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Abstract

The primary energy sources in commercial buildings are electricity that accounts for 61%,
followed by 32% for natural gas. According to EIA, the heating, ventilation, and air condition
systems account for about 25% of the total commercial building’s energy use in the US. Therefore,
advanced modeling and optimization methods of the system components and operation offer great

ways to reduce energy consumption.

Since HVAC systems modeling is a characteristic and challenging process thus, while developing
an HVAC system and component model, close attention should be given to the accuracy of the
model structure, model parameters, and constraints. So, the final selected model can accurately
deal with constraints, uncertainties, control the time-varying applications and handle a broad range

of operating conditions.

Also, the use of the optimization process to automate selecting the best model structure is crucial.
Because every component is different, we cannot propose one model to fit that specified
component in all systems. Choosing the best model structure is a time-consuming process. Here
comes the optimization process role in automating the process of selecting the optimal model

structure for each application.

This research will introduce an innovative method of modeling and optimizing HVAC system
operation to reduce the total energy consumption while improving the indoor thermal comfort
level. The data-driven two-level optimization technique introduced in this research will utilize the
use of real system performance data collected from the building automation systems (BAS) to
create accurate component modeling and optimization process as the first level of optimization
(MLO). Accurate component modeling techniques are crucial for the results accuracy of the
process of optimization the HVAC systems performance. Lastly, artificial neural network (ANN)

was chosen as the component modeling tool.

The second level of optimization utilizes the whole system-level optimization (SLO). Genetic
algorithm was selected as the optimization learning algorithm. Later, the two optimization levels

will be integrated together to optimize the HVAC system operation.

The proposed two-levels optimization technique has contributed to the field of modeling and

optimization of HVAC systems through several new contributions.



e Optimize multiple system setpoints. The system setpoints that will be optimized are the
supply air temperature (Ts), duct static pressure (Ps), minimum zone airflow rates (Q.), and
minimum outdoor air ventilation rate (Qv).

e Implement the demand control methodology with the optimization process to modify the
electricity consumption power profile when the demand response signal is received.

e Implement the occupancy schedule inputs into the optimization process to account for the
number of occupants and optimize the zone level ventilation ratio.

e Implement the real-time zones occupancy sensor readings. This approach will crucially
affect the zones' ventilation flow rates and zones minimum flowrates.

e Lastly, implement the method of zone minimum airflow rates setpoint rests. This method

will balance between ventilation requirements and reheat energy consumption.

The proposed optimization process was tested and validated, and savings were calculated. This
research has validated the use of the proposed optimization technique in improving the energy

efficiency of exciting systems.
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Chapter 1

Introduction

1.1 Background
In 2017, about 39% (or about 38 quadrillion British thermal units) of total US energy consumption
was consumed by the residential and commercial sectors, according to EIA (EIA, 2017). It was
found that in 2012 the space heating consumes most of the commercial buildings’ overall energy
(EIA, 2017). The advanced global revenue will also grow from $7.0 billion in 2014 to $12.7 billion
in 2023. Besides the electricity prices that are rapidly increasing and the increasing cost of
operating the HVAC systems in the buildings, the buildings are responsible for 44.6% of the total
CO2 emissions, which is the most considerable portion compared to 34.3% for transportation and
21.1% for the industry sector. Thus, the need for a better operation mechanism of those existing
systems becomes more crucial (Talib et al., 2018). HVAC systems are heating ventilation and air
conditioning systems responsible for heating and cooling the space and ventilation to maintain the
inhabitant’s comfort levels. HVAC systems are complex nonlinear systems that have different
variables as the parameters of that systems. Many studies have been done to fully understand those
systems and reduce their energy (ASHRAE, 2011). Even though the HVAC systems operate using
the same thermodynamics principles, they still have different applications depending on the

building type.

Chilled water HVAC systems are one of the most popular HVAC systems. They are sized for
numerous building types where careful consideration must be taken in the design process. They
are widely used in commercial, industrial, and institutional applications. And they come in all
shapes, sizes, and patterns. They are responsible for cooling the water as well as the process of
dehumidification. The chilled water system is one of the most widely used systems in the United

States commercial buildings. Figure 1 below shows a typical chilled water system.
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Figure 1. Schematic of a chilled water system.

The chilled water systems consist of the waterside as well as the airside. The chilled water systems’
waterside consists of the cooling tower, the chiller, pumps, pipes, and valves. The waterside is
responsible for cooling the water and send it to the airside. Simultaneously, the airside that is used
to condition and circulate the air is represented by the Air Handling Unit (AHU). The AHU usually
consists of the cooling and heating coil, fans/ blowers, dampers, and filters. The AHU can be

located outside the building on the ground or roof, inside the attics, mechanical rooms, etc.

Another popular HVAC system popularly used in commercial buildings in the US is the packaged
direct expansion system (DX). Those systems are responsible for about 0.74 quads or 54% of the
cooling primary energy consumption for commercial buildings and are used to cool nearly half of
all commercial spaces (Wiley and Sons, 2016). A Dx system consists of two central devices. The
condenser is located outdoor, and the evaporator is located indoors. A conduit connects the two
for refrigerant lines and wiring. The spilt systems can include one condenser connected to multiple
evaporator units to serve single or multiple zones under the same or different environmental

conditions (Seyam, S, 2018). Figure 2 shows a typical DX system schematic.
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Figure 2. Schematic showing the layout of a typical split DX system.

Since HVAC systems are a complex structure that consists of heat and mass transfer equipment,
they also consist of sensors and controllers that control several system variables. Those variables
are supply air temperature, supply air fan speed, duct static pressure, chilled water valve position,
and chilled water temperature. Thus, to predict the energy consumed by those systems, we need to
measure and model the system’s components from either measured data or from the knowledge of

previous physical laws and methods (Afram et al., 2014).

Nowadays, many resources show the process of designing the HVAC systems, especially the
chilled water systems for new buildings. (Bell et al., 2016, Olama A., 2017, Stanford et al.,
2011:2012, Khazaii et al., 2014, and Janis et al., 2014). Are some of the books that are available
now with dedicated chapters for the chilled water design. Those chapters specify the equation,
data, and rule of thumb methods with all the minimum and maximum values for the design process.
All those methods and equations can be used in the design process. This process is called a
“physical model” or a “forward model” to design the HVAC system in newly constructed

buildings.



Forward models are based on engineering principles and usually required detailed physical
information. However, using physical models in actual system operations requires detailed
physical information that may not always be available. In addition, it requires longer time to
complete the calculations that may exceed the optimization period. Therefore, the forward physical

models are rarely used for the applications such as real-time building energy system operations.

On the other hand, the “data-based models” do not need any information on the system. They can
simply be used for such real-time applications as real-time performance data are available in most
modern building automation systems BASs. Therefore, data-enabled model-based techniques may
be the most effective way to achieve optimally secured and demand flexible building energy

system operations (Afram et al., 2015 and Nassif et al., 2018).

Today, modeling and simulation are recognized techniques for solving energy consumption and
cost issues in several engineering fields. For example, machine learning techniques were used as
tools to predict the performance of HVAC systems. One of the machine learning tools that are
widely used nowadays is ANN (artificial neural networks). The current search for new models of
computing using neural networks is motivated by our desire to solve natural, intelligent tasks by
taking advantage of computer technology developments. Artificial Neural Networks (ANNs) are
nonlinear mapping structures based on the human brain's principal functions. They are potent tools
for modeling, especially when a given data’s mathematical relationship is unknown or not easily
discerned. Over the years, they have become the focus of attention, mainly due to their wide range
of applicability and the ease of working with complicated problems. Since McCulloch and Pitts’
first neural model, hundreds of different models were developed that are considered ANNs

(McCulloch and Pitts 1943).

While another popularly used modeling technique called support vector machine (SVM) was also
used to model HVAC systems’ performance for multiple purposes. SVM is one of the methods
that use supervised learning used for classification and clustering purposes. In general, SVM is
also extended to solve regression problems and thus support vector regression. A study conducted
by (Liang et al., 2007) presented a model-based fault detection and diagnosis method using SVM.
It was found that this method can help reduce the energy consumption of the system and the

maintenance cost. Moreover, maintain the health of the HVAC systems.



However, multiple data-based models have been developed and are now published. Thus, an
optimization process must be implemented to choose the best model and select between several
models to reduce energy consumption. Optimization is a process in mathematics that is used to
maximize and minimize a specific function. One of the most popular optimization methods is the
genetic algorithm (GA). GA is an optimization technique that is based on the theory of natural
selection. This process simply means considering a set of solutions to a problem and selecting the
best fitting solution. GA is implemented to minimize the cost and maximize efficiency (Arabali et
al., 2013). Previous studies proved GA to be an efficient tool for optimizing the HVAC modeling
process when implemented on a whole system and component levels. GA can provide up to 11%
of cooling energy savings. This value may vary depending on the systems and building type,

location, use, and current control methods (Nassif, 2014).

From this background, the overall idea of modeling, simulation, and optimization of HVAC was
discussed. It is clear that there have been lots of efforts in the field of modeling and optimizing
HVAC systems to reduce the energy consumed by those systems. There have been numerous data-
driven models and techniques designed to predict the performance of the HVAC component and
attempts to optimize its performance. However, there have been some shortcomings that are
associated with the previous studies. Some of those shortcomings are that the models were
developed on assumptions and metrics that needed to be justified. Some of the modeling
techniques used need to be further discussed and justify selecting this modeling technique and not
others. Some of those studies can also be marked incomplete because they focused on few aspects
of the systems and not the whole system level, affecting the results’ accuracy since the HVAC
systems are integrated entities. Moreover, some of those models are not flexible enough to be used

in other HVAC systems other than those specified.

Therefore, the use of the optimization process to automate selecting the best model structure
became crucial. Because every component is different, we cannot propose one model to fit that
specified component in all systems. Choosing the best model structure is a time-consuming
process. Here comes the optimization process role in automating the process of selecting the

optimal model structure for each application.



Thus, in this research, the gap in previous studies will be discussed and addressed. Moreover, an
overall integrated system-level performance modeling and optimization technique will be

proposed.

1.2 Objective

This research aims to develop a new integrated data-driven modeling and optimization technique
for better building HVAC efficiency. This goal will be achieved through three main objectives that
will address the primary goal by serving as pieces of the whole picture of an integrated, optimized

system.

1. Selecting the best modeling tool from multiple proposed ones

2. Create an accurate modeling and optimization technique to accurately predict the
performance of the HVAC system components. This is the first level of optimization
(MLO). The MLO process consists of two calculations loops. The inner loop is used for
the model parameter tuning and another outer loop for the proposed optimization process,

as shown in figure 3.
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Figure 3. Schematic of the proposed component model optimization process



A typical learning algorithm was used in the inner loop where the model’s parameters are
tuned. For this purpose, artificial neural networks were selected. And the variables that
were adjusted in the process are (1) input time delays, (2) feedback time delays, and (3) the
number of neurons (hidden layer size). At the same time, the model parameters are the
weight and bias. The tuning of the parameters will be completed on the whole testing data
set.

The outer loop is the proposed calculation to determine the optimal model structure. A
high-level optimization will be performed in this loop to select the best model structure
that produces the minimum error values in model prediction. This process will not replace
the typical learning algorithm. Instead, it will automate the process to deliver more accurate
predictions with lower processing time.

Propose an integrated two levels optimization technique for better HVAC system
performance. The process will include integrating the first level of optimization (MLO)
and the second level of optimization, a whole system performance optimization (SLO).
The proposed optimization technique will reduce the systems' energy consumption while
improving the thermal comfort levels of the zones. The optimization tool that was selected
to achieve this goal is the genetic algorithm (GA). Figure 4 below shows a schematic for

the proposed integrated whole system model optimization process.
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Figure 4. A schematic of the integrated optimization process.

1.3 Research gap

This section will discuss the gaps in previous studies that need to be addressed or better examined.

1.3.1 Using rule-based control strategies (engineering physical-based data) vs. model-based
approaches (actual performance and simulation data)

Modeling and simulation of building system performance have a significant impact on energy
savings. One drawback of component performance predictions that are being used now is using
physical-based estimated data. Estimated data does not correctly evaluate the component
performance because it does not account for many factors like building occupants. Therefore, using
actual performance data or simulation data for component modeling approaches will give more
accurate results. It will account for occupant behavior, operational inefficiencies, and interactive

effects that are difficult or costly to account for in building energy models (Mathew et al., 2015).



A study compared the design stage estimated data vs. the building’s actual performance using
NBI’s (new buildings institute) database of LEED-certified buildings. The study has found that
measured EUIs for 50% of the buildings deviated by about 25% from the projected performance,
with 30% significantly better and 25% significantly worse (Turner et al., 2008)

The simulated data or actual performance data can be used to develop data-driven algorithms that
can be used for more accurate and flexible predictions than the physical model’s estimation data.
Most of the buildings are now equipped with BAS (building automation system) to provide us with
an outstanding amount of actual building operation data (Xiao et al., 2014). However, most of the
researchers do not use those data for modeling systems' energy consumption. Instead, they tend to
use estimation data based on physical models and estimations, resulting in less accurate models.
Therefore, this research will focus on using existing building data to create accurate data-driven
models instead of using the rule method of operation (Sequences of Operation for HVAC System)

stated by ASHRAE guideline 36 (ASHRAE 36, 2018).

1.3.2 Accuracy of data-driven models and optimization technique significance

An adequately identified model can provide accurate or close to accurate results and, at the same
time, may require minimum calculations time (Afroz et al., 2018). Therefore, creating an accurate
model through accurately identifying their parameters became crucial. Parameter identification,
influenced by input data, excitation signals, and model structure, is essential in system
identification accuracy and efficiency (Agbi et al., 2012). Even though parametric testing methods
are crucial to determine the system order, there is still a lack of a methodical approach for the
model structure selection, order determination, and parameter identification (Li et al., 2014). Most
existing studies nowadays use the trial-and-error approach to decide on the model structure, order,
and parameters (Afroz et al., 2018). While the HVAC system, like many other types of process
controls in certain features like nonlinearity, time-dependent, time-varying system dynamics,
insufficient data, complex interactions between the components, and limited supervisory controls.
Therefore, the HVAC system’s modeling is a very characteristic challenging process (Afram et
al., 2014). Thus, developing models that can accurately deal with constraints, and uncertainties,
control the time-varying applications and time delays, and handle a broad range of operating

conditions became crucial.



As previously stated, the HVAC components are complex nonlinear components. And every
component is different. Therefore, we cannot propose one model to fit that specified component
in all systems. Choosing the best model structure is a time-consuming process. Thus, an
optimization process needs to be implemented to select the best model and choose between several

models to reduce energy consumption (Kusiak et al., 2010).

1.3.3 Considering the whole building as one zone

Most of the available studies nowadays in the modeling and optimization of HVAC systems
consider the whole space as a single zone or use a single room to carry out the experiment (Afroz
et al., 2018). However, only a few studies have considered the multi-zone. There are essential
factors that are hardly being addressed when using the whole building as a single zone. One of
them is the effects of thermal interactions, like convective heat transfer, between the zones.
Therefore, a study was conducted to examine an ANN multi-zone-based model created to evaluate
the non-residential buildings’ thermal comfort index. The study has found that considering the heat
transfer between zones has increased the energy efficiency and thermal comfort (Garnier et al.,
2014). Another study using an ANN multi-zone-based model examined factors like mechanical
cooling, ventilation, weather conditions, and heat in a multi-zone building. The study also
discussed the importance of heat transfer between the zones by comparing the single zone’s
accuracy to a multi-zone model. The study has found that the multi-zone-based model is more

accurate than the single zone (Huang et al., 2015).

Therefore, this research will use a multi-zone experiment to consider the zones’ thermal

interactions and get more accurate results.

1.3.4 Not implementing the occupancy schedule

Most researchers nowadays are utilizing models in their simulated work. However, this approach’s
drawback is when implementing a created model to simulated work does not account for
occupants’ influence, time, schedule, and interaction with the indoor environment. The occupant’s
presence can be used as an input in most models and directly influences the building’s energy
consumption. (Page et al., 2008) have conducted a study showing the influence of occupants on
the buildings by stochastic models that emphasize the occupants. Also, (Sun et al., 2014) have
developed models for overtime occupancy based on measured occupancy data from an office

building. The study shows that the presented model can be used to generate occupant schedules to
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be used as an input for building energy simulations. Therefore, it is recommended to use actual

buildings for this type of application.

Therefore, this research will address the occupancy schedule approach implemented in the
optimization technique proposed in this research. Also, the proposed tool in this research is
designed to be implemented in real commercial buildings. Therefore, a real building will be sought
to test the proposed tool and examine the energy-saving. If accessing an actual building with real-
time data was not available, then a simulation building will be used to test the proposed

methodology. An existing building implementation will be addressed in future work.

1.3.5 Developing the models using a short period
Very few models have used real performance data collected over a long performance span (Frausto
et al., 2003). Instead, some researchers have trained their models using simulation data or a limited

set of data collected in a short period (Rios-Moreno et al., 2007).

For example, a study conducted by (Kulkarni et al., 2004) modeled the building systems using
MATLAB. However, the study considered the building as one thermal network also only one
season of data was used. Therefore, the model can be considered incomplete because it covered
only the winter season, so only the heating system was considered. Moreover, developing models
using a limited range of data (less than one month) is not accurate for predicting indoor temperature
and relative humidity, unlike other studies that developed models using more extended periods.
For example, a study conducted by (Mustafaraj et al., 2010) developed models using an extended
period (nine months). However, the study has found that no model can predict the indoor
temperature and humidity levels. This conclusion contradicts (Patil et al., 2007), who used a

shorter period.

Thus, depending on the complexity, type of application, and previous knowledge of the topic being
modeled, the duration of the data collection period is specified. But based on the previous studies,
a data span of a week or two resulted in less accurate models. Therefore, a more extensive data

span will be gathered from an actual system performance in our study.

1.3.6 lack of integration between system-level and zone-level
There have been lots of physical models predicting the ventilation airflow rate. For example, the

ASHRAE standard (ASHRAE 62.1) has described the method for calculating the ventilation
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needed for each zone. In addition, there have been numerous studies in the area of control strategies
in VAV systems. These strategies are based on maintaining a constant static pressure set point in
the main duct without considering the actual pressure-demand (system level). Those strategies are
summarized by (Pang et al., 2017) as follows:

e Occupied zone setpoint temperatures and night set back

e VAV box minimum flow (typically 30%)

e Optimum start

e Supply air temperature reset

e Economizer and minimum outdoor air intake

Those strategies consider only the zone level without integrating the system level. This research
proposes a method to integrate the minimum zone airflow rate setpoint with the outside airflow

rate to optimize the zone ventilation rate.

1.3.7 Not implementing the minimum zone airflow rate, minimum ventilation requirements,
occupancy schedule, and demand control (DC) in the optimization process

There have been some studies that implemented the whole system optimization technique in the
past. Those studies used the approach of resetting the system set points to reduce the total system
energy consumption. A dissertation work conducted by a fellow Ph.D. student (Tesiero, R. C., I11.,
2014) proposed an integrated optimization technique to reduce the energy consumed by chilled
water VAV systems. The study has utilized the use of both physical models and data-driven models
to model the system component. Later, the optimization process was implemented to optimize two
system setpoints the supply air temperature and duct static pressure. The work was established on
the assumption of a fixed minimum zone airflow rate of 20% of the design flow, fixed occupancy
schedule that is assumed to be the maximum number of design people. Also, the work has not
accounted for the occupancy sensors reading. The study has found that this approach can reduce

the total system energy consumption by at least 13%.

Therefore, this research will address the previous study's gap by creating a modeling and
optimization technique that utilizes all data-driven models instead of hybrid modeling. That will
ease the optimal structure models finding using the optimization process in a sufficiently timely
manner. Therefore, reduce the time required to select the optimal model structure to predict the

component performance and eventually predict the actual total system energy consumption.
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Also, this research will propose implementing the occupancy schedule inputs into the optimization
process to account for the actual number of occupants at each time step and reduce the ventilation
flowrates to the exact required amounts. The occupancy schedule can be updated based on real-
time knowledge of the occupant's count, zones type of use, and schedule. For example, in
conference rooms and when there are meetings times in the schedule or lecture rooms and when
there are lectures in the schedule against when it is empty. And the occupant behaviors such as
lunchtimes and breaks, etc. Another method to get an accurate occupant count is CO2. This
approach will enhance the sustainability goals of ASHRAE 62.1 by optimizing the zone level
ventilation ratio and fulfilling the gap in this related code, as well as reducing the total system
energy consumption. Also, this research will implement the real-time zones occupancy sensor
readings. This approach will crucially affect the zones' ventilation flowrates and zones minimum
flowrates. Lastly, this research will implement the method of zone minimum air flowrates setpoint
reset. This approach will allow this setpoint to be adjusted over the operation time instead of using

the constant design minimum values. This method is crucial to reduce reheat energy consumption.

Finally, a new approach that was rarely introduced in any previous work will be implemented in
this research, which is the demand-control method. Implementing the demand control
methodology with the optimization process in response to the demand response signal received
from the utility companies to modify the electricity consumption power profile by alleviating the

peak load demand when the demand response signal is received.

1.3 Research contribution and structure

This research aims to develop an accurate data-driven modeling and optimization technique for
HVAC systems that are commonly used in commercial buildings in the US. Those systems are
chilled-water variable air volume (VAV) systems and direct expansion (DX) systems. The data-
driven models will duplicate the real systems as close as possible. The models created based on
actual data gathered from an existing physical system will be later optimized to automate the
process of selecting the best model structure. This optimization process reflects the first level of

optimization (MLO)

The second level of optimization is the system optimization process (SLO) for prediction and
performance optimization. The optimization process of the system setpoints will be implemented

to minimize the energy consumption and the cost of operation under normal conditions and

13



demand control. For more accurate calculations, the final results will be measured in terms of
power and energy consumption savings (kWh and BTU) and cost of operation savings (US

dollars).

This novel optimization approach will be achieved through load prediction of the next time step
while including the minimum zone airflow rate technique proposed by ASHRAE as well as
accounting for the occupancy factor through the CO:> concentration level readings and or
occupancy schedule. At the same time, while developing this approach, we will consider an
essential factor that was neglected in the previous studies, which is the demand response to the

grid needs, as shown later.

This proposed integrated two-level optimization approach is flexible and can be adjusted to any

HVAC system type with an online operation.

Like previously stated, in this research, two types of systems were chosen to be examined, the
chilled water VAV system and the DX system. Both systems were modeled in this research. The
first optimization level was created for both systems to automate the modeling process, and the
results were discussed. In contrast, the integrated two-level optimization process was implemented
in only the chilled water system. The DX system was modeled but will be tested in future work
due to the shortage of resources and time. The final results of implementing the proposed methods

savings and challenges were discussed

The goal of this research will be accomplished through three main steps that will be treated as

different objectives or chapters.

1. Compare multiple proposed artificial intelligence modeling techniques and choose the
most suitable technique for modeling HVAC systems’ performance.

2. Develop an accurate data-driven model of the chilled water VAV systems and DX split
systems. As well as implementing a model-level optimization technique that will help
automate the process of the parametric study.

3. Develop a whole integrated system performance optimization process that includes both
the component and system levels to reduce the total energy consumption and improve the

indoor thermal comfort levels.
This research is constructed of six chapters.
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Chapter 1 As shown above. Summarize the background of this research. Also, it discusses the gap

in the previous studies that led to the idea behind this research.

Chapter 2 shows the literature review on the previous studies conducted in modeling and

optimizing HVAC systems.

Chapters 3, 4, 5 will show each phase of this research and the methodology to reach that goal of

that phase. Finally, the results and main findings were discussed.

Chapter 6 will conclude this research and prominent findings regarding energy, cost savings, and

future work that will help improve the results.

The intention behind having this research structure of having separate phases as separate chapters
instead of one extensive methodology was to make this document more accessible and more time-
efficient for the reader. Therefore, if one is interested in one objective of this research, one can

navigate that chapter without reading through the whole document.

Figure 5 below shows the overview diagram with research phases and how they fall into the final

prescribed goal.
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Chapter 2

Literature review

2.1 Introduction

Today, modeling and simulation are recognized techniques for solving energy cost issues in
several engineering fields. This chapter shows the literature review and previous studies that were
done in the field of modeling and optimization of HVAC systems. This chapter summarizes the
state-of-the-art findings in modeling the components of HVAC systems aiming to reduce energy
consumption. The most common artificial intelligence tools used for that purpose and how they
were implemented. The optimization techniques were previously researched at both the component

level and system level.

2.2 HVAC Modeling and simulation

Building energy performance problems arise from the infinite architectural and mechanical
building designs and multiple energy analysis methods and tools available. Energy efficiency is
achieved through properly functioning equipment and control systems, whereas building controls
and operation problems are the primary causes of inefficient energy usage. Collected and
maintained building data sets are an adequate opportunity to build databases and data-driven
algorithms that can be utilized to evaluate the building performance and energy savings that are
related to retrofits projects (Mathew et al., 2015). Lacking the historical data has limited the ability
to validate the engineering-based models intended to predict energy consumption. Thus, the recent
increase in the number of buildings that benchmark their energy use on public resources has
increased the amount of available data that can be used (ENERGY STAR, 2018). The recent
availability of more data to use has made modeling the buildings’ energy performance more
accurate. And the building performance data has become less isolated from public use. With the
recent efforts to collect buildings data for modeling, benchmarking, and retrofits projects. There
has been an emphasis on managing the building data that sits in the utility sheets or in building

automation systems (BAS) not used.

2.2.1 Building automation systems (BAS)
Most buildings now are equipped with BAS systems. With those systems, we can easily access the
building’s real-time performance data that can be used to model the HVAC system performance

accurately. Those data can be a massive benefit for the new revolution in the modeling and
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simulation of building systems' performance, leading to energy savings. Thus, one of the main
achievable goals of the effective use of BASs is to improve the building’s energy efficiency,

lowering costs, and providing better performance (Wang, S. et al., 2008a).

Building automation system (BAS) consists of sensors, controllers, actuators, and software. An
operator interfaces with the system via a central workstation or web browser, as shown in figure
6. In addition, the BAS provides users with as-built drawings, floor plans, and specific graphics of

HVAC systems.

BAS workstation Browser- based interface

Air handling unit
control panel

-

-

U[] D‘_ Other sensors
D * Other actuators
To controller 4— 1

_.;_H Chilled water +

valve

Valve
actuator

Chilled
water
supply

Chilled
. water

return
)

Cooling I

coll

Supply air fan

Sensor

Figure 6. Building Automation System (BAS) component

The BAS presents operators with a graphical user interface (GUI) illustration of the whole HVAC
system. In addition, the BAS displays several system measurements such as Supply and return air
temperature, static duct pressure, damper positions, fan power, fan pressure, etc. Figure 7 shows
the BAS schematic and how it is connected to the controllers of a chilled water system to record

the performance data.
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Figure 7 A schematic of a typical chilled water VAV system and its connection to the BAS

2.2.2 HVAC systems model types and evolution

HVAC systems are complex nonlinear systems. Therefore, no one model can be comprehensive
enough to satisfy all system types and conditions. The first building performance model was
introduced in the late 70s when its IT controlling systems were introduced (Caffrey, R., 1998).
HVAC models can be divided into three types, Black box, white box, and gray box model (Homod,
R. Z.,2013) as shown in figure 8.

HVAV models and
controls

l : :

White Box Black Box Gray Box
Physical Model Data Driven Model Self Learning Model

Figure 8. HVAC system models’ types
19



2.2.2.1 White box model

White box models are also known as forward physical or Mathematical models. There are two
types of white-box models: Lumped and distributed parameters. This modeling type is famous for
modeling the HVAC system process based on physical and chemical conservation laws such as
mass, momentum, and energy conservation. Those models describe the links between the inputs
and outputs in the form of mathematical equations (Homod, R. Z., 2013). Forward models need
detailed physical information, and they are used to predict output based on known structure and

variable inputs (Hyvikinen, J., 1996).

(Ghiaus et al., 2010) used a forward control algorithm using feed-forward to balance the weather
conditions and model predictive programing for set-points tracking to estimate the heating loads.
The study has assumed that the thermal model of the building is linear. The study has inflicted
many assumptions, such as that the thermal capacity of the wall and indoor is lumped and that the
weather and internal loads are known since they used predictive models for that. This probably

causes lower accuracy of the load predictions for the study.

(Wang et al., 2008) have proposed a theoretical forward model for VAV air conditioning systems.
The study has assumed that the supply air temperature is equal to the coil’s surface temperature

and that there is no internal latent load by neglecting the moisture content of the supply air.

The use of such models in existing buildings and real-time system operations may not be available.
It will require instant tuning and elevated time to process the calculation that might surpass the
optimization period. (Nassif, 2018). Furthermore, the information needed to create those models
is not limited to the building structure and the internal loads, the number of people, zone activity

type, and lighting heat gain. Therefore, such models are rarely used in real-time operations.

2.2.2.2 Black box models

Black-box models are also called data-driven models or backward models. Those models fit the
transfer function model to the data’s input and outputs and do not reflect the actual model’s specific
physical information (Homod, R. Z., 2013). Such models’ mathematical representation can be in

terms of regression, neural networks, fuzzy models, etc.

