑇 neutralizes 𝐴𝑅 (before 𝐴𝑃 is able
to penetrate the target). The analysis proceeds in the polar coordinate
system, utilizing (12.2), with z ∈ Ω. A major assumption is made at
this point, which is that the fate (goals and roles) of each Attacker is
set a priori; and, moreover, these roles cannot be switched during the



238 TWO ATTACKER S AND A K INE T I C TURRE T

playout of the game. Let 𝐴𝑅 be the first Attacker to be neutralized by 𝑇,
regardless of the position of 𝐴𝑃. A complete solution, which involves
the agents determining which Attacker 𝑇 will pursue and neutralize
first, necessarily depends on the solution of this simpler problem. This
restriction is also motivated by some real-world considerations: often
it is costly for a weapon (or targeting) system to switch targets after it
has begun tracking a particular target.

Concerning the control signals 𝑢𝑇 , 𝜓𝑅, and 𝜓𝑃, it is assumed that
the agents have full state information (i.e., z is known) but they do not
know the instantaneous control of the adversary. That is, neither 𝑇 nor
𝐴𝑅, 𝐴𝑃 are discriminated. In general, the solution approach utilized
throughout the remainder of the paper, which is based on the forma-
tion of the first-order necessary conditions for equilibrium, yields an
open-loop equilibrium [20, pg. 344]. From the open-loop solution, the
closed-loop (state-feedback) strategiesmaybe synthesized [20, pg. 344].
In order to constitute an equilibrium, the proposed strategies would
need to satisfy the sufficient conditions (i.e., yield a Value function that
is 𝒞1 and satisfy theHamilton-Jacobi-Isaacs equation) – however, these
conditions will be satisfied by construction everywhere except for the
singularities. Thus special attention is given to these singularities to
ensure the validity of the solution.

Begin by assuming that 𝐴𝑃 can reach the target circle (𝑟𝑃(𝑡𝑓 ) = 1)
in Phase 2 (c.f. Fig. 12.2) and that 𝐴𝑃 prefers to maximize its angular
separation from 𝑇 at final time. That is, in the second phase of the en-
gagement that begins when 𝐴𝑅 is neutralized, 𝐴𝑃 plays the Game of
Angle, as specified in Chapter 11. As such, 𝐴𝑅 is referred to as the Run-
ner, and 𝐴𝑃 as the Penetrator. Define the region in which 𝐴𝑃 can reach
the target circle in Phase 2 as

R2𝐴 ≡ {z ∣ 𝐴𝑃(𝑡𝑐) ∈ R𝐴} . (12.15)

The explicit construction and solution of a Game of Degree wherein 𝐴𝑃

is also neutralized is left for future work. The first phase of the engage-
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ment is modeled as a zero-sum differential game over the cost func-
tional

𝐽 (z; 𝑢𝑇(⋅), 𝜓𝑅(⋅), 𝜓𝑃(⋅)) = Φ (z(𝑡𝑐), 𝑡𝑐)

= 𝑉𝐴𝑃
(𝑟𝑃(𝑡𝑐), 𝜃𝑃(𝑡𝑐))

(12.16)

where z ∈ R2𝐴 and 𝑉𝐴𝑃
is the Value of the Game of Angle (i.e., the

single-Attacker game, studied in Chapter 11) played between 𝐴𝑃 and
𝑇 starting from 𝑡 = 𝑡𝑐, and 𝑡𝑐 is the terminal time of the game, which
occurs when 𝐴𝑅 is neutralized. Eq. (12.16) is related to (12.4) in that by
employing equilibrium strategies in Phase 1, 𝑇 and 𝐴𝑃 set themselves
up for the best possible outcome in Phase 2with regards to |𝜃𝑃(𝑡𝑓 )|. The
terminal manifold is defined as

𝜙 (z(𝑡𝑐), 𝑡𝑐) = 𝜃𝑅(𝑡𝑐) = 0. (12.17)

TheAttackers cooperatively seek tomaximize 𝐽, while the Turret wants
to minimize 𝐽. Thus the Value function for the TRPDG with Runner neu-
tralization is defined as

𝑉 (z) = min
𝑢𝑇(⋅)

max
𝜓𝑅(⋅),𝜓𝑃(⋅)

𝐽 (z; 𝑢𝑇(⋅), 𝜓𝑅(⋅), 𝜓𝑃(⋅)) . (12.18)

The Value function of the Game of Angle is given in Chapter 11 as

𝑉𝐴𝑃
(𝑟𝑃, 𝜃𝑃) = |𝜃𝑃| − 𝜃𝐺𝑜𝐾 (𝑟𝑃) , (12.19)

where 𝜃𝐺𝑜𝐾 is the single-Attacker, single-Turret Game of Kind surface
defined in (12.6) in Section 12.3. Figure 12.2 depicts the overall scenario
broken up into two distinct phases: Phase 1, which terminates at 𝑡 = 𝑡𝑐

when 𝐴𝑅 is neutralized, and Phase 2 wherein 𝐴𝑃 and 𝑇 playout the
Game of Angle. The Value function, 𝑉𝐴𝑃

, of Phase 2 determines, in part,
the equilibrium strategies in Phase 1.

The notation z𝑐 ≡ z (𝑡𝑐) is used generally. The Hamiltonian is

H = 𝜆𝛽𝑢𝑇 + ∑
𝑖=𝑅,𝑃

−𝜆𝑟𝑖
𝜈 cos𝜓𝑖 + 𝜆𝜃𝑖

( 𝜈
𝑟𝑖

sin𝜓𝑖 − 𝑢𝑇) . (12.20)
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The equilibrium adjoint dynamics are [40]

�̇� = −𝜕H

𝜕z =

⎡
⎢⎢⎢⎢⎢⎢
⎣

− 𝜈
𝑟2

𝑅
𝜆𝜃𝑅

sin𝜓𝑅

0
− 𝜈

𝑟2
𝑃

𝜆𝜃𝑃
sin𝜓𝑃

0
0

⎤
⎥⎥⎥⎥⎥⎥
⎦

, (12.21)

and thus 𝜆𝜃𝑅
, 𝜆𝜃𝑃

, and 𝜆𝛽 are constant. The transversality condition
yields the adjoint values at terminal time [40]

𝝀⊤
𝑐 = 𝜕Φ

𝜕z𝑐
+ 𝜇

𝜕𝜙
𝜕z𝑐

(12.22)

= [0 0
𝜕𝑉𝐴𝑃
𝜕𝑟𝑃𝑐

𝜕𝑉𝐴𝑃
𝜕𝜃𝑃𝑐

0] + 𝜇 [0 1 0 0 0] .

Let the adjoints of 𝐴𝑃’s single-Attacker Game of Angle be written

𝝈⊤ ≡ [𝜎𝑟 𝜎𝜃] = [𝜕𝑉𝐴𝑃
𝜕𝑟𝑃

𝜕𝑉𝐴𝑃
𝜕𝜃𝑃

] .

Notice that 𝜆𝛽𝑐
= 0 and �̇�𝛽 = 0, thus 𝜆𝛽 = 0 for all 𝑡 ∈ [0, 𝑡𝑐]. Similarly,

𝜆𝜃𝑅
= 𝜇 and 𝜆𝜃𝑃

= 𝜎𝜃 for all 𝑡 ∈ [0, 𝑡𝑐]. Substituting the values of 𝜆𝛽,
𝜆𝜃𝑅

, and 𝜆𝜃𝑃
, the Hamiltonian becomes

H = −𝜆𝑟𝑅
𝜈 cos𝜓𝑅 + 𝜇 ( 𝜈

𝑟𝑅
sin𝜓𝑅 − 𝑢𝑇)

− 𝜆𝑟𝑃
𝜈 cos𝜓𝑃 + 𝜎𝜃 ( 𝜈

𝑟𝑃
sin𝜓𝑃 − 𝑢𝑇) .

(12.23)

The Hamiltonian is a separable function of the controls 𝑢𝑇 and 𝜓𝑅, 𝜓𝑃,
and thus Isaacs’ condition [20, 130] holds:

min𝑢𝑇
max
𝜓𝑅,𝜓𝑃

H = max
𝜓𝑅,𝜓𝑃

min𝑢𝑇
H .

The following result applies generally to differential games based
on these dynamics with a well-defined terminal cost functional and
terminal surface; it arises mainly as a consequence of the fact that the
Attackers have simple motion (i.e., single integrator dynamics). Most
of the later results in this chapter rely heavily on the following:
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Lemma 12.3 (Equilibrium Controls are Constant). For any differential
game with unconstrained kinematics described by (12.1) and a Mayer-type
cost functional, the equilibrium strategies of all the agents are constant. In
particular, each Attacker’s equilibrium trajectory is a straight line (in the
Cartesian plane), and the Turret’s control is either always clockwise or always
counterclockwise.

Proof. Given that the cost functional is of Mayer-type, the Hamiltonian
for the system (12.1) is

H = 𝜆𝛽𝑢𝑇 + ∑
𝑖=𝑅,𝑃

𝜆𝑥𝑖
𝜈 cos ̂𝜓𝑖 + 𝜆𝑦𝑖

𝜈 sin ̂𝜓𝑖 (12.24)

Let �̂� ≡ [𝜆𝑥𝑅
𝜆𝑦𝑅

𝜆𝑥𝑃
𝜆𝑦𝑃

𝜆𝛽]
⊤
be the adjoint vector in the Carte-

sian frame. The equilibriumadjoint dynamics are given by [130, Eq. 4.5.3]

̇�̂� = −𝜕H

𝜕ẑ = 0. (12.25)

Without loss of generality, suppose that the Attackers seek to max-
imize the cost functional while the Turret seeks to minimize it. The
equilibrium controls are

cos ̂𝜓∗
𝑖 =

𝜆𝑥𝑖

√𝜆2𝑥𝑖
+ 𝜆2𝑦𝑖

, sin ̂𝜓∗
𝑖 =

𝜆𝑦𝑖

√𝜆2𝑥𝑖
+ 𝜆2𝑦𝑖

, 𝑖 = 𝑅, 𝑃 (12.26)

𝑢∗
𝑇 = − sign𝜆𝛽. (12.27)

Because the equilibrium adjoint dynamics are 0, 𝝀 is constant, and thus
𝑢∗

𝑇 and ̂𝜓∗
𝑖 for 𝑖 = 𝑅, 𝑃 are also constant. Since ̂𝜓𝑖 are defined relative

to the positive 𝑥-axis, the Attackers’ trajectories are straight lines in the
Cartesian plane.

Note that if 𝜆𝑥𝑖
= 𝜆𝑦𝑖

= 0 for 𝑖 ∈ {𝑅, 𝑃} then the associated equi-
librium heading ̂𝜓∗

𝑖 is not uniquely defined since it would not appear
in the Hamiltonian, (12.24). This generates singular solutions, which
will be addressed later.
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12.4.1 Equilibrium Turret & Runner Strategies

Lemma 12.4 (Equilibrium Turret Strategy). In the differential game de-
fined by the kinematics, (12.2), cost functional, (12.16), and terminal surface,
(12.17) the Turret’s strategy is

𝑢∗
𝑇(𝑡) = 𝑘, 𝑘 ∈ {−1, 1} , ∀𝑡 ∈ [0, 𝑡𝑐] . (12.28)

Proof. The fact that 𝑘 is a constant is due to Lemma 12.3. The Turret
must minimize the Hamiltonian, (12.23) – in order to do so, it is clear
that

𝑢∗
𝑇(𝑡) = argmin

𝑢𝑇
H = sign (𝜇 + 𝜎𝜃) .

Again, both 𝜇 and 𝜎𝜃 are constant. The sign function ensures that 𝑘 ∈
{−1, 1}.

Lemma 12.5 (Equilibrium Runner Strategy). In the differential game de-
fined by the kinematics, (12.2), cost functional, (12.16), and terminal surface,
(12.17), the Runner’s trajectory is a straight line perpendicular to the Turret’s
LOS at the time of termination.

Proof. The Runner maximizes the Hamiltonian, (12.23), which occurs
when the vector [cos𝜓𝑅 sin𝜓𝑅]⊤ is parallelwith the vector [−𝜆𝑟𝑅

𝜇
𝑟𝑅

]
⊤
.

Therefore,

cos𝜓∗
𝑅 =

−𝜆𝑟𝑅

√𝜆2𝑟𝑅
+ 𝜇2

𝑟2
𝑅

, sin𝜓∗
𝑅 = 𝜇

𝑟𝑅√𝜆2𝑟𝑅
+ 𝜇2

𝑟2
𝑅

. (12.29)

At terminal time, 𝜆𝑟𝑅
(𝑡𝑐) = 0 from (12.22), which implies cos𝜓∗

𝑅𝑐
= 0.

Thus 𝐴𝑅’s terminal heading is 𝜓∗
𝑅𝑐

∈ {𝜋
2 , −𝜋

2 }, and is perpendicular to
𝑇’s LOS since 𝜃𝑅𝑐

= 0. The fact that 𝐴𝑅’s trajectory is a straight line in
the Cartesian coordinate system is due to Lemma 12.3.

It remains to show in which direction (either CCW or CW) both the
Turret and Runner should travel. In the present case, wherein 𝐴𝑅, 𝐴𝑃 ∉
R𝐴, the biggest benefit for the Attacker team comes when the Runner,
𝐴𝑅, keeps the Turret occupied for as long as possible, thereby giving
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the Penetrator, 𝐴𝑃, a chance to reach an advantageous position before
𝑇 starts pursuing 𝐴𝑃 in earnest.

Lemma 12.6. The sign of the equilibrium Turret and Runner control inputs
are such that

sign (𝑢∗
𝑇) = sign (sin𝜓∗

𝑅) = sign (sin 𝜃𝑅) . (12.30)

That is, 𝐴𝑅 has a component of velocity away from 𝑇, and 𝑇 turns toward 𝐴𝑅.

Proof. There are four possibilities: i) 𝐴𝑅 away, 𝑇 towards, ii) 𝐴𝑅 to-
wards, 𝑇 towards, iii) 𝐴𝑅 away, 𝑇 away, iv) 𝐴𝑅 towards, 𝑇 away. The
cost functional (12.16) is based on the single-Attacker Game of Angle
between 𝑇 and 𝐴𝑃. 𝐴𝑅 can only improve the outcome of the 1v1 game
if it can cause 𝑇 to implement a control other than the 1v1 equilibrium
strategy (e.g., turn away from𝐴𝑃 rather than towards it). First, consider
the Turret’s control - if sign (𝑢𝑇) ≠ sign (sin 𝜃𝑅) then 𝑇 is turning away
from 𝐴𝑅. In order to neutralize 𝐴𝑅, 𝑇 must go the long way around the
target circle in the worst case. Thus cases iii) and iv) are excluded by
inspection. It remains to determine whether 𝐴𝑅 should head i) away
from 𝑇 or ii) towards. At the time 𝐴𝑅 would be neutralized in ii), 𝐴𝑅

would still be alive in i). The Runner can do nothing to reduce 𝑉𝐴𝑃
, but

it can increase 𝑉𝐴𝑃
if it can continue to draw 𝑇 away from 𝐴𝑃. There-

fore, at the time and position of neutralization of 𝐴𝑅 in ii) it is never
worse (and generally better) for 𝐴𝑅 to be alive, which implies 𝐴𝑅 must
run away from 𝑇.

Remark 17. The Turret strategy given by Lemma 12.4 and Lemma 12.6
corresponds to the single-Attacker circular target defense strategy from
Chapter 11 (played against 𝐴𝑅).

Remark 18. If at any time sign (sin 𝜃𝑅) = sign (sin 𝜃𝑃), then the Run-
ner’s heading, 𝜓𝑅, is inconsequential (i.e., 𝜓∗

𝑅 is not uniquely defined).
The choice of direction for the Turret is to turn towards the two At-
tackers; by pursuing 𝐴𝑅, the Turret is also pursuing 𝐴𝑃, and thus the
Runner can do nothing to help (or hinder) 𝐴𝑃.
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12.4.2 Equilibrium Penetrator Strategy

The Penetrator seeks to maneuver in such a way to reach an advanta-
geous position by the time the Runner is neutralized. By advantageous,
it is meant that its terminal position maximizes the Value of the subse-
quent differential game which ensues once the Runner has been neu-
tralized.

The presence of the DS in the single-Attacker game [214, 254] cre-
ates an interesting situation in this two-Attacker variant. When the
state of a system lies on a DS, the equilibrium controls of one or more
agents is non-unique [130]. In the case of the single-Attacker game,
when cos 𝜃 = −1, there is symmetry in the system such that the 𝑇
could chase 𝐴 either counterclockwise (CCW) or clockwise (CW) and
resulting Value of the Game of Angle would be the same. The conse-
quence of the DS is that the single-Attacker Value function 𝑉𝐴𝑃

is not
smooth along the surface; thus the single-Attacker adjoint vector, 𝝈, is
undefined along the surface. Therefore,𝐴𝑃’s terminal heading, defined
by (12.32) and (12.22) as 𝜓∗

𝑃𝑐
= tan−1 −𝜎𝜃/𝜎𝑟, is not well-defined ei-

ther. There are two cases: (1) cos 𝜃𝑃𝑐
≠ −1 and 𝝈 is well-defined (the

regular case), and (2) cos 𝜃𝑃𝑐
= −1 and 𝝈 is undefined (the singular

case).

Lemma 12.7 (Regular Equilibrium Penetrator Strategy). In the differ-
ential game defined by the kinematics, (12.2), cost functional, (12.16), and
terminal surface, (12.17) the Penetrator’s equilibrium trajectory is a straight
line that is aligned with its Game of Angle equilibrium trajectory at terminal
time wherever the Game of Angle adjoints 𝜎𝑟 and 𝜎𝜃 are defined. Moreover,
𝐴𝑃’s control strategy is given by [214] (see, also, Chapter 11)

sin𝜓∗
𝑃 = sign (sin 𝜃𝑃𝑐

) ( 𝜈
𝑟𝑃

) . (12.31)
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Proof. The Penetrator maximizes the Hamiltonian, (12.23), which oc-
curs when the vector [cos𝜓𝑃 sin𝜓𝑃]⊤ is parallel with the vector
[−𝜆𝑟𝑃

𝜎𝜃]
⊤
:

cos𝜓∗
𝑃 =

−𝜆𝑟𝑃

√𝜆2𝑟𝑃
+ 𝜎2

𝜃
𝑟2

𝑃

, sin𝜓∗
𝑃 = 𝜎𝜃

𝑟𝑃√𝜆2𝑟𝑃
+ 𝜎2

𝜃
𝑟2

𝑃

. (12.32)

At final time, 𝜆𝑟𝑃
= 𝜎𝑟 (due to (12.22)) and thus tan𝜓∗

𝑃 = −𝜎𝜃/𝜎𝑟.
Thus, at final time,𝐴𝑃’s heading is identical to the equilibriumAttacker
heading from the single-Attacker scenario (c.f. Chapter 11). Further-
more, 𝐴𝑃’s trajectory is a straight line in the Cartesian coordinate frame
due to Lemma 12.3, just as it is in the single-Attacker scenario. There-
fore,𝐴𝑃’s regular state feedback equilibrium control is given by (12.31).

The geometric interpretation of the following Lemma is that the Pen-
etrator’s equilibrium trajectory never crosses the 𝛽 + 𝜋 radial. In cases
where (12.31) would cause this, the Runner, instead, takes a shallower
angle such that cos 𝜃𝑃𝑐

= −1.

Lemma 12.8 (Singular Penetrator Strategy). In the differential game de-
fined by the kinematics, (12.2), cost functional, (12.16), and terminal surface,
(12.17) a family of the Penetrator singular trajectories exist which terminate
at cos 𝜃𝑃𝑐

= −1, with 𝑟𝑃𝑐
> 1. These trajectories are straight lines with the

following state feedback strategy

sin𝜓∗
𝑃 = 𝜒𝜈

𝑟𝑃
. (12.33)

where 𝜒 ∈ [−1, 1] and sign(𝜒) = sign (sin 𝜃𝑃𝑐
).

Proof. First, recall that the trajectories are straight lines in the Cartesian
coordinate frame due to Lemma 12.3. The general form of the single-
Attacker equilibrium control is given in Lemma 12.2:

sin𝜓∗
𝑃 = sign (𝜎𝜃) 𝜈

𝑟𝑃
.

However, when cos 𝜃𝑃 = −1, the term sign (𝜎𝜃) is undefined because
theValue function𝑉𝐴𝑃

is not differentiable on theDS. Replace the quan-
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tity sign (𝜎𝜃) with a variable 𝜒. When 𝜒 = ±1, the solution exactly
corresponds to the limiting case of the regular equilibrium trajectories
described in Lemma 12.7 where sin𝜓∗

𝑃 = ± 𝜈
𝑟𝑃

. If |𝜒| > 1, the approach
angle to the point (𝑟𝑃, cos 𝜃𝑃) = (𝑟𝑃𝑐

, −1) would be steeper. Backwards
integrating from (𝑟𝑃𝑐

, −1) with an angle |sin𝜓𝑃| > 𝜈
𝑟𝑃

would push the
state of the system into a region that is filled with regular equilibrium
trajectories – see Fig. 12.3. The former trajectories would be suboptimal
(nonequilibrium) compared to the latter. Therefore, it must be the case
that 𝜒 ∈ [−1, 1]. The sign of 𝜒 is governed by the sign of sin 𝜃𝑃𝑐

as in
the regular trajectory case. Note, this proof method is similar to the
method used to solve for the simultaneous capture condition in [89]
and Chapter 6.

−4 −3 −2 −1 0 1
x

−2

−1

0
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rPc
= 2.5
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ν

1

Figure 12.3: The Penetrator regular (red) and singular (dark orange) trajecto-
ries. The target circle is green; the dashed inner circle is a circle
of radius 𝜈 (= 0.8). Note the extension of each regular 𝐴𝑃 trajec-
tory are tangential to the 𝜈 circle. The position of the Turret at the
time of neutralization of 𝐴𝑅 is shown by a blue arrow. A family of
trajectories is shown wherein 𝑟𝑃𝑐

= 2.5. Singular 𝐴𝑃 trajectories
terminate on the dashed black DS. In the second phase of the sce-
nario, 𝐴𝑃 terminates at either dark orange filled circle depending
on 𝑇’s choice of CCW or CW.
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The DS in the single-Attacker game (c.f. Chapter 11) favors the Tur-
ret. While on the DS (𝜃 = 𝜋) the Turret may choose to turn either CW
or CCW at max turn rate and achieve the same cost in equilibrium.
However, for the Attacker to achieve a payoff associated with the equi-
librium it must know the Turret’s choice at 𝑡 = 0 and choose a cor-
responding heading (i.e., CW if 𝑇 chooses CW and CCW otherwise).
Without knowing 𝑢𝑇(0), the Attacker is left to guess; a correct guess
will yield the equilibrium payoff, and an incorrect guess will result in
a small loss in the payoff. In the latter case, the Attacker moves towards
𝑇 at the initial time instant andmust immediately switch headings. The
implication for the TRPDG is that the singularity (i.e., 𝜃𝑃𝑐

= 𝜋) does not
benefit the Attacker team.

−2 −1 0 1 2

−2

−1

0

1

2 AR

AP

VAP
= 1.62 VAP

= 1.67

Figure 12.4: Comparison of 𝐴𝑅 running away (blue) versus towards (green)
𝑇. The black arrow represents 𝑇’s initial position and the dotted
lines represent the boundary of R𝐴 at the time instant associated
with its color. In the green case, 𝐴𝑃 can make maximal usage of
the singularity and aim straight at the target circle. However, the
resultant payoff is not as good as in the blue casewherein all three
agents implement the prescribed strategies.

Consider the following example, shown in Fig. 12.4. One may be
tempted to believe that the singularity could be helpful to the Attacker
team in the sense that, under the prescribed Penetrator strategy, 𝐴𝑃

may run directly towards the closest point on the target circle (thereby
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reducing 𝑟𝑃 as quickly as possible). In this example, 𝐴𝑅, contrary to
Lemma 12.6 runs towards 𝑇 who turns CCW (shown in green). 𝐴𝑃 is
placed directly on the line 𝜃𝑅𝑐

= 𝜋; this is the most “extreme” example
of 𝐴𝑃 taking a singular path (i.e., being able to set 𝜓𝑃 = 0). The blue
trajectory corresponds to 𝐴𝑅 running away from 𝑇 and 𝐴𝑃 taking the
heading prescribed in (12.31). For the green case, 𝜃𝑃𝑐

= 𝜋 but neutral-
ization of 𝐴𝑅 happens much sooner, whereas in the blue case 𝜃𝑃𝑐

< 𝜋
but neutralization of 𝐴𝑅 is later. The green Penetrator trajectory is con-
tinuedwith a dashed line for the CCW case up until 𝑇 reaches the blue
position. In this case, if 𝑇 goes CCW the entire time, then clearly it is
better for 𝐴𝑃 to play according to the associated 1v1 strategy of aim-
ing at the tangent to the circle of radius 𝜈. Hence, the blue trajectories
(which follow the prescribed strategies) yield the best Value for the
Attackers.

12.4.3 Full solution

Figure 12.5 shows the state trajectory in the Cartesian coordinate frame
for a regular trajectory (with cos 𝜃𝑃𝑐

≠ −1) and for a singular trajectory
(with cos 𝜃𝑃𝑐

= −1). The Runner, 𝐴𝑅, has a trajectory which is perpen-
dicular to the Turret’s LOS at the time of termination. In the regular case,
the Penetrator, 𝐴𝑃, has a trajectory which is aimed at the tangent of a
circle of radius 𝜈; once 𝐴𝑅 is neutralized, 𝐴𝑃 would continue along this
course all the way to the target circle. In the singular case, the Penetra-
tor prefers not to cross the cos 𝜃𝑃 = −1 radial at 𝑡 = 𝑡𝑐 and therefore
has taken a shallower angle to end up at cos 𝜃𝑃𝑐

= −1. From here, the
Penetrator takes either the upper or lower trajectory depending on 𝑇’s
choice of rotation after neutralizing 𝐴𝑅 (CW or CCW, respectively).

Although it wasn’t explicitly stated in the problem formulation, it is
required that cos 𝜃𝑃 ≠ 0 for all 𝑡 ∈ [0, 𝑡𝑐] because, otherwise, the Pene-
trator would have been neutralized while 𝑇 was en route to neutralize
the Runner. The limiting case occurswhen sign (sin 𝜃𝑃) = sign (sin 𝜃𝑅)
and cos 𝜃𝑃 → 0 precisely at the moment of neutralization of 𝐴𝑅.
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(b) singular

Figure 12.5: Representative solutions for the (a) regular and (b) singular
cases. Initial Attacker and Turret positions are denoted by open
circles and an arrow, respectively; terminal positions are filled.
The boundary of R𝐴 is shown at 𝑡 = 0 (grey) and at 𝑡 = 𝑡𝑐
(black).
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In order for𝐴𝑃 to penetrate the target, itmust reachR𝐴𝑐
≡ R𝐴 (z(𝑡𝑐)),

i.e., the one-on-one Attacker win region at terminal time. The limiting
case occurs when 𝐴𝑃𝑐

∈ 𝜕R𝐴𝑐
where 𝜕R𝐴𝑐

is the boundary of the one-
on-one Attacker win region at terminal time. That is, the Penetrator is
just barely able to satisfy the necessary condition to ‘win’ (i.e., reach
the target) in the second phase of the engagement. Note that 𝜕R𝐴𝑐

is
the zero-level set of the cost functional, 𝑉𝐴𝑃

, and thus the equilibrium
Penetrator trajectories terminating at a point on 𝜕R𝐴𝑐

are normal to the
surface. The other limiting case is when 𝐴𝑃 reaches the target exactly
when 𝐴𝑅 is neutralized.

Define R2𝐴 as the set of states in which 𝐴𝑃 can be guaranteed to
‘win’, i.e., the set of states in which 𝐴𝑃 ∈ R𝐴 within 𝑡𝑐 timewhile avoid-
ing premature termination. One boundary of 𝜕R2𝐴 can be constructed
geometrically by setting 𝐴𝑃 on 𝜕R𝐴𝑐

and backwards integrating the
equilibrium Penetrator strategy ((12.31) for cos 𝜃𝑃𝑐

≠ −1, and (12.33)
for cos 𝜃𝑃𝑐

= −1). The other boundary is obtained by setting 𝑟𝑃 = 1
and backwards integrating. Care must be taken to eliminate terminal
𝐴𝑃 positions which result in 𝐴𝑃 paths which start and end inside the
sector swept by the 𝑇’s motion (which would result in premature ter-
mination.) Figure 12.6 shows a slice ofR2𝐴 for a particular initial Turret
position (𝛽) and 𝐴𝑅 position ((𝑟𝑅, 𝜃𝑅)).

It’s clear from Fig. 12.6 and Eqs. (12.31) and (12.33) that the solution
depends on 𝛽𝑐 (from which 𝜃𝑃𝑐

is measured), or equivalently, the ter-
minal time, 𝑡𝑐. From Lemmas 12.4 and 12.5, along with Lemma 12.6, it
is clear that 𝐴𝑅 has a component of velocity directed away from 𝑇 and
terminates perpendicular to 𝑇’s LOS under optimal play, while 𝑇 moves
in the direction of 𝐴𝑅 at its maximum turn rate. Thus 𝑇 must cover an
angular sector at least mod(|𝜃𝑅|, 2𝜋). For the Turret, angle traveled and
time are equivalent since the Turret’s turn rate and the target circle ra-
dius are both 1. Let 𝛾 ≥ 0 be the amount of additional angle the Turret
must cover to neutralize the Runner. Then 𝑡𝐷 = mod(|𝜃𝑅|, 2𝜋) + 𝛾 is
time of arrival of the Turret to the candidate terminal position. The
Runner’s trajectory to the candidate terminal configuration covers an
angular sector 𝛾 and is perpendicular to 𝑇’s LOS in the terminal con-
figuration. See Fig. 12.7 for a diagram depicting the geometry. Thus
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Figure 12.6: A partitioning of the state space for particular 𝛽, 𝑟𝑅, and 𝜃𝑅. The𝑇
and 𝐴𝑅 trajectories start at the open circles and end at the closed
circles. The Game of Kind surface 𝜃𝐺𝑜𝐾 is drawn at 𝑡 = 0 and
at 𝑡 = 𝑡𝑐. Note 𝐴𝑃 positions beginning within R𝐴0

, marked by
light grey, are not considered, nor are positions in which 𝐴𝑃 pen-
etrates the target before 𝑡𝑐, marked by hatched grey. The yellow
region represents R2𝐴, the set of 𝐴𝑃 initial conditions which in
which it can be guaranteed to successfully penetrate the target.
In the light shaded portion, 𝐴𝑃’s motion has a clockwise compo-
nent, otherwise it has a counter-clockwise component. The dark
shaded portion is filled with singular trajectories which termi-
nate on cos 𝜃𝑃𝑐

= −1. There is a segment of 𝜕R2𝐴 which is a
circular arc, marked by orange, which is the locus of extremal 𝐴𝑃
singular initial conditions. Premature termination would occur
for any 𝐴𝑃 positions beginning in the bright blue region, and the
faded blue region represents positions in which R𝐴𝑐

cannot be
reached; 𝑇 is able to neutralize both Attackers in either case.
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𝑡𝐴 = 1
𝜈 𝑟𝑅 sin𝛾 is the time of arrival of the Runner to the candidate

terminal position. In the limiting case, the terminal Runner distance is
𝑟𝑅min

= 1, which gives an upper bound for 𝛾:

𝛾max = cos−1 ( 1
𝑟𝑅

) .

