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Abstract 

The primary energy sources in commercial buildings are electricity that accounts for 61%, 

followed by 32% for natural gas. According to EIA, the heating, ventilation, and air condition 

systems account for about 25% of the total commercial building’s energy use in the US. Therefore, 

advanced modeling and optimization methods of the system components and operation offer great 

ways to reduce energy consumption.  

Since HVAC systems modeling is a characteristic and challenging process thus, while developing 

an HVAC system and component model, close attention should be given to the accuracy of the 

model structure, model parameters, and constraints. So, the final selected model can accurately 

deal with constraints, uncertainties, control the time-varying applications and handle a broad range 

of operating conditions. 

Also, the use of the optimization process to automate selecting the best model structure is crucial. 

Because every component is different, we cannot propose one model to fit that specified 

component in all systems. Choosing the best model structure is a time-consuming process. Here 

comes the optimization process role in automating the process of selecting the optimal model 

structure for each application.   

This research will introduce an innovative method of modeling and optimizing HVAC system 

operation to reduce the total energy consumption while improving the indoor thermal comfort 

level. The data-driven two-level optimization technique introduced in this research will utilize the 

use of real system performance data collected from the building automation systems (BAS) to 

create accurate component modeling and optimization process as the first level of optimization 

(MLO). Accurate component modeling techniques are crucial for the results accuracy of the 

process of optimization the HVAC systems performance. Lastly, artificial neural network (ANN) 

was chosen as the component modeling tool.  

The second level of optimization utilizes the whole system-level optimization (SLO). Genetic 

algorithm was selected as the optimization learning algorithm. Later, the two optimization levels 

will be integrated together to optimize the HVAC system operation.  

The proposed two-levels optimization technique has contributed to the field of modeling and 

optimization of HVAC systems through several new contributions. 



ii 

 

• Optimize multiple system setpoints. The system setpoints that will be optimized are the 

supply air temperature (Ts), duct static pressure (Ps), minimum zone airflow rates (Qz), and 

minimum outdoor air ventilation rate (Qv). 

• Implement the demand control methodology with the optimization process to modify the 

electricity consumption power profile when the demand response signal is received. 

• Implement the occupancy schedule inputs into the optimization process to account for the 

number of occupants and optimize the zone level ventilation ratio.  

• Implement the real-time zones occupancy sensor readings. This approach will crucially 

affect the zones' ventilation flow rates and zones minimum flowrates. 

• Lastly, implement the method of zone minimum airflow rates setpoint rests. This method 

will balance between ventilation requirements and reheat energy consumption.  

The proposed optimization process was tested and validated, and savings were calculated. This 

research has validated the use of the proposed optimization technique in improving the energy 

efficiency of exciting systems.  
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Chapter 1  

Introduction 

1.1 Background 

In 2017, about 39% (or about 38 quadrillion British thermal units) of total US energy consumption 

was consumed by the residential and commercial sectors, according to EIA (EIA, 2017).  It was 

found that in 2012 the space heating consumes most of the commercial buildings’ overall energy 

(EIA, 2017). The advanced global revenue will also grow from $7.0 billion in 2014 to $12.7 billion 

in 2023. Besides the electricity prices that are rapidly increasing and the increasing cost of 

operating the HVAC systems in the buildings, the buildings are responsible for 44.6% of the total 

CO2 emissions, which is the most considerable portion compared to 34.3% for transportation and 

21.1% for the industry sector. Thus, the need for a better operation mechanism of those existing 

systems becomes more crucial (Talib et al., 2018). HVAC systems are heating ventilation and air 

conditioning systems responsible for heating and cooling the space and ventilation to maintain the 

inhabitant’s comfort levels. HVAC systems are complex nonlinear systems that have different 

variables as the parameters of that systems. Many studies have been done to fully understand those 

systems and reduce their energy (ASHRAE, 2011). Even though the HVAC systems operate using 

the same thermodynamics principles, they still have different applications depending on the 

building type.  

Chilled water HVAC systems are one of the most popular HVAC systems. They are sized for 

numerous building types where careful consideration must be taken in the design process. They 

are widely used in commercial, industrial, and institutional applications. And they come in all 

shapes, sizes, and patterns. They are responsible for cooling the water as well as the process of 

dehumidification. The chilled water system is one of the most widely used systems in the United 

States commercial buildings. Figure 1 below shows a typical chilled water system.  



2 

 

 

Figure 1. Schematic of a chilled water system.  

The chilled water systems consist of the waterside as well as the airside. The chilled water systems’ 

waterside consists of the cooling tower, the chiller, pumps, pipes, and valves. The waterside is 

responsible for cooling the water and send it to the airside. Simultaneously, the airside that is used 

to condition and circulate the air is represented by the Air Handling Unit (AHU). The AHU usually 

consists of the cooling and heating coil, fans/ blowers, dampers, and filters. The AHU can be 

located outside the building on the ground or roof, inside the attics, mechanical rooms, etc. 

Another popular HVAC system popularly used in commercial buildings in the US is the packaged 

direct expansion system (DX). Those systems are responsible for about 0.74 quads or 54% of the 

cooling primary energy consumption for commercial buildings and are used to cool nearly half of 

all commercial spaces (Wiley and Sons, 2016). A Dx system consists of two central devices. The 

condenser is located outdoor, and the evaporator is located indoors. A conduit connects the two 

for refrigerant lines and wiring. The spilt systems can include one condenser connected to multiple 

evaporator units to serve single or multiple zones under the same or different environmental 

conditions (Seyam, S, 2018). Figure 2 shows a typical DX system schematic. 
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Figure 2. Schematic showing the layout of a typical split DX system.  

Since HVAC systems are a complex structure that consists of heat and mass transfer equipment, 

they also consist of sensors and controllers that control several system variables. Those variables 

are supply air temperature, supply air fan speed, duct static pressure, chilled water valve position, 

and chilled water temperature. Thus, to predict the energy consumed by those systems, we need to 

measure and model the system’s components from either measured data or from the knowledge of 

previous physical laws and methods (Afram et al., 2014).  

Nowadays, many resources show the process of designing the HVAC systems, especially the 

chilled water systems for new buildings. (Bell et al., 2016, Olama A., 2017, Stanford et al., 

2011:2012, Khazaii et al., 2014, and Janis et al., 2014). Are some of the books that are available 

now with dedicated chapters for the chilled water design. Those chapters specify the equation, 

data, and rule of thumb methods with all the minimum and maximum values for the design process. 

All those methods and equations can be used in the design process. This process is called a 

“physical model” or a “forward model” to design the HVAC system in newly constructed 

buildings.  
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Forward models are based on engineering principles and usually required detailed physical 

information. However, using physical models in actual system operations requires detailed 

physical information that may not always be available. In addition, it requires longer time to 

complete the calculations that may exceed the optimization period. Therefore, the forward physical 

models are rarely used for the applications such as real-time building energy system operations. 

On the other hand, the “data-based models” do not need any information on the system. They can 

simply be used for such real-time applications as real-time performance data are available in most 

modern building automation systems BASs. Therefore, data-enabled model-based techniques may 

be the most effective way to achieve optimally secured and demand flexible building energy 

system operations (Afram et al., 2015 and Nassif et al., 2018).  

Today, modeling and simulation are recognized techniques for solving energy consumption and 

cost issues in several engineering fields. For example, machine learning techniques were used as 

tools to predict the performance of HVAC systems. One of the machine learning tools that are 

widely used nowadays is ANN (artificial neural networks). The current search for new models of 

computing using neural networks is motivated by our desire to solve natural, intelligent tasks by 

taking advantage of computer technology developments. Artificial Neural Networks (ANNs) are 

nonlinear mapping structures based on the human brain's principal functions. They are potent tools 

for modeling, especially when a given data’s mathematical relationship is unknown or not easily 

discerned. Over the years, they have become the focus of attention, mainly due to their wide range 

of applicability and the ease of working with complicated problems. Since McCulloch and Pitts’ 

first neural model, hundreds of different models were developed that are considered ANNs 

(McCulloch and Pitts 1943).   

While another popularly used modeling technique called support vector machine (SVM) was also 

used to model HVAC systems’ performance for multiple purposes. SVM is one of the methods 

that use supervised learning used for classification and clustering purposes. In general, SVM is 

also extended to solve regression problems and thus support vector regression. A study conducted 

by (Liang et al., 2007) presented a model-based fault detection and diagnosis method using SVM. 

It was found that this method can help reduce the energy consumption of the system and the 

maintenance cost. Moreover, maintain the health of the HVAC systems.  
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However, multiple data-based models have been developed and are now published. Thus, an 

optimization process must be implemented to choose the best model and select between several 

models to reduce energy consumption. Optimization is a process in mathematics that is used to 

maximize and minimize a specific function. One of the most popular optimization methods is the 

genetic algorithm (GA). GA is an optimization technique that is based on the theory of natural 

selection. This process simply means considering a set of solutions to a problem and selecting the 

best fitting solution. GA is implemented to minimize the cost and maximize efficiency (Arabali et 

al., 2013). Previous studies proved GA to be an efficient tool for optimizing the HVAC modeling 

process when implemented on a whole system and component levels. GA can provide up to 11% 

of cooling energy savings. This value may vary depending on the systems and building type, 

location, use, and current control methods (Nassif, 2014).  

From this background, the overall idea of modeling, simulation, and optimization of HVAC was 

discussed. It is clear that there have been lots of efforts in the field of modeling and optimizing 

HVAC systems to reduce the energy consumed by those systems. There have been numerous data-

driven models and techniques designed to predict the performance of the HVAC component and 

attempts to optimize its performance.  However, there have been some shortcomings that are 

associated with the previous studies. Some of those shortcomings are that the models were 

developed on assumptions and metrics that needed to be justified. Some of the modeling 

techniques used need to be further discussed and justify selecting this modeling technique and not 

others. Some of those studies can also be marked incomplete because they focused on few aspects 

of the systems and not the whole system level, affecting the results’ accuracy since the HVAC 

systems are integrated entities. Moreover, some of those models are not flexible enough to be used 

in other HVAC systems other than those specified.  

Therefore, the use of the optimization process to automate selecting the best model structure 

became crucial. Because every component is different, we cannot propose one model to fit that 

specified component in all systems. Choosing the best model structure is a time-consuming 

process. Here comes the optimization process role in automating the process of selecting the 

optimal model structure for each application.   
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Thus, in this research, the gap in previous studies will be discussed and addressed. Moreover, an 

overall integrated system-level performance modeling and optimization technique will be 

proposed. 

1.2 Objective  

This research aims to develop a new integrated data-driven modeling and optimization technique 

for better building HVAC efficiency. This goal will be achieved through three main objectives that 

will address the primary goal by serving as pieces of the whole picture of an integrated, optimized 

system. 

1. Selecting the best modeling tool from multiple proposed ones 

2. Create an accurate modeling and optimization technique to accurately predict the 

performance of the HVAC system components. This is the first level of optimization 

(MLO). The MLO process consists of two calculations loops. The inner loop is used for 

the model parameter tuning and another outer loop for the proposed optimization process, 

as shown in figure 3.  

 

Figure 3. Schematic of the proposed component model optimization process 
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A typical learning algorithm was used in the inner loop where the model’s parameters are 

tuned. For this purpose, artificial neural networks were selected. And the variables that 

were adjusted in the process are (1) input time delays, (2) feedback time delays, and (3) the 

number of neurons (hidden layer size). At the same time, the model parameters are the 

weight and bias. The tuning of the parameters will be completed on the whole testing data 

set.  

The outer loop is the proposed calculation to determine the optimal model structure. A 

high-level optimization will be performed in this loop to select the best model structure 

that produces the minimum error values in model prediction. This process will not replace 

the typical learning algorithm. Instead, it will automate the process to deliver more accurate 

predictions with lower processing time. 

3. Propose an integrated two levels optimization technique for better HVAC system 

performance. The process will include integrating the first level of optimization (MLO) 

and the second level of optimization, a whole system performance optimization (SLO). 

The proposed optimization technique will reduce the systems' energy consumption while 

improving the thermal comfort levels of the zones. The optimization tool that was selected 

to achieve this goal is the genetic algorithm (GA). Figure 4 below shows a schematic for 

the proposed integrated whole system model optimization process. 
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Figure 4. A schematic of the integrated optimization process.  

1.3 Research gap  

This section will discuss the gaps in previous studies that need to be addressed or better examined.  

1.3.1 Using rule-based control strategies (engineering physical-based data) vs. model-based 

approaches (actual performance and simulation data) 

Modeling and simulation of building system performance have a significant impact on energy 

savings. One drawback of component performance predictions that are being used now is using 

physical-based estimated data. Estimated data does not correctly evaluate the component 

performance because it does not account for many factors like building occupants. Therefore, using 

actual performance data or simulation data for component modeling approaches will give more 

accurate results. It will account for occupant behavior, operational inefficiencies, and interactive 

effects that are difficult or costly to account for in building energy models (Mathew et al., 2015).  
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A study compared the design stage estimated data vs. the building’s actual performance using 

NBI’s (new buildings institute) database of LEED-certified buildings. The study has found that 

measured EUIs for 50% of the buildings deviated by about 25% from the projected performance, 

with 30% significantly better and 25% significantly worse (Turner et al., 2008) 

The simulated data or actual performance data can be used to develop data-driven algorithms that 

can be used for more accurate and flexible predictions than the physical model’s estimation data. 

Most of the buildings are now equipped with BAS (building automation system) to provide us with 

an outstanding amount of actual building operation data (Xiao et al., 2014). However, most of the 

researchers do not use those data for modeling systems' energy consumption. Instead, they tend to 

use estimation data based on physical models and estimations, resulting in less accurate models. 

Therefore, this research will focus on using existing building data to create accurate data-driven 

models instead of using the rule method of operation (Sequences of Operation for HVAC System) 

stated by ASHRAE guideline 36 (ASHRAE 36, 2018).  

1.3.2 Accuracy of data-driven models and optimization technique significance 

An adequately identified model can provide accurate or close to accurate results and, at the same 

time, may require minimum calculations time (Afroz et al., 2018). Therefore, creating an accurate 

model through accurately identifying their parameters became crucial. Parameter identification, 

influenced by input data, excitation signals, and model structure, is essential in system 

identification accuracy and efficiency (Agbi et al., 2012). Even though parametric testing methods 

are crucial to determine the system order, there is still a lack of a methodical approach for the 

model structure selection, order determination, and parameter identification (Li et al., 2014). Most 

existing studies nowadays use the trial-and-error approach to decide on the model structure, order, 

and parameters (Afroz et al., 2018). While the HVAC system, like many other types of process 

controls in certain features like nonlinearity, time-dependent, time-varying system dynamics, 

insufficient data, complex interactions between the components, and limited supervisory controls.  

Therefore, the HVAC system’s modeling is a very characteristic challenging process (Afram et 

al., 2014). Thus, developing models that can accurately deal with constraints, and uncertainties, 

control the time-varying applications and time delays, and handle a broad range of operating 

conditions became crucial.  



10 

 

As previously stated, the HVAC components are complex nonlinear components. And every 

component is different. Therefore, we cannot propose one model to fit that specified component 

in all systems. Choosing the best model structure is a time-consuming process. Thus, an 

optimization process needs to be implemented to select the best model and choose between several 

models to reduce energy consumption (Kusiak et al., 2010). 

1.3.3 Considering the whole building as one zone  

Most of the available studies nowadays in the modeling and optimization of HVAC systems 

consider the whole space as a single zone or use a single room to carry out the experiment (Afroz 

et al., 2018). However, only a few studies have considered the multi-zone. There are essential 

factors that are hardly being addressed when using the whole building as a single zone. One of 

them is the effects of thermal interactions, like convective heat transfer, between the zones. 

Therefore, a study was conducted to examine an ANN multi-zone-based model created to evaluate 

the non-residential buildings’ thermal comfort index. The study has found that considering the heat 

transfer between zones has increased the energy efficiency and thermal comfort (Garnier et al., 

2014). Another study using an ANN multi-zone-based model examined factors like mechanical 

cooling, ventilation, weather conditions, and heat in a multi-zone building. The study also 

discussed the importance of heat transfer between the zones by comparing the single zone’s 

accuracy to a multi-zone model. The study has found that the multi-zone-based model is more 

accurate than the single zone (Huang et al., 2015).  

Therefore, this research will use a multi-zone experiment to consider the zones’ thermal 

interactions and get more accurate results.  

1.3.4 Not implementing the occupancy schedule  

Most researchers nowadays are utilizing models in their simulated work. However, this approach’s 

drawback is when implementing a created model to simulated work does not account for 

occupants’ influence, time, schedule, and interaction with the indoor environment. The occupant’s 

presence can be used as an input in most models and directly influences the building’s energy 

consumption. (Page et al., 2008) have conducted a study showing the influence of occupants on 

the buildings by stochastic models that emphasize the occupants. Also, (Sun et al., 2014) have 

developed models for overtime occupancy based on measured occupancy data from an office 

building. The study shows that the presented model can be used to generate occupant schedules to 
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be used as an input for building energy simulations. Therefore, it is recommended to use actual 

buildings for this type of application.  

Therefore, this research will address the occupancy schedule approach implemented in the 

optimization technique proposed in this research. Also, the proposed tool in this research is 

designed to be implemented in real commercial buildings. Therefore, a real building will be sought 

to test the proposed tool and examine the energy-saving. If accessing an actual building with real-

time data was not available, then a simulation building will be used to test the proposed 

methodology. An existing building implementation will be addressed in future work.  

1.3.5 Developing the models using a short period 

Very few models have used real performance data collected over a long performance span (Frausto 

et al., 2003). Instead, some researchers have trained their models using simulation data or a limited 

set of data collected in a short period (Ríos-Moreno et al., 2007).  

For example, a study conducted by (Kulkarni et al., 2004) modeled the building systems using 

MATLAB. However, the study considered the building as one thermal network also only one 

season of data was used. Therefore, the model can be considered incomplete because it covered 

only the winter season, so only the heating system was considered. Moreover, developing models 

using a limited range of data (less than one month) is not accurate for predicting indoor temperature 

and relative humidity, unlike other studies that developed models using more extended periods. 

For example, a study conducted by (Mustafaraj et al., 2010) developed models using an extended 

period (nine months). However, the study has found that no model can predict the indoor 

temperature and humidity levels. This conclusion contradicts (Patil et al., 2007), who used a 

shorter period.  

Thus, depending on the complexity, type of application, and previous knowledge of the topic being 

modeled, the duration of the data collection period is specified. But based on the previous studies, 

a data span of a week or two resulted in less accurate models. Therefore, a more extensive data 

span will be gathered from an actual system performance in our study.  

1.3.6 lack of integration between system-level and zone-level 

There have been lots of physical models predicting the ventilation airflow rate. For example, the 

ASHRAE standard (ASHRAE 62.1) has described the method for calculating the ventilation 



12 

 

needed for each zone. In addition, there have been numerous studies in the area of control strategies 

in VAV systems. These strategies are based on maintaining a constant static pressure set point in 

the main duct without considering the actual pressure-demand (system level). Those strategies are 

summarized by (Pang et al., 2017) as follows: 

• Occupied zone setpoint temperatures and night set back 

• VAV box minimum flow (typically 30%) 

• Optimum start 

• Supply air temperature reset 

• Economizer and minimum outdoor air intake 

Those strategies consider only the zone level without integrating the system level. This research 

proposes a method to integrate the minimum zone airflow rate setpoint with the outside airflow 

rate to optimize the zone ventilation rate.   

1.3.7 Not implementing the minimum zone airflow rate, minimum ventilation requirements, 

occupancy schedule, and demand control (DC) in the optimization process 

There have been some studies that implemented the whole system optimization technique in the 

past. Those studies used the approach of resetting the system set points to reduce the total system 

energy consumption. A dissertation work conducted by a fellow Ph.D. student (Tesiero, R. C., III., 

2014) proposed an integrated optimization technique to reduce the energy consumed by chilled 

water VAV systems. The study has utilized the use of both physical models and data-driven models 

to model the system component. Later, the optimization process was implemented to optimize two 

system setpoints the supply air temperature and duct static pressure. The work was established on 

the assumption of a fixed minimum zone airflow rate of 20% of the design flow, fixed occupancy 

schedule that is assumed to be the maximum number of design people. Also, the work has not 

accounted for the occupancy sensors reading. The study has found that this approach can reduce 

the total system energy consumption by at least 13%.  

Therefore, this research will address the previous study's gap by creating a modeling and 

optimization technique that utilizes all data-driven models instead of hybrid modeling. That will 

ease the optimal structure models finding using the optimization process in a sufficiently timely 

manner. Therefore, reduce the time required to select the optimal model structure to predict the 

component performance and eventually predict the actual total system energy consumption.  
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Also, this research will propose implementing the occupancy schedule inputs into the optimization 

process to account for the actual number of occupants at each time step and reduce the ventilation 

flowrates to the exact required amounts. The occupancy schedule can be updated based on real-

time knowledge of the occupant's count, zones type of use, and schedule. For example, in 

conference rooms and when there are meetings times in the schedule or lecture rooms and when 

there are lectures in the schedule against when it is empty. And the occupant behaviors such as 

lunchtimes and breaks, etc. Another method to get an accurate occupant count is CO2. This 

approach will enhance the sustainability goals of ASHRAE 62.1 by optimizing the zone level 

ventilation ratio and fulfilling the gap in this related code, as well as reducing the total system 

energy consumption. Also, this research will implement the real-time zones occupancy sensor 

readings. This approach will crucially affect the zones' ventilation flowrates and zones minimum 

flowrates. Lastly, this research will implement the method of zone minimum air flowrates setpoint 

reset. This approach will allow this setpoint to be adjusted over the operation time instead of using 

the constant design minimum values. This method is crucial to reduce reheat energy consumption. 

Finally, a new approach that was rarely introduced in any previous work will be implemented in 

this research, which is the demand-control method. Implementing the demand control 

methodology with the optimization process in response to the demand response signal received 

from the utility companies to modify the electricity consumption power profile by alleviating the 

peak load demand when the demand response signal is received.  

1.3 Research contribution and structure   

This research aims to develop an accurate data-driven modeling and optimization technique for 

HVAC systems that are commonly used in commercial buildings in the US. Those systems are 

chilled-water variable air volume (VAV) systems and direct expansion (DX) systems. The data-

driven models will duplicate the real systems as close as possible. The models created based on 

actual data gathered from an existing physical system will be later optimized to automate the 

process of selecting the best model structure. This optimization process reflects the first level of 

optimization (MLO) 

The second level of optimization is the system optimization process (SLO) for prediction and 

performance optimization. The optimization process of the system setpoints will be implemented 

to minimize the energy consumption and the cost of operation under normal conditions and 
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demand control. For more accurate calculations, the final results will be measured in terms of 

power and energy consumption savings (kWh and BTU) and cost of operation savings (US 

dollars).  

This novel optimization approach will be achieved through load prediction of the next time step 

while including the minimum zone airflow rate technique proposed by ASHRAE as well as 

accounting for the occupancy factor through the CO2 concentration level readings and or 

occupancy schedule. At the same time, while developing this approach, we will consider an 

essential factor that was neglected in the previous studies, which is the demand response to the 

grid needs, as shown later.  

This proposed integrated two-level optimization approach is flexible and can be adjusted to any 

HVAC system type with an online operation.  

Like previously stated, in this research, two types of systems were chosen to be examined, the 

chilled water VAV system and the DX system. Both systems were modeled in this research. The 

first optimization level was created for both systems to automate the modeling process, and the 

results were discussed. In contrast, the integrated two-level optimization process was implemented 

in only the chilled water system. The DX system was modeled but will be tested in future work 

due to the shortage of resources and time. The final results of implementing the proposed methods 

savings and challenges were discussed 

The goal of this research will be accomplished through three main steps that will be treated as 

different objectives or chapters. 

1. Compare multiple proposed artificial intelligence modeling techniques and choose the 

most suitable technique for modeling HVAC systems’ performance.  

2. Develop an accurate data-driven model of the chilled water VAV systems and DX split 

systems. As well as implementing a model-level optimization technique that will help 

automate the process of the parametric study. 

3. Develop a whole integrated system performance optimization process that includes both 

the component and system levels to reduce the total energy consumption and improve the 

indoor thermal comfort levels.   

This research is constructed of six chapters. 
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Chapter 1 As shown above. Summarize the background of this research. Also, it discusses the gap 

in the previous studies that led to the idea behind this research.   

Chapter 2 shows the literature review on the previous studies conducted in modeling and 

optimizing HVAC systems.  

Chapters 3, 4, 5 will show each phase of this research and the methodology to reach that goal of 

that phase. Finally, the results and main findings were discussed.  

Chapter 6 will conclude this research and prominent findings regarding energy, cost savings, and 

future work that will help improve the results.  

The intention behind having this research structure of having separate phases as separate chapters 

instead of one extensive methodology was to make this document more accessible and more time-

efficient for the reader. Therefore, if one is interested in one objective of this research, one can 

navigate that chapter without reading through the whole document.   

Figure 5 below shows the overview diagram with research phases and how they fall into the final 

prescribed goal.  



16 

 

 

Figure 5. The research structure. 
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Chapter 2  

Literature review 

2.1 Introduction  

Today, modeling and simulation are recognized techniques for solving energy cost issues in 

several engineering fields. This chapter shows the literature review and previous studies that were 

done in the field of modeling and optimization of HVAC systems. This chapter summarizes the 

state-of-the-art findings in modeling the components of HVAC systems aiming to reduce energy 

consumption. The most common artificial intelligence tools used for that purpose and how they 

were implemented. The optimization techniques were previously researched at both the component 

level and system level.  

2.2 HVAC Modeling and simulation 

Building energy performance problems arise from the infinite architectural and mechanical 

building designs and multiple energy analysis methods and tools available.  Energy efficiency is 

achieved through properly functioning equipment and control systems, whereas building controls 

and operation problems are the primary causes of inefficient energy usage. Collected and 

maintained building data sets are an adequate opportunity to build databases and data-driven 

algorithms that can be utilized to evaluate the building performance and energy savings that are 

related to retrofits projects (Mathew et al., 2015). Lacking the historical data has limited the ability 

to validate the engineering-based models intended to predict energy consumption. Thus, the recent 

increase in the number of buildings that benchmark their energy use on public resources has 

increased the amount of available data that can be used (ENERGY STAR, 2018). The recent 

availability of more data to use has made modeling the buildings’ energy performance more 

accurate. And the building performance data has become less isolated from public use. With the 

recent efforts to collect buildings data for modeling, benchmarking, and retrofits projects. There 

has been an emphasis on managing the building data that sits in the utility sheets or in building 

automation systems (BAS) not used.  