Those models can operate on real-time applications when they are highly adaptive and

reproducible. On the other hand, data-driven models, are much simpler and used for cases when
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system-specific component models are required or for fault detection and diagnosis (Hyvikinen,

J., 1996).

Many studies have implemented the black box models in modeling and simulation of HVAC
systems aiming to improve the control system of thermal performance. For example, a study by
(Mustafaraj et al., 2010) has implemented a black box model using the autoregressive with external
inputs (ARX), autoregressive moving average with external inputs (ARMAX), Box-Jenkins (BJ),
and output error (OE) models to examine the thermal performance of a commercial building. The
models have predicted the room’s temperature and relative humidity for different time scales. The
study found that all the models have accurately predicted the rooms’ thermal performance, with
the BJ model being the most accurate. Furthermore, since those models are adaptive, they can be
applied to control by changing their parameters. Therefore, those models can be used for online
control of HVAC systems for commercial buildings and could be extended to other types of

buildings.

However, since those models depend on the systems’ actual performance data, they must be
updated regularly and can not be used outside the training set range. Also, the data-driven
approaches for energy savings purposes benefit from giving the results as a probabilistic
distribution of energy savings. With increasing energy savings, companies and techniques

understanding the uncertainty in energy savings became crucial (Mills E., 2011).

2.2.2.3 Gray box models

Gray box models are also called semi-physical or hybrid models. Those models are a combination
of black box and white box models. In some cases where some HVAC processes are physically
described but are less clearly described, the physical model can be combined with the white box

model to improve those models and vice versa, resulting in gray box models (Homod, R. Z., 2013).

(Leephakpreeda, T., 2008) have implemented this type of modeling to determine the indoor
thermal comfort of HVAC systems under a dynamic environment. Since, the temperature setpoints
of fresh air supplied to the system are dynamically changed in time and not known previously. The
study has proposed a gray box adaptive control theory (ACT) technique to capture the relationship
between indoor thermal comfort and outdoor temperature. The research has validated using such

models in HVAC control systems based on the actual occupants' survey data on thermal comfort.
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In gray box models, the physical model part is derived from the thermodynamics principle while
the parameters are determined from Catalogs, actual performance data, and or commissioning and
survey data (Homod, R. Z., 2013). Also, (Wang et al., 2004) have proposed an accurate gray box
model predicting cooling coil units’ performance. The technique was developed based on energy
balance and heat transfer laws. Commissioning information is then used to determine at least three
model parameters. The study has validated the use of such models and found that this method gave

better results in predicting the actual coil performance than other conventional prediction methods.

2.3 Artificial intelligence tools used in modeling and simulation of HVAC systems.

Artificial intelligence (Al) is an advanced area of computational science and engineering. Artificial
intelligence was first invented in the 1950s. The first attempts have failed due to a lack of
automated means of training. The attempts to implement nonlinear artificial intelligence methods
have kept failing until 1990 when those attempts have a chance of success (Livshin, 1., 2019). With
the increase in computer computing powers and the need for artificial methods capable of solving
complex problems that exceed human capabilities, there were numerous efforts to develop
artificial intelligence methods. One of the many industries that have witnessed a significant
evolution in deploying Al methods is the HVAC system industry. Many Al studies have been
conducted aiming to understand the performance of those systems and analyze the relationship
between their components to operate those systems better and eventually reduce their energy
consumption. Al has many tools that are widely used now like, Artificial Neural Networks (ANN),
Support Vector Machine (SVM), Aggregated Bootstrapping (ABS), Transfer Function (TF), State-
Space (SS), and Autoregressive Exogenous (ARX). This research will focus on only ANN, SVM,

and ABS and discuss the literature review behind it.

2.3.1 Artificial Neural Networks (ANN)
Artificial intelligence neural network (ANN) architecture mimics the neurological human brain
network. They consist of multiple layers of neurons that are directly connected to each other’s

(Livshin, L., 2019). Figure 9 shows a schematic of the human brain neuron.
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Figure 9. Human brain neurons

Every biological neuron consists of a cell body with a nucleus, Axon, Dendrites, and Synapses. In

the biological neurons, the synapses receive an impulse that is transferred to be processed by the

cell body. Then the response is sent out through the axon then to the synapses connected to other

ncurons.

Mimicking that structure, the artificial neural networks are constructed of a neuron body, and it

has a connection to the other neurons, as shown in figure 10.

Neuron body

Network
Structure

(2)

Input

Figure 10. Artificial neuron structure
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Each input to the neuron body is assigned a weight (W). The weight of the input dictates its impact
on the output. For example, if the weight assigned to the first input neuron is greater than the
weight of the second input neuron in the neuron body, then the first neuron’s impact on the output
is more significant than the second neuron (Livshin, 1., 2019). In other words, the output is
dominated by the first output. The body of the neuron is usually represented by a circle that is
consisted of two parts. One is called the network input or sum of the network that is represented

by (Z). This section shows the calculation that the neuron body performs (equation 1).
7= Wl *11 + Wz *12 + B(l)

And the second part is the output neuron we call it here (F). F can be calculated by applying the
activation function. The activation function is a special nonlinear function applied to the linear part

of the Z function (equation 2).

One of the most frequently used activation functions is called sigmoid (equation 3). The sigmoid
function is a well-behaved function on an interval of [-1, 1]. Also, it saturates fast outside of its

interval range, meaning that its value is less likely to change with the change of its argument

(Livshin, L., 2019).

o(Z) =

When multiple layers of neurons connect together, they form the neuron network. In general, a
neuron network is constructed of an input layer to start and an output layer. In the middle of
those two layers, there are one or more hidden layers. The input layers receive the input from the
outside, transferring it to the hidden layer where most of the calculations are performed. When
the output is reached, it is carried away by the output layer, this is called a feed-forward network

(Cunningham et al., 2008). Figure 11 below shows a neuron network layout.
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Figure 11. Neuron network layout

Each neuron in every layer is connected to all the neurons in the following layer. This connection
carries a weight (W). the weight of the connection determines the effect of this input on the final
output. Each weight is numbered with two indexes, as shown in figure 11. The first index
represents the number of neurons in the receiving layer, while the second index represents the
number of neurons in the sending layer. In addition, each layer is assigned a bias (B). the bias
carries weight as well, and it is helping in making the calculation more flexible when matching the

targeted output (Werbos, 1974).

When training the network, the weights and the bias are initially assigned randomly based on
previous studies and recommendations, knowledge of the studied subject, and experimenting.
Also, the number of the network’s hidden layers depends on the complexity of the function being
estimated. The more complex the process is, the more layers are needed to lead to the best

approximation results.
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An essential character of the neural networks is their adaptivity, where they learn by example
rather than by the traditional methods. Therefore, these models can be used to virtually model any
part of any system as long as the model can be trained by receiving sample data and a teaching
mechanism. Therefore, the ANNs are considered a valuable tool in modeling the HVAC system
components. Eventually, this will provide researchers and designers with a powerful, simple

method to address the HVAC system’s needs and create a more energy-efficient HVAC system.

2.3.2 Supply Vector Machine (SYVM)

Support Vector Machine (SVM) is one method that uses supervised learning for classification and
clustering purposes. For example, machine learning with maximizing (support) of the separating
margin (vector) is called support vector machine (SVM) (Huang et al., 2018). SVM was first
introduced by (V. N. Vapnik1995) in 1995. Afterward, SVM was largely developed by Vapnik
and co-workers at the AT&T Bell Laboratories. In general, SVM is also extended to solve
regression problems and thus support vector regression. The basic idea behind the SVM is to
reduce the dimensionality of a data set consisting of many variables that correlate with each other

and retain the variation present in the dataset up to the maximum extent.

According to (Vapnik, 1995) the goal of SVM is finding the function f(x) at most error deviation
from the actual targets (Y) for all input training data (X) and at the same time aiming for the results
that are as flat as possible. Meaning that any error (¢)that is less than the error (¢)deviation of the
targets is acceptable, but anything that falls outside of that deviation margin is not. Figure 12 below
shows this concept where only the points outside the deviation margin are not acceptable, and they
have most of the effect on the output target (Scholkopf et al., 2002 and Smola et al., 2004). In
SVMs, the input space is mapped into a higher dimensional dot-product space called a feature

space (Xuemei et al., 2009).
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Figure 12. The soft deviation setting for a linear SVM.

Then the main objective is to find an optimal hyperplane 0 in the feature space. The hyperplane
is the decision boundary that clearly classifies the data points. Because to separate between any
two data sets, we can have multiple hyperplanes. Therefore, the SVM objective is to find the
hyperplane with a maximum deviation (margin) distance between the data points to utilize future
data points confidently. The data that is closer to the hyperplane are called support vectors, as

shown in figure 13.

X24 X24 Maximum deviation (margin)

Support vectors

» X1

Optimal hyperplane

Figure 13. Possible hyperplane and the optimal hyperplane
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By using the SVM, we are trying to maximize the margin. The margin boundaries are those
support vectors, and by deleting them, we can change the hyperplane position and increase the

margin (Gandhi, 2018).

A hyperplane in n-dimensional space is generally a line in two dimensions. In three dimensions,
it is a plane, and in more dimensions, it is a hyperplane with n being the number of features. In

two dimensions, the function of the line is given by equation 4.
AX1— X2+ b=0.................. 4)
The equation is derived from equation 5 for two-dimensional vectors.
aX+ bY=Y........ (5)
Following the same derivative, the equation for the hyperplane can be represented in equation 6.
WTXi+b=Y"i.........c.......... (6)

SVM is a novel network algorithm that is adaptive, fast, and has good learning abilities for small
and large sample data. SVM has been developed to be a powerful tool in data analysis and
machine learning algorithms. SVM obtains its structure from the concept of structural risk
minimization through the within-class distance, which makes up for the shortcomings of other
learning methods. Therefore, SVM can find an optimal solution by solving a quadratic problem

and having good learning abilities (Xuemei et al., 2009).

2.3.3 Bootstrap Aggregation (BSA)

Multiple classifier systems, also called ensemble systems, have recently grown more attention
within computational data science and machine learning. We use the concept of ensemble learning
and decision-making on a daily basis in our lives. We often seek expert opinions on different
problems in life, like consulting with various doctors before deciding on a major medical operation
and seeking multiple design options and cost estimates before deciding on a major HVAC
installation or system update, etc. This utilizes the concept of ensemble learning, which is selecting
the best option between multiple suited ones where no decision has a nonzero variability. In other
words, create several classifiers with similar bias and then combining the outputs to reduce their

variance (Zhang et al., 2012;2015)
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Breiman’s bagging algorithm is short for Bootstrap Aggregation, is one of the earliest and
influential types of ensemble learning. Bootstrapping is simply the method of random sampling
with replacement. Such a sample is referred to as a resampling. Bagging is most suitable for small
training data sets (Zhang et al., 2012;2015). However, it has been used for more extensive data
sets through breaking down the more comprehensive data sets into smaller sets called “bites.” The
individual bites are trained using the individual classifiers and then combined. The prediction is
then made by aggregating or averaging the predictions of the ensemble. This method shown in
figure 14 is called Random Forest (Svetnik et al., 2003). Random Forest was proven to be a

powerful tool that can deliver a performance with high accuracy compared to others.

Test Sample Input

Tree 600

Average All Predictions

v

Random Forest
Prediction

Figure 14. Random Forest structure (source: https://medium.com/swlh/random-forest-and-its-

implementation-71824ced454f).

When using Random Forest to solve regression algorithms, the mean square error is used to decide

how the data branches (Schott. 2019), (equation 7).

MSE=1/N Yo (Fi—Y)% ..o (7)
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Also, it was described by (Zhang et al., 2012;2015) in the supervised learning algorithm based

classifier as in (equation 8)

Ve=3" Ve C=1,.cccc,Cvieeiin.. (8)

t=1
Where (T) is an integer specifying ensemble sizes from an R% to create the training data.

Also, some redundancy may occur in features that will later cause errors because high dimension
data cost both speed and accuracy of the classification algorithms. Since learning algorithms data
are measured in very short intervals of time, the data set is extensive. So, converting these high-
dimensional data into lower space is needed to achieve better speed and accuracy (Khan et al.,

2019). To stop overfitting from happening, bootstrapping will be implemented.

Ensemble learning is a way of achieving better simplification performance of learning algorithms.
Those ensemble systems have proven themselves to be effective and adaptable in a broad spectrum
of problems in real-world applications. And this method has generally improved the performance

of created models by 40% by decreasing the models’ generalization error (Arsov et al., 2017).

2.4 Modeling evaluation metrics

The selection of variables in multiple regression is a problem that needs to be given great attention
(Allen, 1971). In modeling the HVAC systems, the model’s performance evaluation depends on
operational evaluation by examining its parameters’ variability and associativity. Therefore,
distinguishing between the modeled and observed data is called the error value, which has great

importance.

The error can be explained in terms of many statistical measures like MSE (mean square error),
RMSE (root mean square error), MBE (mean bias error), NMBE (normalized mean bias error),
CV% (coefficient of variance), R? (coefficient of determination), F-Score (harmonic mean of
precision), and CVRMSE (coefficient of variance of root mean squared error), etc. (Ruiz et al.,

2017).

Instead of one, some studies have examined the error as two structures, bias and variance. The bias
measures the accuracy of the models and refers to an error or poor representation of the data. And
the variance measures the precision of the performance of the modeling results compared to the

observed (Solazzo et al., 2016).
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When evaluating different model’s sensitivity using a single statistical measure, the difference in
the error distribution is crucial. Therefore, using more than one statistical method is vital to deliver

a complete understanding of the model’s error variation (Chai et al., 2014).

2.4.1 Mean Square Error (MSE)

Mean square error (MSE) is one of the most common statistical criteria used in measuring the
performance of computational models and the selection of variables. MSE is claimed to be more
meaningful than most other selection criteria like the residual sum of squares (Allen, 1971). MSE
is a single reliability measure. The objective of MSE is to compare two individual measures
through the degree of similarity or distortion between them. Therefore, if we have two measures,
X and Y, where X is a known matrix variable, and Y is a vector response. And x = {xi |i = 1,
2,..,N}andy = {yi [i=1,2,....N}. N is the number of signal samples, and xi and yi are the values
of the I sample in x and y, respectively. The MSE between the signals is calculated with equation

nine below (Buford, 2016).

MSE(xy) = ~2Ny (6= Y)% oo, (9)

In MSE, the error value is usually calculated as the difference between the original values (data)

and the undistinguished values; in this case, itis €;= X; — Y;.

When performing this statistical method or prediction, the lower the MSE value means, the more
accurate the results are. An MSE of zero indicated perfect accuracy, which is usually not feasible

in everyday practice.

2.4.2 Root Mean Square Error (RMSE)

Root Mean Square Error (RMSE) is adapted in average model performance error evaluation.
RMSE that is also called root mean square deviation (RMSD), is a statistical method used to
distinguish between the estimated values and the actual observed values. The difference or
deviation between the two values is referred to as residuals. RMSE mathematically is represented

by equation ten below.

RMSE= VMSE = /%zfivzl (ED)2, ..... €i= (6 —Y)% eeoooeeeen., (10)
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When using RMSE, the assumption is that the error is unbiased and follows a normal distribution.
Therefore, using RMSE should give a better understanding of the error distribution (Chai et al.,
2014).

However, it is claimed by few studies that the RMSE is not a good predictor of the average model
performance and might be misleading. Since it is a function of three characteristics of a set of
errors instead of the average error, few concerns were raised by (Willmott et al., 2005). However,
when evaluating one model, using only RMSE detailed interpretation is not critical to the accuracy
of the results since the variation of the same model will have similar error distribution, unlike when

evaluating different models (Chai et al., 2014).

2.4.3 Coefficient of Variation (CV%)

The coefficient of variation is a statistical method that is also known as the relative standard
deviation. It is a measure of the frequency distribution of a random variable, and it is widely used
in engineering and data science studies. CV is unit-free and is represented as a percentage of the
observed standard deviation to the observed mean. Thus, monitoring the CV is essential in process
control when the variables have a clear mean value, and their variance is a function of the mean.
In addition, because the CV is a unit-free measure, it is commonly used to compare the variability

among data sets of different units or mean values (Teoh et al., 2017;2016).

Since implementing the CV% as a statistical measuring method in many disciplines, monitoring
the CV% is receiving significant attention among researchers lately. To better understand the CV%
mathematically, suppose that (Xi 1, Xj,2...., Xi, n) 1s a group of data samples with the (n) size at time
i=1, 2, .... Let the mean (u;) of the set is >0, (g;) is the standard deviation of it, and (Y,) is the
population CV when the process is in control. Here (V) is the control process target value, then

the CV (Y;) can be represented in equation 11 below.

Yo=Y, = (%) .................................... (11)

And the sample mean X;, and variance S; are expressed by equations 12 and 13, respectively.

)?i = Z’-’lei,j /n ................................. (12)
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This shows that that the variables (ui) and (o;) may change from one subgroup to another while
the CV (Y;) must be equal to the predefined target Y, that is common for all the subgroups (Teoh
et al., 2017;2016).

CV% of a value less than one (zero or negative) refers to perfect accuracy and zero error value,
which is not feasible. Therefore, the CV%, in this case, is meaningless and will lead to the wrong
assumption about the process being examined. Thus, the CV is used strictly to compare the

dispersion of positive random variables (Curto et al., 2009).

2.4.4 Coefficient of Determination (R?)

The coefficient of determination R* also known as the adjusted R?, explains the total variation in
a sample data. In other words, it is defined as the proportion of the corrected sum of squares that
is explained by the model (Piepho, 2019). R? is one of the most popular measures for the goodness
of fit for the linear models. And it ranges from 0 to 1. The R? value of 1 indicated the
nonappearance of residual variation. To better understand the structure of R? for sample data for
linear models, we need to know the difference between linear models and the extended version of

it. The linear models can be expressed as in equation 14 below.

Where Y is the response vector for a design matrix of X. While e represents the residual error

vector and f is a set effect vector (Piepho, 2019).

However, linear models can be extended to linear mixed models, allowing for random effects. In
those models, R? will have the same form as linear models. Extended linear mixed models can

be represented as in equation 15.
Y=XB+Zu+ e...ccoceeiiiii. (15)

Where (u) is a random-effects vector with for Z design matrix. And u and e are assumed to be

independent (Piepho, 2019).

Finally, R? gives you the percentage of variation in Y that is explained by x. Thus, R? can be

represented mathematically as in equation 16 below (Tjur, 2009).

2 _ YYi-V)(@i-y)
R% = ( o Z(ﬁi—y)z) .................. (16)
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Many studies have been conducted aiming to reduce the R? value to result in a better fit model.
This may be important but not always sufficient since R? is mostly dependent on the x-values of
the set of samples. Therefore when sampling the data with the intention of having a well-

explained slop will result in an R? close to 1(Draper et al., 1981).

After discussing the types of machine learning model types, tools used, and types of statistical
measures to select the best model structure as well as the best modeling tool among the others.
The following section will examine how those were previously implemented in modeling the

HVAC systems components and operation.

2.5 HVAC computational models’ implementation and development

Data-driven models based on real systems data are proven to help understand HVAC systems’
performance and explain the relationship’s system components (Talib et al., 2019). Those data-
based modeling techniques aim to improve the building’s indoor air quality (IAQ), causing
concern in the overall human health and comfort levels (ASHRAE, 62.1). HVAC systems are
nonlinear systems, and it makes it hard to maintain thermal comfort. To better understand the
performance of the HVAC system and optimize its operation, many studies have been conducted

over the years. Either using a white box, black box, and or gray-box models.

A study by (Xia et al., 2020) developed a white box-based modeling approach to predict the
transient responses and steady-state operation performance of a direct expansion (DX) HVAC
system. The study has developed five lumped models based on a partial lumped parameter strategy,
one for each main component of the condenser, compressor, evaporator, expansion valve, and
space conditions. Each model was created through mass and energy balance equations. The
numerical models were then validated by comparing their predicted results with measured data
from an experimental real DX system. The results of the predicted performance had a high
accuracy when compared against the experimental ones. The study claims this approach can be

helpful for energy-efficient DX HVAC system design and controller development.

Another study by (Afram et al., 2015) has used a black box models technique using artificial neural
network (ANN), transfer function (TF) process, state-space (SS), and autoregressive exogenous
(ARX) models that are built-in functions in Matlab. The models were used to simulate the energy
recovery ventilator’s performance, air handling unit, buffer tank, radiant floor heating, and ground

source heat pump. A comparison was made between the models to select the best modeling
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technique that meets most of the selection criteria of predicting the output of the outlet water
temperature and the outlet air temperature. The study has found the ANN has performed the overall
best in terms of predicting the outputs. Another study conducted by the same researchers examined
the same experiment set up using a gray-box model and process models. The study has found that
the ANN and ARX could predict both outputs better than the gray box and process models (Afram
etal., 2015).

Another used black-box model to model the HVAC loads during peak hours and their effect on
the whole grid power. The study has justified using gray-box models instead of a white physical
model due to the HVAC system's complexity. And the HVAC systems are dynamic systems where
the white-box models are hard to adapt to the load change over time, unlike the black box models.
The study has used historical forecasting weather data as inputs and the building power
consumption as output to train the models. Then the models will be tested to predict the HVAC
performance loads and eventually the energy consumption based on current weather forecast
information. The models were developed using the ensemble learning methods utilizing four
classification methods, Elastic Net MLR, Decision tree, Random Forest, and Gradient Boosted
Trees. The mean square error RMSE was used as the evaluation metric. The results of the study
have found that the Gradient Boosted Trees held the lowest RMSE value close to 0.16 “reading
from charts” in predicting the HVAC load prediction (Tian et al., 2018).

Using black box models and gray box models are popular in modeling the HVAC systems
performance, load forecasting, and fault detection and diagnosis because of the complexity of the
heat and mass transfer mechanisms which is the basis of HVAC system design. Therefore, in the
following sections and after recognizing the modeling tools, a background of how the modeling
tools served in constructing the black, gray box models, and sometimes white-box model helped
predict the HVAC systems performance. As well as load forecasting, and fault detection, and

diagnosis will be examined.

A study was conducted by (Lee et al., 2019) to optimize the air handling unit discharge air
temperature to reduce the total energy consumption. The study has used co-simulation between
EnergyPlus software and MATLAB via BCVTB (Building Control virtual Test Bed). The study
has used simulated data created with EnergyPlus. The data are used to train the model that was

created using the ANN toolbox built-in MATLAB. The model structure had multiple input layers
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like outdoor temperature, outdoor relative humidity, diffuse solar radiation rate, direct solar
radiation rate, AHU supply air temp, and cooling coil cooling rate. In contrast, the output was the
total energy consumption. The study has manually reached the best model structure by changing
the model variables and recording the error value changes accordingly. The best model structure
is the model that held the lowest error value in terms of CV(RMSE) (coefficient of variation of the
root mean square error). The study has found that using ANN models to optimized the performance
of the AHU discharge air temperature has resulted in significant energy savings in the total energy

consumption of the unit.

A study by (Kim et al., 2015) has used ANN to model the chiller performance in a centralized
HVAC system. The study has examined several parameters and their effects on the accuracy of
the created model. The parameters were the number of neurons and the amount of training data.
The performance data were simulation data that are collected were split into testing and training
sets. The model’s results were compared to a DOE reference building to test the accuracy of the
results. The accuracy was measured in terms of the coefficient of variation of mean square error.
The study has found that by increasing the training set, the accuracy of the results has increased.
However, that means decreasing the testing set size, which will offset the accuracy of the results.
Also, when holding the training set size fixed and changing the number of neurons, it was found
that this did not affect the accuracy results. Therefore, it was found that the model structure of 60%
training data and 40% testing data and 12 neurons had held the highest accuracy value of 99.1%.
(Kim et al., 2015).

Another study was conducted to predict the energy consumption of the AHU and absorption chiller
using ANN’s. The study has collected data for one month. The study has validated the use of ANN
in accurately predicting the performance of the AHU. The error value of the models has ranged
between 13.27% to 15.25 and from 19.42% to 19.53% for the training period and testing period,
respectively. While, for the chiller absorption performance model, the error values ranged from
24.64 to 25.58% and 7.12 to 29.39% in the training and testing periods, respectively. The models
have satisfied the criterion presented by ASHRAE guideline 14. The study has found that despite
the fact the models have met the performance criteria. Still, the error values were somewhat higher
than what was anticipated, and high accuracy values were not met. The study has concluded that

this higher error value was due to a poor data set collected in a short period of time. It is believed
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that to achieve better prediction results, thorough verification and improvement of the data set is a

must to improve the predictive models and avoid overfitting and underfitting (Jee-Heon, 2020).

A study was conducted by (Vakiloroaya et al., 2013) to model an actual air-cooled chiller equipped
with a ducted fan coil unit of an office building. Actual performance data were collected in the
month of July. The study used a gradient projection-based optimization algorithm to optimize the
supply air temperature and flow rate setpoints. The model parameters were achieved through
monitoring data and mathematical models to create the model structure. Simultaneously, the actual
performance data served as inputs and outputs to train and test the models. The energy usage was
calculated for each day by summating the system energy consumption in each working hour. The
study results have shown that after implementing the optimization technique, the compressor and
condenser fan energy have decreased by 8.8% and 4.6%, respectively. At the same time, the supply
fan power energy consumption has increased by 2.3%. However, the overall total energy savings
were 11.4% less than when operating under normal control conditions. Also, the results have

validated the effectiveness of using such models for online applications.

A data acquisition system using ANN was developed to control the performance of AHU (Tse et
al., 2004). Also, a study has been conducted on a baseline case of one zone using ANN. The inputs
were weather, occupancy, and indoor temperature. The goal was to minimize energy consumption,
and a genetic algorithm engine optimized the model. The study has shown a 25% reduction in

energy consumption than the baseline heating strategy (Reynolds et al., 2018).

While for the DX system that was also investigated in previous studies. A model using a
combination of fuzzy logic controllers and ANN modeling was implemented to examine the ability
to enhance the indoor air temperature and humidity control system for a variable speed DX system.
First, the ANN model was tested and trained using previous performance data of the system. After
testing and training the ANN model, ANN-aided fuzzy logic controllers were developed. The
result of the study has claimed that the proposed controlling strategy properly controlled both the
dry and wet bulb temperature. And the developed controller strategy was able to trace the changes

in set points with an acceptable range of accuracy and sensitivity (li et al., 2015).

Also, various studies have implemented the SVM modeling tool to better understand the
performance of HVAC systems leading to more energy-efficient systems and enhanced thermal

comfort levels while reducing the faults of the performance through fault detection and diagnosis.
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One study by (Li et al., 2019) has proposed a solution of HVAC systems fault detection by
implementing the SVM as a learning algorithm for all types of faults that can occur in HVAC
systems. After learning the consistent nature of faults in the HVAC system, the SVM learning
method will identify the type of fault in the subsystems using statistical approaches. The learning
process speed was enhanced by applying the principal component analysis to compress the training
data set size. This process can be later automated to be implemented in multiple HVAC systems

to help in identifying several common HVAC air handling units’ faults.

A study by (Van Every et al., 2017) implemented the SVM to detect faults in HVAC systems. The
study used a Gaussian process regression (GP) regression algorithm to model the system’s
parameters. The data were fed into the regression model to be tested and trained while the error
values were calculated. Then the output was used in the next model using SVM. The data that were
tested using the GP is supposed to be the non-faulty performance of the system. When the SVM
is trained using those data and then tested, faults are detected when inputs that produce low error
in typical situations show a high error. The results show that the method has successfully improved
the performance of the systems. Since the systems are trained with non-faulty data that are totally

supervised, it is suitable for online operations.

Most of the previous studies have used measured performance data or simulation data to analyze
the performance of HVAC systems. In addition, most of the studies have used forecasting weather
data as a significant input in their analysis, one of which is a study we mentioned above by (Tian
et al., 2018). However, the actual weather conditions are often different from the weather forecast
data, which will significantly affect the accuracy of the prediction results. To deal with this
uncertainty, a study by (Zhao et al., 2018) has proposed an approach based on the Monte Carlo
Method (MCM) to process the weather forecasting data using a 24 hour ahead approach. The SVM
was utilized to create the model for load predictions. The study results have shown that using the
MCM approach instead of the unadjusted forecasting weather data has resulted in better
performance prediction data closer to the actual real load. This was proved through sensitivity

analysis, where the mean absolute percentage error (MAPE) was reduced from 11.54% to 10.92%.

The other learning algorithms that will be discussed in this research are bootstrap aggregation
(bagging) and the previous studies conducted using that tool. Multiple researchers have

implemented this approach in modeling the performance of HVAC systems successfully. One of
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those was a study conducted by (Manimaran et al., 2015) to predict residential buildings' heating
and cooling loads using the bootstrap aggregation ensemble method. The study has used the data
collected from 768 residential buildings designed using the Ecotect design from the UCI machine
learning repository. Instead of a single model, the learning method will aggregate the predictions
of multiple classifiers made by multiple REPTrees as a base classifier. Then, reducing the error to
build compact decision trees. The results of this method were compared against a neural network
that was used as the base classifier. The study claims the created models can accurately predict the
heating and cooling load with a satisfactory R? value of 0.9985 and 0.983, respectively. The results
have validated the use of such a method and its ability to improve the performance of HVAC

systems.

