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Abstract

Many natural language processing (NLP) tasks require the conversion of textual data

to numeric representations. Vector-space representations are the most popular way to do

this. Initially vector-space models were used to represent individual words, but several very

complex language models have been developed recently that can generate vector-space rep-

resentations of sentences, paragraphs, and even entire documents. These models use various

deep learning architectures including simple RNNs, stacked LSTMs, and Transformers [54].

Typically, the models are evaluated on synthetic or carefully curated benchmark datasets

such as GLUE [56], SQuAD [45], COCO [55], etc. and tasks such as sentiment analysis

and text classification. However, it is often unclear whether performance on these controlled

benchmarks can transfer to non-curated, real-world datasets with uncontrolled semantic noise

and complex structure. The goals of this thesis are: 1) To develop a methodology for system-

atically comparing a representative set of sentence encoder models on real-world texts; and

2) To apply this methodology using several sizeable real-world texts to arrive at a definitive

ranking of the methods. The methodology uses the pattern of semantic similarity between

sentence pairs to obtain a representation of semantic structure for each document using each

encoding method. These structures are then compared statistically, through visualization,

and through manual scoring to assess the relative quality of the representations produced by

each encoding method. An innovative aspect of this research is the use of multiple English

language translations of the same text as a further cross-validation mechanism.
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Chapter 1

Introduction

1.1 Overview

Most machine learning techniques today require numeric data for training, predicting,

and classifying. The field of natural language processing (NLP) deals specifically with natural

language where all the data is in the textual format. In the initial years, representing this

textual data numerically was a challenge. However, due to recent advances in the fields of

neural networks and computational linguistics, researchers have found several ways to embed

textual data into higher dimensional vector spaces. Representing words in vectors spaces is

called word embedding. These word embeddings have the ability to capture the semantic

essence of words and have proven to be extremely useful for various downstream tasks such

as sentiment analysis, document classification, text generation and so on. The success of

these word embeddings paved the way for generating embeddings for much larger pieces of

texts such as sentences, paragraphs, and documents. Several sentence embedding methods

are available for researchers today, with new methods being developed every year. However,

it remains a challenge to identify which embedding methods are suited to different types of

datasets and how well they capture the actual semantic content in real-world texts.
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1.2 Goals and Aims

The research presented in this thesis has two goals:

1. To develop a methodology for analyzing the sequential dynamics of continuous text in

semantic spaces as defined by the variation of sentence similarity.

2. To use this approach to compare several state-of-the-art models for sentence represen-

tation in complex, non-curated, real-world texts.

These goals are achieved through the following specific aims:

1. Identifying and implementing several methods for obtaining sentence similarity, includ-

ing those based on: 1) Lexical networks; 2) Transformer based models; 3) Bi-LSTM

models.

2. Identifying a set of real-world corpora and documents for evaluation, including: 1)

Multiple translations of the same non-English language texts; 2) Texts from different

genres such as poetry, fiction, philosophy, etc.

3. Processing all the documents in the selected corpora through all the sentence similarity

models to obtain similarity data from each document, including: 1) Sentence similarity

matrices; 2) Time-series of similarity variation between successive sentences.

4. Defining a suite of analytical tests, characteristics, and metrics to characterize the

data.

5. Applying these methods to the characterization, comparison, and analysis of the em-

bedding methods on the target documents to determine the relative quality of the

metrics.

The methods developed in this thesis have other applications as well, including analysis

of the writing styles of authors (stylometry), characterizing the semantic structure of texts,

and even the cognitive dynamics of the minds that generated those texts.

2



1.3 Approach

This thesis focuses on the use of various sentence embedding methods to capture the

sequential semantic dynamics of text in the semantic spaces created by each method. This is

done by calculating the pairwise similarity of embedded sentences using cosine similarity and

other metrics. These are then used for comparing various state-of-the-art sentence encoders

on a variety of corpora. In this work, encoders are tested on works of fiction, non-fiction,

and poetry. The encoders used are based on various techniques such as lexical networks,

transformers and LSTMs, with supervised, unsupervised and self-supervised training objec-

tives. One source of interest for this study is the fact that the corpora chosen to test the

encoders are of general interest. The works of fiction and non-fiction in this study include A

Christmas Carol by Charles Dickens, Heart of Darkness by Joseph Conrad, Metamorphosis

by Franz Kafka, and The Prophet by Khalil Gibran. Another interesting aspect of the study

is the use of multiple English translations of books such as the Iliad and the Odyssey by

Homer, the Aeneid by Virgil, and the Meditations by Marcus Aurelius.

The basic approach used in this study is to tokenize sentences and then give these tok-

enized sentences to the encoders to generate their sentence embeddings. For a given corpus

containing m sentences and an embedding method with dimensionality n, each method gives

m n-dimensional vectors, one for each sentence. The pairwise similarities are these vectors

are then calculated using a cosine similarity or Euclidean distance metric to obtain an m×m

sentence similarity matrix (SSM) for the corpus. This is visualized as a heatmap to look at

the global structutre of semantic similarity in the entire corpus.

Similarly, sequential variation in the corpus is visualized by taking cosine similarity

between embeddings of consecutive sentences, which corresponds to the first super diagonal

in the SSM. This results in a time-series representation of sequential semantic structure of

the corpus.
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Once the SSMs and similarity time-series are available for all embedding methods, they

can be compared in several ways. We calculate the correlation coefficients between the SSMs

and time-series for pairs of methods to see whether the methods are picking up the same

semantic structure. We also threshold the SSMs to unmask patterns of strong semantic

similarity and compare them across methods for the same text corpus.

To evaluate whether the similarity and dissimilarity inferred by the various embedding

methods correspond to human evaluations, the most similar and most dissimilar sentence

pairs identified by each method are evaluated by multiple human raters using a 5-point

Likert scale [33], and the correspondence between human ratings and those of the embedding

methods is evaluated.

Finally, multiple translations of the same text are used as an indirect way to evaluate

which embedding methods are better at capturing the essential pattern of semantic similarity

in the text independent of the specific words being used. A challenge here is that different

translations of the same text can have different numbers of sentences. To overcome this,

dynamic time-warping (DTW) [49] is used to equalize the length of time-series generated by

each pair of translations and the amount of warping needed is measured as a warp coefficient.

The similarity of the two time-series after warping is also measured using the Pearson corre-

lation coefficient. The ratio of the similarity and the warp coefficient is then used as a metric

of semantic consistency between the two translations as seen by that embedding method.

Given the assumption that the translations convey the same actual meaning, the semantic

consistency is a measure of validation for the embedding method. Mean semantic consistency

values calculated across all translation pairs and all base texts allows an evaluation of which

method is better at capturing essential meaning.

1.4 Thesis Organization

The rest of thesis is organized as follows:

4



Chapter 2 describes the various language models and sentence encoders used in this

study, and provides background on the Transformer Architecture [54], Bi-LSTMs [51], and

dynamic time warping (DTW) [49] used for computing the warp coefficient.

Chapter 3 describes the methods used in this study in detail, including the process

of cleaning the corpora, generating sentence embeddings, calculating sentence similarities,

generating the plots, and the analysis of the results.

Chapter 4 presents all the results of the study and a discussion of the obtained results.

Chapter 5 summarizes the important conclusions of this work and suggests directions

of future study .

5



Chapter 2

Background

2.1 Text Embedding

The purpose of text embedding methods is to generate vector space representations

of textual elements – words, phrases, sentences, etc. – in a text via the process of se-

mantic embedding. These representations are useful in a wide variety of NLP-based tasks

such as document classification, sentiment analysis, text summarization, text segmentation,

style analysis, discourse analysis, analysis of semantic coherence, etc. Early sentence repre-

sentations were based on word counts and syntactic measures, but recent developments in

deep learning have led to the development of ever more powerful sentence encoders obtained

through machine learning with large amounts of training data. These include methods aimed

explicitly at sentence encoding and others where sentence encoding is a by-product of some

other NLP task such as language generation.

Before the advent of sentence encoders, there was a lot of prior work on vector space rep-

resentations of words (word embedding), mainly using statistical methods. These included

models such as Latent Semantic Analysis (LSA) [14, 31] and Hyperspace Analogue to Lan-

guage (HAL) [36] that used dimensionality reduction methods to obtain word vectors. More

recently, new machine learning approaches have led to better word embedding models such

as Word2vec [40] and GloVe [42]. Word embeddings from these models are now used almost

6



universally in NLP applications. Computational models for embedding longer text objects

such as sentences [26, 28, 1, 13] and even whole documents [32] have built on the results

and insights of these word embedding models. One important class of models in this regard

are language models that are trained to generate coherent text when primed by an initial

piece of text [22, 44]. While language models do not aim explicitly to encode sentences, such

encoding occurs implicitly when existing text must be encoded before subsequent text can

be inferred from it. Thus, the internal representations from language models can also be

used as sentence (or text) encodings.The present study uses both explicit sentence encoding

models and language models in its comparative analysis. These sentence encoders are either

based on the Transformer architecture [54] or the LSTM network [21]. All the encoders have

been pre-trained on different corpora using different optimizers and hardware. We do not

retrain or fine-tune any of the models in this study. The encoders used are described in

Section 2.3.