2.2.1 Building automation systems (BAS) 

Most buildings now are equipped with BAS systems. With those systems, we can easily access the 

building’s real-time performance data that can be used to model the HVAC system performance 

accurately. Those data can be a massive benefit for the new revolution in the modeling and 
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simulation of building systems' performance, leading to energy savings. Thus, one of the main 

achievable goals of the effective use of BASs is to improve the building’s energy efficiency, 

lowering costs, and providing better performance (Wang, S. et al., 2008a).         

Building automation system (BAS) consists of sensors, controllers, actuators, and software. An 

operator interfaces with the system via a central workstation or web browser, as shown in figure 

6. In addition, the BAS provides users with as-built drawings, floor plans, and specific graphics of 

HVAC systems.             

 

Figure 6. Building Automation System (BAS) component 

The BAS presents operators with a graphical user interface (GUI) illustration of the whole HVAC 

system. In addition, the BAS displays several system measurements such as Supply and return air 

temperature, static duct pressure, damper positions, fan power, fan pressure, etc. Figure 7 shows 

the BAS schematic and how it is connected to the controllers of a chilled water system to record 

the performance data.  
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Figure 7 A schematic of a typical chilled water VAV system and its connection to the BAS 

2.2.2 HVAC systems model types and evolution  

HVAC systems are complex nonlinear systems. Therefore, no one model can be comprehensive 

enough to satisfy all system types and conditions. The first building performance model was 

introduced in the late 70s when its IT controlling systems were introduced (Caffrey, R., 1998). 

HVAC models can be divided into three types, Black box, white box, and gray box model (Homod, 

R. Z., 2013) as shown in figure 8.  

 

Figure 8. HVAC system models’ types  
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2.2.2.1 White box model  

White box models are also known as forward physical or Mathematical models. There are two 

types of white-box models: Lumped and distributed parameters. This modeling type is famous for 

modeling the HVAC system process based on physical and chemical conservation laws such as 

mass, momentum, and energy conservation. Those models describe the links between the inputs 

and outputs in the form of mathematical equations (Homod, R. Z., 2013). Forward models need 

detailed physical information, and they are used to predict output based on known structure and 

variable inputs (Hyvikinen, J., 1996).  

(Ghiaus et al., 2010) used a forward control algorithm using feed-forward to balance the weather 

conditions and model predictive programing for set-points tracking to estimate the heating loads. 

The study has assumed that the thermal model of the building is linear. The study has inflicted 

many assumptions, such as that the thermal capacity of the wall and indoor is lumped and that the 

weather and internal loads are known since they used predictive models for that.  This probably 

causes lower accuracy of the load predictions for the study.  

(Wang et al., 2008) have proposed a theoretical forward model for VAV air conditioning systems. 

The study has assumed that the supply air temperature is equal to the coil’s surface temperature 

and that there is no internal latent load by neglecting the moisture content of the supply air.  

The use of such models in existing buildings and real-time system operations may not be available. 

It will require instant tuning and elevated time to process the calculation that might surpass the 

optimization period. (Nassif, 2018). Furthermore, the information needed to create those models 

is not limited to the building structure and the internal loads, the number of people, zone activity 

type, and lighting heat gain. Therefore, such models are rarely used in real-time operations. 

2.2.2.2 Black box models  

Black-box models are also called data-driven models or backward models. Those models fit the 

transfer function model to the data’s input and outputs and do not reflect the actual model’s specific 

physical information (Homod, R. Z., 2013). Such models’ mathematical representation can be in 

terms of regression, neural networks, fuzzy models, etc.  

Those models can operate on real-time applications when they are highly adaptive and 

reproducible. On the other hand, data-driven models, are much simpler and used for cases when 
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system-specific component models are required or for fault detection and diagnosis (Hyvikinen, 

J., 1996).   

Many studies have implemented the black box models in modeling and simulation of HVAC 

systems aiming to improve the control system of thermal performance. For example, a study by 

(Mustafaraj et al., 2010) has implemented a black box model using the autoregressive with external 

inputs (ARX), autoregressive moving average with external inputs (ARMAX), Box-Jenkins (BJ), 

and output error (OE) models to examine the thermal performance of a commercial building. The 

models have predicted the room’s temperature and relative humidity for different time scales. The 

study found that all the models have accurately predicted the rooms’ thermal performance, with 

the BJ model being the most accurate. Furthermore, since those models are adaptive, they can be 

applied to control by changing their parameters. Therefore, those models can be used for online 

control of HVAC systems for commercial buildings and could be extended to other types of 

buildings. 

However, since those models depend on the systems’ actual performance data, they must be 

updated regularly and can not be used outside the training set range. Also, the data-driven 

approaches for energy savings purposes benefit from giving the results as a probabilistic 

distribution of energy savings. With increasing energy savings, companies and techniques 

understanding the uncertainty in energy savings became crucial (Mills E., 2011).   

2.2.2.3 Gray box models  

Gray box models are also called semi-physical or hybrid models. Those models are a combination 

of black box and white box models. In some cases where some HVAC processes are physically 

described but are less clearly described, the physical model can be combined with the white box 

model to improve those models and vice versa, resulting in gray box models (Homod, R. Z., 2013).  

(Leephakpreeda, T., 2008) have implemented this type of modeling to determine the indoor 

thermal comfort of HVAC systems under a dynamic environment. Since, the temperature setpoints 

of fresh air supplied to the system are dynamically changed in time and not known previously. The 

study has proposed a gray box adaptive control theory (ACT) technique to capture the relationship 

between indoor thermal comfort and outdoor temperature. The research has validated using such 

models in HVAC control systems based on the actual occupants' survey data on thermal comfort.  
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In gray box models, the physical model part is derived from the thermodynamics principle while 

the parameters are determined from Catalogs, actual performance data, and or commissioning and 

survey data (Homod, R. Z., 2013). Also, (Wang et al., 2004) have proposed an accurate gray box 

model predicting cooling coil units’ performance. The technique was developed based on energy 

balance and heat transfer laws. Commissioning information is then used to determine at least three 

model parameters. The study has validated the use of such models and found that this method gave 

better results in predicting the actual coil performance than other conventional prediction methods.  

2.3 Artificial intelligence tools used in modeling and simulation of HVAC systems.  

Artificial intelligence (AI) is an advanced area of computational science and engineering. Artificial 

intelligence was first invented in the 1950s. The first attempts have failed due to a lack of 

automated means of training. The attempts to implement nonlinear artificial intelligence methods 

have kept failing until 1990 when those attempts have a chance of success (Livshin, I., 2019). With 

the increase in computer computing powers and the need for artificial methods capable of solving 

complex problems that exceed human capabilities, there were numerous efforts to develop 

artificial intelligence methods. One of the many industries that have witnessed a significant 

evolution in deploying AI methods is the HVAC system industry. Many AI studies have been 

conducted aiming to understand the performance of those systems and analyze the relationship 

between their components to operate those systems better and eventually reduce their energy 

consumption. AI has many tools that are widely used now like, Artificial Neural Networks (ANN), 

Support Vector Machine (SVM), Aggregated Bootstrapping (ABS), Transfer Function (TF), State-

Space (SS), and Autoregressive Exogenous (ARX). This research will focus on only ANN, SVM, 

and ABS and discuss the literature review behind it.  

2.3.1 Artificial Neural Networks (ANN) 

Artificial intelligence neural network (ANN) architecture mimics the neurological human brain 

network. They consist of multiple layers of neurons that are directly connected to each other’s 

(Livshin, I., 2019). Figure 9 shows a schematic of the human brain neuron.  
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Figure 9. Human brain neurons  

Every biological neuron consists of a cell body with a nucleus, Axon, Dendrites, and Synapses. In 

the biological neurons, the synapses receive an impulse that is transferred to be processed by the 

cell body. Then the response is sent out through the axon then to the synapses connected to other 

neurons.  

Mimicking that structure, the artificial neural networks are constructed of a neuron body, and it 

has a connection to the other neurons, as shown in figure 10.  

 

Figure 10. Artificial neuron structure  
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Each input to the neuron body is assigned a weight (W). The weight of the input dictates its impact 

on the output. For example, if the weight assigned to the first input neuron is greater than the 

weight of the second input neuron in the neuron body, then the first neuron’s impact on the output 

is more significant than the second neuron (Livshin, I., 2019). In other words, the output is 

dominated by the first output. The body of the neuron is usually represented by a circle that is 

consisted of two parts. One is called the network input or sum of the network that is represented 

by (Z). This section shows the calculation that the neuron body performs (equation 1).  

Z = 𝑊1 ∗ 𝐼1 + 𝑊2 ∗ 𝐼2 +  𝐵…(1) 

And the second part is the output neuron we call it here (F). F can be calculated by applying the 

activation function. The activation function is a special nonlinear function applied to the linear part 

of the Z function (equation 2).  

𝐹 = 𝜎(𝑍)…………...…….…(2) 

One of the most frequently used activation functions is called sigmoid (equation 3). The sigmoid 

function is a well-behaved function on an interval of [-1, 1]. Also, it saturates fast outside of its 

interval range, meaning that its value is less likely to change with the change of its argument 

(Livshin, I., 2019).   

𝜎(𝑍) =  
1

1+𝑒−𝑧 
……….….….(3) 

When multiple layers of neurons connect together, they form the neuron network. In general, a 

neuron network is constructed of an input layer to start and an output layer. In the middle of 

those two layers, there are one or more hidden layers. The input layers receive the input from the 

outside, transferring it to the hidden layer where most of the calculations are performed. When 

the output is reached, it is carried away by the output layer, this is called a feed-forward network 

(Cunningham et al., 2008). Figure 11 below shows a neuron network layout.  



25 

 

 

Figure 11. Neuron network layout 

Each neuron in every layer is connected to all the neurons in the following layer. This connection 

carries a weight (W). the weight of the connection determines the effect of this input on the final 

output. Each weight is numbered with two indexes, as shown in figure 11. The first index 

represents the number of neurons in the receiving layer, while the second index represents the 

number of neurons in the sending layer. In addition, each layer is assigned a bias (B). the bias 

carries weight as well, and it is helping in making the calculation more flexible when matching the 

targeted output (Werbos, 1974). 

When training the network, the weights and the bias are initially assigned randomly based on 

previous studies and recommendations, knowledge of the studied subject, and experimenting. 

Also, the number of the network’s hidden layers depends on the complexity of the function being 

estimated. The more complex the process is, the more layers are needed to lead to the best 

approximation results.  
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An essential character of the neural networks is their adaptivity, where they learn by example 

rather than by the traditional methods. Therefore, these models can be used to virtually model any 

part of any system as long as the model can be trained by receiving sample data and a teaching 

mechanism. Therefore, the ANNs are considered a valuable tool in modeling the HVAC system 

components. Eventually, this will provide researchers and designers with a powerful, simple 

method to address the HVAC system’s needs and create a more energy-efficient HVAC system.  

2.3.2 Supply Vector Machine (SVM) 

Support Vector Machine (SVM) is one method that uses supervised learning for classification and 

clustering purposes. For example, machine learning with maximizing (support) of the separating 

margin (vector) is called support vector machine (SVM) (Huang et al., 2018).  SVM was first 

introduced by (V. N. Vapnik1995) in 1995. Afterward, SVM was largely developed by Vapnik 

and co-workers at the AT&T Bell Laboratories. In general, SVM is also extended to solve 

regression problems and thus support vector regression. The basic idea behind the SVM is to 

reduce the dimensionality of a data set consisting of many variables that correlate with each other 

and retain the variation present in the dataset up to the maximum extent.   

According to (Vapnik, 1995) the goal of SVM is finding the function 𝑓(𝑥) at most error deviation 

from the actual targets (Y) for all input training data (X) and at the same time aiming for the results 

that are as flat as possible. Meaning that any error (ԑ)that is less than the error (ԑ)deviation of the 

targets is acceptable, but anything that falls outside of that deviation margin is not. Figure 12 below 

shows this concept where only the points outside the deviation margin are not acceptable, and they 

have most of the effect on the output target (Schölkopf et al., 2002 and Smola et al., 2004). In 

SVMs, the input space is mapped into a higher dimensional dot-product space called a feature 

space (Xuemei et al., 2009).  
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Figure 12. The soft deviation setting for a linear SVM.  

Then the main objective is to find an optimal hyperplane 0 in the feature space. The hyperplane 

is the decision boundary that clearly classifies the data points. Because to separate between any 

two data sets, we can have multiple hyperplanes. Therefore, the SVM objective is to find the 

hyperplane with a maximum deviation (margin) distance between the data points to utilize future 

data points confidently. The data that is closer to the hyperplane are called support vectors, as 

shown in figure 13.  

 

Figure 13. Possible hyperplane and the optimal hyperplane  
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By using the SVM, we are trying to maximize the margin. The margin boundaries are those 

support vectors, and by deleting them, we can change the hyperplane position and increase the 

margin (Gandhi, 2018).  

A hyperplane in n-dimensional space is generally a line in two dimensions. In three dimensions, 

it is a plane, and in more dimensions, it is a hyperplane with n being the number of features. In 

two dimensions, the function of the line is given by equation 4. 

𝐴𝑋1 −  X2 +  b = 0………………(4) 

The equation is derived from equation 5 for two-dimensional vectors.  

𝑎X +  bY = Y………………….…(5) 

Following the same derivative, the equation for the hyperplane can be represented in equation 6.  

𝑊𝑇𝑋𝑖 + 𝑏 = 𝑌^𝑖……………..…(6) 

SVM is a novel network algorithm that is adaptive, fast, and has good learning abilities for small 

and large sample data. SVM has been developed to be a powerful tool in data analysis and 

machine learning algorithms. SVM obtains its structure from the concept of structural risk 

minimization through the within-class distance, which makes up for the shortcomings of other 

learning methods. Therefore, SVM can find an optimal solution by solving a quadratic problem 

and having good learning abilities (Xuemei et al., 2009).  

2.3.3 Bootstrap Aggregation (BSA) 

Multiple classifier systems, also called ensemble systems, have recently grown more attention 

within computational data science and machine learning. We use the concept of ensemble learning 

and decision-making on a daily basis in our lives. We often seek expert opinions on different 

problems in life, like consulting with various doctors before deciding on a major medical operation 

and seeking multiple design options and cost estimates before deciding on a major HVAC 

installation or system update, etc. This utilizes the concept of ensemble learning, which is selecting 

the best option between multiple suited ones where no decision has a nonzero variability. In other 

words, create several classifiers with similar bias and then combining the outputs to reduce their 

variance (Zhang et al., 2012;2015) 
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Breiman’s bagging algorithm is short for Bootstrap Aggregation, is one of the earliest and 

influential types of ensemble learning. Bootstrapping is simply the method of random sampling 

with replacement. Such a sample is referred to as a resampling. Bagging is most suitable for small 

training data sets (Zhang et al., 2012;2015). However, it has been used for more extensive data 

sets through breaking down the more comprehensive data sets into smaller sets called “bites.” The 

individual bites are trained using the individual classifiers and then combined. The prediction is 

then made by aggregating or averaging the predictions of the ensemble. This method shown in 

figure 14 is called Random Forest (Svetnik et al., 2003). Random Forest was proven to be a 

powerful tool that can deliver a performance with high accuracy compared to others.  

 

Figure 14. Random Forest structure (source: https://medium.com/swlh/random-forest-and-its-

implementation-71824ced454f). 

When using Random Forest to solve regression algorithms, the mean square error is used to decide 

how the data branches (Schott. 2019), (equation 7).  

MSE = 1/𝑁 ∑ (Fi − Yi)
2𝑛

𝑖=1
………………….. (7) 
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Also, it was described by (Zhang et al., 2012;2015) in the supervised learning algorithm based 

classifier as in (equation 8) 

V𝑐 = ∑ V𝑡,𝑐 ,      
𝑇

𝑡=1
𝐶 = 1, . . . . . . , 𝐶…………….. (8) 

Where (T) is an integer specifying ensemble sizes from an R% to create the training data.  

Also, some redundancy may occur in features that will later cause errors because high dimension 

data cost both speed and accuracy of the classification algorithms. Since learning algorithms data 

are measured in very short intervals of time, the data set is extensive. So, converting these high-

dimensional data into lower space is needed to achieve better speed and accuracy (Khan et al., 

2019). To stop overfitting from happening, bootstrapping will be implemented. 

Ensemble learning is a way of achieving better simplification performance of learning algorithms. 

Those ensemble systems have proven themselves to be effective and adaptable in a broad spectrum 

of problems in real-world applications.  And this method has generally improved the performance 

of created models by 40% by decreasing the models’ generalization error (Arsov et al., 2017).  

2.4 Modeling evaluation metrics  

The selection of variables in multiple regression is a problem that needs to be given great attention 

(Allen, 1971). In modeling the HVAC systems, the model’s performance evaluation depends on 

operational evaluation by examining its parameters’ variability and associativity. Therefore, 

distinguishing between the modeled and observed data is called the error value, which has great 

importance.  

The error can be explained in terms of many statistical measures like MSE (mean square error), 

RMSE (root mean square error), MBE (mean bias error), NMBE (normalized mean bias error), 

CV% (coefficient of variance), R2 (coefficient of determination), F-Score (harmonic mean of 

precision), and CVRMSE (coefficient of variance of root mean squared error), etc. (Ruiz et al., 

2017).  

Instead of one, some studies have examined the error as two structures, bias and variance. The bias 

measures the accuracy of the models and refers to an error or poor representation of the data. And 

the variance measures the precision of the performance of the modeling results compared to the 

observed (Solazzo et al., 2016).  
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When evaluating different model’s sensitivity using a single statistical measure, the difference in 

the error distribution is crucial. Therefore, using more than one statistical method is vital to deliver 

a complete understanding of the model’s error variation (Chai et al., 2014).  

2.4.1 Mean Square Error (MSE) 

Mean square error (MSE) is one of the most common statistical criteria used in measuring the 

performance of computational models and the selection of variables. MSE is claimed to be more 

meaningful than most other selection criteria like the residual sum of squares (Allen, 1971). MSE 

is a single reliability measure. The objective of MSE is to compare two individual measures 

through the degree of similarity or distortion between them. Therefore, if we have two measures, 

X and Y, where X is a known matrix variable, and Y is a vector response. And x = {xi |i = 1, 

2,…,N} and y = {yi |i = 1,2,…,N}. N is the number of signal samples, and xi and yi are the values 

of the I sample in x and y, respectively. The MSE between the signals is calculated with equation 

nine below (Buford, 2016). 

𝑀SE(x, y)  =  
1

𝑁
∑  (𝑥𝑖 − 𝑦𝑖)

2𝑁
𝑖=1 …………………(9) 

In MSE, the error value is usually calculated as the difference between the original values (data) 

and the undistinguished values; in this case, it is  ∈𝑖= 𝑋𝑖 − 𝑌𝑖. 

When performing this statistical method or prediction, the lower the MSE value means, the more 

accurate the results are. An MSE of zero indicated perfect accuracy, which is usually not feasible 

in everyday practice.  

 2.4.2 Root Mean Square Error (RMSE) 

Root Mean Square Error (RMSE) is adapted in average model performance error evaluation. 

RMSE that is also called root mean square deviation (RMSD), is a statistical method used to 

distinguish between the estimated values and the actual observed values. The difference or 

deviation between the two values is referred to as residuals. RMSE mathematically is represented 

by equation ten below.  

RMSE= √𝑀𝑆𝐸 =  √
1

𝑁
∑  (∈ i)2𝑁

𝑖=1 , …… ∈ 𝑖 =  (𝑥𝑖 − 𝑦𝑖)2 ……………. (10) 
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When using RMSE, the assumption is that the error is unbiased and follows a normal distribution. 

Therefore, using RMSE should give a better understanding of the error distribution (Chai et al., 

2014).  

However, it is claimed by few studies that the RMSE is not a good predictor of the average model 

performance and might be misleading. Since it is a function of three characteristics of a set of 

errors instead of the average error, few concerns were raised by (Willmott et al., 2005). However, 

when evaluating one model, using only RMSE detailed interpretation is not critical to the accuracy 

of the results since the variation of the same model will have similar error distribution, unlike when 

evaluating different models (Chai et al., 2014).  

2.4.3 Coefficient of Variation (CV%) 

The coefficient of variation is a statistical method that is also known as the relative standard 

deviation. It is a measure of the frequency distribution of a random variable, and it is widely used 

in engineering and data science studies. CV is unit-free and is represented as a percentage of the 

observed standard deviation to the observed mean. Thus, monitoring the CV is essential in process 

control when the variables have a clear mean value, and their variance is a function of the mean. 

In addition, because the CV is a unit-free measure, it is commonly used to compare the variability 

among data sets of different units or mean values (Teoh et al., 2017;2016). 

Since implementing the CV% as a statistical measuring method in many disciplines, monitoring 

the CV% is receiving significant attention among researchers lately. To better understand the CV% 

mathematically, suppose that (Xi,1, Xi, 2…., Xi, n) is a group of data samples with the (n) size at time 

i= 1, 2, …. Let the mean (µi) of the set is >0, (𝜎𝑖) is the standard deviation of it, and (𝑌0) is the 

population CV when the process is in control. Here (𝑌0) is the control process target value, then 

the CV (𝑌𝑖) can be represented in equation 11 below.  

𝑌0 = 𝑌𝑖  = (
𝜎0

𝜇0
) …………………..……….… (11) 

And the sample mean 𝑋̅𝑖, and variance 𝑆𝑖  are expressed by equations 12 and 13, respectively.  

𝑋̅𝑖 = ∑ 𝑋𝑖,𝑗
𝑛
𝑗=1  /𝑛…………………………... (12) 

𝑆𝑖  = √∑ (𝑋𝑖,𝑗
𝑛
𝑗=1 −   𝑋̅𝑖)

2 / (𝑛 − 1) ………..(13) 
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This shows that that the variables (µi) and (𝜎𝑖) may change from one subgroup to another while 

the CV (𝑌𝑖) must be equal to the predefined target 𝑌0 that is common for all the subgroups (Teoh 

et al., 2017;2016). 

CV% of a value less than one (zero or negative) refers to perfect accuracy and zero error value, 

which is not feasible. Therefore, the CV%, in this case, is meaningless and will lead to the wrong 

assumption about the process being examined. Thus, the CV is used strictly to compare the 

dispersion of positive random variables (Curto et al., 2009).  

2.4.4 Coefficient of Determination (R2)   

The coefficient of determination R2, also known as the adjusted R2, explains the total variation in 

a sample data. In other words, it is defined as the proportion of the corrected sum of squares that 

is explained by the model (Piepho, 2019). R2 is one of the most popular measures for the goodness 

of fit for the linear models. And it ranges from 0 to 1. The R2 value of 1 indicated the 

nonappearance of residual variation. To better understand the structure of R2 for sample data for 

linear models, we need to know the difference between linear models and the extended version of 

it. The linear models can be expressed as in equation 14 below.  

𝑌 =  𝑋𝛽 +  𝑒………………. (14) 

Where Y is the response vector for a design matrix of X. While e represents the residual error 

vector and β is a set effect vector (Piepho, 2019).   

However, linear models can be extended to linear mixed models, allowing for random effects. In 

those models, R2 will have the same form as linear models.  Extended linear mixed models can 

be represented as in equation 15.  

𝑌 =  𝑋𝛽 + 𝑍𝑢 +  𝑒………………. (15) 

Where (u) is a random-effects vector with for Z design matrix. And u and e are assumed to be 

independent (Piepho, 2019).   

Finally, R2 gives you the percentage of variation in Y that is explained by x. Thus, R2 can be 

represented mathematically as in equation 16 below (Tjur, 2009).  

𝑅2 = (
∑(𝑌𝑖−𝑌̅)(𝜇̂𝑖−𝑦̅)

√∑(𝑌𝑖−𝑌̅)2  ∑(𝜇̂𝑖−𝑦̅)2
) ……………… (16) 
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Many studies have been conducted aiming to reduce the R2 value to result in a better fit model. 

This may be important but not always sufficient since R2 is mostly dependent on the x-values of 

the set of samples. Therefore when sampling the data with the intention of having a well-

explained slop will result in an R2 close to 1(Draper et al., 1981). 

After discussing the types of machine learning model types, tools used, and types of statistical 

measures to select the best model structure as well as the best modeling tool among the others. 

The following section will examine how those were previously implemented in modeling the 

HVAC systems components and operation.  

2.5 HVAC computational models’ implementation and development  

Data-driven models based on real systems data are proven to help understand HVAC systems’ 

performance and explain the relationship’s system components (Talib et al., 2019). Those data-

based modeling techniques aim to improve the building’s indoor air quality (IAQ), causing 

concern in the overall human health and comfort levels (ASHRAE, 62.1). HVAC systems are 

nonlinear systems, and it makes it hard to maintain thermal comfort. To better understand the 

performance of the HVAC system and optimize its operation, many studies have been conducted 

over the years. Either using a white box, black box, and or gray-box models.   

A study by (Xia et al., 2020) developed a white box-based modeling approach to predict the 

transient responses and steady-state operation performance of a direct expansion (DX) HVAC 

system. The study has developed five lumped models based on a partial lumped parameter strategy, 

one for each main component of the condenser, compressor, evaporator, expansion valve, and 

space conditions. Each model was created through mass and energy balance equations. The 

numerical models were then validated by comparing their predicted results with measured data 

from an experimental real DX system. The results of the predicted performance had a high 

accuracy when compared against the experimental ones. The study claims this approach can be 

helpful for energy-efficient DX HVAC system design and controller development.  

Another study by (Afram et al., 2015) has used a black box models technique using artificial neural 

network (ANN), transfer function (TF) process, state-space (SS), and autoregressive exogenous 

(ARX) models that are built-in functions in Matlab. The models were used to simulate the energy 

recovery ventilator’s performance, air handling unit, buffer tank, radiant floor heating, and ground 

source heat pump. A comparison was made between the models to select the best modeling 
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technique that meets most of the selection criteria of predicting the output of the outlet water 

temperature and the outlet air temperature. The study has found the ANN has performed the overall 

best in terms of predicting the outputs. Another study conducted by the same researchers examined 

the same experiment set up using a gray-box model and process models. The study has found that 

the ANN and ARX could predict both outputs better than the gray box and process models (Afram 

et al., 2015).  

Another used black-box model to model the HVAC loads during peak hours and their effect on 

the whole grid power. The study has justified using gray-box models instead of a white physical 

model due to the HVAC system's complexity. And the HVAC systems are dynamic systems where 

the white-box models are hard to adapt to the load change over time, unlike the black box models. 