Now, define the time difference of arrival to the terminal configuration
as

𝜏(𝛾) ≡ 𝑡𝐷(𝛾) − 𝑡𝐴(𝛾)

= |𝜃𝑅| + 𝛾 − 1
𝜈 𝑟𝑅 sin𝛾,

(12.34)

with 𝛾 ∈ [0, cos−1( 1
𝑟𝑅

)]. Clearly it would be suboptimal for the Runner
to reach a point, stop, and wait for the Turret to reach that point (i.e.,
𝜏 > 0); similarly, if the Turret arrives before the Runner (i.e., 𝜏 < 0)
the Turret would have had to pass the Runner en route. Thus, for equi-
librium, it must be the case that both agents arrive in the terminal con-
figuration simultaneously, i.e., 𝜏∗ = 0.

Lemma 12.9. The function, 𝜏 (𝛾), (12.34), which represents the time differ-
ence of arrival of the Runner and Turret to a candidate terminal configuration,
has a unique zero, 𝛾∗, on the interval [0, cos−1(1/𝑟𝑅)].

Proof. First, (12.34) is a continuous function of 𝛾 since 𝛾 and sin𝛾 are
both continuous. For the lower bound of 𝜏, it must be that 𝜏(0) =
mod(|𝜃𝑅|, 2𝜋), and thus 𝜏(0) > 0. In other words the Runner arrives
first – in fact, it travels zero distance, whereas the Turret covers an an-

𝑟𝑅

𝐴𝑅

𝜃𝑅

𝛾

𝑟𝑅 sin𝛾

1

𝜈

[ February 2, 2022 at 11:05 – classicthesis v4.6 ]

Figure 12.7: Relevant geometry for the determination of terminal time 𝑡𝑐.
Open circles represent initial positions and the closed red circles
indicate candidate terminal configurations for 𝐴𝑅.
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gular distance of mod(|𝜃𝑅|, 2𝜋). For the upper bound, it will shown
that 𝜏(𝛾max) < 0 by contradiction. Suppose that 𝜏(𝛾max) > 0, that
is, the Runner arrives to the candidate terminal configuration before
the Turret. The upper bound, 𝛾max is derived from the limiting case
where 𝑟𝑅𝑐

→ 1. This would mean the Runner was able to reach the
target circle before the Turret could align with it which contradicts the
assumption that 𝐴𝑅 ∉ R𝐴 (which is embedded in the assumption that
z ∈ Ω). Therefore, from the Intermediate Value Theorem, the function
𝜏(𝛾) crosses zero on the interval [0, cos−1(1/𝑟𝑅)].

Also, 𝜕𝜏/𝜕𝛾 = 1−𝑟𝑅/𝜈 cos𝛾 which is strictly negative on the interval
[0, cos−1(1/𝑟𝑅)] since 𝑟𝑅/𝜈 > 1 and cos𝛾 > 0 on the interval. Thus
𝜏(𝛾) is monotonic on the interval, which implies that the zero crossing
is unique.

Because of the uniqueness of 𝛾∗ in which 𝜏(𝛾∗) = 0 many standard
root-finding methods are suitable for computing it. The terminal time
is simply

𝑡𝑐 = mod(|𝜃𝑅|, 2𝜋) + 𝛾∗. (12.35)

With the value of 𝑡𝑐 computed, the terminal angle is

𝛽𝑐 = 𝛽 + 𝑡𝑐 sign (sin 𝜃𝑅) .

From Fig. 12.6 it is clear that the effect of sign (sin 𝜃𝑃𝑐
) in (12.31) and

(12.33) is that the Runner’s motion (at least in R𝐴) has a component of
velocity towards the 𝛽𝑐 +𝜋 radial. The interpretation is that the Runner
seeks to end up behind the Turret at terminal time, which is an advan-
tageous position for the Game of Angle. Thus, under equilibrium play
by all the agents, the terminal state is

z𝑐 =

⎡
⎢⎢⎢⎢⎢
⎣

𝑟𝑅𝑐
𝜃𝑅𝑐
𝑟𝑃𝑐
𝜃𝑃𝑐
𝛽𝑐

⎤
⎥⎥⎥⎥⎥
⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢
⎣

𝑟𝑅 cos (𝑡𝑐 − mod(|𝜃𝑅|, 2𝜋))
0

√(𝜈2𝜒𝑡𝑐
𝑟𝑃

)
2

+ (𝑟𝑃 − 𝜈𝑡𝑐√1 − 𝜒2𝜈2

𝑟2
𝑃

)
2

𝜃𝑃 − sign (sin 𝜃𝑅) 𝑡𝑐 + sin−1 (𝜒𝜈2𝑡𝑐
𝑟𝑃𝑟𝑃𝑐

)
𝛽 + sign (sin 𝜃𝑅) 𝑡𝑐

⎤
⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (12.36)
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where 𝜒 ∈ {−1, 1} for regular trajectories, 𝜒 ∈ [−1, 1] for singular
trajectories, and

sign𝜒 = sign (sin 𝜃𝑃𝑐
) = sign 𝜉 , (12.37)

where 𝜉 ∈ [−𝜋, 𝜋] is 𝐴𝑃’s angle-to-go to the 𝛽𝑐 + 𝜋 radial,

𝜉 = −mod (𝜃𝑃 − sign (sin 𝜃𝑅) 𝑡𝑐, 2𝜋) + 𝜋. (12.38)

The trajectory is singular if𝐴𝑃’s regular strategy, (12.31),would cause
it cross the 𝛽𝑐 + 𝜋 radial, which occurs if

sin−1
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜈2𝑡𝑐

𝑟𝑃√𝑟2
𝑃 + 𝜈2𝑡2𝑐 − 2𝑟𝑃𝜈𝑡𝑐√1 − 𝜈2

𝑟2
𝑃

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

> ∣𝜉 ∣ . (12.39)

Note the LHS of the above expression is the angular sector swept (w.r.t.
the origin) by 𝐴𝑃’s regular strategy in 𝑡𝑐 time. If the trajectory is singu-
lar, then, by definition cos 𝜃𝑃𝑐

= −1. The Law of Sines gives the follow-
ing relationships:

𝑟𝑃𝑐

sin𝜓𝑃
= 𝜈𝑡𝑐

sin 𝜉 = 𝑟𝑃
sin (𝜋 − |𝜓𝑃| − |𝜉 |) .

The singular 𝐴𝑃 heading is

𝜓𝑃 = sign (𝜉) (sin−1 (𝑟𝑃 sin|𝜉 |
𝜈𝑡𝑐

) − |𝜉 |) , (12.40)

and the singular terminal 𝐴𝑃 distance is

𝑟𝑃𝑐
= 𝜈𝑡𝑐 sin𝜓𝑃

sin 𝜉 . (12.41)

Finally, the Value function is

𝑉(z) = |𝜃𝑃𝑐
| − 𝜃𝐺𝑜𝐾 (𝑟𝑃𝑐

) (12.42)

where (𝑟𝑃𝑐
, 𝜃𝑃𝑐

) is given by (12.36) and 𝜃𝐺𝑜𝐾 is defined in (12.6).
The Attackers simply aim at their respective terminal point from

(12.36), and the Turret rotates towards the Runner. Of course, one or
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more agents could (to their detriment) deviate from the strategywhich
would necessitate recomputing the solution in practice. For discrete
time systems, for example, it is recommended for the agent implement-
ing its equilibrium strategy to recompute the solution at each time step.

Figure 12.8 contains an example in which the Attackers both lose
when operating individually, but one is able to winwhen the Attackers
cooperate and behave according to the solution of the TRPDG.
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Figure 12.8: Attackers implement single-Attacker strategy, ignoring the pres-
ence of the other Attacker (a); neither Attacker wins. Attackers
cooperate, implementing the TRP solution (b); 𝐴𝑃 wins as a re-
sult.

12.5 TR PDG W I TH EARLY P ENE TRAT ION

In this section the case in which the Penetrator can reach the target
circle prior to the capture of the Runner is analyzed. Such is the case,
e.g., in the hatched region of Fig. 12.6. It is assumed that the Turret
prefers to pursue (and eventually neutralize) the Runner rather than
attempt to reduce the Penetrator’s angular separation at the time of
penetration. If the Turret were to attempt to minimize |𝜃𝑃| it may be
the case 𝐴𝑅 could reach a more advantageous position – perhaps even
inside R𝐴. Therefore, the Turret’s strategy is fixed to 𝑢𝑇 = sign(sin 𝜃𝑅)
as it is in the previous section. Additionally, the Runner strategy from
the previous section is utilized in the following analysis.
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With the Turret and Runner strategies fixed, the EP case becomes an
optimal control problem for the Penetrator. Let 𝑡𝑓 be the time instant
at when the Penetrator actually penetrates the target circle. Then the
cost functional is the same as in (12.4) and is restated here with some
additional notation.

𝐽𝐸 = Φ𝐸 (z(𝑡), 𝑡𝑓 ) = |𝜃𝑃(𝑡𝑓 )|, (12.43)

where 0 ≤ 𝑡𝑓 ≤ 𝑡𝑐 and the superscript 𝐸 denotes Early Penetration
(EP). The Penetrator seeks to maximize its angular separation at the
time of penetration. For the sake of clarity, let reaching the target circle
and penetrating the target be defined as 𝑟𝑃 = 1 and 𝑟𝑃 < 1, respectively.
The Value of the EP optimal control problem, if it exists, is defined as

𝑉𝐸(z0) ≡ max
𝜓𝑃(⋅)

𝐽𝐸. (12.44)

An important distinction must be made at this point as to whether
or not the Penetrator has anything to gain (according to (12.43)) by
delaying penetration. If, for example, | ̇𝜃𝑃| < 0 when the Penetrator has
reached the target circle then it only stands to reduce its payoff by de-
laying penetration and thereby chooses to end the game by penetrating
the target immediately upon arrival. However, delaying penetration is
advantageous, for example, when the Turret’s pursuit of the Runner is
drawing its aim further away from the Penetrator at the time of arrival
at the target (i.e., | ̇𝜃𝑃| > 0).

12.5.1 Regular Trajectories Ending in Immediate Penetration

For regular trajectories ending in immediate penetration it is necessary
that 1)

sign(sin 𝜃𝑃) = sign(sin 𝜃𝑅)

or 2)
sign(sin 𝜃𝑅) sin 𝜃𝑃 < sign(sin 𝜃𝑅)(𝑡𝑐 − 𝜋).
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In the former case, the two Attackers are on the same side w.r.t. the
Turret’s look angle. Once the Penetrator reaches the target circle (i.e.,
𝑟𝑃 = 1) it can only be the case that | ̇𝜃𝑃| < 0 because 𝜈 < 1 and thus𝑇 has
an angular velocity advantage. Case 2) corresponds to sign(sin 𝜃𝑃𝑐

) =
sign(sin 𝜃𝑅), and thus the direction of 𝐴𝑃’s motion is the same as 𝐴𝑅

and 𝑇’s (c.f. 12.4.2). Satisfaction of this condition, alone, is not suffi-
cient. For example, it may be possible for 𝐴𝑃 to achieve cos 𝜃𝑃𝑓

= −1,
thereby the trajectory would be singular (to be discussed in the fol-
lowing subsections). The regular optimal penetrator strategy is given
by (12.31) defined over 𝑡 ∈ [0, 𝑡𝑓 ].

12.5.2 Delayed Penetration

When the Turret is turning away from the Penetrator, it is advanta-
geous for the Penetrator to delay penetration until the Runner’s neu-
tralization at 𝑡𝑐; thus 𝑡𝑓 = 𝑡𝑐. First, begin by augmenting the problem
definition by including the following path constraint

𝑚(z) = 𝑟𝑃 − 1 ≥ 0, ∀𝑡 ∈ [0, 𝑡𝑐] (12.45)

which requires that 𝐴𝑃 remain on or outside the target circle until the
moment of 𝐴𝑅’s neutralization by 𝑇. When the constraint is active, the
system may remain constrained if ̇𝑟𝑃 = 0. Eq. (12.2) gives

̇𝑟𝑃 = −𝜈 cos𝜓𝑃,

and thus the system will remain constrained if 𝜓𝑃 = ±𝜋
2 .

Note that the terminal manifold, the zero-level set of 𝜙 (defined in
(12.17)), is only defined over 𝑟𝑃𝑐

≥ 1. From (12.22) the terminal adjoint
values depend on 𝜕𝜙

𝜕z𝑐
. Thus, when 𝑟𝑃𝑐

= 1, the quantity 𝜕𝜙
𝜕𝑟𝑃𝑐

is unde-
fined (since the state is on edge of the bounded plane 𝜙 = 0). Conse-
quently, from (12.32), it is clear that the optimal Penetrator heading at
terminal time, 𝜓∗

𝑃𝑐
, is undefined. This is another singularity which is

similar to the cos 𝜃𝑃𝑐
= −1 singularity analyzed in Section 12.4.2.
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The following subsections treat the 𝑟𝑃𝑐
= 1 singularity and the con-

strained trajectories. The 𝑟𝑃𝑐
= 1 and cos 𝜃𝑃𝑐

= −1 singularities are
referred to as the distance singularity and angle singularity, respectively.

12.5.2.1 Distance Singularity

The following lemma provides bounds on the value of the terminal
Penetrator heading for this case.

Lemma 12.10. For EP, if 𝑟𝑃𝑐
= 1 and cos 𝜃𝑃𝑐

≠ −1, the terminal Penetrator
heading is bounded according to

sign(sin 𝜃𝑃𝑐
) sin−1 𝜈 ≤ sign(sin 𝜃𝑃𝑐

)𝜓∗
𝑃𝑐

≤ sign(sin 𝜃𝑃𝑐
)𝜋

2 . (12.46)

Proof. The inclusion of sign(sin 𝜃𝑃𝑐
) is necessary to account for the fact

that 𝐴𝑃 seeks to aim towards the 𝛽𝑐 + 𝜋 radial, which maximizes its
payoff (c.f., Section 12.4.2). The upper bound of (12.46) is due to the
path constraint, 𝑟𝑃 ≥ 1. A larger heading angle would yield ̇𝑟𝑃𝑐

> 0,
which implies that 𝐴𝑃 had arrived at the target circle from the inside,
which clearly violates the constraint. The lower bound corresponds to
the regular/unconstrained Penetrator control, (12.31). A smaller head-
ing angle would push the state of the system into a region where reg-
ular/unconstrained trajectories exist. They, by definition have 𝑟𝑃𝑐

> 1
and |𝜃𝑃𝑐

| necessarily smaller. Thus coming in to 𝑟𝑃𝑐
= 1 with this head-

ing would have been suboptimal for the Penetrator.

For any |𝜓𝑃𝑐
| ∈ [sin−1 𝜈, 𝜋

2 ), it must be that ̇𝑟2 < 0 and thus the
system immediately leaves the constraint in backwards time. The fol-
lowing Lemma gives the optimal Penetrator heading for this case.

Lemma 12.11. For EP, if the constraint𝑚 is active only at terminal time, that
is, if 𝑟𝑃 > 1 for 𝑡 ∈ [0, 𝑡𝑐) and 𝑟𝑃𝑐

= 1, and 𝜃𝑃𝑐
≠ 𝜋 the optimal Penetrator

heading is
sin𝜓∗

𝑃 = sign (sin 𝜃𝑃𝑐
) ( 𝜅

𝑟𝑃
) , (12.47)

where

𝜅 = +

√
√√
⎷

4𝑟2
𝑃 − (𝜈2𝑡2𝑐 − 𝑟2

𝑃 − 1)2

4𝜈2𝑡2𝑐
, (12.48)

and 𝜈 < 𝜅 < 1.
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Figure 12.9: An illustration of three time instants of interest: 𝑡𝜈, the time re-
quired for 𝐴𝑃 to reach the target circle whilst aiming at the tan-
gent to the 𝜈 circle, 𝑡𝜅, the time to reach the target circle whilst
aiming at the tangent to the 𝜅 circle, and 𝑡𝜌, the time to reach the
target circle tangentially.

Proof. Because the trajectory is unconstrained (except for at the mo-
ment of termination), Lemma 12.3 applies, which means 𝐴𝑃’s trajec-
tory is a straight line in the Cartesian plane. The premise of this Lemma
is that 𝐴𝑃 ends on the target circle, thus one need only determine the
line segment joining 𝐴𝑃’s position to a point on the target circle which
is of length 𝜈𝑡𝑐, which is the distance 𝐴𝑃 can cover in the time it takes
𝑇 to neutralize 𝐴𝑅. Consider a circle of radius 𝜅, 𝜈 < 𝜅 < 1, centered
at the origin. The distance from 𝐴𝑃 to a tangent point on the 𝜅 circle
is √𝑟2

𝑃 − 𝜅2 (see Fig. 12.9). Since 𝜅 < 1, the line segment joining 𝐴𝑃 to
the tangent point passes through the target circle. The distance from
this intersection to the tangent point on the 𝜅 circle is √1 − 𝜅2. Thus the
time it takes for 𝐴𝑃 to reach the target circle while aiming at a tangent
point on the 𝜅 circle is

𝑡𝜅 = 1
𝜈 (√𝑟2

𝑃 − 𝜅2 − √1 − 𝜅2) . (12.49)

Eq. (12.48) is obtained by setting the above expression equal to 𝑡𝑐 and
solving for 𝜅. Finally, (12.47) is obtained from the right-triangle geom-
etry, since 𝐴𝑃’s aim point is tangent to the 𝜅 circle, and, once again,
sign (sin 𝜃𝑃𝑐

) appears for reasons described in Lemma 12.7.

12.5.2.2 Constrained Trajectories

The following Lemma provides the optimal Penetrator heading for the
case where the trajectory is constrained (or partly constrained).
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Lemma 12.12. For EP, if the constraint 𝑚 activates at a time 𝑡𝜌, where 0 ≤
𝑡𝜌 ≤ 𝑡𝑐 the optimal Penetrator heading is

sin𝜓∗
𝑃 =

⎧{{
⎨{{⎩

sign (sin 𝜃𝑃𝑐
) ( 1

𝑟𝑃
) 0 ≤ 𝑡 < 𝑡𝜌, 𝑟𝑃 > 1,

sign (sin 𝜃𝑃𝑐
) 𝑡𝜌 ≤ 𝑡 ≤ 𝑡𝑐, 𝑟𝑃 = 1,

(12.50)

where
𝑡𝜌 = 1

𝜈
√𝑟2

𝑃 − 1. (12.51)

Proof. In this case, the constraint 𝑚 is activated partway through the
trajectory. The trajectory may be considered as two parts: an uncon-
strained arc, 𝒰 (wherein 𝑟𝑃 > 1), and a constrained arc, 𝒞 (𝑟𝑃 = 1). In
the transition from 𝒰 to 𝒞 , it is necessary that there exist controls 𝜓𝑃

and/or 𝑢𝑇 that keep the system on the constraint (i.e., maintain 𝑚 = 0).
This is referred to as the tangency condition [40]. Here, the Penetrator
heading, 𝜓𝑃, appears in the expression �̇� = ̇𝑟𝑃 = −𝜈 cos𝜓𝑃, and thus
the systemmay remain constrained if the Penetrator applies a heading
s.t. �̇� = 0 which is 𝜓𝑃 = ±𝜋

2 . Over the 𝒰 arc, the results of Lemma 12.3
apply, which states the Penetrator trajectory is a straight line in the
Cartesian plane. Thus the Penetrator must reach the target circle tan-
gentially, in a straight line, and proceed thereafter by traveling along its
perimeter until terminal time. The time at which 𝐴𝑃 reaches the target
circle tangentially, (12.51), is obtained from the relevant right-triangle
geometry (see Fig. 12.9). Eq. 12.50 is then synthesized from the con-
trols associated with the 𝒰 and 𝒞 arcs. The inclusion of sign(sin 𝜃𝑃𝑐

) is
necessary for reasons discussed in Lemma 12.7.

12.5.2.3 Case Determination

From Fig. 12.9 and the delayed penetration control policies in Lem-
mas 12.11 and 12.12, the conditions which determine the type of tra-
jectory based on the system’s current state may be established. Let 𝑡𝜅

and 𝑡𝜌 be defined as in (12.49) and (12.51), respectively. Also, 𝑡𝜈 (as
depicted in Fig. 12.9) can be derived:

𝑡𝜈 = 1
𝜈 (√𝑟2

𝑃 − 𝜈2 − √1 − 𝜈2) . (12.52)
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If 𝑡𝜈 > 𝑡𝑐, then 𝐴𝑃, employing the regular optimal strategy, (12.31),
could not have reached the target circle by the time of 𝐴𝑅’s neutraliza-
tion (then the optimal penetrator control is governed by Lemma 12.7).
Else if 𝑡𝜈 ≤ 𝑡𝑐 < 𝑡𝜏 , there exists a straight line trajectory terminating
on the target circle of length 𝜈𝑡𝑐 (Section 12.5.2.1, Lemma 12.11). Oth-
erwise, 𝑡𝑐 ≥ 𝑡𝜏 and 𝐴𝑃 can aim at a tangent point to the target circle,
reach the target circle, and apply the constrained control until 𝑡 = 𝑡𝑐

(Section 12.5.2.2, Lemma 12.12).

12.5.3 Max Payoff Possible

In this subsection the case in which the upper limit of the cost/payoff
functional, (12.43), is realizable (i.e., 𝐽 = 𝜋) is addressed. Recall from
Section 12.4.2 the singularity which arises when cos 𝜃𝑃𝑐

= −1 – that is,
the Turret is looking directly away from the Penetrator at terminal time.
There, the terminal Penetrator heading 𝜓∗

𝑃𝑐
was undefined according

to the first-order necessary conditions for equilibrium. This singularity
also comes into play for the two early penetrator cases discussed so far.

Consider the case where (𝑟𝑃𝑐
, cos 𝜃𝑃𝑐

) = (1, −1) which is the cor-
ner of the bounded plane 𝜙 = 0 and the intersection of the distance
and angle singularities. In Section 12.4.2, the angle singularity gave
rise to a symmetric cone of incoming trajectories bounded by 𝜓∗

𝑃𝑐
∈

[− sin−1 ( 𝜈
𝑟𝑃𝑐

) , sin−1 ( 𝜈
𝑟𝑃𝑐

)]. In Section 12.5.2.1, the distance singular-
ity gave rise to a cone of incoming trajectories bounded by sin−1 (𝜈)
and 𝜋

2 . The combination of the two singularities results in a cone of
incoming trajectories bounded by,

− 𝜋
2 ≤ 𝜓∗

𝑃𝑐
≤ 𝜋

2 . (12.53)

The locus of initial 𝐴𝑃 positions thus forms a semi-circle of radius 𝜈𝑡𝑐

centered on (𝑟𝑃𝑐
, cos 𝜃𝑃𝑐

) = (1, −1). Concerning constrained trajecto-
ries with 𝜓𝑃𝑐

= ±𝜋, the optimal trajectories emanate in both directions
in backwards time. Figure 12.10b shows the locus of initial Penetrator
positions which terminate on the corner point exactly at 𝑡𝑓 = 𝑡𝑐.
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(b)

Figure 12.10: Delayed penetration case (a) away from the angle singularity
and (b) at the angle singularity. The curve shows the locus of
initial 𝐴𝑃 positions which terminate at the point shown. Blue
sections are involutes, green sections are circular sectors corre-
sponding to the distance singularity, and the purple section in
(b) is a circular sector corresponding to the angle singularity.

Remark 19. For initial 𝐴𝑃 positions which lie inside the locus shown in
Fig.12.10b the optimal Penetrator heading 𝜓∗

𝑃 is non-unique.

The non-uniqueness of 𝐴𝑃’s control in this region is due to the fact
that the cost functional, (12.43), is upper-boundedby𝜋. Termination at
the corner point ((𝑟𝑃, cos 𝜃𝑃) = (1, −1)) achieves the upper-bound for
𝐴𝑃’s payoff; thus any trajectory which reaches the corner point within
𝑡𝑐 time is an optimal trajectory for 𝐴𝑃.

12.5.4 Full Solution

To summarize the solution of the Early Penetration optimal control
problem within the TRPDG, the regions for which each particular Pene-
trator control is optimal are constructed. The green region in Fig. 12.11
corresponds to the immediate penetration case (Section 12.5.1). For
initial 𝐴𝑃 positions in the yellow region, the Penetrator aims clock-
wise and penetrates exactly at the moment 𝐴𝑅 is neutralized at 𝑡 = 𝑡𝑐

(see Section 12.5.2). Lastly, the red region represents all the positions
from which 𝐴𝑃 can reach (𝑟𝑃, cos 𝜃𝑃) = (1, −1). The “Max Value” re-
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gion arises from the fact that 𝐴𝑃 may penetrate the target at any time
𝑡𝑓 ∈ [0, 𝑡𝑐], and thus the distance and angle singularities, as shown
in Fig. 12.10b, must be considered for all possible 𝑡𝑓 . The red region in
Fig. 12.11 is the union of all such regions. Inside the red region, the
Penetrator may be able to reach (1, −1) for a continuum of different 𝑡𝑓 .

𝜈
1

𝑡𝑐

𝜈𝑡𝑐 Max
Value

𝜈𝑡𝑐

𝜈𝑡𝑐

Immediate

Delayed
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Figure 12.11: Solution of the Early Penetration optimal control problem for
𝑡𝑐 = 𝜋

2 .

12.6 ROLE S E L EC T ION

In the previous sections the roles of 𝐴𝑅 and 𝐴𝑃 were considered to be
fixed, a priori, to Runner and Penetrator, respectively. The Turret ad-
hered to this convention by blindly pursuing the Runner, regardless of
the position of the Penetrator.Moreover, the formulationwas restricted
such that the roles could not switch. Now, consider the more likely sce-
nario in which the roles of the Attackers are not specified; thus the Tur-
ret gets to choose which Attacker to pursue (continuously throughout
the game). Let the Attackers be specified generally as 𝐴1 and 𝐴2.
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In order to specify the equilibrium “status” of the TRPDG policies in
the context of this more general version of the problem, recall the def-
initions of the equilibrium concepts GSE, FNE, and subgame perfection
(or time consistency) from Chapter 8, Section 8.3.1.

For the context of the TRPDG with role selection, consider a new ac-
tion space for the agents. The Turret must only decide to turn CCW
or CW at 𝑡 = 0, which effectively determines which Attacker will be
the Penetrator and which Attacker will be the Runner. From there, all
3 agents proceed according to their TRPDG equilibrium controls asso-
ciated with this assignment (according to Section 12.4). Let the Value
associated with the two assignments be defined

𝑉1,2 (𝐴1, 𝐴2) ≡ 𝑉 ([𝑟1 𝜃1 𝑟2 𝜃2 𝛽]⊤) (12.54)

𝑉2,1 (𝐴2, 𝐴1) ≡ 𝑉 ([𝑟2 𝜃2 𝑟1 𝜃1 𝛽]⊤) , (12.55)

where 𝑉 is defined in (12.18). Thus, e.g., 𝑉2,1 is the Value of the TRPDG

with 𝐴2 assigned to Runner and 𝐴1 assigned to Penetrator.

Lemma 12.13. The TRPDG strategies given in Section 12.4 corresponding to
min (𝑉1,2, 𝑉2,1) constitute a GSE with the Turret as the leader and Attack-
ers as the follower. The associated Value of the Stackelberg Game is 𝑉𝑆 =
min (𝑉1,2, 𝑉2,1), where the subscript 𝑆 denotes “Stackelberg”.

Proof. By construction, the strategies satisfy the first-order necessary
conditions for equilibrium. Now it remains to show that the Value, 𝑉𝑆,
is given by the minimum of the TRPDG Value associated with each as-
signment. TheValue of the TRPDG, (12.42), ismathematically premised
on the fact that the only way to terminate the game is by neutralizing
the Runner (i.e., the terminal surface is 𝜃𝑅 = 0, see (12.17)). Thus the
formulation ignores the possibility of neutralization of the Penetrator
(i.e., by driving cos 𝜃𝑃 → 1). The TRPDG Value functions (without role
selection) satisfy the saddle-point equilibrium property

𝐽(𝑢∗
𝑇 , 𝜓𝑖, 𝜓𝑗) ≤ 𝑉𝑖,𝑗 ≤ 𝐽(𝑢𝑇 , 𝜓∗

𝑖 , 𝜓∗
𝑗 ), 𝑖, 𝑗 ∈ {1, 2} (12.56)

So, in the general scenario in which 𝑇 can choose which Attacker to
neutralize, only 𝑇’s side (the left side) of the saddle-point property
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holds – that is, 𝑇 can do no worse than the TRPDG Value associated
with each direction. Therefore,𝑇 is free to choose the smaller of the two.
The Attackers’ best response is to respond accordingly, assigning the
Runner and Penetrator roles as dictated by 𝑇’s choice. Thus 𝑇 pursues
𝐴1 if 𝑉1,2 < 𝑉2,1, otherwise, it is better to pursue 𝐴2 first.

It appears that the GSE is also the FNE everywhere in the state space.
However, a rigorous proof of such for is left future work.