2.2 The Distributional Hypothesis

Meaning is the core of language, but its nature is still far from clear. Most people

assume – with good justification – that meaning derives from experience of the world, and

is not simply a property of words. This is called semantic grounding, i.e., the anchoring

of the meaning of a word to experienced things such as objects and situations, or internal

states such as emotions and motivations. However, this is problematic from the perspective

of artificial intelligence (AI) because most machine learning systems do not have access to

direct experience of the world or to human-like internal states. This has led to the use of

an alternative view of meaning based on the distributional hypothesis, which asserts that

meaning lies in – or at least, can be inferred from – the joint statistics of words in natural

language [52, 53]. This assumption makes it possible for a powerful statistical inference or

pattern recognition system such as a deep neural network to learn semantic representations

from large amounts of natural language data. While this is clearly insufficient to capture

7



the full complexity of language [43, 23], recent studies have shown that, remarkably, vector

space word representations based on the distributional hypothesis correspond well with the

brain’s representations of words [59]. All the sentence encoders included in the present study

are based at some level on the distributional hypothesis

2.3 Sentence Encoders

2.3.1 DeCLUTR

Deep Contrastive Learning for Unsupervised Textual Representations (DeCLUTR) is

an explicit sentence encoder proposed by Giorgi et al [19]. It is motivated by the fact that

achieving state of the art results on sentence embeddings requires labelled data. To deal

with this issue, the authors developed a new self supervised objective which does not require

labelled training data. Their model bridges the gap between the supervised and unsuper-

vised sentence encoders. Most state-of-the-art sentence encoders which are at top of the

leaderboards for various benchmarks utilize pre-trained transformer based language models

to generate vector representations of sentences. A key to their success is the Masked Lan-

guage Modelling (MLM) objective that poses the problem of completing masked text. How-

ever, this objective cannot completely bridge the gap with the supervised sentence encoders

trained on the Stanford Natural Language Inference (SNLI) [3] and MNLI [58] datasets.

Taking inspiration from metric learning, a pretext task (often self-supervised) is used to

train the model, without the knowledge of the downstream task the model would be used

on. Once the model is trained, a simple classifier is built using the learnt features to test

on the downstream task. The new objective selects an anchor point in the document and

selects textual segments (or spans) spanning up to a paragraph around it. A contrastive loss

function is then used to minimize the distance the anchor and the positive data point and

maximize the distance between the anchor and negative data points. When trained with the

constrastive loss or when combined with MLM, the network is able to achieve state-of-the-art

results on the SentEval [11] dataset. In this thesis, two models of DeCLUTR are used which

8



differ in the size of the models used. DeCLUTR-small is pretrained on DistilRoBERTa, it

follows the same training procedure as DistilBERT [50] and DeCLUTR-base is pretrained

on RoBERTa-base [34].

2.3.2 DistilBERT

DistilBERT, developed by huggingface [50], is a lighter, faster and cheaper version of

the BERT language model [15] , which is a widely used transformer-based language model

trained on the MLM objective. With the size of language models increasing every year,

training them is becoming extremely expensive and limits the widespread adoption of such

models. DistilBERT reduced the size of the original BERT model by 40 % and retains 97

% of its capabilities. Due to its size compression, DistilBERT can also be used on IoT and

mobile devices. This reduced size is possible due to the knowledge distillation techniques

proposed in [20]. The model has the same architecture as BERT, but makes use of a triple

loss function which combines language modelling, distillation and cosine distances.

2.3.3 RoBERTa

A Robustly Optimized BERT approach (RoBERTa) is an optimized pretraining ap-

proach developed by Facebook AI [34] for BERT. RoBERTa was a replication study of BERT

to study the importance of key hyper-parameters and pretraining. Their study found that

BERT was significantly undertrained. Increasing the duration of pretraining on a bigger

corpus leads to better results on benchmarks like GLUE [56], SQuAD [45] and RACE [30].

The original BERT model was trained on an MLM objective, where 15% of the tokens in

the corpus are masked and the model tries to predict those masked tokens for several target

tasks. The objective gets minimized by calculating cross entropy on the predicted tokens.

RoBERTa improves the performance of BERT by making four modifications:

• Training for longer duration using longer batch sizes

• Removing the Next Sentence Prediction (NSP) objective
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• Training on longer sequences of text

• Dynamically changing the masking pattern on the training data

2.3.4 InferSent

InferSent is a supervised explicit sentence encoder proposed by Conneau et al. [12]. In-

ferSent does not use the traditional unsupervised approach to generate sentence embeddings.

The authors claim that embeddings obtained through unsupervised learning do not reach the

desired performance, and propose a supervised approach. The sentence encoder is trained

on the Stanford Natural Language Inference (SNLI) dataset [3]. Their paper compares seven

different sentence encoder architectures using LSTMs, Bi-LSTMs, GRUs, Self-Attention, and

Hierarchical Convolutional nets. Their comparisons show that Bi-LSTMs with max pooling

work best on transfer tasks. The model takes sentence vectors of the premise and the hypoth-

esis of each pair from the SNLI dataset generated using same encoder, and performs three

operations to extract relations between them: concatenation, element-wise multiplication,

and absolute element-wise difference. The resultant vector is then fed into a 3-way clas-

sifier consisting of fully connected (dense) layers. The resulting trained model was shown

to outperform Skip-Thought [28]. Two different models of the InferSent architecture are

used in this thesis. InferSent-FastText which internally uses the FastText word embeddings

prescribed in [25], [2]. InferSent-GloVe uses the GloVe embeddings given in [42].

2.3.5 USE

The Universal Sentence Encoder (USE) model was developed by Cer et al. [7] at Google.

The goal of USE was to create sentence embeddings which could be transferred to a majority

of NLP tasks. Two sentence encoders were developed, allowing trade-offs between accuracy

and compute resources. The encoder achieving higher accuracy used the Transformer ar-

chitecture [54]. The other encoder used a deep averaging network (DAN) [24], which gives

slightly lower performance with a significant reduction in computation. The encoder based
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on DAN was used in the study reported in this thesis. In a DAN, input embeddings for

word tokens and bi-grams (consecutive word pairs) are averaged and fed to a deep feed for-

ward neural network to generate sentence embeddings. DAN is able to compute sentence

embeddings in linear time, where the time is dependent on the length of the input sentence.

The data used to train the encoder comes from various sources such Wikipedia, web-

news, web question and answers. The unsupervised training is augmented using SNLI [3].

The DAN takes a PTB tokenized string and generates a 512 dimensional vector.

11



Chapter 3

Methods

3.1 Overview

The quality of sentence embeddings – and semantic representations in general – is typi-

cally evaluated on downstream tasks such as text classification, segmentation, etc. However,

this only provides implicit evaluation. There is no direct way to assess the quality of the

embeddings produced because no ground truth is available for the representations. Once an

embedding is obtained, one cannot determine its ‘quality’ from the embedded vector itself.

The embeddings generated by the deep neural network based models can have hundreds,

or even thousands of dimensions, so even visualizing them is a challenge [9]. The work in

this thesis uses a new approach to evaluate the quality of semantic representations: Using

the pattern of semantic similarity between the sentences in sizeable real-world documents

(books). As discussed in Chapter 1, this is accomplished through two studies:

• Study I - Comparison of Embedding Methods: In this study, sentence embed-

dings are obtained from several real-world documents using seven different embedding

models. These embeddings are then compared pairwise to evaluate the similarities and

differences between the representations produced by the models. Overall, this shows
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whether all models are picking up on similar semantic information, or if they are paying

attention to different aspects of meaning.

• Study II - Evaluation of Relative Semantic Validity: While Study I provides

a comparison of the representations produced by different models, it does not make

any quality assessment. In Study II, two methods – one very direct, the other a little

indirect – are used to assess the actual semantic validity of the embedding methods.

In the direct method, sentence pairs deemed most similar and least similar in a docu-

ment by each method are given to several human raters and the resulting ratings are

compared with those generated by the embedding methods. In the indirect method,

each method is used to embed multiple translations of the same non-English document

and the consistency between the embeddings is seen as a measure of the embedding

method’s semantic inference.

Since the sentence embedding models are compared using the pattern of sentence similar-

ity, this work also provides the opportunity to compare these results with a lexical networks-

based approach to calculating sentence similarity that has been used in previous research

[39, 38].

Both studies and the lexical network-based model are described in detail later in this

chapter.

3.2 NLP ‘In the Wild’

A primary motivation for the research in this thesis is to evaluate semantic representa-

tion models “in the wild”, i.e., on texts that have not been carefully selected and curated,

but are truly real-world, non-trivial natural language texts.

Carefully curated benchmark text corpora [45, 30, 56] are used widely to evaluate the

performance of the embeddings and obtaining a numeric value as a metric. In some cases,

they may actually be artificially constructed (e.g., benchmark sets of sentences [45, 30, 56]
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or carefully chosen segments from multiple texts [8]), but even when they are real texts, they

are often chosen to be relatively noise-free. In contrast, we use books of general interest and

distinct types (poetry, fiction, philosophy) without any curation or filtering.

This approach also provides deeper insight into the relative strengths and weaknesses

of the semantic models. While recent experiments in neuroscience have suggested that

word embeddings produced by machine learning (ML) correspond to mental representations

of concepts [59], the issue of the cognitive accuracy of ML-based sentence representation

models remains open. By evaluating these models on documents such as works of literature

that are the result of individual authors’ natural trains of thought, the present research is

also of interest from the perspectives of cognitive science and digital humanities.

3.3 The Principle of Mutual Consistency

As pointed out above, no ground truth is typically available to validate the language

models. To address this, the research in this thesis proposes a principle of mutual consistency

as the basis of collective validation. This section describes this principle and its underlying

assumptions:

1. Assumption 1: Every document has a specific (but latent) intrinsic meaning and

any successful semantic representation method must capture this.

2. Assumption 2: A specific intrinsic meaning implies a specific semantic structure in

a document, and any successful semantic representation method must infer the same

semantic structure for a given document

3. Assumption 3: The semantic structure of a document can be represented as the

pattern of semantic similarity between the sentences of the document.

4. Assumption 4: Meaning is an emergent property of text, and is not contained wholly

in its word content. Similarity or difference in the word content of two texts is neither

necessary nor sufficient to determine similarity or difference of meaning.

14



The Principle of Mutual Semantic Consistency (PMSC):

1. PMSC-a:If two sufficiently different semantic representation methods infer mutually

consistent semantic structures for a document, they must both be inferring its under-

lying true intrinsic meaning.

2. PMSC-b If two semantic representation methods infer very different semantic repre-

sentations for the same document, one or both must have failed to capture its intrinsic

meaning.