Ensemble learning methods like bagging, boosting, random forest, and conditional forest were
valuable methods in studying the HVAC system’s performance, load forecasting, fault detection

and diagnosis, and many more.

Load forecasting models are essential to understand the system’s performance in the building and
the electricity market. In this aspect, a study was conducted using the four ensemble methods
mentioned above to observe the load forecasting in short terms and evaluate the effectiveness of
those models in predicting it. And observe the energy consumption of the building and ways to
improve it. A (107639 Ft?) campus university in Spain was used as the case study where load data
were collected. The hourly temperature was data was collected to serve as the forecasting model’s
input. Also, if it is a working day or a holiday, the type of day was considered since it significantly
affects the accuracy of the results. The four methods of ensemble learning were trained and tested
using the actual load data. Finally, a way of predicting the load 48 hours ahead of time was applied.
The results show all models were good performers, but the random forest was the most accurate
method. All methods were validated by implementing them in the same case study building, and
the result shows an improvement in the building’s performance. When applying those methods to
predict the load ahead of time, the building’s energy consumption (measured in electricity costs)

has dropped by around 11% (Del Carmen Ruiz-Abellon et al., 2018).

fault detection for existing HVAC systems is vital for systems operation, for the systems to be both
cost-effective and accurate. (Parzinger et al., 2020) carried a study to examine the faults in HVAC

system total heating power. The predictive models in the study were developed using several
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machine learning tools, one of them was the random forest tool previously described in this
chapter. The predicted total heating power was compared against the actual heating power through
residual analysis. The algorithm that was developed in this paper has two methods, one is using
the grid search to find the fault decision rule when faults are observed, the other is uses the rate of
estimated faults to find the fault decision rule when faults are unobserved. The results of the study
show that the first method of observed faults has achieved better results. However, the second
method is closer to actual practice, where faults are not followed. Still, it came with difficulty
finding a threshold value crucial in determining how accurately the faults are predicted. Finally,
the study has claimed that using residual analysis for fault detection is beneficial because the
results do not depend on the type of prediction models applied. Systems information and
parameters are not crucial for the process execution. Therefore, this type of fault detection method
can be used for different predictive models and is also suitable for online system fault detection

operations.

All the previously discussed studies have proposed methods of implementing the machine learning
predictive models in modeling the components and operation of HVAC systems aiming for better
systems operation and energy savings. However, most studies have generated several models and
then chose the best model’s structure and best modeling technique through numerous types of
sensitivity analysis, residual analysis, statistical measures, etc. Therefore, to automate this process

to be more suitable for online systems operation practices comes the role of “Optimization.”

2.6 Optimization

Optimization refers to a process applied in mathematics for minimizing or maximizing a function.
Optimization can be explained as seeking improvements. The start of optimization to find a
solution for a specific problem in a mathematical term has started with the invention of calculus
and the theory of a minimum and maximum function. Since the mathematical solutions for real-
world issues are a complex issue, the invention of computers has helped overcome the limits where

the golden age of optimization took off in the 1950s (Ho et al., 2007).

Nowadays, many complex problems have evolved with the development of many industries. The
solutions include computational modeling and simulation using physical and mathematical rules
to find the most feasible solution. However, the answer to those problems’ difficulty doesn’t stop

at modeling them, but also because the modeling and simulation process is often quite time-
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consuming. Also, the changing nature of the problems that are dependent on time makes the

mathematical solution less sufficient.

In many engineering problems, the solution might be choosing the good enough option instead of
the best one since the best solution might not be feasible or cost-effective. Many engineers use this
estimation approach when solving problems based on their experience in the field. Nowadays,
many optimization approaches and theories have been developed to be knowledge-based rather
than expertise-based. Therefore, those rules are implemented in most industrial decision-making
aspects by adjusting the process to optimize a specific function without violating predefined
constraints. The most common goals of the optimization process are to minimize the cost while
maximizing efficiency or productivity. Figure 15 shows a general schematic for the optimization

process adapted in modeling and simulation.
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Figure 15. Modeling optimization fundamental.

Over the last two decades, efforts have been made to develop optimal control strategies for building
HVAC systems to minimize overall energy and operating costs while maximizing building
performance, efficiency, and occupant comfort levels, without violating the operating constraints
of each component and without sacrificing indoor environmental air quality. Those cost-efficient
strategies have developed due to the growing scale of online data collection and integration of

BAS systems in buildings.
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Studies have shown that computational intelligence approaches have been developed to optimize

energy consumption, improve thermal comfort, indoor air quality, and occupant preferences

(Ahmed et al., 2019). Researchers have studied several ways of optimizing HVAC systems.

Conventional methods and data-driven methods. (Murphy, J. 2006) have discussed energy savings

control strategies and optimization for VAV systems as following.

1.

Optimal start/stop: This strategy utilizes the building automation system (BAS) to
determine the length of the period required to bring each zone from the current to the
optimal temperature. The system waits as long as possible before it starts cooling to make
sure that it is ready just in time for occupancy. The same thing with optimal stop strategy,
the building uses the BAS to determine how early the system can be shut off for each zone,
so the temperature will drift away from the set temperature just in time when the zone is
not occupied.

Ventilation optimization: In a typical VAV, the rooftop unit delivers fresh air to several
individually controlled spaces using the DCV Demand Controller Ventilation strategy. The
best approach to optimize ventilation in a multiple zone VAV system is to combine
multiple DCV strategies at the zone level. For example, using CO2 sensors in the highest
occupied zones like conference rooms and using occupancy sensors in the less densely
occupied zones like private offices while using a time-of-day schedule reset in the zones

with a predictable occupancy pattern.

While (Strum E. 2016) have studies ways to optimize the right balance for multiple zone VAV

energy savings.

1.

Fan pressure optimization: This strategy uses communication controllers to optimize the
static pressure in the duct. The controllers use the BAS continually to pull information from
the VAV terminal with the most open damper. The setpoint of the supply fan is then used
to supply just enough pressure so that at least one damper is widely open.

Supply- air- temperature reset: this method resets the SA temperature setpoint of the system
at part load condition to save the compressor or reheat energy and increase the benefit of
an airside economizer. There are several methods used to reset SA temperature.

A. Reset based on outdoor air temperature.

B. Reset based upon VAV A damper position.
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C. Reset based upon outdoor air temperature and VAV damper position.

However, there have been studies that defeated the previous optimization methods. It was found
that all the methods above have their drawbacks. For example, it was found that the fan outlet
pressure control is reliable and first-cost effective but cannot minimize operating costs (Stanke, D.
1991). Moreover, the same study has proposed another method called Critical zone reset that has
the advantage of being reliable, lower operating costs by keeping the critical zone terminal unit
fully open at all load conditions. It was stated that this method has no disadvantages (Stanke, D.
1991).

Optimization techniques were also implemented in measuring the faults in the HVAC system’s
operation. A study by (DEY et al., 2016) proposed a manual method or a rule of thumb method in
detecting the faults of HVAC systems operation that is claimed to be a robust approach in fault
detection in real buildings operations. The Expert rules-based fault detection is fast and reliable
when applied in building automation systems for commercial buildings. However, this approach
has its downfall of having many possibilities of fault to one rule. For example, the supply air
temperature sensor fault can be sensed by the rule method. Yet, this fault can be caused by multiple
causes like cooling coil fault, fan degradation, or sensor drifting. Therefore, the main cause is hard

to determine based on the rule method.

Another study used the same approach on the Air Handling Units and VAV Box operation to
classify the main Air handling performance assessment rules (Schein et al., 2003). Based on expert
rules that are derived from mass and energy balance, few rules were derived. The proposed rules
are evaluated on multiple types of buildings like commercial office buildings, restaurants, and
university campuses. Simultaneously, using the control signals to determine the air handling unit’s
mode of operations identifies which subset of rules will be evaluated. Control strategies are used
to measure the VAV boxes and AHU performance, while statistical quality controls are used to

assess the process error.

The previous rule of thumb approach in detecting the faults is shown to have multiple likelithoods
of faults to one rule. Therefore optimization process becomes necessary to overcome this problem
by selecting the most fitted fault among the rest. Then more reliable, fast, and affordable solutions
can be reached promptly. (Mirnaghi et al., 202) have extensively reviewed the previous literature

on fault detection and diagnosis methods studies on HVAC systems using data-driven and manual
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approaches. The review has concluded that unsupervised methods are time-consuming, unreliable,
and rarely used in online applications. The study showed that implementing optimization
algorithms using both supervised and unsupervised learning approaches, also known as hybrid
methods, are more accurate, reliable, easily implemented in online operations, and can accurately
capture the disruption, especially in large-scale HVAC systems with different types of data

features.

Besides the conventional methods of optimization, there have been data-driven approaches. For
example, an integrated optimization technique was proposed to predict the air handling unit's
supply air temperature and duct static pressure. The optimization technique will integrate four
component models of a chiller, pump, fan, and reheat device using MLP (multiple-liner
perceptron) method. The results have demonstrated an energy saving of 7% of the total
consumption of the unit (Kusiak et al., 2010). In comparison, a study was conducted to optimize
the temperature ramp control of a room. The room was computationally modeled. Particle swarm
optimization and harmony search algorithms were used for the optimization process. The setting
for the supply air static pressure and the discharge air temperature setpoint was optimized. It was
found from the study that the mentioned optimization algorithms are suitable for solving the

optimization models (He et al., 2014).

Also, instead of only using one optimization technique, many optimization algorithms can be
integrated with each other to create an integrated optimization tool. For example, a study has
integrated three intelligent algorithms for optimization. The algorithms are Genetic Algorithm
(GA), Particle Swarm Optimization (PSO), and Greedy Algorithm (GRA), which were integrated
to develop a temperature prediction technique for HVAC units. The tool was found efficient and

gave better predictions of the modeling structure being analyzed (Yan et al., 2019).

2.6.1 Genetic algorithm (GA)

The optimization tool that will be used to execute this research is genetic algorithm (GA). Genetic
algorithm is one of the most popular optimization techniques based on the natural selection theory.
Charles Darwinian developed the natural selection theory in 1859 on the principle of “Survival of
the fittest.” This evolutionary principle was the start of the introduction of computation techniques
and optimization. Where those principles were translated into algorithms that are used in the search

for optimal solutions to the proposed problem
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GA can be represented as a tree of evaluation of a single function. Each leaf represents a value
from the set of given values, while the internal nodes represent a function. The leaf is evaluated as
the corresponding value, while the function is considered an argument resulting from its parents

and added to the next generation (Sivanandam et al., 2007;2008).

Generally, there are five phases in considering GA. Those processes are (1) initial population, (2)
Evaluation, (3) Selection, (4) Crossover, and (5) Mutation. Figure 16 shows the optimization
process using GA and how the five steps were implemented. Step (2) Evaluation was represented

as the objective function. While steps 3, 4, and 5 are defined as the GA operator.
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Figure 16. A schematic of general optimization process using GA operator.

Implementing the GA to model the performance of HVAC systems has been getting more and
more attention lately. A study was conducted by (Nasruddin et al., 2019) examined the accuracy
of implementing the ANN as a modeling tool to simulate the performance of HVAC systems while
the multi-objective genetic algorithm was selected as the optimization tool. The case study
building is equipped with two chillers, VAV chilled water AHU and dedicated outdoor units. The

objective function of the study was to increase the human comfort level in the building while
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reducing energy consumption. The result of the study has shown that the ANN was able to
accurately predict the objective function and its correlation with the input variables chosen for the
study. Also, the multi-objective genetic algorithm has proven to be a powerful tool by pointing the
optimal possible design that can satisfy both objectives without compromising any other aspects

of the system's operation.

Another study has examined the effect of using optimized ANN models with GA on the power
consumption of the chiller, the secondary chilled water pump, and the air handling unit. The study
has compared the results of implementing those optimized models against the base case of a
constant load and set points. The study has resulted in a 20% savings in terms of power
consumption. Moreover, it was recorded that the COP (Coefficient of Performance) has increased

by 28% compared to the base case scenario (Lee et al., 2014).

Following the same lead, another study by (Reynolds et al., 2018) has used ANN to model a zone-
level case study while using the genetic algorithm for those models. The building was a small
office building located in the UK. The building consists of six conditioned zones with electric
heating and cooling with natural ventilation. The parameters that led the study were weather,
occupancy, and indoor set-point temperature serving as inputs. In contrast, the objective function
was to reduce energy consumption and cost. It was shown after analyzing the results that these
optimization methods have reduced the energy consumption by 25% compared to the baseline
case. The study also claimed that this process resulted in a better systems operation by shifting the
load to a cheaper price period, resulting in a 27% reduction in energy cost compared to the base

casc.

While another study (Mtibaa et al., 2021) combined a model predictive control (MPC) strategy
with GA, the MPC was utilized using dual-stream neural networks based on multivariate time
series of controlled and uncontrolled inputs. The optimization process utilized GA to reduce
energy consumption, peak demand, and discomfort during occupied hours under a self-tuned
setpoint. The study claims using this approach resulted in 50% savings in energy consumption

while reducing the discomfort levels by 80%.

Comping the GA with tools other than ANN has also resulted in significant accomplishments in
the field of modeling and simulation of HVAC systems. For example, a study by (Garnier et al.,

2015) examined a multizone non-residential building in France. The building HVAC systems have
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been modeled using the Predicted mean vote index (PMV) as an indicator for thermal comfort,
while the GA was used to solve the optimization challenge. The study has determined the optimal
time to tune the system on/off in both heating and cooling modes to reduce energy consumption.
The research shows that this approach resulted in reducing energy consumption while maintaining

thermal comfort levels.

Most of the previous studies have used GA as an optimization tool to automate the process of
modeling and simulation. When the GA played an essential role in selecting the optimal model
structure that will best predict the objective function, also, some studies used the GA in the data
mining before modeling to optimize the training data for network improvement. An exciting study
has used the GA to optimize the data used in modeling a power load prediction. The study by (LIN
Z.2019) has collected power load data and utilized the GA five steps shown in Figure 14 to remove
the noise from the data sets and select a population of data that meets the selection requirements.
The optimal training data sets were later inputted to support vector machine models to be tested
and trained to predict the power. The study shows that this method has improved training

efficiency, network performance, and prediction capabilities.

Following the same lead, A study by (Han et al., 2011) has investigated the faults in the chiller
systems. This study has proposed a method of evaluating small subsets of the feature instead of
one large set. The SVM tool was the modeling tool responsible for detecting the faults in the

systems and evaluating the potential feature subsets that the GA was responsible for finding.
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Chapter 3

Comparing between multiple machine learning algorithms

3.1 Introduction
With the current data availability and the need for more models to predict the HVAC systems’
performance, and since buildings in the United States consume about 75% of the annual electricity
production and 55% of the natural gas production (EIA, 2017), the most significant portion of that
consumption is dedicated to the heating and cooling systems. Therefore, modeling those systems
have become crucial. As a result, there have been lots of efforts in the aspect of designing the
HVAC systems. Also, tremendous research efforts have been made in the area of modeling and
simulation of HVAC systems. Many tools have been thoroughly discussed and evaluated as an
artificial intelligence modeling technique that can be used to model the performance of HVAC

systems.

A study by (Sakthivel et al., 2010;2009) has compared an artificial neural network, fuzzy logic,
roughest-based methods, and support vector machine in capturing the faults in the performance of
the Monoblock centrifugal pumps. The results have shown that the ANN-based fault classifier
model is challenging to train. Still, it held higher accuracy results than the fuzzy logic and roughest-
based methods, which held lower accuracy. However, the study has claimed the SVM to be the

best modeling technique among the rest.

Another study followed the same lead of comparing multiple modeling tools and then deciding on
the most suitable one serving the specific research need. The study developed fault detection and
data analysis technique in AHU steam and chilled water valve leakage. The study was conducted
while gathering data from 107 buildings on the campus of the University of Texas at Austin (UT
Austin). The data were collected for a 15-minute interval over a span of 400 days. The study has
compared multiple artificial intelligence modeling techniques. The models that were investigated
were Logistic Regression (Log. Reg.), k-Nearest Neighbors (kNN), Support Vector Machine
(SVM), Multi-Layer Perceptron Artificial Neural Network (MLP ANN), Classification and
Regression Trees (CART), and Adaptive Boosting (AdaBoost). The models were examined in
their ability to distinguish features from noise with minimal classification error quickly. Also, the

tool's adaptability to the differences in data, the satisfaction of the modeling requirements, and
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minimal storage and computation requirements. It was found by this study that most models were
able to predict the chilled water and steam leakage accurately. However, the Random Forest model
had a slightly higher accuracy among all models but fulfilled one less design criterion. Therefore,
the final decision was made to choose the decision tree model as the best modeling technique. It
held the highest prediction accuracy value among the rest and fulfilled all the design criteria

(McHugh et al., 2019).

Following the same lead, another study has compared the ANN and random forest ensemble
learning method to predict hourly HVAC energy consumption in a hotel in Spain. The study has
considered the occupancy measure as the primary variable that will affect the accuracy of the
results. The study results have found that both modeling techniques are good predictors of HVAC
energy consumption. However, when performing sensitivity analysis, the ANN model resulted in
an RMSE value of 4.97. at the same time, the Random Forest resulted in a 6.10 RMSE value.
Therefore, based on this statement, the ANN can be selected as the best modeling technique.
However, the study has disclosed that the random forest model was an easier and faster model to
train since it can deal with multi-dimensional complex data and it can perform internal cross-
validation, unlike the ANN (Ahmad et al., 2017). Therefore, it is hard to decide which one is the
best modeling technique, especially with a closer RMSE value for both models. Therefore,
depending on the application, needs, availability of variables, requirements, and previous educated
experience, will be the cutting edge in deciding the best modeling technique, whether accuracy,

training time, complexity level, availability of the tool, etc.

After discussing the importance of building performance data and the types of modeling tools
available nowadays and mentioning the reason behind choosing data-driven models and not
physical models, the question now is, what is the most suitable technique for modeling the HVAC
component? And why? Generally, no one tool can fit all but a method to decide on the best
modeling tool for accurately modeling the components of HVAC systems as part of the purpose
of this research will be proposed. Therefore, this chapter will examine the three modeling
techniques: artificial neural netwar (ANN), bootstrap aggregation, and support vector machine

(SVM), and compare them to decide on the best tool to serve our specific research goal.
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3.2 Methodology
The proposed tools were tested and trained using the same data set, predicting the same output for
a clear comparison. To accomplish the objective of choosing the best artificial intelligence
modeling technique. The supply air temperature was selected to be predicted as a function of (1)
chilled water temperature, (2) chilled water valve position, (3) mixed air temperature, (4) supply
airflow. Those inputs and outputs are selected based on previous experience, as most cooling coils

component’s structure.

The available data were limited for this section that was done earlier at the beginning of the
research project. So, previously available data from an existing building located in North Carolina
was used. Later more recent data from an existing lab became available to finish the remaining

objectives of this research. Therefore, those data will be used only in this section.

3.2.1 Building description and data collection
The New Academic Classroom Building is located in North Carolina, A&T State University,
Greensboro, NC. This three-story, eighty-eight thousand square foot structure is a multi-use
classroom building conditioned by typical VAV systems. The mechanical system for this building
consists of six Air Handling Units (AHUs) with variable frequency drives (VFD) and a chilled
water central plant with two chillers. The arrangement for each AHU includes supply and return
fans, exhaust, return, bypass, and outside air (OA) dampers, and heating and cooling coils. The
entire chilled water (CHW) system connects to a global automated system, which supervises the
activity of this system, and other HVAC systems throughout North Carolina A&T’s campus. In
addition, the building is equipped with a BAS system. For this study, the third-floor air handling

unit four (AHU-3-4) in the New Academic Classroom Building is selected for examination.

As seen in Figure 17, the BAS displays several system measurements such as damper positions,

fan power, fan pressure, and ambient air conditions. Those data were recorded.
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Figure 17. BAS’s GUI for the Academic Classroom Building’s AHU-4

The observed data from the building automation system were organized into a spreadsheet to
prepare the model creation. The CHW system was run at five-minute time intervals from
November 2014 to February 2015. In total, 28,767 sample points were collected from the system,
representing more than 100 hours of system run time. Table 1 below shows the data that was

collected from the BAS system.

Table 1. A sample of the collected data from the BAS system

Abbreviated terms | Description

Qsys Supply airflow (CFM)

Tews Chilled water temperature (°F)
CH vLv Chilled water valve position (°F)
Tm Mixed air temperature (°F)

Ts Supply air temperature (°F)

After all the measurements have been downloaded into a spreadsheet, it is properly sorted to
remove undesirable data. It is important to note that the BAS software continuously records

measurements, even if the CHW system is turned off. These points are removed because they are
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repetitive and won’t improve the learning capabilities of the ANN models. Since the scope of this
experiment is limited to modeling steady-state performance, and would also not be beneficial to
developing the neural network models. Once all the null data points are removed, the total sample

data size is reduced to close to 26,789 points.

After the data filtering, the collected data is split into two samples designated for training and
testing. This task is performed because it is desired that the models generate reproducible results.
Of the data collected, the training set will consist of two months of data, while one month of data
is selected to test the models. Now that the data is filtered and organized into two sets developing

the models can begin.

3.2.2 Experimental setup and basis of comparison
To evaluate several data-based modeling techniques, we proposed to create different models. Each
model will utilize one of those techniques. The models will use the same inputs and output data to
be tested and trained. Then the models will be compared, and the best-fitted model will be used
selected as the modeling technique for this research. Three predictive modeling techniques were

chosen to be evaluated in this research. Those models were:
Model (1): Support Vector Machine (SVM)

Model (2): Artificial Neural Network (ANN)

Model (3): Bootstrap Aggregation (BSA)

After the three models were tested and trained, we examined how well the model fits the data.
There is a lot of statistical metrics that are available to test and validate the model performance.
Some are discussed in chapter 2. Many recent kinds of research have addressed using such metrics
to evaluate the performance of predictive energy models. However, the types of metrics used to
assess the performance of energy models have been an argument topic for a while now. And there
will always be an argument that there are no conclusive statistical cut-off criteria for model

goodness-of-fit directories (Reddy et al., 2000).

A recent study done by (Chakraborty et al., 2018) claimed that RN RMSE when used in tandem
with R% can provide a more meaningful and accurate representation of the performance of system-

level energy models. And R? is one of the model performance evaluation tools broadly used for
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model testing and validation (Van Liew et al., 2003). Therefore, another study was conducted to
evaluate the ASHRAE guideline 14 old metrics that used the R? and CV(RMSE) as a measure for
model accuracy. The study showed that the correlations between input and output error measures
were not statistically significant, implying that the metrics put forth in ASHRAE Guideline 14 are
as good as any other binary metrics tested (Garrett et al., 2016).

R? is better used to compare several models in terms of how well the model fits the data (Ahmed
et al. 2014 and Chua Wang et al., 2009). Moreover, both IPMVP (International Performance
Measurement and Verification Protocol) and ASHRAE Guideline 14 indicate that R? is the most

important criterion by which a model’s validity and usefulness should be assessed.

Therefore, in this chapter, we used R? to examine the fitness of the model. R? (coefficient of
determination) is the proportion of variation in the outcome values explained by the predictor
variables (inputs). R? can be represented mathematically by equation 17.

Yh=1(Yk—Y5)?

RZ =1- k=1

22:1(YK_/")2
In other words, R? tells us how well the model fits the data (goodness of fit). The R? value can
range from 0-1. The Higher the R?, the better the model. An R? that is close to one refers to a
perfect fit, while a value close to Zero or negative indicates a flawed fit model (ASHRAE guideline
14). For example, an R? value of 0.9 may be translated as 90% of the variance in the baseline is

explained by the modeled values.

3.3 Results
The selected inputs to feed the created models were chilled water temperature, chilled water valve
position, mixed air temperature, and supply airflow. At the same time, the output was the supply
air temperature. Figure 18 shows that predicting the supply air temperature based on the four inputs
chosen to create the model’s structure. We notice that all three models held high R? values to train
the specific dataset provided from the results above. The Bootstrap Aggregation achieved the

highest testing R? value of 97.3%.
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Figure 18. Comparison of model fitness (R"2)

Table 2 shows a comparison in training time between all three models. The Artificial Neural
Network had the lowest training time at 341.3 seconds. Therefore, the artificial neural networks

tool was selected as the modeling technique.

Table 2. Comparison of Model Training Times

Model Training Time (s)
Support Vector Machine 1349.3

Artificial Neural Network 341.3

Aggregated Bootstrapping 1225.1
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34 Discussion

By looking at the previous studies, (Ahmad et al., 2017) performed the same concept in a study in
Spain to compare between the ANN and BSA. The study has found that both had higher RMSE
values. However, the BSA was found to be faster and easier to train. The study claimed that both
tools are suitable methods in predicting the HVAC energy consumption. However, the study left

the answer vague that it depends on the application type.

Many other previous studies claimed it is hard to decide which one is the best modeling technique,
especially with a comparable accuracy value for the selected models. Therefore, depending on the
application, needs, availability of variables, requirements, and previous educated experience, will
be the cutting edge in deciding the best modeling technique, whether accuracy, training time,

complexity level, availability of the tool, etc.

For the bootstrap aggregation model, it is true that it held the highest R? value, but its training time
was almost four times as much as that for the neural network model. Also, the training time has
increased with the increase in training set size. While, the artificial neural networks had the lowest
training time for this research, which is less than 6 minutes. However, keep in mind that the training
set was a small set, and the training time will be increasing with the increment in the complexity

of the model and the training set size.

And this research aims to create an optimization process that will optimize the system setpoints to
reduce the energy consumption every 15 minutes. A fast tool that can compute the needed results
in less than 10 minutes was required. Meaning, training time was the cutting edge in choosing the
most suitable modeling tool due to the complexity of the component being molded. Therefore, the
artificial neural networks tool was selected as the modeling technique to carry out this research.

Because it held the lowest training time comparing to the other models.
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Chapter 4

Develop an accurate component data-driven modeling and optimization
technique

4.1 Introduction

This chapter will first examine the inner structure of neural networks and how they were developed
to serve our purpose. Later the structure of each component model using ANN will be discussed,
showing the inputs and outputs of each model and the created structure. However, to link these
data-based component models to obtain the whole system model, some equations (not the data-
drive model) were also used. For instance, equations from the ASHRAE standard 62 to calculate
the ventilation requirements were used, as will be shown later. Afterward, a model-level
optimization process (MLO) using GA will be implemented to automate the process and select the
best model structure that holds the lowest error value. GA was chosen to solve the optimization
process due to its capability of handling a wide range of variables at one time, the ability to work
with complex simulation programs, proven to be effective in solving complex problems that cannot
be easily solved with traditional optimization methods, and it is a publicly available user-friendly

tool.

The ANN models are a universal approximation mechanism (Livshin, 1., 2019). Meaning the built
network can predict the value of any function at some arguments (X). The function that will be
later used for training the network. But first, the function needs to be approximated using points
within the range of the training set. Later this approximated function will be used to find the

function values of any point of interest.

As previously discussed in chapter 2. Each artificial neural network consists of input, hidden, and
output layers, starting from left to right. Each connection between the layers carries a weight. The
initial network will require assigning a random weight to those connections, and this weight will
be adjusted in later iterations. The number of hidden layers depends on the complexity of the
function. Approximating the initial function will be done through mathematical calculations
carried by the hidden layers. The number of hidden layers that lead to the best approximation is

usually determined experimentally.
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To create HVAC component models using artificial neural networks the network needs to be tested
and trained (Mohanraj et al., 2012). Moving from left to right is called a forward pass, where the
input layer sends the input for the hidden layer to calculate the output and send it through the
output layer. The error value will be calculated, and if not sufficient, the backward pass
(backpropagation) will happen from right to left. To adjust the layers' weight to reduce the error
between the network output and the desired output. This process is called training the network.

The training process is terminated automatically when the error falls below the desired value.

Since the ANNSs are adaptive by nature and they learn by example. The trained network includes
all the weights and bias parameters that predict a specific function with the desired degree of
precision. Later this network structure can be used on a set of input data representing the function

to predict an output within predefined error value limits. This process is called testing the network.

As previously mentioned, HVAC systems are complex nonlinear systems. Therefore, detailed
information about each component and solid knowledge of the heat and mass transfer laws while
defining the variables and parameters of the process becomes crucial. To develop a more accurate
model, the variables that can be adjusted to create the model structure chosen for this research are;

the number of neurons, time delay, and feedback delay.

Number of Neurons: This factor is one of the most influential parameters in the performance of
ANN. Although more neurons require more computation, their implementation might result in
more efficiency for solving complex problems. The hidden neuron can influence the error on the
nodes to which their output is connected. The stability of the neural network is estimated by error.
The minimal error reflects better strength, and the higher error reflects the worst stability. The
excessive hidden neurons will cause overfitting; that is, the neural networks have overestimated
the complexity of the target problem. The model order is designed to help increase the model's
probability of fitting the data, but one must take caution when increasing the order. The increase
of order may allow one’s model to fit more points, but the addition of parameters may not
necessarily represent the system being studies. In this sense, determining the proper number of

hidden neurons to prevent overfitting is critical in the prediction problem.