The study has used historical forecasting weather data as inputs and the building power 

consumption as output to train the models. Then the models will be tested to predict the HVAC 

performance loads and eventually the energy consumption based on current weather forecast 

information. The models were developed using the ensemble learning methods utilizing four 

classification methods, Elastic Net MLR, Decision tree, Random Forest, and Gradient Boosted 

Trees. The mean square error RMSE was used as the evaluation metric. The results of the study 

have found that the Gradient Boosted Trees held the lowest RMSE value close to 0.16 “reading 

from charts” in predicting the HVAC load prediction (Tian et al., 2018).  

Using black box models and gray box models are popular in modeling the HVAC systems 

performance, load forecasting, and fault detection and diagnosis because of the complexity of the 

heat and mass transfer mechanisms which is the basis of HVAC system design. Therefore, in the 

following sections and after recognizing the modeling tools, a background of how the modeling 

tools served in constructing the black, gray box models, and sometimes white-box model helped 

predict the HVAC systems performance. As well as load forecasting, and fault detection, and 

diagnosis will be examined.   

A study was conducted by (Lee et al., 2019) to optimize the air handling unit discharge air 

temperature to reduce the total energy consumption. The study has used co-simulation between 

EnergyPlus software and MATLAB via BCVTB (Building Control virtual Test Bed). The study 

has used simulated data created with EnergyPlus. The data are used to train the model that was 

created using the ANN toolbox built-in MATLAB. The model structure had multiple input layers 
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like outdoor temperature, outdoor relative humidity, diffuse solar radiation rate, direct solar 

radiation rate, AHU supply air temp, and cooling coil cooling rate. In contrast, the output was the 

total energy consumption. The study has manually reached the best model structure by changing 

the model variables and recording the error value changes accordingly. The best model structure 

is the model that held the lowest error value in terms of CV(RMSE) (coefficient of variation of the 

root mean square error). The study has found that using ANN models to optimized the performance 

of the AHU discharge air temperature has resulted in significant energy savings in the total energy 

consumption of the unit. 

A study by (Kim et al., 2015) has used ANN to model the chiller performance in a centralized 

HVAC system. The study has examined several parameters and their effects on the accuracy of 

the created model. The parameters were the number of neurons and the amount of training data. 

The performance data were simulation data that are collected were split into testing and training 

sets. The model’s results were compared to a DOE reference building to test the accuracy of the 

results. The accuracy was measured in terms of the coefficient of variation of mean square error. 

The study has found that by increasing the training set, the accuracy of the results has increased. 

However, that means decreasing the testing set size, which will offset the accuracy of the results. 

Also, when holding the training set size fixed and changing the number of neurons, it was found 

that this did not affect the accuracy results. Therefore, it was found that the model structure of 60% 

training data and 40% testing data and 12 neurons had held the highest accuracy value of 99.1%. 

(Kim et al., 2015).  

Another study was conducted to predict the energy consumption of the AHU and absorption chiller 

using ANN’s. The study has collected data for one month. The study has validated the use of ANN 

in accurately predicting the performance of the AHU. The error value of the models has ranged 

between 13.27% to 15.25 and from 19.42% to 19.53% for the training period and testing period, 

respectively. While, for the chiller absorption performance model, the error values ranged from 

24.64 to 25.58% and 7.12 to 29.39% in the training and testing periods, respectively. The models 

have satisfied the criterion presented by ASHRAE guideline 14. The study has found that despite 

the fact the models have met the performance criteria. Still, the error values were somewhat higher 

than what was anticipated, and high accuracy values were not met. The study has concluded that 

this higher error value was due to a poor data set collected in a short period of time. It is believed 
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that to achieve better prediction results, thorough verification and improvement of the data set is a 

must to improve the predictive models and avoid overfitting and underfitting (Jee-Heon, 2020).  

A study was conducted by (Vakiloroaya et al., 2013) to model an actual air-cooled chiller equipped 

with a ducted fan coil unit of an office building. Actual performance data were collected in the 

month of July. The study used a gradient projection-based optimization algorithm to optimize the 

supply air temperature and flow rate setpoints. The model parameters were achieved through 

monitoring data and mathematical models to create the model structure. Simultaneously, the actual 

performance data served as inputs and outputs to train and test the models. The energy usage was 

calculated for each day by summating the system energy consumption in each working hour. The 

study results have shown that after implementing the optimization technique, the compressor and 

condenser fan energy have decreased by 8.8% and 4.6%, respectively. At the same time, the supply 

fan power energy consumption has increased by 2.3%. However, the overall total energy savings 

were 11.4% less than when operating under normal control conditions. Also, the results have 

validated the effectiveness of using such models for online applications.  

A data acquisition system using ANN was developed to control the performance of AHU (Tse et 

al., 2004). Also, a study has been conducted on a baseline case of one zone using ANN. The inputs 

were weather, occupancy, and indoor temperature. The goal was to minimize energy consumption, 

and a genetic algorithm engine optimized the model. The study has shown a 25% reduction in 

energy consumption than the baseline heating strategy (Reynolds et al., 2018).  

While for the DX system that was also investigated in previous studies. A model using a 

combination of fuzzy logic controllers and ANN modeling was implemented to examine the ability 

to enhance the indoor air temperature and humidity control system for a variable speed DX system. 

First, the ANN model was tested and trained using previous performance data of the system. After 

testing and training the ANN model, ANN-aided fuzzy logic controllers were developed. The 

result of the study has claimed that the proposed controlling strategy properly controlled both the 

dry and wet bulb temperature. And the developed controller strategy was able to trace the changes 

in set points with an acceptable range of accuracy and sensitivity (li et al., 2015).  

Also, various studies have implemented the SVM modeling tool to better understand the 

performance of HVAC systems leading to more energy-efficient systems and enhanced thermal 

comfort levels while reducing the faults of the performance through fault detection and diagnosis. 
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One study by (Li et al., 2019) has proposed a solution of HVAC systems fault detection by 

implementing the SVM as a learning algorithm for all types of faults that can occur in HVAC 

systems. After learning the consistent nature of faults in the HVAC system, the SVM learning 

method will identify the type of fault in the subsystems using statistical approaches. The learning 

process speed was enhanced by applying the principal component analysis to compress the training 

data set size. This process can be later automated to be implemented in multiple HVAC systems 

to help in identifying several common HVAC air handling units’ faults.  

A study by (Van Every et al., 2017) implemented the SVM to detect faults in HVAC systems. The 

study used a Gaussian process regression (GP) regression algorithm to model the system’s 

parameters. The data were fed into the regression model to be tested and trained while the error 

values were calculated. Then the output was used in the next model using SVM. The data that were 

tested using the GP is supposed to be the non-faulty performance of the system. When the SVM 

is trained using those data and then tested, faults are detected when inputs that produce low error 

in typical situations show a high error. The results show that the method has successfully improved 

the performance of the systems. Since the systems are trained with non-faulty data that are totally 

supervised, it is suitable for online operations.  

Most of the previous studies have used measured performance data or simulation data to analyze 

the performance of HVAC systems. In addition, most of the studies have used forecasting weather 

data as a significant input in their analysis, one of which is a study we mentioned above by (Tian 

et al., 2018). However, the actual weather conditions are often different from the weather forecast 

data, which will significantly affect the accuracy of the prediction results. To deal with this 

uncertainty, a study by (Zhao et al., 2018) has proposed an approach based on the Monte Carlo 

Method (MCM) to process the weather forecasting data using a 24 hour ahead approach. The SVM 

was utilized to create the model for load predictions. The study results have shown that using the 

MCM approach instead of the unadjusted forecasting weather data has resulted in better 

performance prediction data closer to the actual real load. This was proved through sensitivity 

analysis, where the mean absolute percentage error (MAPE) was reduced from 11.54% to 10.92%.  

The other learning algorithms that will be discussed in this research are bootstrap aggregation 

(bagging) and the previous studies conducted using that tool. Multiple researchers have 

implemented this approach in modeling the performance of HVAC systems successfully. One of 
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those was a study conducted by (Manimaran et al., 2015) to predict residential buildings' heating 

and cooling loads using the bootstrap aggregation ensemble method. The study has used the data 

collected from 768 residential buildings designed using the Ecotect design from the UCI machine 

learning repository. Instead of a single model, the learning method will aggregate the predictions 

of multiple classifiers made by multiple REPTrees as a base classifier. Then, reducing the error to 

build compact decision trees. The results of this method were compared against a neural network 

that was used as the base classifier. The study claims the created models can accurately predict the 

heating and cooling load with a satisfactory R2 value of 0.9985 and 0.983, respectively. The results 

have validated the use of such a method and its ability to improve the performance of HVAC 

systems.  

Ensemble learning methods like bagging, boosting, random forest, and conditional forest were 

valuable methods in studying the HVAC system’s performance, load forecasting, fault detection 

and diagnosis, and many more. 

 Load forecasting models are essential to understand the system’s performance in the building and 

the electricity market. In this aspect, a study was conducted using the four ensemble methods 

mentioned above to observe the load forecasting in short terms and evaluate the effectiveness of 

those models in predicting it. And observe the energy consumption of the building and ways to 

improve it. A (107639 Ft2) campus university in Spain was used as the case study where load data 

were collected. The hourly temperature was data was collected to serve as the forecasting model’s 

input. Also, if it is a working day or a holiday, the type of day was considered since it significantly 

affects the accuracy of the results. The four methods of ensemble learning were trained and tested 

using the actual load data. Finally, a way of predicting the load 48 hours ahead of time was applied. 

The results show all models were good performers, but the random forest was the most accurate 

method. All methods were validated by implementing them in the same case study building, and 

the result shows an improvement in the building’s performance. When applying those methods to 

predict the load ahead of time, the building’s energy consumption (measured in electricity costs) 

has dropped by around 11% (Del Carmen Ruiz-Abellon et al., 2018).  

fault detection for existing HVAC systems is vital for systems operation, for the systems to be both 

cost-effective and accurate. (Parzinger et al., 2020) carried a study to examine the faults in HVAC 

system total heating power. The predictive models in the study were developed using several 
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machine learning tools, one of them was the random forest tool previously described in this 

chapter. The predicted total heating power was compared against the actual heating power through 

residual analysis. The algorithm that was developed in this paper has two methods, one is using 

the grid search to find the fault decision rule when faults are observed, the other is uses the rate of 

estimated faults to find the fault decision rule when faults are unobserved. The results of the study 

show that the first method of observed faults has achieved better results. However, the second 

method is closer to actual practice, where faults are not followed. Still, it came with difficulty 

finding a threshold value crucial in determining how accurately the faults are predicted. Finally, 

the study has claimed that using residual analysis for fault detection is beneficial because the 

results do not depend on the type of prediction models applied. Systems information and 

parameters are not crucial for the process execution. Therefore, this type of fault detection method 

can be used for different predictive models and is also suitable for online system fault detection 

operations.  

All the previously discussed studies have proposed methods of implementing the machine learning 

predictive models in modeling the components and operation of HVAC systems aiming for better 

systems operation and energy savings. However, most studies have generated several models and 

then chose the best model’s structure and best modeling technique through numerous types of 

sensitivity analysis, residual analysis, statistical measures, etc. Therefore, to automate this process 

to be more suitable for online systems operation practices comes the role of “Optimization.”  

2.6 Optimization 

Optimization refers to a process applied in mathematics for minimizing or maximizing a function. 

Optimization can be explained as seeking improvements. The start of optimization to find a 

solution for a specific problem in a mathematical term has started with the invention of calculus 

and the theory of a minimum and maximum function. Since the mathematical solutions for real-

world issues are a complex issue, the invention of computers has helped overcome the limits where 

the golden age of optimization took off in the 1950s (Ho et al., 2007).   

Nowadays, many complex problems have evolved with the development of many industries. The 

solutions include computational modeling and simulation using physical and mathematical rules 

to find the most feasible solution. However, the answer to those problems’ difficulty doesn’t stop 

at modeling them, but also because the modeling and simulation process is often quite time-
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consuming. Also, the changing nature of the problems that are dependent on time makes the 

mathematical solution less sufficient.  

In many engineering problems, the solution might be choosing the good enough option instead of 

the best one since the best solution might not be feasible or cost-effective. Many engineers use this 

estimation approach when solving problems based on their experience in the field. Nowadays, 

many optimization approaches and theories have been developed to be knowledge-based rather 

than expertise-based. Therefore, those rules are implemented in most industrial decision-making 

aspects by adjusting the process to optimize a specific function without violating predefined 

constraints. The most common goals of the optimization process are to minimize the cost while 

maximizing efficiency or productivity. Figure 15 shows a general schematic for the optimization 

process adapted in modeling and simulation.  

 

Figure 15. Modeling optimization fundamental.  

Over the last two decades, efforts have been made to develop optimal control strategies for building 

HVAC systems to minimize overall energy and operating costs while maximizing building 

performance, efficiency, and occupant comfort levels, without violating the operating constraints 

of each component and without sacrificing indoor environmental air quality. Those cost-efficient 

strategies have developed due to the growing scale of online data collection and integration of 

BAS systems in buildings.  
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Studies have shown that computational intelligence approaches have been developed to optimize 

energy consumption, improve thermal comfort, indoor air quality, and occupant preferences 

(Ahmed et al., 2019). Researchers have studied several ways of optimizing HVAC systems. 

Conventional methods and data-driven methods. (Murphy, J. 2006) have discussed energy savings 

control strategies and optimization for VAV systems as following. 

1. Optimal start/stop: This strategy utilizes the building automation system (BAS) to 

determine the length of the period required to bring each zone from the current to the 

optimal temperature. The system waits as long as possible before it starts cooling to make 

sure that it is ready just in time for occupancy. The same thing with optimal stop strategy, 

the building uses the BAS to determine how early the system can be shut off for each zone, 

so the temperature will drift away from the set temperature just in time when the zone is 

not occupied.   

2. Ventilation optimization: In a typical VAV, the rooftop unit delivers fresh air to several 

individually controlled spaces using the DCV Demand Controller Ventilation strategy. The 

best approach to optimize ventilation in a multiple zone VAV system is to combine 

multiple DCV strategies at the zone level. For example, using CO2 sensors in the highest 

occupied zones like conference rooms and using occupancy sensors in the less densely 

occupied zones like private offices while using a time-of-day schedule reset in the zones 

with a predictable occupancy pattern. 

While (Strum E. 2016) have studies ways to optimize the right balance for multiple zone VAV 

energy savings.  

1. Fan pressure optimization: This strategy uses communication controllers to optimize the 

static pressure in the duct. The controllers use the BAS continually to pull information from 

the VAV terminal with the most open damper. The setpoint of the supply fan is then used 

to supply just enough pressure so that at least one damper is widely open. 

2. Supply- air- temperature reset: this method resets the SA temperature setpoint of the system 

at part load condition to save the compressor or reheat energy and increase the benefit of 

an airside economizer. There are several methods used to reset SA temperature. 

A. Reset based on outdoor air temperature. 

B. Reset based upon VAVA damper position. 
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C. Reset based upon outdoor air temperature and VAV damper position. 

However, there have been studies that defeated the previous optimization methods. It was found 

that all the methods above have their drawbacks. For example, it was found that the fan outlet 

pressure control is reliable and first-cost effective but cannot minimize operating costs (Stanke, D. 

1991). Moreover, the same study has proposed another method called Critical zone reset that has 

the advantage of being reliable, lower operating costs by keeping the critical zone terminal unit 

fully open at all load conditions. It was stated that this method has no disadvantages (Stanke, D. 

1991).  

Optimization techniques were also implemented in measuring the faults in the HVAC system’s 

operation. A study by (DEY et al., 2016) proposed a manual method or a rule of thumb method in 

detecting the faults of HVAC systems operation that is claimed to be a robust approach in fault 

detection in real buildings operations. The Expert rules-based fault detection is fast and reliable 

when applied in building automation systems for commercial buildings. However, this approach 

has its downfall of having many possibilities of fault to one rule. For example, the supply air 

temperature sensor fault can be sensed by the rule method. Yet, this fault can be caused by multiple 

causes like cooling coil fault, fan degradation, or sensor drifting. Therefore, the main cause is hard 

to determine based on the rule method.  

Another study used the same approach on the Air Handling Units and VAV Box operation to 

classify the main Air handling performance assessment rules (Schein et al., 2003). Based on expert 

rules that are derived from mass and energy balance, few rules were derived. The proposed rules 

are evaluated on multiple types of buildings like commercial office buildings, restaurants, and 

university campuses. Simultaneously, using the control signals to determine the air handling unit’s 

mode of operations identifies which subset of rules will be evaluated. Control strategies are used 

to measure the VAV boxes and AHU performance, while statistical quality controls are used to 

assess the process error.  

The previous rule of thumb approach in detecting the faults is shown to have multiple likelihoods 

of faults to one rule. Therefore optimization process becomes necessary to overcome this problem 

by selecting the most fitted fault among the rest. Then more reliable, fast, and affordable solutions 

can be reached promptly. (Mirnaghi et al., 202) have extensively reviewed the previous literature 

on fault detection and diagnosis methods studies on HVAC systems using data-driven and manual 
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approaches. The review has concluded that unsupervised methods are time-consuming, unreliable, 

and rarely used in online applications. The study showed that implementing optimization 

algorithms using both supervised and unsupervised learning approaches, also known as hybrid 

methods, are more accurate, reliable, easily implemented in online operations, and can accurately 

capture the disruption, especially in large-scale HVAC systems with different types of data 

features.  

Besides the conventional methods of optimization, there have been data-driven approaches. For 

example, an integrated optimization technique was proposed to predict the air handling unit's 

supply air temperature and duct static pressure. The optimization technique will integrate four 

component models of a chiller, pump, fan, and reheat device using MLP (multiple-liner 

perceptron) method. The results have demonstrated an energy saving of 7% of the total 

consumption of the unit (Kusiak et al., 2010). In comparison, a study was conducted to optimize 

the temperature ramp control of a room. The room was computationally modeled. Particle swarm 

optimization and harmony search algorithms were used for the optimization process. The setting 

for the supply air static pressure and the discharge air temperature setpoint was optimized. It was 

found from the study that the mentioned optimization algorithms are suitable for solving the 

optimization models (He et al., 2014).  

Also, instead of only using one optimization technique, many optimization algorithms can be 

integrated with each other to create an integrated optimization tool. For example, a study has 

integrated three intelligent algorithms for optimization. The algorithms are Genetic Algorithm 

(GA), Particle Swarm Optimization (PSO), and Greedy Algorithm (GRA), which were integrated 

to develop a temperature prediction technique for HVAC units. The tool was found efficient and 

gave better predictions of the modeling structure being analyzed (Yan et al., 2019).  

2.6.1 Genetic algorithm (GA) 

The optimization tool that will be used to execute this research is genetic algorithm (GA). Genetic 

algorithm is one of the most popular optimization techniques based on the natural selection theory. 

Charles Darwinian developed the natural selection theory in 1859 on the principle of “Survival of 

the fittest.” This evolutionary principle was the start of the introduction of computation techniques 

and optimization. Where those principles were translated into algorithms that are used in the search 

for optimal solutions to the proposed problem 
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GA can be represented as a tree of evaluation of a single function. Each leaf represents a value 

from the set of given values, while the internal nodes represent a function. The leaf is evaluated as 

the corresponding value, while the function is considered an argument resulting from its parents 

and added to the next generation (Sivanandam et al., 2007;2008).  

Generally, there are five phases in considering GA. Those processes are (1) initial population, (2) 

Evaluation, (3) Selection, (4) Crossover, and (5) Mutation. Figure 16 shows the optimization 

process using GA and how the five steps were implemented. Step (2) Evaluation was represented 

as the objective function. While steps 3, 4, and 5 are defined as the GA operator.  

              

Figure 16. A schematic of general optimization process using GA operator. 

Implementing the GA to model the performance of HVAC systems has been getting more and 

more attention lately. A study was conducted by (Nasruddin et al., 2019) examined the accuracy 

of implementing the ANN as a modeling tool to simulate the performance of HVAC systems while 

the multi-objective genetic algorithm was selected as the optimization tool. The case study 

building is equipped with two chillers, VAV chilled water AHU and dedicated outdoor units.  The 

objective function of the study was to increase the human comfort level in the building while 
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reducing energy consumption. The result of the study has shown that the ANN was able to 

accurately predict the objective function and its correlation with the input variables chosen for the 

study. Also, the multi-objective genetic algorithm has proven to be a powerful tool by pointing the 

optimal possible design that can satisfy both objectives without compromising any other aspects 

of the system's operation.  

Another study has examined the effect of using optimized ANN models with GA on the power 

consumption of the chiller, the secondary chilled water pump, and the air handling unit. The study 

has compared the results of implementing those optimized models against the base case of a 

constant load and set points. The study has resulted in a 20% savings in terms of power 

consumption. Moreover, it was recorded that the COP (Coefficient of Performance) has increased 

by 28% compared to the base case scenario (Lee et al., 2014).  

Following the same lead, another study by (Reynolds et al., 2018) has used ANN to model a zone-

level case study while using the genetic algorithm for those models. The building was a small 

office building located in the UK. The building consists of six conditioned zones with electric 

heating and cooling with natural ventilation. The parameters that led the study were weather, 

occupancy, and indoor set-point temperature serving as inputs. In contrast, the objective function 

was to reduce energy consumption and cost. It was shown after analyzing the results that these 

optimization methods have reduced the energy consumption by 25% compared to the baseline 

case. The study also claimed that this process resulted in a better systems operation by shifting the 

load to a cheaper price period, resulting in a 27% reduction in energy cost compared to the base 

case.  

While another study (Mtibaa et al., 2021) combined a model predictive control (MPC) strategy 

with GA, the MPC was utilized using dual-stream neural networks based on multivariate time 

series of controlled and uncontrolled inputs. The optimization process utilized GA to reduce 

energy consumption, peak demand, and discomfort during occupied hours under a self-tuned 

setpoint. The study claims using this approach resulted in 50% savings in energy consumption 

while reducing the discomfort levels by 80%.  

Comping the GA with tools other than ANN has also resulted in significant accomplishments in 

the field of modeling and simulation of HVAC systems. For example, a study by (Garnier et al., 

2015) examined a multizone non-residential building in France. The building HVAC systems have 
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been modeled using the Predicted mean vote index (PMV) as an indicator for thermal comfort, 

while the GA was used to solve the optimization challenge. The study has determined the optimal 

time to tune the system on/off in both heating and cooling modes to reduce energy consumption. 

The research shows that this approach resulted in reducing energy consumption while maintaining 

thermal comfort levels.  

Most of the previous studies have used GA as an optimization tool to automate the process of 

modeling and simulation. When the GA played an essential role in selecting the optimal model 

structure that will best predict the objective function, also, some studies used the GA in the data 

mining before modeling to optimize the training data for network improvement. An exciting study 

has used the GA to optimize the data used in modeling a power load prediction. The study by (LIN 

Z. 2019) has collected power load data and utilized the GA five steps shown in Figure 14 to remove 

the noise from the data sets and select a population of data that meets the selection requirements. 

The optimal training data sets were later inputted to support vector machine models to be tested 

and trained to predict the power. The study shows that this method has improved training 

efficiency, network performance, and prediction capabilities.  

Following the same lead, A study by (Han et al., 2011) has investigated the faults in the chiller 

systems. This study has proposed a method of evaluating small subsets of the feature instead of 

one large set. The SVM tool was the modeling tool responsible for detecting the faults in the 

systems and evaluating the potential feature subsets that the GA was responsible for finding.   
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Chapter 3  

Comparing between multiple machine learning algorithms 

3.1 Introduction  

With the current data availability and the need for more models to predict the HVAC systems’ 

performance, and since buildings in the United States consume about 75% of the annual electricity 

production and 55% of the natural gas production (EIA, 2017), the most significant portion of that 

consumption is dedicated to the heating and cooling systems. Therefore, modeling those systems 

have become crucial. As a result, there have been lots of efforts in the aspect of designing the 

HVAC systems. Also, tremendous research efforts have been made in the area of modeling and 

simulation of HVAC systems. Many tools have been thoroughly discussed and evaluated as an 

artificial intelligence modeling technique that can be used to model the performance of HVAC 

systems.  

A study by (Sakthivel et al., 2010;2009) has compared an artificial neural network, fuzzy logic, 

roughest-based methods, and support vector machine in capturing the faults in the performance of 

the Monoblock centrifugal pumps. The results have shown that the ANN-based fault classifier 

model is challenging to train. Still, it held higher accuracy results than the fuzzy logic and roughest-

based methods, which held lower accuracy. However, the study has claimed the SVM to be the 

best modeling technique among the rest.  

Another study followed the same lead of comparing multiple modeling tools and then deciding on 

the most suitable one serving the specific research need. The study developed fault detection and 

data analysis technique in AHU steam and chilled water valve leakage. The study was conducted 

while gathering data from 107 buildings on the campus of the University of Texas at Austin (UT 

Austin). The data were collected for a 15-minute interval over a span of 400 days. The study has 

compared multiple artificial intelligence modeling techniques. The models that were investigated 

were Logistic Regression (Log. Reg.), k-Nearest Neighbors (kNN), Support Vector Machine 

(SVM), Multi-Layer Perceptron Artificial Neural Network (MLP ANN), Classification and 

Regression Trees (CART), and Adaptive Boosting (AdaBoost). The models were examined in 

their ability to distinguish features from noise with minimal classification error quickly. Also, the 

tool's adaptability to the differences in data, the satisfaction of the modeling requirements, and 
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minimal storage and computation requirements. It was found by this study that most models were 

able to predict the chilled water and steam leakage accurately. However, the Random Forest model 

had a slightly higher accuracy among all models but fulfilled one less design criterion. Therefore, 

the final decision was made to choose the decision tree model as the best modeling technique. It 

held the highest prediction accuracy value among the rest and fulfilled all the design criteria 

(McHugh et al., 2019).  

Following the same lead, another study has compared the ANN and random forest ensemble 

learning method to predict hourly HVAC energy consumption in a hotel in Spain. The study has 

considered the occupancy measure as the primary variable that will affect the accuracy of the 

results. The study results have found that both modeling techniques are good predictors of HVAC 

energy consumption. However, when performing sensitivity analysis, the ANN model resulted in 

an RMSE value of 4.97. at the same time, the Random Forest resulted in a 6.10 RMSE value. 

Therefore, based on this statement, the ANN can be selected as the best modeling technique. 