12.7 S IMULAT IONS

In this section, some simulation results are presented wherein the pre-
scribed strategies are implemented in a discrete-time fashion. In par-
ticular, the agents’ control signal is held constant over a fixed time in-
terval (which is denoted as Δ𝑡) and all agents’ controls are updated
synchronously as a function of the current state only. Neither agent
has access to its opponents current control action (unlike in the Stack-
elberg version of the game).

The assignment of roles for the Attackers is not specified. Instead,
the “equilibrium” action involves comparing 𝑉1,2 and 𝑉2,1 (at the cur-
rent time) and implementing the TRPDG controls associated with the
lesser Value (as described in the previous section). The Value of the
“wrong” sequence (i.e., max (𝑉1,2, 𝑉2,1)) is of the utmost importance
in demonstrating whether or not a GSE trajectory is subgame perfect
(and thus also FNE). Thus, in Fig. 12.12, both values, 𝑉1,2 and 𝑉2,1, are
computed along the entire trajectory.

As shown in Fig. 12.12a, when all 3 agents implement the GSE strat-
egy (corresponding to 𝐴2 being Runner and 𝐴1 being Penetrator) the
Value𝑉2,1 is constant and remains the smaller of the twoValues through-
out the playout of the game. This trajectory is subgame perfect, and
thus the GSE and FNE are equivalent for all points along this trajectory.

Figure 12.12b demonstrates what happens when 𝑇 deviates by pur-
suing 𝐴1 first. Without knowing 𝑇’s current or future control actions,
theAttackers proceedwith implementing the equilibrium strategy (treat-
ing 𝐴2 as the Runner). Around 𝑡 = 0.5, the TRPDG Values of the two
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(b) Attackers implement equilibrium strategy, and the Turret chooses to pursue 𝐴1
first.

Figure 12.12: Simulation results; 𝜈 = 0.7, Δ𝑡 = 1𝑒 − 3. Once the Attacker des-
ignated as Runner crosses into R𝐴, the associated Value of the
TRPDG does not exist, which is the reason for the reason for, e.g.,
𝑉1,2 stopping early in (a).
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assignments cross, and immediately afterwards theAttackers switch to
𝐴1 being Runner and 𝐴2 being Penetrator. The Attackers, as the max-
imizers, receive a significant gain over the equilibrium Value without
knowing what 𝑇 will do or whether it will suddenly switch. This is a symp-
tom of the saddle-point property of the equilibrium. However, this ex-
ample, alone, is far from sufficient to prove that the GSE and FNE are
equivalent everywhere.

12.8 CONCLUS ION

In this chapter, the two-Attacker, single-Turret circular target guarding
problem was introduced. The focus was on a region of the state space
in which neither Attacker can guarantee to reach the target, individ-
ually. The case where one Attacker can guarantee to reach the target
when the Turret pursues its fellow Attacker was considered. Within
this case, a differential game was posed and solved which terminates
when the Runner is neutralized, and an optimal control problem for
when the Penetrator can reach the target before the Runner is neutral-
ized was posed and solved. Most of the analysis was done under the
assumption that Attackers’ roles were predefined and that no switch-
ing could occur. This assumption was later lifted, and it was shown
how the solution already obtained can be used to determine the “best”
roles for the Attackers and that this corresponds to the GSE. The next
chapter, rather than adding more agents, considers the twist of multi-
ple choices for the Attacker.





“Sometimes, people only seem determined upon
one course because the have been offered

no other options.” – Sazed

— Brandon Sanderson, Mistborn Trilogy

13
ENGAGE OR RETREAT W I TH A K INET I C TURRET

13.1 IN TRODUCT ION

In this chapter, the Attacker is given the option to engage with the ki-
netic turret (which ends with the Attacker reaching the circle centered
on the Defender) or to retreat to a safe zone (i.e., the TEoR with kinetic
turret, ). Research Objectives 8 and 9, which pertain to multi-objective
scenarios and discrete events, respectively, are partly addressed by the
work in this chapter. The latter comes into play in the sense that the
moment at which the Defender’s LOS aligns with the Attacker serves
as a discrete event which is paramount to the determination of the
equilibrium behaviors. Here, the Attacker is not neutralized when this
event occurs, but rather, the Attackermay begin accruing damage once
this alignment has occurred. This material is based on the paper [249],
which is in review.

Section 13.2 provides the problem formulation and solutionmethod-
ology. The derivations for engagement with lock-on and retreat with
lock-on are contained in Sections 13.3.2 and 13.3.3, respectively. Sec-
tions 13.4.1 and 13.4.2 cover engagement without lock-on and retreat
without lock-on, respectively. Section 13.5 discusses how to obtain the
state space partitioning and provides examples. The chapter is con-
cluded in Section 13.6.

269
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Engagement Zone
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𝑑
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Retreat Zone

[ February 3, 2022 at 14:08 – classicthesis v4.6 ]

Figure 13.1: Lock-Evade, Engage or Retreat Scenario with relative and Carte-
sian state representations.

13.2 PROBL EM FORMULAT ION AND SOLUT ION METHODOLOGY

Begin bydefining the state in a relative coordinate system; z ≡ [𝑑, 𝛼, 𝛽] ∈
ℝ3, which is comprised of the distance from 𝐴 to 𝐷, 𝑑, the look angle
of 𝐷 w.r.t. 𝐴, 𝛼, and the azimuth of 𝐴’s position relative to 𝐷 w.r.t. the
positive 𝑥-axis, 𝛽. Figure 13.1 shows a diagram of the TEoRK scenario.
Some of the subsequent analysis is eased by utilizing the Cartesian co-
ordinate system. Let z̃ ≡ [𝑥, 𝑦, 𝛾] be the state of the system expressed
in the Cartesian frame, where 𝑥 and 𝑦 are the coordinates of 𝐴 and 𝛾 is
𝐷’s look angle w.r.t. the positive 𝑥-axis. 𝐷 is positioned at the origin of
the Cartesian coordinate system. The transformation between the two
state representations is

⎡⎢⎢
⎣

𝑥
𝑦
𝛾

⎤⎥⎥
⎦

= ⎡⎢⎢
⎣

𝑑 cos𝛽
𝑑 sin𝛽
𝛽 + 𝛼

⎤⎥⎥
⎦

. (13.1)

𝐴 has a fixed speed (normalized to 1) and controls its instantaneous
heading, 𝜓 ∈ ℝ (i.e. simple motion, or single integrator dynamics).
𝐷 is stationary and has control over its turn rate, 𝜔 ∈ [−𝜌, 𝜌] where
𝜌 > 1 is the maximum turn rate. Positive 𝜔 corresponds to 𝐷 turn-
ing counterclockwise. 𝐷 has an additional control variable 𝑤 ∈ [0, �̄�],
which appears in 𝐴’s cost functional. It represents the amount of tur-
ret firepower to apply; the turret must be aimed directly at 𝐴 for it to
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be effective. Let 𝐴 and 𝐷’s control vectors be defined, respectively, as
u𝐴 ≡ [𝜓] and u𝐷 ≡ [𝜔, 𝑤]. In the relative coordinate system, the kine-
matics are

𝑓 (z,u𝐴,u𝐷) = ż = ⎡⎢⎢
⎣

̇𝑑
̇𝛼
̇𝛽

⎤⎥⎥
⎦

=
⎡⎢⎢
⎣

cos𝜓
𝜔 − 1

𝑑 sin𝜓
1
𝑑 sin𝜓

⎤⎥⎥
⎦

. (13.2)

The kinematics, expressed in the Cartesian coordinate system, are

̃𝑓 (z̃,u𝐴,u𝐷) = ̇z̃ = ⎡⎢⎢
⎣

̇𝑥
̇𝑦

�̇�

⎤⎥⎥
⎦

= ⎡⎢⎢
⎣

cos ̃𝜓
sin ̃𝜓

𝜔

⎤⎥⎥
⎦

, (13.3)

where ̃𝜓 ≡ 𝛽 + 𝜓 is 𝐴’s heading w.r.t. the positive 𝑥-axis. The agents
are assumed to have full state information.

Ultimately, 𝐴 chooses between two endings for the overall TEoRK
scenario: engagement or retreat. In the former, 𝐴 moves towards 𝐷 and
ultimately collides with it. Let the terminal surface for engagement be
defined as

ℰ ≡ {z ∣ 𝑑 = 1} (13.4)

Alternatively, 𝐴 bypasses 𝐷 and maneuvers towards a retreat zone,
which is specified a priori. Here, the retreat zone is the surface 𝑦 = 𝑦𝑅,
and thus the terminal surface for retreat is defined as

ℛ ≡ {z ∣ 𝑑 sin𝛽 = 𝑦𝑅} (13.5)

The region of admissible initial conditions is defined as

Ω ≡ {z ∣ 𝑑 sin𝛽 > 𝑦𝑅, 𝑑 > 1} . (13.6)

Within both the engage and retreat cases, 𝐷 may or may not achieve
a lock on 𝐴. Lock occurs when 𝐷’s look angle is aligned with 𝐴’s posi-
tion (i.e., when cos 𝛼 = 1). Note that because 𝜌 > 1 and 𝑑 > 1, 𝐷 has
an angular velocity advantage over all of Ω; once a lock is achieved,
𝐷 has sufficient control authority to keep cos 𝛼 = 1. Thus there are
four cases: engagement wherein 𝐷 achieves a lock on 𝐴 at some point
(Locked Engagement, LE), retreat with a lock (Locked Retreat, LR),
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engagement without a lock (Unlocked Engagement, UE), retreat with-
out a lock (Unlocked Retreat, UR).

The lock function is defined as

𝐿(z) =

⎧{{
⎨{{⎩

1 if cos 𝛼 = 1,

0 otherwise.
(13.7)

The cost functionals for 𝐴 and 𝐷 are defined, respectively, as

𝐽𝐴 (z0;u𝐴(⋅),u𝐷(⋅)) = Ψ𝐴 (z𝑓 ) +

∫
𝑡𝑓

𝑡0
𝐿 (z(𝑡)) (𝑤(𝑡) + 𝑐)d𝑡

(13.8)

𝐽𝐷 (z0;u𝐴(⋅),u𝐷(⋅)) = Ψ𝐷 (z𝑓 ) , (13.9)

where 𝑐 > 0 is a constant which penalizes 𝐴 for time spent locked-on.
The terminal cost functions are defined as

Ψ𝐴 (z𝑓 ) =

⎧{{
⎨{{⎩

0 z𝑓 ∈ ℰ

𝑐𝐴 z𝑓 ∈ ℛ
(13.10)

Ψ𝐷 (z𝑓 ) =

⎧{{
⎨{{⎩

𝑐𝐷 z𝑓 ∈ ℰ

0 z𝑓 ∈ ℛ
, (13.11)

where 𝑐𝐴 > 0 is a constant penalty given to 𝐴 for retreating instead of
engaging, and 𝑐𝐷 > 0 is a constant penalty given to 𝐷 if it is destroyed.
𝐴 and 𝐷 simultaneously seek to minimize their respective cost func-
tionals, giving rise to a nonzero-sum differential game,

𝐽∗
𝐴 (z0;u𝐷(⋅)) = min

u𝐴(⋅)
𝐽𝐴 (z0;u𝐴(⋅),u𝐷(⋅)) (13.12)

𝐽∗
𝐷 (z0;u𝐴(⋅)) = min

u𝐷(⋅)
𝐽𝐷 (z0;u𝐴(⋅),u𝐷(⋅)) . (13.13)

𝐷 strictly prefers retreat and therefore seeks to make retreat as attrac-
tive as possible for 𝐴 bymaking engagement as costly as possible. Note
that the integral cost in (13.8) is nonzero only while 𝐷 has a lock on 𝐴.
While 𝐴 can evade 𝐷’s turret, the integral cost is zero.
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For the cases inwhich 𝐷 is unable to achieve a lock on 𝐴, 𝐿 = 0 for all
𝑡 ∈ [𝑡0, 𝑡𝑓 ] and thus (13.8) simplifies to 𝐽𝐴 (z0;u𝐴(⋅),u𝐷(⋅)) = Ψ𝐴 (z𝑓 ).
Therefore𝐴’s cost is constant: either 0, if z𝑓 ∈ ℰ or 𝑐𝐴, if z𝑓 ∈ ℛ . As long
as 𝐴 can guarantee arrival at ℰ orℛ with cos 𝛼 ≠ 1 for all 𝑡 ∈ [𝑡0, 𝑡𝑓 ] the
optimal actions for 𝐴 and 𝐷 are not uniquely defined. The construction
of trajectories for 𝐴 which can guarantee satisfaction of this constraint
is the subject of Section 13.4.

As stated previously, the goal of this chapter is to determine the equi-
librium actions for both 𝐴 and 𝐷 consisting of the choice of whether to
engage or retreat as well as the instantaneous heading angle and turn-
ing direction, respectively, throughout the scenario. Ultimately, the so-
lution consists of a partitioning over the state space corresponding to
the four different ways the scenario can terminate. Within a particu-
lar region, the end-game of the scenario is known and the necessary
conditions for equilibrium yield the equilibrium control inputs. The
boundaries between the regions are generally found by considering the
most limiting case for a particular type of termination and backwards-
integrating the associated equilibrium kinematics until the specified
initial condition. For example, boundary betweenLocked andUnlocked
Retreat corresponds to the limiting case of LR in which lock-on occurs
at the moment 𝐴 reaches the Retreat Zone. Figure 13.2 shows an ex-
ample solution along with all of the pertinent features, as described in
Table 13.1. Note the presence of several DSs and other curves for which
there are multiple equally-optimal choices for direction or even termi-
nation.

13.3 LOCKED SCENAR IO S

In this section, the cases in which 𝐷 is able to achieve a lock on 𝐴 are
solved. In order for this to occur, 𝐷 must be able to drive cos 𝛼 to 1
before𝐴 is able to reach the retreat surface,ℛ , or reach the engagement
surface, ℰ .

In the following two subsections, the caseswherein 𝐷 achieves a lock
on 𝐴, Locked Engagement and Locked Retreat, are analyzed individ-
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Figure 13.2: A partitioning of the state space for a particular initial turret look
angle, 𝛾0 = 7

9 𝜋. Table 13.1 contains the legend information along
with mathematical notation for each feature.

Table 13.1: Solution legend
Legend Symbol Description

ℛ Retreat Surface
𝑉𝐸 = 𝑉𝑅 Simple Engage or Retreat surface

1/𝜌 Surface of equal max angular velocity
𝐿𝑅1 Locked Retreat ending in R𝑅1
𝐿𝑅2 Locked Retreat ending in R𝑅2
𝐿𝐸 Locked Engagement
𝑈𝑅 Unlocked Retreat
𝑈𝐸 Unlocked Engagement

𝐿𝐸 = 𝐿𝑅 Engagement and Retreat equally optimal
𝒟𝐿𝑅1

Locked Retreat DS
𝒟𝐿𝐸 Locked Engagement DS
𝒟𝑈𝑅 Unlocked Retreat DS
𝒟𝑈𝐸 Unlocked Engagement DS

𝐿𝐸 = 𝑐𝐴 LE Value equal to retreat penalty
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ually. Here, the general solution approach is described which will be
specialized for each of these cases. The LE and LR cases will be solved
by splitting the game into a pre-lock and post-lock segment, solving
each segment individually, and stitching the solutions together. A simi-
lar approach is taken in Chapter 12 wherein a 2-Attacker turret defense
scenario is broken up into a segment prior to and after the termination
of the first Attacker. See also [217]where a partial information scenario
is solved as individual phases (or segments). In all of these cases, the
agents employ controls which put them in the most advantageous con-
figuration for subsequent segments.

For the cases in which 𝐷 achieves a lock on 𝐴, the first time at which
cos 𝛼 = 1 is defined as 𝑡𝑙 ∈ (𝑡0, 𝑡𝑓 ]. In general, the subscript 𝑙 refers
to conditions evaluated at 𝑡 = 𝑡𝑙. Thus the lock function 𝐿 = 0 for 𝑡 ∈
[𝑡0, 𝑡𝑙) and 𝐿 = 1 for 𝑡 ∈ [𝑡𝑙, 𝑡𝑓 ]. The pre-lock segment ends at 𝑡𝑙 when
cos 𝛼 = 1; at this point, neither agent has accrued any cost (c.f. (13.8)
and (13.9)) For the pre-lock segment, a terminal-valued zero-sum dif-
ferential game [130] is defined with a terminal value, Φ(z𝑙), based on
the resulting Value of the post-lock segment initialized at z𝑙 ≡ z(𝑡𝑙),

Φ𝑙 (z𝑙) = 𝑉𝐸𝑜𝑅 (z𝑙) (13.14)

with 𝐴 as the minimizer and 𝐷 as the maximizer, along with the termi-
nal boundary condition

𝜙𝑙 (z𝑙, 𝑡𝑙) = 𝛼𝑙 = 0. (13.15)

The Value function for the post-lock segment, 𝑉𝐸𝑜𝑅, corresponds to the
canonical engage or retreat game [90] and will be defined precisely in
Section 13.3.1 (c.f. (13.37)). If an equilibrium exists, the Value function
of the pre-lock differential game satisfies

𝑉𝑙 (z) = min
u𝐴(⋅)

max
u𝐷(⋅)

Φ𝑙 (z𝑙, 𝑡𝑙) . (13.16)

Because the Value of the pre-lock segment depends on the Value of
the post-lock segment, (13.14)–(13.16) may be thought of as a one-step
dynamic programming problem.
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The solutionmethodologyproceedswith the formation of theHamil-
tonian

H = ż⊤𝝀 = 𝜆𝑑 cos𝜓 + 𝜆𝛼 (𝜔 − 1
𝑑 sin𝜓) + 𝜆𝛽

1
𝑑 sin𝜓, (13.17)

where 𝝀 ≡ [𝜆𝑑 𝜆𝛼 𝜆𝛽]
⊤

is a vector of adjoint variables. The adjoint
dynamics are given by [40] �̇� = −𝜕H

𝜕z , which simplifies to

�̇�𝑑 = (𝜆𝛽 − 𝜆𝛼) 1
𝑑2 sin𝜓, �̇�𝛼 = 0, �̇�𝛽 = 0, (13.18)

thus 𝜆𝛼 and 𝜆𝛽 are constant. At 𝑡 = 𝑡𝑙, the adjoint vector is [40]

𝝀⊤ (𝑡𝑙) = 𝜕Φ𝑙
𝜕z𝑙

+ 𝜈
𝜕𝜙𝑙
𝜕z𝑙

, (13.19)

where 𝜈 is another adjoint variable. The value of the Hamiltonian at
the time of lock is [40]

H (𝑡𝑙) = −𝜕Φ𝑙
𝜕𝑡𝑙

− 𝜈 𝜕𝜙𝑙
𝜕𝑡𝑙

(13.20)

When the functions Φ𝑙 and 𝜙𝑙 do not depend on terminal time H𝑙 = 0,
and since the system kinematics are time-autonomous, H (𝑡) = 0 for
all 𝑡 ∈ [𝑡0, 𝑡𝑙].

𝐴 and 𝐷’s equilibrium control strategiesminimize andmaximize the
Hamiltonian, respectively:

𝜓∗ = argmin
𝜓

H , 𝜔∗ = argmax
𝜔

H ,

which becomes

cos𝜓∗ = −𝜆𝑑

√𝜆2
𝑑 + (𝜆𝛼−𝜆𝛽)

2

𝑑2

, sin𝜓∗ =
𝜆𝛼 − 𝜆𝛽

𝑑√𝜆2
𝑑 + (𝜆𝛼−𝜆𝛽)

2

𝑑2

(13.21)

𝜔∗ = 𝜌 ⋅ sign𝜆𝛼. (13.22)

The value of the adjoint variable 𝜈 is generally determined by evaluat-
ing the Hamiltonian, (13.17), at lock time and substituting in (13.19)–
(13.22).
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In each case, sign𝜆𝛼 is not fully determined by the above first order
necessary conditions for equilibrium. Consequently, there arises a DS

(c.f. [20, 130]) which partitions the region of admissible initial condi-
tions into a region where 𝐷 either moves CCW or CW. The region of
admissible initial conditions may be constructed via backwards inte-
gration of the equilibrium kinematics ((13.21) and (13.22) substituted
into (13.2)) from the terminal manifold (or some particular limiting
manifold, depending on the case). The following Lemma greatly sim-
plifies the process of constructing these regions.

Lemma 13.1. The Attacker’s equilibrium trajectory for the pre-lock segment
of the TEoRK game, 𝑡 ∈ [0, 𝑡𝑙], is a straight line in the Cartesian frame.

Proof. Consider the Cartesian version of the Hamiltonian,

H ∼ = ̇z̃⊤�̃� = 𝜆𝑥 cos ̃𝜓 + 𝜆𝑦 sin ̃𝜓 + 𝜆𝛾𝜔, (13.23)

where �̃� ≡ [𝜆𝑥 𝜆𝑦 𝜆𝛾]
⊤
is a vector of Cartesian adjoint variables. As

in the relative coordinate system, the equilibrium adjoint dynamics are
given by [40] ̇�̃� = −𝜕H ∼

𝜕z̃ , which simplifies to ̇�̃� = 0 since the state com-
ponents, ̃z do not appear in (13.23). Again, the equilibrium Attacker
strategy minimizes the Cartesian Hamiltonian, ̃𝜓∗ = argmin𝜓 H ∼:

cos ̃𝜓∗ = −𝜆𝑥

√𝜆2𝑥 + 𝜆2𝑦
, sin ̃𝜓∗ =

−𝜆𝑦

√𝜆2𝑥 + 𝜆2𝑦
(13.24)

Since �̇�𝑥 = �̇�𝑦 = 0 it must also be that ̇̃𝜓
∗

= 0 and therefore the Carte-
sian Attacker heading, ̃𝜓∗, is constant. A similar style proof appears in
Chapter 12.

Thus,𝐴’s initial position can be obtained using its terminal Cartesian
heading ̃𝜓∗

𝑙 = 𝜓∗
𝑙 + 𝛽𝑙 for a particular 𝑡𝑙. This result is used repeatedly

throughout the remainder to obtain boundaries which partition the
space of initial 𝐴 positions into regions where, e.g., retreat or engage-
ment is optimal. For a limiting terminal configuration (e.g., cos 𝛼 = 1,
𝑑 = 1), the necessary conditions for equilibrium yield ̃𝜓∗

𝑙 and 𝜔∗ and
the length of 𝐴’s trajectory comes from the time for 𝐷 to turn back to
its starting position.
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13.3.1 The Post-Lock Engage or Retreat Game

This section of the paper addresses the definition and solution of the
post-lock segment of the TEoRK game, which is needed to solve the
pre-lock segment (as dictated by (13.14)). The Engage or Retreat Game
with an Attacker moving with simple motion and a Defender whose
control appears directly in the Attacker’s integral cost was formulated
and solved in [84]. This corresponds to 𝐷 having a lock on 𝐴 over the
entire game, i.e., 𝐿 = 1 for all 𝑡 ∈ [𝑡0, 𝑡𝑓 ].

When 𝐴 chooses engagement, 𝐷 incurs its maximum cost and has
“lost” in some sense. So, generally, 𝐷 seeks to make engagement as
costly for 𝐴 as possible to make retreat a more attractive option for 𝐴.
Thus the agents play a zero-sum differential game with 𝐽𝐴 as a cost
functional; the associated Value function of the differential Game of
Engagement (GoE) is defined as

𝑉𝐸 (z0) = min
u𝐴(⋅)

max
u𝐷(⋅)

𝐽𝐴 (z0;u𝐴(⋅),u𝐷(⋅)) , (13.25)

with the constraint 𝜙 (z𝑓 ) = 𝑑𝑓 − 1 = 0. The solution of the game is
comprised of the following expression for the Value function [84]

𝑉𝐸 (z) = (�̄� + 𝑐) (𝑑 − 1) (13.26)

along with the state-feedback equilibrium strategies [84]

𝜓∗ (z) = 𝜋, 𝑤∗ (z) = �̄�, (13.27)

which corresponds to 𝐴 aiming directly at the 𝐷 and 𝐷 applying its
maximum defense.

For retreat, 𝐷 wants to encourage 𝐴 to continue retreating and thus
seeks to minimize 𝐴’s cost. The Value function for the associated opti-
mal control problem is defined as

𝑉𝑅 (z0) = min
u𝐴(⋅),u𝐷(⋅)

𝐽𝐴 (z0;u𝐴(⋅),u𝐷(⋅)) , (13.28)
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with the constraint 𝜙 (z𝑓 ) = 𝑑𝑓 sin𝛽𝑓 − 𝑦𝑅 = 0 which corresponds to
𝑦𝑓 = 𝑦𝑅. An additional constraint is necessary in order to ensure the
validity of the OCR trajectory [84, 248]:

𝑉𝐸 (z(𝑡)) − 𝑉𝑅 (z(𝑡)) ≥ 0 ∀𝑡 ∈ [𝑡0, 𝑡𝑓 ] , (13.29)

which essentially requires that engagement must be as costly or more
costly than retreating along the entire retreat trajectory. The manifold
𝑉𝐸(z) = 𝑉𝑅(z) partitions Ω into a region where engagement is opti-
mal and a region where retreat is optimal. The latter may be further
partitioned depending on whether or not 𝐴 must maneuver around
the engagement region in order to retreat (which occurs when (13.29)
is activated). Let the partitioning of Ω be defined as

R𝐸 = {z ∣ 𝑉𝐸(z) < 𝑉𝑅(z)} (13.30)

R𝑅1
= {z ∉ R𝐸 ∣ |𝑥| > 𝑥2 or 𝑦 < 𝑦2} (13.31)

R𝑅2
= Ω � (R𝐸 ∪ R𝑅1

) (13.32)

where

𝑥2 = �̄� + 𝑐 + 𝑐𝐴 − 𝑐𝑦𝑅

√(�̄� + 𝑐)2 − 𝑐2
, 𝑦2 = 𝑐 (�̄� + 𝑐 + 𝑐𝐴 − 𝑐𝑦𝑅)

(�̄� + 𝑐)2 − 𝑐2
. (13.33)

Figure 13.3 shows the partitioning of the state space for the parame-
ter settings used throughout the remainder of the paper. In R𝑅1

, the
solution is comprised of the Value function expression [90]

𝑉𝑅1
≡ 𝑉𝑅 (z) = 𝑐 (𝑑 sin𝛽 − 𝑦𝑅) + 𝑐𝐴, z ∈ R𝑅1

(13.34)

along with the state-feedback equilibrium strategies [90]

𝜓∗(z) = 3𝜋
2 − 𝛽, 𝑤∗(z) = 0, (13.35)

which corresponds to 𝐴 running straight down and 𝐷 holding fire. In
R𝑅2

, the solution is comprised of the Value function expression

𝑉𝑅2
≡ 𝑉𝑅 (z) = 𝑐𝑡∗

𝑓 + 𝑐𝐴, z ∈ R𝑅2
(13.36)
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Figure 13.3: Engage or retreat regions. 𝑐 = 0.5, 𝑐𝐴 = 2, 𝜌 = 0.8, �̄� = 1, and
𝑦𝑅 = −10.

where 𝑡∗
𝑓 is determined numerically; the details are contained in [90].

Finally, the overall Value function for the post-lock segment of the
TEoRK game is defined as

𝑉𝐸𝑜𝑅 (z) ≡

⎧{{{{
⎨{{{{⎩

𝑉𝐸 (z) z ∈ R𝐸

𝑉𝑅1
(z) z ∈ R𝑅1

𝑉𝑅2
(z) z ∈ R𝑅2

(13.37)

13.3.2 Locked Engagement

In this section, the case inwhich the TEoRKgame terminates in engage-
ment is analyzed. Again, the post-lock segment corresponds to the clas-
sical Engage or Retreat Game discussed in the previous section. Thus
in order for engagement to be optimal Attacker behavior, it is necessary
for the state of the system at the time of lock-on to be in the engage re-
gion. Define the region for which lock-on occurs and engagement is
optimal in the TEoRK game as

𝐿𝐸 ≡ {z ∣ z∗
𝑙 ∈ R𝐸} . (13.38)
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Note the region 𝐿𝐸 is conditioned on z∗
𝑙 – the (equilibrium) state of

the system when 𝐷 locks onto 𝐴, which is the terminal state for the
pre-lock segment. Therefore, the first order necessary conditions for
equilibrium, derived below, will be utilized to construct the region 𝐿𝐸
via backwards integration.

By construction z𝑙 ∈ R𝐸 and thus the terminal cost function is ob-
tained by substituting (13.26) into (13.14)

Φ𝑙 (z𝑙, 𝑡𝑙) = 𝑉𝐸 (z𝑙) = (�̄� + 𝑐) (𝑑𝑙 − 1) , (13.39)

with the terminal boundary condition given in (13.15). The terminal
adjoint values are obtained by substituting (13.39) and (13.15) into
(13.19)

𝜆𝑑𝑙
= �̄� + 𝑐, 𝜆𝛼 = 𝜈, 𝜆𝛽 = 0 (13.40)

Evaluating (13.21) and (13.22) at 𝑡 = 𝑡𝑙 and substituting in (13.40)
yields the following pre-lock terminal equilibrium controls

cos𝜓∗
𝑙 = − (�̄� + 𝑐)

√(�̄� + 𝑐)2 + 𝜈2

𝑑2
𝑙

, sin𝜓∗
𝑙 = 𝜈

𝑑𝑙√(�̄� + 𝑐)2 + 𝜈2

𝑑2
𝑙

(13.41)

𝜔∗ = 𝜌 sign 𝜈. (13.42)

Note 𝜔∗ is constant over 𝑡 ∈ [0, 𝑡𝑙] because 𝜈 is constant. Evaluat-
ing (13.17) at 𝑡 = 𝑡𝑙, substituting in the terminal adjoints (13.40) and
terminal equilibrium controls (13.41), (13.42), and setting equal to 0
allows 𝜈 to be obtained:

𝜈 = ± (�̄� + 𝑐) 𝑑𝑙

√𝜌2𝑑2
𝑙 − 1

(13.43)

Lemma 13.2. The terminal equilibrium controls for Locked Engagement are
given by

cos𝜓∗
𝑙 =

−√𝜌2𝑑2
𝑙 − 1

𝜌𝑑𝑙
, sin𝜓∗

𝑙 = − sign (sin 𝛼0)
𝜌𝑑𝑙

(13.44)

𝜔∗ = −𝜌 sign (sin 𝛼0) , (13.45)
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Proof. Begin by proving that sign 𝜈 = − sign(sin 𝛼0). 𝐷 wishes to max-
imize (13.39) and thus seeks to drive 𝛼 → 0 with maximum 𝑑. Mean-
while,𝐴minimizes (13.39) andwishes to terminate as close to𝐷 as pos-
sible. From (13.21) cos𝜓∗ < 0 and thus 𝑑 is monotonically decreasing
over 𝑡 ∈ [0, 𝑡𝑙]. Therefore, 𝐷 must drive 𝛼 → 0 as quickly as possible,
which corresponds to turning at its maximum angular rate towards
𝐴: 𝜔∗ = −𝜌 sign(sin 𝛼0). Equating this expression to (13.42) yields
sign 𝜈 = − sign(sin 𝛼0). Substituting this alongwith (13.43) into (13.41)
and (13.42) yields (13.44) and (13.45).