3. PMSC-c If two documents have the same intrinsic meaning, a successful semantic

representation method should infer the same (or very similar) semantic structure for

both of them.

Essentially, the PMSC proposes that the specific semantic structure of a document,

as represented in its sentence similarity pattern, can be used as an observable surrogate

representation for its meaning, and if very different semantic representation methods infer

consistent structure for a document, they must be capturing the ground truth, even though

the ground truth is not known explicitly.

The Principle of Mutual Consistency can also be used to validate the quality of an in-

dividual semantic model by applying it to multiple well-regarded, unabridged translations

of the same non-English text. Since the original text is assumed to have a well-defined in-

trinsic meaning, each translation can be seen as a somewhat distorted sample of it that still

conveys the same meaning as a whole. Thus, if the semantic structures extracted from these

translations by a semantic model turn out to be similar, it can be argued that these represen-

tations are capturing the deeper underlying meaning each translation has inherited from the

original. And, since each translation uses different words and, of course, no translation uses

the same words as the (non-English) original, any similarity in the extracted structures is
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purely semantic, i.e., independent of the words used. This can be seen as a kind of “semantic

cross-validation” based on the Principle of Mutual Consistency.

3.4 Text Corpora

The books chosen in this thesis are of general public interest. These books have been

around for a long time and provide a good sample of literary writing of different types. In

the case of multiple translations, the genres of philosophy and poetry are chosen because it

was important that the translators should be aiming to convey the meaning of the original

completely, faithfully, and without abridgment. The books and their respective abbreviations

used in this thesis are listed in table below.

Name of the Book Author Label

A Christmas Carol Charles Dickens
Metamorphosis Franz Kafka
Heart of Darkness Joseph Conrad
The Prophet Khalil Gibran

The Iliad Homer (translated by Alexander Pope) I1
The Iliad Homer (translated by Samuel Butler) I2
The Iliad Homer (translated by George Chapman) I3
The Iliad Homer (translated by Andrew Lang, Walter Leaf

and Ernest Meyers)
I4

The Odyssey Homer (translated by Samuel Butler) O1
The Odyssey Homer (translated by Alexander Pope) O2
The Odyssey Homer (translated by Butcher & Lang) O3
The Odyssey Homer (translated by William Cowper) O4

The Aeneid Virgil (translated by John Dryden) A1
The Aeneid Virgil (translated by Rolfe Humphries) A2
The Aeneid Virgil (translated by J. W. Mackail) A3

Meditations Marcus Aurelius (translated by Meric Casaubon) M1
Meditations Marcus Aurelius (translated by George Chrystal) M2

Table 3.1: List of Books
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3.5 Semantic Models

3.5.1 Sentence Embedding

Embeddings for these seventeen books are generated by the seven methods discussed

in 2.3. DeCLUTR, InferSent, USE are explicit sentence encoders whereas DistilBERT and

RoBERTa are language models. The code implementations to generate sentence embeddings

from DistilBERT and RoBERTa are taken from [46] whereas for DeCLUTR, InferSent and

USE their official git repositories are used. All these sentence encoders and language models

need a list of n sentences as input and they output a n × d, where d is the dimensionality

of the encoder, mentioned in 3.2. The dimensionality of the embeddings produced by those

methods is given below.

Method Dimensionality
DeCLUTR Base 768
DeCLUTR Small 768
InferSent GloVe 4096
InferSent FastText 4096
DistilBERT 768
RoBERTa 1024
USE 512

Table 3.2: Dimensionality of embeddings

No retraining or fine-tuning is done on any of the models.

Calculating Sentence Similarity

Many distance metrics are available for vector spaces, but they vary in their utility

for measuring similarity between semantic embeddings, which are very high-dimensional.

Perhaps the most widely used metric is cosine similarity, which is the cosine of the angle

between the two vectors [41], [42] and [6]. If A and B are two vectors in the same vector

space, their cosine similarity is given by:
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sim(A,B) =
A ·B
‖A‖‖B‖

(3.1)

This is 1 when the vectors point in the same direction in the embedding space, 0 when they

are orthogonal, and -1 when they point in opposite directions. Since semantic embeddings

typically use only the positive hyperquadrant of the embedding space, cosine similarities are

between 0 and 1.

Throughout this thesis, the similarity between two sentences is calculated using cosine

similarity.

3.5.2 Lexical Weights Model

An alternative to neural sentence encoders and language models is to directly use co-

occurrence information between words to calculate sentence similarity, though this does not

explicitly produce representations of sentences. This method has several advantages over the

embedding-based approaches:

1. It can be calculated directly over any corpus rather than just using pre-trained rep-

resentations. This is important because the semantic relationships in specific corpora

can be very different from those in the pre-training corpora.

2. The computations involved are quite simple and can be performed on relatively small

corpora. No iterative computation or training is required.

3. The sentence similarities calculated can easily be interpreted and explained because

they are based explicitly on the words in the two sentences and their relationships.

4. There is a prior history of using PMI-based metrics in semantic representations [35, 4,

47, 16, 39, 38], and it is interesting to see how much sentence-level semantics can be

captured through it.
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On the negative side, the lexical approach – because of its simplicity – may not be able

to capture deep semantic relationships, and, while it can be inferred from smaller corpora,

applying it to very large corpora can be computationally expensive.

The lexical network approach begins by constructing a lexical network, whose nodes are

all the words in the corpus vocabulary (or some subset of these), and the edges represent

some semantic association between the pair of words they connect as inferred from the

corpus. Several metrics of association have previously been considered in work in our lab

[16, 39, 17, 5, 37, 38]. Broadly, the association between two words is based on whether they

occur close to each other in the corpus. Proximity is evaluated by using a reading frame,

which can be a fixed size neighborhood around each word token or, as in the case of the

present study, an individual sentence. For a given text corpus, the co-occurrence probability

pij of words wi and wj is the probability that they occur in the same reading frame, i.e., the

same sentence. Thus, pij is the fraction of sentences in the corpus that include both words.

Similarly, the marginal probability pi of word wi is calculated as its the fraction of reading

frames (sentences) containing the word. The association weight between wi and wj can be

calculated from pij, pi, and pj. The three types of association weights we have considered

previously are:

1. Joint (Co-occurrence) Probability (CP): The probability (relative frequency) of

words wi and wj occurring in the same reading frame:

aij = pij (3.2)

2. Correlation Coefficient (CC): A measure of the covariance in the occurrence of wi

and wj in the same reading frame [48, 16]:

aij =
pij − pipj√

pi(1− pi)
√
pj(1− pj)

(3.3)
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3. Pointwise Mutual Information (PMI): This is a measure of the statistical depen-

dence in the occurrence of wi and wj in the same reading frame [10, 35]:

aij = log
pij
pipj

(3.4)

Since both CC and PMI produce small and uniformative negative association values between

most word pairs, the measures are rectified by zeroing out these negative values [48]. Other

related metrics such as the log-odds ratio are also be used [35].

Of these measures, PMI is the most widely used, and that is used in the present study. It

is usually normalized to give values between 0 and 1. In this thesis, the following calculation

is used:

aij = PMIij = log
N Nij + 1

NiNj + 1
, (3.5)

whereN is the total number of sentences in the corpus, Ni andNj are the number of sentences

containing word wi and wj respectively, and Nij is the number of sentences containing both

words. The addition of 1 in the numerator and denominator is for regularization.

Calculating Sentence Similarities from Lexical Networks

The PMI matrix calculated using the formula 3.5, gives a n × n matrix (network of

nodes), where n is the total number of words in the given corpus. To compute a sentence

level network from this PMI matrix respective weights for the word pairs are used. Suppose

PMI is the normalized version of the PMI matrix for a corpus. If sentence a contains m

unique words and sentence b contains n unique words, the sentence similarity between the

two sentences is calculated using the formula,

Wsenta,b =

∑m
i=1

∑n
j=1 PMIi,j

mn
(3.6)
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3.5.3 General Methods

Text Pre-Processing

The entire process first starts with cleaning text files. All the books used in this thesis

have been taken from the Gutenberg Project. The first four books mentioned in Table

3.1 don’t have multiple translations. While cleaning those four books, sections like the

preface, table of contents, chapter headings, page numbers were removed as a part of the

prepossessing. This cleaning is done using various regex expressions. In case of any outliers,

or missing cases, few sentences are removed manually. Similarly, for cleaning the rest of

the books (books of multiple translations) in Table 3.1, similar steps are followed. Prefaces,

chapter headings, original lines from the book, figures and verse numbers (for poems), roman

numerals were all removed. Once the books and translations are cleaned, they are split into

individual sentences such that, each sentence appears on a new line. This process is called

tokenization.

For the generation of the lexical network (PMI matrix), stopwords are also removed

from the corpus. Due to the high frequency of stopwords, their removal helps with the

determination of word co-occurrences of other words in a better manner as stopwords tend

to occur with a lot of words. In cases, where sentences only contained stopwords for a given

corpus, their removal decreases the size of the original corpus. These missing sentences are

interpolated with the global mean of its SSM.

Sentence Similarity Analysis

These tokenized sentences are then fed into the sentence encoders to generate the sen-

tence embeddings. Pairwise cosine similarities are calculated between all pairs of sentences

in the document with n sentences, giving an n × n sentence similarity matrix (SSM) that

captures the global pattern of meaning across the whole document. The lexical network

model gives sentence similarities directly. For easier comparison along the eight methods, all
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Books and their authors Sentences Word tokens

A Christmas Carol 1942 29116
Metamorphosis 795 22373
Heart of Darkness 2430 39061
The Prophet 647 12360

The Iliad (translated by Samuel Butler) 4192 153580
The Iliad (translated by George Chapman) 3974 169844
The Iliad (translated by Andrew Lang, Walter
Leaf and Ernest Meyers)

3501 138611

The Iliad (translated by Alexander Pope) 5334 151891

The Odyssey (translated by Butcher & Lang) 3723 135589
The Odyssey (translated by Samuel Butler) 3139 117938
The Odyssey (translated by William Cowper) 4952 115358
The Odyssey (translated by Alexander Pope) 3950 112559

The Aeneid (translated by John Dryden) 4360 112387
The Aeneid (translated by Rolfe Humphries) 3493 85978
The Aeneid (translated by J. W. Mackail) 3659 98612

The Meditations (translated by Meric Casaubon) 1996 57048
The Meditations (translated by George Chrystal) 1981 40974

Table 3.3: Sentences and word tokens in each book
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the generated SSMs are either normalized between 0 and 1, or standardized by converting

the values to z-scores.