However, the study has disclosed that the random forest model was an easier and faster model to 

train since it can deal with multi-dimensional complex data and it can perform internal cross-

validation, unlike the ANN (Ahmad et al., 2017). Therefore, it is hard to decide which one is the 

best modeling technique, especially with a closer RMSE value for both models. Therefore, 

depending on the application, needs, availability of variables, requirements, and previous educated 

experience, will be the cutting edge in deciding the best modeling technique, whether accuracy, 

training time, complexity level, availability of the tool, etc.  

After discussing the importance of building performance data and the types of modeling tools 

available nowadays and mentioning the reason behind choosing data-driven models and not 

physical models, the question now is, what is the most suitable technique for modeling the HVAC 

component? And why? Generally, no one tool can fit all but a method to decide on the best 

modeling tool for accurately modeling the components of HVAC systems as part of the purpose 

of this research will be proposed. Therefore, this chapter will examine the three modeling 

techniques: artificial neural netwar (ANN), bootstrap aggregation, and support vector machine 

(SVM), and compare them to decide on the best tool to serve our specific research goal.  
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3.2 Methodology 

The proposed tools were tested and trained using the same data set, predicting the same output for 

a clear comparison. To accomplish the objective of choosing the best artificial intelligence 

modeling technique. The supply air temperature was selected to be predicted as a function of (1) 

chilled water temperature, (2) chilled water valve position, (3) mixed air temperature, (4) supply 

airflow. Those inputs and outputs are selected based on previous experience, as most cooling coils 

component’s structure.  

The available data were limited for this section that was done earlier at the beginning of the 

research project. So, previously available data from an existing building located in North Carolina 

was used. Later more recent data from an existing lab became available to finish the remaining 

objectives of this research. Therefore, those data will be used only in this section.  

3.2.1 Building description and data collection 

The New Academic Classroom Building is located in North Carolina, A&T State University, 

Greensboro, NC. This three-story, eighty-eight thousand square foot structure is a multi-use 

classroom building conditioned by typical VAV systems. The mechanical system for this building 

consists of six Air Handling Units (AHUs) with variable frequency drives (VFD) and a chilled 

water central plant with two chillers. The arrangement for each AHU includes supply and return 

fans, exhaust, return, bypass, and outside air (OA) dampers, and heating and cooling coils. The 

entire chilled water (CHW) system connects to a global automated system, which supervises the 

activity of this system, and other HVAC systems throughout North Carolina A&T’s campus. In 

addition, the building is equipped with a BAS system. For this study, the third-floor air handling 

unit four (AHU-3-4) in the New Academic Classroom Building is selected for examination.  

As seen in Figure 17, the BAS displays several system measurements such as damper positions, 

fan power, fan pressure, and ambient air conditions. Those data were recorded.  
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Figure 17. BAS’s GUI for the Academic Classroom Building’s AHU-4 

The observed data from the building automation system were organized into a spreadsheet to 

prepare the model creation. The CHW system was run at five-minute time intervals from 

November 2014 to February 2015. In total, 28,767 sample points were collected from the system, 

representing more than 100 hours of system run time. Table 1 below shows the data that was 

collected from the BAS system.  

Table 1. A sample of the collected data from the BAS system 

Abbreviated terms Description 

Qsys Supply airflow (CFM) 

Tcws Chilled water temperature (oF) 

CH VLV Chilled water valve position (oF) 

Tm Mixed air temperature (oF) 

Ts Supply air temperature (oF) 

 

After all the measurements have been downloaded into a spreadsheet, it is properly sorted to 

remove undesirable data. It is important to note that the BAS software continuously records 

measurements, even if the CHW system is turned off. These points are removed because they are 
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repetitive and won’t improve the learning capabilities of the ANN models. Since the scope of this 

experiment is limited to modeling steady-state performance, and would also not be beneficial to 

developing the neural network models. Once all the null data points are removed, the total sample 

data size is reduced to close to 26,789 points.  

After the data filtering, the collected data is split into two samples designated for training and 

testing. This task is performed because it is desired that the models generate reproducible results. 

Of the data collected, the training set will consist of two months of data, while one month of data 

is selected to test the models. Now that the data is filtered and organized into two sets developing 

the models can begin. 

3.2.2 Experimental setup and basis of comparison  

To evaluate several data-based modeling techniques, we proposed to create different models. Each 

model will utilize one of those techniques. The models will use the same inputs and output data to 

be tested and trained. Then the models will be compared, and the best-fitted model will be used 

selected as the modeling technique for this research. Three predictive modeling techniques were 

chosen to be evaluated in this research. Those models were: 

Model (1): Support Vector Machine (SVM) 

Model (2): Artificial Neural Network (ANN) 

Model (3): Bootstrap Aggregation (BSA) 

After the three models were tested and trained, we examined how well the model fits the data. 

There is a lot of statistical metrics that are available to test and validate the model performance. 

Some are discussed in chapter 2. Many recent kinds of research have addressed using such metrics 

to evaluate the performance of predictive energy models. However, the types of metrics used to 

assess the performance of energy models have been an argument topic for a while now. And there 

will always be an argument that there are no conclusive statistical cut-off criteria for model 

goodness-of-fit directories (Reddy et al., 2000). 

A recent study done by (Chakraborty et al., 2018) claimed that RN_RMSE when used in tandem 

with R2, can provide a more meaningful and accurate representation of the performance of system-

level energy models. And R2 is one of the model performance evaluation tools broadly used for 
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model testing and validation (Van Liew et al., 2003). Therefore, another study was conducted to 

evaluate the ASHRAE guideline 14 old metrics that used the R2 and CV(RMSE) as a measure for 

model accuracy. The study showed that the correlations between input and output error measures 

were not statistically significant, implying that the metrics put forth in ASHRAE Guideline 14 are 

as good as any other binary metrics tested (Garrett et al., 2016). 

R2 is better used to compare several models in terms of how well the model fits the data (Ahmed 

et al. 2014 and Chua Wang et al., 2009). Moreover, both IPMVP (International Performance 

Measurement and Verification Protocol) and ASHRAE Guideline 14 indicate that R2 is the most 

important criterion by which a model’s validity and usefulness should be assessed.  

Therefore, in this chapter, we used R2 to examine the fitness of the model. R2 (coefficient of 

determination) is the proportion of variation in the outcome values explained by the predictor 

variables (inputs). R2 can be represented mathematically by equation 17.  

𝑅2 = 1 −
∑ (𝑌𝐾−𝑌𝑘)̂2𝑛

𝑘=1

∑ (𝑌𝐾−𝜇)2𝑛
𝑘=1

    ……………… (17) 

In other words, R2 tells us how well the model fits the data (goodness of fit). The R2 value can 

range from 0-1. The Higher the R2, the better the model. An R2 that is close to one refers to a 

perfect fit, while a value close to Zero or negative indicates a flawed fit model (ASHRAE guideline 

14). For example, an R2 value of 0.9 may be translated as 90% of the variance in the baseline is 

explained by the modeled values. 

3.3 Results 

The selected inputs to feed the created models were chilled water temperature, chilled water valve 

position, mixed air temperature, and supply airflow. At the same time, the output was the supply 

air temperature. Figure 18 shows that predicting the supply air temperature based on the four inputs 

chosen to create the model’s structure. We notice that all three models held high R2 values to train 

the specific dataset provided from the results above. The Bootstrap Aggregation achieved the 

highest testing R2 value of 97.3%. 
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Figure 18. Comparison of model fitness (R^2) 

Table 2 shows a comparison in training time between all three models. The Artificial Neural 

Network had the lowest training time at 341.3 seconds. Therefore, the artificial neural networks 

tool was selected as the modeling technique.  

Table 2. Comparison of Model Training Times 

Model Training Time (s) 

Support Vector Machine 1349.3 

Artificial Neural Network 341.3 

Aggregated Bootstrapping 1225.1 
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3.4 Discussion   

By looking at the previous studies, (Ahmad et al., 2017) performed the same concept in a study in 

Spain to compare between the ANN and BSA. The study has found that both had higher RMSE 

values. However, the BSA was found to be faster and easier to train. The study claimed that both 

tools are suitable methods in predicting the HVAC energy consumption. However, the study left 

the answer vague that it depends on the application type. 

Many other previous studies claimed it is hard to decide which one is the best modeling technique, 

especially with a comparable accuracy value for the selected models. Therefore, depending on the 

application, needs, availability of variables, requirements, and previous educated experience, will 

be the cutting edge in deciding the best modeling technique, whether accuracy, training time, 

complexity level, availability of the tool, etc. 

For the bootstrap aggregation model, it is true that it held the highest R2 value, but its training time 

was almost four times as much as that for the neural network model. Also, the training time has 

increased with the increase in training set size. While, the artificial neural networks had the lowest 

training time for this research, which is less than 6 minutes. However, keep in mind that the training 

set was a small set, and the training time will be increasing with the increment in the complexity 

of the model and the training set size.  

And this research aims to create an optimization process that will optimize the system setpoints to 

reduce the energy consumption every 15 minutes. A fast tool that can compute the needed results 

in less than 10 minutes was required. Meaning, training time was the cutting edge in choosing the 

most suitable modeling tool due to the complexity of the component being molded. Therefore, the 

artificial neural networks tool was selected as the modeling technique to carry out this research. 

Because it held the lowest training time comparing to the other models.  

 



56 

 

Chapter 4  

Develop an accurate component data-driven modeling and optimization 

technique   

4.1 Introduction  

This chapter will first examine the inner structure of neural networks and how they were developed 

to serve our purpose. Later the structure of each component model using ANN will be discussed, 

showing the inputs and outputs of each model and the created structure. However, to link these 

data-based component models to obtain the whole system model, some equations (not the data-

drive model) were also used. For instance, equations from the ASHRAE standard 62 to calculate 

the ventilation requirements were used, as will be shown later. Afterward, a model-level 

optimization process (MLO) using GA will be implemented to automate the process and select the 

best model structure that holds the lowest error value. GA was chosen to solve the optimization 

process due to its capability of handling a wide range of variables at one time, the ability to work 

with complex simulation programs, proven to be effective in solving complex problems that cannot 

be easily solved with traditional optimization methods, and it is a publicly available user-friendly 

tool.  

The ANN models are a universal approximation mechanism (Livshin, I., 2019). Meaning the built 

network can predict the value of any function at some arguments (X). The function that will be 

later used for training the network. But first, the function needs to be approximated using points 

within the range of the training set. Later this approximated function will be used to find the 

function values of any point of interest.  

As previously discussed in chapter 2. Each artificial neural network consists of input, hidden, and 

output layers, starting from left to right. Each connection between the layers carries a weight. The 

initial network will require assigning a random weight to those connections, and this weight will 

be adjusted in later iterations. The number of hidden layers depends on the complexity of the 

function. Approximating the initial function will be done through mathematical calculations 

carried by the hidden layers. The number of hidden layers that lead to the best approximation is 

usually determined experimentally.  
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To create HVAC component models using artificial neural networks the network needs to be tested 

and trained (Mohanraj et al., 2012). Moving from left to right is called a forward pass, where the 

input layer sends the input for the hidden layer to calculate the output and send it through the 

output layer. The error value will be calculated, and if not sufficient, the backward pass 

(backpropagation) will happen from right to left. To adjust the layers' weight to reduce the error 

between the network output and the desired output. This process is called training the network. 

The training process is terminated automatically when the error falls below the desired value. 

Since the ANNs are adaptive by nature and they learn by example. The trained network includes 

all the weights and bias parameters that predict a specific function with the desired degree of 

precision. Later this network structure can be used on a set of input data representing the function 

to predict an output within predefined error value limits. This process is called testing the network.  

As previously mentioned, HVAC systems are complex nonlinear systems. Therefore, detailed 

information about each component and solid knowledge of the heat and mass transfer laws while 

defining the variables and parameters of the process becomes crucial.  To develop a more accurate 

model, the variables that can be adjusted to create the model structure chosen for this research are; 

the number of neurons, time delay, and feedback delay.  

Number of Neurons: This factor is one of the most influential parameters in the performance of 

ANN. Although more neurons require more computation, their implementation might result in 

more efficiency for solving complex problems. The hidden neuron can influence the error on the 

nodes to which their output is connected. The stability of the neural network is estimated by error. 

The minimal error reflects better strength, and the higher error reflects the worst stability. The 

excessive hidden neurons will cause overfitting; that is, the neural networks have overestimated 

the complexity of the target problem. The model order is designed to help increase the model's 

probability of fitting the data, but one must take caution when increasing the order. The increase 

of order may allow one’s model to fit more points, but the addition of parameters may not 

necessarily represent the system being studies. In this sense, determining the proper number of 

hidden neurons to prevent overfitting is critical in the prediction problem. 

Time delay: A time delay may be defined as the time interval between the start of an event at one 

point in a system and its resulting action at another point (O’Dwyer, 2003). In the modeling field, 

delays are also known as the time lag or dead time of a system. For example, a time delay of 3 
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means a delay of three sampling periods. The Artificial Neural Network process aims to develop 

several estimation models, all of which its parameters can be varied. 

Feedback delay: feedback delay is a system structure that eventually causes output from one 

node to influence input to that same node. For this investigation, the Feedback delay used ranges 

from1-3.  

Optimization of the ANN network is a significant task. The parameters that affect the structure of 

the network can be optimized to choose the optimal model structure. Optimization of HVAC 

systems was analyzed in previous studies. Optimization is vital to overcome the limitation that 

comes with modeling using ANN. Genetic algorithm (GA) was introduced to optimize the network 

parameters. The optimal model structure selected using GA will minimize the time and effort. GA 

is an excellent method to automate the process of trial and error used to manually determine the 

optimal model structure (Mohebbi et al., 2008).  

Genetic algorithm (GA) is a technique used to systemize the searching for an optimal solution. GA 

considers a solution as an individual, and a population is a group of individuals. The three main 

genetic operators are reproduction, crossover, and mutation. A genetic algorithm starts by 

generating several solutions to a problem, evaluates them, and applies the basic genetic operators 

to that initial population according to the individual fitness of each individual. This process 

generates a new population with higher average fitness than the previous one, which will be 

evaluated. This process is repeated for the number of generations set by the user, dependent on 

problem complexity (Galdas et al., 2003).  

4.2 Methodology 

After choosing the ANN as the modeling technique, a data-driven model will be developed for 

each component of the AHU unit using ANN. The inputs and outputs of each model are tuned to 

create the structure of each model. Later, a parametric study will be conducted to test the 

performance of each model. The testing results will be compared against the actual system 

performance data to choose the optimal model structure with the lowest error value.  

Moreover, an optimization technique will be used to automate this process and help select the best 

model structure. Finally, the optimization results will be compared against the parametric study 

results to validate the results. 
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An ANN model will be carried out using four steps (Mohanraj et al. 2012): (1) extract the results 

or data (2) train the network using experimentally or theoretically predicted values (3) test the 

network with the data that are not used for training (4) identify the best network structure.  

The created model’s accuracy is tested in terms of MSE (Mean Square Error) and CV% 

(Coefficient of Variance), representing the error values of the models in predicting the actual 

performance. The model parameters that were adjusted in each iteration to get the best model 

structure are:  

1. The number of hidden layers of neurons (N). For this investigation, the number of neurons 

that will be used ranges from 1-100. 

2. Feedback delay (FD). The FD in this study is measured by minutes. Each FD period is 5 

minutes, and the total feedback delay is fifteen minutes.  

3. Time delay (ID). The ID is measured in minutes for this experiment. And to match the FD, 

the time delay will range from 1-3 intervals of 5 minutes for each interval resulting in a 

total of 15 minutes of delay. 

Figure 19 shows a schematic of the modeling process using ANN. 
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Figure 19. A schematic of the modeling process using ANN. 

The two HVAC systems examined in this research are the chilled water VAV system and direct 

expansion (DX) systems. The chilled water systems consisted of an airside represented by the air 

handling unit (AHU) and a waterside represented by the chiller and boiler. In contrast, the DX 

system is an airside only.  

To achieve the research objective, the components of the Chilled water VAV system need to be 

modeled and optimized. The components that will be modeled and optimized are the cooling coil, 

heating coil, fan power, zone level model, and reheat coils. Figure 20 shows a schematic of the 

chilled water VAV system airside and its components.  
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Figure 20. Typical chilled water variable air volume AHU schematic  

While for the waterside, the chiller, boiler, chiller pumps, and boiler pumps will be modeled and 

optimized. Figure 21 shows a schematic of the chilled water variable air volume airside and its 

connection to the waterside.  

    

(A)                                                                                      (B) 

Figure 21. Chilled water variable air volume system schematic. (A) The chiller and its connection to the 

AHU, (B) the boiler, and its relationship to the AHU.  
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While for the Dx system, an air-only system, the components that will be modeled and optimized 

are the DX cooling coil, DX heating coil, fan power, and zone level model. Figure 22 shows a 

schematic of the Dx system and its components.  

 

Figure 22. Typical Direct expansion system schematic 

After the modeling process is complete and the models’ structures are established, a model level 

optimization (MLO) will be implemented to automate the process. The optimization process will 

help in selecting the best model structure that holds the lowest error values. GA was chosen to be 

used to solve the optimization process for this research for multiple reasons. 

• Other optimization approaches require substantial alteration, while GA is an easily 

understood approach that can be used in a wide range of applications.  

• The capability of GA to handle a wide range of variables at one time. Without overfitting 

or requiring an extended period. 

• GA has the capability to work with complex simulation programs. 

•  GA is Proven effective in solving complex problems that cannot be easily solved with 

other optimization methods. 

• GA is publicly available, user-friendly, and easily implemented GA codes.   
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4.2.1 Data collection 

Data were collected from the Building Energy Assessments, Solutions, and Technologies 

(BEAST) lab to conduct this research. BEAST is a multidisciplinary research lab focusing on 

building energy solutions and intelligent building technologies. BEAST is 2500 ft2, room 209 

(around 1700 ft2) and room 203 (about 800 ft2), located at the University of Cincinnati, Cincinnati, 

Ohio. The lab is intended to serve as educational and research resources and have the flexibility to 

address a wide range of research studies and provide training and educational tools. In addition, 

the lab is a unique facility for research, training, professional certification, outreach activities, and 

workshops (BEAST lab, 2020).  

The lab is equipped with several full-scale multi-zone HVAC systems. The systems are (1) chilled 

water VAV system, (2) DX VAV system, (3) four-pipe fan coil units, and (4) Variable Refrigerant 

Flow VRF. The systems serve three 8 by 8 ft.-controlled zones. The chilled water VAV system 

and DX multi-zone VAV systems share the same air distribution system with three single-duct 

hot-water reheat VAV boxes, providing cold and warm air to meet the cooling or heating loads in 

the zones. The heating or cooling loads can be artificially introduced in each zone. At the same 

time, the chilled and hot water is provided to the terminal units through the chilled water central 

plant and hot water central plant. Figure 23 shows a layout of the BEAST lab.  

 

(A) 
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(B) 

Figure 23. (A) BEAST schematic layout. (B) BEAST lab after the equipment installation.  

The operation and control of all equipment are achieved through a “real” web-based building 

automation system integrated with MATLAB-based monitoring and many computational energy 

solution tools.  

The chilled water system consists of an AHU equipped with a cooling and heating coil, return and 

supply fan, dampers, and filters. This system serves the zones with VAV boxes provided with hot 

water reheat. Figure 24 shows the chilled water VAV system.  
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Figure 24. Chilled water VAV system.   

The chilled water system has four control loops: space control loops, supply air temperature SAT 

control loop, duct static pressure control loop, and ventilation control loop. Also, the system 

utilized the use of the economizer. Therefore, if the outside air temperature is proper, the control 

strategies activate the economizer to result in free cooling by introducing the appropriate amount 

of fresh air. Figure 25 shows the control display of the system.  
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Figure 25. Control display of the chilled water VAV system.  

The system is equipped with a supply and return fan responsible for the air circulation. The 

controlling system also controls the return fan designed to bring the air back from the zones to 

central chilled water AHU and maintain a positive pressure in the zones. Figure 26 shows the 

layout of the return fan.  

 

(A) 
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(B) 

Figure 26. (A) The chilled water system’s return fan layout (B) Control display of the return fan 

While the central plant side of the lab is represented by the chilled water central plant (chiller) and 

the hot water central plant (boiler). The chilled water system consists of one air-cooled chiller with 

two pumps, as shown in figure 27.  

 

Figure 27. Chilled water central plant pictures.   
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While the water distribution system consists of a primary-secondary configuration or a primary-

only configuration, as shown in figure 28. 

 

Figure 28. Control display of the chilled water central plant. 

On the other hand, the hot water central plant consists of one electric boiler shown in figure 29 and 

two pumps. Unlike the chilled water that only serves the cooling coil in the AHU, the hot water 

system serves the AHU heating coil, and the VAV boxes reheat coils required for the reheating 

process. 

 

Figure 29. Photo of boiler and hot water piping system.      

 

Hot water piping system 
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Like the chilled water side, the hot water system has two piping configurations primary-secondary 

configuration or a primary-only configuration, as shown in figure 30.  

 

Figure 30. hot water system configuration.  

Finally, the DX VAV system shown in figure 31 is an air-sourced heat pump consisting of a 

cooling and heating coil, fans, filters, dampers, etc. This system will also serve the three insulated 

zones. The dampers are controlled with the economizer strategy as well. 

 

Figure 31. DX VAV system  
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The DX system serves the three zones through the same VAV boxes. The DX system has the same 

primary four control loops that the chilled water system has. Space control loops, supply air 

temperature, SAT control loop, duct static pressure control loop, and ventilation control loop, as 

shown in figure 32. The DX system is also equipped with a supply and return fan to circulate the 

air and maintain a positive pressure in the served zones.  

 

Figure 32. Control display of DX VAV system.  

The chilled water AHU and DX AHU can operate simultaneously; one supplies cold air, and the 

other supplies warm air to the three zones (testing chambers) through dual duct VAV boxes. Each 

zone is served by VAV boxes operating as single or dual inlet VAV boxes. This configuration 

allows the system to work as single or dual-duct VAV systems, as shown in figure 33. 
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(B) 

Figure 33. (A) Control display of dual duct systems Dx system. (B) Dual duct systems schematic.  

Performance data were collected over a period of three months. First, the chilled water VAV 

system and the DX system readings were recorded every 1 minute. Later, data were organized and 

transferred into Excel sheets to be prepared for experimenting. Figure 34 shows a small sample of 

the performance data that were collected. The data are from April 26th, showing the supply airflow 

rate for both the chilled water VAV system and DX system against their power consumption.  
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Figure 34. Collected Data from BAS to Microsoft Excel 

The performance data gathered for all the components for both systems are summarized in table 3 

below.  
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Table 3. A description of the collected data from the BEAST lab 

Abbreviated terms Description 

Qsys Supply airflow (CFM) 

Qo outside air flow (CFM) 

Tcws Chilled water temperature (oF) 

Tcwr Return chilled water temperature 

CH VLV Chilled water valve position (%) 

Tm Mixed air temperature (oF) 

Ts Supply air temperature (oF) 

Tr Return air temperature (oF) 

To Outside air temperature (oF) 

Ws Supply air humidity ratio 

Wr Return air humidity ratio 

Ps Duct Static Pressure 

Dpw Chilled water differential pressure setpoint 

P Power (kWh) 

Fs Fan speed (fpm) 

Ps Pressure (in. w.g) 

RHs Supply air relative humidity (%) 

RHo Outside air relative humidity (%) 

 

After organizing the data into the Excel sheets and remove all the anomalies data for when the 

system is off because those data will affect the accuracy of the models’ predictions. The data were 

then divided into testing and training sets and later imported into the MATLAB software to test 

and train the created models. Figure 35 shows a sample of the data that were measured and how 

they were displayed on the BAS before collection.  
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Figure 35. Sample of the collected data displayed on the BAS. 

4.2.2 Modeling 

Component models that are accurate, reliable, and adjustable are used for applications such as 

control optimization to minimize the energy consumption of HVAC systems. The prediction 

component models developed in this research will predict the system's actual performance over a 

specified period of operation. In addition, the component models are required for the optimization 

process that will be deployed later on. In this research, MATLAB software was used to develop 

functional data-driven models for system applications.  

The optimal component model structure will be sought in the first optimization level (MLO). Then, 

all the system optimized, integrated components models together will form the “system model.” 

The output of the system model will be the total system energy consumption that will be optimized 

in the following optimization level (SLO) that will be discussed in chapter 5. Finally, the HVAC 

system setpoints required for each component, such as supply air temperature (Ts), airflow rate 

(CFM), duct static pressures (Ps), chilled and hot water temperature (Tw), and outdoor airflow 

rate, are determined based on the previous time step reading.  

The final objective of this research is to optimize the system's total energy consumption. Therefore, 

the proposed integrated two-level optimization process will optimize the system operation 
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setpoints every 15 minutes to reduce the total energy consumption for the next timestep. Therefore, 

if the component models are inaccurate, the total energy consumption prediction will be less 

accurate. Therefore, the whole process results will be faulty.   

Therefore, the sequence of the process can be summarized as follows:  

• At the initial time step that is user-defined, the model parameters will be tuned using 

previous data.  

• The tuned parameters will be later used in the next loop to forecast the system performance 

at the next timestep.  

• The models' parameters are the loads and supply air temperatures, etc.    

• The parameters are simulated by the load prediction, zones, heating and cooling coil, fan 

power, reheat, ventilation, pump, chiller, and boiler models. 

•  The models will be subjected to the constraints and regulations imposed by the energy and 

mass flow laws and energy codes requirements.  

• The created models' final output will be measured in terms of energy consumption to 

calculate the system's total energy savings. 

Figure 36 below shows a basic schematic of the modeling process steps.  

 

Figure 36.  Modeling process concept  
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4.2.2.1       Chilled water VAV system models  

The Airside and waterside of the chilled water VAV system were chosen to be evaluated as part 

of this research. A variable air volume with a reheat system will control the zone temperature by 

regulating the system's airflow rate. The supply air temperature is constant throughout the process. 

Modulating the airflow rate for each zone to maintain the zone temperature setpoint will be through 

the VAV box of each zone located in each zone's ductwork. The system is equipped with hot water 

reheat coils that are located in the VAV boxes. If the VAV box has reduced the airflow to the 

minimum and the zone temperature setpoint was not met, the system will trigger the reheat coils 

to meet the zone load.  

The component of the system will be thoroughly investigated and modeled. Figure 37 shows the 

system component integrated data-driven models. However, few calculations were needed to link 

this data-based component model and obtain the whole system model. 