Corollary 13.1. In the region 𝐿𝐸 there exists a DS wherein the Defender and
Attacker may either turn CCW or CW and achieve the same Value in the
TEoRK game, and is defined by

𝒟𝐿𝐸 ≡ {z ∣ z ∈ 𝐿𝐸, cos 𝛼 = −1} . (13.46)

Proof. TheDS 𝒟𝐿𝐸 arises due to the symmetry in the problemgeometry
and the equilibrium controls.When cos 𝛼 = −1 it must be that sin 𝛼 = 0
and thus the direction of the equilibrium controls, (13.44) and (13.45)
is undefined. The pre-lock segment terminates at a particular 𝑑𝑙 with
𝛼𝑙 = 0. Thus, the initial state wherein cos 𝛼 = −1 can be reached via
backwards integration with CCW or CW motion. These two trajecto-
ries have the same Value since 𝑉𝐸 is only a function of 𝑑. This proof is
similar to one used in [2]; the interested reader is referred therein for
further detail.

Figure 13.4 shows an example pair of trajectories emanating from
the DS 𝒟𝐿𝐸. When the state of the system begins on 𝒟𝐿𝐸, the Defender
may choose either CCWor CWwithout suffering any penalty w.r.t. the
Value of the game. The Attacker’s control becomes uniquely defined
the instant the state of the system departs from 𝒟𝐿𝐸.

13.3.3 Locked Retreat

There are two regions, R𝑅1
and R𝑅2

, in which 𝐴 would choose to re-
treat. Trajectories beginning in R𝑅1

are unconstrained, while those be-
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Figure 13.4: Example DS trajectories emanating from 𝒟𝐿𝐸 corresponding to
𝐷 choosing CCW (green) or CW (red). The open circle is the
initial 𝐴 position, closed circles are the 𝐴 position when lock-on
occurs. The post-lock trajectories are shown in dashed lines and
an × marks 𝐴’s position at 𝑡𝑓 . Initially, 𝐷’s turret is aimed along
the black vector.

ginning in R𝑅2
are constrained. The solutions will be discussed in Sec-

tions 13.3.4 and 13.3.5, respectively.

13.3.4 LR ending in R𝑅1

Similar to the previous section, define a region where retreat is opti-
mal in the TEoRK game, lock occurs, and the retreat trajectory is un-
constrained (i.e., (13.29) remains inactive):

𝐿𝑅1 ≡ {z ∣ z∗
𝑙 ∈ R𝑅1

} . (13.47)

Substituting (13.34) into (13.14) yields the terminal cost function

Φ𝑙 (z𝑙, 𝑡𝑙) = 𝑉𝑅1
(z𝑙) = 𝑐 (𝑑𝑙 sin𝛽𝑙 − 𝑦𝑅) + 𝑐𝐴, (13.48)

with the terminal boundary condition given in (13.15).
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Lemma 13.3. The terminal equilibrium controls for Locked Retreat ending
in R𝑅1

are given by

cos𝜓∗
𝑙 = −𝑐 sin𝛽𝑙

𝜒 , sin𝜓∗
𝑙 =

−𝑐 cos𝛽𝑙 + 𝜈
𝑑𝑙

𝜒 (13.49)

𝜔∗ = 𝜌 sign 𝜈, (13.50)

where

𝜈 = −𝑐𝑑𝑙 cos𝛽𝑙
𝜌2𝑑2

𝑙 − 1
± 𝑐𝑑𝑙

√
√√
⎷

𝑐𝑑𝑙 cos2 𝛽𝑙

(𝜌2𝑑2
𝑙 − 1)2 + 1

𝜌2𝑑2
𝑙 − 1

, (13.51)

𝜒 = √𝑐2 sin2 𝛽𝑙 + (𝑐 cos𝛽𝑙 − 𝜈
𝑑𝑙

)
2
. (13.52)

Proof. Substituting (13.48) and (13.15) into (13.19) yields the terminal
adjoint values

𝜆𝑑𝑙
= 𝑐 sin𝛽𝑙, 𝜆𝛼 = 𝜈, 𝜆𝛽 = 𝑐𝑑𝑙 cos𝛽𝑙. (13.53)

Substituting (13.53) into (13.21) and (13.22) at 𝑡 = 𝑡𝑙 yields the ter-
minal pre-lock equilibrium controls, (13.49) and (13.50). The pre-lock
terminal equilibrium control expressions are then substituted into the
Hamiltonian, (13.17), and evaluated at 𝑡 = 𝑡𝑙:

H ∗(𝑡𝑙) = −√𝑐2 sin2 𝛽𝑙 + (𝑐 cos𝛽𝑙 − 𝜈
𝑑𝑙

)
2

+ 𝜌|𝜈| = 0, (13.54)

where the last equality follows from the discussion after (13.20). Then,
(13.51) is obtained by solving (13.54) for 𝜈.

Corollary 13.2. In the region 𝐿𝑅1 there exists a DS, 𝒟𝐿𝑅1
, wherein the De-

fender and Attacker may either turn CCW or CW and achieve the same Value
in the TEoRK game.

Proof. The logic is similar to Corollary 13.1, however, the polar symme-
try from the LE case is lost in the LR case since 𝐴 is ultimately heading
for the retreat zone. Hence there is no analytic expression for the sur-
face 𝒟𝐿𝑅1

, and as a result, the surface is computed numerically.
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The DS 𝒟𝐿𝑅1
partitions 𝐿𝑅1 into two regions wherein 𝐷 has either

CCWmotion or CWmotion (which corresponds to the two sign possi-
bilities for 𝜈 in (13.51)). Computation of 𝒟𝐿𝑅1

is thus useful for deter-
mining the sign of 𝜈 for particular terminal conditions. This computa-
tion is accomplished via coupled backwards shooting process adapted
from Chapter 14 and demonstrated in Section 13.4.2 wherein pairs of
trajectories are obtained which have equal Value and integrate back to
the same initial condition. Figure 13.5 gives an example pair of trajec-
tories which are initialized on a point along 𝒟𝐿𝑅1

. Like the Locked En-
gagement DS, 𝒟𝐿𝐸, 𝐴 can respond with its corresponding equilibrium
control the instant the state leaves 𝒟𝐿𝑅1

.
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Figure 13.5: Representative trajectories emanating from the DS 𝒟𝐿𝑅1
. The

CCW (red) and CW (green) trajectories have the same Value,
which, in this case, means lock-on occurs at the same 𝑦 coordi-
nate.

Special care must be taken when backwards integrating as the state
of the system may enter a region where Locked Engagement becomes
optimal. Figure 13.6 shows an example trajectory for LR and LE, z𝐿𝑅

and z𝐿𝐸, respectively, which have the same Value. The manifold for
which the Value of LE and LR are identical is akin to the 𝑉𝐸 = 𝑉𝑅

manifold shown in Fig. 13.3 except that it is a 2D manifold in the 3D
state space.



286 ENGAGE OR RE TR EAT W I TH A K INE T I C TURRE T

−5 0 5 10
x

−10

−8

−6

−4

−2

0

2

4

y

zLE

zLR

Figure 13.6: Example trajectories for LE (green) and LR (red) with the same
Value.

13.3.5 LR ending in R𝑅2

As in previous sections, define a region where retreat is optimal in the
TEoRK game, lock occurs, and the retreat trajectory is constrained (i.e.,
(13.29) is activated):

𝐿𝑅2 ≡ {z ∣ z∗
𝑙 ∈ R𝑅2

} . (13.55)

For convenience, the analysis is done in the Cartesian frame for this
case. Substituting (13.36) into (13.14) yields the terminal cost function

Φ𝑙 (z̃𝑙, 𝑡𝑙) = 𝑉𝑅2
( ̃z𝑙) = 𝑐𝑡∗

𝑓 + 𝑐𝐴. (13.56)

In the Cartesian frame, the terminal manifold (13.15) becomes

𝜙 (z̃𝑙, 𝑡𝑙) = 𝛾1 − arctan(𝑦𝑙
𝑥𝑙

) = 0. (13.57)

The solution for this case is complicated by the lack of an analytical
expression for 𝑡∗

𝑓 , which is the optimal time for 𝐴 to reach the retreat
zone while satisfying (13.29). From [90], the OCR trajectory for 𝐴 is
comprised of a straight segment which is tangent to the 𝑉𝑅 = 𝑉𝐸 man-
ifold, a curved segment which rides along the manifold, and a straight
segment departing from (𝑥2, 𝑦2) terminating at (𝑥2, 𝑦𝑅). Let ̃𝜓∗

𝑅 be the
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optimal retreat heading for 𝐴 at 𝑡 = 𝑡𝑙 which is tangent to the 𝑉𝑅 = 𝑉𝐸

manifold. Then, specializing (13.19) the pre-lock terminal adjoint val-
ues are

𝝀(𝑡𝑙) =
𝜕𝑉𝑅2

𝜕z̃ + 𝜈
𝜕𝜙𝑙
𝜕z̃ (13.58)

⟹ 𝜆𝑥𝑙
= −𝑐 cos ̃𝜓∗

𝑅 + 𝜈 𝑦𝑙
𝑥2

𝑙 + 𝑦2
𝑙

(13.59)

𝜆𝑦𝑙
= −𝑐 sin ̃𝜓∗

𝑅 − 𝜈 𝑥𝑙
𝑥2

𝑙 + 𝑦2
𝑙

(13.60)

𝜆𝛾𝑙
= 𝜈. (13.61)

The constrained retreat Value partial derivatives 𝜕𝑉𝑅2
𝜕z̃ are derived

as follows. Let 𝝈 ≡ 𝜕𝑉𝑅2
𝜕z̃ = [𝜎𝑥 𝜎𝑦 𝜎𝛾]

⊤
. The focus is on the post-

lock segment wherein lock-on has occurred, and thus 𝛾 no longer has
any bearing on the optimality since 𝐷 has sufficient control authority
to maintain the lock-on (i.e., keep cos 𝛼 = 1). Therefore, 𝜎𝛾 = 0. Thus
the Hamiltonian for the retreat case in the Cartesian frame is

H𝑅 = 𝜎𝑥 cos ̃𝜓𝑅 + 𝜎𝑦 sin ̃𝜓𝑅 (13.62)

Here, the terminal cost function is simply Φ𝑅 (z̃𝑓 , 𝑡𝑓 ) = 𝑐𝑡𝑓 + 𝑐𝐴, and
the terminal manifold is 𝜙𝑅 (z̃𝑓 , 𝑡𝑓 ) = 𝑦𝑓 − 𝑦𝑅 = 0 [90]. The value of
H𝑅 at the post-lock termination is [40]

H𝑅(𝑡𝑓 ) = −𝜕Φ𝑅
𝜕𝑡𝑓

− 𝜇𝜕𝜙𝑅
𝜕𝑡𝑓

= −𝑐. (13.63)

The Attacker must minimize H𝑅, and thus

cos ̃𝜓∗
𝑅 = −𝜎𝑥

√𝜎2𝑥 + 𝜎2𝑦
, sin ̃𝜓∗

𝑅 =
−𝜎𝑦

√𝜎2𝑥 + 𝜎2𝑦
. (13.64)

Evaluating (13.64) at 𝑡 = 𝑡𝑓 and substituting into (13.62) gives

H𝑅(𝑡𝑓 ) = −√𝜎2𝑥 + 𝜎2𝑦 = −𝑐. (13.65)

Substituting (13.65) into (13.64) yields the desired expressions:

𝜎𝑥 = −𝑐 cos ̃𝜓∗
𝑅, 𝜎𝑦 = −𝑐 sin ̃𝜓∗

𝑅. (13.66)
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Lemma 13.4. The terminal equilibrium controls for Locked Retreat ending
in R𝑅2

are given by

cos ̃𝜓∗
𝑙 =

−𝜆𝑥𝑙

√𝜆2𝑥𝑙
+ 𝜆2𝑦𝑙

, sin ̃𝜓∗
𝑙 =

−𝜆𝑦𝑙

√𝜆2𝑥𝑙
+ 𝜆2𝑦𝑙

(13.67)

𝜔∗ = 𝜌 sign 𝜈 (13.68)

where 𝜆𝑥𝑙
, 𝜆𝑦𝑙

, 𝜆𝛾𝑙
are given in (13.59)–(13.61), ̃𝜓∗

𝑅 is computed numerically,
and

𝜈 = −𝑏 ± √𝑏2 − 4𝑎𝑐2

2𝑎 (13.69)

where

𝑎 = ⎛⎜
⎝

1
𝑥2

𝑙 + 𝑦2
𝑙

− 𝜌2⎞⎟
⎠

(13.70)

𝑏 = 2𝑐 ⎛⎜
⎝

𝑦𝑙 cos ̃𝜓∗
𝑅 − 𝑥𝑙 sin ̃𝜓∗

𝑅
𝑥2

𝑙 + 𝑦2
𝑙

⎞⎟
⎠

. (13.71)

Proof. Considering, again, the Cartesian Hamiltonian, (13.23), and the
fact that 𝐴 minimizes this Hamiltonian, (13.67) is directly obtained
(c.f. Lemma 13.1; the vector [cos ̃𝜓∗ sin ̃𝜓∗]⊤ must be anti-parallelwith
the vector [𝜆𝑥 𝜆𝑦]

⊤
). Similarly, 𝜔∗ maximizes H ∼, and (13.68) is ob-

tained. Substituting (13.67) and (13.68) into (13.23) and evaluating at
𝑡 = 𝑡𝑙 yields

H ∗
𝑙 = −√𝜆2𝑥𝑙

+ 𝜆2𝑦𝑙
+ 𝜌|𝜈| = 0 (13.72)

where, again, the latter equality is discussed after (13.20). Substituting
in the terminal adjoint values (13.59)– (13.61) gives

− √(𝑐 cos ̃𝜓𝑅 + 𝜈 𝑦𝑙
𝑥2

𝑙 +𝑦2
𝑙
)

2
+ (𝑐 sin ̃𝜓𝑅 − 𝜈 𝑥𝑙

𝑥2
𝑙 +𝑦2

𝑙
)

2

+ 𝜌|𝜈| = 0,
(13.73)

which simplifies to the quadratic form:

( 1
𝑥2

𝑙 +𝑦2
𝑙

− 𝜌2)
⏟⏟⏟⏟⏟⏟⏟

𝑎

𝜈2 + 2𝑐 (𝑦𝑙 cos ̃𝜓𝑅−𝑥𝑙 sin ̃𝜓𝑅
𝑥2

𝑙 +𝑦2
𝑙

)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑏

𝜈 + 𝑐2 = 0, (13.74)
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where 𝑎 and 𝑏 have been defined as the coefficients of the 𝜈 terms, cor-
responding to (13.70) and (13.71). Thus the solution for 𝜈 is given by
the quadratic formula, as shown in (13.69). Note that in the state space
of interest, 𝑑 = √𝑥2 + 𝑦2 > 1

𝜌 and thus 𝑎 < 0. So the term 4𝑎𝑐2 is neg-
ative and thus √𝑏2 − 4𝑎𝑐2 > 𝑏. Therefore, the two solutions for 𝜈 have
opposite signs.
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Figure 13.7: Example trajectory for LR ending in R𝑅2
. The initial turret look

angle is shown by the black arrow. 𝐴 starts at the open circle, gets
locked-onto at the closed red circle, enters the constrained arc at
the upper black circle, leaves the 𝑉𝐸 = 𝑉𝑅 manifold at the lower
black circle, and reaches the retreat zone at the ×.

13.4 UNLOCKED SCENAR IO S

In this section, regions are obtained for which 𝐴 can be guaranteed to
reach the engagement surface, ℰ , or the retreat surface, ℛ , without 𝐷
being able to achieve a lock-on. According to the actual cost functional,
(13.8), any trajectory ending on the engagement surface forwhich lock-
on does not occur (and thus 𝐿 = 0 ∀𝑡 ∈ [0, 𝑡𝑓 ]) results in an Attacker
cost of 0. Likewise, any trajectory ending on the retreat surface for
which lock-on does not occur results in an Attacker cost of 𝑐𝐴. There-
fore, the Attacker strategy which can achieve one or other outcomes
is not necessarily unique. Consider, for example, an initial 𝐴 position
which is very close to the retreat surface, and 𝐷 is looking away; there
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could be an infinite number of ways for 𝐴 to reach the retreat surface
prior to lock-on. Thus, within each of these two regions, an auxiliary
differential game is formulated and solved in order to obtain an admis-
sible Attacker trajectory.

In both cases, the terminal cost functional considered is the terminal
separation angle:

Φ𝑈 (z𝑓 ) = |𝛼𝑓 |, (13.75)

where the subscript 𝑓 denotes conditions at terminal time, 𝑡𝑓 , and the
subscript 𝑈 denotes “unlocked”. The limiting case for which 𝛼𝑓 = 0
yields the boundary of the UE and UR regions. The auxiliary Value
function for the unlocked scenarios is defined as,

𝑉𝑈(z) = max
u𝐴(⋅)

min
u𝐷(⋅)

Φ𝑈(z𝑓 ). (13.76)

Note that, unlike in the locked formulation (c.f. (13.16)), 𝐴 is themaxi-
mizer and 𝐷 is the minimizer. Bymaximizing |𝛼𝑓 | the Attacker is trying
to guarantee the largest “margin” between itself and𝐷 at terminal time.
Alternatively, one may consider the terminal time to be the cost/payoff
as was done in Chapter 11.

13.4.1 Unlocked Engagement

For UE, the Attacker terminates on ℰ wherein 𝑑𝑓 = 1. Define a region
where engagement is optimal in the TEoRK game and lock-on does not
occur:

𝑈𝐸 ≡ {z ∣ z∗
𝑓 ∈ ℰ, 𝐿(z(𝑡)) = 0 ∀𝑡 ∈ [0, 𝑡𝑓 ]} (13.77)

The auxiliary differential game ((13.2) with (13.75) and (13.76)) is
identical to the Game of Angle in Chapter 11 with a scaling in time (i.e.,
1
𝜌 is the equivalent speed ratio).

Lemma 13.5 (UE Region [254, 255]). The region for which 𝐴 can reach ℰ
before 𝐷 can achieve lock-on is given by

𝑈𝐸 = {z ∣ |𝛼| > 𝛼𝑈𝐸} , (13.78)
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where

𝛼𝑈𝐸 = √𝜌2𝑑2 − 1 + sin−1 ( 1
𝜌𝑑) − √𝜌2 − 1 − sin−1 (1

𝜌) (13.79)

Lemma 13.6 (UE Auxiliary Equilibrium Policies [254, 255]). The equi-
librium policies for the UE auxiliary differential game are

cos𝜓∗
𝑈𝐸 = √1 − 1

𝜌2𝑑2 , sin𝜓∗
𝑈𝐸 = − sign 𝛼 ( 1

𝜌𝑑) (13.80)

𝜔∗
𝑈𝐸 = −𝜌 sign 𝛼. (13.81)

For UE, the Attacker terminates on the target circle and thus the 𝛽
state component has no effect on the optimality in the auxiliary dif-
ferential game. As was shown in Chapter 11, there exists a dispersal
surface due to the symmetry:

𝒟𝑈𝐸 ≡ {z ∈ 𝑈𝐸 ∣ cos 𝛼 = −1} . (13.82)

From (13.46) it is clear that the locked engagement dispersal surface,
𝒟𝐿𝐸, is coincident with 𝒟𝑈𝐸 at the boundary of 𝑈𝐸 and is, in fact, a
continuation thereof.

13.4.2 Unlocked Retreat

For UR, the Attacker terminates on ℛ wherein 𝑦𝑓 = 𝑦𝑅. As before,
define a region where retreat is optimal in the TEoRK game and lock-
on does not occur:

𝑈𝑅 ≡ {z ∣ z∗
𝑓 ∈ ℛ, 𝐿(z(𝑡)) = 0 ∀𝑡 ∈ [0, 𝑡𝑓 ]} (13.83)

The associated terminal boundary condition is thus

𝜙𝑈𝑅 (z𝑓 ) = 𝑑𝑓 sin𝛽𝑓 − 𝑦𝑅 = 0. (13.84)
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From the transversality condition [40], the adjoint values at terminal
time are

𝝀⊤(𝑡𝑓 ) = 𝜕Φ𝑈
𝜕z𝑓

+ 𝜈
𝜕𝜙𝑈𝑅
𝜕z𝑓

(13.85)

⟹ 𝜆𝑑𝑓
= 𝜈 sin𝛽𝑓 (13.86)

𝜆𝛼 = sign 𝛼𝑓 (13.87)

𝜆𝛽 = 𝜈𝑑𝑓 cos𝛽𝑓 . (13.88)

Again, theHamiltonian for this auxiliaryUR game is constant since the
dynamics are autonomous. Moreover,

H (𝑡𝑓 ) = −𝜕Φ𝑈
𝜕𝑡𝑓

− 𝜈 𝜕𝜙𝑈𝑅
𝜕𝑡𝑓

= 0, (13.89)

and therefore, H (𝑡) = 0 ∀𝑡.

Lemma 13.7. The terminal equilibrium controls for the UR auxiliary differ-
ential game given by (13.2), (13.75), (13.76), and (13.84) are

cos𝜓∗
𝑓 =

𝜈 sin𝛽𝑓
𝜉 , sin𝜓∗

𝑓 =
𝜈 cos𝛽𝑓 − 1

𝑑𝑓
sign 𝛼𝑓

𝜉 (13.90)

𝜔∗ = −𝜌 sign 𝛼𝑓 , (13.91)

where

𝜉 =
√
√√
⎷

𝜈2 sin𝛽2
𝑓 + ⎛⎜

⎝
𝜈 cos𝛽𝑓 − 1

𝑑𝑓
sign 𝛼𝑓 ⎞⎟

⎠

2
, (13.92)

and
𝜈 = 1

𝑑𝑓
(sign 𝛼𝑓 ⋅ cos𝛽𝑓 − √cos2 𝛽𝑓 − 1 + 𝑑2

𝑓 𝜌2) (13.93)

Proof. Evaluating (13.17) at time 𝑡𝑓 and substituting in the terminal
adjoint values (13.86)–(13.88) yields

H𝑓 = 𝜈 sin𝛽𝑓 cos𝜓𝑓 + sign 𝛼𝑓 ⎛⎜
⎝

𝜔𝑓 − 1
𝑑𝑓

sin𝜓𝑓 ⎞⎟
⎠

+ 𝜈 cos𝛽𝑓 sin𝜓𝑓

(13.94)

= [𝜈 sin𝛽𝑓 (𝜈 cos𝛽𝑓 − 1
𝑑𝑓

sign 𝛼𝑓 )]

[cos𝜓𝑓 sin𝜓𝑓 ]
⊤

+ 𝜔𝑓 sign 𝛼𝑓

(13.95)
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Then (13.90) and (13.91) are obtained by maximizing and minimiz-
ing (13.95), respectively. Clearly, for 𝜓∗, the vector [cos𝜓∗

𝑓 sin𝜓∗
𝑓 ]

must be parallel to the vector [𝜈 sin𝛽𝑓 (𝜈 cos𝛽𝑓 − 1
𝑑𝑓

sign 𝛼𝑓 )]. Sub-
stituting (13.89), (13.90), and (13.91) into (13.95) gives

H ∗
𝑓 =

√
√√
⎷

𝜈2 sin2 𝛽𝑓 + ⎛⎜
⎝

𝜈 cos𝛽𝑓 − 1
𝑑𝑓

sign 𝛼𝑓 ⎞⎟
⎠

2
− 𝜌 = 0. (13.96)

Solving for 𝜈 gives

𝜈 = 1
𝑑𝑓

(sign 𝛼𝑓 cos𝛽𝑓 ± √cos2 𝛽𝑓 − 1 + 𝑑2
𝑓 𝜌2) . (13.97)

Within the game space, Ω, the distance 𝑑 > 1, and it was assumed that
𝜌 > 1. Therefore, 𝜌2𝑑2

𝑓 > 1, so the argument in the radical is always
positive. Moreover, the radical term is larger in magnitude than the
cos𝛽𝑓 term and thus dominates the sign of 𝜈. Because 𝑦𝑅 ≪ −1 it must
be that ̇𝑑𝑓 > 0, that is, 𝐴 has a component of velocity away from 𝐷. Also,
from (13.2) and (13.90) it must be that ̇𝑑𝑓 = cos𝜓∗

𝑓 ∝ 𝜈 sin𝛽𝑓 . The term
sin𝛽𝑓 is strictly negative (again, since 𝑦𝑅 ≪ −1) which means that 𝜈
must also be strictly negative. Therefore, the ± sign in (13.97) can be
replaced with a minus sign, since the positive version would make 𝜈
positive.

Remark 20. The Attacker control, (13.90), produces motion to the left
or right in the Cartesian frame for positive or negative 𝛼𝑓 (CW or CCW
Defender motion), respectively.

Corollary 13.3. In the region 𝑈𝑅 there exists a DS, denoted 𝒟𝑈𝑅, wherein
the Defender may either turn CCW or CW and achieve the same Value in the
auxiliary game.

Proof. This DS is present for reasons similar to Corollaries 13.1 and 13.2,
but is more similar to the latter in that it does not have a closed form
analytic expression.

When considering a general initial statewithin 𝑈𝑅, one does not nec-
essarily know the conditions at final time – in particular, sign 𝛼𝑓 is un-
known, which determines whether 𝐷 turns CCW or CW. Thus the DS
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partitions 𝑈𝑅 into a region for which 𝛼𝑓 > 0 and 𝛼𝑓 < 0 (correspond-
ing to 𝐷 turning CW or CCW, respectively). It must be the case that
the antipodal point of 𝐷’s look-angle on the line 𝑦 = 𝑦𝑅 is one of the
endpoints of 𝒟𝑈𝑅:

z𝑒𝑛𝑑 ≡ [| 𝑦𝑅
cos𝛾 | 𝜋 𝜋 + 𝛾] ∈ 𝜕𝒟𝑈𝑅 (13.98)

where 𝜕 denotes the boundary of a set (or surface, in this case). At
this point, the Value of the auxiliary game is |𝛼𝑓 | = 𝜋, and both the
CW and CCW solution trivially yield this Value since this point is also
on the terminal surface ℛ . The other endpoint of 𝒟𝑈𝑅 corresponds
to |𝛼𝑓 | = 0, which also lies on 𝜕𝑈𝑅 – the boundary of the Unlocked
Retreat region. Thus, the DS 𝒟𝑈𝑅 can be parameterized by the Value
of the auxiliary game, |𝛼𝑓 |, for which the two equi-Valued trajectories
naturally arise because of the absolute value (i.e., there is a positive
and negative solution).

These facts are important as they allow the construction of 𝒟𝑈𝑅,
given an initial look-angle 𝛾0, by employing concepts from numeri-
cal continuation (or homotopy) [3]. Let {𝛼𝑓𝑘}

𝑁
𝑘=0

be an ordered, nonin-
creasing set of 𝛼𝑓 values where 𝛼𝑓0 = 𝜋, 𝛼𝑓𝑁 = 0, and 𝑁 ∈ ℕ+. For each
𝛼𝑓𝑘 , a coupled shooting problem is solved to find a pair of of trajecto-
rieswhich integrate back to the same initial conditions, [𝑥𝒟 𝑦𝒟 𝛾0]𝑘.
However, because of Lemmas 13.1 and 13.7, given a terminal state on
ℛ the associated initial state for a given 𝛾0 can be obtained analytically
(without the need for numerical backwards integration as is generally
the case for shooting). The DS, for a particular 𝛾0, is then approximated
by

𝒟𝑈𝑅(𝛾0) ≈ {(𝑥𝒟 , 𝑦𝒟)}𝑁
𝑘=0 (13.99)
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For a particular 𝛼𝑓𝑘 , the following constraint satisfaction problem is
solved:

𝑥𝑟, 𝑥𝑙 s.t.