Visualizing the entire SSM at a single glance can be challenging for larger corpora

which can contain thousands of sentences. Finding and visualizing the minor details become

difficult in such cases. This is overcome by visualizing smaller (e.g., 200×200) patches along

the diagonal of the SSM separately. Such plots are referred to as the sectional heatmaps

in the thesis. An addition to these plots, the entire skeletal structure of the SSM is also

visualized. This is done by thresholding the value of SSM at the mean. This thresholded

plot highlights areas and structures of very high similarity in the text. These plots are

referred as the thresholded SSMs in the thesis.

The SSMs allow the visualization of the entire corpus at a single glance. However, text is

inherently sequential, and it is especially interesting to look at the time-series of similarities

between successive sentences. To visualize this temporal structure, a sequential time-series

for a given corpus is created. The plot can be taken from the first super diagonal of the

SSM. These time-series are also normalized between 0 and 1 for comparison, though the

normalizing factor for the time-series may be different than that for the SSM of the same

document. Once a time-series from a given SSM is generated, it is plotted as a 1×n heatmap.

To obtain a numerical value of pairwise similarity between the time-series generated by

the different embedding methods, a Pearson correlation coefficient is calculated:

r =

∑
(x− x̄)(y − ȳ)√

Σ(x− x̄)2Σ(y − ȳ)2
(3.7)

where x is the first time-series and y is the second time-series. Similarly, a pairwise correlation

coefficient value is obtained from the SSMs, measuring the similarity between them.
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3.6 Study I: Comparison of Methods for Semantic Structure

The encoders used in this thesis have different objective functions, architectures and

datasets. These encoders have produced good results on their respective benchmarks and

downstream tasks, but the intrinsic validity of embeddings produced by them is unclear.

When these encoders are used to embed the same text, they generate different embeddings.

This first study simply compares the patterns of sentence similarity produced by all encoders

on the same set of documents

It is motivated by the following question: How mutually consistent are the different rep-

resentations produced for each document? This is motivated by the idea that every document

has a fixed meaning, and good sentence encoders must produce similar semantic structure

representations for it. If none of the representations are mutually consistent, that opens up

a question of which one is picking up the true meaning. If most are consistent, that increases

confidence that those encoders are actually representing the “true” underlying meaning of

the document. And if one or two representations are very different than the rest, it can be

asked whether they are just less correct, or if they are picking up on a different aspect of

meaning.

While this study does not answer all these questions, it provides a systematic and quan-

titative comparison of the similarity and difference between the representations produced by

different encoders.

The comparison between the encoders is done using all the documents, and two types

of data:

1. The sentence similarity matrix (SSM) produced by all seven sentence encoders and the

lexical network method for each document. Each SSM is normalized to be between 0

and 1 to remove the effect of range bias in different representations.
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2. The time-series of similarity between successive sentences for each of the eight methods

on each document. Each time-series is normalized to be between 0 and 1 to remove

the effect of range bias in different representations.

For both of these, similarity is computed between pairs of representations using Pear-

son’s correlation coefficient. The resulting 8×8 matrix is then shown as a similarity heatmap

with the values noted in each cell. Thus, with M documents, the study produces M simi-

larity heatmaps for the SSMs and M for the time-series. It should be noted that, while the

time-series for any case comes from the first superdiagonal of the SSM for the same case, the

normalizations for the two are different because each uses its own minimum and maximum

values.

3.7 Study II: Evaluation of Relative Semantic Validity

While Study I simply compares the sentence similarity representations generated by

each sentence encoding method, Study II attempts to assess their ability to capture “true”

meaning. Thus, Study I relies on looking at different encoding methods while keeping the

documents constant, while Study II evaluates individual methods across document pairs that

are semantically identical but use different words. while keeping the embedding methods

constant. The first study gives insight about how different encoders capture the semantic

essence of a corpus in different dimensions while the second study evaluates the quality of

each individual method.

Two methods are used to do the assessment of the methods: 1) Comparing the extreme

sentence similarity and dissimilarity values produced by the eight methods with scores pro-

duced by several human raters; and 2) comparing the semantic consistency between the

sentence similarity patterns of multiple translations of non-English documents.
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3.7.1 Using Human Raters

The sentence embeddings which are generated by sentence encoders are designed to be

universal, i.e., applicable to any NLP task. They are typically evaluated based on their

performance on multiple tasks such as text classification, text generation and segmentation.

A significant amount of NLP research is driven by this requirement to achieve better scores on

these benchmarks, which in the recent years has led to the rise of bigger and bigger language

models. However, these evaluations only provide an indirect test of encoding model’s quality.

There is no “ground truth” for embeddings per se, only for the application tasks where they

are used. The present study tries to remedy this through the use of human raters.

The SSM generated for a given document Dr by a method Qs provides assignments of

semantic similarity for every pair of sentences in the document. At the most basic level,

this just displays how meaning is structured in the documents – e.g., which parts are similar

to each other, or where the topic under discussion changes. But the SSM also makes it

possible to see which sentence pairs in Dr are considered semantically similar by method Qs

and which are not. In this part of the study, sets of most similar and least similar sentence

pairs in the representation are taken, and human raters are asked to evaluate their similarity

independently. The human ratings are then matched with those from model Qs. The more

consistent a model’s ratings are with the human raters, the closer its assessment of semantic

similarity is considered to the ground truth.

The procedure for this study is as follows:

1. For each document Dr and each method Qs, the normalized SSM, Srs is standardized

by turning the value of each cell, Srs
ij into a z-score:

Zrs
ij =

Srs
ij − µrs

σrs
(3.8)

where µrs is the sample mean of Srs and σrsits sample standard deviation calculated

as
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σrs =

√∑
i,j (Srs

ij − µrs)2

N − 1

where N = n2
s with ns denoting the number of sentences in the document.

2. From the standardized SSM Zrs, the k most negative values are determined, and the set

of the corresponding sentence pairs, Lrs is designated the least similar sentence pairs

(LSSP) for document Dr as inferred by method Qs. Similarly, the set of most positive

non-diagonal entries in Zrs are used to get the set M rs of the k most significant sentence

pairs (MSSP). In the present study, k = 10, so each method and document yields 20

pairs. With four documents (A Christmas Carol, Heart of Darkness, Metamorphosis,

The Prophet), and eight methods, a total of 20×4×8 = 640 sentence pairs is obtained.

This is designated the sentence pair probe set (SPPS)

3. The sentence pairs in SPPS are compiled in an Excel spreadsheet with each sentence

pair occupying two adjacent columns in a distinct row. All other data for each sentence

pair (model, source document, similarity value, z-score, etc.) is also included, each in

its own column.

4. An evaluation copy of the SPPS Excel spreadsheet is generated for each human rater

by removing all information except the text of the sentence pairs, and all the rows are

shuffled randomly and independently for each rater. Each rater is then given their own

evaluation copy and asked to rate each sentence pair for semantic similarity on a 1-to-5

integer Likert Scale [33].

5. Once the evaluations are received from all the raters, each evaluation copy is sorted so

the sentence pairs in all of them are in the same order. This order is hierarchical by

similarity type (least/most), method, and source document, respectively: The first 320

pairs are the LSSP and next 32 the MSSP; within each of these, the pairs from each

method are grouped together; and within each method’s group, the pairs for the same
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source document a grouped together. The resulting data produces a (rater)×(sentence

pair) matrix called the pair ratings matrix (PRM), which is displayed as a heatmap

and used for further analysis. The score of rater u on pair v in the PRM is denoted by

ζuv.

6. The raters are validated for consistency using the method of intraclass correlation

coefficient (consistency of two-way random raters) [29]. The raters used have an ICC

of 0.90.

7. For each method, the means and standard deviations of each individual rater’s scores

on the LSSP pairs and MSSP pairs are found over all four documents (i.e., 40 scores for

each rater). The histograms of these two sets of scores for each rater are also obtained.

These two things show how each rater scored LSSP and MMSP sentence pairs.

To get a quality score for each method, Qs, based on the human ratings, the mean

LSSP and MSSP scores across all raters are calculated separately:

ρsL =
1

320nr

∑
u

∑
v∈LSSP

ζuv (3.9)

ρsM =
1

320nr

∑
u

∑
v∈MSSP

ζuv (3.10)

where u indexes the raters and nr is the number of raters. The semantic quality score

for method Qs is then given by:

Gs = ρsM − ρsL (3.11)

, i.e., the greater the separation between the scores raters assigned to the LSSP and

MSSP produced by a method, the closer the method is to human assessments.
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The method described above looks only at the cases of most similar and most dissimilar

sentence pairs, i.e., extreme cases. This was done for two reasons: First, to get the clearest

possible evaluation, and second, to put no more than a reasonable load on the raters.

3.7.2 Using Multiple Translations

An interesting and novel method for comparing semantic representation methods is to

use multiple translations of the same non-English documents. This approach complements

the method using human raters because it provides an intrinsic comparison rather than one

dependent on human opinions. At the same time, it is more indirect, and captures only some

aspects of representation quality. Most importantly, it focuses on the meaning of text rather

than the exact words used because, while each translation uses its own words, it is trying to

convey the same meaning.

Thus, the foundation of this analysis is on two principles:

1. Principle 1: All unabridged and high-quality translations of the same text convey

the same meaning, even though they use different words.