Time delay: A time delay may be defined as the time interval between the start of an event at one
point in a system and its resulting action at another point (O’Dwyer, 2003). In the modeling field,

delays are also known as the time lag or dead time of a system. For example, a time delay of 3
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means a delay of three sampling periods. The Artificial Neural Network process aims to develop

several estimation models, all of which its parameters can be varied.

Feedback delay: feedback delay is a system structure that eventually causes output from one
node to influence input to that same node. For this investigation, the Feedback delay used ranges

from1-3.

Optimization of the ANN network is a significant task. The parameters that affect the structure of
the network can be optimized to choose the optimal model structure. Optimization of HVAC
systems was analyzed in previous studies. Optimization is vital to overcome the limitation that
comes with modeling using ANN. Genetic algorithm (GA) was introduced to optimize the network
parameters. The optimal model structure selected using GA will minimize the time and effort. GA
is an excellent method to automate the process of trial and error used to manually determine the

optimal model structure (Mohebbi et al., 2008).

Genetic algorithm (GA) is a technique used to systemize the searching for an optimal solution. GA
considers a solution as an individual, and a population is a group of individuals. The three main
genetic operators are reproduction, crossover, and mutation. A genetic algorithm starts by
generating several solutions to a problem, evaluates them, and applies the basic genetic operators
to that initial population according to the individual fitness of each individual. This process
generates a new population with higher average fitness than the previous one, which will be
evaluated. This process is repeated for the number of generations set by the user, dependent on

problem complexity (Galdas et al., 2003).

4.2 Methodology

After choosing the ANN as the modeling technique, a data-driven model will be developed for
each component of the AHU unit using ANN. The inputs and outputs of each model are tuned to
create the structure of each model. Later, a parametric study will be conducted to test the
performance of each model. The testing results will be compared against the actual system

performance data to choose the optimal model structure with the lowest error value.

Moreover, an optimization technique will be used to automate this process and help select the best
model structure. Finally, the optimization results will be compared against the parametric study

results to validate the results.
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An ANN model will be carried out using four steps (Mohanraj et al. 2012): (1) extract the results
or data (2) train the network using experimentally or theoretically predicted values (3) test the

network with the data that are not used for training (4) identify the best network structure.

The created model’s accuracy is tested in terms of MSE (Mean Square Error) and CV%
(Coefficient of Variance), representing the error values of the models in predicting the actual
performance. The model parameters that were adjusted in each iteration to get the best model

structure are:

1. The number of hidden layers of neurons (N). For this investigation, the number of neurons
that will be used ranges from 1-100.

2. Feedback delay (FD). The FD in this study is measured by minutes. Each FD period is 5
minutes, and the total feedback delay is fifteen minutes.

3. Time delay (ID). The ID is measured in minutes for this experiment. And to match the FD,
the time delay will range from 1-3 intervals of 5 minutes for each interval resulting in a

total of 15 minutes of delay.

Figure 19 shows a schematic of the modeling process using ANN.
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Figure 19. A schematic of the modeling process using ANN.

The two HVAC systems examined in this research are the chilled water VAV system and direct
expansion (DX) systems. The chilled water systems consisted of an airside represented by the air
handling unit (AHU) and a waterside represented by the chiller and boiler. In contrast, the DX

system is an airside only.

To achieve the research objective, the components of the Chilled water VAV system need to be
modeled and optimized. The components that will be modeled and optimized are the cooling coil,
heating coil, fan power, zone level model, and reheat coils. Figure 20 shows a schematic of the

chilled water VAV system airside and its components.
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Figure 20. Typical chilled water variable air volume AHU schematic

While for the waterside, the chiller, boiler, chiller pumps, and boiler pumps will be modeled and

optimized. Figure 21 shows a schematic of the chilled water variable air volume airside and its

connection to the waterside.
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Figure 21. Chilled water variable air volume system schematic. (A) The chiller and its connection to the
AHU, (B) the boiler, and its relationship to the AHU.
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While for the Dx system, an air-only system, the components that will be modeled and optimized
are the DX cooling coil, DX heating coil, fan power, and zone level model. Figure 22 shows a

schematic of the Dx system and its components.

Supply Fan
Outdoor Air %ﬂ 'ngn
—— " [S= g l—
=
r
Return Air
|
Zone 1-1 Zone 1-2 Zone 1-3 Zone 1-4 Zone 1-5

— | | | |
< —

Exhaust Air

Figure 22. Typical Direct expansion system schematic

After the modeling process is complete and the models’ structures are established, a model level
optimization (MLO) will be implemented to automate the process. The optimization process will
help in selecting the best model structure that holds the lowest error values. GA was chosen to be

used to solve the optimization process for this research for multiple reasons.

e Other optimization approaches require substantial alteration, while GA is an easily
understood approach that can be used in a wide range of applications.

e The capability of GA to handle a wide range of variables at one time. Without overfitting
or requiring an extended period.

e GA has the capability to work with complex simulation programs.

e GA is Proven effective in solving complex problems that cannot be easily solved with
other optimization methods.

e GA is publicly available, user-friendly, and easily implemented GA codes.
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4.2.1 Data collection

Data were collected from the Building Energy Assessments, Solutions, and Technologies
(BEAST) lab to conduct this research. BEAST is a multidisciplinary research lab focusing on
building energy solutions and intelligent building technologies. BEAST is 2500 ft?, room 209
(around 1700 ft*) and room 203 (about 800 ft?), located at the University of Cincinnati, Cincinnati,
Ohio. The lab is intended to serve as educational and research resources and have the flexibility to
address a wide range of research studies and provide training and educational tools. In addition,
the lab is a unique facility for research, training, professional certification, outreach activities, and

workshops (BEAST lab, 2020).

The lab is equipped with several full-scale multi-zone HVAC systems. The systems are (1) chilled
water VAV system, (2) DX VAV system, (3) four-pipe fan coil units, and (4) Variable Refrigerant
Flow VRF. The systems serve three 8 by 8 ft.-controlled zones. The chilled water VAV system
and DX multi-zone VAV systems share the same air distribution system with three single-duct
hot-water reheat VAV boxes, providing cold and warm air to meet the cooling or heating loads in
the zones. The heating or cooling loads can be artificially introduced in each zone. At the same
time, the chilled and hot water is provided to the terminal units through the chilled water central

plant and hot water central plant. Figure 23 shows a layout of the BEAST lab.
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(B)
Figure 23. (A) BEAST schematic layout. (B) BEAST lab after the equipment installation.

The operation and control of all equipment are achieved through a “real” web-based building
automation system integrated with MATLAB-based monitoring and many computational energy

solution tools.

The chilled water system consists of an AHU equipped with a cooling and heating coil, return and
supply fan, dampers, and filters. This system serves the zones with VAV boxes provided with hot
water reheat. Figure 24 shows the chilled water VAV system.
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Figure 24. Chilled water VAV system.

The chilled water system has four control loops: space control loops, supply air temperature SAT
control loop, duct static pressure control loop, and ventilation control loop. Also, the system
utilized the use of the economizer. Therefore, if the outside air temperature is proper, the control
strategies activate the economizer to result in free cooling by introducing the appropriate amount

of fresh air. Figure 25 shows the control display of the system.
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Figure 25. Control display of the chilled water VAV system.

The system is equipped with a supply and return fan responsible for the air circulation. The
controlling system also controls the return fan designed to bring the air back from the zones to

central chilled water AHU and maintain a positive pressure in the zones. Figure 26 shows the

layout of the return fan.
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Figure 26. (A) The chilled water system’s return fan layout (B) Control display of the return fan

While the central plant side of the lab is represented by the chilled water central plant (chiller) and
the hot water central plant (boiler). The chilled water system consists of one air-cooled chiller with

two pumps, as shown in figure 27.

V

Figure 27. Chilled water central plant pictures.

67



While the water distribution system consists of a primary-secondary configuration or a primary-

only configuration, as shown in figure 28.
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Figure 28. Control display of the chilled water central plant.

On the other hand, the hot water central plant consists of one electric boiler shown in figure 29 and
two pumps. Unlike the chilled water that only serves the cooling coil in the AHU, the hot water
system serves the AHU heating coil, and the VAV boxes reheat coils required for the reheating

process.

Figure 29. Photo of boiler and hot water piping system.
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Like the chilled water side, the hot water system has two piping configurations primary-secondary

configuration or a primary-only configuration, as shown in figure 30.
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Figure 30. hot water system configuration.

Finally, the DX VAV system shown in figure 31 is an air-sourced heat pump consisting of a

cooling and heating coil, fans, filters, dampers, etc. This system will also serve the three insulated
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zones. The dampers are controlled with the economizer strategy as well.

Figure 31. DX VAV system
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The DX system serves the three zones through the same VAV boxes. The DX system has the same
primary four control loops that the chilled water system has. Space control loops, supply air
temperature, SAT control loop, duct static pressure control loop, and ventilation control loop, as
shown in figure 32. The DX system is also equipped with a supply and return fan to circulate the

air and maintain a positive pressure in the served zones.
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Figure 32. Control display of DX VAV system.

The chilled water AHU and DX AHU can operate simultaneously; one supplies cold air, and the
other supplies warm air to the three zones (testing chambers) through dual duct VAV boxes. Each
zone is served by VAV boxes operating as single or dual inlet VAV boxes. This configuration

allows the system to work as single or dual-duct VAV systems, as shown in figure 33.

Test Lab 1 VAV-2

(4)

70



\"\

. S Temperature From zones
exhaust air oa-—L | ! + H d Contrc-llerq------: Return Alr RA
I _"\/‘\-/ - :
I ! ¥ Secondary AHU I (:}
: ,/ ( D £
Dutsidde Air 04 \ -_//.-' E’i:
e A 0/ 1 - — 1_| [contraller| o *
I Cooling Coil Heating Ceil Supply Fan
I ...... o Ie_rrlﬂ_erature
- SATAY E i Commller|q. ;
H -
I
*' l/\/\f * * Primary AHU i
- PN
' B 351 -
—— \. 21 a "
AT L ql. 15
Oulsite Air DA Misture Air MA A }”—{Cam bller o=t =3 zg
T [ ‘_32
Cooling Coil Heating Coil ~ Supply Fan 28 | &z
To other zones
R m =iz El=s
: =i, ; =t
b —— =] =
' 8 = —
i E - L-~Reheat
Contraller = -
A Lome 1 Lome 3
[E———
Temperature

(B)
Figure 33. (A) Control display of dual duct systems Dx system. (B) Dual duct systems schematic.

Performance data were collected over a period of three months. First, the chilled water VAV
system and the DX system readings were recorded every 1 minute. Later, data were organized and
transferred into Excel sheets to be prepared for experimenting. Figure 34 shows a small sample of
the performance data that were collected. The data are from April 26™ showing the supply airflow

rate for both the chilled water VAV system and DX system against their power consumption.
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Sample of the data collected from the BAS
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Figure 34. Collected Data from BAS to Microsoft Excel

The performance data gathered for all the components for both systems are summarized in table 3

below.
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Table 3. A description of the collected data from the BEAST lab

Abbreviated terms = Description

Qsys Supply airflow (CFM)

Qo outside air flow (CFM)

Tews Chilled water temperature (°F)
Tewr Return chilled water temperature
CHvrv Chilled water valve position (%)
Tm Mixed air temperature (°F)

Ts Supply air temperature (°F)

T; Return air temperature (°F)

To Outside air temperature (°F)

Ws Supply air humidity ratio

W; Return air humidity ratio

Ps Duct Static Pressure

Dpw Chilled water differential pressure setpoint
P Power (kWh)

Fs Fan speed (fpm)

P Pressure (in. w.g)

RHs Supply air relative humidity (%)
RH, Outside air relative humidity (%)

After organizing the data into the Excel sheets and remove all the anomalies data for when the
system is off because those data will affect the accuracy of the models’ predictions. The data were
then divided into testing and training sets and later imported into the MATLAB software to test
and train the created models. Figure 35 shows a sample of the data that were measured and how

they were displayed on the BAS before collection.
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Figure 35. Sample of the collected data displayed on the BAS.

4.2.2 Modeling

Component models that are accurate, reliable, and adjustable are used for applications such as
control optimization to minimize the energy consumption of HVAC systems. The prediction
component models developed in this research will predict the system's actual performance over a
specified period of operation. In addition, the component models are required for the optimization
process that will be deployed later on. In this research, MATLAB software was used to develop

functional data-driven models for system applications.

The optimal component model structure will be sought in the first optimization level (MLO). Then,
all the system optimized, integrated components models together will form the “system model.”
The output of the system model will be the total system energy consumption that will be optimized
in the following optimization level (SLO) that will be discussed in chapter 5. Finally, the HVAC
system setpoints required for each component, such as supply air temperature (Ts), airflow rate
(CFM), duct static pressures (Ps), chilled and hot water temperature (Tw), and outdoor airflow

rate, are determined based on the previous time step reading.

The final objective of this research is to optimize the system's total energy consumption. Therefore,

the proposed integrated two-level optimization process will optimize the system operation
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setpoints every 15 minutes to reduce the total energy consumption for the next timestep. Therefore,
if the component models are inaccurate, the total energy consumption prediction will be less

accurate. Therefore, the whole process results will be faulty.
Therefore, the sequence of the process can be summarized as follows:

e At the initial time step that is user-defined, the model parameters will be tuned using
previous data.

e The tuned parameters will be later used in the next loop to forecast the system performance
at the next timestep.

e The models' parameters are the loads and supply air temperatures, etc.

e The parameters are simulated by the load prediction, zones, heating and cooling coil, fan
power, reheat, ventilation, pump, chiller, and boiler models.

e The models will be subjected to the constraints and regulations imposed by the energy and
mass flow laws and energy codes requirements.

e The created models' final output will be measured in terms of energy consumption to

calculate the system's total energy savings.
Figure 36 below shows a basic schematic of the modeling process steps.
Structure
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Figure 36. Modeling process concept
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4.2.2.1 Chilled water VAV system models

The Airside and waterside of the chilled water VAV system were chosen to be evaluated as part
of this research. A variable air volume with a reheat system will control the zone temperature by
regulating the system's airflow rate. The supply air temperature is constant throughout the process.
Modulating the airflow rate for each zone to maintain the zone temperature setpoint will be through
the VAV box of each zone located in each zone's ductwork. The system is equipped with hot water
reheat coils that are located in the VAV boxes. If the VAV box has reduced the airflow to the
minimum and the zone temperature setpoint was not met, the system will trigger the reheat coils

to meet the zone load.

The component of the system will be thoroughly investigated and modeled. Figure 37 shows the
system component integrated data-driven models. However, few calculations were needed to link

this data-based component model and obtain the whole system model.

The data-driven models were developed to predict the system performance. The created models
will be integrated as the output of some models will serve as an input for others. For example, the
airside model outputs were fan power, cooling, heating coils, and reheat loads. Those outputs were
later linked to the central plant model (water side) as inputs. At the same time, the chiller power,
boiler power, and pump were the outputs of the waterside. For this step, choosing the best model
structure to replicate the actual physical component is a time-consuming process. Therefore, the
MLO process using a genetic algorithm that will be implemented later will help choose the best

component model structure.
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Figure 37. Chilled water VAV system proposed hybrid modeling diagram.



Since the accurate component modeling process is a significant step in predicting the HVAC
energy consumption. The component models created for the chilled water VAV system are data-
driven models. Table 4 shows the significant data-driven component models. The rest of the
components were represented in a series of equations needed to link those data-driven models and
obtain the whole system model due to their simplicity and being less dependent on time and the

system’s current load.

Table 4. The major data-driven models.

Data based models Model’s output Description

AHU Model (cooling coil and = Supply air temperature, = This model will capture the

heating coil) chilled water flow, the @ performance of the cooling
total load coil and heating coil as the

major component of the AHU

AHU Model (fan power model) = Fan power This model will capture the

performance of the fan

Central plant Model (chiller Compressor power This model will capture the
power model) performance of the chiller
Central plant Model (chilled Pump power This model will capture the
water and hot water pump) performance of the pumps

4.2.2.1.1 Zone sensible load prediction

The zone sensible load is established to determine the zones sensible load at the next time step.
The sensible load is determined based on a series of heat balance equations. The zone sensible load
is a function of the zone air flow rate and the difference between the supply and return temperature.
In our prediction, we assume that the sensible load is the same for the previous period. Later, the
load is calculated for the next timestep based on questions 18-22 using the previous flow and

temperature.
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as=

Where:

q = heatremoved (Load) (BTU/h)
gt = Total load

gs = Sensible load

CFM = Air flow rate

CP = Specific heat of air= 0.244
V = specific volume = 13.5
A= temperature difference (F?)
Ar=Ts- T,

Ts = Supply air temperature

T, = Return air temperature

Ah: ho - hs

hg = Supply air enthalpy

h, = Return air enthalpy

The initial load essential for the calculations will be estimated. The airflow rate for the current
timestep will be assumed to be constant of the next timestep. The model's output will be the
predicted load for the next time step (in our case is the next 15 minutes) based on the airflow rate
for the current timestep and temperature difference. Assuming that the airflow rate is constant for
the next timestep is acceptable since the optimization period is small. This process will be repeated
every 15 minutes. The output of this model will be an essential input in the zone model as the

predicted sensible zone load is crucial to determine the zone flowrates. Figure 38 shows the zone

CFM %60

14

__ CFM %60
= —

14

__ CFM %60
14

model proposed inputs and outputs.

7
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Model Input
Building sensible load at the current
time step g5 (assume it is the same as
the previous timestep)

Current flow and
temperature difference

qs = ma *cp * AT

;
I !
i !
- |
! CFM * 60 i
1 ma = v .
i !
- |
1 CFM +60 .
i q:= v ‘Ah 1
i I

CFM =60 .
'\ qs= Vv ‘AT ,’

Model output
Sensible load for the next
time step qg;

Figure 38. Zone's sensible load model description

4.2.2.1.2 Building latent load prediction

The latent load of the building is the amount of moisture in the air. The latent load prediction
process is built based on a series of steady-state heat balance equations, as shown in figure 39. The
latent heat is required for the whole system instead of each zone. The latent load will be used to
determine the humidity ratio of the building that will be used as an input in other models. The load
will be estimated at the first step and later calculated for the next timestep in the same way as the
sensible load prediction. The process will be repeated every 15 minutes to assess the latent load

for the subsequent timestep optimization.
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Model Input
* Building latent load at the current
time step q;

Latent heat (-0)
q;= Latent heat (—
»  Building schedule h

qt=qstq

q=P * by, * CFM + AW

q, = 4840 « CFM » AW

p = Density of air
h,, = latent heat of evaporization

A= Humidity ratio dif ference

Calculate latent load based on previous A= -
step data W, = Supply air humidity ratio
1 W, = Returnair humidity ratio
Model output
Latent load for the next Therefore:
time step q, = 4840 + CFM + AW

Figure 39. The building latent load model description

4.2.2.1.3 Zones model

The zone model is a series of equations established to determine the zones airflow rate. First, the
zone model is constructed based on the heat balance laws, as shown in figure 40, utilizing the total
load and the sensible and latent load sum. Next, the zone model will calculate the zone
requirements based on the user input specified in the input datasheet. This process will be

calculated at each time step.
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|
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q=macpAT
_ CFM +60
ma= 7

_ CFM+60+CP
v
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CFM %60 =CP Ar=temperature dif ference (F?)
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Figure 40. Zone’s model description

The zone model has the reheat requirements specified as well. If the zone load is less than 20% of
the design load, the reheat coil will be triggered, and the reheating process will begin. The

reheating process can be described in equation 23 below.

__ CFM x60xCP
Qrenheat zone = v

*(Tzrequired - Supply) ........... (23)

The function will calculate the zone reheat load and then the sum of the zones reheat load will be

used to calculate the total reheat power usage for the system at each time step.

4.2.2.1.4 Fan power model
The fan is one of the significant components of any air handling unit. For the fan model, the fan

power was predicted as a function of two inputs, flow rate and fan pressure.
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The fan model proposed in this research is a data-driven model that uses the fan flow rate and
pressure to indicate the fan power as the model output. Figure 41shows the structure of the ANN

model designed to predict the fan power.

Hidden Output

=¥ B

2
Input (X) Output (Y)
Qsys Fan Flow rate Fan Power

P Fan pressure

Figure 41. Artificial Neural Network fan model structure

4.2.2.1.5 Minimum zone ventilation model

The outdoor air percentage brought to the building in the process of heating/ cooling and
dehumidification is a crucial factor due to its importance in the ventilation and maintaining the
inhabitant comfort levels. In some baseline practices, the old rule of thumb methods was used to
determine the amount of outdoor air brought to the building. One of these rules of thumb methods
is that the amount of outdoor air brought to the building is usually 100 CFM per every 600- 900
ft?.

However, to comply with ASHRAE standard 62.1 for minimum ventilation rates and air quality,
that will be acceptable to human occupants. In addition, many buildings have been following the
ASHRAE standard 62.1 for determining the minimum outdoor airflow rates requirements for
breathing zones in their design. Therefore, equation 24 is proposed in ASHRAE standard 62.1 to

determine the ventilation airflow rates for each zone.
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Where:

Vyuz: breathing zone outdoor airflow (CFM).

Rp: outdoor airflow rate required per person as determined from Table 6-1 in standard 62.1.
P,: zone population: the maximum number of people expected in the zone.

Ra: outdoor airflow rate required per unit area (CFM/ft?) as determined from Table 6-1.

Az: zone floor area ft>.

Now to calculate the zone outdoor air flowrate, which is the amount of outdoor air that must be
provided to the ventilated zones by the HVAC system. This will be determined through equation
25 as proposed by ASHRAE standard 62.1.

Where:

Voz: outdoor zone airflow (CFM)

Vuz: breathing zone outdoor airflow (CFM).
E.: System efficiency.

In many design cases, the E; nowadays is considered as 1.0. Therefore, Vo, equals Vi, and the
systems ventilation air flowrate will equal the sum of zone ventilation airflow rate. This method is
acceptable, but it will result in energy waste as not all zones will always require 100% of the
maximum ventilation rate. Therefore, in this research, we will be deploying the new ASHRAE
62.1 method to optimize the systems efficiency value E; so that each zone will get the minimum
ventilation flowrate. And this amount will vary throughout the system operation period. The
following equations show the process of correcting the efficiency Xy value based on the ASHRAE

62.1 method.
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X = 28
s= (28)
Ey,=1+Xs—Zgpeeiieiiiiiiiiin, (29)
E,=min(Ey;)..coiiiiiiiiiiiiniianan (30)
7
ot = 31
o= (1)
Vot
X = o 32
o= (32)
Vot = Vps * Xgeenvvnnioiiiiii, (33)

Where:

Z4, = outdoor air fraction in discharge air supplied to each zone, L/s (CFM)
Vo, = zone outdoor airflow, L/s (cfm)

V4, = discharge air supplied to the zone, L/s (cfm)
Vou = uncorrected outdoor air intake flow, L/s (cfm)
Xs = uncorrected outdoor fraction in supply air

Vs = system supply air flow, L/s (cfm)

Ev, = zone efficiency

Ey = system efficiency

Vot = outdoor air intake flow, L/s (cfm)

Xsc = corrected outdoor fraction in supply air

4.2.2.1.6 Economizer model
The system utilized the use of the economizer. Therefore, if the outside air temperature is proper,
the control strategies activate the economizer to result in free cooling by introducing the

appropriate amount of fresh air.
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Model |nput q = heat removed (BTU/h)
* Return air temperature T, qe=ma + by
* Qutside air temperature T, (o =ma *cp *AT
* Ventilation load (Outside airflow) g, CFM <60
+ Total system load g; (Btu/h) m=—
l e CFMV*(:(] *Ah
Compare the return air temperature T, to R
the outside air temperature T CERM = Air flow rate
| CP = Specific heat of air=0.244

V= specific volume = 13,5

Ar=temperature dif ference (F?)
Ap=T,- T

Economizer s off T; = Supply air tempreture

Economizer is on

100% Outside air

T, = Return air tempreture

LS CFMV = by “Follow the ventilation model” By ho-
b= }Cl.gM il(:o o Calculate the amount of outdoor air hy = Supply air enthalpy
o= — *, required to maintain Indoor Air Quality h, = Outside air enthalpy
A=T,-T, (1AQ) 0
Model output Model output
* Outdoor air required for ventilationg, = sysen * Qutdoor air required for ventilation g,
* Mixed air temperature T, * Mixed air temperature T,
* Mixed air humidity ratio W, * Mixed air humidity ratio W,

Figure 42. The economizer model description.

4.2.2.1.7 Cooling coil model

As one of the main components of any chilled water VAV system, the cooling coil is responsible
for cooling and dehumidifying the air. The cooling load was predicted as a function of chilled
water temperature, chilled water flow, mixed air temperature, supply air temperature, and mixed
air humidity ratio. At the same time, the chilled water flowrate is calculated as a function of the
valve opening. The cooling coil model will be linked to the central plant model to get this value
over the specified period. At the same time, the system temperature difference will be determined

from the BAS system over time.
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Figure 43 shows the structure of the ANN model designed to predict the optimal performance of

the cooling coil.

Hidden Output

Input '\ I\ iH Output
5 4
Input (X) Output (Y
Qs Total system flow rate Qu Chilled water flow
T . s Chilled water temperature T .- Return water temperature
T s Supply air temperature W ¢ Supply air Humidity ratio
T,,, Mixed air temperature q. Total load

W ,,, Mixed air humidity ratio

Figure 43. Artificial Neural Network cooling coil model structure

4.2.2.1.8 Heating coil model

As another main component of any chilled water VAV system, the heating coil is responsible for
heating and dehumidifying the air in the system heating mode. The heating coil data-driven model
is similar to the cooling coil model. The heating load was predicted as a function of supply hot
water temperature, hot water flow, mixed air temperature, and supply air temperature. In this model
air humidity ratio was not accounted for since it is close to zero in the heating mode. Again, the
hot water flowrate is calculated as a function of the valve opening. The heating coil model will be
linked to the central plant model to get this value over the specified period. At the same time, the

system temperature difference will be determined from the BAS system over time.

Figure 44 shows the structure of the ANN model designed to predict the optimal performance of

the heating coil.
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Hidden Output

Input (X) Output (Y
Qsys Total system flow rate q. Total load
T hws Hot water temperature T pw, Return water temperature

T Supply air temperature

T,, Mixed air temperature

Figure 44. Artificial Neural Network heating coil model structure

4.2.2.1.9 Central plant chiller model

The central plant or the water side of the chilled water VAV systems is responsible for heating,
cooling, and both heating and cooling at the same time. The central plants can cool or heat different
kinds of coolants, typically water or water/ glycol mix for conditioning or refrigeration. In our
research, we are examining a water chiller for air conditioning. The central cooling and heating
plants represented by the chiller and boiler are responsible for generating the cold and hot water
distributed to multiple locations in the building through the distribution system that includes pipes
and pumps, etc. The central plants model discussed in this research consists of the chiller, boiler,

and pumps model.

The liquid goes through two primary circuits in the chiller: a refrigeration circuit and a fluid circuit.
The refrigeration circuit contains the compressor, the condenser, the expansion valves, and the
evaporator. In contrast, the fluid circuit includes the pumps, filters, and heat exchangers. The
refrigeration circuit is responsible for removing the heat from the fluid. At the same time, the fluid

circuit carries the process fluid back to the building that is being cooled.

The liquid flow rate required to satisfy the building (zones) heat load at a specific temperature drop

can be mathematically described in equation 34 below.
qtotal = MW * CPW * AT ............ (34)
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Where:

qrotal = total heat removed (Btu/h)

My, = chilled water flow rate (GPM)
Cpw = specific heat of liquid (Btu/Ib °F)
AT = temperature difference (°F)

The chiller model discussed in this research is a data-driven model aiming to predict the chiller
compressor power in kWh as an output. While the chilled water flow, supply and return water

temperature, and the outside temperature was selected to be the model inputs. Figure 45 shows the

structure of the neural network model.

Hidden Output
Input
4 1
Input (X) Output (Y)
T,.,,- Return water temperature Chiller power

T, Outside air temperature

Q.o: Total water flow

T, s Supply water temperature

Figure 45. Artificial Neural Network chiller model structure

4.2.2.1.10 Central plant boiler model
The boiler is another component of the central plant. The boiler was examined in this research is
a gas furnace boiler. The boiler is responsible for heating the fluid in the heating mode and in the

cooling mod where reheating by the reheat coils is required.

&9



Like the chiller, the boiler liquid flow rate required to satisfy the building (zones) heat load at a

specific temperature drop can be mathematically described in equation 35 below.
Qtotal = My, * Cpyy * AT ............ (35)

Where:

qtotal = total heat removed (Btu/h)

M,, = Hot water flow rate (GPM)

Cpw = specific heat of liquid (Btu/Ib °F)

AT = temperature difference (°F)

The boiler discussed in this research is not a data-driven model due to its simplicity, where there
is no account for the fluid moisture content. However, as shown in figure 46, a series of equations

were used to link the boiler gas consumption to the system model.