The data-driven models were developed to predict the system performance. The created models 

will be integrated as the output of some models will serve as an input for others. For example, the 

airside model outputs were fan power, cooling, heating coils, and reheat loads. Those outputs were 

later linked to the central plant model (water side) as inputs. At the same time, the chiller power, 

boiler power, and pump were the outputs of the waterside. For this step, choosing the best model 

structure to replicate the actual physical component is a time-consuming process. Therefore, the 

MLO process using a genetic algorithm that will be implemented later will help choose the best 

component model structure.  



77 

 

 

Figure 37. Chilled water VAV system proposed hybrid modeling diagram. 
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Since the accurate component modeling process is a significant step in predicting the HVAC 

energy consumption. The component models created for the chilled water VAV system are data-

driven models. Table 4 shows the significant data-driven component models. The rest of the 

components were represented in a series of equations needed to link those data-driven models and 

obtain the whole system model due to their simplicity and being less dependent on time and the 

system’s current load.  

Table 4. The major data-driven models.  

Data based models Model’s output Description 

AHU Model (cooling coil and 

heating coil) 

Supply air temperature, 

chilled water flow, the 

total load  

This model will capture the 

performance of the cooling 

coil and heating coil as the 

major component of the AHU 

AHU Model (fan power model) Fan power This model will capture the 

performance of the fan  

Central plant Model (chiller 

power model) 

Compressor power This model will capture the 

performance of the chiller  

Central plant Model (chilled 

water and hot water pump)  

Pump power This model will capture the 

performance of the pumps  

 

4.2.2.1.1 Zone sensible load prediction  

The zone sensible load is established to determine the zones sensible load at the next time step. 

The sensible load is determined based on a series of heat balance equations. The zone sensible load 

is a function of the zone air flow rate and the difference between the supply and return temperature. 

In our prediction, we assume that the sensible load is the same for the previous period. Later, the 

load is calculated for the next timestep based on questions 18-22 using the previous flow and 

temperature.  

𝑞𝑡 = 𝑚𝑎 ∗ ∆ℎ  …………………...(18) 

𝑞𝑠 = 𝑚𝑎 ∗ 𝑐𝑝 ∗ ∆𝑇……………..(19) 
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𝑚𝑎 =  
𝐶𝐹𝑀 ∗60

𝑉
……………………..(20) 

𝑞𝑡=  
𝐶𝐹𝑀 ∗60 

𝑉
 * ∆ℎ……………..…..(21) 

𝑞𝑠=  
𝐶𝐹𝑀 ∗60 

𝑉
 * ∆𝑇………………...(22) 

Where: 

q = heat removed (Load) (BTU/h) 

qt = Total load 

qs = Sensible load 

CFM = Air flow rate 

CP = Specific heat of air= 0.244 

V =  specific volume =  13.5 

∆T= temperature difference (F2) 

∆T= Ts - Tr  

Ts = Supply air temperature 

Tr = Return air temperature 

∆h= ho - hs  

hs = Supply air enthalpy 

hr = Return air enthalpy 

The initial load essential for the calculations will be estimated. The airflow rate for the current 

timestep will be assumed to be constant of the next timestep. The model's output will be the 

predicted load for the next time step (in our case is the next 15 minutes) based on the airflow rate 

for the current timestep and temperature difference. Assuming that the airflow rate is constant for 

the next timestep is acceptable since the optimization period is small. This process will be repeated 

every 15 minutes. The output of this model will be an essential input in the zone model as the 

predicted sensible zone load is crucial to determine the zone flowrates. Figure 38 shows the zone 

model proposed inputs and outputs.  
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Figure 38. Zone’s sensible load model description 

4.2.2.1.2 Building latent load prediction  

The latent load of the building is the amount of moisture in the air. The latent load prediction 

process is built based on a series of steady-state heat balance equations, as shown in figure 39. The 

latent heat is required for the whole system instead of each zone. The latent load will be used to 

determine the humidity ratio of the building that will be used as an input in other models. The load 

will be estimated at the first step and later calculated for the next timestep in the same way as the 

sensible load prediction. The process will be repeated every 15 minutes to assess the latent load 

for the subsequent timestep optimization.  
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Figure 39. The building latent load model description 

4.2.2.1.3 Zones model 

The zone model is a series of equations established to determine the zones airflow rate. First, the 

zone model is constructed based on the heat balance laws, as shown in figure 40, utilizing the total 

load and the sensible and latent load sum. Next, the zone model will calculate the zone 

requirements based on the user input specified in the input datasheet. This process will be 

calculated at each time step.  
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Figure 40. Zone’s model description 

The zone model has the reheat requirements specified as well. If the zone load is less than 20% of 

the design load, the reheat coil will be triggered, and the reheating process will begin. The 

reheating process can be described in equation 23 below. 

𝑞𝑟𝑒ℎ𝑒𝑎𝑡 𝑧𝑜𝑛𝑒=  
𝐶𝐹𝑀 ∗60∗𝐶𝑃 

𝑉
 * (𝑇𝑧 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 − 𝑇𝑠𝑢𝑝𝑝𝑙𝑦 ) ………..(23) 

The function will calculate the zone reheat load and then the sum of the zones reheat load will be 

used to calculate the total reheat power usage for the system at each time step.  

4.2.2.1.4 Fan power model 

The fan is one of the significant components of any air handling unit. For the fan model, the fan 

power was predicted as a function of two inputs, flow rate and fan pressure.  
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The fan model proposed in this research is a data-driven model that uses the fan flow rate and 

pressure to indicate the fan power as the model output. Figure 41shows the structure of the ANN 

model designed to predict the fan power.  

 

Figure 41. Artificial Neural Network fan model structure  

4.2.2.1.5 Minimum zone ventilation model  

The outdoor air percentage brought to the building in the process of heating/ cooling and 

dehumidification is a crucial factor due to its importance in the ventilation and maintaining the 

inhabitant comfort levels. In some baseline practices, the old rule of thumb methods was used to 

determine the amount of outdoor air brought to the building. One of these rules of thumb methods 

is that the amount of outdoor air brought to the building is usually 100 CFM per every 600- 900 

ft2.    

However, to comply with ASHRAE standard 62.1 for minimum ventilation rates and air quality, 

that will be acceptable to human occupants. In addition, many buildings have been following the 

ASHRAE standard 62.1 for determining the minimum outdoor airflow rates requirements for 

breathing zones in their design.  Therefore, equation 24 is proposed in ASHRAE standard 62.1 to 

determine the ventilation airflow rates for each zone.   

𝑉𝑏𝑧  =  R𝑝  ×  P𝑧  +  R𝑎  ×  A𝑧 …………….. (24) 
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Where: 

Vbz:  breathing zone outdoor airflow (CFM). 

Rp: outdoor airflow rate required per person as determined from Table 6-1 in standard 62.1. 

Pz: zone population: the maximum number of people expected in the zone. 

Ra: outdoor airflow rate required per unit area (CFM/ft2) as determined from Table 6-1.  

AZ: zone floor area ft2.  

Now to calculate the zone outdoor air flowrate, which is the amount of outdoor air that must be 

provided to the ventilated zones by the HVAC system. This will be determined through equation 

25 as proposed by ASHRAE standard 62.1.  

𝑉𝑜𝑧 =  
𝑉𝑏𝑧

𝐸𝑧
………………………. (25) 

Where: 

Voz: outdoor zone airflow (CFM)  

Vbz: breathing zone outdoor airflow (CFM). 

Ez: System efficiency.  

In many design cases, the Ez nowadays is considered as 1.0. Therefore, Voz equals Vbz, and the 

systems ventilation air flowrate will equal the sum of zone ventilation airflow rate. This method is 

acceptable, but it will result in energy waste as not all zones will always require 100% of the 

maximum ventilation rate. Therefore, in this research, we will be deploying the new ASHRAE 

62.1 method to optimize the systems efficiency value Ez so that each zone will get the minimum 

ventilation flowrate. And this amount will vary throughout the system operation period. The 

following equations show the process of correcting the efficiency Xsc value based on the ASHRAE 

62.1 method.  

𝑍𝑑𝑧 =  
𝑉𝑜𝑧

𝑉𝑑𝑧
……..………..………………. (26) 

𝑉𝑜𝑢 =  ∑R𝑝  ×  P𝑧  + ∑R𝑎  ×  A𝑧…….…(27) 
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𝑋𝑠 =  
𝑉𝑜𝑢

𝑉𝑝𝑠
…………………………..…….(28) 

𝐸𝑣𝑧 =  1 + X𝑠 − 𝑍𝑑𝑧………..………….(29) 

𝐸𝑣 = min(𝐸𝑣𝑧)……………….………..(30) 

𝑉𝑜𝑡 =  
𝑉𝑜𝑢

𝑉𝑝𝑠
………………………………(31) 

𝑋𝑠𝑐 =  
𝑉𝑜𝑡

𝑉𝑝𝑠
………………………………(32) 

𝑉𝑜𝑡 =  𝑉𝑝𝑠 ∗ 𝑋𝑠𝑐……………………….(33) 

Where:  

Zdz = outdoor air fraction in discharge air supplied to each zone, L/s (CFM) 

Voz = zone outdoor airflow, L/s (cfm) 

Vdz = discharge air supplied to the zone, L/s (cfm) 

Vou = uncorrected outdoor air intake flow, L/s (cfm) 

Xs = uncorrected outdoor fraction in supply air 

Vps = system supply air flow, L/s (cfm) 

Evz = zone efficiency 

Ev = system efficiency 

Vot = outdoor air intake flow, L/s (cfm) 

Xsc = corrected outdoor fraction in supply air 

4.2.2.1.6 Economizer model 

The system utilized the use of the economizer. Therefore, if the outside air temperature is proper, 

the control strategies activate the economizer to result in free cooling by introducing the 

appropriate amount of fresh air.  
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Figure 42. The economizer model description.  

4.2.2.1.7 Cooling coil model 

As one of the main components of any chilled water VAV system, the cooling coil is responsible 

for cooling and dehumidifying the air. The cooling load was predicted as a function of chilled 

water temperature, chilled water flow, mixed air temperature, supply air temperature, and mixed 

air humidity ratio. At the same time, the chilled water flowrate is calculated as a function of the 

valve opening. The cooling coil model will be linked to the central plant model to get this value 

over the specified period. At the same time, the system temperature difference will be determined 

from the BAS system over time.  
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Figure 43 shows the structure of the ANN model designed to predict the optimal performance of 

the cooling coil.  

 

Figure 43. Artificial Neural Network cooling coil model structure 

4.2.2.1.8 Heating coil model 

As another main component of any chilled water VAV system, the heating coil is responsible for 

heating and dehumidifying the air in the system heating mode. The heating coil data-driven model 

is similar to the cooling coil model. The heating load was predicted as a function of supply hot 

water temperature, hot water flow, mixed air temperature, and supply air temperature. In this model 

air humidity ratio was not accounted for since it is close to zero in the heating mode. Again, the 

hot water flowrate is calculated as a function of the valve opening. The heating coil model will be 

linked to the central plant model to get this value over the specified period. At the same time, the 

system temperature difference will be determined from the BAS system over time. 

Figure 44 shows the structure of the ANN model designed to predict the optimal performance of 

the heating coil.  
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Figure 44. Artificial Neural Network heating coil model structure 

4.2.2.1.9 Central plant chiller model 

The central plant or the water side of the chilled water VAV systems is responsible for heating, 

cooling, and both heating and cooling at the same time. The central plants can cool or heat different 

kinds of coolants, typically water or water/ glycol mix for conditioning or refrigeration. In our 

research, we are examining a water chiller for air conditioning. The central cooling and heating 

plants represented by the chiller and boiler are responsible for generating the cold and hot water 

distributed to multiple locations in the building through the distribution system that includes pipes 

and pumps, etc. The central plants model discussed in this research consists of the chiller, boiler, 

and pumps model.  

The liquid goes through two primary circuits in the chiller: a refrigeration circuit and a fluid circuit. 

The refrigeration circuit contains the compressor, the condenser, the expansion valves, and the 

evaporator. In contrast, the fluid circuit includes the pumps, filters, and heat exchangers. The 

refrigeration circuit is responsible for removing the heat from the fluid. At the same time, the fluid 

circuit carries the process fluid back to the building that is being cooled.  

The liquid flow rate required to satisfy the building (zones) heat load at a specific temperature drop 

can be mathematically described in equation 34 below.   

𝑞𝑡𝑜𝑡𝑎𝑙 =  𝑀𝑊 ∗ 𝐶𝑃𝑊 ∗ ∆𝑇………… (34) 
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Where:  

qtotal = total heat removed (Btu/h) 

Mw = chilled water flow rate (GPM) 

Cpw = specific heat of liquid (Btu/lb oF) 

ΔT = temperature difference (oF) 

The chiller model discussed in this research is a data-driven model aiming to predict the chiller 

compressor power in kWh as an output. While the chilled water flow, supply and return water 

temperature, and the outside temperature was selected to be the model inputs. Figure 45 shows the 

structure of the neural network model.  

 

Figure 45. Artificial Neural Network chiller model structure 

4.2.2.1.10 Central plant boiler model 

The boiler is another component of the central plant. The boiler was examined in this research is 

a gas furnace boiler. The boiler is responsible for heating the fluid in the heating mode and in the 

cooling mod where reheating by the reheat coils is required.  
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Like the chiller, the boiler liquid flow rate required to satisfy the building (zones) heat load at a 

specific temperature drop can be mathematically described in equation 35 below.   

𝑞𝑡𝑜𝑡𝑎𝑙 =  𝑀𝑊 ∗ 𝐶𝑃𝑊 ∗ ∆𝑇………… (35) 

Where:  

qtotal = total heat removed (Btu/h) 

Mw = Hot water flow rate (GPM) 

Cpw = specific heat of liquid (Btu/lb oF) 

ΔT = temperature difference (oF) 

The boiler discussed in this research is not a data-driven model due to its simplicity, where there 

is no account for the fluid moisture content. However, as shown in figure 46, a series of equations 

were used to link the boiler gas consumption to the system model.  

 

Figure 46. The boiler model structure 
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4.2.2.1.11 Central plant pump model 

The hot water and chilled water pumps are usually represented in other research as a series of 

equations since the pump model uses a constant fluid density and specific heat values. For 

reference, the heat balance equations that can link the pump's model to the system model, if the 

data-driven model is not applicable, are represented in equations 36 and 37 below, showing the 

pump flow and pressure loss calculations. 

𝑃𝑢𝑚𝑝 𝑓𝑙𝑜𝑤 =  
𝑄

𝜌∗𝑁∗ 𝑑3………………………..(36) 

𝑃𝑢𝑚𝑝 ℎ𝑒𝑎𝑑 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑙𝑜𝑠𝑠 =  
∆𝑃

𝜌∗ 𝑁2∗ 𝑑2………(37) 

Where: 

Q = mass flow rate 

d = diameter of pump impeller 

P = head pressure 

ρ = density of liquid 

N = rotation speed 

In this research, a data-driven model was constructed to predict the performance of the pumps. The 

pump power in kWh was indicated as an output of two inputs, the chilled water flow, and pump 

pressure. Figure 47 and 48 shows the neural network structure selected for the pump model.  

 

Figure 47. Artificial neural network chilled water pump model structure  
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Figure 48. Artificial neural network hot water pump model structure 

4.2.2.2       Direct expansion (DX) system models  

The second HVAC system investigated in this research is a variable air volume direct expansion 

(DX) system. The DX system is an air system equipped with electric cooling and heating coils, 

filters, fans, and dampers. Modulating the airflow rate for each zone to maintain the zone 

temperature setpoint will be through the VAV box equipped with a reheat coil of each zone located 

in each zone's ductwork. If the VAV box has reduced the airflow to the minimum and the zone 

temperature setpoint was not met, the system will trigger the reheat coils to meet the zone load.  

The system was thoroughly investigated and analyzed. The unit was run in both the cooling and 

heating mode and under different weather conditions to model the system accurately.  

The DX system components models created in the research are data-driven. However, some 

calculation models are needed to link the data-driven model and develop the system model. As 

shown in figure 49 below, as the chilled water VAV system, the DX system models will be 

integrated with each other’s as the output of one model can serve as an input for other models. 

Finally, the DX system model’s intended output is the system compressor power that is the sum 

of the fan power, cooling coil power, and heating coil power.  

Since the DX system is air-only, no central plant models will be linked to the airside models. 

Finally, the DX system and the air side of the chilled water VAV system are similar in all the 

components except the heating/cooling coil types. Therefore, the same models created for the rest 
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of the components can be used to model both. Thus, in the next section, we will discuss the fan, 

the cooling, and the heating coil models, as the rest were previously discussed.  

 

Figure 49. DX variable air volume system proposed hybrid modeling diagram.  
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Table 5 below shows the major data-driven models created for this part and their predicted output 

and model description. The rest were linked by calculations due to their simplicity and being less 

dependent on time and the current system load.  

Table 5. The major DX system data-driven models.  

Data based models Model’s output Description 

DX Model (cooling coil 

and heating coil) 

Cooling/ heating 

coil power and 

humidity ratio   

This model will capture the 

performance of the cooling coil 

and heating coil as the major 

component of the DX system. 

DX Model (fan power 

model) 

Fan power This model will capture the 

performance of the fan.  

 

 

The DX fan model was the same as the one fr the chilled water system. The two models have the 

same input and output structure, so this section will not repeat the process. While the cooling and 

heating coils are different, and their network will be discussed below.  

4.2.2.2.1 DX Cooling coil model 

The DX cooling coil is an electric coil that is responsible for cooling and dehumidifying the air. 

The DX power consumption cooling coil was chosen to be the output of the data-driven model. 

Also, the supply air humidity ratio will be predicted to be optimized and served as an input for 

other models in other models.  

The supply air temperature setpoint dictates the power consumption. Thus, the selected inputs were 

the outside air temperature, the supply air temperature, the mixed air temperature, and the mixed 

air humidity ratio. The mixed air temperature and the humidity ratio were calculated by averaging 

the outdoor and return air conditions. The corrected outdoor air ratio will be determined by the 

ventilation model as previously described in section 4.2.2.1.5. The corrected value will be linked 

to the DX cooling coil model.  
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Figure 50 below shows the DX cooling coil model structure and its inputs and outputs.  

 

Figure 50. Artificial neural network DX cooling coil model structure.  

4.2.2.2.2 DX Heating coil model 

The Dx heating coil is similar to the cooling coil. The DX heating coil is an electric coil used to 

heat the air when the system is in heating mode. The DX heating coil’s predicted output is the 

power consumption. While, the inputs were the outside air temperature, the supply air temperature, 

mixed air temperature. It is noted that the mixed air humidity ratio will be ignored in modeling the 

performance of the DX heating coil due to small or close to zero value in the heating mode. Figure 

51 below shows the DX heating coil model structure and its inputs and outputs. 



96 

 

 

Figure 51. Artificial neural network DX heating coil model structure. 

4.2.3 Model-level optimization  

As previously stated, this research consists of two levels of optimization. The first level is the 

component models optimization, while the second level is a whole system performance 

optimization. The two levels will be later integrated to optimize the system operation, reduce 

energy consumption, and improve thermal comfort levels. Both levels of optimization will be 

conducted using GA.  

The model level optimization will be implemented to automate the process by determining the best 

model structure with the minimum error value between the actual performance data and simulated 

data generated through the parametric study. Thus, the objective of the model level optimization 

is to find the best model structure with the lowest error value over a predefined (training or testing) 

period with (n) data sample. The error values were measured in terms of MSE (mean square error) 

and CV% (coefficient of variation). Figure 52 shows the process of model optimization and 

objective function using the GA operator. 
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Figure 52. The general layout of the MLO process using GA. 

As previously stated, first, a typical learning algorithm was used to tune the model’s parameters. 

For this purpose, artificial neural networks were selected. And the variables that were adjusted in 

the process are (1) input time delays, (2) feedback time delays, and (3) the number of neurons 

(hidden layer size). At the same time, the model parameters are such as weights and biases. The 

tuning of the parameters will be completed on the whole testing data set.  

Later the model level optimization is proposed to determine the optimal model structure. Selecting 

the best model structure manually is a time-consuming process that might take few days for each 

component model structure. Therefore, a high-level optimization will be performed in this step to 

select the best model structure that produces the minimum error values in model prediction. This 
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process will not replace the typical learning algorithm. Instead, it will automate the process to 

deliver more accurate predictions with lower processing time.  

4.3 Modeling results 

The models were tested and trained using the data collected from the BEAST lab. As previously 

stated, the data were collected and organized into Excel sheets and then imported into the 

MATLAB code is designed for each component separately. Finally, the results for each run were 

collected and stored into an output file named results. The results measured the performance of 

each model by calculating the error of each model in predicting the specified output. Later all the 

results were compared together, and the model structure that held the lowest error value was 

selected as the best model structure. This manual process of choosing the best model structure is 

called the parametric study.   

Therefore, this section shows the parametric study results. And the MLO process results. These 

results will be later compared against the optimization process results to validate the model-level 

optimization process results.  

4.4.1 Chilled water VAV system component modeling results  

The component data-driven models were described previously in the methodology section for the 

chilled water VAV system. Each model input and output that serve the objective of this research 

was specified. The tool that was used to test and train the model is artificial neural networks. The 

script that was used has the ability to predict one output as a function of multiple outputs. 

Therefore, the models with multiple outputs needed multiple runs, one for each output. This section 

shows a proposed methodology of modeling.  

1. Cooling coil model results  

After conducting the parametric study and comparing all the results, the following results are for 

the cooling coil component. It was found that the model structure with 30 number of neurons, three 

intervals of feedback, and three intervals time delay held the least error values of 1.1059% and 

0.0175 in terms of CV% and MSE, respectively. Thus, it was selected to be the best model 

structure. Figure 53 shows the testing and training period of a model with a number of neurons 

ranging from (1-100) with a time delay (ID) of three intervals and three intervals time delay. This 

iteration held the optimal values. 
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(A) 

 

(B) 

Figure 53. (A)The Training and testing period of the iteration held the optimal model structure. The error 

value is measure in terms of CV%. (B) The Training and testing period of the iteration had the optimal 

model structure. The error value is measure in terms of MSE.  
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While the results of modeling the cooling coil to predict the chilled water flow have shown that 

the model structure with one interval of time delay, one interval of feedback delay, and 30 number 

of neurons held the lowest error values. The CV% and MSE values were recorded as 0.23 and 

0.0056, respectively, as shown in figure 54 below. 

 

(A) 

 

(B) 

Figure 54. (A)The Training and testing period of the iteration held the optimal model structure. The error 

value is measure in terms of CV%. (B) The Training and testing period of the iteration had the optimal 

model structure. The error value is measure in terms of MSE.  
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While the results of modeling the cooling coil to predict the chilled water temperature leaving the 

coil have shown that the model structure with one interval of time delay, three intervals of feedback 

delay, and 5 number of neurons held the lowest error values. The CV% and MSE values were 

recorded as 0.230.412 and 0.0535, respectively, as shown in figure 55 below. 

 

(A) 

 

(B) 

Figure 55. (A)The Training and testing period of the iteration held the optimal model structure. The error 

value is measure in terms of CV%. (B) The Training and testing period of the iteration had the optimal 

model structure. The error value is measure in terms of MSE. 
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2. Fan power model results 

While for the fan power model, the same process was applied for the parametric study. The results 

have shown that the model structure with two intervals of time delay, two intervals of feedback 

delay, and 20 number of neurons held the lowest error values. The CV% and MSE values were 

recorded to be 0.4256 and 0.0362, respectively. Figure 56 shows the training and testing results 

for the iteration that held the optimal value. 

 

(A) 

 

(B) 

Figure 56. (A)The Training and testing period of the iteration held the optimal model structure. The error 

value is measure in terms of CV%. (B) The Training and testing period of the iteration held the optimal 

model structure. The error value is measure in terms of MSE.  
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3. Chiller model results 

While for the chiller modeling process, the model predicted the chiller power as a function of 

multiple inputs. The results have shown that the model structure with one interval of time delay, 

two intervals of feedback delay, and 15 number of neurons held the lowest error values. The CV% 

and MSE values were recorded to be 2.7135 and 0.0251, respectively. Figure 57 shows the training 

and testing results for the iteration that held the optimal value. 

 

(A) 

 

(B) 

Figure 57. (A)The Training and testing period of the iteration held the optimal model structure. The error 

value is measure in terms of CV%. (B) The Training and testing period of the iteration had the optimal 

model structure. The error value is measure in terms of MSE. 
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4. Pumps model results  

While for the pump's model in predicting the pump power, the same process was applied. For the 

chilled water pump, the results have shown that the model structure with three intervals of time 

delay, three intervals of feedback delay, and 5 number of neurons held the lowest error values. The 

CV% and MSE values were recorded to be 0.5971 and 0.03371, respectively. The model error 

value results were smaller than other models due to the pump's model simplicity of utilizing two 

inputs and one output. Figure 58 shows the training and testing results for the iteration that held 

the optimal value. 

 

(A) 

 

(B) 

Figure 58. (A)The Training and testing period of the iteration held the optimal model structure. The error 

value is measure in terms of CV%. (B) The Training and testing period of the iteration held the optimal 

model structure. The error value is measure in terms of MSE. 
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4.4.2 Direct expansion system modeling results. 

1. Fan model results  

For the DX fan power model, the same process was applied to predict the fan power. The results 

have shown that the model structure with three intervals of time delay, one interval of feedback 

delay, and 15 number of neurons held the lowest error values. The CV% and MSE values were 

recorded to be 0.1211 and 0.0031, respectively. Figure 59 shows the training and testing results 

for the iteration that held the optimal value. 

 

(A) 

 

(B) 

Figure 59. (A) The Training and testing period of the iteration held the optimal model structure. The error 

value is measure in terms of CV%. (B) The Training and testing period of the iteration that had the optimal 

model structure. The error value is measure in terms of MSE. 
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2. Cooling coil model results  

For the DX cooling coil that is electric, two outputs were needed to be predicted. The coil power 

and the humidity ratio of the air leaving the coil. The exact process was applied for the parametric 

study. In predicting the power, the results have shown that the model structure with one interval 

of time delay, two intervals of feedback delay, and 20 number of neurons held the lowest error 

values. The CV% and MSE values were recorded as 0.456 and 0.0102, respectively, shown in 

figure 60 below.   

 

(A) 

 

(B) 

Figure 60. (A) The Training and testing period of the iteration held the optimal model structure. The error 

value is measure in terms of CV%. (B) The Training and testing period of the iteration that had the optimal 

model structure. The error value is measure in terms of MSE. 
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While the model designed to predict the humidity ratio was slightly more complex and held the 

highest error values. The results have shown that the model structure with two intervals of time 

delay, three intervals of feedback delay, and 10 number of neurons held the lowest error values. 