2. Principle 2: Two texts with different words but the same meaning should produce

the same (or similar) representations.

Thus, a semantic representation method applied to translations that satisfy Principle

1 should produce representations that are similar. Each representation can be seen as an

“estimate” of the latent ground truth, i.e., the true underlying meaning of the original text.

By comparing the consistency between the semantic representations that a method produces

for several translations of the text, one can assess how well the method has captured this

ground truth, and thus its ability to represent meaning independent of the exact words being

used. The main limitation of the approach is that each translator brings different biases to

their work, and it is impossible to qualify how well they have captured the true meaning of
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the original. However, since all methods are evaluated on the same set of translations, the

method can justifiably be used for comparison between them.

In Study II, we have compared four different translations of The Iliad and The Odyssey,

three translations of The Aeneid, and two translations of the Meditations of Marcus Aurelius.

The details are given in Table 3.1. Embeddings for these translations are produced in the

same way as described in Sections 3.5.3 and 3.6.

One complication is that different translations of the same document can have different

numbers of sentences, making a direct comparison of their semantic structure more difficult.

Thus, a challenge is to first map all translations of the document to modified structural

representations of the same size in a principled way and then compare them. In particular,

the sentence similarity time-series for the translations must first be equalized in length.

This task of comparing temporal sequences of various lengths has been widely explored in

the fields of signal processing and electronics [27], [57], [49], etc. In this thesis, we use a

technique called dynamic time warping (DTW) as a method to compare these embeddings

of translations.

Dynamic Time Warping (DTW)

Dynamic time warping was introduced in 1978 [49] as a way to compare temporal

sequences of different lengths. The algorithm prescribed in the original paper is of O(n ·m)

complexity, where n in the length of the first time-series and m is the length of the second

time-series. The pseudo-code of the original algorithm is given below [18].

The algorithm finds an optimal match between the time steps of both the time-series

based on a cost function (distance metric). The distance metric used in the original was the

absolute difference between the two time steps. Following the algorithm, tracing the

smallest value from DTW [n,m] (top right corner in the DTW matrix), the warping path is

retrieved. The projection of this warping path on either axes give the warped time-series for

the time-series s and t. The length of the warped series cannot be controlled. The degree to
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Require: s← array[1..n], t← array[1..m]
DTW ← array[0..n, 0..m]
for i← 0 to n do

for j ← 0 to m do
DTW [i, j]← infinity

end for
end for
DTW [0, 0]← 0
for i← 1 to n do

for j ← 1 to m do
cost← d(s[i], t[j])
DTW [i, j]← cost+min(DTW [i− 1, j], DTW [i, j − 1], DTW [i− 1, j − 1])

end for
end forreturn DTW [n,m]

which a time-series series gets warped depends on the distance metric and the actual values

in the time-series. The algorithm also has a subtle caveat, the warping procedure can only

take 2 time-series at a time. So this would mean that when multiple translations are being

compared, only 2 translations of a book can be compared at once. Thus, in case of The Iliad

which has 4 translations,
(
4
2

)
= 6 pairs are evaluated. Another point to note is that the time

warping procedure is commutative.

The purpose of time-warping is to make the two time-series as consistent as possible,

but this cannot be done perfectly and some discrepancy remains. This is one indication of

how inconsistent the two time-series were to begin with. Another measure of this is the

amount of warping needed to bring them to optimal consistency. The more inconsistent

they are, the more they have to be stretched for them to fit with each other. The latter is

defined as the warp coefficient, and measured as the percentage change between the length

of the original time-series and warped time-series. As two time-series are warped, two warp

coefficients are obtained and the mean warp coefficient of the DTW process is calculated as:

ω1
c =

Wl −O1
l

O1
l

ω2
c =

Wl −O2
l

O2
l

(3.12)
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Ωc =
ω1
c + ω2

c

2
(3.13)

where where ω1
c is the warp coefficient of the first time-series, Wl is the length of the (new)

warped time-series and O1
l , O

2
l are the original lengths of the first and second time-series,

respectively. The average warp coefficient Ωc is the mean of W 1
c and W 2

c . In an ideal case,

i.e., if the time-series were identical, the value of the warp coefficient would be 0.

Once the time-series are warped, the calculation of their Pearson correlation coefficient

becomes possible. This provides a measure of the success of the warping process. Based on

the value of the average warp coefficient Ωc and the correlation coefficient, a new composite

metric Q is devised which is used as a quality metric to get a score for each pair of translations

based on each semantic representation method.

Q =
zs,t
Ωc

(3.14)

where zs,t is correlation coefficient between the two time-series and Ωc is the average warp

coefficient for that case.
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Chapter 4

Results and Discussion

4.1 Results from Study I

4.1.1 SSMs for the Four Literary Books

From the procedures described in 3.6, plots to visualize the global semantic structure

(SSMs) and sequential variation in the form of time-series are obtained.

Figures 4.1, 4.3, 4.2, and 4.4 plot the SSM heatmaps for all four books inferred by the

eight methods. The SSMs may look somewhat uninformative at first glance but a closer

look reveals a subtle checkered pattern for each corpus. The darker colors in the SSMs

indicate low similarity or relatedness. Brighter colors indicate a comparatively higher degree

of similarity. The diagonal is a bright line because the cosine similarity between the sentence

and itself is 1. Bright squares seen along the diagonal represent sequences of semantically

coherent sentences, i.e., semantic segments in the document.

For each book, the semantic structure inferred by the methods show distinct similarities

but not a perfect match. Although their numeric values are different, the methods agree and

disagree on the broad pattern of sentence similarity As discussed earlier, this indicates that

all the methods are capturing the actual intrinsic meaning of the text to a large degree.

33



 
a) DeCLUTR Base 

 
c) InferSent FastText 

 
e) DistilBERT 

 
g) USE 

 
b) DeCLUTR Small 

 
d) InferSent Glove 

 
f) RoBERTa 

 
h) Lexical Weights 

Figure 4.1: Normalized SSMs for A Christmas Carol
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Figure 4.2: Normalized SSMs for Metamorphosis
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f) RoBERTa 

 

h) Lexical Weights 

Figure 4.3: Normalized SSMs for Heart of Darkness
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a) DeCLUTR Base 

 

c) InferSent FastText 

 

e) DistilBERT 

 

g) USE 

 

b) DeCLUTR Small 

 

d) InferSent GloVe 

 

f) RoBERTa 

 

h) Lexical Weights 

Figure 4.4: Normalized SSMs for The Prophet
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It is noticeable that the SSMs produced by the methods for each book have different

dominant colors after normalization. This is because each method produces its own distri-

bution of sentence similarities but all the heatmaps use the same colormap. The histograms

of sentence similarity distributions are shown in Figures 4.5 - 4.8.
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Figure 4.5: Histograms of sentence similarity distributions for A Christmas Carol
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Figure 4.6: Histograms of sentence similarity distributions for Heart of Darkness
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Figure 4.7: Histograms of sentence similarity distributions for Metamorphosis
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Figure 4.8: Histograms of sentence similarity distributions for The Prophet

4.1.2 Threshold Plots for the Four Literary Texts

SSMs are able to capture the overall semantic structure of the corpus but it is difficult

to see the structure very clearly. To do that, it is useful to turn the SSM heatmaps into
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binary maps that only show whether sentences are below or above some level of similarity. A

systematic way of doing this is to threshold each SSM by a specific z-score, e.g., 1 standard

deviation above the mean (z-score = 1). This blacks out all sentence similarity values below

the threshold, revealing the global skeletal structure of high similarity in the document.

Figures 4.9, 4.10, 4.11 and 4.12 show normalized SSMs for all books thresholded at their

respective mean values (z-score = 0). The black regions in the figures are regions of below

average similarity and the white regions those of above average similarity. The higher the

z-score threshold, the more skeletal the map gets by picking up patterns of greater similarity.

These thresholded maps allow a quicker visual evaluation of the semantic structure being

inferred by each method, as well as the gross similarities and differences in the structures

inferred by various models. For example, Figure 4.9 (c) shows the presence of a region of

very variable similarity between sentences 900 and 1000 picked up by DistilBERT. A less

definitive pickup of that feature can be seen in (c) InferSent FastText, (f) RoBERTa and

(g) USE. The other methods do not seem to pick up this feature visibly. In Figure 4.11, in

contrast, all eight methods – even Lexical Weights – pick up a similar banding structure.

This is also the case – albeit to a lesser degree – in Figures 4.10 and 4.12.
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Figure 4.9: Threshold SSMs for A Christmas Carol
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Figure 4.10: Threshold SSMs for Heart of Darkness
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Figure 4.11: Threshold SSMs for Metamorphosis
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Figure 4.12: Threshold SSMs for The Prophet
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4.1.3 SSMs and Threshold Plots for Translations

The SSMs for the translations follow patterns to those of the novels. These SSMs are

huge for certain translations. For instance, the translation of the Iliad by Alexander Pope

contains 5334 sentences, so its SSM would be of the size 5334 × 5, 334. Visualizing that

SSM is possible, but important details and other salient features would not be easily visible.

These same principles apply to the threshold plots. As a result, these plots are not included

in this thesis.

4.1.4 Time-series for All Books

The sentence similarity time-series are plotted as strip heatmaps using color to code

similarity value. This makes it possible to compare across methods more easily than with

SSMs by placing all the strips one above the other.

Figures 4.13 and 4.14 show the time-series plots for the four literary books, and Figures

4.15 - 4.20 for the translations. The following observations can be made individually for each

case:

• Both time-series for DeCLUTR Base and DeCLUTR Small are extremely similar, which

is validated by their correlation coefficients in 4.23

• The time-series for InferSent FastText and InferSent GloVe look quite similar, but also

show notable differences.

• The time-series for DistilBERT and RoBERTa are actually quite similar, though they

look different because the distribution of similarity values is very different in the two

cases.