Model Input
* Total heating load G;ota1
* Reheat load Gpepeqt
* Hot water return temperature Ty,

|

Calculate Total heatingload 4:= total heat removed (BZ_”)

qe= 500 % GPM * A,
If No Reheat

Gt = (s GPM = water flow rate
Ap=Tempreture dif ference (F?)
qe= 500 x GPM + A, llf Reheat is on Ar=Typ-Tys
A= Toyp-Tys
Tyws = Supply water tempreture
(”follow Reheat model” -
= Return water tempreture
« For the reheat load .
Add
v Qreheat

Model output
Boiler gas consumption

Figure 46. The boiler model structure
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4.2.2.1.11 Central plant pump model

The hot water and chilled water pumps are usually represented in other research as a series of
equations since the pump model uses a constant fluid density and specific heat values. For
reference, the heat balance equations that can link the pump's model to the system model, if the
data-driven model is not applicable, are represented in equations 36 and 37 below, showing the

pump flow and pressure loss calculations.

Pump flow = p*I\i FELRLRREEEE PR ERPPRRRRPPR (36)
Pump head pressure loss = " zszp* FELRRIRREE (37)

Where:

Q = mass flow rate

d = diameter of pump impeller
P = head pressure

p = density of liquid

N = rotation speed

In this research, a data-driven model was constructed to predict the performance of the pumps. The
pump power in kWh was indicated as an output of two inputs, the chilled water flow, and pump

pressure. Figure 47 and 48 shows the neural network structure selected for the pump model.

Hidden Output

Input .\ .\ Output
2 1
Input (X) Output ()
Q.. Cold water flow Pump power

P, Pump pressure

Figure 47. Artificial neural network chilled water pump model structure
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Input |
>
2 : —
Input (X) Output (¥)
Qpw Hot water flow Pump power
P, Pump pressure

Figure 48. Artificial neural network hot water pump model structure

4.2.2.2 Direct expansion (DX) system models

The second HVAC system investigated in this research is a variable air volume direct expansion
(DX) system. The DX system is an air system equipped with electric cooling and heating coils,
filters, fans, and dampers. Modulating the airflow rate for each zone to maintain the zone
temperature setpoint will be through the VAV box equipped with a reheat coil of each zone located
in each zone's ductwork. If the VAV box has reduced the airflow to the minimum and the zone

temperature setpoint was not met, the system will trigger the reheat coils to meet the zone load.

The system was thoroughly investigated and analyzed. The unit was run in both the cooling and

heating mode and under different weather conditions to model the system accurately.

The DX system components models created in the research are data-driven. However, some
calculation models are needed to link the data-driven model and develop the system model. As
shown in figure 49 below, as the chilled water VAV system, the DX system models will be
integrated with each other’s as the output of one model can serve as an input for other models.
Finally, the DX system model’s intended output is the system compressor power that is the sum

of the fan power, cooling coil power, and heating coil power.

Since the DX system is air-only, no central plant models will be linked to the airside models.
Finally, the DX system and the air side of the chilled water VAV system are similar in all the

components except the heating/cooling coil types. Therefore, the same models created for the rest
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of the components can be used to model both. Thus, in the next section, we will discuss the fan,

the cooling, and the heating coil models, as the rest were previously discussed.

Current huilding load

Currentload
Y Y
Building latent load Zone sensible load
% Predicted sensible load for next timestep
1 Y
Predicted latent load for next timestep!
toget Wr | ,
E - Zone model Control strategies
| Supply air temperature
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A Y Duct static pressure
i Ventilation model r !
eheat conmizer | ¢
model model (Standard 62.1) [ Fan model ]7
Qutdoor airflow rate
Reheat load
Load Load
A Y
DX Heating coil model DX Cooling coil model
Fan power
] Y
Power (wh) Power (wn) [¢

Figure 49. DX variable air volume system proposed hybrid modeling diagram.
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Table 5 below shows the major data-driven models created for this part and their predicted output
and model description. The rest were linked by calculations due to their simplicity and being less

dependent on time and the current system load.

Table 5. The major DX system data-driven models.

Data based models Model’s output Description

DX Model (cooling coil Cooling/ heating This model will capture the
and heating coil) coil power and performance of the cooling coil
humidity ratio and heating coil as the major
component of the DX system.

DX Model (fan power Fan power This model will capture the
model) performance of the fan.

The DX fan model was the same as the one fr the chilled water system. The two models have the
same input and output structure, so this section will not repeat the process. While the cooling and

heating coils are different, and their network will be discussed below.

4.2.2.2.1 DX Cooling coil model

The DX cooling coil is an electric coil that is responsible for cooling and dehumidifying the air.
The DX power consumption cooling coil was chosen to be the output of the data-driven model.
Also, the supply air humidity ratio will be predicted to be optimized and served as an input for

other models in other models.

The supply air temperature setpoint dictates the power consumption. Thus, the selected inputs were
the outside air temperature, the supply air temperature, the mixed air temperature, and the mixed
air humidity ratio. The mixed air temperature and the humidity ratio were calculated by averaging
the outdoor and return air conditions. The corrected outdoor air ratio will be determined by the
ventilation model as previously described in section 4.2.2.1.5. The corrected value will be linked

to the DX cooling coil model.
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Figure 50 below shows the DX cooling coil model structure and its inputs and outputs.

Hidden Output
Input Output
4 2

Input (X) Output (Y)

T ,Outside air temperature DX power

T Supply air temperature W ¢ Supply air humidity ratio

T,. Mixed air temperature
W ,,, Mixed air humidity ratio

Figure 50. Artificial neural network DX cooling coil model structure.

4.2.2.2.2 DX Heating coil model

The Dx heating coil is similar to the cooling coil. The DX heating coil is an electric coil used to
heat the air when the system is in heating mode. The DX heating coil’s predicted output is the
power consumption. While, the inputs were the outside air temperature, the supply air temperature,
mixed air temperature. It is noted that the mixed air humidity ratio will be ignored in modeling the
performance of the DX heating coil due to small or close to zero value in the heating mode. Figure

51 below shows the DX heating coil model structure and its inputs and outputs.
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Figure 51. Artificial neural network DX heating coil model structure.

4.2.3 Model-level optimization

As previously stated, this research consists of two levels of optimization. The first level is the
component models optimization, while the second level is a whole system performance
optimization. The two levels will be later integrated to optimize the system operation, reduce
energy consumption, and improve thermal comfort levels. Both levels of optimization will be

conducted using GA.

The model level optimization will be implemented to automate the process by determining the best
model structure with the minimum error value between the actual performance data and simulated
data generated through the parametric study. Thus, the objective of the model level optimization
is to find the best model structure with the lowest error value over a predefined (training or testing)
period with (n) data sample. The error values were measured in terms of MSE (mean square error)
and CV% (coefficient of variation). Figure 52 shows the process of model optimization and

objective function using the GA operator.
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Figure 52. The general layout of the MLO process using GA.

As previously stated, first, a typical learning algorithm was used to tune the model’s parameters.
For this purpose, artificial neural networks were selected. And the variables that were adjusted in
the process are (1) input time delays, (2) feedback time delays, and (3) the number of neurons
(hidden layer size). At the same time, the model parameters are such as weights and biases. The

tuning of the parameters will be completed on the whole testing data set.

Later the model level optimization is proposed to determine the optimal model structure. Selecting
the best model structure manually is a time-consuming process that might take few days for each
component model structure. Therefore, a high-level optimization will be performed in this step to

select the best model structure that produces the minimum error values in model prediction. This
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process will not replace the typical learning algorithm. Instead, it will automate the process to

deliver more accurate predictions with lower processing time.

4.3 Modeling results

The models were tested and trained using the data collected from the BEAST lab. As previously
stated, the data were collected and organized into Excel sheets and then imported into the
MATLAB code is designed for each component separately. Finally, the results for each run were
collected and stored into an output file named results. The results measured the performance of
each model by calculating the error of each model in predicting the specified output. Later all the
results were compared together, and the model structure that held the lowest error value was
selected as the best model structure. This manual process of choosing the best model structure is

called the parametric study.

Therefore, this section shows the parametric study results. And the MLO process results. These
results will be later compared against the optimization process results to validate the model-level

optimization process results.

4.4.1 Chilled water VAV system component modeling results

The component data-driven models were described previously in the methodology section for the
chilled water VAV system. Each model input and output that serve the objective of this research
was specified. The tool that was used to test and train the model is artificial neural networks. The
script that was used has the ability to predict one output as a function of multiple outputs.
Therefore, the models with multiple outputs needed multiple runs, one for each output. This section

shows a proposed methodology of modeling.

1. Cooling coil model results
After conducting the parametric study and comparing all the results, the following results are for
the cooling coil component. It was found that the model structure with 30 number of neurons, three
intervals of feedback, and three intervals time delay held the least error values of 1.1059% and
0.0175 in terms of CV% and MSE, respectively. Thus, it was selected to be the best model
structure. Figure 53 shows the testing and training period of a model with a number of neurons
ranging from (1-100) with a time delay (ID) of three intervals and three intervals time delay. This

iteration held the optimal values.
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Cooling coil optimal model performance in predicting the total load.
The model performance in the testing and training period in terms of
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Figure 53. (A)The Training and testing period of the iteration held the optimal model structure. The error
value is measure in terms of CV%. (B) The Training and testing period of the iteration had the optimal
model structure. The error value is measure in terms of MSE.
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While the results of modeling the cooling coil to predict the chilled water flow have shown that
the model structure with one interval of time delay, one interval of feedback delay, and 30 number
of neurons held the lowest error values. The CV% and MSE values were recorded as 0.23 and
0.0056, respectively, as shown in figure 54 below.

Cooling coil optimal model performance in predicting the chilled water flow.
The model performance in the testing and training period in terms of CV%

Best model structure

R
=
(]
o - —— et " -2 —
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Number of neurons
@ Training ==@=—Testing
Cooling coil optimal model performance in predicting the chilled water flow.
The model performance in the testing and training period in terms of MISE
0.025
0.02
Best model structure
0.015
L
w
=
0.01
0.005
- >
o —— o— = —o- —o —o
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Number of neurons
=== Training =—@=Testing

Figure 54. (A)The Training and testing period of the iteration held the optimal model structure. The error
value is measure in terms of CV%. (B) The Training and testing period of the iteration had the optimal
model structure. The error value is measure in terms of MSE.
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While the results of modeling the cooling coil to predict the chilled water temperature leaving the

coil have shown that the model structure with one interval of time delay, three intervals of feedback

delay, and 5 number of neurons held the lowest error values. The CV% and MSE values were

recorded as 0.230.412 and 0.0535, respectively, as shown in figure 55 below.

(4)
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Figure 55. (A)The Training and testing period of the iteration held the optimal model structure. The error

value is measure in terms of CV%. (B) The Training and testing period of the iteration had the optimal
model structure. The error value is measure in terms of MSE.
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2. Fan power model results
While for the fan power model, the same process was applied for the parametric study. The results
have shown that the model structure with two intervals of time delay, two intervals of feedback
delay, and 20 number of neurons held the lowest error values. The CV% and MSE values were
recorded to be 0.4256 and 0.0362, respectively. Figure 56 shows the training and testing results

for the iteration that held the optimal value.
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Figure 56. (A)The Training and testing period of the iteration held the optimal model structure. The error
value is measure in terms of CV%. (B) The Training and testing period of the iteration held the optimal
model structure. The error value is measure in terms of MSE.
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3. Chiller model results
While for the chiller modeling process, the model predicted the chiller power as a function of
multiple inputs. The results have shown that the model structure with one interval of time delay,
two intervals of feedback delay, and 15 number of neurons held the lowest error values. The CV%
and MSE values were recorded to be 2.7135 and 0.0251, respectively. Figure 57 shows the training

and testing results for the iteration that held the optimal value.
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Figure 57. (A)The Training and testing period of the iteration held the optimal model structure. The error
value is measure in terms of CV%. (B) The Training and testing period of the iteration had the optimal

model structure. The error value is measure in terms of MSE.
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4. Pumps model results
While for the pump's model in predicting the pump power, the same process was applied. For the
chilled water pump, the results have shown that the model structure with three intervals of time
delay, three intervals of feedback delay, and 5 number of neurons held the lowest error values. The
CV% and MSE values were recorded to be 0.5971 and 0.03371, respectively. The model error
value results were smaller than other models due to the pump's model simplicity of utilizing two
inputs and one output. Figure 58 shows the training and testing results for the iteration that held

the optimal value.

Chilled water pump model performance in predicting the pump power in
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Figure 58. (A)The Training and testing period of the iteration held the optimal model structure. The error
value is measure in terms of CV%. (B) The Training and testing period of the iteration held the optimal
model structure. The error value is measure in terms of MSE.
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4.4.2 Direct expansion system modeling results.

1. Fan model results
For the DX fan power model, the same process was applied to predict the fan power. The results
have shown that the model structure with three intervals of time delay, one interval of feedback
delay, and 15 number of neurons held the lowest error values. The CV% and MSE values were
recorded to be 0.1211 and 0.0031, respectively. Figure 59 shows the training and testing results

for the iteration that held the optimal value.

DX fan model performance while predicting the fan power in both the testing and
training period in terms of CV%
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Figure 59. (A) The Training and testing period of the iteration held the optimal model structure. The error
value is measure in terms of CV%. (B) The Training and testing period of the iteration that had the optimal
model structure. The error value is measure in terms of MSE.
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2. Cooling coil model results
For the DX cooling coil that is electric, two outputs were needed to be predicted. The coil power
and the humidity ratio of the air leaving the coil. The exact process was applied for the parametric
study. In predicting the power, the results have shown that the model structure with one interval
of time delay, two intervals of feedback delay, and 20 number of neurons held the lowest error
values. The CV% and MSE values were recorded as 0.456 and 0.0102, respectively, shown in
figure 60 below.

DX cooling coil model performance while predicting the power in
both the testing and training period in terms of CV%

Best model structure

=R
=
L)
2
1
0
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Number of neurons
e training =—=testing
DX cooling coil model performance while predicting the power in both
the testing and training period in terms of MISE
1.2
1
0.8
&
= 0.6
Best model structure
0.4
0.2
o}
45 50 55 60 65 95 100
Number of neurons
== Training =—@=Testing

Figure 60. (4) The Training and testing period of the iteration held the optimal model structure. The error
value is measure in terms of CV%. (B) The Training and testing period of the iteration that had the optimal
model structure. The error value is measure in terms of MSE.
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While the model designed to predict the humidity ratio was slightly more complex and held the
highest error values. The results have shown that the model structure with two intervals of time
delay, three intervals of feedback delay, and 10 number of neurons held the lowest error values.

The CV% and MSE values were recorded to be 5.43 and 0.0563, respectively

DX cooling coil model performance while predicting the humidity ratio in
both the testing and training period in terms of CV%
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Figure 61. (A) The Training and testing period of the iteration held the optimal model structure. The error
value is measure in terms of CV%. (B) The Training and testing period of the iteration that had the optimal
model structure. The error value is measure in terms of MSE.
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4.3.3 Model-level optimization process (MLO) results.

The optimization process was deployed after manually conducting the parametric study and
selecting the best model structure for each component model. The purpose of the parametric study
was to validate the optimization process. As previously stated, the presented modeling process
results show a problem-solving methodology, and the results are not fixed for all similar
applications. Instead, the results will vary based on the size of the data sets, the collected data's
accuracy, and the different inputs tuned to predict the output. But it is crucial to validate the
accuracy of the optimization process where similar results are supposed to be found. Also, the
modeling process is time-consuming; therefore, implanting an optimization process is crucial to
automate the process and help select the best model structure promptly, especially for online

applications.

The main objective of this research was to optimize the performance of HVAC systems, which
will be done by integrating both the component model optimization level (MLO) and the whole
system optimization level (SLO). Therefore, the accuracy of the model-level optimization process
is crucial for the system's total energy consumption prediction. It is noted that the results produced
by the MLO process are similar in value to those obtained in the parametric study, which gave the

green light to continue with the next level of optimization process (SLO).

The GA parameters that were adjusted in the MLO process are the generations and population.
The selection of the generation and population size depends on the complexity of the problem that
is being assessed. Usually, this is being estimated based on the researcher's experience and
previous research work. Researchers typically debate on the generation and population's small size,
leading the algorithm to poor solutions. At the same time, the large size will significantly increase
the computation time that is required to find the optimal solution. Therefore, close attention should

be paid to the population size due to the significant influence on the accuracy of the result.

Therefore, multiple populations and generation sizes were tried in the research, and to each was
its pros and cons. A generation size of 150 and a population of 100 were tested at first, and no
results were achieved. Due to the higher processer required to execute this size of a population.
Later a generation size of 100 and a population of 50 was tried. Each run took almost three days
to collect the results. It was concluded that it would be inapplicable to accomplish this research

with the available processor at this rate. Lastly, a generation size of 50 and a population size of 50
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were chosen to execute the MLO process. It is noted that the lower population size will result in

slightly less accurate results, but it was still a valid result. Therefore, for future work, when more

advanced equipment with higher processors is available, it is expected to enhance the results

further.

Tables 6 show the optimization process, as previously shown in figure 52, results for the chilled

water VAV component model. Again, the results produced by the optimization tool are similar in

value to those obtained in the parametric study.

Table 6. Optimization Process Results for the chilled water VAV system components

Component Model’s output Number of | Time | Feedback | Minimum | Minimum
neurons Delay | Delay CV% MSE
Total load 30 3 3 1.45 0.019
. Chilled water 30 1 1 0.23 0.0056
Cooling coil flow
Return water 5 1 3 0.401 0.0605
temperature
Fan Fan power 20 2 2 0.4021 0.0322
Chiller Chiller power 15 1 2 2.702 0.0302
Chilled water pump | Pump power 5 3 3 0.6271 0.0417
Table 7. Optimization Process Results for the DX system components
Component Model’s output Number of | Time | Feedback | Minimum | Minimu
neurons Delay | Delay CV% m
MSE
DX coil power 20 1 2 0.365 0.0006
Cooling coil Supply air 10 2 3 5.225 0.0463
humidity ratio
Fan Fan power 15 3 1 0.1901 0.0042
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4.4 Discussion

The HVAC system components are complex nonlinear entities. Therefore, data-driven models
were favored against physical models because data-driven models are easier to train, faster, and
more suitable for online applications and can be trained to predict the component with less
information. In contrast, physical models require detailed information about the component and
require more extended periods of time to reach the output, making it less unsuitable for online
applications. And due to the significance of each system component, we cannot propose one model
to fit all the components in the system. And choosing the best model structure is a time-consuming
process. And here comes the optimization process role in automating the process of selecting the

optimal model structure for each application.

Each component model trained in this chapter was created based on the previous knowledge and
expertise to specify the inputs and outputs. Therefore, the shown models are not fixed for each
application. And the model structure will be changed based on the system and application that is

being examined.

The best model structure was first selected in the parametric study manually. The variables of each
model were changed in each iteration, and the model testing and training error values were
recorded. Later the model structure with the lowest error value was selected as the best model
structure. Keep in mind that the lower the error values, the better the model is, and an error value
of zero refers to a perfect model, and that case is not applicable in real-life applications. Moreover,
ASHRAE standards require the data-driven model CV% value to be less than 25% for the models

to be acceptable.

The results of each model performance in terms of CV% and MSE shown in the results section are
not fixed for each application. Instead, it only reflects the model's performance and how accurate

the simulated outputs are against the actual output.

Therefore, due to the significance of each component, the model’s structure and parameters
presented in this research reflect the selected systems in this research. Thus cannot be replicated

and needs to be adjusted if the application and the system type changes.

The component models are linked later in the two-level optimization process discussed in chapter

5 to predict the total system energy consumption.
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Since the parametric study is time-consuming, for example, the cooling coil model took almost
three days to complete all the iterations and select the best model structure. For this research, an
optimization process to optimize the system setpoints every 15 minutes was proposed, as discussed
in chapter 5. Therefore, the best model structure needed to be reached in a period of no more than
10 minutes. Therefore, a model-level optimization process (MLO) was proposed to automate the
parametric study and select the best model structure within the specified time frame. As a result,

the results were reached in less than 10 minutes.

Instead of only proposing the MLO process using GA, a parametric study was shown to validate
the results where the results of the MLO process were compared against the one from the
parametric study. Suppose the same results are found for the best model structure that means that
the MLO process is accurate. If different results are found, the MLO process is considered faulty,

and further examination of each model structure is needed.

Finally, this research has validated the use of the MLO process that achieved similar accuracy

values when compared against the one conducted by the parametric study.

Figure 62 below shows the simulated data Vs. the actual performance of the fan power model.
Since the data are collected in a I-minute timestep, the figures are crowded and complex to
examine for the entire three months discussed. Therefore, the figure shows ten days of performance
only for clarity of the results. The figure shows how accurate the model was in predicting the actual

performance.
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Figure 62. Optimal results with simulated power vs. actual power for the testing period of 10 days.
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Chapter 5

Developing and test an integrated two-level performance optimization process

5.1 Introduction

Today, modeling and simulation are established for addressing the problems related to energy
consumption in buildings. As a result, energy performance modeling, optimization techniques, and
control strategies are gaining ground in research applications. Unfortunately, some of the available
tools are not suited to be used for time-dependent applications. However, some artificial
intelligence optimization tools are best suited for those applications. Because they have the
compatibility to adjust optimal variables setpoints, those tools are fast, adaptive, and capable of

promptly solving time-dependent algorithms related to the HVAC performance.

One of the most popular optimization tools broadly used to optimize the performance of HVAC
systems is genetic algorithms (GA). As previously discussed in chapter 2, GA will be used as the
optimization tool selected for this research due to its capability of handling a wide range of
variables at one time, the ability to work with complex simulation programs, proven to be effective
in solving complex problems that cannot be easily solved with traditional optimization methods.
In addition, it is a publicly available user-friendly tool. The GA was used for the model-level
optimization (MLO) and the whole system-level optimization (SLO). The objective function of
the GA and the overall objective function of this research is finding the minimum energy use of

the selected HVAC system while maximizing the system efficiency.

The data used to evaluate the optimization process are simulated data of a five zones office building
using energy plus. While the GA optimization algorithm was developed using MATLAB. The
optimization process developed in this research will optimize the system performance for minimal
energy use over the period of fifteen minutes. After implementing the proposed optimization
process in this chapter, the system that will be evaluated is the chilled water VAV system. Due to
its being a popular system in commercial buildings and its complexity, it will allow for more
discussion of the results and thoroughly points the main findings. In contrast, the DX system will

be evaluated in future work.
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The MLO process was previously described in chapter 4. Where the system component modeling
and optimization process was explained thoroughly, this chapter will examine the SLO process

and how the two optimization levels are integrated.

The proposed integrated two-level optimization process in this research will contribute to the field
of modeling and optimization of the HVAC systems performance in many aspects. The main

contributions from it are:

1) Reduce the total system energy consumption while improving the zone thermal comfort
and therefore reduce the cost of operation and the environmental benefits from lowering
the usage of the system that means less greenhouse gas emissions.

2) Introduce the demand control method and implement it in the optimization process after

receiving the demand response signal from the utility companies.

Where the demand control is a process that is applied to the demand side to influence and modify
the electricity consumption power profile. It is a partnership between the supplier and consumer

sides, aiming to maximize mutual benefits.

Demand control is a process of planning, implementing, and monitoring, aiming to modify utility
usage by alleviating the peak load demand instead of increasing the power generation and

enhancing the transmission and distribution network.

Where electricity companies nowadays are raising the price of electricity kWh in peak hours.
Therefore, implementing the demand control to regulate the individual's electricity use through
peak hours will have several benefits for the consumer, the provider, and the environment.
Through, resulting in financial savings for the consumers without trading the thermal comfort to
extent levels. Also, energy and cost savings for the utility supplier by meeting the demand load
without increasing the power plant and production process. Lastly, the demand control process
significantly impacts the environment by reducing greenhouse gas emissions, especially during

peak hours.
Demand control methods include:

e Demand response: The change in the electric usage of the consumers from their normal

consumption behavior in response to the change in the electricity prices.
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e Traditional energy efficiency methods: Decreasing the demand during the peak load
through several ways. Such as replacing the type of lighting with more energy-efficient
ones or placing automatic thermostats in the zones.

e Energy conservation methods: Reducing the utility usage during the peak load through the
change of the behavioral consumption of the building. Such as lowering the thermostat

temperature during the peak load to reduce the use of the HVAC system.

There are multiple ways for the supplier to encourage the consumers to implement the demand
control methods, such as Incentive-based programs (IBP) and price-based programs (PBP). In the
traditional IBP method, the consumers get paid for their participation in the demand control. This
participation payment can occur in terms of a utility bill credit or future discounts as a reward for
their participation. In contrast, market-based IBP is where the participants are being rewarded
money for their performance. In addition, in the PBP programs, the electricity price is not flat, and

it fluctuates, reflecting the real-time cost of electricity.

For our research, we will be implementing the demand response method and energy conservation
methods with the proposed optimization process. A methodology was proposed that responds to
the demand signal from the electricity companies for the peak hour usage when the electricity
prices increase. The system will respond to this signal with an energy conservation method that
reduces the zone flow rate to less than the minimum. Under normal conditions, each zone's
minimum zone flow rate is 20%, while through the peak load where the demand signal is received,
the zone flow rate will drop to 10%. This approach will lower the energy consumption for that
period, as shown in the results section. This demand response method will happen for only a few
hours through the peak load and not for extensive periods. Therefore, the building will not be
starving for air for an extended period, and it will not affect the thermal comfort. The thermal
comfort can be met for each zone by increasing the outside airflow rate ratio to maintain healthy
breathing zone levels. Also, decreasing or increasing the supply air temperature depending on the

heating or cooling load to try and maintain the zone setpoints.

3. The proposed optimization process had an occupancy scheduling method implemented in
it. Where most of the base case systems nowadays do not count for real-time occupancy,
that will eventually affect the ventilation flow rate of the system. Thus, the constant

occupant count in the base case designs will require more ventilation flow rate, increasing
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the total system flow rate and requiring more energy. On the other hand, implementing the
accurate, current occupancy schedules method will reduce the ventilation rate to the
required flow rate. This approach will enhance the sustainability goals of ASHRAE 62.1
by optimizing the zone level ventilation ratio and fulfilling the gap in this related code.
While at the same time reduce energy usage. The occupancy schedule can be updated based
on real-time knowledge of the occupant's count, zones type of use, and schedule. For
example, in conference rooms and meetings times or lecture rooms and when there are
lectures in the schedule against when it is empty. And the occupant behaviors such as
lunchtimes and breaks, etc. Another method to get an accurate occupant count is CO2
sensors if the building is equipped with ones.

Occupancy sensors implementation. The other approach implemented in the optimization
process is the occupancy sensor readings against the baseline cases that do not count for
occupancy sensors in adjusting the system performance, such as flow rates and ventilation
ratio. This approach will crucially affect the zones' ventilation flowrates and zones
minimum flowrates. For example, some zones might not be occupied at specific times
during the day. Updating that information in real-time applications will lower ventilation
flow rates and reduce total energy consumption.

Zone Minimum airflow rate setpoint. Optimizing the minimum zone air flowrate setpoint
will be crucial to reduce the reheat energy. The codes and regulations suggested using 20%
of the total design flow rate as a minimum flow rate for each zone. In this research, the
zone minimum flowrate range that was examined is from 20-30%. Savings in the reheat

energy will be reviewed and discussed later.

Therefore, to better examine the benefit of those contributions, this research will analyze the

optimization process's results under normal conditions and under demand response.

Lastly, to test the proposed integrated two-level optimization process methodology and its

contributions since it is designed to be implemented in commercial buildings. Also, because there

was a lack of access to an actual building with accurate performance data available, five zones

simulated office building was selected to be the baseline case of this study to evaluate the process.

Therefore, a simulation building using Energyplus was used. As a result, the accuracy of the whole

system optimization process can be tested, and actual energy savings can be calculated.
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5.2 Methodology
The innovative integrated whole system optimization process developed in this research will
optimize the system setpoints over a short period of optimization (15 minutes). First, the genetic
algorithm is used to find the energy used by each system component in the model level (MLO).
Later, the integrated components model together will form the system model. And the total system
energy use will be calculated as the output of the system model at each time step in response to
the controller setpoints and operating modes. Later, the system-level optimization process (SLO)
using GA will optimize the total energy consumption by optimizing the setpoints at each time step

to reduce the energy consumption at the next time step (15 minutes).

The SLO process developed in this research using genetic algorithm will optimize the system
operation set points at each timestep. The setpoints (problem variables) that are selected to be

optimized in this research are:

e The optimal supply air temperature setpoint,
e duct static pressure setpoint,
¢ minimum zone airflow setting,

e minimum outdoor air ventilation rate,

Optimizing those set points at the current operation time step will reduce the energy consumption
for the next timestep. The SLO process will use the current system load to calculate the total power
and energy consumption. Later an output file with the optimal operation setpoints values will be
generated by the GA. This output file also includes the system energy consumption and thermal
comfort at that time step. The energy consumption consists of the total power, chiller power, fan
power, pumps power, heating energy, reheat, and constraints. The optimization process controls

and initiates the “HVAC simulation model,” where the output file is generated.

Those outputs will be sent back to the “system model” to serve as the new setpoints for the next
time step instead of the constant design setpoints. Next, the energy use and thermal comfort are
calculated at the system model and sent back to the optimization process. This process will be
repeated throughout the whole operation period. Optimizing those setpoints over operation time
will help reduce the energy consumption at every time step, resulting in more energy and a cost-

efficient building system.
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GA controls the optimization process. Were the size and population of the GA were predefined.
Those GA variables are usually specified based on previous knowledge and the complexity of the
topic that is being examined. For our research purpose, the GA population of 1000 and 2500
generations was selected. Figure 63 shows a schematic of the whole system-level optimization

process using GA.