[𝑥𝒟 𝑦𝒟]⊤
𝑙 = [𝑥𝑙 𝑦𝑅]⊤ − Δ𝛾𝑙

𝜌 [cos𝜓∗ sin𝜓∗]⊤
𝑙

[𝑥𝒟 𝑦𝒟]⊤
𝑟 = [𝑥𝑟 𝑦𝑅]⊤ − Δ𝛾𝑟

𝜌 [cos𝜓∗ sin𝜓∗]⊤
𝑟

[𝑥𝒟 𝑦𝒟]⊤
𝑟 = [𝑥𝒟 𝑦𝒟]⊤

𝑙

𝑥𝑟 > 𝑥𝑙

(13.100)

where subscripts 𝑟 and 𝑙 correspond to the right and left sides (in the
Cartesian frame) of the DS (c.f. the preceding Remark). The quantities
on the RHS are given by

Δ𝛾𝑙 = 𝛾0 + 2𝜋 − atan2 (𝑦𝑅, 𝑥𝑙) − 𝛼𝑓𝑘 (13.101)

Δ𝛾𝑟 = −𝛾0 + atan2 (𝑦𝑅, 𝑥𝑟) − 𝛼𝑓𝑘 (13.102)

𝜈𝑙 = 1
𝑑𝑙

⎛⎜⎜
⎝

𝑥𝑙
𝑑𝑙

−
√
√√
⎷

𝑥2
𝑙

𝑑2
𝑙

− 1 + 𝑑2
𝑙 𝜌2⎞⎟⎟

⎠
(13.103)

𝜈𝑟 = 1
𝑑𝑟

⎛⎜⎜
⎝

−𝑥𝑟
𝑑𝑟

− √𝑥2𝑟
𝑑2𝑟

− 1 + 𝑑2𝑟 𝜌2⎞⎟⎟
⎠

(13.104)

𝜓∗
𝑙 = atan2( 1

𝑑𝑙
(𝜈𝑙𝑥𝑙 − 1) , 𝜈𝑙𝑦𝑅

𝑑𝑙
) (13.105)

𝜓∗
𝑟 = atan2( 1

𝑑𝑟
(𝜈𝑟𝑥𝑟 + 1) , 𝜈𝑟𝑦𝑅

𝑑𝑟
) (13.106)

The other important surface is the (upper) boundary of theUnlocked
Retreat region, 𝜕𝑈𝑅 (the lower is simply 𝑦 = 𝑦𝑅). This surface is ob-
tained by setting 𝛼𝑓 = 0 and integrating back from ℛ . It can be thought
of as being computed in two parts: for 𝑥𝑓 ∈ (−∞, 𝑥𝑟𝑚𝑎𝑥

] set sign 𝛼𝑓 =
−1 to compute 𝜈, and for 𝑥𝑓 ∈ [𝑥𝑙𝑚𝑖𝑛

, ∞) set sign 𝛼𝑓 = 1. Figure 13.8
shows the Unlocked Retreat DS 𝒟𝑈𝑅, along with the boundary of the
Unlocked Retreat region 𝜕𝑈𝑅.
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(b) Representative trajectories emanating from𝒟𝑈𝑅
along with the associated Defender sweep an-
gles

Figure 13.8: Unlocked Retreat DS
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13.5 FUL L SOLUT ION

In this section the results of the previous sections are utilized to de-
velop the solution over the whole state space. In particular, the state
space is partitioned into 5 distinct regions in which a particular 𝐴 be-
havior and termination is optimal – LE, LR ending in R𝑅1

or R𝑅2
, UE,

and UR. Along the boundaries of these regions, 𝐴 may have two or
more choices which yield the same Value, 𝐽∗

𝐴, in the TEoRK game. Be-
cause the state space Ω is in 3D, the regions are 3D as well, and the
boundaries are 2Dmanifolds in 3D space. In order to visualize the par-
titioning in a more meaningful way, the initial look angle of 𝐷’s turret
is fixed. Then the regions correspond to initial 𝐴 positions (in 2D) and
the boundaries become 1D. For a particular initial turret look angle, 𝛾0,
the 1D boundaries are obtained by identifying the appropriate termi-
nal manifold(s) and extending 𝐴’s position backwards in time using
the associated terminal equilibrium heading until 𝛾 = 𝛾0.

For Locked Engagement there are two critical configurations to con-
sider: 1) lock-on occurs exactly when 𝐴 reaches 𝐷 (𝑑𝑙 = 1) and 2) lock-
on occurs exactly when 𝑉𝐸 = 𝑉𝑅. The first is critical in the sense that,
for LE, it is required that lock-on actually occur; the limiting case is
when it occurs just before the overall TEoRK game terminates. The
boundary obtained via backwards integration from 𝑑𝑙 = 1 divides the
LE andUE regions – that is, if𝐴 is initialized inside this boundary,𝐴 can
reach 𝐷 and avoid being locked-on. The terminal manifold 𝑉𝐸 = 𝑉𝑅 is
critical because for engagement to be optimal, 𝐴 must be in R𝐸 by the
time lock-on occurs; the limiting case is 𝐴 just barely reaches R𝐸 when
cos 𝛼 → 1. Backwards integration from this terminal manifold divides
the LE and LR regions.

For Locked Retreat, a distinction is made between LR ending in R𝑅1

or R𝑅2
. LR ending in R𝑅1

has one critical terminal manifold: lock-on
occurs exactly when 𝐴 reaches the retreat zone (𝑦𝑙 = 𝑦𝑅). The asso-
ciated boundary divides LR ending in R𝑅1

from UR – that is, if 𝐴 is
initialized below this boundary, 𝐴 can reach 𝑦𝑅 and avoid being locked-
on. LR ending in R𝑅2

has one critical terminal manifold in which lock-
on occurs exactly when 𝐴 reaches the boundary between R𝑅1

and R𝑅2
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(|𝑥𝑙| = 𝑥2, 𝑦𝑙 > 𝑦2). The associated boundary merely distinguishes be-
tween LR ending in R𝑅2

versus R𝑅1
.

The terminal manifolds identified above do not all have the same
cost. Depending on the problem parameters (𝜌, 𝑐, �̄�), points on the
boundary between LE and LR must be obtained by integrating back
from equi-Valued terminal manifolds (instead of the critical terminal
manifolds identified above). The process is similar to the process de-
scribed in Section 13.4.2 for computing the Unlocked Retreat DS. Fig-
ures 13.2 and 13.9 each show an example partitioning for a particular
𝛾0.

−20 −15 −10 −5 0 5 10 15 20
x

−10

−5

0

5

10

15

y

Figure 13.9: A partitioning of the state space for a particular initial turret look
angle, 𝛾0 = 12

9 𝜋. The legend is in Tab. 13.1.

Along with these examples, Fig. 13.10 is included in order to demon-
strate the effect of the 3 parameters, 𝜌, 𝑐, and 𝑃, on the state space parti-
tioning. As shown in Figs. 13.10a and 13.10e the nondimensional turret
maximum turn rate, 𝜌, affects the size of the UE, LE, and UR regions;
increasing 𝜌 decreases their size and vice versa. This is because 𝐷 is able
to drive cos 𝛼 → 1 quicker which diminishes what 𝐴 can accomplish
in the pre-lock segment; in the limit as 𝜌 → ∞, the unlocked regions
disappear and the scenario is identical to the original engage or retreat
game in [90]. Increasing the time penalty, 𝑐, mainly results in stretch-
ing the 𝑉𝐸 = 𝑉𝑅 surface, and thereby the LE region, vertically (see
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Figs. 13.10b and 13.10f). Higher 𝑐 means that time is of the essence and
the total time cost begins to outweigh the damage that 𝐷 can inflict,
so engagement is more advantageous for the portion of the state space
which is closer to 𝐷 than to ℛ (i.e., the space above 𝐷). Finally, increas-
ing the retreat penalty, 𝑃, results in a larger LE region while essentially
maintaining its shape. Again, this is because larger 𝑃 means engage-
ment is generally more favorable, however, the effect is consistent over
the state space.

(a) 𝜌 = 1
0.5 (b) 𝑐 = 0.2 (c) 𝑃 = 1

(d) reproduction of
Fig. 13.2

(e) 𝜌 = 1
0.95 (f) 𝑐 = 1 (g) 𝑃 = 5

Figure 13.10: State space partitioning for varying sets of parameters. Unless
indicated, the parametersmatch Fig. 13.2: 𝜌 = 1

0.8 , 𝑐 = 0.5, 𝑃 = 2.
The legend is in Tab. 13.1.
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13.6 CONCLUS ION

In this chapter the canonical engage or retreat game was extended by
considering the Defender to have a turn-constrained turret. The cases
in which the Defender could aim its turret onto the Attacker’s position
prior to the Attacker reaching either the engagement or retreat termi-
nal surfaces were solved. For Locked Engagement and Locked Retreat,
the equilibrium control strategies for the Attacker and Defender were
derived as a function of the terminal state. Using backwards integra-
tion, these strategies were used to construct a partitioning of the state
space whose regions correspond to the various terminal cases. Addi-
tionally, two auxiliary differential games were posed to derive unique
Attacker controls for the cases in which the Defender could not aim
its turret onto the Attacker prior to the latter reaching a terminal sur-
face. The need for additional cost/payoff criteria (in this case, terminal
look angle) arose because the original cost/payoff is the same for all
such “unlocked” trajectories. The qualitative influence of each of the 3
parameters on the solution was demonstrated and discussed.



14
S INGLE ATTACKER AND A WIDE - B EAM TURRET

14.1 IN TRODUCT ION

Understanding singular surfaces within differential games and their
relationship to the game’s parameters is important (c.f. Section 2.4.5).
The focus in this chapter is on numerical techniques for computing
singular surfaces, for which there is a dearth of literature. As men-
tioned previously, there are three singular surfaces are present in the
wide-beam version of the TDDG: (1) the Turret DS (TDS), (2) the Tur-
ret Universal Surface (TUS), and (3) the Attacker DS (ADS) [2]. These
names describe the type of the surface as well as which agent has con-
trol authority on the surface. In the case of the DSs, the agent with con-
trol authority must make a choice between two (or more) optimal ac-
tions. Here, the Value function, which gives the saddle-point equilib-
rium cost of the game for a particular initial condition, is not differen-
tiable [20]. The Value function is also not differentiable on the Turret
Universal Surface; and in this case, the Turret’s optimal control is not
defined. Fortunately, both the Turret DS and the TUS can be handled
analytically, as was done in [2]. Neither of these surfaces are affected
by the parameter settings as they arise due to inherent symmetries in
the game. The focus, in this chapter, is on the Attacker DS which does
not have an analytical expression and thus must be treated numeri-
cally [see 191, §2.5.1]. In particular, it is shown that the parameters’
settings affect not only the shape of the surface but also whether or
not the surface is even present (thereby partly addressing Research
Objectives 2 and 3). The numerical process developed to accomplish
this task is enabled by collapsing the five natural parameters into two
composite parameters. This material is based upon [247].

The chapter is organized as follows. Section 14.2 contains the prob-
lem formulation and details the conversion from the natural parameter
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space to the collapsed parameter space. Section 14.3 formally describes
DSs and includes necessary and sufficient conditions which are used in
the following section. Section 14.4 details two different numerical ap-
proaches used to characterize the Attacker DS. Section 14.5 concludes
the paper.

14.2 K INEMAT I C S AND SCAL ING

𝑑
𝛼

𝛽

𝜓

𝑇

𝐴

[ February 3, 2022 at 14:09 – classicthesis v4.6 ]

Figure 14.1: Coordinate system

Figure 14.1 shows the coordinate system used throughout the re-
mainder of the paper. Note this is a relative coordinate system. As pre-
sented in [2], the coordinate system cannot be reduced further than
three. Note, the ‘global rotation’ of the system, 𝛽, is necessary for the
conversion of the relative states back to the natural states (i.e. Carte-
sian coordinates of both agents), but not necessary for computing the
equilibrium trajectories of the other states. The motivation to reduce
the parameter set is similar to the motivation for reducing the state di-
mension. Different parameter sets may yield quite different player be-
haviors across the state space. Characterizing these different regions of
optimal play over the space of possible parameter settings is an impor-
tant part of solving the game (in a full sense). Doing so for large (> 3)
numbers of parameters may be difficult or intractable. Fortunately, it is
often possible to reduce the number of parameters via various scalings
and non-dimensional quantities.

For inspiration, consider the famous Buckingham𝜋 Theorem,which
is based upon unit compatibility, and is used (particularly within the
aerospace community) to derive physical laws centered around non-
dimensional numbers (e.g., Reynolds number,Machnumber, etc.).With-
out an understanding of Reynolds number, 𝑅𝑒 = 𝜌𝑢𝐿

𝜇 , one may unnec-
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essarily repeat experiments with different length scales (𝐿) and speeds
(𝑢), but constant 𝑅𝑒.

Such a collapsing of physical quantities can also be seen in the HCDG

wherein it is clear that the ratio of capture radius to Chauffeur turn
radius is pertinent to the different solution regions. [164] characterized
the entire parameter space, dividing it into 20 distinct regions with
different characteristics.

Here, the collapsing of the physical parameters is facilitated by scal-
ing time and distance. For notational convenience, the dimensional
variables are barred; the non-barred variables denote the scaled quan-
tities. The TDDG kinematics were expressed in [2] originally and are
given here with a small correction and a simplification, along with the
optimal costate kinematics:

̇̄𝑑 = 𝑣𝐴 cos ̄𝜓, ̄𝜓 ∈ [0, 2𝜋]

̇̄𝛼 = �̄� − 𝑣𝐴
1

̄𝑑
sin ̄𝜓, �̄� ∈ [−Ω, Ω]

̇̄𝛽 = 𝑣𝐴
1

̄𝑑
sin ̄𝜓

�̇� ̄𝑑 = −𝜆 ̄𝛼𝑣𝐴
1
̄𝑑2 sin ̄𝜓

�̇� ̄𝛼 = −𝑐1
1
2 sin ̄𝛼

�̇� ̄𝛽 = 0.

(14.1)

where ̄𝑑( ̄𝑡𝑓 ) = 𝑑𝑐 and ̄𝑑( ̄𝑡) > 𝑑𝑐, ∀ ̄𝑡 < ̄𝑡𝑓 – that is, the game terminates
when the attacker reaches the capture distance 𝑑𝑐. From (14.1) and the
boundary conditions, the four parameters are apparent: attacker speed
𝑣𝐴, maximum turret slew rate Ω, capture distance 𝑑𝑐, and cost param-
eter 𝑐1. The fifth parameter 𝑐2 appears in the cost function [2],

̄𝐽 = ∫
̄𝑡𝑓

̄𝑡0
(𝑐1

1
2 (1 + cos( ̄𝛼( ̄𝑡))) + 𝑐2)d ̄𝑡 (14.2)

as well as in the equilibrium terminal value of 𝜆𝑑 [2],

𝜆 ̄𝑑( ̄𝑡𝑓 ) = −
𝑐1

1
2(1 + cos( ̄𝛼( ̄𝑡𝑓 ))) + 𝑐2

𝑣𝐴
. (14.3)
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Fact 1. The cost in (14.2) is already dimensionless and altering its value
with an additive offset or multiplicative scaling does not change the
equilibrium strategies.

The presence of the parameters in (14.1)–(14.3) suggests the need
to consider each of the equations when performing any type of scaling.
Themethodology employedhere is describedmore fully by [140]. First,
consider the following scaling of distance and time,

𝑑 =
̄𝑑

𝑑𝑐
, 𝑡 =

̄𝑡
𝑡𝑐

(14.4)

where 𝑑 and 𝑡 are the scaled/non-dimensional versions of distance and
time, 𝑑𝑐 is, as before, the capture distance, and 𝑡𝑐 is a time constant
representing a characteristic time associated with the problem. Let 𝑡𝑐

be the time it would take theAttacker to travel a distance 𝑑𝑐 in a straight
line,

𝑡𝑐 = 𝑑𝑐
𝑣𝐴

(14.5)

Note that the independent variable, time, has been scaled, and all of
the states are now essentially dimensionless since 𝛼 and 𝛽 are angles.
Scaling in time affects all of the states in (14.1), but scaling in distance
requires special care in obtaining ̇𝑑. The closing velocity can now be
expressed in terms of non-dimensional distance and time,

̇̄𝑑 = d ̄𝑑
d ̄𝑡 = d(𝑑𝑑𝑐)

d(𝑡𝑡𝑐)
= 𝑑𝑐

𝑡𝑐

d𝑑
d𝑡 = 𝑑𝑐

𝑡𝑐
̇𝑑

⟹ ̇𝑑 = 𝑡𝑐
1
𝑑𝑐

̇̄𝑑 (14.6)

For 𝛼 and 𝛽 states,

̇̄𝜃 = d ̄𝜃
d ̄𝑡 = d ̄𝜃

d(𝑡𝑡𝑐)
= 1

𝑡𝑐

d𝜃
d𝑡

⟹ ̇𝜃 = 𝑡𝑐
̇̄𝜃, 𝜃 = 𝛼, 𝛽 (14.7)

as a form for the dynamics. The relationship between the scaled (non-
barred) versions of the angles and their natural counterparts is simply,

𝜃(𝑡) = ̄𝜃( ̄𝑡), 𝜃 = 𝛼, 𝛽 (14.8)
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Substituting (14.1), (14.4), and (14.5) into (14.6) and (14.7) yields the
following scaled state kinematics,

̇𝑑 = 𝑡𝑐
1
𝑑𝑐

𝑣𝐴 cos𝜓 = cos𝜓, 𝜓 ∈ [0, 2𝜋] ,

̇𝛼 = 𝑡𝑐 (�̄� − 𝑣𝐴
̄𝑑
sin𝜓) = 𝜔 − 1

𝑑 sin𝜓, 𝜔 ∈ [−𝜌, 𝜌] ,

̇𝛽 = 𝑡𝑐𝑣𝐴
1

̄𝑑
sin𝜓 = 1

𝑑 sin𝜓,

(14.9)

where,
𝜌 = Ω𝑑𝑐

𝑣𝐴
. (14.10)

Concerning the 𝑐1 and 𝑐2 parameters, let 𝑐1 = 1 without loss of gener-
ality (see Fact 1), and 𝑐2 = 𝑐. The “natural” cost ̄𝐽 may be recovered by
̄𝐽 = 𝑐1𝐽. Define the set of admissible initial conditions as

X ∶= {x = (𝑑, 𝛼, 𝛽) ∣ 𝑑 ≥ 1} . (14.11)

Now, the scaled Hamiltonian is written, using new, non-barred ver-
sions of the costates, as,

H = 𝜆𝑑 cos𝜓 + 𝜆𝛼 (𝜔 − 1
𝑑 sin𝜓) +

𝜆𝛽
1
𝑑 sin𝜓 − 1

2(1 + cos 𝛼) − 𝑐
(14.12)

The non-barred costate kinematics are then obtained by taking the par-
tial of H w.r.t. each (scaled) state,

�̇�𝑑 = −𝜕H

𝜕𝑑 = (𝜆𝛽 − 𝜆𝛼) 1
𝑑2 sin𝜓,

�̇�𝛼 = −𝜕H

𝜕𝛼 = −1
2 sin 𝛼,

�̇�𝛽 = −𝜕H

𝜕𝛽 = 0.

(14.13)

To obtain the saddle point control strategies the Hamiltonian is min-
imized and maximized w.r.t. 𝜔 and 𝜓, respectively. Incidentally, the
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expressions to follow are identical to those given by [2] except with
scaled/non-barred versions of the variables in place.

𝜔∗ = argmin
𝜔

H = −𝜌 sign𝜆𝛼 (14.14)

𝜓∗ = argmax
𝜓

H

⟹ cos𝜓∗ = 𝜆𝑑
𝜎𝐴

, sin𝜓∗ = −𝜆𝛼
𝑑𝜎𝐴

, (14.15)

where,

𝜎𝐴 = √𝜆2
𝑑 + (𝜆𝛼

𝑑 )
2
. (14.16)

Another consequence of the scaling in distance is that the terminal
condition is,

Γ(x) ∶= 𝑑 − 1, (14.17)

where x ∶= (𝑑, 𝛼, 𝛽)⊤. Termination occurs when the state enters the
terminal surface,

C ∶= {x ∣ Γ(x) = 0} . (14.18)

Using the Lagrange multiplier 𝜈, the adjoined terminal Value function
is written,

Φ(x𝑓 ) = 𝜈Γ(x𝑓 ) = 𝜈 (𝑑 − 1) . (14.19)

Just as was done by [2], differentiating (14.19) w.r.t. the states yields
the terminal costate variables,

𝜆𝑑(𝑡𝑓 ) =
𝜕Φ(x𝑓 )

𝜕𝑑 = 𝜈,

𝜆𝛼(𝑡𝑓 ) =
𝜕Φ(x𝑓 )

𝜕𝛼 = 0,

𝜆𝛽(𝑡𝑓 ) =
𝜕Φ(x𝑓 )

𝜕𝛽 = 0.

(14.20)

Because the game is independent of time, the Hamiltonian, (14.12),
must be equal to zero at all time. Substituting the equilibrium con-
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trol strategies, (14.14) and (14.15), and terminal costate values, (14.20),
into (14.12) and setting time to 𝑡𝑓 gives

H ∗ ∣𝑡=𝑡𝑓
= |𝜈| − 1

2(1 + cos 𝛼𝑓 ) − 𝑐 = 0. (14.21)

Solving for 𝜈 gives
|𝜈| = 1

2(1 + cos 𝛼𝑓 ) + 𝑐. (14.22)

All together, (14.9), (14.13)–(14.16), (14.20), and (14.22) fully ex-
press the regular solutions (i.e., the non-singular saddle point equilib-
rium dynamics) of the TDDG in the scaled space. Of primary impor-
tance is the fact that the five natural parameters (𝑣𝐴, 𝑑𝑐, Ω, 𝑐1, and
𝑐2) have been replaced with two: 𝜌 and 𝑐. In a general sense, 𝜌 repre-
sents the control authority of the Turret w.r.t. the Attacker: increasing
𝜌 favors the Turret (in terms of Value, given some initial condition),
whereas decreasing 𝜌 favors the Attacker. The cost parameter, 𝑐, func-
tions in much the same way as in the original (natural) representation
of the game – it is merely a weight affecting the relative importance
of time versus the Turret-induced cost to the Attacker. For small set-
tings of 𝑐, the Attacker will prefer to avoid the Turret’s gaze even if it
takes longer to reach termination (and vice versa for large settings of
𝑐). [2] considered one particular set of natural parameters throughout:
𝑑𝑐 = 1, 𝑣𝐴 = 1, Ω = 0.05, 𝑐1 = 1, and 𝑐2 = 0.01. This set corresponds to
𝜌 = 0.05 and 𝑐 = 0.01, whichwill henceforth be referred to as the canon-
ical parameters for the TDDG. The process of filling the state space with
equilibrium trajectories is mostly standard for the TDDG: backwards in-
tegration from the terminal set and from points along the Turret Uni-
versal Surface. However, the ADS requires special care as it does not
have an analytical expression.
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14.3 GENERAL D I S P ER SAL SUR FACE CHARACTER I S T I C S

In this section, the characteristics of aDS are formally stated and criteria
for use in the computation of the ADS is established. First, define the
Value function as

𝑉(x(𝑡)) = min
𝜓

max𝜔 𝐽(x(𝑡); 𝜓(𝑡), 𝜔(𝑡))

= max𝜔 min
𝜓

𝐽(x(𝑡); 𝜓(𝑡), 𝜔(𝑡))

= max𝜔 min
𝜓

∫
𝑡𝑓

𝑡
(1

2 (1 + cos 𝛼(𝜏)) + 𝑐)d𝜏 .

(14.23)

The DS is characterized by one (or both) of the agents’ equilibrium ac-
tions being non-unique [130]. That is, the agent whose equilibrium
control is non-unique may choose which equilibrium action to take,
leaving the Value of the game unaffected. Let X𝐷𝑆 denote the set of
points on the DS. Let this be a DS in which the Attacker’s equilibrium
action is non-unique, but the Turret’s equilibrium action is uniquely
defined. Let 𝜓𝐴 and 𝜓𝐵 represent two different headings the Attacker
can choose at particular state x′.

Criterion 1. The condition

𝑉 (x′(𝑡)) = 𝐽(x′(𝑡); 𝜓𝐴(𝑡), 𝜔∗(𝑡)) = 𝐽(x′(𝑡); 𝜓𝐵(𝑡), 𝜔∗(𝑡)) (14.24)

where 𝜔∗ = argmax𝜔 𝐽(x′(𝑡); 𝜓(𝑡), 𝜔(𝑡)) is necessary for x′ ∈ X𝐷𝑆 to
hold.

That is, the DS is characterized by two equilibrium trajectories inter-
secting at the same state with the same Value. Because the system dy-
namics are autonomous (i.e. not time-dependent), it is not necessary
for this intersection to occur at the same time.

14.4 AT TACKER D I S P ER SAL SUR FACE

In this section, the focus is on the Attacker DS in the TDDG. At a concep-
tual level, the ADS arises due to the interplay between the (1 + cos 𝛼)
and the 𝑐 terms of the cost functional’s integrand. On the ADS, the
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Attacker has a choice between taking a quicker route in which the (1 +
cos 𝛼) term’s contribution to the cost is higher, and amore round-about
route in which the 𝑐 term’s contribution to the cost is higher. These
paths are referred to as the direct (𝐷) and indirect (𝐼) paths, respec-
tively. Based on the analysis in the previous section, two numerical
procedures are developed to characterize the ADS. The first procedure
computes the extent of the state space that is covered by equilibrium
trajectories emanating from(in forward time) theADS. This procedure
provides the primary evidence for the presence or absence of the ADS,
depending on the parameters. The second procedure computes the sur-
face itself and is included here to confirm the results of the first proce-
dure. Note that because of the lack of an analytical expression for the
ADS both procedures are necessary to fill the state space with equi-
librium trajectories, which is synonymous with solving the TDDG for
particular parameter settings.

Before proceeding into the discussion of the procedures themselves,
some background is included on the other singular surfaces and their
interactionswith theADS. Ref. [2] showed that the TurretDS is defined
by

X𝑇𝐷𝑆 ∶= {x | 𝛼 = 𝜋} , (14.25)

which is the configuration in which the Turret is looking directly away
from the Attacker. In this symmetrical configuration, the Turret has the
choice of turning clockwise or counter-clockwise at its maximum turn
rate: 𝜔∗ = ±𝜌 – both choices are optimal. Upon the Turret making a
choice, the state of the system immediately departs the TDS and both
agents’ equilibrium controls are uniquely defined. Ref. [2] also showed
that the Turret Universal Surface is defined by

X𝑇𝑈𝑆 ∶= {x | 𝛼 = 0} . (14.26)

On the TUS, the Turret is looking directly at the Attacker; the Turret’s
control is 𝜔∗ = 0 and the Attacker heads directly towards the Turret,
𝜓∗ = 𝜋. The agents remain in this configuration for the remainder of
the game – neither gains an advantage by deviating from this “locked
on” configuration.
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Note that the TUS does not interact with the ADS, but its tributaries
must also be computed in order to fill the state space with equilibrium
trajectories. The TDS is particularly important in the present context
because it coincides with the ADS.

14.4.1 ADS Envelope Computation

In this section, a procedure is presented for computing the envelope
of the ADS. Because of the symmetrical nature of the TDDG’s solution
(c.f [2]), one may, without loss of generality, consider the part of the
state space in which 0 ≤ 𝛼 ≤ 𝜋. For the remainder of the paper, the so-
lution of the TDDG (14.9), (14.13)–(14.16), (14.20) and (14.22) is used
repeatedly to backwards integrate from the terminal surface (14.18).
This backwards integration is carried out until the trajectory reaches
the TDS, where 𝛼 = 𝜋 since the trajectories can go no further and the
goal is to compute themaximal envelope of the ADS. Define the follow-
ing mapping between points on the terminal surface and points along
the trajectory obtained by backwards integration of the solution:

𝐵 ∶ 𝛼𝑓 , 𝑡𝑓 → x0,

s.t. (14.9), (14.13)–(14.16), (14.20) and (14.22),
(14.27)

where x0 = x(0). Making use of (14.24), define the envelope of the
ADS as the pair

(𝛼𝑓𝐿 , 𝛼𝑓𝑈 ) s.t.

⎧{{{{{{{
⎨{{{{{{{⎩

𝑑0𝐿
= 𝑑0𝑈

,

𝛼0𝐿
= 𝛼0𝑈

= 𝜋,

𝛼𝑓𝐿 < 𝛼𝑓𝑈 ,

𝑉(x0𝐿
) = 𝑉(x0𝑈

)

(14.28)

where x0𝐿
= 𝐵(𝛼𝑓𝐿 , 𝑡𝑓𝐿) = [𝑑0𝐿

𝛼0𝐿
𝛽0𝐿]

⊤
, etc. In general, 𝑡𝑓𝐿 and 𝑡𝑓𝑈

are not known a priori. However, this is of little consequence since one
can simply integrate trajectories backwards in time until the condition
𝛼 = 𝜋 is met. Indeed, the trajectories ought not go any further, due to
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the TDS. The purpose of defining and computing (14.28) is twofold.
First, for 𝛼𝑓𝐿 ≤ 𝛼𝑓 ≤ 𝛼𝑓𝑈 the trajectories terminate (in retrograde time)
on the ADS while for 𝛼𝑓 < 𝛼𝑓𝐿 and 𝛼𝑓 > 𝛼𝑓𝑈 the trajectories terminate
on the TUS and do not interact with the ADS. Second, when 𝛼𝑓𝐿 = 𝛼𝑓𝑈 ,
i.e., there is no solution to (14.28) theADS is not present. The following
is stated, without proof:

Proposition 14.1. For the Attacker DS to exist in the solution of the TDDG,
(14.28) must be satisfied.

That is, if theADS exists in the solution, theADS’s envelope (𝛼𝑓𝐿 , 𝛼𝑓𝑈 )
must be computable.

14.4.1.1 Procedure

Now, a process is described by which the ADS envelope, (14.28), is
computed. Figures 14.2 and 14.3 contain the results for this proce-

63 64 65 66 67 68
𝑑0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

𝛼 𝑓

𝐵(𝛼𝑓 , 𝑡𝑓 ) for 𝜌 = 0.05, 𝑐 = 0.01

𝑑0 bounds
𝑑0 for ADS
𝛼𝑓𝑈
𝛼𝑓𝐿

Figure 14.2: Mapping of 𝛼𝑓 to 𝑑0 along the TDS indicating the region of 𝑑0
(dashed gray lines) thatmay satisfy theADS envelope conditions
and the 𝑑0 and (𝛼𝑓𝐿

, 𝛼𝑓𝑈
) for which the Value of the 𝐿 and 𝑈 tra-

jectories are equal. Initially 4,000 samples were used in the 𝛼𝑓
sweep, and then 1,000 samples were used in the 𝑑0 sweep.

dure which are illustrative for describing the procedure itself. First,
the terminal surface, (14.18), is swept along a grid of 𝛼𝑓 , 0 < 𝛼𝑓 < 𝜋.
The mapping 𝐵 is computed for each 𝛼𝑓 by backwards integration un-
til 𝛼 = 𝜋, and the corresponding 𝑑0 and 𝑉 values are recorded. Fig-
ure 14.2 shows the 𝑑0 values along the horizontal axis associated with
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0.05

0.10

0.15

𝑉 Residual

arg min 𝑉 residual
𝑉 residual

(b)

Figure 14.3: Residuals between the 𝐿 and 𝑈 trajectories corresponding to
Fig. 14.2.

the 𝛼𝑓 values. From (14.28), it is required that there are two different 𝛼𝑓

with the same 𝑑0. Thus the gray dashed lines in the figure denote the
bounds for which this condition can be satisfied. All of the 𝑑0 within
this range satisfy the first three conditions in (14.28). Satisfaction of the
last condition, 𝑉(x0𝐿

) = 𝑉(x0𝑈
), is the distinguishing criteria bywhich

the ADS envelope is determined. Then, a line of constant 𝑑0 (i.e., the
red line in the figure) is swept within the bounds. Because the pro-
cess started with a grid of 𝛼𝑓 , the spacing of points in the 𝑑0 axis is
non-uniform. A new grid over the 𝑑0 is used and the backwards “S”
curve is interpolated to get approximate candidate values for 𝛼𝑓𝐿 and
𝛼𝑓𝑈 . The mapping 𝐵 is recomputed for the approximate candidate 𝛼𝑓

values and the initial distance residual 𝑑0𝐿
−𝑑0𝑈

(Fig. 14.3a) and Value
residual𝑉(x0𝐿

)−𝑉(x0𝑈
) (Fig. 14.3b) are recorded.Note the 𝑑0 residual

is larger for smaller 𝑑0 because the upper part of the curve is very flat
here – a small error in 𝛼𝑓𝑈 produces a large deviation in 𝑑0𝑈

. Finally,
when the number of 𝑑0 samples is sufficiently large, the Value resid-
ual in Fig. 14.3b is fairly smooth and monotonic with a unique zero
crossing (marked with the red line). This value for 𝑑0, and the corre-
sponding (𝛼𝑓𝐿 , 𝛼𝑓𝑈 ) satisfies (14.28) and thus defines the envelope of
the ADS. Figure 14.4 shows the ADS envelope trajectories in the state
space along with the terminal surface, the TDS, and the TUS.
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Figure 14.4: Depiction of the ADS envelope in the state space for 𝜌 = 0.05
and 𝑐 = 0.01. Equilibrium trajectories emanating from the ADS
fill the space between the red and blue curves (i.e. the upper and
lower extent of the ADS envelope).