• The USE has significant resemblance with all embedding based methods, but somewhat

lower with DistilBERT and the two InferSent methods.
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• The Lexical Weights time-series does have some resemblance with the others in terms

of gross features, but much than that between the other methods.
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a) A Christmas Carol 

 

b) Heart Of Darkness 

Figure 4.13: time-series for A Christmas Carol and Heart of Darkness
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a) Metamorphisis 

 

b) The Prophet 

Figure 4.14: time-series for Metamorphosis and The Prophet
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a) Alexander Pope 

 

b) Lang et al 

Figure 4.15: time-series plots for The Iliad by Alexander Pope and Lang et al
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a) George Chapman 

 

b) Samuel Butler 

Figure 4.16: time-series plots for The Iliad by George Chapman and Samuel Butler
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a) Alexander Pope 

 

b) Samuel Butler 

Figure 4.17: time-series plots for The Odyssey by Alexander Pope and Samuel Butler
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a) William Cowper 

 

b) Butcher and Lang 

Figure 4.18: time-series plots for The Odyssey by William Cowper and Butcher and Lang
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a) J. W. Mackail 

 

b) John Dryden 

 

c) Rolfe Humphries 

Figure 4.19: time-series plots for The Aeneid
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a) George Chrystal 

 

b) Meric Casaubon 

Figure 4.20: time-series plots for The Meditations
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4.1.5 Correlation Plots for SSMs

The SSMs for a given corpus look similar because of their overall structure. To get a

numeric value of their similarity, Pearson correlation coefficients were calculated between the

SSMs for each method on the same corpus as described in Chapter 3. Figures 4.21 and 4.22

show the SSM correlation plots for the four lterary texts. The correlation plots have been

arranged so that methods with similar architectures get grouped together. It is evident all

the four correlation plots in that:

• The encoders using DeCLUTR have very high correlation coefficients.

• The two encoders using InferSent have fairly high correlation coefficients.

• DistilBERT and RoBERTa have high correlation with each other.

• USE has the highest correlation with DeCLUTR – perhaps due to architectural simi-

larities between their underlying neural networks.

• The Lexical Weights method has low correlation with all the other methods.

A very peculiar thing is noticeable in Figure 4.21 (a), where the Lexical Weights method

has almost no correlation with the others. This is probably due to the dialog-oriented style

of A Christmas Carol, with many short – even single-word – sentences in every conversation.

Since PMI is based only on the co-occurrence of words within a sentence, short, generic

sentences lead to poor semantic inference – especially after stop-word removal. InferSent

uses bidirectional recurrent neural networks to keep track of the context between the current

sentence and the sentences previously encountered whereas other methods use the attention

mechanism in its original (or modified) for this purpose. The Lexical Weight method has

significantly higher correlation with the other methods of the other three corpora.
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a) A Christmas Carol 

 

b) Heart of Darkness 

Figure 4.21: Correlation plots of SSMs for A Christmas Carol and Heart of Darkness
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a) Metamorphosis 

 

b) The Prophet 

Figure 4.22: Correlation plots of SSMs for Metamorphosis and The Prophet
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4.1.6 Correlation Plots of the Time-Series for the Four Texts

The correlation plots for the time-series from the four literary books are shown in Figures

4.23 and 4.24. They give an indication of which embedding methods are correlated with each

other while they capture the temporal sequence. As expected, the correlation patterns are

very similar – though not identical – to those for the SSMS, since the time-series are just

the first super-diagonals of the SSMs. The main observations are as follows:

• There is very high correlation (0.89) between the time-series for the two DeCLUTR

methods.

• There is high correlation (0.63) between the time-series of the two InferSent methods.

• There is high correlation (0.62) between DistilBERT and RoBERTa.

• There is no correation between the Lexical Weights method and the other methods in

A Christmas Carol, but significant correlations ranging from 0.23 to 0.51 with methods

other than the two InferSent cases.

• The Lexical Weights method has consistently low correlation with the two InferSent

methods on all four corpora.
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a) A Christmas Carol 

 
b) Heart of Darkness 

 

Figure 4.23: Correlation plots of time-series for A Christmas Carol and Heart of Darkness
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a) Metamorphosis 

 
b) The Prophet 

Figure 4.24: Correlation Plots of time-series for Metamorphosis and The Prophet
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4.1.7 Correlation Plots of the Time-Series for Translations

Correlation plots for The Iliad show similar patterns to those of the four literary books.

As discussed previously, the translations are comparatively greater in length. As shown in

Figure 4.25 (a), the translation by Alexander Pope has 5,334 sentences, which is the largest

corpus analyzed in this thesis. The correlation plot for this corpus shows the interesting

result that the Lexical Weights method performs is more correlated with the embedding-

based models than in the other corpora, with the highest correlation (ρ = 0.41) with InferSent

GloVe. These observations can most likely be explained by two factors:

1. While all other methods use text embeddings trained on large, generic train sets such

as the Wikipedia or Google News corpora, the representations produced by the Lexical

Weights method are obtained only from the corpus itself. While this can be an advan-

tage because it makes the method self-sufficient and corpus-specific, it also means that

inference may be poor in short corpora than cannot provide enough training data. The

fact that the Pope Iliad is much longer than the other corpora may have improved the

performance of the Lexical Weights method.

2. Infersent GLoVe is based on GloVe word embeddings [42], which are based on the co-

occurrence statistics of words, just like the PMI-based weights in the Lexical Weights

method. This affinity may be partly the reason for the relatively higher correlation

between the two methods. This effect is seen in several other corpora as well, e.g., for

the William Cowper translation of the Odyssey, the correlation value reaches 0.5.

In contrast, Figure 4.27 (b) for the Samuel Butler translation of the Odyssey should

almost no correlation between The Lexical Weights method and the others. This is once

again due to the conversational nature of the dataset. Samuel Butler’s translation of The

Odyssey is done in a style that involves much more dialogue between the various characters

in the book.
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Translations of The Aeneid and The Meditations show patterns similar to those observed

for the previous books.

 

a) Alexander Pope 

 

b) Lang et al 

Figure 4.25: Correlation plots of time-series for The Iliad by Alexander Pope and Lang et al
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a) George Chapman 

 

b) Samuel Butler 

Figure 4.26: Correlation plots of time-series for The Iliad by George Chapman and Samuel
Butler
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a) Alexander Pope 

 

b) Samuel Butler 

Figure 4.27: Correlation plots of time-series for The Odyssey by Alexander Pope and
Samuel Butler
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a) William Cowper 

 

b) Butcher and Lang 

Figure 4.28: Correlation plots of time-series for The Odyssey by William Cowper and
Butcher and Lang
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a) J. W. Mackail 

 
b) John Dryden 

 
c) Rolfe Humphries 

Figure 4.29: Correlation plots of time-series for The Aeneid
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a) George Chrystal 

 
b) Meric Casaubon 

Figure 4.30: Correlation plots of time-series for The Meditations
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4.1.8 Global Correlation Coefficient Plot of SSMs

The global correlation coefficient matrix is calculated by taking the mean of all the

correlation coefficients of SSMs across all the 17 books analyzed.

DeCLUTR Base

DeCLUTR Small

InferSent FastText

InferSent GloVe

DistilBERT

RoBERTa
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Lexical Weights

1.00 0.88 0.52 0.51 0.56 0.53 0.62 0.26

0.88 1.00 0.56 0.47 0.59 0.52 0.62 0.24

0.52 0.56 1.00 0.80 0.67 0.49 0.56 0.20

0.51 0.47 0.80 1.00 0.54 0.45 0.55 0.25

0.56 0.59 0.67 0.54 1.00 0.65 0.58 0.19

0.53 0.52 0.49 0.45 0.65 1.00 0.55 0.19

0.62 0.62 0.56 0.55 0.58 0.55 1.00 0.20

0.26 0.24 0.20 0.25 0.19 0.19 0.20 1.00
0.0
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0.6

0.8
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Figure 4.31: Correlation plot of the Global Mean of all the SSMs
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4.1.9 Global Correlation Coefficient Plot of time-series

The global correlation coefficient matrix is calculated by taking the mean of all the

correlation coefficients of time-series across all the 17 books analyzed.
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DeCLUTR Small

InferSent FastText
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1.00 0.90 0.54 0.55 0.60 0.60 0.69 0.29

0.90 1.00 0.58 0.51 0.63 0.60 0.69 0.27

0.54 0.58 1.00 0.77 0.66 0.49 0.59 0.19

0.55 0.51 0.77 1.00 0.53 0.46 0.58 0.23

0.60 0.63 0.66 0.53 1.00 0.68 0.64 0.21

0.60 0.60 0.49 0.46 0.68 1.00 0.63 0.24

0.69 0.69 0.59 0.58 0.64 0.63 1.00 0.25

0.29 0.27 0.19 0.23 0.21 0.24 0.25 1.00
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.32: Correlation plot of the Global Mean of all the time-series
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4.2 Results from Study II

In this section, the results from the procedures mentioned in Section 3.7 are visualized.

Results are organized in the same order that they appear in Section 3.7.

4.2.1 Results from the Analysis of Human Ratings

Some interesting insights are obtained when the human raters rate the SPPS. Figure

4.33 shows the distribution of scores given by each individual rater to the sentence pairs in

the LSSP and MSSP sets. An interesting characteristic emerges from the histograms: For

the 320 LSSP pairs, most human raters were able to rate the vast majority as having low

similarity, but the similarity values were much less correlated with those produced by the

semantic models for the 320 MSSP pairs.

Collecting the ratings by all raters by method clarifies things more. Figure 4.34 shows

the mean human ratings for the LSSP and MSSP for each of the eight methods. The taller

the beige bar and the lower the blue, the more consistent the method is with human ratings.

This is clarified further in 4.35, where each bar gives the difference between the MMSP and

LSSP ratings for each metho. It can be seen that RoBERTa has the greatest difference,

with the two DeCLUTR methods, DistilBERT, and USE close behind and very close to each

other. The two InferSent methods fare significantly worse, and the Lexical Weights metho

has the lowest correspondence with human raters.