The CV% and MSE values were recorded to be 5.43 and 0.0563, respectively 

 

(A) 

 

(B) 

Figure 61. (A) The Training and testing period of the iteration held the optimal model structure. The error 

value is measure in terms of CV%. (B) The Training and testing period of the iteration that had the optimal 

model structure. The error value is measure in terms of MSE. 
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4.3.3 Model-level optimization process (MLO) results.  

The optimization process was deployed after manually conducting the parametric study and 

selecting the best model structure for each component model. The purpose of the parametric study 

was to validate the optimization process. As previously stated, the presented modeling process 

results show a problem-solving methodology, and the results are not fixed for all similar 

applications. Instead, the results will vary based on the size of the data sets, the collected data's 

accuracy, and the different inputs tuned to predict the output. But it is crucial to validate the 

accuracy of the optimization process where similar results are supposed to be found. Also, the 

modeling process is time-consuming; therefore, implanting an optimization process is crucial to 

automate the process and help select the best model structure promptly, especially for online 

applications.  

The main objective of this research was to optimize the performance of HVAC systems, which 

will be done by integrating both the component model optimization level (MLO) and the whole 

system optimization level (SLO). Therefore, the accuracy of the model-level optimization process 

is crucial for the system's total energy consumption prediction. It is noted that the results produced 

by the MLO process are similar in value to those obtained in the parametric study, which gave the 

green light to continue with the next level of optimization process (SLO).  

The GA parameters that were adjusted in the MLO process are the generations and population. 

The selection of the generation and population size depends on the complexity of the problem that 

is being assessed. Usually, this is being estimated based on the researcher's experience and 

previous research work. Researchers typically debate on the generation and population's small size, 

leading the algorithm to poor solutions. At the same time, the large size will significantly increase 

the computation time that is required to find the optimal solution. Therefore, close attention should 

be paid to the population size due to the significant influence on the accuracy of the result.  

Therefore, multiple populations and generation sizes were tried in the research, and to each was 

its pros and cons. A generation size of 150 and a population of 100 were tested at first, and no 

results were achieved. Due to the higher processer required to execute this size of a population. 

Later a generation size of 100 and a population of 50 was tried. Each run took almost three days 

to collect the results. It was concluded that it would be inapplicable to accomplish this research 

with the available processor at this rate. Lastly, a generation size of 50 and a population size of 50 
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were chosen to execute the MLO process. It is noted that the lower population size will result in 

slightly less accurate results, but it was still a valid result. Therefore, for future work, when more 

advanced equipment with higher processors is available, it is expected to enhance the results 

further.  

Tables 6 show the optimization process, as previously shown in figure 52, results for the chilled 

water VAV component model. Again, the results produced by the optimization tool are similar in 

value to those obtained in the parametric study. 

Table 6. Optimization Process Results for the chilled water VAV system components 

Component Model’s output Number of 

neurons 

Time 

Delay 

Feedback 

Delay 

Minimum 

CV% 

Minimum 

MSE 

Cooling coil 

Total load 30 3 3 1.45 0.019 

Chilled water 

flow 

30 1 1 0.23 0.0056 

Return water 

temperature 

5 1 3 0.401 0.0605 

Fan Fan power  20 2 2 0.4021 0.0322 

Chiller Chiller power 15 1 2 2.702 0.0302 

Chilled water pump Pump power  5 3 3 0.6271 0.0417 

 

Table 7. Optimization Process Results for the DX system components  

Component Model’s output Number of 

neurons 

Time 

Delay 

Feedback 

Delay 

Minimum 

CV% 

Minimu

m 

MSE 

Cooling coil 

DX coil power 20 1 2 0.365 0.0006 

Supply air 

humidity ratio 

10 2 3 5.225 0.0463 

Fan Fan power  15 3 1 0.1901 0.0042 
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4.4 Discussion  

The HVAC system components are complex nonlinear entities. Therefore, data-driven models 

were favored against physical models because data-driven models are easier to train, faster, and 

more suitable for online applications and can be trained to predict the component with less 

information. In contrast, physical models require detailed information about the component and 

require more extended periods of time to reach the output, making it less unsuitable for online 

applications. And due to the significance of each system component, we cannot propose one model 

to fit all the components in the system. And choosing the best model structure is a time-consuming 

process. And here comes the optimization process role in automating the process of selecting the 

optimal model structure for each application. 

Each component model trained in this chapter was created based on the previous knowledge and 

expertise to specify the inputs and outputs. Therefore, the shown models are not fixed for each 

application. And the model structure will be changed based on the system and application that is 

being examined.  

The best model structure was first selected in the parametric study manually. The variables of each 

model were changed in each iteration, and the model testing and training error values were 

recorded. Later the model structure with the lowest error value was selected as the best model 

structure. Keep in mind that the lower the error values, the better the model is, and an error value 

of zero refers to a perfect model, and that case is not applicable in real-life applications. Moreover, 

ASHRAE standards require the data-driven model CV% value to be less than 25% for the models 

to be acceptable.   

The results of each model performance in terms of CV% and MSE shown in the results section are 

not fixed for each application. Instead, it only reflects the model's performance and how accurate 

the simulated outputs are against the actual output. 

Therefore, due to the significance of each component, the model’s structure and parameters 

presented in this research reflect the selected systems in this research. Thus cannot be replicated 

and needs to be adjusted if the application and the system type changes.  

The component models are linked later in the two-level optimization process discussed in chapter 

5 to predict the total system energy consumption.  
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Since the parametric study is time-consuming, for example, the cooling coil model took almost 

three days to complete all the iterations and select the best model structure. For this research, an 

optimization process to optimize the system setpoints every 15 minutes was proposed, as discussed 

in chapter 5. Therefore, the best model structure needed to be reached in a period of no more than 

10 minutes. Therefore, a model-level optimization process (MLO) was proposed to automate the 

parametric study and select the best model structure within the specified time frame. As a result, 

the results were reached in less than 10 minutes.  

Instead of only proposing the MLO process using GA, a parametric study was shown to validate 

the results where the results of the MLO process were compared against the one from the 

parametric study. Suppose the same results are found for the best model structure that means that 

the MLO process is accurate. If different results are found, the MLO process is considered faulty, 

and further examination of each model structure is needed.  

Finally, this research has validated the use of the MLO process that achieved similar accuracy 

values when compared against the one conducted by the parametric study.  

Figure 62 below shows the simulated data Vs. the actual performance of the fan power model. 

Since the data are collected in a 1-minute timestep, the figures are crowded and complex to 

examine for the entire three months discussed. Therefore, the figure shows ten days of performance 

only for clarity of the results. The figure shows how accurate the model was in predicting the actual 

performance.  
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Figure 62. Optimal results with simulated power vs. actual power for the testing period of 10 days. 
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Chapter 5 

Developing and test an integrated two-level performance optimization process 

5.1 Introduction  

Today, modeling and simulation are established for addressing the problems related to energy 

consumption in buildings. As a result, energy performance modeling, optimization techniques, and 

control strategies are gaining ground in research applications. Unfortunately, some of the available 

tools are not suited to be used for time-dependent applications. However, some artificial 

intelligence optimization tools are best suited for those applications. Because they have the 

compatibility to adjust optimal variables setpoints, those tools are fast, adaptive, and capable of 

promptly solving time-dependent algorithms related to the HVAC performance.  

One of the most popular optimization tools broadly used to optimize the performance of HVAC 

systems is genetic algorithms (GA). As previously discussed in chapter 2, GA will be used as the 

optimization tool selected for this research due to its capability of handling a wide range of 

variables at one time, the ability to work with complex simulation programs, proven to be effective 

in solving complex problems that cannot be easily solved with traditional optimization methods. 

In addition, it is a publicly available user-friendly tool. The GA was used for the model-level 

optimization (MLO) and the whole system-level optimization (SLO). The objective function of 

the GA and the overall objective function of this research is finding the minimum energy use of 

the selected HVAC system while maximizing the system efficiency.  

The data used to evaluate the optimization process are simulated data of a five zones office building 

using energy plus. While the GA optimization algorithm was developed using MATLAB. The 

optimization process developed in this research will optimize the system performance for minimal 

energy use over the period of fifteen minutes. After implementing the proposed optimization 

process in this chapter, the system that will be evaluated is the chilled water VAV system. Due to 

its being a popular system in commercial buildings and its complexity, it will allow for more 

discussion of the results and thoroughly points the main findings. In contrast, the DX system will 

be evaluated in future work.   
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The MLO process was previously described in chapter 4. Where the system component modeling 

and optimization process was explained thoroughly, this chapter will examine the SLO process 

and how the two optimization levels are integrated.  

The proposed integrated two-level optimization process in this research will contribute to the field 

of modeling and optimization of the HVAC systems performance in many aspects. The main 

contributions from it are: 

1) Reduce the total system energy consumption while improving the zone thermal comfort 

and therefore reduce the cost of operation and the environmental benefits from lowering 

the usage of the system that means less greenhouse gas emissions.  

2) Introduce the demand control method and implement it in the optimization process after 

receiving the demand response signal from the utility companies. 

Where the demand control is a process that is applied to the demand side to influence and modify 

the electricity consumption power profile. It is a partnership between the supplier and consumer 

sides, aiming to maximize mutual benefits.  

Demand control is a process of planning, implementing, and monitoring, aiming to modify utility 

usage by alleviating the peak load demand instead of increasing the power generation and 

enhancing the transmission and distribution network.  

Where electricity companies nowadays are raising the price of electricity kWh in peak hours. 

Therefore, implementing the demand control to regulate the individual's electricity use through 

peak hours will have several benefits for the consumer, the provider, and the environment. 

Through, resulting in financial savings for the consumers without trading the thermal comfort to 

extent levels. Also, energy and cost savings for the utility supplier by meeting the demand load 

without increasing the power plant and production process. Lastly, the demand control process 

significantly impacts the environment by reducing greenhouse gas emissions, especially during 

peak hours. 

Demand control methods include: 

• Demand response: The change in the electric usage of the consumers from their normal 

consumption behavior in response to the change in the electricity prices.  
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• Traditional energy efficiency methods: Decreasing the demand during the peak load 

through several ways. Such as replacing the type of lighting with more energy-efficient 

ones or placing automatic thermostats in the zones.   

• Energy conservation methods: Reducing the utility usage during the peak load through the 

change of the behavioral consumption of the building. Such as lowering the thermostat 

temperature during the peak load to reduce the use of the HVAC system. 

There are multiple ways for the supplier to encourage the consumers to implement the demand 

control methods, such as Incentive-based programs (IBP) and price-based programs (PBP). In the 

traditional IBP method, the consumers get paid for their participation in the demand control. This 

participation payment can occur in terms of a utility bill credit or future discounts as a reward for 

their participation. In contrast, market-based IBP is where the participants are being rewarded 

money for their performance. In addition, in the PBP programs, the electricity price is not flat, and 

it fluctuates, reflecting the real-time cost of electricity. 

For our research, we will be implementing the demand response method and energy conservation 

methods with the proposed optimization process. A methodology was proposed that responds to 

the demand signal from the electricity companies for the peak hour usage when the electricity 

prices increase. The system will respond to this signal with an energy conservation method that 

reduces the zone flow rate to less than the minimum. Under normal conditions, each zone's 

minimum zone flow rate is 20%, while through the peak load where the demand signal is received, 

the zone flow rate will drop to 10%. This approach will lower the energy consumption for that 

period, as shown in the results section. This demand response method will happen for only a few 

hours through the peak load and not for extensive periods. Therefore, the building will not be 

starving for air for an extended period, and it will not affect the thermal comfort. The thermal 

comfort can be met for each zone by increasing the outside airflow rate ratio to maintain healthy 

breathing zone levels. Also, decreasing or increasing the supply air temperature depending on the 

heating or cooling load to try and maintain the zone setpoints. 

3. The proposed optimization process had an occupancy scheduling method implemented in 

it. Where most of the base case systems nowadays do not count for real-time occupancy, 

that will eventually affect the ventilation flow rate of the system. Thus, the constant 

occupant count in the base case designs will require more ventilation flow rate, increasing 
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the total system flow rate and requiring more energy. On the other hand, implementing the 

accurate, current occupancy schedules method will reduce the ventilation rate to the 

required flow rate. This approach will enhance the sustainability goals of ASHRAE 62.1 

by optimizing the zone level ventilation ratio and fulfilling the gap in this related code. 

While at the same time reduce energy usage. The occupancy schedule can be updated based 

on real-time knowledge of the occupant's count, zones type of use, and schedule. For 

example, in conference rooms and meetings times or lecture rooms and when there are 

lectures in the schedule against when it is empty. And the occupant behaviors such as 

lunchtimes and breaks, etc. Another method to get an accurate occupant count is CO2 

sensors if the building is equipped with ones.  

4. Occupancy sensors implementation. The other approach implemented in the optimization 

process is the occupancy sensor readings against the baseline cases that do not count for 

occupancy sensors in adjusting the system performance, such as flow rates and ventilation 

ratio. This approach will crucially affect the zones' ventilation flowrates and zones 

minimum flowrates. For example, some zones might not be occupied at specific times 

during the day. Updating that information in real-time applications will lower ventilation 

flow rates and reduce total energy consumption. 

5. Zone Minimum airflow rate setpoint. Optimizing the minimum zone air flowrate setpoint 

will be crucial to reduce the reheat energy. The codes and regulations suggested using 20% 

of the total design flow rate as a minimum flow rate for each zone. In this research, the 

zone minimum flowrate range that was examined is from 20-30%. Savings in the reheat 

energy will be reviewed and discussed later. 

Therefore, to better examine the benefit of those contributions, this research will analyze the 

optimization process's results under normal conditions and under demand response.  

Lastly, to test the proposed integrated two-level optimization process methodology and its 

contributions since it is designed to be implemented in commercial buildings. Also, because there 

was a lack of access to an actual building with accurate performance data available, five zones 

simulated office building was selected to be the baseline case of this study to evaluate the process.  

Therefore, a simulation building using Energyplus was used. As a result, the accuracy of the whole 

system optimization process can be tested, and actual energy savings can be calculated.  
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5.2 Methodology 

The innovative integrated whole system optimization process developed in this research will 

optimize the system setpoints over a short period of optimization (15 minutes). First, the genetic 

algorithm is used to find the energy used by each system component in the model level (MLO). 

Later, the integrated components model together will form the system model. And the total system 

energy use will be calculated as the output of the system model at each time step in response to 

the controller setpoints and operating modes. Later, the system-level optimization process (SLO) 

using GA will optimize the total energy consumption by optimizing the setpoints at each time step 

to reduce the energy consumption at the next time step (15 minutes).  

The SLO process developed in this research using genetic algorithm will optimize the system 

operation set points at each timestep. The setpoints (problem variables) that are selected to be 

optimized in this research are:   

• The optimal supply air temperature setpoint,  

• duct static pressure setpoint,  

• minimum zone airflow setting,  

• minimum outdoor air ventilation rate,  

Optimizing those set points at the current operation time step will reduce the energy consumption 

for the next timestep. The SLO process will use the current system load to calculate the total power 

and energy consumption. Later an output file with the optimal operation setpoints values will be 

generated by the GA. This output file also includes the system energy consumption and thermal 

comfort at that time step. The energy consumption consists of the total power, chiller power, fan 

power, pumps power, heating energy, reheat, and constraints. The optimization process controls 

and initiates the “HVAC simulation model,” where the output file is generated.  

Those outputs will be sent back to the “system model” to serve as the new setpoints for the next 

time step instead of the constant design setpoints. Next, the energy use and thermal comfort are 

calculated at the system model and sent back to the optimization process. This process will be 

repeated throughout the whole operation period. Optimizing those setpoints over operation time 

will help reduce the energy consumption at every time step, resulting in more energy and a cost-

efficient building system.  
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GA controls the optimization process. Were the size and population of the GA were predefined. 

Those GA variables are usually specified based on previous knowledge and the complexity of the 

topic that is being examined. For our research purpose, the GA population of 1000 and 2500 

generations was selected. Figure 63 shows a schematic of the whole system-level optimization 

process using GA.  

 

Figure 63. A schematic of the SLO process.  

This SLO process is fast and efficient. The time needed to complete the process depends on the 

number of variables specified, number of generations and GA populations, and number of data 
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points. This process was tested using a regular desktop when each iteration took less than 10 

minutes to complete. This time can be reduced using faster and more suitable processors. This 

short computation time allows the proposed optimization process to be implemented for online 

applications.  

5.2.1 Process setup 

In developing the whole system integrated optimization process proposed in this research, accurate 

modeling and optimization of the system components (MLO) was crucial. Since those 

components’ models impact the accuracy of the objective function of the optimization process, 

this component modeling and optimization process was thoroughly discussed in chapter 4. Those 

component models integrated will be the central part of the system model. The system-level 

optimization process, besides the component models, will include a few other models and 

calculations as follow: 

• The system basic calculations model calculates the zones' humidity ratios, supply, return, 

mixed air temperatures, and economizer condition (on/off).   

• Constraint model that specifies the design constraints and assigns a power penalty. 

• An HVAC simulation model to calculate the total power. This model will read the user 

inputs like the system loads, outside air conditions, design system parameters like 

efficiencies and pressure drop, schedule, and electricity demand signal.  

• Total pressure model that specifies all the design static pressure values and limits.  

• A ventilation model, that specifies the zone minimum air flowrate requirements based on 

ASHRAE 62.1 standard. This model will call for the occupancy sensor signal, schedule 

number of people, and demand signal.  

• The zone model specifies all the zones' design conditions and requirements in terms of 

supply air temperature, sensible load, minimum airflow rate, and reheat loop.   

• System model to simulate total energy use as a function of optimal variables. This model 

will specify the variables optimized in this research. At the same time, call for all the 

component models previously described and all the models and calculations above.  

Figure 64 shows a schematic of the whole system-level optimization process.  
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Figure 64. optimization process schematic diagram.  

The proposed integrated two-level optimization process is designed to be implemented in 

commercial buildings. However, this research tested the method using a simulation building due 

to the difficulty of accessing an existing building equipped with a BAS system. Therefore, the 

technique can slightly change when implemented in actual buildings against when implemented 

in simulation buildings, as shown in figure 64 below.  
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Figure 65. The integrated two-level optimization process testing approach.  

The component models that are proposed in chapter 4 are integrated to form the system model. 

The system model output is the total system energy consumption. The proposed integrated two-

level optimization process is designed to optimize the system setpoints every 15 minutes to reduce 

the total system energy consumption as the output of the system model. To test the proposed 

optimization process and examine the saving results, the process can be implemented in a 

simulated or actual building and the process will be as follow:  

In actual building implementing the integrated optimization process will start from step A in figure 

66 below as follow.  

• The loads of the building will be estimated at the first timestep required to start the process. 

Later, the system airflow will be calculated to be used as an input for the remaining models.  

• For the next timestep, the loads will be predicted at the sensible and latent load model after 

getting all the system performance inputs from the first timestep.  
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• The loads will be assumed constant for the next timestep. As well as the system model 

output, the total system energy consumption, will be calculated for the current timestep and 

assumed to be constant for the next timestep.  

• The integrated optimization process will optimize the system setpoints for the next timestep 

to reduce that energy consumption. The process will be repeated every 15 minutes for the 

selected period of operation. Assuming that the loads are constant for the next timestep will 

be acceptable due to the small optimization period. The sensible load depends on the 

system airflow and temperature difference. In contrast, the latent load depends on the 

people count where not many changes in the weather conditions and the system airflow 

rate can happen in 15 minutes period.  

In simulation buildings, as discussed later in this chapter, implementing the integrated optimization 

process will start from step B in figure 66 below as follow.  

• In the simulation buildings the building loads are provided by the simulation software. 

Therefore, there is no need to predict the loads for this case.  

• First, the loads will be collected as part of the data collection process every 15 minutes.  

• Later, the loads will be fed manually to the code for every timestep, replacing step A.  

• Finally, the rest of the process will perform in the same way where the zone model will 

calculate the system flow required as an input for all the component models. And the total 

system energy consumption for the next timestep will be calculated.  
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Figure 66. The integrated two-level optimization process testing approach for both actual building and 

simulation buildings. 

The SLO process, using GA, will call the HVAC simulation model to calculate the total power 

consumption using equation 38 below.  
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𝑇𝑜𝑡𝑎𝑙 = 𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 + 𝑐ℎ𝑖𝑙𝑙𝑒𝑟 𝑝𝑜𝑤𝑒𝑟 + 𝑓𝑎𝑛 𝑝𝑜𝑤𝑒𝑟 + ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑒𝑛𝑟𝑔𝑦 +

𝑟𝑒ℎ𝑒𝑎𝑡..…………………………. (38) 

In our case study, which will be described in the next section, the building is equipped with an air-

cooled electric chiller and a gas furnace. It was noted that the chiller power and fan power are 

electric output measured in kWh. At the same time, the heating energy and reheat are measured in 

BTU. Therefore, to examine the total power correctly, the units need to be uniformed first.  

According to (EIA, 2021), the price of kWh of electricity in Ohio is 9.78 cents/ kWh. In contrast, 

the average Ohio price of natural gas is $0.85 per therm. The energy use was converted to the total 

cost as in equations 39 and 40 below. Later in equation 41, the total cost was divided by the kWh 

price to get the equivalent energy use in one form (kWh). As discussed in the results section, this 

approach was implemented in the optimization process to calculate energy use accurately.   

𝑇ℎ𝑒𝑟𝑚 = 100,000 𝐵𝑇𝑈…………...........….. (39) 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = (𝐶ℎ𝑖𝑙𝑙𝑒𝑟𝑃𝑜𝑤𝑒𝑟 + 𝐹𝑎𝑛𝑃𝑜𝑤𝑒𝑟) ∗ 0.10 + ((𝑎𝑏𝑠(𝑅𝑒ℎ𝑒𝑎𝑡) + 𝑎𝑏𝑠(𝑞ℎ𝑡))/

100000) ∗ 0.85 + 𝑃𝑜𝑤𝑒𝑟𝑃𝑒𝑛𝑎𝑙𝑡𝑦   ……….. (40) 

𝑇𝑜𝑡𝑎𝑙 = 𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡/0.10 ……………..……. (41) 

After specifying all the inputs in the user input file, as shown in the data collection section, and 

import into the integrated whole system optimization process as a one-time configuration. This 

will happen at the HVAC simulation model; the code is shown in appendix H. Also collecting all 

the building loads provided by the simulation software (EnergyPlus). Those loads will be imported 

manually to the HVAC simulation model, as shown in the first part of the code (lines 3-7). Those 

loads will be changed every 15 minutes based on the loads collected. Keep in mind in an actual 

building the process will predict the building loads as previously described. When the process is 

linked to the BAS system that collects the system airflow, the process will call for the system flow 

(lines 12-16 in the code) and allow for the process to predict the sensible and latent load 

accordingly.  

The SLO process will calculate the total energy consumption and the optimal variables (setpoints) 

at each time step. At the same time, it considered all the design constraints imposed by the codes 

and regulations for the system design. For example, the range of temperature examined in this 
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research is 55- 65 Fo for the supply air temperature. While the fan duct static pressure range was 

0.2-2.5 in. w.g. Any zone with less than 0.2 ducts static pressure will be starving for air, and that 

will cause for termination of that iterations.  

5.2.2 Data collection and building description  

For this research, a medium office building of 53660 ft2 located in Cincinnati, OH, will be 

simulated using Energyplus software. The main goal of this simulation process is to test and 

validate the proposed integrated optimization process. In addition, building performance data was 

required as the user input for the optimization process was collected. Those data are total, sensible, 

and latent load, system flow rates, occupancy schedule, simulation weather conditions, ventilation 

flow rates, supply, return, and mixed air temperatures and humidity ratios.  

The building is a three-story 53,660 ft2 (163.8 ft x 109.2 ft) medium office building. The floor-to-

floor height is 13 ft. The floor-to-ceiling height is 9 ft (4 ft above the ceiling plenum) with a 

window to wall ratio of 33%. The glazing still height is 3.35 ft. The windows are evenly distributed 

along four building sides. And there is no shading provided.  

The thermal zoning of the building is a core and perimeter zoning. The percentage of the floor area 

is 40% perimeter and 60% core. Figure 67 is a footprint of the building's thermal zoning. 

Openstudio software was used to generate the building’s thermal zoning layout and geometry for 

better graphical visualization that was not an option in Energyplus. 
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Figure 67. Thermal zoning footprint.  

The HVAC system types used are a gas furnace used for heating and a packaged air conditioning 

unit for cooling. At the same time, the distribution and terminal units that are used are VAV 

terminal boxes with dampers.    

The HVAC design condition is a thermostat setpoint of 75 Fo for cooling and 70 Fo for heating. At 

the same time, the thermostat setback is 80 Fo for cooling and 60 Fo for heating. The supply air 

temperature is a maximum of 104 Fo and a minimum of 55 Fo. Figure 68 shows a schematic of the 

packaged chilled water VAV unit that serves the five zones and how they are connected. Each 

floor is equipped with a separate and identical VAV packaged unit.  
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Figure 68. The layout of the packaged VAV unit that serves each five zones.  

Since the building is large and contains 15 zones, the time and processor capabilities required to 

optimize the performance of such a building are extensive. In comparison, each floor includes five 

zones and is equipped with a separate VAV packaged unit that gives it the ability to serve as a 

separate floor. Therefore, only one floor was selected examined for this floor, and the building is 

treated as five zones with one packaged unit, a chiller, and a gas furnaced boiler. Figure 69 shows 

the building geometry and how the other floors were excluded in the simulation process.   

 

Figure 69. The building geometry. “Source: OpenStudio software”  
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The zones patterns and conditioned spaces are shown in the following table: 

Table 8. Conditioned/ non-conditioned zones 

Zone Area [ft²] Conditioned 

[Y/N] 

Space type Total 

occupants  

Zone 1 “Core” 10,588 Yes Office space 53 

Zone 2 2,232 Yes Office space 11 

Zone 3 1,413 Yes Office space 7 

Zone 4 2,232 Yes Office space 11 

Zone 5  1,413 Yes Office space 7 

PLENUM 17,878 No   

The building was simulated to be located in Cincinnati, OH. The weather file used in the simulation 

process was (Weather File>>Cincinnati Municipal Ap Lunki OH USA TMY3 WMO#=724297). 

Table 9 below shows the location information.  

Table 9. Location weather information.   