14.4.1.2 Remarks

Note that theADS envelope conditions in (14.28) can be determined by
setting up an appropriate nonlinear program (NLP). However, it can
be difficult to enforce the condition 𝛼𝑓𝐿 < 𝛼𝑓𝑈 as the optimizer tends
to end up in the situation where 𝛼𝑓𝐿 = 𝛼𝑓𝑈 and dwells there. Also, the
second stage of the procedure, in which 𝑑0 is swept, may be replaced
by a binary search process due to the monotonicity of the Value resid-
ual w.r.t. 𝑑0. This drastically reduces the number of backwards shots
needed in the second stage. For example, to obtain a Value residual
< 1 × 10−12 only 37 backwards shots are needed for the example in
Fig. 14.2. In this way, the Value residual tolerance can be directly spec-
ified, and the 𝑑0 residual is directly affected by the number of samples
in the initial 𝛼𝑓 grid. Figure 14.5 shows the result of using binary search
to find the zero crossing of the Value residual.

The trajectories generated within the range 𝛼𝑓𝐿 < 𝛼𝑓 < 𝛼𝑓𝑈 do not ac-
tually reach back to the TDS, since this would require passing through
the ADS. Therefore, the middle section of the backwards “S” curve in
Fig. 14.2 is meaningless. Algorithm 3 summarizes the procedure used
to compute the ADS envelope (𝛼𝑓𝐿 , 𝛼𝑓𝑈 ).
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Figure 14.5: Value residual for the binary search algorithm.

Algorithm 3 ADS Envelope (with binary search)
𝑑0 ← empty vector
for 𝛼𝑓𝑖 in 𝛼𝑓 grid do

𝑑0𝑖
← 𝐵(𝛼𝑓𝑖 , 𝑡𝑓 ) ▷ backwards integrate

𝑑0min
, 𝑑0max

← local min & max of 𝑑0
𝑉resid ← ∞
while 𝑉resid > 𝜀 do ▷ binary search

𝑑mid ← (𝑑0min
+ 𝑑0max

)/2
𝛼𝑓𝐿 , 𝛼𝑓𝑈 = 𝐵−1(𝑑mid) ▷ see Fig. 14.2
x0𝐿

← 𝐵(𝛼𝑓𝐿 , 𝑡𝑓 ) ▷ backwards integrate
x0𝑈

← 𝐵(𝛼𝑓𝑈 , 𝑡𝑓 ) ▷ backwards integrate
𝑉resid ← 𝑉(x0𝐿

) − 𝑉(x0𝑈
)

if 𝑉resid > 0 then
𝑑0max

← 𝑑mid
else

𝑑0min
← 𝑑mid
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14.4.2 Different Parameters

In this section, the utility of the previously described numerical proce-
dure is demonstrated in the determination of the regions of the param-
eter space in which the ADS is present. As Proposition 14.1 suggests,
the inability for the procedure to find (𝛼𝑓𝐿 , 𝛼𝑓𝑈 ) that satisfies (14.28) in-
dicates that there is no ADS in the solution to the TDDG. Figure 14.6
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Figure 14.6: Mapping of 𝛼𝑓 to 𝑑0 for different settings of the cost parameter 𝑐.

shows the results of the backwards integration process (i.e. the back-
wards “S” curves) for different settings of the cost parameter 𝑐 for a
particular Turret effectiveness setting, 𝜌. For 𝑐 = 0.043, the curve flat-
tens out to the point that for each 𝑑0 there is a unique 𝛼𝑓 . Thus, the con-
ditions for the ADS envelope (14.28), in particular the requirements
that 𝛼𝑓𝐿 < 𝛼𝑓𝑈 and 𝑑0𝐿

= 𝑑0𝑈
, cannot be met. It is precisely at this set-

ting of 𝑐, i.e., where there exists a point on the curve s.t. d𝑑0/d𝛼𝑓 = 0,
that the ADS disappears from the solution of the TDDG. As suggested
by the curve in Fig. 14.6 corresponding to 𝑐 = 0.08, the ADS is absent
for all 𝑐 > 0.043, in this case. Repeating the process across a range of 𝜌
yields the curve in Fig. 14.7.
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Figure 14.7: Presence of the ADS in the solution of the TDDG over the param-
eter space.

14.4.3 ADS Termination Point Computation

In order to gain a better understanding of the ADS and how it is af-
fected by the parameter settings, a procedure is developed for comput-
ing the surface itself. It has been observed that one of the endpoints
of the ADS (if it exists) lies on the TDS. Ref. [2] showed that, for the
canonical parameter settings, the other endpoint of the ADS is not coin-
cident with any other surface. The approach for computing points on
the ADS is based upon solving for a pair of trajectories satisfying

(𝛼𝑓𝑙 , 𝛼𝑓𝑢) s.t.

⎧{{{{{{{
⎨{{{{{{{⎩

𝑑0𝑙
= 𝑑0𝑢

= 𝑑0,

𝛼0𝑙
= 𝛼0𝑢

= 𝛼0,

𝛼𝑓𝑙 < 𝛼𝑓𝑢 ,

𝑉(x0𝑙
) = 𝑉(x0𝑢

)

(14.29)

where 𝑑0 is the specified distance associatedwith the point on the ADS
that is being solved for. The condition (14.29) is similar to (14.28) but
with a free 𝛼0. Again, the 𝑡𝑓 associated with these trajectories is not
known a priori. However, using integrator callbacks (c.f. [197]), one
can integrate backwards until the specified distance 𝑑0 is reached. To
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solve for (𝛼𝑓𝑙 , 𝛼𝑓𝑢), an NLP solver is employed which seeks to minimize
the following residual

𝑟 = ∥𝑉(x0𝑙
) − 𝑉(x0𝑢

)
𝛼0𝑙

− 𝛼0𝑢

∥

To generate a series of points on the ADS, (14.29) is solved along a
grid of 𝑑0. First, some appropriate 𝑑0 is chosen and the procedure con-
tinues in decreasing order of 𝑑0 along this grid. A homotopy approach
is used in which the NLP solver is given the (𝛼𝑓𝑙 , 𝛼𝑓𝑢) of the previous
𝑑0 as an initial guess. Figure 14.8 contains the results of this procedure

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
𝑑0

2.4

2.6

2.8

3.0

𝛼 𝑓

𝛼𝑓𝑢
𝛼𝑓𝑙

Figure 14.8: Solutions to (14.29) over a 𝑑0 grid for 𝑐 = 0.01.

for a relative time cost setting 𝑐 = 0.01. Note on the left side of the
plot the two curves quickly converge s.t. 𝛼𝑓𝑙 ≮ 𝛼𝑓𝑢 . Thus for 𝑑0 ≤ 1.5
the condition 𝛼𝑓𝑙 < 𝛼𝑓𝑢 in (14.29) cannot be satisfied. The leftmost 𝑑0

point corresponds to the non-TDS endpoint of the ADS. For each solu-
tion in Fig. 14.8, the 𝛼0 to which the upper and lower trajectories inte-
grate back to is recorded. The points (𝑑0, 𝛼0) represent the ADS itself.
The procedure is repeated for different settings of 𝑐 up until 𝑐 ≈ 0.043
whereupon, based on Fig. 14.7, it is expected that the ADS will disap-
pear. Figure 14.9 shows the Attacker DSs for 𝜌 = 0.05 and several dif-
ferent 𝑐. As 𝑐 is increased from 0.01 to ≈ 0.43, the endpoint of the ADS
recedes away from the terminal surface and towards the TDS. These
results corroborate earlier statements about the disappearance of the
ADS from the solution of the TDDG for high settings of 𝑐. Algorithm 4
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Figure 14.9: ADS for 𝜌 = 0.05 and various 𝑐 showing the recession of the ADS
into the TDS as 𝑐 → 0.043.

summarizes the process for computing the ADS once for a particular
setting of 𝑐.

Algorithm 4 ADS Computation
X𝐴𝐷𝑆 ← ∅
𝑖 ← LENGTH (𝑑0 grid)
𝛼𝑓𝑙 ← 0 and 𝛼𝑓𝑢 ← 𝜋
𝑔𝑢𝑒𝑠𝑠 ← (𝛼𝑓𝑙 , 𝛼𝑓𝑢)
while 𝛼𝑓𝑢 − 𝛼𝑓𝑙 > 𝜀 and 𝑖 ≥ 0 do

𝑑0 ← 𝑑0 grid [𝑖]
𝛼𝑓𝑙 , 𝛼𝑓𝑢 , 𝛼0 ← solution to (14.29) with 𝑔𝑢𝑒𝑠𝑠 ▷ NLP
if 𝛼𝑓𝑢 − 𝛼𝑓𝑙 > 𝜀 then

X𝐴𝐷𝑆 ← X𝐴𝐷𝑆 ∪ {(𝑑0, 𝛼0)}
𝑔𝑢𝑒𝑠𝑠 ← (𝛼𝑓𝑙 , 𝛼𝑓𝑢)

𝑖 ← 𝑖 − 1

14.5 CONCLUS ION

In this chapter the TDDG – a game with three states, only two of which
affect the solution – has been analyzed. Despite the simplicity of its
dynamics, the full solution of the game is difficult to obtain due to the
presence of a non-analytical singular surface: the Attacker DS. Numer-
ical methods are required to characterize the Attacker DS as well as
to compute the surface itself. Furthermore, the original description of
the game contains five natural parameters, which makes understand-
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ing the impact of parameters on the solution (particularly the Attacker
DS) difficult. The five natural parameters have been collapsed into two
composite parameters: the Turret effectiveness, 𝜌, and the relative time
cost 𝑐. The scaling of the kinematics facilitated the exploration of the pa-
rameter space. Two numerical approaches, based on the general defini-
tion of a dispersal surface, were developed to characterize the Attacker
DS. These approaches exposed an interesting feature of the game’s so-
lution: the Attacker DS is only present over a portion of the parameter
space. In the following, this wide-beam turret defense scenario will
be considered in the context of engage or retreat; the numerical proce-
dures developed in here will be useful in computing the retreat trajec-
tories.





15
ENGAGE OR RETREAT W I TH A WIDE - B EAM
TURRET

15.1 IN TRODUCT ION

In this chapter, the TEoR game is revisited for the case of a wide-beam
Turret (TEoRW), and particular focus is given to the case of OCR. As
mentioned in the previous chapter, the solution of thewide-beam TDDG

(referred to henceforth as the Game of Engagement, or GoE) can only
be obtained numerically. Thus, in order to impose the path constraint
needed to ensure engagement doesn’t become optimal, the GoE solu-
tion must be interpolated along the OCR trajectory. The main contribu-
tions of this chapter are (1) a numerical interpolation scheme of the
TDDG’s solution (2) derivation of the first order necessary conditions
for optimality for the OCR problem, (3) specification of the Boundary
Value Problem (BVP) for when the constraint becomes active along the
trajectory, and (4) a process for solving the BVP. The first of these sup-
ports Research Objective 1 (approximations to improve computabil-
ity), while the latter directly address Research Objective 7 (solution
of optimal control problems embedded within games). This material
is based on [248].

Section 15.2 contains a formal description of the OCR problem. Sec-
tion 15.3 contains the derivation of the first order necessary conditions
for optimality, specification of the BVP, and special considerations for
the Turret’s turn control. Section 15.4 contains the simulation results
for a particular initial condition, and Section 15.5 concludes the chap-
ter.

321
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15.2 PROBL EM DE SCR I P T ION

Given a stationary Turret with bounded turn rate and a mobile At-
tacker, movingwith simple motion, a trajectory is sought whichmoves
the system state to the retreat surface, whileminimizing cost, subject to
a path constraint. The coordinate system is depicted in Fig. 14.1 (in the
previous chapter) and the Turret’s position is defined to be the origin
of the (𝑥, 𝑦)-plane. The dynamics of the system are a modified version
of the dynamics presented in [2] wherein the natural parameters are
consolidated into relative turret effectiveness, 𝜌, and relative time cost,

𝑓 (x,u, 𝑡) = ẋ = ⎡⎢⎢
⎣

̇𝑑
̇𝛼
̇𝛽

⎤⎥⎥
⎦

=
⎡⎢⎢
⎣

cos𝜓
𝜔 − 1

𝑑 sin𝜓
1
𝑑 sin𝜓

⎤⎥⎥
⎦

, 𝜔 ∈ [−𝜌, 𝜌] , (15.1)

where the Attacker controls 𝜓, its instantaneous heading angle relative
to the LOS from the Turret, and the Turret controls 𝜔, its turn-rate (as
in the previous chapter).

Define the following boundary conditions,

𝜙(x(𝑡0), x(𝑡𝑓 )) =
⎡
⎢⎢⎢
⎣

𝑑(𝑡0) cos𝛽(𝑡0) + 5
𝑑(𝑡0) sin𝛽(𝑡0) − 20
𝛼(𝑡0) − 𝛽(𝑡0) + 𝜋

2
𝑑(𝑡𝑓 ) sin𝛽(𝑡𝑓 ) − 𝑦𝑅

⎤
⎥⎥⎥
⎦

= 0 (15.2)

with 𝑡0 = 0 and 𝑡𝑓 free.Note that in the natural (𝑥, 𝑦)-plane, the first two
constraints can be expressed as 𝑥(0) = −5 and 𝑦(0) = 20, respectively,
while the last can be expressed 𝑦(𝑡𝑓 ) = 𝑦𝑅. Thus, the retreat region, in
this case is 𝑦 ≤ 𝑦𝑅. Here, 𝑦𝑅 = −20. The initial 𝛼 constraint stipulates
that the Turret’s initial global look angle is 𝜋

2 (i.e. along the positive 𝑦
axis).

The cost functional is also slightly modified from that of [2],

𝐽 = ∫
𝑡𝑓

𝑡0
[𝜃 (1

2 (1 + cos 𝛼)) + 𝑐]d𝑡 +Φ (x(𝑡𝑓 ), 𝑡𝑓 ) , (15.3)
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where 𝜃 ∈ [0, 1] is an additional Turret control representing some kind
of rate of fire. The terminal Value function,

Φ (x(𝑡𝑓 ), 𝑡𝑓 ) = 𝑃, (15.4)

where 𝑃 > 0 is a constant, penalizes the Attacker for retreating instead
of engaging. The results herein are based on setting 𝜌 = 0.05, 𝑐 = 0.01,
and 𝑃 = 8. The settings for 𝜌 and 𝑐 match the settings used in [2]. For
the optimal constrained retreat, the Turret and Attacker cooperate to
minimize the cost in (15.3). Thus the Value function is defined as,

𝑉𝑅(x(𝑡)) = min
𝜔,𝜃

min
𝜓

𝐽 = min
𝜔,𝜃,𝜓

𝐽. (15.5)

Similarly, the optimal controls are defined as,

𝑢∗ = (𝜔∗(𝑡), 𝜃∗(𝑡), 𝜓∗(𝑡)) = argmin
𝜔(𝑡),𝜃(𝑡),𝜓(𝑡)

𝐽. (15.6)

The path constraint is defined as,

𝑔(x) = 𝑉𝐸(x(𝑡)) − 𝑉𝑅(x(𝑡)) ≥ 0, ∀𝑡 ∈ [𝑡0, 𝑡𝑓 ] , (15.7)

where 𝑉𝐸 is the Value function associated with the GoE. Let 𝐿 be the
integrand of the cost functional and suppose an additional state com-
ponent, 𝑙(𝑡), is appended to x where,

̇𝑙(𝑡) = −𝐿, 𝑙(𝑡𝑓 ) = 0 (15.8)

which represents the remaining integral cost-to-go. Then the retreat
Value function may be written,

𝑉𝑅(x(𝑡)) = 𝑃 + ∫
𝑡𝑓

𝑡
𝐿d𝑡

= 𝑃 − ∫
𝑡𝑓

𝑡
̇𝑙(𝑡)d𝑡

= 𝑃 − 𝑙(𝑡𝑓 ) + 𝑙(𝑡)

= 𝑃 + 𝑙(𝑡) (15.9)
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In the case of backwards shooting, 𝑙(𝑡)maybe easily computed,making
the computation of 𝑉𝑅(x) trivial.

Due to the path constraint, (15.7), it is necessary to solve the GoE so
that 𝑉𝐸(x) may be known for every point in the state space. An analyti-
cal solution of the GoE, however, is not available and a numerical solu-
tion must suffice. For a particular x, 𝑉𝐸 may be obtained by solving the
associated boundary value problem via indirect backwards shooting.
That approach, however, is infeasible for the purposes of the present
work because the path constraint will need to be evaluated at every
point along the trajectory. Instead, indirect backward shooting is used
to fill the state space with equilibrium trajectories which are then sam-
pled to generate a large set of data,

𝐷 = {(𝑑𝑖, 𝛼𝑖, 𝜎𝑑𝑖
, 𝜎𝛼𝑖

, 𝑉𝐸𝑖
(𝑑𝑖, 𝛼𝑖))} , (15.10)

where each element is a tuple comprised of the state, GoE adjoints,
and Value associated with starting in this state (for the GoE). The GoE
adjoints are used in indirect optimal control analysis in Section 15.3.
Fig. 15.1 shows 𝑉𝐸(𝑑, 𝛼) (i.e. the last column of 𝐷) for each of the sam-
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Figure 15.1: Value of engagement, 𝑉𝐸(x)

ple points.
The quantities 𝑉𝐸(x) (and 𝜎𝑑 and 𝜎𝛼) are computed via a 𝑘-nearest

neighbor (kNN) search with 𝑘 = 3 and take a distance weighted av-
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erage of the neighbors. The kNN search is made viable through the
usage of the efficient NearestNeighbors package for the Julia program-
ming language [41].

The difficulty in sampling the saddle-point equilibrium trajectories
for the GoE lies in handling the singular surfaces. As mentioned previ-
ously, there are three singular surfaces in the GoE [2]: the Turret’s Uni-
versal Surface (at 𝛼 = 0), the Turret’s Dispersal Surface (at 𝛼 = 𝜋), and
the Attacker’s Dispersal Surface (ADS), which cannot be described
analytically. To produce Fig. 15.1, the state space (0 ≤ 𝛼 ≤ 𝜋 and
1 ≤ 𝑑 ≤ 100) can be divided into 5 distinct regions: 1) trajectories with
𝛼𝑓 ≠ 0 above the envelope of the ADS, 2) trajectories with 𝛼𝑓 ≠ 0 below
the envelope of the ADS, 3) “direct” trajectories emanating from the
ADS, 4) “indirect” paths emanating from the ADS, and 5) trajectories
in which 𝛼𝑓 = 0 (trajectories ending on the Turret’s Universal Surface).

With all of the above definitions in place, the problem definition is
formally stated:

min
𝜔(𝑡),𝜃(𝑡),𝜓(𝑡)

𝐽

s.t. 𝜙(x(𝑡0), x(𝑡𝑓 )) = 0,

𝑔(x(𝑡)) ≥ 0 ∀𝑡 ∈ [0, 𝑡𝑓 ]

(15.11)

15.3 METHODOLOGY

15.3.1 Optimality Conditions

First, the first order optimality conditions for problem (15.11) are devel-
oped. The trajectory constraint, 𝑔, is transformed to a control constraint,
ℎ, by differentiating with respect to time,

ℎ(x) = d𝑔
d𝑡 = d𝑉𝐸

d𝑡 − d𝑙
d𝑡

= 𝜕𝑉𝐸
𝜕x ̇x + 𝐿

= 𝝈ẋ + 𝐿 (15.12)
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where 𝝈 = [𝜎𝑑 𝜎𝛼 𝜎𝛽]
⊤
are the adjoint variables associatedwith the

GoE. When the path constraint is active, 𝑔(x) = 0, and in order to re-
main on the constraint ℎ(x) = 0 as well. Thus when transitioning from
an unconstrained arc to a constrained arc (or vice versa) ℎ(x) must be
zero; this is referred to as the tangency condition. The Hamiltonian
may be written,

𝐻 = 𝝀ẋ + 𝜇ℎ + 𝐿, (15.13)

where𝜇 is the adjoint variable associatedwith the path constraint deriva-
tive, ℎ, and

𝜇(𝑡) =

⎧{{
⎨{{⎩

0 𝑔(x(𝑡)) > 0

> 0 𝑔(x(𝑡)) = 0.
(15.14)

Substituting (15.12) into (15.13) gives,

𝐻 = 𝝀ẋ + 𝜇(𝝈ẋ + 𝐿) + 𝐿

= (𝝀 + 𝜇𝝈) ẋ + (1 + 𝜇) 𝐿. (15.15)

Note that 𝜎𝛽 = 0 for all time [2]. The optimal adjoint dynamics are ob-
tained by differentiating (15.15) w.r.t. each state component and sub-
stituting the state dynamics, (15.1), and 𝜎𝛽 = 0,

�̇�𝑑 = −𝜕𝐻
𝜕𝑑 = (𝜆𝛽 − 𝜆𝛼 − 𝜇𝜎𝛼) 1

𝑑2 sin𝜓 (15.16)

�̇�𝛼 = −𝜕𝐻
𝜕𝛼 = 𝜃 (1 + 𝜇) 1

2 sin 𝛼 (15.17)

�̇�𝛽 = −𝜕𝐻
𝜕𝛽 = 0. (15.18)

The fact that �̇�𝛽 = 0 comes from the fact that 𝜕ẋ
𝜕𝛽 = 0 and 𝜕𝐿

𝜕𝛽 = 0 and
implies that 𝜆𝛽(𝑡) is constant.

The optimizing controls are obtained via PMP.

𝜃∗ = argmin
𝜃

𝐻

= argmin
𝜃

(𝝀ẋ + 𝜇𝝈) + (1 + 𝜇) [𝜃1
2 (1 + cos 𝛼) + 𝑐]
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Since 𝜇 ≥ 0, the term (1 + 𝜇) must be positive, which implies,

𝜃∗(𝑡) = 0. (15.19)

It is clear that the Turret should have its rate-of-fire set to zero for opti-
mal constrained retreat. As a result,

�̇�𝛼 = 0. (15.20)

For the Turret’s optimal turn control,

𝜔∗ = argmin
𝜔

𝐻 = argmin
𝜔

(𝝀 + 𝜇𝝈) ẋ + (1 + 𝜇)𝐿

= argmin
𝜔

(𝜆𝛼 + 𝜇𝜎𝛼) (𝜔 − 1
𝑑 sin𝜓) ,

which implies,
𝜔∗ = −𝜌 sign (𝜆𝛼 + 𝜇𝜎𝛼) . (15.21)

The Attacker’s optimal heading control is given by,

𝜓∗ = argmin
𝜓

𝐻 = argmin
𝜓

(𝝀 + 𝜇𝝈)ẋ + (1 + 𝜇)𝐿

= argmin
𝜓

(𝝀 + 𝜇𝝈)

= argmin
𝜓

(𝜆𝑑 + 𝜇𝜎𝑑) cos𝜓

+ (𝜆𝛼 + 𝜇𝜎𝛼) (𝜔 − 1
𝑑 sin𝜓)

+ (𝜆𝛽 + 𝜇𝜎𝛽) 1
𝑑 sin𝜓.

Thus 𝜓∗ is determined by setting the vector [cos𝜓∗ sin𝜓∗]⊤ to be an-

tiparallel to the vector [𝜆𝑑+𝜇𝜎𝑑
𝜉

𝜆𝛽−𝜇𝜎𝛼
𝑑𝜉 ]

⊤
:

cos𝜓∗ = −𝜆𝑑 − 𝜇𝜎𝑑
𝜉 (15.22)

sin𝜓∗ =
−𝜆𝛽 + 𝜇𝜎𝛼

𝑑𝜉 , (15.23)

where,

𝜉 = √(𝜆𝑑 + 𝜇𝜎𝑑)2 + 1
𝑑2 (𝜆𝛽 − 𝜇𝜎𝛼)

2
.
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In order to proceed, let 𝜇(𝑡𝑓 ) = 0, that is, the system is unconstrained
at final time. This is not strictly necessary, however, it will end up be-
ing the case for the particular parameter settings used in Section 15.3.
Because components of the final state x(𝑡𝑓 ) are free, the transversality
condition yields [40],

𝝀⊤(𝑡𝑓 ) = 𝜕Φ
𝜕x(𝑡𝑓 ) + 𝜈 𝜕𝜙

𝜕x(𝑡𝑓 )

= 0 + 𝜈 [− 𝑦𝑅
𝑑(𝑡𝑓 )2 0 − cos𝛽]

and thus,

𝜆𝑑(𝑡𝑓 ) = −𝜈 𝑦𝑅
𝑑(𝑡𝑓 )2 (15.24)

𝜆𝛼(𝑡𝑓 ) = 0 (15.25)

𝜆𝛽(𝑡𝑓 ) = −𝜈 cos𝛽. (15.26)

The cosine of the optimal terminal Attacker heading is obtained by sub-
stituting (15.24) and (15.26) into (15.22) with 𝜇(𝑡𝑓 ) = 0

cos𝜓∗(𝑡𝑓 ) =
𝜈𝑦𝑅/𝑑(𝑡𝑓 )2

√𝜈2 𝑦2
𝑅

𝑑(𝑡𝑓 )2 + 1
𝑑(𝑡𝑓 )2 𝜈2 cos𝛽(𝑡𝑓 )2

∝ 𝑦𝑅 sign(𝜈)

∝ − sign(𝜈).

The last expression is due to the fact that 𝑦𝑅 < 0. If 𝜈 > 0, then,

̇𝑑(𝑡𝑓 ) = cos𝜓(𝑡𝑓 ) ∝ − sign(𝜈) = −1, (15.27)

which states that distance at final time is decreasing, but for optimal
constrained retreat, as long as the Turret is not placed directly on the
retreat surface, the distance at final timemust be increasing. Therefore,
it must be the case that 𝜈 < 0. Note, also, that because 𝜃∗ = 0 it must be
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that 𝐿 = 𝑐. With knowledge of the sign of 𝜈, the cosine of the optimal
Attacker’s heading angle at final time can be further simplified,

cos𝜓∗(𝑡𝑓 ) =
sign(𝜈)𝑦𝑅/𝑑(𝑡𝑓 )2

√ 𝑦2
𝑅

𝑑(𝑡𝑓 )4 + 1
𝑑(𝑡𝑓 )2 cos𝛽(𝑡𝑓 )2

= −𝑦𝑅

𝑑(𝑡𝑓 )√ 𝑦2
𝑅

𝑑(𝑡𝑓 )2 + cos𝛽(𝑡𝑓 )2
.

Define,

𝜒 =
√
√√
⎷

𝑦2
𝑅

𝑑(𝑡𝑓 )2 + cos𝛽(𝑡𝑓 )2.

Then the optimal terminal Attacker heading angle can be written,

cos𝜓∗(𝑡𝑓 ) = −𝑦𝑅
𝑑(𝑡𝑓 )𝜒 , sin𝜓∗(𝑡𝑓 ) =

− cos𝛽(𝑡𝑓 )
𝜒 . (15.28)

Based on the necessary conditions for optimality [40], theHamiltonian
at final time is given by

𝐻∗(𝑡𝑓 ) = −𝜕Φ
𝜕𝑡𝑓

− 𝜈 𝜕𝜙
𝜕𝑡𝑓

= 0 (15.29)

Substituting (15.1) and (15.24)–(15.26) into the Hamiltonian, (15.13),
at final time gives

𝐻(𝑡𝑓 ) = − 𝜈 𝑦𝑅
𝑑(𝑡𝑓 )2 cos𝜓(𝑡𝑓 )

− 𝜈 cos𝛽(𝑡𝑓 ) 1
𝑑(𝑡𝑓 ) sin𝜓(𝑡𝑓 ) + 𝐿

(15.30)

Substituting in (15.28) and (15.29) with 𝜇 = 0 and 𝐿 = 𝑐 into (15.30)
yields

𝐻∗(𝑡𝑓 ) = 0 = 𝜈 𝑦𝑅
𝑑(𝑡𝑓 )2 ⋅ 𝑦𝑅

𝜒𝑑(𝑡𝑓 )

+ 𝜈 cos𝛽(𝑡𝑓 ) 1
𝑑(𝑡𝑓 ) ⋅

cos𝛽(𝑡𝑓 )
𝜒 + 𝑐. (15.31)

Solving for 𝜈:
𝜈 = −𝑐𝜒

𝑦2
𝑅

𝑑(𝑡𝑓 )3 + cos2 𝛽(𝑡𝑓 )
𝑑(𝑡𝑓 )

. (15.32)
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Because the retreat surface is a straight line in the (𝑥, 𝑦)-plane, select-
ing either 𝑑(𝑡𝑓 ) or 𝛽(𝑡𝑓 ) determines the other. Therefore, the 𝜈 may be
computed readily given a choice in one of these variables, and thus the
terminal adjoint values, 𝝀(𝑡𝑓 ), may be computed as well.