When the similarity ratings for individual sentence pairs are visualized in Figure 4.36,

the human ratings for the LSSP across all methods are reliably low (left half of the heatmap).

Figure 4.37 shows the same data with the values for each rater standardized to have 0 mean

and unit variance, thus plotting the z-score values relative to each rater’s own scores. For the

MSSP, humans and the semantic models disagree much more, though human raters agree

quite significantly with each other (intraclass correlation coefficient = 0.9). Nevertheless, on

average, human raters do think that most MSSP pairs are more similar than LSSP pairs.
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It is interesting to note that human raters tend to give lower similarity scores to the same

MSSP pairs across all raters.

Since the data points in Figure 4.36 are grouped by encoding method and by data source,

one can get further information by plotting the heatmap in other ways. Figure 4.38 averages

the LSSP and MSSP ratings of each rater across all the 40 sentence pairs generated by the

same encoder. Looking down the columns in the MSSP half, it is clear that human rating

were least similar to InferSent and Lexical Weights rating for all raters. Then averaging each

column over the rows gives the bar plot in Figure 4.39, showing the mean ratings human

raters gave to the LSSP and MSSP pairs produced by each method.

Finally, in Figure 4.40, the results for each method and each rater are separated by the

source tests, with the ratings for the 10 LSSP and 10 MSSP pairs from each book averaged

separately. Thus, each method column in the previous heatmap is split into four columns, one

each for A Christmas Carol, Heart of Darkness, Metamorphosis and The Prophet in order.

Now looking at each small column, it becomes clear that, in most cases, high-similarity sen-

tence pairs produced by Metamorphosis elicited the most disagreement from human raters.

The only exception was the sentence pairs from the Lexical Weights method, where The

Prophet produced the highest level of disagreement. In contrast, high-similarity sentence

pairs generated from A Christmas Carol by all the embedding-based methods obtained the

highest level of agreement from human raters. Again, Lexical Weights MSSP pairs are an

exception, where Heart of Darkness fared best.

Finally, the columns of the heatmap in Figure 4.40 are averaged across all raters to get

the mean ratings for each book with each encoding method. These are plotted in Figure 4.41,

with the cource books color-coded, and then plotted separately for each book in Figure 4.42.

This last figure makes clear the human ratings for A Christmas Carol are most consistent

with those inferred by the models (except for Lexical Weights), while consistency is worst

for Metamorphosis. This is especially interesting because, of the four books, the text for

Metamorphosis - taken from a recent translation - is the most modern.
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Figure 4.33: Histograms of ratings for individual raters. The blue bars are for the LSSP
and the beige bars for the MSSP.
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Figure 4.34: Mean ratings of all 8 human raters split by embedding methods
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Figure 4.35: Difference of mean ratings of all 8 human raters split by embedding methods

75



De
CL

UT
R 

Ba
se

De
CL

UT
R 

Sm
al

l

In
fe

rS
en

t F
as

tT
ex

t

In
fe

rS
en

t G
lo

Ve

Di
st

ilB
ER

T

Ro
BE

RT
a

US
E

Le
xi

ca
l W

ei
gh

ts

De
CL

UT
R 

Ba
se

De
CL

UT
R 

Sm
al

l

In
fe

rS
en

t F
as

tT
ex

t

In
fe

rS
en

t G
lo

Ve

Di
st

ilB
ER

T

Ro
BE

RT
a

US
E

Le
xi

ca
l W

ei
gh

ts

set 0

set 1

set 3

set 4

set 5

set 6

set 7

set 9

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Figure 4.36: Heatmap of rating for individual sentence pairs by each rater. The left half
of the figure shows sentence pairs from the LSSP, and the right half from MSSP. Each row
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Figure 4.37: Heatmap of z-score ratings standardized for each rater.
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Figure 4.38: Heatmap of mean ratings split by method
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Figure 4.39: Barplot of mean ratings split by method
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Figure 4.40: Heatmap of mean ratings split by individual books and method
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Figure 4.41: Barplot of mean ratings split by individual books and method
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Figure 4.42: Barplot of mean ratings grouped by individual books

4.2.2 Results from DTW Analysis

Tables 4.1 - 4.8 show the results of applying the DTW-based analysis described in

Section 3.7.2 to the time-series produced by each encoder. Since DTW is a pairwise operation

which can only warp 2 time-series at once, only two translations of the same book can be

compared at a time. The Pairs column in the tables shows which two translations are being

compared (see Table 3.1 for the labels). In these tables W 1
c is the warp coefficient obtained

by calculating the percentage change in the length of the warped time-series with respect to

the first time-series, W 2
c the percentage change in the length of the warped time-series with

respect to the second time-series,. W̄c is the mean of W 1
c and W 2

c , Zz,t is the correlation

coefficient between the two warped time-series, and Q is the ratio of Zz,t and W̄c, which is

used as a measure of semantic consistency. A high Q value indicates higher consistency.
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DeCLUTR Base
Pairs ω1

c ω2
c Ωc zs,t Q

A1 - A2 0.24 0.55 0.40 0.83 2.09
A1 - A3 0.26 0.51 0.39 0.83 2.15
A2 - A3 0.39 0.33 0.36 0.84 2.31

I1 - I2 0.33 0.41 0.37 0.83 2.24
I1 - I3 0.25 0.49 0.37 0.82 2.22
I1 - I4 0.58 0.24 0.41 0.83 2.04
I2 - I3 0.29 0.47 0.38 0.83 2.20
I2 - I4 0.65 0.23 0.44 0.83 1.90
I3 - I4 0.76 0.16 0.46 0.82 1.80

O1 - O2 0.25 0.48 0.37 0.83 2.25
O1 - O3 0.61 0.21 0.41 0.83 2.00
O1 - O4 0.42 0.34 0.38 0.83 2.21
O2 - O3 0.81 0.15 0.48 0.82 1.72
O2 - O4 0.55 0.23 0.39 0.83 2.13
O3 - O4 0.24 0.55 0.40 0.84 2.12

M1 - M2 0.34 0.35 0.34 0.84 2.43

Table 4.1: Warp coefficients for DeCLUTR Base
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DeCLUTR Small
Pairs ω1

c ω2
c Ωc zs,t Q

A1 - A2 0.23 0.54 0.38 0.82 2.14
A1 - A3 0.26 0.50 0.38 0.83 2.16
A2 - A3 0.38 0.32 0.35 0.83 2.36

I1 - I2 0.33 0.40 0.37 0.83 2.24
I1 - I3 0.25 0.50 0.38 0.83 2.20
I1 - I4 0.56 0.23 0.40 0.82 2.08
I2 - I3 0.30 0.47 0.39 0.83 2.15
I2 - I4 0.62 0.21 0.42 0.82 1.96
I3 - I4 0.77 0.16 0.47 0.82 1.75

O1 - O2 0.26 0.49 0.38 0.83 2.20
O1 - O3 0.61 0.21 0.41 0.82 2.00
O1 - O4 0.41 0.33 0.37 0.83 2.25
O2 - O3 0.82 0.15 0.49 0.81 1.67
O2 - O4 0.55 0.23 0.39 0.83 2.12
O3 - O4 0.24 0.56 0.40 0.83 2.06

M1 - M2 0.35 0.36 0.35 0.83 2.35

Table 4.2: Warp coefficients for DeCLUTR Small
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DistilBERT
Pairs ω1

c ω2
c Ωc zs,t Q

A1 - A2 0.25 0.56 0.41 0.82 2.02
A1 - A3 0.27 0.51 0.39 0.82 2.13
A2 - A3 0.4 0.34 0.37 0.83 2.24

I1 - I2 0.35 0.42 0.39 0.84 2.16
I1 - I3 0.28 0.53 0.4 0.84 2.08
I1 - I4 0.59 0.25 0.42 0.84 1.97
I2 - I3 0.3 0.48 0.39 0.84 2.13
I2 - I4 0.65 0.23 0.44 0.83 1.89
I3 - I4 0.8 0.18 0.49 0.82 1.67

O1 - O2 0.26 0.5 0.38 0.83 2.17
O1 - O3 0.61 0.21 0.41 0.82 2.01
O1 - O4 0.42 0.33 0.37 0.83 2.22
O2 - O3 0.83 0.16 0.49 0.8 1.63
O2 - O4 0.56 0.24 0.4 0.83 2.09
O3 - O4 0.24 0.56 0.4 0.82 2.03

M1 - M2 0.34 0.35 0.35 0.84 2.42

Table 4.3: Warp coefficients for DistilBERT
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InferSent FastText
Pairs ω1

c ω2
c Ωc zs,t Q

A1 - A2 0.27 0.58 0.43 0.8 1.88
A1 - A3 0.31 0.56 0.43 0.81 1.86
A2 - A3 0.44 0.38 0.41 0.82 2.01

I1 - I2 0.39 0.46 0.42 0.82 1.94
I1 - I3 0.29 0.55 0.42 0.83 1.97
I1 - I4 0.61 0.26 0.43 0.82 1.89
I2 - I3 0.33 0.51 0.42 0.83 1.99
I2 - I4 0.69 0.26 0.47 0.82 1.73
I3 - I4 0.83 0.2 0.52 0.81 1.58

O1 - O2 0.3 0.54 0.42 0.82 1.95
O1 - O3 0.66 0.25 0.45 0.79 1.75
O1 - O4 0.45 0.37 0.41 0.82 1.99
O2 - O3 0.86 0.18 0.52 0.78 1.51
O2 - O4 0.6 0.27 0.44 0.81 1.86
O3 - O4 0.26 0.58 0.42 0.81 1.92