Parameter
Setting

'

Initialize Population

G=1
G=G+1 4
[ String, P=1 ]

Yes

No

P=Population

Yes

Figure 63. A schematic of the SLO process.

This SLO process is fast and efficient. The time needed to complete the process depends on the

number of variables specified, number of generations and GA populations, and number of data
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points. This process was tested using a regular desktop when each iteration took less than 10
minutes to complete. This time can be reduced using faster and more suitable processors. This
short computation time allows the proposed optimization process to be implemented for online

applications.

5.2.1 Process setup

In developing the whole system integrated optimization process proposed in this research, accurate
modeling and optimization of the system components (MLO) was crucial. Since those
components’ models impact the accuracy of the objective function of the optimization process,
this component modeling and optimization process was thoroughly discussed in chapter 4. Those
component models integrated will be the central part of the system model. The system-level
optimization process, besides the component models, will include a few other models and

calculations as follow:

e The system basic calculations model calculates the zones' humidity ratios, supply, return,
mixed air temperatures, and economizer condition (on/of¥).

e Constraint model that specifies the design constraints and assigns a power penalty.

e An HVAC simulation model to calculate the total power. This model will read the user
inputs like the system loads, outside air conditions, design system parameters like
efficiencies and pressure drop, schedule, and electricity demand signal.

e Total pressure model that specifies all the design static pressure values and limits.

e A ventilation model, that specifies the zone minimum air flowrate requirements based on
ASHRAE 62.1 standard. This model will call for the occupancy sensor signal, schedule
number of people, and demand signal.

e The zone model specifies all the zones' design conditions and requirements in terms of
supply air temperature, sensible load, minimum airflow rate, and reheat loop.

e System model to simulate total energy use as a function of optimal variables. This model
will specify the variables optimized in this research. At the same time, call for all the

component models previously described and all the models and calculations above.

Figure 64 shows a schematic of the whole system-level optimization process.
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Figure 64. optimization process schematic diagram.

The proposed integrated two-level optimization process is designed to be implemented in
commercial buildings. However, this research tested the method using a simulation building due
to the difficulty of accessing an existing building equipped with a BAS system. Therefore, the
technique can slightly change when implemented in actual buildings against when implemented

in simulation buildings, as shown in figure 64 below.
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Figure 65. The integrated two-level optimization process testing approach.

The component models that are proposed in chapter 4 are integrated to form the system model.
The system model output is the total system energy consumption. The proposed integrated two-
level optimization process is designed to optimize the system setpoints every 15 minutes to reduce
the total system energy consumption as the output of the system model. To test the proposed
optimization process and examine the saving results, the process can be implemented in a

simulated or actual building and the process will be as follow:

In actual building implementing the integrated optimization process will start from step A in figure

66 below as follow.

e The loads of the building will be estimated at the first timestep required to start the process.
Later, the system airflow will be calculated to be used as an input for the remaining models.
e For the next timestep, the loads will be predicted at the sensible and latent load model after

getting all the system performance inputs from the first timestep.

121



e The loads will be assumed constant for the next timestep. As well as the system model
output, the total system energy consumption, will be calculated for the current timestep and
assumed to be constant for the next timestep.

e The integrated optimization process will optimize the system setpoints for the next timestep
to reduce that energy consumption. The process will be repeated every 15 minutes for the
selected period of operation. Assuming that the loads are constant for the next timestep will
be acceptable due to the small optimization period. The sensible load depends on the
system airflow and temperature difference. In contrast, the latent load depends on the
people count where not many changes in the weather conditions and the system airflow

rate can happen in 15 minutes period.

In simulation buildings, as discussed later in this chapter, implementing the integrated optimization

process will start from step B in figure 66 below as follow.

e In the simulation buildings the building loads are provided by the simulation software.
Therefore, there is no need to predict the loads for this case.

o First, the loads will be collected as part of the data collection process every 15 minutes.

e Later, the loads will be fed manually to the code for every timestep, replacing step A.

e Finally, the rest of the process will perform in the same way where the zone model will
calculate the system flow required as an input for all the component models. And the total

system energy consumption for the next timestep will be calculated.
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Figure 66. The integrated two-level optimization process testing approach for both actual building and
simulation buildings.

The SLO process, using GA, will call the HVAC simulation model to calculate the total power

consumption using equation 38 below.
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Total = Total power + chiller power + fan power + heating enrgy +
TeReAt......cvviiiiiiiiiiiiinnan, (38)

In our case study, which will be described in the next section, the building is equipped with an air-
cooled electric chiller and a gas furnace. It was noted that the chiller power and fan power are
electric output measured in kWh. At the same time, the heating energy and reheat are measured in

BTU. Therefore, to examine the total power correctly, the units need to be uniformed first.

According to (EIA, 2021), the price of kWh of electricity in Ohio is 9.78 cents/ kWh. In contrast,
the average Ohio price of natural gas is $0.85 per therm. The energy use was converted to the total
cost as in equations 39 and 40 below. Later in equation 41, the total cost was divided by the kWh
price to get the equivalent energy use in one form (kWh). As discussed in the results section, this

approach was implemented in the optimization process to calculate energy use accurately.
Therm = 100,000 BTU............ccccceeeeen...... (39)

Total cost = (ChillerPower + FanPower) * 0.10 + ((abs(Reheat) + abs(qht))/
100000) * 0.85 + PowerPenalty ........... (40)

Total = Total cost/0.10 ..............cceut... (41)

After specifying all the inputs in the user input file, as shown in the data collection section, and
import into the integrated whole system optimization process as a one-time configuration. This
will happen at the HVAC simulation model; the code is shown in appendix H. Also collecting all
the building loads provided by the simulation software (EnergyPlus). Those loads will be imported
manually to the HVAC simulation model, as shown in the first part of the code (lines 3-7). Those
loads will be changed every 15 minutes based on the loads collected. Keep in mind in an actual
building the process will predict the building loads as previously described. When the process is
linked to the BAS system that collects the system airflow, the process will call for the system flow
(lines 12-16 in the code) and allow for the process to predict the sensible and latent load

accordingly.

The SLO process will calculate the total energy consumption and the optimal variables (setpoints)
at each time step. At the same time, it considered all the design constraints imposed by the codes

and regulations for the system design. For example, the range of temperature examined in this
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research is 55- 65 F° for the supply air temperature. While the fan duct static pressure range was
0.2-2.5 in. w.g. Any zone with less than 0.2 ducts static pressure will be starving for air, and that

will cause for termination of that iterations.

5.2.2 Data collection and building description

For this research, a medium office building of 53660 ft* located in Cincinnati, OH, will be
simulated using Energyplus software. The main goal of this simulation process is to test and
validate the proposed integrated optimization process. In addition, building performance data was
required as the user input for the optimization process was collected. Those data are total, sensible,
and latent load, system flow rates, occupancy schedule, simulation weather conditions, ventilation

flow rates, supply, return, and mixed air temperatures and humidity ratios.

The building is a three-story 53,660 ft> (163.8 ft x 109.2 ft) medium office building. The floor-to-
floor height is 13 ft. The floor-to-ceiling height is 9 ft (4 ft above the ceiling plenum) with a
window to wall ratio of 33%. The glazing still height is 3.35 ft. The windows are evenly distributed
along four building sides. And there is no shading provided.

The thermal zoning of the building is a core and perimeter zoning. The percentage of the floor area
is 40% perimeter and 60% core. Figure 67 is a footprint of the building's thermal zoning.
Openstudio software was used to generate the building’s thermal zoning layout and geometry for

better graphical visualization that was not an option in Energyplus.
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Figure 67. Thermal zoning footprint.

The HVAC system types used are a gas furnace used for heating and a packaged air conditioning
unit for cooling. At the same time, the distribution and terminal units that are used are VAV

terminal boxes with dampers.

The HVAC design condition is a thermostat setpoint of 75 F° for cooling and 70 F° for heating. At
the same time, the thermostat setback is 80 F° for cooling and 60 F° for heating. The supply air
temperature is a maximum of 104 F° and a minimum of 55 F°. Figure 68 shows a schematic of the
packaged chilled water VAV unit that serves the five zones and how they are connected. Each

floor is equipped with a separate and identical VAV packaged unit.
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Figure 68. The layout of the packaged VAV unit that serves each five zones.

Since the building is large and contains 15 zones, the time and processor capabilities required to
optimize the performance of such a building are extensive. In comparison, each floor includes five
zones and is equipped with a separate VAV packaged unit that gives it the ability to serve as a
separate floor. Therefore, only one floor was selected examined for this floor, and the building is
treated as five zones with one packaged unit, a chiller, and a gas furnaced boiler. Figure 69 shows

the building geometry and how the other floors were excluded in the simulation process.

Figure 69. The building geometry. “Source: OpenStudio software”
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The zones patterns and conditioned spaces are shown in the following table:

Table 8. Conditioned/ non-conditioned zones

Zone Area [{t?] Conditioned | Space type Total
[Y/N] occupants

Zone 1 “Core” 10,588 Yes Office space | 53

Zone 2 2,232 Yes Office space 11

Zone 3 1,413 Yes Office space | 7

Zone 4 2,232 Yes Office space | 11

Zone 5 1,413 Yes Office space | 7

PLENUM 17,878 No

The building was simulated to be located in Cincinnati, OH. The weather file used in the simulation
process was (Weather File>>Cincinnati Municipal Ap Lunki OH USA TMY3 WMO#=724297).

Table 9 below shows the location information.

Table 9. Location weather information.

Data Value
Latitude 39.10
Longitude -84.4
Elevation 489 (ft)
Time Zone -5.0
North Axis Angle 0.00
ASHRAE Climate Zone 4A

Table 10 shows the minimum, maximum, and average dry bulb temperature as extracted from
the weather file for analysis. Note the values in the file were in C° units and were converted into

imperial units.
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Table 10. Monthly statistics for dry bulb temperatures in F°.

Month Jan Feb | Mar Apr May Jun July Aug |Sep | Oct H Nov | Dec

Max 55.94 6692 71.96  80.06 869 | 87.98 97.88 93.2 | 89.96 84.02 7196 64.94

Min 302 194 1094 3398|3992 4298 5396 572 @41 33.98 2498 | 6.08

Daily 31.64 | 32 42.8 | 56.48  63.32 68 77.36 | 73.94 65.12 53.6 | 48.02 36.32
Avg

Table 11 shows the dew point minimum, maximum, and average dry bulb temperature in C°

Table 11. Monthly statistics of dew point temperature in F°.

Month Jan | Feb Mar Apr May Jun |July Aug Sep Oct Nov | Dec

Max 4892 51.98 60.08 64.04 70.88 71.96 81.86 78.8 77 71.96  62.06 | 55.94

Min -0.94 | -10.1  -2.02  26.06 27.86 37.94 4586 53.6 37.04 28.94 24.08 1.94

Daily | 24.62 22.64 31.46 45.14 | 52.34 59.54 66.38 653 57.56 47.48 40.28  27.5
Avg

Also, by examining the heating and cooling degree days for a 50 and 65 F° balance temperature in
the weather file and the “ASHRAE 2005 ASHRAE Handbook - Fundamentals (SI)” weather file
in appendix E. And the minimum, maximum, and average precipitation. Precipitation is the

probability for water vapors to condense and form rain, and when it is too cold, it can form snow.

It 1s noted that the cooling degree days around June, July, August, and September are the most,
indicating that those are the hottest months in Cincinnati. Conversely, the heating degree days

show that the coldest months in Cincinnati are January, February, November, and December.
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Therefore, Cincinnati weather tends to be hot and humid in the summer and cold and snowy in the

winter.

To look at the system performance and calculating the expected system savings after implementing
the proposed optimization process. We can’t examine the performance all year round since it is a
time-consuming and redundant process. Instead, a day was selected from each season, reflecting
the heating and cooling performance of the system. Therefore, the days analyzed are a day from
January reflecting the winter system performance and a day from July reflecting the maximum
system performance in the summer. Also, a day from October or May will be examined, reflecting

the fall or spring performance.

After simulating the specified building using EnergyPlus software to generate the building loads,
supply airflow rates, supply, mixed and outdoor air conditions, and occupancy schedule at each
time step of 15 minutes. Those variables are crucial for the proposed whole system optimization
process to calculate the optimal system setpoints. After simulation, all the loads, building
simulated data, and program reads were exported and organized into an Excel file. That system
information was generated for a period of one year of system performance with a time step of 15
minutes. Later, the three days selected earlier reflecting the system's performance in each season
were highlighted and stored. The days were July 12 representing the summer performance when
the system is in the cooling mode. January 9'" representing the winter season and when the system
is in the heating mode, and October 10™ representing the fall season when the system will have
simultaneous heating and cooling depending on the zone location and outside temperature. Figure
70 shows a small example of the organized data in preparing for the optimization process

execution.
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A sample of the data collected and organizedin the user input file. The
data are from the month of July
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Figure 70. A sample of the data collected and organized in the user input file. The data are from the
month of July.

The user input file that is a one-time configuration contains the weather condition for each month
as extracted from the simulation weather file and the ASHRAE 2005 ASHRAE Handbook -
Fundamentals (SI) weather file. In addition, the dry bulb and dew point temperatures were
extracted from the file, while for the wet-bulb temperature, a psychometric chart was used to find
the equivalent value. Table 12 shows the one-time configuration used for each month analyzed in

this process.
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Table 12. The one-time configuration for each month that is used in the design process.

Month Condition Max Min Daily Avg.
July Dry bulb 97.88 53.96 77.36
Wet bulb 85.28 49.64 69.71
Dew point 81.86 45.86 66.38
January Dry bulb 55.94 3.02 31.64
Wet bulb 51.98 23 28.94
Dew point 48.92 -0.94 24.62
October Dry bulb 84.02 33.98 53.6
Wet bulb 75.2 31.87 50.24
Dew point 71.96 28.94 47.48

The integrated process will optimize the previously described setpoints in the methodology
section. The setpoints will be optimized based on the loads and the weather conditions imported
by the user input file. After running the optimization process for each timestep, an output file will
be generated with all the process results in energy consumption and system performance measures.

Those outputs will be fully described in the results section.

5.3 Results
After running the simulation process for the specified building using EnergyPlus software, the data
were collected over a span of one year and recorded every fifteen minutes (timestep). The
information that is now organized and sorted was then implanted into the proposed whole systems
integrated two-level optimization process created using MATLAB software. The optimization

process will be run every 15 minutes using the user input information for that timestep.

For clarity of discussion, only one day from each season will be analyzed, reflecting the system
performance in the cooling mode, heating mode, and simultaneous heating and cooling. The

savings were calculated for each day in terms of kWh, Btu and the cost of operation in US dollars.

The results of the optimized performance of the system will be compared against the standard
practice used in most systems nowadays to calculate the proposed method savings. The setpoints
vary based on the outside temperature in standard practice, as shown in figure 71 below. The

supply air temperature is fixed to 55 F° when the temperature outside is more than 65F°, which is
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the case in the summer season. And the supply air temperature is set to 65 F° in the winter when
the temperature outside is less than 55 F°. However, in the fall and spring seasons, the temperature
outside varies. Therefore, some practices set the supply air temperature to 60 F°, while the best

practices reset the supply air temperature based on the outside temperature.

The relationship between the supply air temperature and the outside air temperature is linear, as

shown in figure 71 below.

Spmax i
Supply Air
Set point 3
Spm'ln= - i
55 °F ‘;
Ton= 55 °F TOra= 65 °F
Outdoor Air Temp ———

Figure 71. Supply air temperature as a function of outside air temperature.

The equation used to describe that linear relation and find the supply air temperature based on the

outside air temperature is shown in equation 42 below.

sp = SPmax=SPmin) o o N4 SP (42)

(Tomax=Tomin)
Where:
SPmax: Maximum design supply air temperature (70 F°)
SPmin: Minimum design supply air temperature
To: Actual outside temperature at the specified time step.
Tomax: Maximum outside air temperature.

Tomin: Minimum outside air temperature.
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Therefore, the baseline case selected for this research will follow the best practice supply air
temperature reset process instead of a fixed supply air temperature of 55 F° throughout the year.
The supply air temperature will be 55 F° for the summer season and 65 F° for winter. And for the
spring and fall season, equation 42 will be used to reset the supply air temperature when the outside

air temperature is less than 65 F° and more than 55 F°.

While the duct static pressure of the fan is set to 2.5 in. w.g, all year round, the zone minimum
airflow rate is set to be 20% of the design flow. At the same time, the occupancy of the standard
practice is fixed throughout the operation period. And it equals the design maximum number of
people for each zone. For the baseline case, as shown in the building description section, the
occupancy for zone 1, 2, 3, 4, and 5 was 53 people, 11people, 7 people, 11people, and 7 people,

respectively.

The baseline case was run for the previously mentioned set points, and the system performance at
each timestep was saved as the baseline case output file. The output file contains the total energy
consumption and the system performance. The total energy includes the total energy, chiller
power, fan power, heating energy, and reheat. In comparison, the system performance consists of
the Qsys (system flowrate), Q, (minimum flowrate for each zone), Qo (outdoor airflow), Qv
(ventilation flow), and T, (mixed air temperature). The standard practice results are the base case

scenario.

Later the system was run at each timestep with implementing the proposed integrated two-level
optimization process. The optimization process proposed to optimize the system setpoints had a
range of supply air temperature from 55-65 F°. While the fan duct static pressure ranged from 0.2-
2.5 in. w.g. Also, the outdoor air ranged from 20- 30% of the design flow. Also, the optimization
process had the demand control methodology applied to it. The demand control was selected to be
from 1:00- 3:00 PM based on electricity peak hour prices. Finally, the output file of the

optimization process was saved as the near-optimal performance scenario.

While the occupancy schedule, unlike the fixed type for the standard practice, was implemented
as a user input that varies throughout the operation period. The occupancy schedule proposed for
this research is represented in table 13 below. For zones 3 and 4, the occupancy was zero for the

period of 10:00-11:30 AM, assuming that this reflects the occupancy sensors' readings.
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Table 13. Proposed occupancy schedule.

Time of day Zone  Zone | Zone | Zone @ Zone | Zone Assumptions
1 2 3 4 5 6

8:00-9:00 AM 10% 10% | 10% | 10% | 10% | 10% | Beginning of the
workday, gradually

9:00-10:00 AM 30% | 30%  30% | 30% | 30% | 30% | Beginning of the
workday, gradually

10:00-11:30 AM 95% | 95% 0% 0% 95% | 95% | close to full working
staff

11:30 AM-1:00 PM | 50%  50%  50% | 50%  50% | 50% | Lunch break period

1:00-4:00 PM 100% | 100% | 95% | 95%  95% | 95% | close to full working
staff

4:00-5:00 PM 50% | 50% | 50% | 50% | 50% | 50% | End of workday,
gradually

5:00-6:00 PM 10% | 10% | 10% | 10%  10% | 10% | End of workday,
gradually

Later the two results were compared together, and the savings were calculated. The results of each

specified day will be thoroughly investigated. This research results have proven that implementing

the proposed integrated two-level optimization process can significantly save system energy

consumption while improving indoor thermal conditions.

5.3.1 Energy Savings results

1. July 12" results

Figure 72 shows the sensible load for the five zones. It is noted that the zones are occupied and

require cooling from around 7:00 AM until around 6:00 PM, where the load starts decreasing

gradually until 8:00 PM, where it is almost zero after that. Therefore, the system will be analyzed

from 8:00 AM until 6:00 PM when the system is fully operating. And this period is usually the

standard commercial building operation schedule.
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Figure 72. The five zones sensible load in BTU.

Like previously mentioned, the baseline case will have a fixed setpoint. In comparison, the near-
optimal case will have optimized setpoints that vary for each timestep. Figure 73 shows near-

optimal supply air temperature and fan duct static pressure for July 120,
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Duct static pressure (Ps)
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Figure 73. (A) near-optimal supply air temperature against the baseline case. (B) near-optimal duct

Static pressure against the baseline case.

It is noted from figure 73 (A) that the near-optimal supply air temperature is primarily close to the
baseline case 55 F> which is expected in July, where mainly cooling is required. Except before
10:00 AM, where the temperature is around 60 F° and then starts dropping until it is fixed to 55
F°. This temperature rise is justified to save on the reheat. The zones are minimally occupied, and
the cooling loads are low at that period, so the zone temperature starts dropping, which will trigger
the reheat to be turned on. Raising the supply air temperature will require less chiller power and
help maintain the zone setpoints as the boilers are typically turned off in the summer season, so

reheat is not an option.

While part (B) of the figure shows the near-optimal duct static pressure against the baseline case
of a constant 2.5 in. w.g. It is noted that the near-optimal duct static pressure is always less than

the baseline case, which means resulting in fan power savings.

However, it is noted that the Ps have increased significantly from 1:00-4:00 PM, where values got
close to the baseline case. Due to the building having a higher cooling load and 100% occupancy
schedule during that period meaning more airflow rate is required. Later, the building cooling load

has dropped, and the occupancy dropped to 50% from 4:00-5:00 PM, meaning the cooling load
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drops and less airflow rate was required; therefore, Ps started dropping again. It is noted that
implementing the optimization process with demand control from 1:00-3:00 PM has helped in
lowering the duct static pressure more. That is attributed to the demand control methodology of
dropping the zone flow rate to less than the minimum for the selected period. Therefore, resulting
in more fan power savings compared to the optimization process under normal conditions. Figure

74 shows the system flow rate for the analyzed period.
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Figure 74. The system airflow rate for the day of July 12"

The trend in the total system airflow rate is expected and reflecting the zone cooling loads. Most
of the system flow is from 1:00-4:00 PM when the building cooling load is higher and decreases
afterward. Thus, we can see that the near-optimal performance and the baseline case are the same
except for the early morning for the purpose discussed above and also when the demand control

method is implemented.

After examining the duct static pressure trends, the total fan power savings were analyzed. It was
found that the total fan power savings after implementing the integrated two-level optimization

technique were 16.7%, as shown in figure 75 below.
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Figure 75. Fan power savings results when comparing the baseline case against the optimal

performance.

It is noted that the trend of the fan performance follows the optimization in the duct static pressure
setpoint. The fan power of the optimized case was less than the baseline case through the day
except from around 8:00-10:00 AM when the system airflow rate of the optimized case was more
at this timestep. The higher flow rate in the early morning, as previously described, was due to the
higher supply temperature that will help reduce the chiller power, but more airflow rate is required
to maintain the zone setpoints. Also, implementing the demand control process affected the fan
power savings significantly. Due to the minimum zone airflow rate reduction, the savings were

16.7% and increased to 25.5% afterward.

However, the ventilation flow rate required for each zone followed the occupancy schedule, as
shown in figure 76 below. Therefore, most of the ventilation was required from 1:00-4:00 PM
when the building is at 100% occupancy and starts to decrease afterward. That explains the peak

fan power consumption around that period.
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Figure 76. The system ventilation airflow rate for the day of July 12"

While the ventilation airflow rate for the baseline case was close to constant since the occupancy
schedule was fixed for that scenario. Implementing the demand control process has increased the
ventilation airflow rate due to minimizing the zone airflow rate. Therefore the percentage of fresh
air required to maintain the codes and regulations requirements of healthy breathing zones has

increased.

Lastly, the chiller power was also calculated and compared to the baseline case. The savings in the
chiller power was found to be 9.74%. Figure 77 shows the chiller power performance after

implementing the optimization process against the baseline case.
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Figure 77. The chiller power savings trend.

The chiller savings were trending with the supply air temperature, the building load, and the
occupancy schedule. The trend is almost identical in both cases since the load is the same and the
occupancy schedule dominated the power savings where less fresh air was introduced that needed

to be treated.

The higher supply air temperature at 8:00-10:00 has helped in decreasing the chiller power. Later
the chilled power increased from 10:00-11:00 AM when the building cooling load increased.
Finally, at 1:00-4:00 PM, when the building cooling load is at its max, it is the peak of the chiller

power consumption.

Also, implementing the demand control process has minimally affected the chiller power savings

by increasing it to 10%.

Therefore, the total energy savings of the system after implementing the two-level optimization

process was calculated to be 11.3% when compared against the baseline case.

Also, implementing the demand control method into the optimization process has increased the

total energy savings to 13.4%. Figure 78 shows the system's total energy savings for July 12,
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Figure 78. Total energy savings for July 12",

The previously analyzed results are shown in Table 14 below for better visualization of the results.

Table 14. The energy savings for July 12™.

Component Savings % under normal Savings % under
conditions optimization optimization with demand
control
Total 11.3% 13.4%
Fan 16.7% 25.5%
Chiller 9.74% 10%
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2. January 9% results
January 9" was chosen in this research as the day representing the winter season when the system
will be entirely in heating mode. Figure 79 shows the sensible load for the five zones for January
9th The period of operation of the system that will be analyzed is from 8:00 AM to 6:00 PM. It is
noted that all five zones require heating for that period. The heating load of the building is higher
in the early morning due to the lower outside temperatures. It starts dropping at around 10:00 PM

due to the increase in the temperature outside in the afternoon.
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Figure 79. The sensible load for the five zones in BTU.

As previously discussed, as in the best practice, the baseline case will have fixed setpoints of 65
F° and 2.5 in.w.g duct static pressure. In other cases, buildings use a fixed setpoint of 55 F°
throughout the year, resulting in more energy consumption. Therefore, case analysis for this type
of operation was examined. The results are shown in appendix G. In contrast, the near-optimal
case will have the optimized setpoints, which will lower the total energy consumption calculated
later. Figure 80 (A) shows the supply air temperature over time in (F°) while (B) shows the duct

static pressure in (in. w.g).

143



Supply air temperature (Ts)

66
65
64
63
62
61
60
59
58
57
56

Fo

ST o T S T T T S S T T T e T T T T T e T
I i e Sl S N e i i i )

C RS A SRS R G N S A S R SR “’ @
Time
Mear Optimal — Baseline Case == == \With demand control

A4)
Duct static pressure (Ps)
3
2.5
2
ap
215
- 1
0.5
0 -_— —
B R S R S N NP S N N S P S S SN P
SO L FE ST FTETEIEFEF S S
oSS RO GRS SIS N RV R i L I SR
Time
Near Optimal e Bascline Case == == ‘With demand control
(B)

Figure 80. (A) near-optimal supply air temperature against the baseline case. (B) near-optimal duct static

pressure against the baseline case.
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Figure 80 (A) shows that the near-optimal supply air temperature is 65 F° in the early morning due
to the higher building heating load. Therefore, the maximum supply air temperature is necessary
to meet the building load. However, the supply air temperature starts dropping slowly at around
11:30 AM due to the decrease in the building heating load until it reaches the minimum of 59 F°
at 12:15 PM. The drop in the supply air temperature is expected to save on the heating power at
that period. Still, it is also anticipated to raise the reheat power necessary to maintain the zone
setpoints. However, the savings in the heating power have exceeded the rise in reheat energy, as

will be explained later.

Part (B) shows the optimal duct static pressure (Ps) compared to the baseline case. The near-
optimal Py is at its highest in the early morning from 8:00-11:30 AM, where the building heating
load is at its highest, and the system flow rate is the maximum. Figure 81 below shows the total

building load for January 9™ in Btu/hr, explaining the duct static pressure performance trend.
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Figure 81. Total building load in Btu/hr.

The Ps dropping does mimic the building load. In addition, implementing the demand control
process has reduced the duct static pressure more due to decreasing the amount of minimum zone

flowrate.
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Unlike the near-optimal case, the baseline case has constant Ts and Ps. Therefore, maintaining the
zone setpoint will become an issue when the building load drops to a specific value. Thus, the
system will allow for more outside air to drop down the mixed air temperature. Unfortunately, that
will result in excessive fan power and heating power usage in the baseline case scenario. Figure
82 shows the amount of fresh air introduced by the system in the baseline and near-optimal cases.

Therefore, the airflow rate trend is explained by the supply air temperature.

Also, implementing the demand control methodology has increased the outdoor airflow rate due
to reducing the zone minimum flow rate, which requires increasing the percentage of ventilation

airflow rate to maintain the code requirements and regulations.
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Figure 82. Outside air flow rate for January 9"

Therefore, the near-optimal case has resulted in a 38.6% savings in the fan power compared to the

baseline scenario. Figure 83 below shows the fan power savings for January 9™.
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Figure 83. Fan power savings for January 9".

While implementing the demand control process has increased the fan power savings to 41% by
reducing the minimum zone airflow rate from 20% to 10%. Figure 84 shows the system airflow

rate value over the period of analysis.
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Figure 84. The total system flow for January 9"
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The system airflow rate for January 9™ is the same for all cases until 1:00 PM, when the supply air
temperature is the same. Afterward, the system flow for the baseline case is lower due to a higher

supply air temperature than the near-optimal case.