Data Value 

Latitude 39.10 

Longitude -84.4 

Elevation 489 (ft) 

Time Zone -5.0 

North Axis Angle 0.00 

ASHRAE Climate Zone 4A 

Table 10 shows the minimum, maximum, and average dry bulb temperature as extracted from 

the weather file for analysis. Note the values in the file were in C0 units and were converted into 

imperial units.   
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Table 10. Monthly statistics for dry bulb temperatures in Fo. 

Month Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec 

Max 55.94 66.92 71.96 80.06 86.9 87.98 97.88 93.2 89.96 84.02 71.96 64.94 

Min 3.02 1.94 10.94 33.98 39.92 42.98 53.96 57.2 41 33.98 24.98 6.08 

Daily 

Avg 

31.64 32 42.8 56.48 63.32 68 77.36 73.94 65.12 53.6 48.02 36.32 

Table 11 shows the dew point minimum, maximum, and average dry bulb temperature in C0 

Table 11. Monthly statistics of dew point temperature in Fo. 

Month Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec 

Max 48.92 51.98 60.08 64.04 70.88 71.96 81.86 78.8 77 71.96 62.06 55.94 

Min -0.94 -10.1 -2.02 26.06 27.86 37.94 45.86 53.6 37.04 28.94 24.08 1.94 

Daily 

Avg 

24.62 22.64 31.46 45.14 52.34 59.54 66.38 65.3 57.56 47.48 40.28 27.5 

Also, by examining the heating and cooling degree days for a 50 and 65 Fo balance temperature in 

the weather file and the “ASHRAE 2005 ASHRAE Handbook - Fundamentals (SI)” weather file 

in appendix E. And the minimum, maximum, and average precipitation. Precipitation is the 

probability for water vapors to condense and form rain, and when it is too cold, it can form snow. 

It is noted that the cooling degree days around June, July, August, and September are the most, 

indicating that those are the hottest months in Cincinnati. Conversely, the heating degree days 

show that the coldest months in Cincinnati are January, February, November, and December. 
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Therefore, Cincinnati weather tends to be hot and humid in the summer and cold and snowy in the 

winter. 

To look at the system performance and calculating the expected system savings after implementing 

the proposed optimization process. We can’t examine the performance all year round since it is a 

time-consuming and redundant process. Instead, a day was selected from each season, reflecting 

the heating and cooling performance of the system. Therefore, the days analyzed are a day from 

January reflecting the winter system performance and a day from July reflecting the maximum 

system performance in the summer. Also, a day from October or May will be examined, reflecting 

the fall or spring performance.  

After simulating the specified building using EnergyPlus software to generate the building loads, 

supply airflow rates, supply, mixed and outdoor air conditions, and occupancy schedule at each 

time step of 15 minutes. Those variables are crucial for the proposed whole system optimization 

process to calculate the optimal system setpoints. After simulation, all the loads, building 

simulated data, and program reads were exported and organized into an Excel file. That system 

information was generated for a period of one year of system performance with a time step of 15 

minutes. Later, the three days selected earlier reflecting the system's performance in each season 

were highlighted and stored. The days were July 12th representing the summer performance when 

the system is in the cooling mode. January 9th representing the winter season and when the system 

is in the heating mode, and October 10th representing the fall season when the system will have 

simultaneous heating and cooling depending on the zone location and outside temperature. Figure 

70 shows a small example of the organized data in preparing for the optimization process 

execution.  
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Figure 70. A sample of the data collected and organized in the user input file. The data are from the 

month of July.  

The user input file that is a one-time configuration contains the weather condition for each month 

as extracted from the simulation weather file and the ASHRAE 2005 ASHRAE Handbook - 

Fundamentals (SI) weather file. In addition, the dry bulb and dew point temperatures were 

extracted from the file, while for the wet-bulb temperature, a psychometric chart was used to find 

the equivalent value. Table 12 shows the one-time configuration used for each month analyzed in 

this process.  
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Table 12. The one-time configuration for each month that is used in the design process.  

Month Condition Max Min Daily Avg. 

July Dry bulb 97.88 53.96 77.36 

Wet bulb 85.28 49.64 69.71 

Dew point 81.86 45.86 66.38 

January Dry bulb 55.94 3.02 31.64 

Wet bulb 51.98 2.3 28.94 

Dew point 48.92 -0.94 24.62 

October Dry bulb 84.02 33.98 53.6 

Wet bulb 75.2 31.87 50.24 

Dew point 71.96 28.94 47.48 

The integrated process will optimize the previously described setpoints in the methodology 

section. The setpoints will be optimized based on the loads and the weather conditions imported 

by the user input file. After running the optimization process for each timestep, an output file will 

be generated with all the process results in energy consumption and system performance measures. 

Those outputs will be fully described in the results section.  

5.3 Results 

After running the simulation process for the specified building using EnergyPlus software, the data 

were collected over a span of one year and recorded every fifteen minutes (timestep). The 

information that is now organized and sorted was then implanted into the proposed whole systems 

integrated two-level optimization process created using MATLAB software. The optimization 

process will be run every 15 minutes using the user input information for that timestep.  

For clarity of discussion, only one day from each season will be analyzed, reflecting the system 

performance in the cooling mode, heating mode, and simultaneous heating and cooling. The 

savings were calculated for each day in terms of kWh, Btu and the cost of operation in US dollars.  

The results of the optimized performance of the system will be compared against the standard 

practice used in most systems nowadays to calculate the proposed method savings. The setpoints 

vary based on the outside temperature in standard practice, as shown in figure 71 below. The 

supply air temperature is fixed to 55 Fo when the temperature outside is more than 65Fo, which is 
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the case in the summer season. And the supply air temperature is set to 65 Fo in the winter when 

the temperature outside is less than 55 Fo. However, in the fall and spring seasons, the temperature 

outside varies. Therefore, some practices set the supply air temperature to 60 Fo, while the best 

practices reset the supply air temperature based on the outside temperature.  

The relationship between the supply air temperature and the outside air temperature is linear, as 

shown in figure 71 below.  

 

Figure 71. Supply air temperature as a function of outside air temperature.  

The equation used to describe that linear relation and find the supply air temperature based on the 

outside air temperature is shown in equation 42 below.  

𝑆𝑃 =
(𝑆𝑃𝑚𝑎𝑥−𝑆𝑃𝑚𝑖𝑛)

(𝑇𝑜𝑚𝑎𝑥−𝑇𝑜𝑚𝑖𝑛)
× (𝑇𝑜 − 𝑇𝑜𝑚𝑖𝑛) + 𝑆𝑃𝑚𝑎𝑥 …………. (42) 

 Where: 

SPmax: Maximum design supply air temperature (70 F0) 

SPmin: Minimum design supply air temperature  

To: Actual outside temperature at the specified time step.  

Tomax: Maximum outside air temperature.  

Tomin: Minimum outside air temperature. 
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Therefore, the baseline case selected for this research will follow the best practice supply air 

temperature reset process instead of a fixed supply air temperature of 55 Fo throughout the year. 

The supply air temperature will be 55 Fo for the summer season and 65 Fo for winter. And for the 

spring and fall season, equation 42 will be used to reset the supply air temperature when the outside 

air temperature is less than 65 Fo and more than 55 Fo.  

While the duct static pressure of the fan is set to 2.5 in. w.g, all year round, the zone minimum 

airflow rate is set to be 20% of the design flow. At the same time, the occupancy of the standard 

practice is fixed throughout the operation period. And it equals the design maximum number of 

people for each zone. For the baseline case, as shown in the building description section, the 

occupancy for zone 1, 2, 3, 4, and 5 was 53 people, 11people, 7 people, 11people, and 7 people, 

respectively.  

The baseline case was run for the previously mentioned set points, and the system performance at 

each timestep was saved as the baseline case output file. The output file contains the total energy 

consumption and the system performance.  The total energy includes the total energy, chiller 

power, fan power, heating energy, and reheat. In comparison, the system performance consists of 

the Qsys (system flowrate), Qz (minimum flowrate for each zone), Qo (outdoor airflow), Qv 

(ventilation flow), and Tm (mixed air temperature). The standard practice results are the base case 

scenario.  

Later the system was run at each timestep with implementing the proposed integrated two-level 

optimization process. The optimization process proposed to optimize the system setpoints had a 

range of supply air temperature from 55-65 Fo. While the fan duct static pressure ranged from 0.2-

2.5 in. w.g. Also, the outdoor air ranged from 20- 30% of the design flow. Also, the optimization 

process had the demand control methodology applied to it. The demand control was selected to be 

from 1:00- 3:00 PM based on electricity peak hour prices. Finally, the output file of the 

optimization process was saved as the near-optimal performance scenario.  

While the occupancy schedule, unlike the fixed type for the standard practice, was implemented 

as a user input that varies throughout the operation period. The occupancy schedule proposed for 

this research is represented in table 13 below. For zones 3 and 4, the occupancy was zero for the 

period of 10:00-11:30 AM, assuming that this reflects the occupancy sensors' readings.  
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Table 13. Proposed occupancy schedule.  

Time of day Zone 

1  

Zone 

2  

Zone 

3 

Zone 

4 

Zone 

5 

Zone 

6 

Assumptions 

8:00-9:00 AM 10% 10% 10% 10% 10% 10% Beginning of the 

workday, gradually  

9:00-10:00 AM 30% 30% 30% 30% 30% 30% Beginning of the 

workday, gradually  

10:00-11:30 AM 95% 95% 0% 0% 95% 95% close to full working 

staff 

11:30 AM-1:00 PM 50% 50% 50% 50% 50% 50% Lunch break period 

1:00-4:00 PM 100% 100% 95% 95% 95% 95% close to full working 

staff 

4:00-5:00 PM 50% 50% 50% 50% 50% 50% End of workday, 

gradually 

5:00-6:00 PM 10% 10% 10% 10% 10% 10% End of workday, 

gradually 

 

Later the two results were compared together, and the savings were calculated. The results of each 

specified day will be thoroughly investigated. This research results have proven that implementing 

the proposed integrated two-level optimization process can significantly save system energy 

consumption while improving indoor thermal conditions.  

5.3.1 Energy Savings results  

1. July 12th results  

Figure 72 shows the sensible load for the five zones. It is noted that the zones are occupied and 

require cooling from around 7:00 AM until around 6:00 PM, where the load starts decreasing 

gradually until 8:00 PM, where it is almost zero after that. Therefore, the system will be analyzed 

from 8:00 AM until 6:00 PM when the system is fully operating. And this period is usually the 

standard commercial building operation schedule.  
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Figure 72. The five zones sensible load in BTU.  

Like previously mentioned, the baseline case will have a fixed setpoint. In comparison, the near-

optimal case will have optimized setpoints that vary for each timestep. Figure 73 shows near-

optimal supply air temperature and fan duct static pressure for July 12th.  

 

(A) 
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(B) 

Figure 73. (A) near-optimal supply air temperature against the baseline case. (B) near-optimal duct 

static pressure against the baseline case. 

It is noted from figure 73 (A) that the near-optimal supply air temperature is primarily close to the 

baseline case 55 Fo, which is expected in July, where mainly cooling is required. Except before 

10:00 AM, where the temperature is around 60 Fo and then starts dropping until it is fixed to 55 

Fo. This temperature rise is justified to save on the reheat. The zones are minimally occupied, and 

the cooling loads are low at that period, so the zone temperature starts dropping, which will trigger 

the reheat to be turned on. Raising the supply air temperature will require less chiller power and 

help maintain the zone setpoints as the boilers are typically turned off in the summer season, so 

reheat is not an option.  

While part (B) of the figure shows the near-optimal duct static pressure against the baseline case 

of a constant 2.5 in. w.g. It is noted that the near-optimal duct static pressure is always less than 

the baseline case, which means resulting in fan power savings.  

However, it is noted that the Ps have increased significantly from 1:00-4:00 PM, where values got 

close to the baseline case. Due to the building having a higher cooling load and 100% occupancy 

schedule during that period meaning more airflow rate is required. Later, the building cooling load 

has dropped, and the occupancy dropped to 50% from 4:00-5:00 PM, meaning the cooling load 



138 

 

drops and less airflow rate was required; therefore, PS started dropping again. It is noted that 

implementing the optimization process with demand control from 1:00-3:00 PM has helped in 

lowering the duct static pressure more. That is attributed to the demand control methodology of 

dropping the zone flow rate to less than the minimum for the selected period. Therefore, resulting 

in more fan power savings compared to the optimization process under normal conditions. Figure 

74 shows the system flow rate for the analyzed period.  

 

Figure 74. The system airflow rate for the day of July 12th.  

The trend in the total system airflow rate is expected and reflecting the zone cooling loads. Most 

of the system flow is from 1:00-4:00 PM when the building cooling load is higher and decreases 

afterward. Thus, we can see that the near-optimal performance and the baseline case are the same 

except for the early morning for the purpose discussed above and also when the demand control 

method is implemented.   

After examining the duct static pressure trends, the total fan power savings were analyzed. It was 

found that the total fan power savings after implementing the integrated two-level optimization 

technique were 16.7%, as shown in figure 75 below.  
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Figure 75. Fan power savings results when comparing the baseline case against the optimal 

performance.  

It is noted that the trend of the fan performance follows the optimization in the duct static pressure 

setpoint. The fan power of the optimized case was less than the baseline case through the day 

except from around 8:00-10:00 AM when the system airflow rate of the optimized case was more 

at this timestep. The higher flow rate in the early morning, as previously described, was due to the 

higher supply temperature that will help reduce the chiller power, but more airflow rate is required 

to maintain the zone setpoints. Also, implementing the demand control process affected the fan 

power savings significantly. Due to the minimum zone airflow rate reduction, the savings were 

16.7% and increased to 25.5% afterward.  

However, the ventilation flow rate required for each zone followed the occupancy schedule, as 

shown in figure 76 below. Therefore, most of the ventilation was required from 1:00-4:00 PM 

when the building is at 100% occupancy and starts to decrease afterward. That explains the peak 

fan power consumption around that period.  
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Figure 76. The system ventilation airflow rate for the day of July 12th.  

While the ventilation airflow rate for the baseline case was close to constant since the occupancy 

schedule was fixed for that scenario. Implementing the demand control process has increased the 

ventilation airflow rate due to minimizing the zone airflow rate. Therefore the percentage of fresh 

air required to maintain the codes and regulations requirements of healthy breathing zones has 

increased.  

Lastly, the chiller power was also calculated and compared to the baseline case. The savings in the 

chiller power was found to be 9.74%. Figure 77 shows the chiller power performance after 

implementing the optimization process against the baseline case.  



141 

 

 

Figure 77. The chiller power savings trend.  

The chiller savings were trending with the supply air temperature, the building load, and the 

occupancy schedule. The trend is almost identical in both cases since the load is the same and the 

occupancy schedule dominated the power savings where less fresh air was introduced that needed 

to be treated.  

The higher supply air temperature at 8:00-10:00 has helped in decreasing the chiller power. Later 

the chilled power increased from 10:00-11:00 AM when the building cooling load increased. 

Finally, at 1:00-4:00 PM, when the building cooling load is at its max, it is the peak of the chiller 

power consumption.  

Also, implementing the demand control process has minimally affected the chiller power savings 

by increasing it to 10%.  

Therefore, the total energy savings of the system after implementing the two-level optimization 

process was calculated to be 11.3% when compared against the baseline case.  

Also, implementing the demand control method into the optimization process has increased the 

total energy savings to 13.4%. Figure 78 shows the system's total energy savings for July 12th.  
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Figure 78. Total energy savings for July 12th.  

The previously analyzed results are shown in Table 14 below for better visualization of the results.  

Table 14. The energy savings for July 12th.  

Component Savings % under normal 

conditions optimization 

Savings % under 

optimization with demand 

control 

Total 11.3 % 13.4% 

Fan 16.7% 25.5% 

Chiller 9.74% 10% 
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2. January 9th results 

January 9th was chosen in this research as the day representing the winter season when the system 

will be entirely in heating mode. Figure 79 shows the sensible load for the five zones for January 

9th. The period of operation of the system that will be analyzed is from 8:00 AM to 6:00 PM. It is 

noted that all five zones require heating for that period. The heating load of the building is higher 

in the early morning due to the lower outside temperatures. It starts dropping at around 10:00 PM 

due to the increase in the temperature outside in the afternoon. 

 

Figure 79. The sensible load for the five zones in BTU. 

As previously discussed, as in the best practice, the baseline case will have fixed setpoints of 65 

Fo and 2.5 in.w.g duct static pressure. In other cases, buildings use a fixed setpoint of 55 Fo 

throughout the year, resulting in more energy consumption. Therefore, case analysis for this type 

of operation was examined. The results are shown in appendix G. In contrast, the near-optimal 

case will have the optimized setpoints, which will lower the total energy consumption calculated 

later. Figure 80 (A) shows the supply air temperature over time in (Fo) while (B) shows the duct 

static pressure in (in. w.g).  
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(A) 

 

(B) 

Figure 80. (A) near-optimal supply air temperature against the baseline case. (B) near-optimal duct static 

pressure against the baseline case.  
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Figure 80 (A) shows that the near-optimal supply air temperature is 65 F0 in the early morning due 

to the higher building heating load. Therefore, the maximum supply air temperature is necessary 

to meet the building load. However, the supply air temperature starts dropping slowly at around 

11:30 AM due to the decrease in the building heating load until it reaches the minimum of 59 F0 

at 12:15 PM. The drop in the supply air temperature is expected to save on the heating power at 

that period. Still, it is also anticipated to raise the reheat power necessary to maintain the zone 

setpoints. However, the savings in the heating power have exceeded the rise in reheat energy, as 

will be explained later.  

Part (B) shows the optimal duct static pressure (Ps) compared to the baseline case. The near-

optimal Ps is at its highest in the early morning from 8:00-11:30 AM, where the building heating 

load is at its highest, and the system flow rate is the maximum. Figure 81 below shows the total 

building load for January 9th in Btu/hr, explaining the duct static pressure performance trend.  

 

Figure 81. Total building load in Btu/hr.  

The Ps dropping does mimic the building load. In addition, implementing the demand control 

process has reduced the duct static pressure more due to decreasing the amount of minimum zone 

flowrate.  
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Unlike the near-optimal case, the baseline case has constant Ts and Ps. Therefore, maintaining the 

zone setpoint will become an issue when the building load drops to a specific value. Thus, the 

system will allow for more outside air to drop down the mixed air temperature. Unfortunately, that 

will result in excessive fan power and heating power usage in the baseline case scenario. Figure 

82 shows the amount of fresh air introduced by the system in the baseline and near-optimal cases. 

Therefore, the airflow rate trend is explained by the supply air temperature.  

Also, implementing the demand control methodology has increased the outdoor airflow rate due 

to reducing the zone minimum flow rate, which requires increasing the percentage of ventilation 

airflow rate to maintain the code requirements and regulations.  

 

Figure 82. Outside air flow rate for January 9th.  

Therefore, the near-optimal case has resulted in a 38.6% savings in the fan power compared to the 

baseline scenario. Figure 83 below shows the fan power savings for January 9th.  
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Figure 83. Fan power savings for January 9th. 

While implementing the demand control process has increased the fan power savings to 41% by 

reducing the minimum zone airflow rate from 20% to 10%. Figure 84 shows the system airflow 

rate value over the period of analysis.  

 

Figure 84. The total system flow for January 9th.  
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The system airflow rate for January 9th is the same for all cases until 1:00 PM, when the supply air 

temperature is the same. Afterward, the system flow for the baseline case is lower due to a higher 

supply air temperature than the near-optimal case.  

A constant supply air temperature of 65 Fo requires more heating energy, unlike the optimized case 

with a lower supply air temperature resulting in lower heating energy consumed by the boiler. Still, 

it will result in increasing the reheat energy needed to maintain the zone setpoint. Therefore, 

implementing the two-level optimization process has resulted in 50% savings in the reheat energy. 

While implementing the demand control method has resulted in lowering that percentage of 

savings by almost 10.5%. The amount of heating energy savings was 44.7% after implementing 

the demand control method due to introducing more outdoor airflow rates required for ventilation 

that needed to be heated. Figure 85 shows the heating energy savings for the proposed optimized 

case against the baseline case.  

 

Figure 85. The heating energy for January 9th.  

The heating energy for the near-optimal case was the highest from 10:00-11:30 AM due to the 

higher heating load. And at 1:00-4:00 PM, when the occupancy schedule is almost 100%, more 
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fresh air is introduced to the system. While for the baseline case, it is after 1:00 PM when more 

fresh air was introduced to maintain the zone setpoint as previously explained. 

As mentioned, the reheat energy was anticipated to increase in the near-optimal case in favor of 

saving on the heating energy. Thus, the reheat energy increased by 5.4% for the near-optimal case 

when compared against the baseline case due to the lower supply air temperature starting at 11:30 

AM, as shown in figure 86.  

On the other hand, implementing the demand control method has lowered this percentage to 0.5% 

due to reducing the zone airflow rate and, therefore, less reheat energy required to treat that amount 

of air and raise its temperature to meet the zone setpoints. 

 

Figure 86. Reheat energy for the near-optimal case and the demand control method compared against the 

baseline case.  

Resetting the supply air temperature and duct static pressure have increased the reheat energy but 

significantly reduced the heating energy. Therefore, savings were still achieved. And the total 

energy savings for the system after implementing the two-level optimization process was 

calculated to be 19.9% when compared against the baseline case of constant setpoints.  
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Also, implementing the demand control method into the optimization process has increased the 

total energy savings of the system to 21.2%. Figure 87 shows the system's total energy savings for 

January 9th.  

 

Figure 87. Total energy savings for January 9th.  

Table 15 below shows the previously discussed savings in table form for clarity of the discussion.  

Table 15. The energy savings for January 9th.  

Component Savings % under normal 

conditions optimization 

Savings % under optimization 

with demand control 

Total 19.9 % 21.2% 

Fan 38.6% 41% 

Boiler 50% 44.7% 

Reheat -5.4% -0.5% 
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3. October 10th results 

Figure 88 shows the sensible load for the five zones on October 10th for the specified analyzing 

period from 8:00 AM to 6:00 PM. The building, as shown, requires heating in the morning until 

around 10:00 AM then cooling afterward when the outside temperature increases. The cooling 

load starts dropping again at around 6:00 PM to go back to the heating load when the temperature 

outside decreases. This is the case in most fall and spring seasons when the system simultaneously 

operates in the cooling and heating mode.  

 

Figure 88. The sensible load for the five zones in BTU. 

As previously mentioned, the baseline case should have fixed setpoints. However, when the 

temperature outside is less than 55 Fo, the Ts is set to 65 Fo. And in the summer season, when the 

temperature outside is more than 65 Fo, the Ts is set to 55 Fo. While in the fall and spring seasons, 

when the temperature outside is between those two values, the best practices use the temperature 

reset method previously described to set the Ts value. In contrast, other practices set it to be 55 Fo 

all season. Therefore, our research will follow the best practice supply air temperature reset method 

to decide the baseline case Ts value. Another case with the Ts set to 55 Fo will be shown in 

Appendix H. Figure 89 below shows the supply air temperatures used for the baseline case at each 
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timestep. The outside temperature that driven this reset method is shown in appendix G. 

Simultaneously, the duct static pressure for the baseline case was set to be 2.5 in. w.g.  

 

Figure 89. Supply air temperatures used for the baseline case on October 10th. 

Figure 90 shows the near-optimal supply air temperature after implementing the integrated two-

level optimization against the baseline case with the previously specified Ts.  

 

Figure 90. Near-optimal supply air temperature against the baseline case.  
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The system's performance in the spring and fall seasons is a little tricky, where it is hard to find 

the appropriate supply air temperature to meet the different heating and cooling loads throughout 

the day. Therefore, implementing the optimization process was anticipated to have significant 

savings compared to the summer and winter seasons due to its ability to accommodate the weather 

change outside and optimize the supply air temperature accordingly.  

As shown in figure 90, in the early morning, the building load was a heating load, and the baseline 

case Ts was at 65 Fo until 9:00 AM and started dropping until it reached the minimum of 55 Fo 

11:30 AM. Thus, this approach will require excessive heating energy consumed by the boiler but, 

at the same time, less reheat energy. Keeping in mind that this means less system airflow rate is 

required to maintain the zone setpoint.  

On the other hand, the near-optimal case introduced a lower supply air temperature for the same 

period until 11:30 AM. Meaning savings on heating energy will be achieved. In contrast, more 

reheat energy will be required to maintain the zone setpoint. And, more system flowrate will be 

introduced.  

After 10:30 AM, when the temperature outside is more than 65 Fo where the building requires 

cooling, the supply air temperature for the baseline case will be set to 55 Fo. This implies more 

power consumed by the chiller to maintain that low setpoint and lower system airflow rate. 

While for the near-optimal case, the supply air temperature after 11:30 AM, reached the minimum 

of 55 Fo to meet the building cooling load and started to increase again gradually until 6:00 PM. 

This slight increase in the supply air temperature will result in lower chiller power consumption. 

However, this will also happen at a higher system flow rate than the baseline case since we need 

to push more air into the zones at a slightly higher temperature to maintain the zone setpoint than 

the lowest air temperature, meaning more fan power.  

Figure 91 below shows the total system airflow rate that justifies our explanation above.  
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Figure 91. The total system flow rate for October 10th.  

Figure 92 shows the ventilation flow rate for the same operation period. Again, the ventilation 

airflow rate trend follows the occupancy schedule like in the summer and winter seasons. While 

implementing the demand control method has increased the percentage of ventilation required due 

to dropping the zone minimum airflow rate.  

 

Figure 92. The ventilation flow rate for the analyzed operation period of October 10th.  
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Figure 93 shows the duct static pressure for the analyzed period. The duct static pressure of the 

near-optimal case has a steady trend close to the minimum value of 0.2 in. w.g. in the early morning 

until 1:00 PM. That is due to the system supplying a lower Ts when the system is in heating mode. 

Therefore, less airflow rate is needed, which implies lower duct static pressure. 

 

Figure 93. Near-optimal duct static pressure against the baseline case. 

The duct static pressure increases after 1:00 PM with the slight increase in the supply air 

temperature while the system is in the cooling mode. Therefore, more airflow rate is required to 

maintain the zone setpoint, which implies more fan power.  

However, the near-optimal duct static pressure is significantly less than the fixed baseline case 

duct static pressure. Therefore, significant fan savings were recorded. The total fan savings 

recorded after implementing the integrated two-level optimization process was 70% compared to 

the baseline case.  