M1 - M2 0.42 0.43 0.43 0.82 1.93

Table 4.4: Warp coefficients for InferSent FastText
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InferSent GloVe
Pairs ω1

c ω2
c Ωc zs,t Q

A1 - A2 0.32 0.65 0.48 0.83 1.72
A1 - A3 0.34 0.6 0.47 0.83 1.76
A2 - A3 0.5 0.43 0.47 0.83 1.78

I1 - I2 0.4 0.48 0.44 0.84 1.9
I1 - I3 0.3 0.56 0.43 0.84 1.95
I1 - I4 0.67 0.31 0.49 0.84 1.71
I2 - I3 0.35 0.54 0.45 0.84 1.88
I2 - I4 0.74 0.3 0.52 0.83 1.61
I3 - I4 0.87 0.23 0.55 0.83 1.51

O1 - O2 0.32 0.57 0.45 0.82 1.84
O1 - O3 0.67 0.25 0.46 0.81 1.77
O1 - O4 0.49 0.4 0.44 0.83 1.87
O2 - O3 0.85 0.17 0.51 0.8 1.56
O2 - O4 0.64 0.3 0.47 0.82 1.73
O3 - O4 0.3 0.63 0.46 0.84 1.82

M1 - M2 0.42 0.43 0.43 0.85 1.98

Table 4.5: Warp coefficients for InferSent GloVe
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RoBERTa
Pairs ω1

c ω2
c Ωc zs,t Q

A1 - A2 0.24 0.54 0.39 0.82 2.1
A1 - A3 0.25 0.5 0.37 0.82 2.2
A2 - A3 0.38 0.32 0.35 0.83 2.39

I1 - I2 0.34 0.42 0.38 0.84 2.2
I1 - I3 0.24 0.49 0.37 0.83 2.26
I1 - I4 0.55 0.22 0.39 0.83 2.14
I2 - I3 0.29 0.47 0.38 0.84 2.2
I2 - I4 0.63 0.21 0.42 0.83 1.96
I3 - I4 0.76 0.16 0.46 0.82 1.78

O1 - O2 0.25 0.48 0.36 0.83 2.27
O1 - O3 0.59 0.2 0.39 0.82 2.09
O1 - O4 0.41 0.33 0.37 0.83 2.28
O2 - O3 0.8 0.14 0.47 0.81 1.71
O2 - O4 0.55 0.23 0.39 0.83 2.1
O3 - O4 0.23 0.55 0.39 0.82 2.11

M1 - M2 0.34 0.35 0.35 0.84 2.41

Table 4.6: Warp coefficients for RoBERTa
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USE
Pairs ω1

c ω2
c Ωc zs,t Q

A1 - A2 0.23 0.54 0.38 0.83 2.15
A1 - A3 0.25 0.49 0.37 0.83 2.23
A2 - A3 0.38 0.32 0.35 0.84 2.41

I1 - I2 0.35 0.42 0.38 0.84 2.2
I1 - I3 0.26 0.51 0.39 0.84 2.18
I1 - I4 0.58 0.24 0.41 0.84 2.05
I2 - I3 0.3 0.48 0.39 0.84 2.16
I2 - I4 0.63 0.21 0.42 0.84 1.99
I3 - I4 0.77 0.16 0.47 0.83 1.77

O1 - O2 0.25 0.48 0.36 0.83 2.29
O1 - O3 0.61 0.21 0.41 0.84 2.05
O1 - O4 0.4 0.32 0.36 0.84 2.3
O2 - O3 0.82 0.15 0.49 0.83 1.71
O2 - O4 0.55 0.23 0.39 0.84 2.13
O3 - O4 0.24 0.55 0.4 0.84 2.11

M1 - M2 0.35 0.36 0.35 0.84 2.37

Table 4.7: Warp coefficients for USE
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Lexical Weights
Pairs ω1

c ω2
c Ωc zs,t Q

A1 - A2 0.34 0.68 0.51 0.83 1.63
A1 - A3 0.34 0.6 0.47 0.85 1.8
A2 - A3 0.51 0.45 0.48 0.83 1.73

I1 - I2 0.5 0.58 0.54 0.79 1.47
I1 - I3 0.29 0.54 0.41 0.75 1.81
I1 - I4 0.67 0.31 0.49 0.7 1.42
I2 - I3 0.33 0.51 0.42 0.7 1.68
I2 - I4 0.73 0.29 0.51 0.72 1.41
I3 - I4 0.89 0.24 0.56 0.68 1.2

O1 - O2 0.31 0.56 0.43 0.79 1.82
O1 - O3 0.73 0.3 0.51 0.7 1.37
O1 - O4 0.53 0.44 0.48 0.71 1.47
O2 - O3 0.91 0.21 0.56 0.7 1.25
O2 - O4 0.65 0.31 0.48 0.71 1.48
O3 - O4 0.34 0.68 0.51 0.72 1.42

M1 - M2 0.44 0.45 0.44 0.78 1.77

Table 4.8: Warp coefficients for Lexical Weights
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4.2.3 Mean of Q

The quality metric Q is calculated for the 16 pairs of books. The mean and standard

deviation of Q over all pairs are calculated and shown in Table 4.9. The bar plot in Figure

4.43 plots these values, indicating how well the eight encoding methods performed on these

different books. The plot shows that all methods except InferSent and Lexical weights had

similar performance, and Lexical Weights was by far the worst. This is consistent with the

results obtained from the human raters analysis. Here is the plot.

Methods Mean Q Std

DeCLUTR Base 2.11 0.19
DeCLUTR Small 2.11 0.19
InferSent FastText 1.86 0.15
InferSent GloVe 1.77 0.13
DistilBERT 2.05 0.20
RoBERTa 2.14 0.19
USE 2.13 0.19
Lexical Weights 1.55 0.20

Table 4.9: Mean of Q and standard deviation
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Figure 4.43: Mean of Q along with error bars
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Finally, Figure 4.44 plots the two quality metrics, G and nean Q, against each other for

all eight methods. The following observations can be made:

1. The two metrics has a monotonic relationship, indicating that they are both capturing

similar information. This is important because the values of the two metrics come from

completely different methods.

2. Both metrics show that five methods – DeCLUTR Base, DeCLUTR Small, Distil-

BERT, RoBERTa, and USE – have very similar quality on both metrics, the two

InferSent methods have lower quality but are very close to each other, and the Lexical

Weights method is much worse.
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Figure 4.44: Scatter plot of Mean Q vs G
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Chapter 5

Conclusions and Future Work

This thesis has analyzed various semantic embedding methods by comparing the seman-

tic structure they infer using SSMs, time-series, correlation plots and using different methods

to evaluate how well these embedding methods capture the meaning of sentences. The anal-

ysis done in Section 3.6 gives insights about the quality ofthe different methods compared in

the thesis. To get a numeric value of their similarity, correlation plots are obtained. Thresh-

old plots of the SSMs also give interesting insights on how the skeletal structure of a given

document looks.

The evaluation of MSSP and LSSP gives interesting results on how the sentence pairs

deemed similar/dissimilar by the embedding methods fare against evaluations by human

raters. The analysis of human ratings using metric G and of multiple translations using

the derived metric Q help determining which method is most consistent in capturing the

semantic essence of the text.

5.1 Goals and Aims

This section reiterates the goals and aims for this thesis and concludes its findings.
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1. Identifying and implementing several methods for obtaining sentence similarity, includ-

ing those based on: 1) Lexical networks; 2) Transformer based models; 3) Bi-LSTM

models.

2. Identifying a set of real-world corpora and documents for evaluation, including: 1)

Multiple translations of the same non-English language texts; 2) Texts from different

genres such as poetry, fiction, philosophy, etc.

3. Processing all the documents in the selected corpora through all the sentence similarity

models to obtain similarity data from each document, including: 1) Sentence similarity

matrices; 2) Time-series of similarity variation between successive sentences.

4. Defining a suite of analytical tests, characteristics, and metrics to characterize the

data.

5. Applying these methods to the characterization, comparison, and analysis of the em-

bedding methods on the target documents to determine the relative quality of the

metrics.

5.2 Conclusions

The following conclusions can be derived from the studies in this thesis:

1. The results from 4.1 show insightful ways to visualize the metric of sentence similarity

through various plots. The results show that all the embedding-based methods infer

quite similar semantic structure from the same text, with methods based on the same

approach showing the highest similarity.

2. The Lexical Weights methods does show some positive correlations with the structure

inferred by the other methods in most cases. However, for texts with a lot of dialog

and short sentences, it fares very poorly.
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3. While RoBERTa stands out as a slightly better method compared to the others, USE

has the attribute of showing almost the same level of high correlation with all other

embedding-based methods. This suggests that USE might be inferring the most com-

prehensive semantic representation.

4. The results from 4.2 enable the determination of the best embedding method amongst

the eight methods compared. The evaluation done by the human raters reveals that

MSSP and LSSP determined by RoBERTa align most closely with a human under-

standing of natural language. Apart from RoBERTa, USE, DistilBERT and DeCLUTR

also show high quality, while InferSent lags behind aand the Lexical Weights approach

performs poorly – at least on these corpora.

5. The mean Q values obtained from the analysis of multiple translations indicate that

DeCLUTR, DistilBERT, RoBERTa and USE compare very well to each other. The

relative difference between their means is negligible. However, InferSent performs a bit

worse, and Lexical Weights has the lowest performance.

6. Overall, Study II suggests that DeCLUTR, DistilBERT, RoBERTa and USE are all

approximately of equal quality. This is consistent with the results of Study I showing

that they also infer very correlated semantic structure.

5.3 Future Work

This thesis investigated seven state-of-the-art of sentence encoders on four literary books

and thirteen different translations spanning across four books. To take this research further,

1. Further analysis could be done for validating the methods more with help of additional

human raters.

2. Different genres of text like political speeches, medical texts, news could be analyzed.
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3. This research can be extended to other domains for learning and creating superior

knowledge representations.

4. The method of using Gramian Angular Field (GAF) [57] to turn time-series into images

could be explored to compare translations using convolutional neural networks.

5. A new sentence hybrid encoder could be developed by comapring the strengths and

weaknesses of the encoders investigated in this study.

6. Additional analysis of this semantic structure could be done with reference to the

semantic content of the underlying text.
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