A constant supply air temperature of 65 F° requires more heating energy, unlike the optimized case
with a lower supply air temperature resulting in lower heating energy consumed by the boiler. Still,
it will result in increasing the reheat energy needed to maintain the zone setpoint. Therefore,
implementing the two-level optimization process has resulted in 50% savings in the reheat energy.
While implementing the demand control method has resulted in lowering that percentage of
savings by almost 10.5%. The amount of heating energy savings was 44.7% after implementing
the demand control method due to introducing more outdoor airflow rates required for ventilation
that needed to be heated. Figure 85 shows the heating energy savings for the proposed optimized

case against the baseline case.
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Figure 85. The heating energy for January 9™

The heating energy for the near-optimal case was the highest from 10:00-11:30 AM due to the
higher heating load. And at 1:00-4:00 PM, when the occupancy schedule is almost 100%, more
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fresh air is introduced to the system. While for the baseline case, it is after 1:00 PM when more

fresh air was introduced to maintain the zone setpoint as previously explained.

As mentioned, the reheat energy was anticipated to increase in the near-optimal case in favor of
saving on the heating energy. Thus, the reheat energy increased by 5.4% for the near-optimal case
when compared against the baseline case due to the lower supply air temperature starting at 11:30

AM, as shown in figure 86.

On the other hand, implementing the demand control method has lowered this percentage to 0.5%
due to reducing the zone airflow rate and, therefore, less reheat energy required to treat that amount

of air and raise its temperature to meet the zone setpoints.
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Figure 86. Reheat energy for the near-optimal case and the demand control method compared against the

baseline case.

Resetting the supply air temperature and duct static pressure have increased the reheat energy but
significantly reduced the heating energy. Therefore, savings were still achieved. And the total
energy savings for the system after implementing the two-level optimization process was

calculated to be 19.9% when compared against the baseline case of constant setpoints.
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Also, implementing the demand control method into the optimization process has increased the
total energy savings of the system to 21.2%. Figure 87 shows the system's total energy savings for

January 9%,
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Figure 87. Total energy savings for January 9".

Table 15 below shows the previously discussed savings in table form for clarity of the discussion.

Table 15. The energy savings for January 9™

Component Savings % under normal Savings % under optimization
conditions optimization with demand control
Total 19.9 % 21.2%
Fan 38.6% 41%
Boiler 50% 44.7%
Reheat -5.4% -0.5%
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3. October 10" results
Figure 88 shows the sensible load for the five zones on October 10" for the specified analyzing
period from 8:00 AM to 6:00 PM. The building, as shown, requires heating in the morning until
around 10:00 AM then cooling afterward when the outside temperature increases. The cooling
load starts dropping again at around 6:00 PM to go back to the heating load when the temperature
outside decreases. This is the case in most fall and spring seasons when the system simultaneously

operates in the cooling and heating mode.
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Figure 88. The sensible load for the five zones in BTU.

As previously mentioned, the baseline case should have fixed setpoints. However, when the
temperature outside is less than 55 F* the Ts is set to 65 F°. And in the summer season, when the
temperature outside is more than 65 F* the T is set to 55 F°. While in the fall and spring seasons,
when the temperature outside is between those two values, the best practices use the temperature
reset method previously described to set the Ts value. In contrast, other practices set it to be 55 F°
all season. Therefore, our research will follow the best practice supply air temperature reset method
to decide the baseline case Ts value. Another case with the Ts set to 55 F° will be shown in

Appendix H. Figure 89 below shows the supply air temperatures used for the baseline case at each
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timestep. The outside temperature that driven this reset method is shown in appendix G.

Simultaneously, the duct static pressure for the baseline case was set to be 2.5 in. w.g.
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Figure 89. Supply air temperatures used for the baseline case on October 10™.
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Figure 90 shows the near-optimal supply air temperature after implementing the integrated two-

level optimization against the baseline case with the previously specified Ts.
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Figure 90. Near-optimal supply air temperature against the baseline case.
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The system's performance in the spring and fall seasons is a little tricky, where it is hard to find
the appropriate supply air temperature to meet the different heating and cooling loads throughout
the day. Therefore, implementing the optimization process was anticipated to have significant
savings compared to the summer and winter seasons due to its ability to accommodate the weather

change outside and optimize the supply air temperature accordingly.

As shown in figure 90, in the early morning, the building load was a heating load, and the baseline
case Ts was at 65 F° until 9:00 AM and started dropping until it reached the minimum of 55 F°
11:30 AM. Thus, this approach will require excessive heating energy consumed by the boiler but,
at the same time, less reheat energy. Keeping in mind that this means less system airflow rate is

required to maintain the zone setpoint.

On the other hand, the near-optimal case introduced a lower supply air temperature for the same
period until 11:30 AM. Meaning savings on heating energy will be achieved. In contrast, more
reheat energy will be required to maintain the zone setpoint. And, more system flowrate will be

introduced.

After 10:30 AM, when the temperature outside is more than 65 F° where the building requires
cooling, the supply air temperature for the baseline case will be set to 55 F°. This implies more

power consumed by the chiller to maintain that low setpoint and lower system airflow rate.

While for the near-optimal case, the supply air temperature after 11:30 AM, reached the minimum
of 55 F° to meet the building cooling load and started to increase again gradually until 6:00 PM.
This slight increase in the supply air temperature will result in lower chiller power consumption.
However, this will also happen at a higher system flow rate than the baseline case since we need
to push more air into the zones at a slightly higher temperature to maintain the zone setpoint than

the lowest air temperature, meaning more fan power.

Figure 91 below shows the total system airflow rate that justifies our explanation above.
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Figure 91. The total system flow rate for October 10™.

Figure 92 shows the ventilation flow rate for the same operation period. Again, the ventilation
airflow rate trend follows the occupancy schedule like in the summer and winter seasons. While
implementing the demand control method has increased the percentage of ventilation required due

to dropping the zone minimum airflow rate.
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Figure 92. The ventilation flow rate for the analyzed operation period of October 10".
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Figure 93 shows the duct static pressure for the analyzed period. The duct static pressure of the
near-optimal case has a steady trend close to the minimum value of 0.2 in. w.g. in the early morning
until 1:00 PM. That is due to the system supplying a lower Ts when the system is in heating mode.

Therefore, less airflow rate is needed, which implies lower duct static pressure.
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Figure 93. Near-optimal duct static pressure against the baseline case.
The duct static pressure increases after 1:00 PM with the slight increase in the supply air
temperature while the system is in the cooling mode. Therefore, more airflow rate is required to

maintain the zone setpoint, which implies more fan power.

However, the near-optimal duct static pressure is significantly less than the fixed baseline case
duct static pressure. Therefore, significant fan savings were recorded. The total fan savings
recorded after implementing the integrated two-level optimization process was 70% compared to

the baseline case.

While implementing the demand control process has increased the fan power savings from 70%
to 74% due to reducing the system airflow rate. Figure 94 shows the fan power savings for the

analyzed period. The fan power savings follows the duct static pressure trend.
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Figure 94. the fan power savings for October 10™.
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Increasing the supply air temperature after 1:00 for the near-optimal case when the system was in

the cooling mode resulted in chiller power savings compared to the baseline case with a minimum

supply air temp of 55 F°. Therefore, the chiller power savings after implementing the optimization

process was calculated to be 30.4%.

Also, implementing the demand control process has increased from 30.4% to 32.4% due to

reducing the system airflow rate. Figure 95 below shows the chiller power savings for the analyzed

period.

156



Chiller power

kwh

Q@@&@‘\@Q&@Q&Q&Q@Q@QQ@Q@ NN @ @ & & O @ é‘
@&59@@6@@@5@596@6969@9s‘)cs‘-’u"@‘h S & Q@ " QQQ
SR S S LIRS IR i N TSR N

Time
e Near Optimal e Baseline Case With demand contro

Figure 95. The chiller power savings for October 10™.

While slightly reducing the supply air temperature when the system was in the heating mode
reduced the boiler's heating power when compared against the baseline case. The heating power
savings were calculated to be 47%. While no changes were recorded after implementing the
demand control process. Because no heating was required for the proposed implementation period.

Figure 96 shows the heating power savings for the analyzed period.
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Figure 96. Heating power savings for October 10™.

As previously stated, dropping the supply air temperature for the near-optimal case until 1:00 has
decreased the heating energy, but it also means requiring more reheat energy. At the same time,
the higher supply air temperature of the baseline case does not necessarily imply requiring zero
reheat energy. This is because the baseline case had lower system flow. As a result, the higher
supply air temperature was not enough to meet the zone load. Therefore, more reheat energy was
consumed to raise the supply air temperature and meet the zone setpoint. Thus reheat energy

savings was still recorded after dropping the supply air temperature for the near-optimal case.

The total reheat energy saving after implementing the optimization method was calculated to be
2.3%. While implementing the demand control process has increased the percentage of savings to

6.7%.

Figure 97 shows the reheat energy saving for the analyzed period.
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Figure 97. The reheat energy savings for October 10™.

Lastly, the total system savings were calculated after uniforming all the units using the equations
39-41 described in the methodology section. Thus, the total system savings for October 10" that

was chosen to represent the fall season was recorded to be 32%.

Also, implementing the demand control methodology in the integrated two-level optimization
process has increased the total system savings from 32% to 34.4%. Figure 98 shows the total

energy savings that were recorded for October 10",
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Figure 98. Total energy savings of October 10".

Table 16 shows the savings results below to clarify the discussion as previously presented for July

and January analysis.

Table 16. The savings for October 10"

Component Savings % under normal Savings % under optimization
conditions optimization with demand control
Total 32% 34.4%
Fan 70% 74%
Chiller 30.4% 32.4%
Boiler 47% 47%
Reheat 2.3% 6.7%
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5.3.2 Cost savings results
From the energy analysis, we calculated the total energy savings for the chilled water VAV system
component. The total energy savings was calculated as the sum of chiller power, fan power, heating

energy, and reheat.

The chiller power and fan power are measured in kWh per hour of electricity. The average kWh
of electricity price in Cincinnati, Ohio, is 9.78 Cents. While the heating energy consumed by the
boiler and the hot water reheat coils are measured in BTU, the heating price is 0.85 Cents per therm

of natural gas.

Therms are not SI unit, that is used to measure the consumption of natural gas. It is equivalent to

burning roughly 100 cubic feet of natural gas. Therefore each therm is equal to 100000 BTU.

The total energy consumption that is calculated by the optimization process, as described above,
is the sum of two different components, kWh and BTU. Thus, an approach described in the
methodology section to uniform the units before adding them together was introduced to sum the

two.

Therefore, this section will show the cost savings resulting from the energy savings achieved after
implementing the integrated two-levels optimization approach without the demand control and the
optimization process with the demand control. Furthermore, the savings will be discussed per each
component and the total savings to better understand the discussion. To break down the cost
savings, we will be looking at the portion of savings from each element to give a better idea of the
most savings methods. This will help in realizing what factors most in the HVAC cost of operation
savings, and therefore more research focus on that factor is recommended to improve the savings

€ven more.

1. July 12t cost savings
As previously discussed, July 12" will be analyzed as the day representing the summer season and
the system heating mode. The two levels optimization process was optimizing the setpoint every
15 minutes. So, the energy and cost savings were calculated cumulatively. Again, the operation

period that was analyzed for savings is from 8:00 AM- 6:00 PM.

For July 12", implementing the integrated two-level optimization technique has dropped the

chilled water VAV system's total energy consumption for the optimized period from 1068.98 kWh
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to 948.986 kWh. So that resulted in lowering the cost of operating the VAV from $106.898 to
$94.8986. So, if we assume that this saving trend will be consistent for the whole month of July,

then the total savings in operating the HVAC system only will be around $375.

While implementing the optimization process with the demand control method has reduced the
chilled water VAV system total energy consumption for the optimized period from 1068.98 kWh
to 926.276 kWh, therefore reducing the cost of operation from $106.898 to $92.63. Again, if we
assume that this saving trend will be consistent throughout the month of July, the savings in the

cost of operation is anticipated to be around $450 for the month of July only.

Figure 99 shows the total savings for the analyzed day. The graph shows the near-optimal case
total operation cost and the near-optimal case with the demand control method total operation cost

against baseline case total operation cost.
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Figure 99. Total operation cost savings for July 12",

To break down the cost savings, we will be looking at the portion of savings from each component

to give a better idea of the most savings methods.
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Figure 100 shows the cost savings associated with the fan power. Implementing the optimization
process has dropped the fan power consumption from 234.2279 kWh to 195.2566 kWh and,
therefore, lowered the fan power electricity cost from $23.42 to $19.53.

While implementing the demand control has increased the savings by dropping the fan power
consumption from 234.2279 kWh to 174.4439 kWh and, therefore, decreased the fan power cost
from $23.42 to $17.44.
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Figure 100. The fan power cost of operation for July 12"

While implementing the optimization process have dropped the chiller power consumption from
834.152 kWh to 752.972 kWh and, therefore, lowered the chiller power electricity cost from
$83.42 to $75.30.

While implementing the demand control has increased the savings by dropping the chiller power
consumption from 834.152 kWh to 751.076 kWh and, therefore, lowering the cost of operation
from $83.42 to $75.11, as shown in figure 101 below for cost savings.
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Figure 101. Chiller cost of operation for July 12"

2. January 9% cost savings
For January 9th, implementing the integrated two-level optimization technique has dropped the
chilled water VAV system's total energy consumption for the optimized period from 698.94 kWh
to 559.861 kWh. So that resulted in lowering the cost of operating the VAV from $69.89 to $55.99.
But, again, if we assume that this saving trend will be consistent for the whole month of January,

then the total savings in operating the HVAC system only will be around $450.

While implementing the optimization process with the demand control method has reduced the
chilled water VAV system total energy consumption for the optimized period from 698.94 kWh
to 550.958 kWh and, therefore, lowering the cost of operation from $69.89 to $55.10. Again,
assuming that this saving trend will be consistent throughout the month of January. In that case,

the savings in the cost of operation is anticipated to be around $500 for the month of January only.

Figure 102 shows the total operation cost for the analyzed day. The graph shows the near-optimal
case total operation cost and the near-optimal case with the demand control method total operation

cost against baseline case total operation cost.
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Figure 102. Total operation cost for January 9™

By looking at the major aspects that contributed to this savings, we notice that operating the boiler
responsible for heating the zone and the reheating process was the most significant portion

compared to the fan power cost savings.

Implementing the proposed optimization technique has dropped the heating energy consumption
for the optimized period from -2649307.7 BTU to -1327378 BTU. So that resulted in decreasing
the cost of operating the boiler from $22.52 to $11.28.

While implementing the optimization process with the demand control method has reduced the
boiler energy consumption for the optimized period from -2649307.7 BTU to --1465378 BTU,
reducing the cost of operation from $22.52 to $12.46. Figure 103 shows the cost of operating the

boiler under normal conditions against the optimization process.
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Figure 103. The boiler operation cost for January 9™.

While the fan power savings came next, the optimization process helped drop the fan power from
118.512 kWh to 72.779 kWh. So that resulted in lowering the cost of operating the fan from $11.85
to $7.28. While implementing the optimization process with the demand control method has
reduced the fan power from 118.512 kWh to 69.86 kWh, reducing the cost of operation from
$11.85 to $6.99, as shown in figure 104.
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Figure 104. The fan cost of operation for January 9"
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3. October 10" cost savings
October 10" was chosen as the day representing the fall season. In the fall and spring season, most
of the baseline system operating under normal conditions tends to consume a lot of energy due to
the difficulty of finding the appropriate setpoint when the outside weather conditions fluctuate
throughout the day. Therefore, implementing the optimization process significantly saves those

seasons since it considers the outdoor weather conditions when resetting the system setpoints.

Implementing the proposed integrated two-level optimization process has reduced the system's
total energy consumption on October 10th from 550.304 kWh to 374.042 kWh and, therefore,
reduced the cost of operating the system from $55.03 to $37.40. If this trend stays consistent
throughout October, the anticipated monthly savings are about $550.

And implementing the demand control method with the optimization process has improved the
savings even more. In October, the system's total energy consumption has dropped from 550.304
kWh to 361.300 kWh, resulting in reducing the cost of operation from $55.03 to $36.13. Again, if
this trend stays consistent throughout October, the anticipated monthly savings are about $600.

The cost of operating the system on October 10" is shown in figure 105.
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Figure 105. The total operation cost of October 10™.
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The most significant contribution to the cost-saving came from the chiller power savings. The
chiller power consumption has dropped from 354.852 kWh to 246.993 kWh after implementing
the proposed optimization process. Thus, the cost of operating the chiller has dropped from $35.49
to $24.70.

And implementing the demand control in the optimization process has helped increase the savings
in the energy consumption to 114.912 kWh. Therefore, the cost of operating the chiller has dropped
from $35.49 to $23.99. Figure 106 shows the chiller power cost of operation for the baseline case

against the optimization process without the demand control and the one with the demand control.
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Figure 106. The chiller cost of operation for October 10"

The second significant contribution to the total cost savings came from the fan power, where the
optimization process dropped the fan power from 54.19306 kWh to 16.21591 kWh. Resulting in
lowering the cost of operating the fan from $5.42 to $1.62. While implementing the optimization
process with the demand control method has resulted in reducing the fan power from 54.19306
kWh to 14.09818 kWh. Therefore, reducing the cost of operation from $5.42 to $1.41, as shown
in figure 107.
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Figure 107. The coast of fan operation for October 10",

Third came the boiler energy consumption that is used for heating the spaces. The heating energy
has dropped from -713917 BTU to -377544.7 BTU after implementing the proposed optimization
process. Thus, the cost associated with operating the chiller has dropped from $6.07 to $3.21.

Notice that implementing the demand control process has not changed the heating energy
described previously in the energy analysis. Figure 108 below shows the cost of operating the

boiler on October 10%,
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Figure 108. The boiler cost of operation for October 10".
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5.4 Discussion

This chapter has discussed the proposed method of implementing the integrated two-level
optimization technique that has two levels MLO and SLO. The MLO process was described in
chapter 4 that shows a data-driven modeling and optimization technique for the HVAC system
component. The chilled water VAV and DX system were modeled in chapter 4 but only the chilled

water VAV system was tested in chapter 5.

The building that was used to test the proposed integrated two-level optimization process is a
simulation building. The building was simulated using EnergyPlus software. The building
performance loads, and weather conditions were collected and imported in the optimization
process created using MATLAB. The loads were imported manually because there was no
platform connecting the two software for this type of application. However, we propose creating

a platform that will ease the transition between the two in future work.

On the other hand, in actual building implementation, no building loads will be available. Instead,
the system airflow rate information will be available, and the total building load will be calculated

at the sensible and latent load models.

From the result section, we can clearly see that implementing the integrated two-level optimization
process has resulted in significant savings in the energy consumption of the chilled water VAV
system. At the same time, implementing the demand control methodology with the optimization
process to shift the peak load when the demand response signal is received has improved the results

€ven more.

The proposed method has achieved savings in the system's total energy consumption ranging from
13.4% to 34.4%. The most significant saving happened in the fall season when it was hard for
systems operating under normal conditions to adapt to the change in the outside temperature

resulting in excessive energy usage.

The cost savings of implementing the integrated two-level optimization technique ranged between
$400-600 a month. However, keep in mind that there is no capital cost for implementing this
method. Furthermore, the proposed method can be easily implemented in the existing BAS system

and reduce the total energy consumption while improving indoor thermal comfort.

170



The proposed optimization process was proved to be a time and cost-efficient method that can
be implemented in several building types and systems to improve the system efficiency and

thermal comfort levels.
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Chapter 6

Conclusion and future work
This research was conducted to develop a computational data-enabled two-level optimization
technique to reduce the building HVAC energy use in large commercial buildings, improve the
whole system efficiency and maintain the occupant's comfort level. The research has examined
two systems commonly used in commercial buildings, chilled water VAV systems and direct

expansion systems (DX).

The research proposed an innovative optimization method. The method integrated two levels of
optimization. The first level of the process was a component modeling optimization (MLO)
designed to optimize the model’s structure. The models were tested and trained and using actual
performance data collected from an exciting system located in the BEAST lab at the University of
Cincinnati, Cincinnati, Ohio. The model that held the lowest error value was selected as the best

modeling structure. The error values were measured in terms of MSE and CV%.

Accurate component modeling and optimization techniques are crucial for the accuracy of the
whole system optimization process results. Therefore, all the component models will be integrated

to form the system model that mimics the performance of the existing physical system.

Several machine learning tools were compared to choose the best modeling tool to model the
selected HVAC systems components. Therefore, the Support Vector Machine (AVM), Artificial
Neural Network (ANN), and Aggregated Bootstrapping (BSA) were examined. First, the three
modeling tools were tested and trained using the same data set to predict the same output. Then,
the modeling techniques were compared in terms of their accuracy (R?) in predicting the output.
For the SVM, ANN, BSA, the accuracy value in the testing period was 98.2%, 98.5%, and 99.3%,
respectively. Also, the training time was the cutting edge in the model selection. The training time
in seconds was 1349.3, 341.3, and 2335.1, respectively, thus, all the models held a high accuracy
value, but the ANN training time was three times less than the rest. Therefore, we can conclude
that all the described algorithms are good predictors and can be utilized in modeling the HVAC
systems components. But the artificial neural network was chosen to be the tool used in this

research since it was the fastest and less complex tool.
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While the genetic algorithm was used as the optimization algorithm for the proposed two levels of
optimization, due to its capability of handling a wide range of variables at one time, the ability to
work with complex simulation programs, proven to be effective in solving complex problems that
cannot be easily solved with traditional optimization methods, and it is a publicly available user-

friendly tool.

After modeling all the components of the selected HVAC systems, a parametric study was
conducted to choose the best model structure manually. Later the MLO was implemented to
automate the process and validate the results. The MLO results were compared against the one
conducted through the parametric study. The optimization process has supported the parametric

results where similar results were found.

It was found that for the chilled water VAV system, the best cooling coil model structure with 30
neurons held an error value of 1.1059 and 0.017 in terms of CV% and MSE, respectively, in
predicting the load. At the same time, the best fan power model structure of 20 number of neurons
held an error value 0f 0.4256 and 0.0362 in terms of CV% and MSE, respectively. Also, the chiller
was examined. The chiller power best model was at 15 number of neurons and held an error value

of 3.0635 and 0.0101 in terms of CV% and MSE, respectively.

For the DX system, all the system components were modeled as well. It was found that for the DX
coils, the best model was at 20 number of neurons and held an error value of 0.456 and0.0102 in
terms of CV% and MSE, respectively. While the DX fan model, the best model was at 15 number
of neurons and held an error value of 0.1211 and 0.0031in terms of CV% and MSE, respectively.

The previous values are not standard values for any type of application, but the findings of this
research are based on its inputs and outputs and the selected datasets. The models can be adjusted
to different applications and data sets and will hold different structure and error values. It was only
showing a proposed methodology and used to test the accuracy of the MLO process. Also, these
results have proved that artificial neural networks can be a valuable tool in modeling the

performance of HVAC systems.

The second level of optimization was the whole system-level optimization (SLO). Where all the
optimized components models were integrated and optimized to form the “system model.” The

output of the system model is the total energy consumption of the system at each time step. Later,
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the two optimization levels are integrated to optimize the system setpoints that will reduce the total

energy consumption.

That is why the accurate component modeling and optimization technique is crucial for the
system’s performance optimization. If the component models were not accurate, then the system's
total energy consumption prediction would be faulty, resulting in less precise SLO performance

when optimizing the system setpoints.

The proposed integrated two-level optimization technique designed to be implemented in large
commercial buildings was tested using a simulation building due to the lack of accessibility to an
existing large system. The facility that is equipped with a chilled water VAV system was simulated
using the Cincinnati weather conditions. A day from each season was chosen to be analyzed to
show the result of the proposed method in optimizing the system performance in the cooling,

heating, and both simultaneous heating and cooling mode.

The proposed optimization process was applied to optimize the system performance by optimizing
the operation setpoints every 15 minutes. The system setpoints that were selected to be optimized
are the supply air temperature (Ts), duct static pressure (Ps), minimum zone air flowrates (Q), and

minimum outdoor air ventilation rate (Qv).

The system setpoints were optimized while maintaining or improving the zone thermal comfort
levels and ventilation requirements to comply with the codes and regulations. This research has
implemented few approaches to enhance system performance and reduce total system energy
consumption. (1) Implementing the demand response methodology with the optimization process
to modify the electricity consumption power profile by alleviating the peak load demand when the
demand signal is received from the utility-providing companies. (2) Implement the occupancy
schedule inputs into the optimization process to account for the number of occupants at each time
step and reduce the ventilation airflow rates to the required amounts. This approach will enhance
the sustainability goals of ASHRAE 62.1 by optimizing the zone level ventilation ratio and
fulfilling the gap in this related code, as well as reducing the total system energy consumption. (3)
Implement the real-time zones occupancy sensor readings. This approach will crucially affect the
zones' ventilation flowrates and zones minimum flowrates. (4) lastly, this research has

implemented the method of zone minimum air flowrates setpoint rests. This approach will allow
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this setpoint to be adjusted over the operation time instead of using the constant design minimum

values. This method is crucial to reduce reheat energy consumption.

Implementing demand control ways is getting more attention nowadays. It can help the consumer
reduce operation costs without trading thermal comfort and energy and cost savings for the utility
supplier by meeting the demand load without increasing the power plant and production process.
Therefore, the results have shown the savings after implementing the optimization process under

normal conditions Vs. With demand control proposed method.

Implementing the proposed two-levels optimization technique has resulted in 11.3% savings in the
total energy consumption that increased to 13.4% after implementing the demand control method
for the day analyzed in the month of July. And for the month of January, when the system is in
heating mode, the total energy savings was 19.9%. Therefore, the savings have increased to 21.2%
savings after implementing the demand control method. While for the month of October, when the
system is operating in both the heating and cooling mode simultaneously, the regular systems
consume more significant amounts of energy due to the complexity of the typical operating
methods in meeting the fluctuating loads throughout the day. Thus, the optimization process has
resulted in 32% savings in the system's total energy consumption, and this percentage of savings

increased to 34.4% after implementing the demand control method.

This research has validated the use of the proposed optimization technique in improving the energy
efficiency of exciting systems. As well as the capability of this method to be successfully
implemented in online HVAC system applications. At the same time, developing several aspects

of the industry.

6.1 Future work

The results achieved through introducing the integrated two-level optimization approach enhanced
the HVAC system performance. However, multiple enhancements can be implemented to further
extend and improve this research work for anticipated postdoctoral work. For example, introducing
more advanced models and exploring other learning algorithms for modeling and optimization can
possibly achieve different results. Also, exploring the possibility of optimizing other system
setpoints, system equipment, and components other than the ones introduced in this research is

another way to advance this work further. The future work can include but is not limited to:
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Implementing the proposed optimization process in the DX system that was modeled in
chapter 4. Examining the savings results and ways of improvement will be the first focus.
Investigating the ability to optimize the waterside setpoints like the condenser water
temperature, the pressure drops of the waterside piping, the mixing air temperature
setpoints that will trigger the heat recovery operation, and others.

If applicable, modeling and optimization of more complex equipment not introduced in
this research, such as the cooling tower and a thermal storage unit.

Explore the other time of occupancy other than the period of operation examined in this
work (from 8:00 AM to 6:00 Pm). Such as weekend and nighttime operations where the
occupancy is almost zero, fresh air will drop considerably. Thus, optimizing the system
setpoints during those periods will result in more significant savings than the ones achieved
in this research for average working days.

The work introduced in this research is aimed to improve the performance of the existing
systems. However, implementing the modeling and optimization method has a significant
impact on a building’s energy performance. And the selection of efficient HVAC systems
is vital at any design stage. Therefore, exploring the ability to introduce the simulated
system performance, component modeling, and optimization that can accurately predict
the interactions between the occupants and the equipment performance is vital. Therefore,
exploring the proposed optimization process and its effect in the new building design stage
and its impact on the energy consumption and the building footprint can be studied.
Explore the possibility of simplifying the proposed integrated optimization method and
make it more user-friendly.

Simplifying the modeling and optimization strategy and smooth the transition between the
proposed process and the building automation system (BAS).

Exploring a way to create a platform where the process can be linked to the simulation
tools such as eQuest and EnergyPlus. And automatically read the user input without having
to export the inputs and then introduce it manually to the process.

Discuss the method of implementing the process in the existing BAS systems. Therefore,
the optimization algorithm will automatically read the system current load and setpoints

and optimize the system setpoints for the next timestep in real online applications.
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Explore the ability to develop this optimization algorithm into an online user-interface
software that will allow the public to access it online. Where the variables can be specified,
and the system performance outputs will be calculated. This can be used for research
purposes or by other engineering practices.

Use a higher processers speed to increase the GA populations and generations, which will
more likely result in a more precise result.

Use other optimization tools such as Bee Colony Optimization, Ant Colony Optimiser, etc.

And compare the results to the one achieved with GA.
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APPENDIX A

Data collection
The following is a small sample of some of the performance data collected from the BAS and then

transferred to Microsoft Excel to prepare for the modeling process. The data were used to create

figure 34.