In order to compute 𝜇 when the path constraint is active (i.e. 𝑔(x) =
0), the optimal state dynamics ̇x∗ (found by substituting in the optimal
adjoint variables and optimal controls)may be substituted into (15.12),
which can be then solved for the 𝜇 in which ℎ(x) = 0. Alternatively,
consider that in order to keep on the constraint ℎ(x) = 0 and similarly
ℎ̇(x) = 0:

ℎ̇ = 𝜕ℎ
𝜕x ̇x + 𝜕ℎ

𝜕𝝀�̇� + 𝜕ℎ
𝜕𝜇�̇� = 0

Also, when the trajectory enters or exits a constrained arc 𝜇 = 0. Thus
𝜇 can be appended to x over the constrained portion of the trajectory
with 𝜇(𝑡1) = 0 and,

�̇� =
−𝜕ℎ

𝜕x ẋ − 𝜕ℎ
𝜕𝝀 �̇�

𝜕ℎ
𝜕𝜇

,

where 𝑡1 is the time at which the trajectory enters a constrained arc (in
backwards time). Let 𝑡2 be the time (in backwards time) at which the
trajectory leaves the constrained arc and enters an unconstrained arc.
In order for the tangency condition to bemet, it must be that ℎ(x(𝑡2)) =
0. As a result, the adjoint variables are subject to an additional internal
boundary condition [40, 84],

𝝀⊤(𝑡−
2 ) = 𝝀⊤(𝑡+

2 ) + 𝜋 𝜕ℎ
𝜕x , (15.33)

where 𝜋 is an additional adjoint variable.
Generally, one would use (15.33) to solve for 𝜋 by substituting into

the Hamiltonian, (15.13), evaluated at 𝑡 = 𝑡−
2 . However, computing 𝜕ℎ

𝜕x

is nontrivial as it is subject to the numerical inaccuracies introduced
by sampling 𝝈 (the GoE adjoints). A different approach is taken here
which avoids the computation of 𝜕ℎ

𝜕x . Since ẋ, 𝜎𝑑, and 𝜎𝛼 do not depend
on 𝛽, 𝜕ℎ

𝜕𝛽 = 0. Thus, from (15.33), it must be that 𝜆𝛽(𝑡−
2 ) = 𝜆𝛽(𝑡+

2 ) and
thus there are two unknowns: 𝜆𝑑(𝑡−

2 ) and 𝜆𝛼(𝑡−
2 ). At 𝑡 = 𝑡−

2 it must be
that ℎ (x(𝑡−

2 )) = 0 due to the tangency condition [40]. It is also the
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case that ℎ (x(𝑡+
2 )) = 0 since the system is constrained after 𝑡2. Expand-

ing (15.12) yields,

ℎ(x) = 𝜎𝑑 cos𝜓∗ + 𝜎𝛼 (𝜔∗ − 1
𝑑 sin𝜓∗) + 𝑐, (15.34)

since 𝜎𝛽 = 0. The quantities 𝜎𝑑 and 𝜎𝛼 are continuous at 𝑡2 and 𝑐
is constant, thus, from (15.34) it must be true that 𝜓∗(𝑡−

2 ) = 𝜓∗(𝑡+
2 ).

Eqs. (15.22) and (15.23) can be manipulated to solve for 𝜆𝑑(𝑡−
2 ), noting

that 𝜇(𝑡−
2 ) = 0

𝜆𝑑(𝑡−
2 ) =

𝜆𝛽(𝑡−
2 ) (𝜆𝑑(𝑡+

2 ) + 𝜇(𝑡+
2 )𝜎𝑑)

(𝜆𝛽(𝑡+
2 ) − 𝜇(𝑡+

2 )𝜎𝛼)
. (15.35)

Because the dynamics, (15.1), are autonomous and 𝐻(𝑡𝑓 ) = 0 the
Hamiltonian must be zero at all times including at time 𝑡−

2 . Evaluat-
ing (15.13) at 𝑡−

2 and substituting the value of (15.35) in along with
𝜇 = 0 gives

𝐻∗(𝑡−
2 ) = 0 = 𝝀ẋ + 𝜇ℎ + 𝐿

= 𝜆𝑑(𝑡−
2 ) ̇𝑑(𝑡−

2 ) + 𝜆𝛼(𝑡−
2 ) ̇𝛼(𝑡−

2 ) + 𝜆𝛽 ̇𝛽(𝑡−
2 ) + 0 + 𝑐

= 𝜆𝑑(𝑡−
2 ) cos𝜓∗ + 𝜆𝛼(𝑡−

2 ) (𝜔∗ − 1
𝑑 sin𝜓∗)

+ 𝜆𝛽(𝑡−
2 )1

𝑑 sin𝜓∗ + 𝑐.

(15.36)

Substituting in (15.22) and (15.23), rearranging, and solving for 𝜆𝛼(𝑡−
2 )

gives

𝜆𝛼(𝑡−
2 ) =

√𝜆𝑑(𝑡−
2 )2 + 1

𝑑2 𝜆𝛽(𝑡−
2 )2 − 𝑐

𝜔∗ + 𝜆𝛽
𝑑2𝜉

(15.37)

Note that 𝜔∗ depends on the sign of 𝜆𝛼 (c.f. (15.21)), so its sign may
be assumed a priori and then (15.37) must be checked for consistency.

15.3.2 Boundary Value Problem

For backwards shooting, the BVP consists of choosing a 𝛽(𝑡𝑓 ) (which
also determines 𝜆𝛽, 𝑑(𝑡𝑓 ), and 𝜆𝑑(𝑡𝑓 )), a value for 𝑡𝑓 , and a value for
𝛼(𝑡𝑓 ) and then integrating backwards in time from 𝑡𝑓 to 𝑡0. At 𝑡0 the
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state values may be substituted into the first three components of 𝜙
in (15.2) to yield a residual (the fourth component is 0 by construc-
tion/selection of the terminal state). Formally,

𝛽∗
𝑓 , 𝛼∗

𝑓 , 𝑡∗
𝑓 = argmin

𝛽𝑓 ,𝛼𝑓 ,𝑡𝑓

‖𝜙‖

s.t. 𝑔(x(𝑡)) ≥ 0 ∀𝑡 ∈ [𝑡0, 𝑡𝑓 ] ,

𝑓 (x,u, 𝑡) = ẋ,

Eqs. (15.17)–(15.18), (15.19), (15.21), (15.22), (15.23).

(15.38)

In practice, dealing with the path constraint forces one to assume a se-
quence of arcs, e.g., 𝑈𝐶𝑈, where 𝑈 denotes an unconstrained arc and
𝐶 denotes a constrained arc (e.g., see [50]). Then, the times at which
the system switches from an arc of one type to another must be solved
for as well. Due to the similarity of this instantiation of constrained op-
timal retreat to that of the example in [84], it is assumed that 𝑈𝐶𝑈 is
indeed the proper sequence to consider, and that the boundary con-
ditions at 𝑡 = 0 are such that the path constraint will indeed be acti-
vated. That is, the trajectory will begin unconstrained, transition into
a constrained arc, and finally end with another unconstrained arc. In
backwards time, let 𝑡1 be the time instant of the first switch, from 𝑈
to 𝐶, and let 𝑡2 be the time instant of the second switch, from 𝐶 to 𝑈.
Note, also, that in order to transition from 𝑈 to 𝐶, it must also be the
case that ℎ(x(𝑡1)) = 0 (i.e., the tangency condition must be satisfied).
Then the BVP in (15.38) may be reposed as

𝛽∗
𝑓 , 𝛼∗

𝑓 , 𝑡∗
𝑓 , 𝑡∗

1, x∗
1, 𝑡∗

2 = argmin
𝛽𝑓 ,𝛼𝑓 ,𝑡𝑓 ,𝑡1,x1,𝑡2

‖𝜙‖

s.t. 𝑡2 ≤ 𝑡1,

𝑔(x(𝑡1)) = 0,

ℎ(x(𝑡1)) = 0,

𝑓 (x,u, 𝑡) = ẋ,

Eqs. (15.17)–(15.18), (15.19), (15.21), (15.22), (15.23).

(15.39)

At 𝑡1, when the constraint first becomes active the integration proceeds
backwards in time, using the constrained version of the optimal state,
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adjoint, and control dynamics wherein 𝜇 ≠ 0. Then, at 𝑡2, the jump con-
dition (15.33) is used to update 𝜆𝑑 and 𝜆𝛼 and then the integration pro-
ceeds with 𝜇 = 0.The satisfaction of 𝑔(x(𝑡)) = 0, ∀𝑡 ∈ [0, 𝑡𝑓 ] , 𝑡 ≠ 𝑡1

is guaranteed by way of the optimality conditions derived in this sec-
tion. In terms of the implementation, amultiple shooting scheme [226]
is employed wherein the first shot comprises the first 𝑈 arc (in back-
wards time) from 𝑡𝑓 to 𝑡1 and the second shot comprises the remain-
ing 𝐶 and 𝑈 arcs. Thus the BVP in (15.39) is augmented to include the
stitching constraints at 𝑡1.

15.3.3 Turret Turn Control

If the path constraint does not become active, the trajectory is com-
prised of a single 𝑈 arc. Consider the case where the constraint be-
comes active at some point along the trajectory and later becomes in-
active; this corresponds to the 𝑈𝐶𝑈 sequence of arcs.

Case 1: (Terminal unconstrained arc, 𝑡 ∈ [𝑡1, 𝑡𝑓 ].) This case corresponds
to the final 𝑈 arc in the 𝑈𝐶𝑈 sequence, or the singular 𝑈 arc in a com-
pletely unconstrained trajectory. Here, 𝜇 = 0, and 𝜆𝛼 = 0 due to (15.17)
and (15.25). According to (15.21) the optimal Turret control, 𝜔∗ is un-
defined. Once the trajectory is onthe fina unconstrained arc, the Tur-
ret’s control has no bearing on the outcome. In this time interval, any
𝜔𝑢 ∈ [−𝜌, 𝜌] is trivially optimal [84]. As a convention, it is assumed
that 𝜔𝑢 = −𝜌 sign (𝜎𝛼) in this case, which corresponds to the GoE con-
trol [2].

Case 2: (Constrained arc, 𝑡 ∈ [𝑡2, 𝑡1).) This case corresponds to the 𝐶
arc wherein the path constraint is active. Here, 𝜇 ≠ 0, since 𝜇(𝑡1) = 0
and 𝜇 > 0 when the constraint is active. As in the previous case, 𝜆𝛼 = 0.
Therefore, 𝜔∗ is generally well defined according to (15.21) except in
the following (sub)cases.

Case 2.1: (Turret locked on, 𝛼 = 0.) If 𝛼 = 0, the Turret’s gaze is lined
up exactlywith theAttacker’s position. This configuration corresponds
to the Turret’s Universal Surface wherein the GoE adjoint 𝜎𝛼 = 0 [2].



334 ENGAGE OR RE TR EAT W I TH A W IDE - B EAM TURRE T

Since 𝜆𝛼 = 𝜎𝛼 = 0, the Turret’s optimal control is undefined. In this
case, 𝜔∗ is given by (15.41) (see Proposition 15.1).

Case 2.2: (Turret looking away, 𝛼 = 𝜋.) If 𝛼 = 𝜋, the Turret is looking
directly away from the Attacker’s position. This configuration corre-
sponds to the Turret’s Dispersal Surface wherein the GoE adjoint 𝜎𝛼 is
undefined [2]. Thus, the Turret’s optimal control, 𝜔∗ is undefined as
well. In the GoE, the Turret has the authority to choose to turn either
clockwise or counterclockwise to remain on an optimal (equilibrium)
trajectory. Here, however, the choices are not equivalent because the
Attacker’s heading control is different than in the GoE. In this case, 𝜔
is set to

𝜔𝐷𝑆 =
⎧{
⎨{⎩

𝜌 if cos𝛽 ≥ 0,

−𝜌 otherwise,
(15.40)

which states that if the Attacker is to the right of the Turret, the Turret
should turn counterclockwise at full rate. In this configuration, turning
counterclockwise results in a larger ̇𝛼, bringing the Attacker closer to
the Turret’s view for the remainder of the constrained arc than if the
Turret had turned clockwise (see, e.g., Fig. 14.1).

Case 3: (Initial unconstrained arc, 𝑡 ∈ [𝑡0, 𝑡2].) This case corresponds
to the initial 𝑈 arc in the 𝑈𝐶𝑈 sequence. Here 𝜆𝛼 ≠ 0 in general,
due to (15.37). Since 𝜇 = 0 when the constraint is inactive 𝜔∗ is well-
defined. Moreover, because �̇�𝛼 = 0, the Turret always turns in one par-
ticular direction during this part of the trajectory.

Proposition 15.1. When the constraint is active (𝑔(x) = 0) and 𝛼 = 0, the
Turret’s optimal control is given by

𝜔𝑈𝑆 = − sign(𝜆𝛽) ⋅ min
⎛⎜⎜⎜⎜
⎝

∣
∣
∣
∣
∣

𝜆𝛽

𝑑2√(𝜆𝑑 + 𝜇𝜎𝑑)2 + 1
𝑑2 𝜆2

𝛽

∣
∣
∣
∣
∣
, 𝜌

⎞⎟⎟⎟⎟
⎠

(15.41)

Proof. In the GoE, the Turret’s singular control along the Universal Sur-
face is 𝜔 = 0, which is the control associated with keeping 𝛼 = 𝜎𝛼 = 0.
However, in the optimal constraint retreat scenario, a different singu-
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lar control may be required to keep 𝛼 = 0. Note that 𝜎𝛼 = 0 on the
Universal Surface. Thus,

̇𝛼 = 𝜔 − 1
𝑑 sin𝜓

= 𝜔 +
𝜆𝛽 − 𝜇𝜎𝛼

𝑑2√(𝜆𝑑 + 𝜇𝜎𝑑)2 + 1
𝑑2 (𝜆𝛽 − 𝜇𝜎𝛼)2

= 𝜔 +
𝜆𝛽

𝑑2√(𝜆𝑑 + 𝜇𝜎𝑑)2 + 1
𝑑2 𝜆2

𝛽

,

and thus to keep 𝛼 = 0 the Turret should select 𝜔 such that ̇𝛼 = 0.
However, it is entirely possible that the Turret does not have enough
control authority to keep ̇𝛼 = 0 and thus control saturation must be
considered – hence the min with 𝜌 in (15.41).

Suppose that the Turret were to disregard (15.41) in the case where
the first argument of the min is less than 𝜌. The Turret’s gaze would ac-
tually turn past the Attacker thereby making 𝛼 ≠ 0 and 𝜎𝛼 ≠ 0 and the
non-singular turn control, (15.21), would come into play. Eq. (15.21)
would dictate that the Turret reverse direction in order to drive 𝛼 → 0,
and the dilemma would begin again. Thus the Turret’s turn control
would chatter/modulate in such a way as to emulate the behavior cap-
tured in (15.41).

15.4 SOLUT IONS AND RE SULT S

The results in this section pertain to the following initial conditions and
an assumed terminal Turret look-angle

x⊤
0 = [20.61 −0.2450 1.816] , 𝛼𝑓 = −0.6736. (15.42)

These values correspond to the Attacker beginning at (−5, 20) in the
𝑥𝑦-plane and the Turret looking along the 𝑦-axis, initially. In order to
ensure feasible transition from 𝑈 to 𝐶 a sweep of 𝛽𝑓 is performed for
the assumed 𝛼𝑓 . The trajectories in the sweep are integrated starting
at 𝑡 = 𝑡𝑓 and proceed (backwards) until the first time at which either
𝑔(x) = 0 or 𝑑(𝑡) sin𝛽(𝑡) = 20.
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The purpose of the sweep is to find a value for 𝛽𝑓 which, when inte-
grated until 𝑔(x) = 0 results in the tangency condition to be satisfied:
ℎ(x) = 0. The 𝛽𝑓 associated with this point is then used as an initial
guess for a Nonlinear Program (NLP) to fine-tune 𝛽𝑓 to drive ℎ(x) → 0
when the constraint becomes active (𝑔(x) = 0). The solution of the
NLP also yields a guess for 𝑡1, 𝑑1, 𝛼1, 𝛽1, and 𝜆𝑑1

. A guess for 𝑡2 (or
Δ𝑡 = 𝑡1 − 𝑡2, Δ𝑡 > 0) is the last piece needed to specify a guess for the
BVP, (15.39).

Figure 15.2 shows the result of the BVP solution procedure. The red
portion of the Attacker trajectory indicates where the path constraint is
active. The Turret’s initial look angle is shown by the black arrow; the
first blue arrow counterclockwise is the Turret’s look angle when the
constraint becomes active; the red arrow is the look angle when the tra-
jectory leaves the constraint; the last blue arrow indicates the final Tur-
ret look angle. The open black circle indicates the initial boundary con-
ditions at (𝑥, 𝑦) = (−5, 20). Note that the Turret is constantly turning
counterclockwise in this case. Incidentally, the best trajectory found by
the NLP corresponds to the initial guess. The reasons for this may be
that the solver was not allowed to run long enough, the integrator was
encumbered with too many callbacks (with too high of precision), the
solver had trouble finding or moving to x(𝑡2) that satisfy 𝑔 (x(𝑡1)) = 0
and ℎ (x(𝑡1)) = 0, or the solver algorithm (constrained optimization by
linear approximation, or COBYLA) has difficulties with this particular
problem.

Figure 15.3 shows the state, adjoint, and control trajectories associ-
ated with the indirect solution. Figure 15.4 compares the Value of En-
gagement and Value of Retreat along the trajectory; 𝑔(x) is the differ-
ence between the upper and lower curves, and the curves are coin-
cident along the red constrained arc. The validity of the trajectory is
guaranteed by construction: it satisfies all of the necessary conditions
for optimality in (15.39) and, from Fig. 15.4, it is clear that 𝑉𝐸 ≥ 𝑉𝑅

along the entire trajectory. In particular, we’ve shown the existence of
and computed optimal retreat control strategies, 𝜓∗(𝑡; x) and 𝜔∗(𝑡; x)
which is sufficient to state this is a valid solution according to [84, Def-
inition 1 & Theorem 1].
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Figure 15.2: Indirect backwards multiple shooting solution trajectory.
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Figure 15.4: Comparison of Value of Engagement and Value of Retreat along
the trajectory.

15.5 CONCLUS ION

In this chapter, an engage or retreat scenario was applied to a mobile
Attacker against a stationary Turret with bounded turn rate. Since the
solution of the Game of Engagement is known, the focus was on solv-
ing the Optimal Constrained Retreat problem. The path constraint im-
posed by the Game of Engagement makes the OCR problem both in-
teresting and challenging. The first-order necessary conditions for op-
timality were developed which yielded a system of differential equa-
tions describing the optimal dynamics. Then, a general BVP was speci-
fied with known initial conditions and solved it for a particular point
in the state space using backwards (multiple) shooting.



Part IV

CONCLUS ION





16
SUMMARY OF THE CONTR I BUT IONS

Overall, the goal of all of this document has been to argue that what
can be done rigorously and analytically should be done so. In addition,
it has been shown that the usefulness of solutions to “small” problems
transcends the problem itself. Thework followed along twomain prob-
lem domains within the study of adversarial confrontations: pursuit-
evasion and turret defense. With the exception of the Turret, which
was modeled as a stationary agent with bounded turn rate and infinite
range, the agents were modeled as having control over their instan-
taneous heading. One may argue that such models are too simplistic
to be of any practical use, however, at the very least, these types of
solution may provide excellent initial guesses for the optimization of
higher fidelity models or serve as starting points for agents who learn
and refine their strategies for their particular environment.

One thing that cannot be overstated is the power of the equilibrium
strategies in providing performance guarantees, without any regard to
the adversary’s actions, to the one who implements them. Often, the
hope of obtaining the equilibrium is abandoned far too early in the
process in favor of utilizing solution methods which are easier to im-
plement (butwhich yield sub-optimal performance and no insight into
the problem). It should be clear that there is still much that can be done
in the way of obtaining equilibrium strategies for interesting and rele-
vant scenarios. Not only this, but the approaches demonstrated herein
provide additional understanding of the entire state space in the way
of win regions or regions corresponding to different end-games.

In particular, the technical contents build up the two problem areas
from the smallest (in terms of number of agents) and most restrictive
(in terms of the assumptions about each agent’s strategy) instances
into larger, more complex scenarios. Thus an overarching process has
been developed and demonstrated which sits atop traditional game-
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theoretic and optimal control methods. Following are several ways in
which the “small” solutions have been utilized in larger problems. Of-
ten, within the larger problem, the solution degenerates to the smaller
solution for a large portion of the state space (as was evident in the
two-Pursuer optimal evasion problem, and the two-Turret problem).
This may also be described as decomposition, but, here, there is as-
surance that the decomposition is correct (in the sense that the saddle-
point equilibrium property still holds) – it is often the case that decom-
posing a problem is done out of necessity, at the cost of performance.
Next, the small solutions have been used to provide constraints in or-
der to ensure the validity of a particular choice of intention in multi-
objective scenarios (as demonstrated in the chapters on engage or re-
treat). Lastly, the Value function associatedwith the solution of a small
problemwas used as the cost functional for a larger scenario (in the two-
Attacker turret defense game). All of these usages can find application
in other adversarial problems. Along the way, many challenges were
identified and addressed – even some of the more nuanced challenges,
like the difficulty in finding a state-feedback Nash equilibrium for the
three-Pursuer game of minmax capture time, have resulted in solu-
tions and techniques with wide applicability.



17
FUTURE WORK

This chapter expounds on a some directions for further research in
light of the developments of this work. First, a list of direct extensions
is given for the specific scenarios considered. The chapter concludes
with some less direct extensions which contain significant challenges
and warrant, perhaps, a more prolonged research effort.

17.1 D I R EC T EX T ENS IONS

The extensions in this list follow along in the order of appearance of
the technical chapter to which they pertain.

PURE PUR SU I T AND CONSTANT EVADER HEAD ING Concerning
the work on pursuit curves, the case of escape from persistent surveil-
lance is a rich area for further development, especially when one must
consider sequences of entries and exits of the Pursuers’ effector range.
For example, a particular heading may cause the Evader to spend less
time in the initial Pursuers’ range but allow a subsequent Pursuer to
accrue more surveillance time. A more significant extension for the es-
cape scenario is to allow the agents total freedomover their control (i.e.,
treat it as a differential game). The simpler case, wherein the Evader’s
course is given and one wishes to obtain the optimal control for the
(single) Pursuer which maximizes time-of-surveillance has recently
been solved in [264].

PURE PUR SU I T AND OPT IMAL EVADER Recall, for the optimal eva-
sion against two Pursuers employing PP, that the solution, when dual
capture is optimal, must be computed numerically. For onboard im-
plementation in a feedback control sense, since the entire state space
was filled with optimal trajectories, one may sample the state space to
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generate a lookup table for the Evader’s instantaneous heading. The
method developed to interpolate the wide-beam TDDG could certainly
be adapted for this purpose. There are two research directions for fur-
thering and utilizing these results: (1) comparison (and simulation)
against the optimal game policies, wherein the Pursuers seek to min-
imize the Evader’s life, and (2) using the Value function from this
problem to make task assignments in larger scenarios involving many
agents.

M PUR SUER GAME OF T IME There is still much interest in obtain-
ing the FeedbackNash Equilibrium strategies for this differential game,
however, the approach presented in Chapter 8 to obtain robust strate-
gies has application inmanyother gameswhose solutions are not known.
In particular, the bounds described by robust policies may be useful
for making assignments (as in who ought to pursue who) in a multi-
Pursuer multi-Evader scenario.

M PUR SUER BORDER DE F ENS E There are several possible exten-
sions to this work, including multiple Evaders, a heterogeneous Pur-
suer team, Evaderwith escorts, static border defenses, etc. In particular,
for multi-Evaders, one may expect to see certain Evaders performing
a sacrificial role as seen in the two-Attacker TDDG. Again, the geomet-
ric policies developed have application to larger, multi-Pursuer, multi-
Evader border defense scenarios wherein decomposition, team form-
ing, and target assignment may feature prominently. Some work along
these lines has already been completed [100]. As regards a more gen-
eral border geometry, [60] contains some results.

K IN E T I C TURRE T DE F ENS E D I F F E R ENT IA L GAME For the two-At-
tacker variant, it remains to formulate and solve aGame of Degree in the
portion of the state space in which the Turret can guarantee neutraliza-
tion of both Attackers (the cost functional may be a function of the two
distances). Additionally, it would be beneficial to rigorously prove that
the Global Stackelberg Equilibrium and State Feedback Nash Equilib-
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rium are coincident across the state space. This problem can be made
even more interesting with the introduction of additional Attackers.

K IN E T I C TURRE T ENGAGE OR RE TR EAT Possible extensions to this
workmay include consideringmultiple defensive agents as in [91, 221].
Some initial results, for non-turret defensive agents, are given in [91].

W IDE - B EAM TURRE T DE F ENS E D I F F E R ENT IA L GAME In general,
analysis of non-analytic singular surfaces, even “benign” types such as
the dispersal surface, is difficult. The numerical approaches developed
in Chapter 15 make extensive use of the unique aspects of the game
and are built upon existing general purpose algorithms such as numer-
ical integration, root finding, binary search, nonlinear programming,
etc. An interesting research direction would be to generalize some of
these concepts to better address non-analytic singular surfaces in other
games.

W IDE - B EAM TURRE T ENGAGE OR RE TR EAT There are still some
difficulties in applying the optimality conditions to find an optimal tra-
jectory, in general. The three singular surfaces that appear in the Game
of Engagement impute some of their complexities and subtleties onto
the Optimal Constrained Retreat, particularly when the Value function
constraint is active. Specification of the Boundary Value Problem relied
on having to assume a sequence of constrained and unconstrained arcs.
Some care was taken to choose parameters and initial boundary condi-
tions to yield a trajectory in which the path constraint would become
active. The process of computing an initial guess to satisfy the tangency
condition when the constraint becomes active is nontrivial. Finally, the
barrier surface, which partitions the state space into a region where en-
gagement is optimal and a region where retreat is optimal, could be
computed.
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17.2 R E S EARCH OUTLOOK

As mentioned previously, the developments pertaining to analyzing
multi-agent differential games,multi-objective scenarios, and applying
the solutions of smaller games as costs in larger games are ready to be
applied to novel scenarios. Although each new scenario may present
its own nuanced challenges, these approaches should yield some inter-
esting results. Then there is the problem of sensing limitations – in this
work, full state information has been given to the agents. For more real-
world scenarios involving vehicles with noisy observations, the sim-
ple solution is to implement a suitable filter which passes its filtered
observations to the policies developed herein. Even more challenging,
however, is the case where no information about the opponent’s state
is known. These problems are related to the field of study known as
adversarial search. Some initial progress for engagements similar to
those studied here is contained in [217]. Next, there is the problem of
limited information about an opponent’s capability (i.e., uncertainty in
the parameters of the differential game). In all of this work, it has been
assumed that the agents know all of the system parameters, though
it is clearly more realistic if these were unknown or at least uncertain.
Again, a simple solution is to utilize some kind of onboard estimator –
if, for example, an opponent’s speed is unknown, onemay simplymea-
sure its speed and update its model accordingly.Whatever current best
estimate is available may then be used to compute the appropriate pol-
icy. However, this approach may be ignoring the possibility of one or
other agent disguising its capability. Finally, obtaining equilibrium (or
near-equilibrium) policies for models with more complex dynamics is
desired. For this, a lifted representation of the model may be beneficial
(e.g., [276]).



Part V

APPEND IX





A
SUB ST I TUTE

Figure A.1: XKCD comic showing an even more challenging variant of the
three-Pursuer, single-Evader differential game of minmax cap-
ture time [169]. The proposed solutions are based on an assump-
tion that the Pursuers know the Evader’s current and future con-
trol inputs.
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2 PUR SUER S AND N EVADERS

The contents of this appendix are based upon the paper [244].

B.1 IN TRODUCT ION

Cooperation is essential to the survival and success of many differ-
ent species of animals. Remarkable feats are made possible through
cooperative behaviors which emerge from relatively simple processes
at the individual level. For example, consider the nest building, forag-
ing, and decision making abilities that insect ‘societies’ are capable of
[4], while at the same time only possessing a modest amount of pro-
cessing power. Similarly, cooperation among autonomous vehicles (or
more abstractly, agents) may enable new types of tasks to be accom-
plished or better performance on existing tasks. Particularly interest-
ing is the use of cooperation within a group in adversarial scenarios
between groups or species. In nature, these scenarios include collective
defense such asmeerkat mobbing [116], distributed nest defense [176],
and musk oxen who press together with their horns facing outward
[123, 235]; cooperative predation such as the yellowsaddle goatfish
[225], wolves [230], and dolphins [111]; and cooperative sensing such
as predator inspection performed by guppies [51].

Biological systems have evolved such innovative ways of cooperat-
ing that they often serve as the inspiration for optimization algorithms
[235], robotic control algorithms [78, 227, 265], and methods for de-
signing controllers (e.g. via evolutionary algorithms) [8, 78, 122]. Re-
garding the design of controllers, the difficulty often lies in the dimen-
sionality of either the state space or the control space. Genetic algo-
rithms, for example, tend to settle in local optima when the chromo-
some encoding the controller is large. One approach to reducing the
size of control space is to constrain the controller at the outset based
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on heuristics or expert knowledge (c.f. [8, 229]). This approach finds
its roots in Connell’s ideas of minimalist robotics [47], wherein he dis-
cussed how a controller comprised of a few simple behaviors could
mostly account for the seemingly complex behavior of a snail. Of course,
the principle of simplicity in robotic control was heavily inspired by
Braitenberg Vehicles whose two sensors are directly connected to its
two motors; the different ways of connecting sensors to motors results
in fundamentally different, but understandable behaviors [35].