While implementing the demand control process has increased the fan power savings from 70% 

to 74% due to reducing the system airflow rate. Figure 94 shows the fan power savings for the 

analyzed period. The fan power savings follows the duct static pressure trend.  
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Figure 94. the fan power savings for October 10th.  

Increasing the supply air temperature after 1:00 for the near-optimal case when the system was in 

the cooling mode resulted in chiller power savings compared to the baseline case with a minimum 

supply air temp of 55 Fo. Therefore, the chiller power savings after implementing the optimization 

process was calculated to be 30.4%.  

Also, implementing the demand control process has increased from 30.4% to 32.4% due to 

reducing the system airflow rate. Figure 95 below shows the chiller power savings for the analyzed 

period.  
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Figure 95. The chiller power savings for October 10th.  

While slightly reducing the supply air temperature when the system was in the heating mode 

reduced the boiler's heating power when compared against the baseline case. The heating power 

savings were calculated to be 47%. While no changes were recorded after implementing the 

demand control process. Because no heating was required for the proposed implementation period. 

Figure 96 shows the heating power savings for the analyzed period.  
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Figure 96. Heating power savings for October 10th.  

As previously stated, dropping the supply air temperature for the near-optimal case until 1:00 has 

decreased the heating energy, but it also means requiring more reheat energy. At the same time, 

the higher supply air temperature of the baseline case does not necessarily imply requiring zero 

reheat energy. This is because the baseline case had lower system flow. As a result, the higher 

supply air temperature was not enough to meet the zone load. Therefore, more reheat energy was 

consumed to raise the supply air temperature and meet the zone setpoint. Thus reheat energy 

savings was still recorded after dropping the supply air temperature for the near-optimal case.  

The total reheat energy saving after implementing the optimization method was calculated to be 

2.3%. While implementing the demand control process has increased the percentage of savings to 

6.7%.  

Figure 97 shows the reheat energy saving for the analyzed period.  
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Figure 97. The reheat energy savings for October 10th.  

Lastly, the total system savings were calculated after uniforming all the units using the equations 

39-41 described in the methodology section. Thus, the total system savings for October 10th that 

was chosen to represent the fall season was recorded to be 32%.  

Also, implementing the demand control methodology in the integrated two-level optimization 

process has increased the total system savings from 32% to 34.4%. Figure 98 shows the total 

energy savings that were recorded for October 10th.  
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Figure 98. Total energy savings of October 10th.  

Table 16 shows the savings results below to clarify the discussion as previously presented for July 

and January analysis.  

Table 16. The savings for October 10th.  

Component Savings % under normal 

conditions optimization 

Savings % under optimization 

with demand control 

Total 32 % 34.4% 

Fan 70% 74% 

Chiller  30.4% 32.4% 

Boiler 47% 47% 

Reheat 2.3% 6.7% 
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5.3.2 Cost savings results  

From the energy analysis, we calculated the total energy savings for the chilled water VAV system 

component. The total energy savings was calculated as the sum of chiller power, fan power, heating 

energy, and reheat.  

The chiller power and fan power are measured in kWh per hour of electricity. The average kWh 

of electricity price in Cincinnati, Ohio, is 9.78 Cents. While the heating energy consumed by the 

boiler and the hot water reheat coils are measured in BTU, the heating price is 0.85 Cents per therm 

of natural gas.  

Therms are not SI unit, that is used to measure the consumption of natural gas. It is equivalent to 

burning roughly 100 cubic feet of natural gas. Therefore each therm is equal to 100000 BTU.  

The total energy consumption that is calculated by the optimization process, as described above, 

is the sum of two different components, kWh and BTU. Thus, an approach described in the 

methodology section to uniform the units before adding them together was introduced to sum the 

two.  

Therefore, this section will show the cost savings resulting from the energy savings achieved after 

implementing the integrated two-levels optimization approach without the demand control and the 

optimization process with the demand control. Furthermore, the savings will be discussed per each 

component and the total savings to better understand the discussion. To break down the cost 

savings, we will be looking at the portion of savings from each element to give a better idea of the 

most savings methods. This will help in realizing what factors most in the HVAC cost of operation 

savings, and therefore more research focus on that factor is recommended to improve the savings 

even more.  

1. July 12th cost savings  

As previously discussed, July 12th will be analyzed as the day representing the summer season and 

the system heating mode. The two levels optimization process was optimizing the setpoint every 

15 minutes.  So, the energy and cost savings were calculated cumulatively. Again, the operation 

period that was analyzed for savings is from 8:00 AM- 6:00 PM.  

For July 12th, implementing the integrated two-level optimization technique has dropped the 

chilled water VAV system's total energy consumption for the optimized period from 1068.98 kWh 
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to 948.986 kWh. So that resulted in lowering the cost of operating the VAV from $106.898 to 

$94.8986. So, if we assume that this saving trend will be consistent for the whole month of July, 

then the total savings in operating the HVAC system only will be around $375. 

While implementing the optimization process with the demand control method has reduced the 

chilled water VAV system total energy consumption for the optimized period from 1068.98 kWh 

to 926.276 kWh, therefore reducing the cost of operation from $106.898 to $92.63. Again, if we 

assume that this saving trend will be consistent throughout the month of July, the savings in the 

cost of operation is anticipated to be around $450 for the month of July only.  

Figure 99 shows the total savings for the analyzed day. The graph shows the near-optimal case 

total operation cost and the near-optimal case with the demand control method total operation cost 

against baseline case total operation cost.  

 

Figure 99. Total operation cost savings for July 12th.  

To break down the cost savings, we will be looking at the portion of savings from each component 

to give a better idea of the most savings methods.  
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Figure 100 shows the cost savings associated with the fan power. Implementing the optimization 

process has dropped the fan power consumption from 234.2279 kWh to 195.2566 kWh and, 

therefore, lowered the fan power electricity cost from $23.42 to $19.53.  

While implementing the demand control has increased the savings by dropping the fan power 

consumption from 234.2279 kWh to 174.4439 kWh and, therefore, decreased the fan power cost 

from $23.42 to $17.44. 

 

Figure 100. The fan power cost of operation for July 12th 

While implementing the optimization process have dropped the chiller power consumption from 

834.152 kWh to 752.972 kWh and, therefore, lowered the chiller power electricity cost from 

$83.42 to $75.30.  

While implementing the demand control has increased the savings by dropping the chiller power 

consumption from 834.152 kWh to 751.076 kWh and, therefore, lowering the cost of operation 

from $83.42 to $75.11, as shown in figure 101 below for cost savings.  
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Figure 101. Chiller cost of operation for July 12th 

2. January 9th cost savings  

For January 9th, implementing the integrated two-level optimization technique has dropped the 

chilled water VAV system's total energy consumption for the optimized period from 698.94 kWh 

to 559.861 kWh. So that resulted in lowering the cost of operating the VAV from $69.89 to $55.99. 

But, again, if we assume that this saving trend will be consistent for the whole month of January, 

then the total savings in operating the HVAC system only will be around $450. 

While implementing the optimization process with the demand control method has reduced the 

chilled water VAV system total energy consumption for the optimized period from 698.94 kWh 

to 550.958 kWh and, therefore, lowering the cost of operation from $69.89 to $55.10. Again, 

assuming that this saving trend will be consistent throughout the month of January. In that case, 

the savings in the cost of operation is anticipated to be around $500 for the month of January only.  

Figure 102 shows the total operation cost for the analyzed day. The graph shows the near-optimal 

case total operation cost and the near-optimal case with the demand control method total operation 

cost against baseline case total operation cost. 
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Figure 102. Total operation cost for January 9th. 

By looking at the major aspects that contributed to this savings, we notice that operating the boiler 

responsible for heating the zone and the reheating process was the most significant portion 

compared to the fan power cost savings.   

Implementing the proposed optimization technique has dropped the heating energy consumption 

for the optimized period from -2649307.7 BTU to -1327378 BTU. So that resulted in decreasing 

the cost of operating the boiler from $22.52 to $11.28. 

While implementing the optimization process with the demand control method has reduced the 

boiler energy consumption for the optimized period from -2649307.7 BTU to --1465378 BTU, 

reducing the cost of operation from $22.52 to $12.46. Figure 103 shows the cost of operating the 

boiler under normal conditions against the optimization process.  
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Figure 103. The boiler operation cost for January 9th.  

While the fan power savings came next, the optimization process helped drop the fan power from 

118.512 kWh to 72.779 kWh. So that resulted in lowering the cost of operating the fan from $11.85 

to $7.28. While implementing the optimization process with the demand control method has 

reduced the fan power from 118.512 kWh to 69.86 kWh, reducing the cost of operation from 

$11.85 to $6.99, as shown in figure 104.  

 

Figure 104. The fan cost of operation for January 9th.  
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3. October 10th cost savings  

October 10th was chosen as the day representing the fall season. In the fall and spring season, most 

of the baseline system operating under normal conditions tends to consume a lot of energy due to 

the difficulty of finding the appropriate setpoint when the outside weather conditions fluctuate 

throughout the day. Therefore, implementing the optimization process significantly saves those 

seasons since it considers the outdoor weather conditions when resetting the system setpoints.  

Implementing the proposed integrated two-level optimization process has reduced the system's 

total energy consumption on October 10th from 550.304 kWh to 374.042 kWh and, therefore, 

reduced the cost of operating the system from $55.03 to $37.40. If this trend stays consistent 

throughout October, the anticipated monthly savings are about $550.  

And implementing the demand control method with the optimization process has improved the 

savings even more. In October, the system's total energy consumption has dropped from 550.304 

kWh to 361.300 kWh, resulting in reducing the cost of operation from $55.03 to $36.13. Again, if 

this trend stays consistent throughout October, the anticipated monthly savings are about $600. 

The cost of operating the system on October 10th is shown in figure 105.  

 

Figure 105. The total operation cost of October 10th.  
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The most significant contribution to the cost-saving came from the chiller power savings. The 

chiller power consumption has dropped from 354.852 kWh to 246.993 kWh after implementing 

the proposed optimization process. Thus, the cost of operating the chiller has dropped from $35.49 

to $24.70.  

And implementing the demand control in the optimization process has helped increase the savings 

in the energy consumption to 114.912 kWh. Therefore, the cost of operating the chiller has dropped 

from $35.49 to $23.99. Figure 106 shows the chiller power cost of operation for the baseline case 

against the optimization process without the demand control and the one with the demand control.  

 

Figure 106. The chiller cost of operation for October 10th.  

The second significant contribution to the total cost savings came from the fan power, where the 

optimization process dropped the fan power from 54.19306 kWh to 16.21591 kWh. Resulting in 

lowering the cost of operating the fan from $5.42 to $1.62. While implementing the optimization 

process with the demand control method has resulted in reducing the fan power from 54.19306 

kWh to 14.09818 kWh. Therefore, reducing the cost of operation from $5.42 to $1.41, as shown 

in figure 107.  
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Figure 107. The coast of fan operation for October 10th. 

Third came the boiler energy consumption that is used for heating the spaces. The heating energy 

has dropped from -713917 BTU to -377544.7 BTU after implementing the proposed optimization 

process. Thus, the cost associated with operating the chiller has dropped from $6.07 to $3.21.  

Notice that implementing the demand control process has not changed the heating energy 

described previously in the energy analysis. Figure 108 below shows the cost of operating the 

boiler on October 10th.  

 

Figure 108. The boiler cost of operation for October 10th. 
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5.4 Discussion  

This chapter has discussed the proposed method of implementing the integrated two-level 

optimization technique that has two levels MLO and SLO. The MLO process was described in 

chapter 4 that shows a data-driven modeling and optimization technique for the HVAC system 

component. The chilled water VAV and DX system were modeled in chapter 4 but only the chilled 

water VAV system was tested in chapter 5.  

The building that was used to test the proposed integrated two-level optimization process is a 

simulation building. The building was simulated using EnergyPlus software. The building 

performance loads, and weather conditions were collected and imported in the optimization 

process created using MATLAB. The loads were imported manually because there was no 

platform connecting the two software for this type of application. However, we propose creating 

a platform that will ease the transition between the two in future work.  

On the other hand, in actual building implementation, no building loads will be available. Instead, 

the system airflow rate information will be available, and the total building load will be calculated 

at the sensible and latent load models.  

From the result section, we can clearly see that implementing the integrated two-level optimization 

process has resulted in significant savings in the energy consumption of the chilled water VAV 

system. At the same time, implementing the demand control methodology with the optimization 

process to shift the peak load when the demand response signal is received has improved the results 

even more.  

The proposed method has achieved savings in the system's total energy consumption ranging from 

13.4% to 34.4%. The most significant saving happened in the fall season when it was hard for 

systems operating under normal conditions to adapt to the change in the outside temperature 

resulting in excessive energy usage.  

The cost savings of implementing the integrated two-level optimization technique ranged between 

$400-600 a month. However, keep in mind that there is no capital cost for implementing this 

method. Furthermore, the proposed method can be easily implemented in the existing BAS system 

and reduce the total energy consumption while improving indoor thermal comfort.  
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The proposed optimization process was proved to be a time and cost-efficient method that can 

be implemented in several building types and systems to improve the system efficiency and 

thermal comfort levels.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



172 

 

Chapter 6  

Conclusion and future work 

This research was conducted to develop a computational data-enabled two-level optimization 

technique to reduce the building HVAC energy use in large commercial buildings, improve the 

whole system efficiency and maintain the occupant's comfort level. The research has examined 

two systems commonly used in commercial buildings, chilled water VAV systems and direct 

expansion systems (DX).  

The research proposed an innovative optimization method. The method integrated two levels of 

optimization. The first level of the process was a component modeling optimization (MLO) 

designed to optimize the model’s structure. The models were tested and trained and using actual 

performance data collected from an exciting system located in the BEAST lab at the University of 

Cincinnati, Cincinnati, Ohio. The model that held the lowest error value was selected as the best 

modeling structure. The error values were measured in terms of MSE and CV%.  

Accurate component modeling and optimization techniques are crucial for the accuracy of the 

whole system optimization process results. Therefore, all the component models will be integrated 

to form the system model that mimics the performance of the existing physical system.  

Several machine learning tools were compared to choose the best modeling tool to model the 

selected HVAC systems components. Therefore, the Support Vector Machine (AVM), Artificial 

Neural Network (ANN), and Aggregated Bootstrapping (BSA) were examined. First, the three 

modeling tools were tested and trained using the same data set to predict the same output. Then, 

the modeling techniques were compared in terms of their accuracy (R2) in predicting the output. 

For the SVM, ANN, BSA, the accuracy value in the testing period was 98.2%, 98.5%, and 99.3%, 

respectively. Also, the training time was the cutting edge in the model selection. The training time 

in seconds was 1349.3, 341.3, and 2335.1, respectively, thus, all the models held a high accuracy 

value, but the ANN training time was three times less than the rest. Therefore, we can conclude 

that all the described algorithms are good predictors and can be utilized in modeling the HVAC 

systems components. But the artificial neural network was chosen to be the tool used in this 

research since it was the fastest and less complex tool.  
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While the genetic algorithm was used as the optimization algorithm for the proposed two levels of 

optimization, due to its capability of handling a wide range of variables at one time, the ability to 

work with complex simulation programs, proven to be effective in solving complex problems that 

cannot be easily solved with traditional optimization methods, and it is a publicly available user-

friendly tool.  

After modeling all the components of the selected HVAC systems, a parametric study was 

conducted to choose the best model structure manually. Later the MLO was implemented to 

automate the process and validate the results. The MLO results were compared against the one 

conducted through the parametric study. The optimization process has supported the parametric 

results where similar results were found.  

It was found that for the chilled water VAV system, the best cooling coil model structure with 30 

neurons held an error value of 1.1059 and 0.017 in terms of CV% and MSE, respectively, in 

predicting the load. At the same time, the best fan power model structure of 20 number of neurons 

held an error value of 0.4256 and 0.0362 in terms of CV% and MSE, respectively. Also, the chiller 

was examined. The chiller power best model was at 15 number of neurons and held an error value 

of 3.0635 and 0.0101 in terms of CV% and MSE, respectively. 

For the DX system, all the system components were modeled as well. It was found that for the DX 

coils, the best model was at 20 number of neurons and held an error value of 0.456 and0.0102 in 

terms of CV% and MSE, respectively. While the DX fan model, the best model was at 15 number 

of neurons and held an error value of 0.1211 and 0.0031in terms of CV% and MSE, respectively. 

The previous values are not standard values for any type of application, but the findings of this 

research are based on its inputs and outputs and the selected datasets. The models can be adjusted 

to different applications and data sets and will hold different structure and error values. It was only 

showing a proposed methodology and used to test the accuracy of the MLO process. Also, these 

results have proved that artificial neural networks can be a valuable tool in modeling the 

performance of HVAC systems.  

The second level of optimization was the whole system-level optimization (SLO). Where all the 

optimized components models were integrated and optimized to form the “system model.” The 

output of the system model is the total energy consumption of the system at each time step. Later, 
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the two optimization levels are integrated to optimize the system setpoints that will reduce the total 

energy consumption.  

That is why the accurate component modeling and optimization technique is crucial for the 

system’s performance optimization. If the component models were not accurate, then the system's 

total energy consumption prediction would be faulty, resulting in less precise SLO performance 

when optimizing the system setpoints.   

The proposed integrated two-level optimization technique designed to be implemented in large 

commercial buildings was tested using a simulation building due to the lack of accessibility to an 

existing large system. The facility that is equipped with a chilled water VAV system was simulated 

using the Cincinnati weather conditions. A day from each season was chosen to be analyzed to 

show the result of the proposed method in optimizing the system performance in the cooling, 

heating, and both simultaneous heating and cooling mode.   

The proposed optimization process was applied to optimize the system performance by optimizing 

the operation setpoints every 15 minutes. The system setpoints that were selected to be optimized 

are the supply air temperature (Ts), duct static pressure (Ps), minimum zone air flowrates (Qz), and 

minimum outdoor air ventilation rate (Qv).  

The system setpoints were optimized while maintaining or improving the zone thermal comfort 

levels and ventilation requirements to comply with the codes and regulations. This research has 

implemented few approaches to enhance system performance and reduce total system energy 

consumption. (1) Implementing the demand response methodology with the optimization process 

to modify the electricity consumption power profile by alleviating the peak load demand when the 

demand signal is received from the utility-providing companies. (2) Implement the occupancy 

schedule inputs into the optimization process to account for the number of occupants at each time 

step and reduce the ventilation airflow rates to the required amounts. This approach will enhance 

the sustainability goals of ASHRAE 62.1 by optimizing the zone level ventilation ratio and 

fulfilling the gap in this related code, as well as reducing the total system energy consumption. (3) 

Implement the real-time zones occupancy sensor readings. This approach will crucially affect the 

zones' ventilation flowrates and zones minimum flowrates. (4) lastly, this research has 

implemented the method of zone minimum air flowrates setpoint rests. This approach will allow 
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this setpoint to be adjusted over the operation time instead of using the constant design minimum 

values. This method is crucial to reduce reheat energy consumption.  

Implementing demand control ways is getting more attention nowadays. It can help the consumer 

reduce operation costs without trading thermal comfort and energy and cost savings for the utility 

supplier by meeting the demand load without increasing the power plant and production process. 

Therefore, the results have shown the savings after implementing the optimization process under 

normal conditions Vs. With demand control proposed method.  

Implementing the proposed two-levels optimization technique has resulted in 11.3% savings in the 

total energy consumption that increased to 13.4% after implementing the demand control method 

for the day analyzed in the month of July. And for the month of January, when the system is in 

heating mode, the total energy savings was 19.9%. Therefore, the savings have increased to 21.2% 

savings after implementing the demand control method. While for the month of October, when the 

system is operating in both the heating and cooling mode simultaneously, the regular systems 

consume more significant amounts of energy due to the complexity of the typical operating 

methods in meeting the fluctuating loads throughout the day. Thus, the optimization process has 

resulted in 32% savings in the system's total energy consumption, and this percentage of savings 

increased to 34.4% after implementing the demand control method.  

This research has validated the use of the proposed optimization technique in improving the energy 

efficiency of exciting systems. As well as the capability of this method to be successfully 

implemented in online HVAC system applications. At the same time, developing several aspects 

of the industry.  

6.1 Future work  

The results achieved through introducing the integrated two-level optimization approach enhanced 

the HVAC system performance. However, multiple enhancements can be implemented to further 

extend and improve this research work for anticipated postdoctoral work. For example, introducing 

more advanced models and exploring other learning algorithms for modeling and optimization can 

possibly achieve different results. Also, exploring the possibility of optimizing other system 

setpoints, system equipment, and components other than the ones introduced in this research is 

another way to advance this work further.  The future work can include but is not limited to: 
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• Implementing the proposed optimization process in the DX system that was modeled in 

chapter 4. Examining the savings results and ways of improvement will be the first focus.  

• Investigating the ability to optimize the waterside setpoints like the condenser water 

temperature, the pressure drops of the waterside piping, the mixing air temperature 

setpoints that will trigger the heat recovery operation, and others.  

• If applicable, modeling and optimization of more complex equipment not introduced in 

this research, such as the cooling tower and a thermal storage unit.  

• Explore the other time of occupancy other than the period of operation examined in this 

work (from 8:00 AM to 6:00 Pm). Such as weekend and nighttime operations where the 

occupancy is almost zero, fresh air will drop considerably. Thus, optimizing the system 

setpoints during those periods will result in more significant savings than the ones achieved 

in this research for average working days.  

• The work introduced in this research is aimed to improve the performance of the existing 

systems. However, implementing the modeling and optimization method has a significant 

impact on a building’s energy performance. And the selection of efficient HVAC systems 

is vital at any design stage. Therefore, exploring the ability to introduce the simulated 

system performance, component modeling, and optimization that can accurately predict 

the interactions between the occupants and the equipment performance is vital. Therefore, 

exploring the proposed optimization process and its effect in the new building design stage 

and its impact on the energy consumption and the building footprint can be studied.  

• Explore the possibility of simplifying the proposed integrated optimization method and 

make it more user-friendly.  

• Simplifying the modeling and optimization strategy and smooth the transition between the 

proposed process and the building automation system (BAS).  

• Exploring a way to create a platform where the process can be linked to the simulation 

tools such as eQuest and EnergyPlus. And automatically read the user input without having 

to export the inputs and then introduce it manually to the process.  

• Discuss the method of implementing the process in the existing BAS systems. Therefore, 

the optimization algorithm will automatically read the system current load and setpoints 

and optimize the system setpoints for the next timestep in real online applications.  
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• Explore the ability to develop this optimization algorithm into an online user-interface 

software that will allow the public to access it online. Where the variables can be specified, 

and the system performance outputs will be calculated. This can be used for research 

purposes or by other engineering practices.  

• Use a higher processers speed to increase the GA populations and generations, which will 

more likely result in a more precise result.  

• Use other optimization tools such as Bee Colony Optimization, Ant Colony Optimiser, etc. 

And compare the results to the one achieved with GA.  
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APPENDIX A 

Data collection  

The following is a small sample of some of the performance data collected from the BAS and then 

transferred to Microsoft Excel to prepare for the modeling process. The data were used to create 

figure 34. 
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APPENDIX B 

MATLAB  

The following is a section of one of the scripts developed using MATLAB for the components 

data-driven models.  
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APPENDIX C 

Parametric study  

The following is a section of one set produced in the parametric study to manually select the best 

model structure. The data are for the DX fan models in predicting the fan power.  
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APPENDIX D 

MATLAB 

The following is a section of one of the scripts developed for the MLO process using MATLAB.  
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APPENDIX E 

Weather conditions 

The following are Cincinnati weather conditions from the 2005 ASHRAE Handbook - 

Fundamentals (SI). 
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APPENDIX F 

Data collection  

A sample of the building simulation performance data. Those were collected and organized in 

preparation to test the optimization process. The data are for one zone from the month of July and 

were used to create figure 68.  
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APPENDIX G 

Optimization process results 

January 21st different case analysis  

The following is a case analysis for January 21st, when the baseline case scenario has a supply air 

temperature setpoint of 55Fo. This case happens in some buildings, unlike the best practice that 

resets the supply air temperature to 65 Fo in the winter season as the case that was discussed in 

chapter 5.  

 

(A) 

 

(B) 

Figure 109. (A) near-optimal supply air temperature against the baseline case. (B) near-optimal duct 

static pressure against the baseline case. 
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Figure 110. Total energy savings for January 21st. The total savings for the typical optimization case was 

30%. While the total savings after implementing the demand control method increased to 32.6%.  

 

Figure 111. Fan power savings for January 21st. The total savings for the typical optimization case was 

69%. While the total savings after implementing the demand control method increased to 71%. 
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Figure 112. Heating energy savings for January 21st. The total savings for the typical optimization case 

was 33.7%. While the total savings after implementing the demand control method increased to 35.7%. 

 

Figure 113. Reheat energy savings for January 21st. The total savings for a typical optimization case was 

15.6%. While the total savings after implementing the demand control method increased to 19.6%. 
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APPENDIX H 

Optimization process results 

October 10th different case analysis  

The following is a case analysis for October 10th, when the baseline case scenario has a supply 

air temperature setpoint of 55Fo. This case happens in some buildings, unlike the best practice 

that resets the supply air temperature in the spring and fall season, as the case that was discussed 

in chapter 5.  

 

(A) 

 

(B) 

Figure 114. (A) near-optimal supply air temperature against the baseline case. (B) near-optimal duct 

static pressure against the baseline case. 
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Figure 115. Total energy savings for October 10th. The total savings for the usual optimization case was 

39%. While the total savings after implementing the demand control method increased to 40%.  

 

Figure 116. Fan power savings for October 10th. The total savings for the usual optimization case was 

65%. While the total savings after implementing the demand control method increased to 75.5%. 
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Figure 117. Chiller power savings for October 10th. The total savings for the usual optimization case was 

38.6%. While the total savings after implementing the demand control method decreased to 38%. 

 

Figure 118. Heating energy savings for October 10th. The total savings for the usual optimization case 

was 59.4%. While the total savings after implementing the demand control method decreased to 57%. 
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Figure 119. Reheat savings for October 10th. The total savings for the typical optimization case was 

8.7%. While the total savings after implementing the demand control method increased to 10.7%. 
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APPENDIX I 

Optimization process results 

The following are the values for the system airflow rate for July 12th, represented in figure 72. 
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APPENDIX G 

Optimization process results 

The following are the Supply air temperature reset calculations used to determine the supply air 

temperatures used for the baseline case at each timestep, as shown in figure 87.  
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APPENDIX H 

MATLAB 

The following are the scripts developed for the integrated two-level optimization process using 

MATLAB.  
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