A2 7:45:00 PM America/Detroi 0517 0404 1609 164 07 Ul 3l
15421 T46:00PM AmericafDetrt 04 0215 4 194 33 452 B4
25-Apr-21 T:47:00 PM AmericaDetrit 0346 019 1836 1% ) 1744 34
D5:Apr2t  T:48:00 PM AmericafDetroi 033 0188 1865 1813 4 4 ELY)
A2 T:49:00 PM AmericaDetroit 038 01% 1897 1863 648 84 34
DeApr21 7:50:00 PM AmericafDetroit 0288 02 1903 1889 158 2645 mn
A2 7:5L:00 PM AmericaDetroi 0383 009 1941 1857 1554 2843 85
D-Apr-21 7:52:00 PM America/Detroit 088 0212 1978 1784 348 2681 36
Bhpr2l 753:00 PM America Detroi 0285 0208 26 187 19 .7 435
oApr21 7:54:00 PM AmericafDetroi 029 0137 044 18 3593 2631 B8
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APPENDIX B
MATLAB

The following is a section of one of the scripts developed using MATLAB for the components

data-driven models.
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APPENDIX C

Parametric study
The following is a section of one set produced in the parametric study to manually select the best

model structure. The data are for the DX fan models in predicting the fan power.

5 00151 00336 00722 005902 5 00148 00323 00591 05543 5 001258 00333 00192 01862
10 00133 00328 00719 05807 10 00132 00318 00562 05135 10 00121 00316 00706 04364
15 00138 00326 01992 09665 15 00133 00314 24802 34099 15 00115 00316 00031 01211
20 00135 00327 16318 27659 20 00132 00314 00804 06139 30 00108 00311 00974 06404
15 00134 00326 02442 107 25 00127 00312 06469 17415 25 00106 00311 00932 06609
30 00133 00318 16564 27866 30 00124 00312 01782 09141 30 00104 0031 01952 00567
35 0013 00321 7853 60677 35 00124 00312 01395  0.8089 35 00101 00311 00644 05495
40 00128 00318 12250 23974 40 00122 00312 02058 09823 40 00099 00309 01373 08022
a5 00126 00318 02847 69438 45 00121 00311 02274 10325 45 00035 00309 03302 12441
50 00125 00318 08789 20209 50 00117 00311 03674 13124 50 00094 00308 0291 11679
55 00126 00317 31947 38701 55 00115 00311 13337 25005 55 00034 00308 06662 19949
50 00125 00317 13325 24994 60 00117 00311 04201 14184 60 00092 00308 02967 11793
65 00125 00317 07576 18346 65 00113 00311 04537 14584 65 00089 00307 02463 10746
70 00122 00316 3568 40899 70 00114 00311 08256  2.0831 70 00083 00307 01406 08118
75 00121 00317 2520 34433 75 00114 0031 19236  3.0031 75 00087 00308 02628 111
80 00113 00317 36888 41586 80 00111 0031 08108 19497 8) 00085 00307 04745 14916
85 00118 00317 18486 6795 85 00108 0031 14336 25925 85 00083 00306 04954 15241
20 00117 00316 47694 47286 50 00107 0031 04933 15217 S0 00082 00307 0796 24493
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00719 05807 ] 00562 05135 ] 00031 04211 )
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1 00127 00329 02015 0972 15 00121 00315 03630 13061 15 01156 00314 00276 03595
20 00122 00324 00181 0291 20 00118 00313 00725 05829 20 01159 00311 04524 40231
25 00121 00319 52672 48693 25 00115 00312 08575 2005 25 0106 00311 03768 13292
30 0012 00319 02019 09728 30 00114 00312 01232 076 30 01031 0031 01254 07668
35 00118 00318 10944 94614 35 00113 00312 02187 10126 35 00955 00309 06683 17709
a0 00114 00318 28783 36734 a0 00109 00312 00436 04522 a0 00995 00309 06537 17506
a5 00115 00317 35607 40858 a5 00107 00311 02396 10599 as 0098 00308 01011 06885
50 00112 00317 02831 11521 50 00105 00311 02263 103 ) 00991 00308 02001 09687
55 00111 00317 32589 39088 55 00105 00311 03885 13495 55 00961 00309 0283 11518
&0 00108 00316 15218 26711 ) 00105 00311 143 25393 60 00058 00307 01776 09124
65 00108 00316 29403 37128 &5 00101 00311 00817 06189 65 01126 00307 01218 07557
70 00105 00317 7152 57905 70 00089 0031 05583 16179 70 00948 00307 06712 17739
75 00104 00317 0785 18183 75 00087 0031 11741 23462 75 009 00307 06437 17371
80 00106 00316 26442 35208 ) 00097 0031  DSG44 16267 80 00892 00307 12817 24321
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15 0011 0032 06954 18056 25 00106 00312 0362 13028 25 00106 0031 03029 11916
30 00109 00321 04282 14169 30 00104 00312 00918 06565 30 00093 00308 01581 038609
35 00106 00319 02017 04723 35 001 00311 2165 31850 35 00099 00300 06267 17142
40 00101 00319 02736 11326 40 00098 00311 10836 22539 40 0009% 00308 05001 15312
45 00102 00317 11056 22766 45 00098 0031 04027 1374 45 00102 00308 03545 12801
50 00089 00317 0552 16087 50 00034 0031 07663 18954 50 0003 00308 00936 06623
55 00096 00317 03035 11928 55 00093 0031 01096 07167 55 00092 00307 03243 1233
50 00038 00316 1265 24392 50 00091 0031 03743 13248 60 00086 00307 12966 24655
65 00036 00316 17512 28653 65 0002 0031 02513 10855 65 00086 00307 02914 11689
70 00034 00316 05563 1615 70 00086 0031 01273 07727 70 00082 00307 04845 15072
75 00032 00316 25988 34905 75 00086 0031 04677 14807 75 00083 00306 03873 13475
80 00031 00316 07044 18173 80 00084 0031 02872 11603 80 00079 00306 0265 11147
85 0003 00316 09339 20924 85 00084 00303 02884 11628 85 00081 00306 02484 10792
30 00089 00316 27395 35838 90 00082 00308 07381 18602 50 00078 00306 02442 107
95 00087 00316 166463 88341 95 00081 00309 02934 11728 95 00077 00306 10102 21763
100 00088 00316 10576 2.2267 100 0008 00309 02161 10065 100 00075 00306 06815 18005
00306 03788 ] " o019 T 0226 " 005 7 0484

194



APPENDIX D

MATLAB
The following is a section of one of the scripts developed for the MLO process using MATLAB.
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APPENDIX E
Weather conditions

The following are Cincinnati weather conditions from the 2005 ASHRAE Handbook -
Fundamentals (SI).

2005 ASHRAE Handbook - Fundamentals (Sl) ® 2005 ASHRAE, Inc.

Design conditions for CINCINNATI MUNICIPAL AP L, OH, USA

Hours +/- | Time zone
Station name | WMO# Lat Long Elev StdP uTe code Period |
1a 1b 1c 1d 1e 1f 19 Th 1
CINCINNATI MUNICIPAL AP L 724297 39.10N 84.42W 149 99.55 -5.00 NAE 8201
Coldest Heating DB | Humidification DP/MCDB and HR | Coldest month WS/MCDB | MCWS/PCWD
n?orﬁr? eating 99.6% I 99% | 0.4% I 1% | to 99.6% DB
| 996% | 99% | DP__ | HR_ | Mcbe | ©DP | HR | MCDB | WS | MCDBE | WS | MCDB | MCWS | PCWD |
2 3b 4a 4b 40 4d e 4 5a 5b 5¢ 5d 6a 6b
1 -14.9 -11.3 -20.3 0.6 -14.1 -16.8 0.9 -10.3 10.9 29 9.6 0.9 4.0 240
Annual Cooling, Dehumidification, and Enthalpy Design Conditions
Hottest Hottest Cooling DB/MCWB Evaporation WB/MCDE MCWS/PCWD
" month 0.4% | 1% | 2% 0.4% | 1% | 2% to 0.4% DB
man DB range OB | MCwe | DB | Mcws | DB | MCwB Ws__| mMcDe | ws__| McDB | _Ws__ | mcDB MCWS | _PCWD
7 8 Ba b Sc od D) of 10a 10D 10¢ 10d 10e 10f T1a 11b
7 11.1 338 23.8 32.4 23.5 3141 228 25.5 31.3 248 30.2 241 29.0 4.4 240
[ Dehumidification DP/MCDB and HR | Enthalpy/MCDB |
| 0.4% | 1% | 2% | 0.4% 1% | 2% |
| DP | HR [ mcoe | DP | HR [ _mcoe | DP | HR [ mcoE | Enth | MCDE | Enth | MCDB | Enth | MCDE |
12a 12b 12c 12d 12e 12f 12g 12h 120 13a 13b 13c 13d 13e 13F
23.9 19.1 28.2 23.2 18.3 27.4 226 17.6 26.8 78.8 31.5 75.8 30.2 73.0 291
Extreme | Extreme Annual DB | n-Year Return Period Values of Extreme DB ]
| Extreme Annual WS Max Mean | Standard deviation | n=5 years | n=10 years | n=20 years | n=50 years |
| 1% [ 25% | 5% | ] Max Min Max Min__ | Max | Min__ | Max__ | Mn__ | Max_ | Min__ | Max | Min__]
14z 14b 14c 15 16a 16b 16¢ 16d 17a 17b 17¢ 17d 17e 17f 179 17h
9.1 8.2 7.5 29.0 35.8 -19.4 1.9 51 37.2 -23.1 38.3 -26.1 39.3 -28.9 40.7 -32.6
Jan | Feb | Mar | Apr | May | Jun |
Yo | DB [ mcwe | DB [ mcwe | DB [ mcwe | DB [ mcwe | DB [ Mcwe | DB [ MCWB
18a 180 18¢c 18d 18e 18f 18g 18h 18i 18/ 18k 181
0.4% 17.8 14.3 20.8 13.9 26.0 16.0 293 18.3 31.3 211 341 227
1% 16.3 13.5 19.1 12.7 245 15.7 28.0 18.2 30.4 20.8 33.0 236
2% 14.8 11.7 17.3 11.7 227 14.6 26.6 17.6 29.5 20.2 32.3 23.3
| Jul | Aug | Sep | Oct | Nov | Dec |
% | b [ mcwe | DB | mcws | DB [ mcwe | pB [ Mcwe | DB [ mcwe | DB | MCwB
18m 18n 180 18p 18q 18r 18s 18t 18u 18v 18w 18x
0.4% 36.3 248 35.2 24.4 334 226 283 19.5 23.7 16.4 19.8 154
1% 35.2 242 34.2 24.0 32.2 22.2 27.2 19.2 21.9 15.4 18.3 156.2
2% 34.2 243 33.2 24.0 311 22.0 26.0 18.5 20.8 15.0 17.0 14.2

Monthly Design Wet Bulb and Mean Coincident Dry Bulb Temperatures

| Jan | Feb | Mar | Apr | Ma | Jun |
| % | wB_ | mcoB | _wB__| McDB | _ws__| _mMcDB _|__wsB MCDB_ | ___WB TyMCDB | we__| wmcDB
19a 195 19c 190 15e 19f 19g 19h 161 19 19k 19
0.4% 15.1 17.4 15.2 18.7 18.0 234 20.2 26.1 23.7 28.6 25.8 314
1% 14.0 16.3 14.3 17.5 16.9 21.8 19.5 25.3 23.0 28.0 25.2 30.5
2% 12.6 14.6 13.2 16.0 15.9 20.7 18.6 242 22.3 271 24.6 299
| Jul | Aug | Sep | Oct | Nov | Dec |
% [ ws | mcos | we | wmcoB | we | mcoB | wsB | WMCDB | Wwe | McbB | ws_ ] wmcbs |
7om 9n 190 19p 19 19r 19s 16t 750 v Tow 19x
0.4% 26.6 33.2 26.3 31.8 245 29.7 21.5 247 18.0 21.0 16.5 19.0
1% 26.1 323 258 31.3 241 29.2 20.8 242 17.3 19.8 15.6 17.9
2% 25.7 M7 25.4 31.0 23.7 28.6 201 23.8 16.5 19.2 14.6 16.5

Monthly Mean Daily Temperature Range

[ gan | Feb [ M™ar | Apr | Ma [ dun | Jul [ Aug [ Sep ] Oct | Nov | Dec |
20a 20b 20c 20d 20e 20f 20g 20h 20i 20§ 20k 201
8.8 10.0 111 12.2 11.8 11.2 111 1.3 12.0 12.6 10.4 8.6
WMO# World Meteorological Organization number Lat Latitude, * Long Longitude, °
Elev Elevation, m StdP Standard pressure at station elevation, kPa
DB Dry bulb temperature, °C DP Dew point temperature, “C WB Wet bulb temperature, °C
ws wind speed, mis Enth Enthalpy, kJ/kg HR Humidity ratio, grams of moisture per kilogram of dry air
MCDB Mean coincident dry bulb temperature, “C MCWB Mean coincident wet bulb temperature, °C MCWS Mean coincident wind speed, m/s
PCWD Prevailing coincident wind direction, °, 0 = North, 90 = East
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APPENDIX F

Data collection
A sample of the building simulation performance data. Those were collected and organized in
preparation to test the optimization process. The data are for one zone from the month of July and
were used to create figure 68.

Zone 1

- - M Total load BTU R@ Sensible load BTUR@ Latent load BTU |

8:00:00 AM 50.28846842  2381.6521 63786.51589 53728.82221 10057.69368
8:15:00 AM 50.28846842 2416.630362 64580.14048 54522.4468 10057.69368
8:30:00 AM 50.28846842 2446.941662 65265.71727 55208.02358 10057.69368
8:45:00 AM 50.28846842 2474.051448 65878.51995 55820.82627 10057.69368
9:00:00 AM 50.28846842 2500.227172 66473.26964 56415.57596 10057.69368
9:15:00 AM 50.28846842 2527.001548 67077.59734 57019.90366 10057.69368
9:30:00 AM 50.28846842 2555.590989 67724.18243 57666.48874 10057.69368
9:45:00 AM 50.28846842 2586.188684 68412.41332 58354.71964 10057.69368
10:00:00 AM 50.28846842 2618.830317 69152.65628 59094.9626 10057.69368
10:15:00 AM 50.28846842 2653.226069 69932.7615 59875.06782 10057.69368
10:30:00 AM 50.28846842 2691.408611 70792.43426 60734.74057 10057.69368
10:45:00 AM 50.28846842 2728.460508 71627.41435 61569.72067 10057.69368
11:00:00 AM 50.28846842 2765.750858 72469.50815 62411.81446 10057.69368
11:15:00 AM 26.46761496 2509.165519 62032.15055 56738.62756 5293.522991
11:30:00 AM 26.46761496 2537.376307 62555.04474 57261.52174 5293.522991
11:45:00 AM 26.46761496 2568.525628 63248.14366 57954.62067 5293.522991
12:00:00 PM 26.46761496 2600.607697 63968.1377 58674.6147 5293.522991
12:15:00 PM 50.28846842 2927.849209 75969.20476 65911.51108 10057.69368
12:30:00 PM 50.28846842 2967.815638 77013.11227 66955.41859 10057.69368
12:45:00 PM 50.28846842 3003.399205 77810.46894 67752.77526 10057.69368
1:00:00 PM 50.28846842 3037.748805 78572.62938 68514.9357 10057.69368
1:15:00 PM 50.28846842 3071.479012 79322.25506 69264.56137 10057.69368
1:30:00 PM 50.28846842 3099.357551 79955.43313 69897.73945 10057.69368
1:45:00 PM 50.28846842 3131.262053 80686.93066 70629.23697 10057.69368
2:00:00 PM 50.28846842 3161.687785 81381.25236 71323.55868 10057.69368
2:15:00 PM 50.28846842 3190.608866 82035.50156 71977.80788 10057.69368
2:30:00 PM 50.28846842 3217.550226 82651.05283 72593.35915 10057.69368
2:45:00 PM 50.28846842 3246.811248 83270.12245 73212.42876 10057.69368
3:00:00 PM 50.28846842 3275.869837 83898.90762 73841.21393 10057.69368
3:15:00 PM 50.28846842 3303.590665 84528.38712 74470.69344 10057.69368
3:30:00 PM 50.28846842 3334.38202 85207.0779 75149.38422 10057.69368
3:45:00 PM 50.28846842 3356.34118 85772.4574 75714.76372 10057.69368
4:00:00 PM 50.28846842 3377.483126 86269.73455 76212.04086 10057.69368
4:15:00 PM 37.05466094 3139.75218 78481.20436 71070.27217 7410.932188
4:30:00 PM 37.05466094 3126.625087 77984.61911 70573.68692 7410.932188
4:45:00 PM 37.05466094 3129.490402 78052.03844 70641.10625 7410.932188
5:00:00 PM 37.05466094 3136.070958 78195.00452 70784.07233 7410.932188
5:15:00 PM 21.17409197 2766.871034 66932.064 62697.24561 4234.818393
5:30:00 PM 21.17409197 2741.835288 66128.4667 61893.6483 4234.818393
5:45:00 PM 21.17409197 2737.767866 66021.78027 61786.96188 4234.818393
6:00:00 PM 21.17409197 2741.012314 66090.84598 61856.02759 4234.818393
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APPENDIX G

Optimization process results

January 21% different case analysis
The following is a case analysis for January 21, when the baseline case scenario has a supply air

temperature setpoint of S5F°. This case happens in some buildings, unlike the best practice that
resets the supply air temperature to 65 F° in the winter season as the case that was discussed in

chapter 5.

Duct static pressure (Ps)

in.w.g
-
u

Near Optimal — Baseline Case == \Nith demand control

(4)
Supply air temperature (Ts)
66
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56
54
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50
B T P L N N N N N S S NS
S S S S T S T FEFE S EE S S E S S
S P S ST ST AT N 0T AT AT AR AT AT AT T BT ST ST
Time
MNear optimal Ts — Baseline Ts
(B)

Figure 109. (4) near-optimal supply air temperature against the baseline case. (B) near-optimal duct
static pressure against the baseline case.
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Total energy consumption
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Figure 110. Total energy savings for January 21°. The total savings for the typical optimization case was
30%. While the total savings after implementing the demand control method increased to 32.6%.
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Figure 111. Fan power savings for January 21*. The total savings for the typical optimization case was
69%. While the total savings after implementing the demand control method increased to 71%.
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Heating energy
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Figure 112. Heating energy savings for January 21°. The total savings for the typical optimization case
was 33.7%. While the total savings after implementing the demand control method increased to 35.7%.
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Figure 113. Reheat energy savings for January 21°. The total savings for a typical optimization case was
15.6%. While the total savings after implementing the demand control method increased to 19.6%.
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APPENDIX H

Optimization process results

October 10th different case analysis
The following is a case analysis for October 10", when the baseline case scenario has a supply
air temperature setpoint of 55F°. This case happens in some buildings, unlike the best practice

that resets the supply air temperature in the spring and fall season, as the case that was discussed

in chapter 5.
Supply air temperature (Ts)
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Figure 114. (4) near-optimal supply air temperature against the baseline case. (B) near-optimal duct
Static pressure against the baseline case.
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Total energy consumption
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Figure 115. Total energy savings for October 10". The total savings for the usual optimization case was
39%. While the total savings after implementing the demand control method increased to 40%.
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Figure 116. Fan power savings for October 10™. The total savings for the usual optimization case was
65%. While the total savings after implementing the demand control method increased to 75.5%.
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Chiller power
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Figure 117. Chiller power savings for October 10™. The total savings for the usual optimization case was
38.6%. While the total savings after implementing the demand control method decreased to 38%.
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Figure 118. Heating energy savings for October 10™. The total savings for the usual optimization case
was 59.4%. While the total savings after implementing the demand control method decreased to 57%.
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Figure 119. Reheat savings for October 10™. The total savings for the typical optimization case was
8.7%. While the total savings after implementing the demand control method increased to 10.7%.
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APPENDIX I

Optimization process results

The following are the values for the system airflow rate for July 12", represented in figure 72.

Qsys CFM
& & & >
8:00:00 AM 6335.3 4791.3 6335.3
8:15:00 AM 6611.3 4982.2 6611.3
8:30:00 AM 6830 5147.4 6830
8:45:00 AM 6243.3 5294.8 6243.3
9:00:00 AM 6414.2 5440.5 6414.2
9:15:00 AM 6239 5586.2 6239
9:30:00 AM 6401.4 5728.2 6401.4
9:45:00 AM 5860.2 5825.6 5860.2
10:00:00 AM 5926.8 5926.8 5926.8
10:15:00 AM 6008.6 6008.6 6008.6
10:30:00 AM 6095.2 6085.2 6085.2
10:45:00 AM 6143.6 6168.4 6143.6
11:00:00 AM 6230.9 6230.9 6230.9
11:15:00 AM 5791.9 5791.9 5791.9[
11:30:00 AM 5820.8 5820.8 5820.8
11:45:00 AM 5898 5898 5898
12:00:00 PM 5986.3 5986.3 5986.3
12:15:00 PM 6548.9 6548.9 6548.9
12:30:00 PM 6643.7 6643.7 6643.7
12:45:00 PM 6735.5 6735.5 6735.5
1:00:00 PM 6875.7 6875.7 5978.9
1:15:00 PM 7041.8 7041.8 6123.3
1:30:00 PM 7206 7206 6266
1:45:00 PM 7290.5 7290.5 6339.5
2:00:00 PM 7336.8 7336.8 6379.8
2:15:00 PM 7373.3 7373.3 6411.5
2:30:00 PM 7391 7391 6426.9
2:45:00 PM 7526 7526 6544.4
3:00:00 PM 7714.7 7714.7 6708.4
3:15:00 PM 7258.2 7258.2 7258.2
3:30:00 PM 7450.6 7450.6 7450.6
3:45:00 PM 7837.5 7837.5 7837.5
4:00:00 PM 7926.6 7926.6 7926.6
4:15:00 PM 7772.3 7772.3 7772.3
4:30:00 PM 7712.7 7712.7 7712.7
4:45:00 PM 7674.2 7674.2 7674.2
5:00:00 PM 7644.3 7644.3 7644.3
5:15:00 PM 6956.8 6956.8 6956.8
5:30:00 PM 6834.4 6834.4 6834.4
5:45:00 PM 6778.4 6778.4 6778.4
6:00:00 PM 6734.4 6734.4 6734.4)
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APPENDIX G

Optimization process results
The following are the Supply air temperature reset calculations used to determine the supply air

temperatures used for the baseline case at each timestep, as shown in figure 87.

Time | ToutinC®| RH% | Toutin F°
10/10 07:00:00 7.2 80 44.96
10/10 07:15:00  7.75 79.25 45.95 | Tout<55 Then Ts =65
10/10 07:30:00 8.3 78.5 46.94
10/10 07:45:00  8.85 77.75 47.93
10/10 08:00:00 9.4 77 48.92
10/10 08:15:00 10.375 75 50.675
10/10 08:30:00  11.35 73 52.43
10/10 08:45:00 12.325 71 54.185
10/10 09:00:00  13.3 69 55.94 Ts= 62.03
10/10 09:15:00 13.875 66.75 56.975 Ts= 61.5125
10/10 09:30:00  14.45 64.5 58.01 Ts= 60.995
10/10 09:45:00 15.025 62.25 59.045 Ts= 60.4775
10/10 10:00:00  15.6 60 60.08 Ts= 59.96
10/10 10:15:00 16.275 58 61.295 Ts= 59.3525
10/10 10:30:00  16.95 56 62.51 Ts= 58.745
10/10 10:45:00 17.625 54 63.725 T:= 58.1375
10/10 11:00:00  18.3 52 64.94 Ts= 57.53
10/10 11:15:00 18.575 51.25 65.435
10/10 11:30:00  18.85 50.5 65.93
10/10 11:45:00 19.125 49.75 66.425
10/10 12:00:00  19.4 49 66.92
10/10 12:15:00  19.7 47.75 67.46
10/10 12:30:00 20 46.5 68
10/10 12:45:00  20.3 45.25 68.54
10/10 13:00:00  20.6 44 69.08
10/10 13:15:00 20.725 43.25 69.305
10/10 13:30:00  20.85 42.5 69.53
10/10 13:45:00 20.975 41.75 69.755
10/10 14:00:00  21.1 41 69.98
10/10 14:15:00 21.375 40.25 70.475
10/10 14:30:00 21.65 39.5 70.97
10/10 14:45:00 21.925 38.75 71.465
10/10 15:00:00  22.2 38 71.96 | Tout>65 Then Ts =55
10/10 15:15:00 21.925 38.25 71.465
10/10 15:30:00  21.65 38.5 70.97
10/10 15:45:00 21.375 38.75 70.475
10/10 16:00:00  21.1 39 69.98
10/10 16:15:00 20.975 39.5 69.755
10/10 16:30:00  20.85 40 69.53
10/10 16:45:00 20.725 40.5 69.305
10/10 17:00:00  20.6 41 69.08
10/10 17:15:00 19.75 43.75 67.55
10/10 17:30:00  18.9 46.5 66.02
10/10 17:45:00  18.05 49.25 64.49
10/10 18:00:00  17.2 52 62.96
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APPENDIX H
MATLAB

The following are the scripts developed for the integrated two-level optimization process using

MATLAB.

2.0000e+01] ;
35 Those need to chnage based

HVACSit i m (¢] ess.m L5
1 function [Total,ChillerPower,FanPower,Reheat,Reheatz, ght,PowerPenalty,Constraint,Qz,DesignZone,Qo,Qv,Qsys, Tm] =HVACSimulationModel (Variables)
2 Enter the loads qt, gs, gl for the number of zones
3—  Loads=(-22267.15293 -12267.15293 -10000
4 -5120.646592 -13086.85605 -2000
5 -6359.469571 -8682.019879 -1200
6 -12258.48221 -16732.86704 -2000
7 -9693.55484 -8493.55484 -1200];
8
9 % Enter Outside air conditions To, tw, td
10—  OCond=(31.64,28.94,24.62];
11—  DesignZone= [
12 7.5000e+01  7.2000e+01  3674.624444 10588 50  6.0000e-02  5.0000e+00 1.0000e+00
13 7.5000e401  7.2000e+01  1937.609758 2232 10 | 6.0000e-02  5.0000e+00  1.0000e+00
14 7.5000e+01  7.2000e+01  1426.535636 1413 6 6€.0000e-02  5.0000e+00  1.0000e+00
15 7.5000e401  7.2000e+01  1412.67893 2232 10 6.0000e-02  5.0000e+00  1.0000e+00
16 7.5000e+01  7.2000e+01  1630.106012 1413 6  6.0000e-02  5.0000e+00  1.0000e+00
17 ;
18
19 lenght ft, ¢ 00015;
20
21 % ell /
22 max (Flow
23—  DesignSystem
24 7.0000e-01
25 8.0000e-10
26 2.5000e+00
27 10.000e+01
28 9.0000e+01
29 1.5000e-04
30 1.0000e+01
31 4.0000e+00
32 6.0000e+00
33 5.0000e+02
34

HVACSimulationModel.m OptimizationProcess.m

22 Gmax (Flow GPM),Water Diffrential L e
23 DesignSystem=[

24 7.0000e-01

25 8.0000e-10

26 2.5000e+00

27 10.000e+01

28 9.0000e+01

29 1.5000e-04

30 1.0000e+01

31 4.0000e+00

32 6.0000e+00

33 5.0000e+02

34 2.00002401];

5 T need to chnage n

36— 53=1;

37— Schedule=|

38 100 1

39 100 1

40 100 1

41 100 1

42 100 1

43 1i

44

45— MinFlow=Variables (3:7);

16— DesignSystem(2)=4.5/ (sum(DesignZone (:,3))) ~2;

47 [FanPower,Reheat, Reheatz, ght, gct, Qw, Twr, PowerPenalty,Constraint, Constraintz,Qz, Qo,Qv,Qsys, Tm]
48— format shortk

49— [FanPower, Reheat, gqct] i

50— ;

il oy 5;

52— | [~,ChillerPower,~]=ChillerModel (gct, Tw, Tc, DesignSystem) ;
53— | F=0.4; % F R from gas to electric equivalent
54— Totalcost=(ChillerPower+FanPower) *0.10+ ({abs (Reheat) +abs (ght)) /100000) *0.85+PowerPenalty;
554 Total=Totalcost/0.10;

S5 end

VAVSystemModel (Variables, Loads, 0Cond, Schedule, De
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1
27—
3
4-
i
6=
7—
8-
=]
10—
il

HVACSimulationModel.m OptimizationProcess.m 5r

[function OptimizationProcess()
var=7;

—————————— Generation G=10 65 2.5 0.3 0.3 0.3 0.3 0.3 55 2.5 0.2 0.2 0.2 0.2 0.2
options = gaoptimset ('Generat 2500, 'PopulationSize’, 1000); —|
[x, fvall, exitflag, output, population] -ga (BHVACSimulationModel,var, [1, [1,[1,[],[59 0.2 0.2 0.2 0.2 0.2 0.2]",[65 2.5 0.3 0.3 0.3 0.3 0.3]', [],0pti—|
[Total,ChillerPower, FanPower, Reheat, Reheatz, ght, PowerPenalty, Constraint,Qz, DesignZone, Qo,Qv, Qsys, Tm] =HVACSimulationModel (x) ¢
MinFlow=Qz'./DesignZone (:,3);
MinFlow (Reheatz'>=0)=0.99;x =
OutputsEnergy=[Total-PowerPenalty,ChillerPower, FanPower, Reheat, ght, PowerPenalty, Constraint] =

OutputsPerformance= [0z, 0o, Qv, 0sys, Tm] -
end
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