The focus, in this appendix, is on a particular type of predator-prey
interaction, though aspects of some of the other natural cooperative be-
haviors were influential in the problem setup and technical approach.
An analogous relationship is that between a pursuer and an evader
which is prevalent in controls and optimization literature (see, e.g.,
[130]). Often, differential game theory is employed to obtain saddle-
point equilibrium strategies for the pursuer and the evader depending
on the particular cost functional being considered. This type of analysis
is typically only possible for systemswith simple dynamics and/or few
numbers of agents. For example, the two-pursuer one-evader game of
min/max capture time was solved in [107] wherein the two pursuers
employ a “pincer” maneuver to reduce the capture time of the evader
w.r.t. either of their individual capture times. Similarly, Breakwell et
al. [37] solved the one-pursuer two-evader game of min/max capture
time (of the second evader captured). Other cost functionals have been
explored in the one-against-two game which drastically changes the
equilibrium control strategies [85].

A similar style of pursuit-evasion (or predator-prey) gamewith sim-
ilar (single-integrator) dynamics is considered here, but with much
larger numbers of prey. Also, while the mentioned literature pits two
against one (or vice versa), a two-against-many scenario is explored.
The goal of the two predators is to maximize the collective number
of prey captured within a specified time horizon. They do so with-
out communicating or directly coordinating with their fellow team-
mate, whereas teammates in a differential game context are essentially
treated as a single entity. Thus the proposed control strategy is inher-
ently decentralized, which more closely represents a biological system.



B.1 IN TRODUCT ION 353

In order to focus on the cooperation of the predators, in particular, the
prey control strategy is fixed to a Boids-like controller (c.f. [200]). As a
result, the predators can learn to exploit the underlying prey flocking
behavior by affecting the shape of the prey distribution. The predator
control is based on a nearest-neighbor approach based on [8], though
the weighted nearest-neighbor is considered here. Each predator mea-
sures the (meta) state of the system and implements the baseline be-
havior associated with the nearest anchor point.

These approaches and concepts are applicable to behavior genera-
tion for non-player characters (NPCs) as well as military training sim-
ulations. In particular, a neural network-based controller was evolved
using a genetic algorithm for a real-time strategy (RTS)-like game in
[122]. To contrast, the controller structure employed here is not a neu-
ral network and the focus is onmovement and positioning (as opposed
to game elements like resource gathering). A neural network controller
generated via genetic algorithm was also employed in [204] where
the emphasis was on so-called “multi-modal” behaviors. One of the
games considered was a fight or flight game where at any given time
the player is executing one or other particular behavior; this concept of
a multi-modal behavior or controller is quite related to this appendix.
Reference [62] addresses generation of NPC behaviors but from the
angle of planning (e.g., via meta-heuristic search) which occurs on a
much larger timescale than the type of control focused on in this ap-
pendix. Finally, the application of artificial intelligence and game con-
cepts to military training simulations is demonstrated in [238] on task
allocation and planning problems with an emphasis on “explainabil-
ity”.

The contributions of this appendix are listed as follows: (i) speci-
fication of baseline cooperative predator strategies; (ii) specification
of many-against-many metastates; (iii) an anchor point control archi-
tecture based on weighted nearest anchor point; and (iv) a decentral-
ized predator control strategy which outperforms a baseline strategy.
Section B.2 contains the problem formulation. Sections B.3 and B.4 de-
scribe the prey model and predator model, respectively. The controller
structure is also specified in Section B.4. Section B.5 specifies the evo-
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lutionary algorithm along with all of the genetic operators particular
to the control structure employed. Simulation results are contained in
Section B.6, and Section B.7 concludes the paper.

B.2 PROBL EM FORMULAT ION

The environment in which the scenario takes place is a flat plane with
no boundaries or obstacles. Let the predator positions be given as P1 =
(𝑥P1

, 𝑦P1
),P2 = (𝑥P2

, 𝑦P2
) ∈ ℝ2. Similarly, the prey positions are de-

noted by E𝑗 = (𝑥E𝑗
, 𝑦E𝑗

) ∈ ℝ2 for 𝑗 ∈ 1, … , 𝑀, and 𝑀 ∈ ℤ. Let the full

system state be denoted as x = [P⊤
1 P⊤

2 E⊤
1 … E⊤

𝑀]⊤. In general,
it is assumed that the maximum predator and prey speeds, 𝑣𝑃 and 𝑣𝐸,
are such that 𝑣𝑃 > 𝑣𝐸, and that agent speeds are homogeneous within
each respective group. All the agents move with simple motion, i.e.,

Ṗ𝑖 = 𝑣𝑃 [cos𝜓𝑖
sin𝜓𝑖

] , Ė𝑗 = ̄𝑣𝐸 [cos𝜙𝑗
sin𝜙𝑗

] ,

where 𝜓𝑖, 𝜙𝑗 ∈ [0, 2𝜋] are the instantaneous heading angle of preda-
tor 𝑖 and prey 𝑗, respectively, and ̄𝑣𝐸 ∈ [0, 𝑣𝐸]. Note that the preda-
tor is assumed to always move with its maximum speed whereas the
prey is allowed to slow down (subject to the prey model discussed
in detail in Section B.3). For the purposes of numerical simulation,
the scenario takes place in discretized time and the agents’ headings
are computed/updated simultaneously. Thus the discrete time step
𝑡𝑘 = 𝑘Δ𝑡 ∈ [0, 𝑇], where 𝑇 is the time horizon of the simulation and
is an integer multiple of Δ𝑡, and 𝑘 ∈ {1, 2, … , 𝑇/Δ𝑡}. Throughout the
remainder of the paper, the current positions of the agents are gener-
ally referred to without explicitly stating its dependence on time (e.g.
E𝑗 rather than E𝑗(𝑡𝑘)).
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Capture is said to occur when a predator comes within a distance 𝑑𝑐

of a prey agent. An indicator function 𝕀cap(𝑖, 𝑗, 𝑡𝑘) is used to represent
predator 𝑖 (𝑖 ∈ {1, 2}) capturing prey 𝑗 in time step 𝑡𝑘:

𝕀cap(𝑖, 𝑗, 𝑡𝑘) =

⎧{{
⎨{{⎩

1 if ‖P𝑖 − E𝑗‖ ≤ 𝑑𝑐,

0 otherwise,
(B.1)

where ‖⋅‖ is the Euclidean norm. Once a prey agent has been captured,
it is effectively removed from the scenario and the capturing predator
is free to move on to other targets immediately thereafter.

The predators have a shared goal of maximizing the number of prey
captured over a time horizon of 𝑇 simulation seconds,

𝑈 (𝜓1 (x(𝑡)) , 𝜓2 (x(𝑡))) =
2

∑
𝑖=1

𝑀
∑
𝑗=1

∑
𝑡𝑘

𝕀cap(𝑖, 𝑗, 𝑡𝑘), (B.2)

where 𝜓𝑖 (x(𝑡)) is the state-feedback control law of predator 𝑖. In prac-
tice, (B.2) must be modified to exclude double-counted captures (i.e.
whenprey 𝑗 iswithin 𝑑𝑐 of both predators). Because the utility is shared,
this scenario is not an example of by-product mutualism, wherein co-
operation arises from selfish acts, as in [225]. With the prey behavior
fixed, the aim of this study is to design a state-feedback controller for
the predators.

B.3 PR EY MODEL

The behavior of the prey agents is governed by a Boids-like model
(c.f. [200]); this section describes the details of the model. In order
to mimic the flocking behavior of animals, the Boids model introduces
inertia into the agents’motion andmodels various influences as virtual
forces. The virtual forces governing the behavior of the prey are align-
ment, cohesion, and separation [200] as well as avoidance (of nearby
predators). Another augmentation to the original Boids model is the
inclusion of a finite sensing radius, 𝑟, for the prey. That is, a prey agent
only knows, or takes into consideration, the positions of predators and
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prey within 𝑟 distance of its current position. Here, the prey agents are
treated as if they have unit mass.

Three sets are used in formulating the virtual forces. The first is the
set of prey agents within the sensing radius 𝑟,

ℛ𝑗 ∶= {𝑗′ ∣ 𝑗′ ≠ 𝑗, ‖E𝑗 − E𝑗′‖ ≤ 𝑟} . (B.3)

Next is the set of prey agents within a desired minimum separation
distance 𝑠,

𝒮𝑗 ∶= {𝑗′ ∣ 𝑗′ ≠ 𝑗, ‖E𝑗 − E𝑗′‖ ≤ 𝑠} . (B.4)

Last is the set of predators within the sensing radius 𝑟,

𝒫𝑗 ∶= {𝑖 ∣ ‖E𝑗 − P𝑖‖ ≤ 𝑟} . (B.5)

The current centroid of prey positions and velocity vectors within dis-
tance 𝑟 of prey 𝑗 are respectively given by

Ē𝑗 = 1
|ℛ𝑗|

∑
𝑗′∈ℛ𝑗

E𝑗′ , ̇Ē𝑗 = 1
|ℛ𝑗|

∑
𝑗′∈ℛ𝑗

Ė𝑗′ . (B.6)

Alignment is based on the principle that the prey naturally seek to
align their velocity with the overall direction of travel of the flock,

Fali𝑗 =
̇Ē𝑗

‖ ̇Ē𝑗‖
. (B.7)

Cohesion provides some influence for prey to gravitate towards the
centroid of prey positionswhich prevents the flock from splitting apart,

Fcoh𝑗
=

Ē𝑗 − E𝑗

‖Ē𝑗 − E𝑗‖
. (B.8)

Because the agents represent some physical entity, a force designed to
maintain a desired minimum separation distance, 𝑠, is necessary,

Fsep𝑗
= 1

|𝒮𝑗|
∑

𝑗′∈𝒮𝑗

E𝑗 − E𝑗′

‖E𝑗 − E𝑗′‖2 (B.9)
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In this case, the contribution due to each neighboring prey is distance-
weighted to prioritize nearer violators of the desired minimum separa-
tion distance. Finally, avoidance forces the prey to flee from predators
within the sensing radius 𝑟,

Favo𝑗
= 1

|𝒫𝑗|
∑

𝑖∈𝒫𝑗

E𝑗 − P𝑖

‖E𝑗 − P𝑖‖2 . (B.10)

Again, closer predators provide more force.
With all of the necessary forces defined, the (candidate) velocity up-

date law of the prey is given as,

Ė′
𝑗(𝑡𝑘) = Ė𝑗(𝑡𝑘−1) + Δ𝑡 (𝑤aliFali

+𝑤cohFcoh + 𝑤sepFsep + 𝑤avoFavo) ,

(B.11)

where the 𝑤’s are weights corresponding to the level at which the prey
are influenced by each force. Then the candidate velocity is passed
through a saturation function to ensure it does not exceed the maxi-
mum prey speed,

Ė𝑗 =

⎧{{{
⎨{{{⎩

Ė′
𝑗 if ‖Ė′

𝑗‖ ≤ 𝑣𝐸,

Ė′
𝑗

𝑣𝐸
‖Ė′

𝑗‖
otherwise.

(B.12)

B.4 PR EDATOR MODEL

The overall predator control approach is based on the idea of specifying
simple atomic behaviors and then letting the predator decidewhich be-
havior to implement in each time step. Unlike the prey, the predators
have full access to the state, x (the positions of each agent). Each preda-
tor selects its own atomic behavior to implement – that is, they do not
collaborate on which behavior to select. Again, this approach is decen-
tralized, in contrast to more explicit cooperative maneuvers in studies
like [229] which require communication.



358 2 PUR SUER S AND N EVADER S

B.4.1 Atomic Behaviors

The first atomic behavior is the pursue behavior wherein the predator,
P𝑖, aims directly at the nearest prey agent. The index of the nearest prey
agent is given by

𝑗∗ = argmin
𝑗

‖P𝑖 − E𝑗‖, (B.13)

and the associated heading angle is

𝜓pur = atan2(𝑦E𝑗∗
− 𝑦P𝑖

, 𝑥E𝑗∗
− 𝑥P𝑖

) , (B.14)

where atan2 is the four-quadrant inverse tangent function. In the one-
pursuer, one-evader differential game of minmax capture time with
simple motion this is, in fact, the equilibrium strategy for the pursuer
(c.f. [130]). Note, this may not be optimal for the predator since the
prey is not necessarily implementing its equilibrium strategy. Nonethe-
less, it is robust to any prey strategy. It is also useful here as the one-
on-one pursuit-evasion game may be considered to be a subproblem
to the overall scenario.

Next, the converge and diverge behaviors are based onmixing pure
convergence (i.e. aiming directly towards the predator centroid) or di-
vergence (i.e. aiming directly away from the predator centroid) with
aiming at the prey centroid. Inclusion of diverge is partly based on
[138], wherein the author utilized an intra-predator repulsive force in
controlling a group of pursuers pursuing a single evader in a decentral-
ized fashion. Let 𝑀′ be the number of prey currently living; the angles
from the predator to the prey centroid and predator centroid are given
as

𝜓Ē = atan2⎛⎜⎜
⎝

⎛⎜⎜
⎝

∑
𝑗

𝑦E𝑗

𝑀′
⎞⎟⎟
⎠

− 𝑦P𝑖
, ⎛⎜⎜
⎝

∑
𝑗

𝑥E𝑗

𝑀′
⎞⎟⎟
⎠

− 𝑥P𝑖
⎞⎟⎟
⎠

, (B.15)

𝜓P̄ = atan2⎛⎜
⎝

⎛⎜
⎝

∑
𝑖′

𝑦E𝑖′

𝑁
⎞⎟
⎠

− 𝑦P𝑖
, ⎛⎜
⎝

∑
𝑖′

𝑥E𝑖′

𝑁
⎞⎟
⎠

− 𝑥P𝑖
⎞⎟
⎠

, (B.16)
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respectively. Then the converge and diverge behaviors are governed
by

𝜓con = atan2 (𝑚 sin𝜓P̄ + sin𝜓Ē, 𝑚 cos𝜓P̄ + cos𝜓Ē) , (B.17)

𝜓div = atan2 (−𝑚 sin𝜓P̄ + sin𝜓Ē, −𝑚 cos𝜓P̄ + cos𝜓Ē) , (B.18)

where 𝑚 is the mixing weight; the larger 𝑚 the more the behaviors ap-
proach pure convergence or divergence.

The last two behaviors, drive and flank, both make use of an angle,
𝜓den, which represents the angle from the predator to the highest dis-
tance-weighted density of prey. A Kernel Density Estimator (KDE) is
used to compute an estimate of 𝜓den. First, the angles from the predator
to each living prey are computed as

𝜓𝑖,𝑗 = atan2(𝑦E𝑗
− 𝑦P𝑖

, 𝑥E𝑗
− 𝑥P𝑖

) . (B.19)

Then the distribution of 𝜓𝑖,𝑗 is smoothed via the following estimator:

̂𝑓ℎ(𝜓) = 1
ℎ𝑀′ ∑

𝑗

1
‖P𝑖 − E𝑗‖

𝐾 (
𝜓 − 𝜓𝑖,𝑗

ℎ ) , (B.20)

where ℎ > 0 is the bandwidth of the estimator and 𝐾 is the kernel. For
this study, the bandwidth is set using Silverman’s Rule [222], and the
standard Gaussian distribution is used for the kernel. Finally, the angle
from the predator to the highest distance-weighted density of prey is
defined as

𝜓den = argmax
𝜓

̂𝑓ℎ(𝜓). (B.21)

The drive behavior is governed by

𝜓dri = 𝜓den, (B.22)

thus the predator aims always in the direction of maximum distance-
weighted prey density. The main purpose of including this behavior
is to avoid the potential pitfall of wasting time pursuing a single prey
agent away from an advantageous cluster of prey.
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Influence over the distribution or shape of the prey flock is the main
purpose of the flank behavior. In general, it is better for the predators
when the prey are highly concentrated; however, once a predator ap-
proaches, the flock will evade and disperse. Thus the flank behavior
is designed to aim the predator in a direction tangential to the flock.
Let 𝑖′ = argmin𝑖‖P𝑖 −P𝑖′‖ be the index of the predator closest to the 𝑖th
predator.

𝜓fla = 𝜓den − 𝜋
2 ⋅ sign([cos𝜓den

sin𝜓den
] × (P𝑖′ − P)) (B.23)

The last term ensures that the tangential direction is one which points
away from the nearest predator.
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(a) pursue
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(b) converge
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(c) diverge
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(d) drive

[ February 3, 2022 at 14:03 – classicthesis v4.6 ]

(e) flank

Figure B.1: Demonstration of each of the five predator behaviors. The
red dashed line indicates the direction of maximum distance-
weighted density of prey, 𝜓den.

Figure B.1 shows a pictorial representation of each of the predator
behaviors. Although pursue and drive (and, similarly diverge and
flank) appear quite similar, the presence of additional prey can effect
more obvious distinctions.
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B.4.2 Meta State

The overall state of the system at any given time step is essentially the
positions of all of the predators and all of the prey agents who have not
yet been captured. One may consider including another state for the
prey which specifies whether a particular agent is alive or dead, but ul-
timately the positions of dead prey agents ought not have any bearing
on the predator’s decisions. Aside from the variability in the size of the
state space, the main issue is that even with a few living prey agents
the number of dimensions is quite large. In an effort to avoid the curse
of dimensionality, and to be able to function in the presence of many
prey agents, it is prudent to collapse the positional state information
into a smaller (meta) state space.

Let the centroid of all currently living prey be Ē = 1
𝑀′ ∑𝑗 E𝑗. For the

𝑖th predator, define the meta state as

̂x𝑖(𝑡𝑘) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

min𝑗‖P𝑖 − E𝑗‖
‖P1 − Ē‖

⋮
‖P𝑁 − Ē‖
‖P𝑖 − P≠𝑖‖

⋮

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (B.24)

where 𝑁 is the number of predators. The meta state is comprised of
the distance to the nearest prey, the distances from each predator to
the prey centroid, and the distances to each other predator; ̂x𝑖 ∈ ℝ2𝑁 .
For 𝑁 = 2 predators the size of the meta state space is 4, regardless of
the number of prey in the simulation.

B.4.3 Controller Structure

In order to limit the complexity of this initial study, it is assumed that
the predators to be homogeneous – that is, they share the same con-
troller, 𝜓, which is a function of the meta state. Thus let 𝜓𝑖(x) ∶= 𝜓(x̂𝑖)
for 𝑖 ∈ {1, 2}. In order to evolve the predators’ feedback controller, it
must be parameterized in such a way that will allow the application of
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crossing and mutation operations to it. For the research, this is accom-
plished by using an anchor point method [8].

Anchor points 𝑎 ∶= [x̂, 𝑤, 𝑢] are comprised of a position (in the meta
state space) ̂x, a weight 𝑤, and a control 𝑢. In this case, the control is
selected as one of the atomic behaviors described in Section B.4.1:

𝑢 ∈ {𝜓pur, 𝜓con, 𝜓div, 𝜓dri, 𝜓fla} . (B.25)

A set of anchor points 𝑆 = [𝑎1, 𝑎2, … 𝑎𝑁] can be used to parameter-
ize a feedback controller by using the anchor points as the basis for a
weighted nearest neighbor switching controller.

[x̂∗, 𝑤∗, 𝑢∗] = argmin
[x̂𝑖,𝑤𝑖,𝑢𝑖]∈𝑆

𝑤𝑖‖x̂ − x̂𝑖‖ (B.26)

Figure B.2 shows a 2D example of a feedback controller parameterized

= Anchor Point = Current State

= Flank = Pursue = Converge

Figure B.2: Example of an anchor point feedback controller in a fictitious 2-
dimensional meta state space.

by a set of 3 anchor points. At any given state x̂, the control can be
computed by finding the weighted nearest anchor point, 𝑎∗, by (B.26)
and implementing the associated control, 𝑢∗. The higher the weight
associated with a particular anchor point the further it will appear, in
this case.
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B.5 EVOLUT IONARY ALGOR I THM

The evolutionary algorithm (EA) used in this research follows a canon-
ical EA format. Generation 𝐺0 begins with an initial population of 𝑃
candidate controllers, each ofwhich is comprised of 𝑛𝑙 ∼ Uniform(1, 𝑛)
anchor points that are randomlyplaced in the 4-dimensionalmeta state
space with a randomly assigned behavior and a random weight, 𝑤 ∼
Uniform(0, 1). This initial population is evaluated, assigned a fitness,
and entered as the first generation of the evolutionary loop. In each
generation, the population is crossed, mutated, and evaluated using
the methods outlined in this section. Once a predetermined number
of generations is completed, the EA ends and the candidate controller
with the highest fitness is considered the best evolved controller.

B.5.1 Crossing

Crossing begins by selecting two unique parent controllers from the
current generation. Each parent has an equal probability of being se-
lected. The child controller is created by using a uniform crossover
technique in which each child anchor is randomly selected from the
corresponding anchors of the two parents. This process is repeated un-
til 𝑃 children are created. The new set of children controllers are then
added into the current population to create a combined population of
size 2𝑃.

B.5.2 Mutation

After the crossing is complete, the combined population (comprised
of both parents and children) is passed through a mutation operation.
There are two distinct types of mutation that can occur; major and mi-
nor mutations. The probability for these mutations to occur to a given
anchor point is given by their respective mutation rates: 𝜇𝑀 for major
mutation and 𝜇𝑚 for minor mutation.
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Major mutations randomly change the value of the control associ-
ated with a given anchor point. For example, if an anchor point has a
control value of pursue, a major mutation can change it to a control
value of drive. This can have a drastic effect on the performance of
the controller and therefor is assigned a relatively small probability of
happening: 𝜇𝑀 = 1%.

Minor mutations shift the position of a given anchor point a small
amount in a random direction. Given an anchor point x̂with weight 𝑤,
the mutated version x̂′, 𝑤′ can be computed as

̂x′ = x̂ + R, 𝑤′ = 𝑤 + Uniform(0, 1)

where R ∈ ℝ4 is a vector of uniform random numbers in the range 0
to 1. Minor mutations are designed to slightly modify the boundaries
between the different regions of control and thus will usually have a
relatively small effect on the controllers performance.Minormutations
are applied to anchor points with a probability of 𝜇𝑚 = 10%

B.5.3 Fitness Evaluation

After the crossing and mutation operations have been completed, the
combined population is then evaluated and each candidate controller
is assigned a fitness. The fitness is defined as the average utility of 9
different simulations (all with the same settings) with various initial
conditions. Figure B.3 shows all 9 of the sets of initial conditions. These
same 9 configurations are used to assess the fitness in every generation.
All of the configurations begin with the prey concentrated in a circular
ball. In the first column of Fig. B.3, the prey start with zero velocity;
the second column has the prey all moving in the same direction at
max velocity; and the third column has the prey moving with random
velocities. For the predators, the first row of Fig. B.3 starts the preda-
tors relatively close together; the second row places the two predators
nearly opposite one another w.r.t. the prey and at similar distances;
and the third row starts the predators nearly opposite one another but
with one of the predators closer to the prey. The purpose of the differ-
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Figure B.3: Suite of initial conditions to simulate to determine fitness of an
individual controller.
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ent initial conditions is to expose the controller to a variety of scenarios
in an effort to avoid over-fitting to a particular configuration. Once all
the agents are assigned a fitness, the top 30% of the combined popula-
tion are selected along with 0.4𝑃 individuals chosen from the bottom
70% to pass on to the next generation.

Table B.1 summarizes the settings used for the EA simulation in the
following section. Note the odd value for population size is due to the
number of cores available on the computer in which the EA was run.
In each generation, the fitness evaluation is performed in parallel (one
individual per core).

Table B.1: EA Parameter Settings
Parameter Value Description

𝑛 10 maximum number of anchor points
𝜇m 0.1 minor mutation probability
𝜇M 0.01 major mutation probability

𝐺max 100 number of generations
𝑃 190 population size

B.6 R E SULT S

This section contains the results of the EA as well as a Monte Carlo
simulation comparing the best evolved controller to two baseline con-
trollers across many different initial conditions not previously seen by
the EA. Table B.2 contains the simulation parameters used in all of the
experiments. Note that the EA-learned controller was trained for these
particular settings of prey virtual force weights. Thus the EA-learned
controller is specifically tuned to this particular prey behavior. The co-
hesion weight, 𝑤coh, in particular, is quite high in comparison to the
other forces. This is to encourage the prey to cluster togethermore since
the interest is in examining howpredators should approach/maneuver
around clusters of prey. For most cases, 𝑇 is not large enough for the
predators to capture all of the prey.

Figure B.4 shows the evolution of the best and average utility (over
the whole population) for 100 generations. As indicated by the con-
sistent gap between the best and average fitnesses at each generation,
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Table B.2: Simulation Parameter Settings
Parameter Value Description

𝑀 40 number of prey
𝑁 2 number of predators
Δ𝑡 0.01 timestep
𝑇 15 final time
𝑣𝐸 0.1 max evader speed
𝑣𝑃 0.2 max pursuer speed
𝑟 0.6 prey sensing range
𝑠 0.05 desired separation
𝑑𝑐 0.01 capture distance

𝑤coh 7 weight for cohesion force
𝑤ali 0.1 weight for alignment force
𝑤sep 1 weight for separation force
𝑤avo 2 weight for avoiding the predator

some diversity within the population is maintained throughout the
evolution. By the endof the 100 generations, the best evolved controller’s
utility is 20%higher than the baseline controller, which always uses the
pursue behavior (aim at the nearest prey).
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Figure B.4: Evolutionary algorithm results - best and average normalized fit-
ness for each generation. The gray line is the average performance
of the baseline Pure Pursuit controller on the test suite.

Figure B.5 contains an animation of the best evolved controller start-
ing fromaparticular initial condition (seenduring evolution). Formost
of the simulation, the predators utilize the pursue behavior; Table B.3
summarizes the amount of time spent using each of the behaviors. In-
terestingly, the best evolved controller’s anchor points are comprised



368 2 PUR SUER S AND N EVADER S

t = 0.0

pursue pursue

Figure B.5: Simulation of the best controller evolved after 100 generations on
one of nine initial conditions in which it was tested. Also available
at avonmoll.github.io/files/pred_prey.gif

Table B.3: Summary of behaviors used in simulation shown in Fig. B.5
Behavior P1 Percentage of Time P2 Percentage of Time
pursue 99.6 93.4
converge 0 0
diverge 0 0
drive 0 0.13
flank 0.4 6.47

only of the pursue, drive, and flank behaviors. Neither converge nor
diverge are even present in the controller. It appears that these two be-
haviorsweremostly “evolved out” of the population (or at leastmoved
to a remote area of the meta state space, thereby limiting its activa-
tion). Because individual predators are capable of capturing individ-
ual prey agents alone, the converge behavior is almost never necessary.
As far as diverge goes, the flank behavior appears to be a slightlymore
useful means of creating separation between the predators when they
come too close. Although drive and flank are used, they are used
sparingly, suggesting they are useful only in specific circumstances.
Nonetheless, the results in Table B.3 suggest that behaviors that are ac-
tive for a small amount of time can have a large influence on the overall
utility.

Because the controllers in the EA saw the same 9 initial conditions
in each generation, over fitting is a concern. It is possible that the con-
trollers learned only how to handle these 9 initial conditions and may
generalize poorly for other scenarios. In order to corroborate the per-
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formance gain of the evolved controller over the baseline (as shown
in Fig. B.4) a Monte Carlo experiment is run over 1000 different (pre-
viously unseen) initial conditions. Figure B.6 contains the results of
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Figure B.6: Monte Carlo results for 1000 simulations - histograms of the util-
ity ratio of the best evolved controller compared to two baseline
controllers (always pursue and always drive)

.

the Monte Carlo experiment. Compared to the Pure Drive controller
(i.e. always use drive), the evolved controller typically captures three
times the number of prey. The utility gain over the Pure Pursuit con-
troller is more modest – the peak of the histogram occurs at 1, mean-
ing the two controllers have the same utility. Pure Pursuit outperforms
the evolved controller in less than 14% of the experiments, and the loss
is never more than 23%. The evolved controller performs 100% better
than Pure Pursuit for several cases. Pure Pursuit’s biggest drawback
is that it’s possible for the predators to end up quite close to one an-
other; thereafter the two predators make the same moves, always pur-
suing the same prey, which is clearly a waste. Although the evolved
controller only saw 9 initial conditions during evolution it was able to
generalize reasonably well, generally matching or outperforming the
baseline controllers.

B.7 CONCLUS ION

A predator-prey scenario was considered in which the prey’s behav-
ior is governed by a Boids-like flocking model and the predators co-
operate to maximize the number of captures within the time horizon.
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One of the purposes of the paper was to demonstrate the efficacy of
controllers based on a small set of pre-specified behaviors for a many-
on-many type of adversarial engagement. Moreover, an evolutionary
algorithm was employed to determine the appropriate base behavior
to implement as a function of a meta state space. The meta state space
used here was independent of the number of prey and thus the preda-
tor controller is scalable. In essence, themeta state space is just a feature
space; it is possible that other features or functions of features could
be useful in determining an appropriate behavior for this particular
scenario. The notion of weighting was introduced onto the existing an-
chor point control architecture in order to have finer control over the
partitioning of the meta state space. Based on the simulation results,
the optimal (or approximately optimal) behavior for the two predator
case is to aim at the nearest prey while avoiding getting too close to the
other predator. The evolved controller was shown to have this type of
behavior, generally, and thus it performed much better than always
aiming at the nearest prey, in most cases.

Analytical solutions tomany-on-manypursuit evasionproblems like
this one do not exist. However, approximately optimal solutions are of-
ten intuitive. The approach used in this study yielded an overall strat-
egy that deconflicted the predators when necessary and otherwise em-
ployed a control that’s optimal under several assumptions. It is pos-
sible, perhaps, to design a controller which plans a sequence of tar-
gets to pursue that is more optimal than always aiming at the nearest.
However, that approach would be much more computationally com-
plex; deconfliction would also require either explicit communication
or heuristics to avoid wasting resources. Thus the advantages of this
approach are that it is scalable, decentralized, and simple.

The goalwas to showemergent cooperative predator behaviors along
similar lines as those described in the referenced literature. The coop-
eration that was evolved in this study is intuitive, but the predators do
not spendmuch time “herding” the prey or otherwise limiting preydis-
persion. It is possible that, based on this particular definition of the util-
ity and the settings of the prey model parameters, this type of behav-
ior is unnecessary. Future research efforts may explore the simulation
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parameter space, consider heterogeneous predators (i.e. each preda-
tor has its own anchor points, and, perhaps, role), specifying different
utility functionals (for example, requiring two predators to capture,
or explicitly including prey dispersion in the utility), and, of course,
studying larger scenarios with more predators.
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