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Abstract

Multiple testing in statistics refers to carrying out several statistical tests simultane-
ously. As the number of tests increases, the probability of incorrectly rejecting the null
hypothesis also increases (multiplicity problem). Therefore, some multiplicity adjust-
ment should always be considered to control the error rate. Making decisions without
multiplicity adjustment can lead to error rates that are higher than the nominal rate.
While several approaches to multiplicity adjustment are available, the Bayesian method
is the only approach that inherently adjusts for multiplicity. This thesis considers the
Bayesian approach to the multiple testing problem for different types of data: continuous
and discrete data.

The first chapter explains the multiplicity problem and provides background infor-
mation about the two popular approaches to multiplicity adjustment: frequentist and
Bayesian approaches.

Chapter 2 investigates the sensitivity of the normality assumption of continuous re-
sponse variables when the response variables instead follow a t-distribution. We focus on
Bayesian multiple testing of means, or location parameters, when the response variable
follows a t-distributions, determine suitable priors for the parameters, develop a com-
putational strategy for computing the posterior probabilities of the hypotheses, and use
it to study the sensitivity of the results under normality assumption using simulation
studies. There is sensitivity to both the sampling model and the prior distribution of
the location parameters for a small sample size. For a larger sample size, while the
sensitivity to the sampling model is disappearing, the sensitivity to prior distribution
is still present. However, as the degrees of freedom and the number of noises increase,
sensitivity to prior distribution is also disappearing.

Chapter 3 and chapter 4 introduce two objective Bayesian multiple testing approaches
for discrete data. In particular, while chapter 3 is about testing equality of two binomial
proportions (two-sided alternatives), chapter 4 considers testing equality of two or more
order-restricted binomial proportions (one-sided alternatives). The proposed work in
chapters 3 and 4 has two novel contributions: providing a formal objective Bayesian
approach to multiple testing of binomial proportions and developing a non-local prior
approach to binomial testing.

Chapter 3 introduces two prior choices, Local and Threshold (non-local), to model the
unknown proportions in testing the equality of two binomial proportions. While under
the alternative hypothesis, both priors give equally fast convergence towards the true
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alternative, under the null hypothesis, Threshold prior gives faster convergence towards
the true null than the Local prior.

Chapter 4 first extends the use of Local and Threshold prior approaches for testing
one-sided two binomial proportions. Chapter 4 gives similar results to chapter 3, i.e.,
the Threshold prior approach has faster convergence towards the true null hypothesis
than the Local prior, and under the alternative hypothesis, both priors have equally fast
convergence toward the true alternative. Later in chapter 4, we generalize the proposed
Local prior approach for order-restricted testing of more than two binomial proportions.
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Chapter 1
Introduction

Multiple testing (MT) refers to the simultaneous testing of several hypotheses. The

need for multiple testing arises commonly in many areas such as genomics, medicine,

social science, etc., where many factors are investigated simultaneously. If one does

not consider the multiplicity of tests, then the probability that some of the true null

hypotheses are rejected will be larger than the assumed nominal level. For example,

assume we test a single null hypothesis at significance level α = 0.05. The maximum

type I error rate (incorrect rejection of a true null) is 0.05. Now, if we have two null

hypotheses and perform two independent tests, each at level α = 0.05, the probability

of rejecting at least one true null hypothesis is

P (reject at least one true null hypothesis) = 1− 0.952 = 0.0975(> 0.05).

Type I error rate is almost doubled here. In general, as the number of tests increases,

the probability of incorrectly rejecting the null hypothesis is also increased (multiplicity

problem). Therefore, statisticians describe the multiplicity problem as “the curse of

dimensionality,” and some multiplicity adjustment should always be considered to control

the error rate.
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In statistics, two main approaches can be used for addressing the multiplicity problem:

the frequentist approach and the Bayesian approach. These two approaches adjust the

multiplicity in different ways. The frequentist approach usually first gets the p-values

for each test and then adjust them for multiplicity, ”post-hoc adjustment.” That is,

in frequentist methods, multiple testing is not a part of the model. Nevertheless, in

the Bayesian approach, multiplicity adjustment starts right at the beginning setting up

priors for the parameters, including the proportion of true null, and then it goes through.

In the Bayesian method, multiple testing is a part of the model.

1.1. Frequentist Approach to Multiplicity Adjustment

In the frequentist approach, one way of accounting for the multiplicity of individual tests

is to control the familywise error rate (FWER) by keeping the probability of FWER ≤

α. The classical method to control the FWER is the Bonferroni method, which rejects

the null hypothesis(H0i) if and only if the marginal p-value for testing H0i ≤ α/M , where

M is the number of tests. But in this procedure as M increases it is hard to reject the null

hypothesis, leading to extremely low power. Hence, later in the literature researchers

have suggested some other statistically more powerful methods such as controlling the

false discovery rate (FDR) than controlling the FWER for adjusting multiplicity [17].

The most popular method of adjusting multiplicity in the frequentist point of view

was proposed by Benjamini and Hochberg (BH) [5] for controlling FDR, which gains

greater power and is less conservative than the Bonferroni correction. Therefore, many

modifications of FDR and a wide range of its applications in different disciplines have

been suggested in the literature [6, 22, 32, 1, 29].
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1.2. Bayesian Approach to Multiplicity Adjustment

The Bayesian approach jointly uses available prior information (prior distribution) about

the unknown quantity of interest and the observed data (likelihood function) to make

inferences about the unknown quantity of interest using the posterior distribution. Typ-

ically, prior information may be obtained either from experts in the field, historical data,

or both. The way of adjusting for multiplicity in the Bayesian approach is by reducing

the posterior probabilities as the number of tests grows. Since the marginal likelihood

does not change for fixed number tests, Bayesian multiplicity adjustment operates only

through the prior probabilities assigned to hypotheses.

There is no need to introduce an extra penalty term for performing thousands of

multiple testing; Bayesian testing has a built-in penalty (Ockham’s razor effect [8]). As

the number of multiple comparisons increases, the multiplicity adjustment is automat-

ically made by reducing the posterior probabilities. This is one of the attractions of

the Bayesian approach to become more prevalent in multiple testing recently. Scott and

Berger [31, 4] discussed details about automatic handling of multiplicity adjustment for

multiple testing with a mixture model and variable selection in linear models by choosing

appropriate priors. Other than inherited adjustment for multiplicity, since the Bayesian

method is a model-based approach, it allows incorporating more complex models as re-

quired by the specific application. When the data has a dependent structure, unlike

in some of the commonly used frequentist methods in the Bayesian method, since the

multiplicity is adjusted by assigning a reasonable prior probability, the Bayesian multi-

ple testing methods do not depend on the dependence structure of the data. However,

the ways to achieve the multiplicity adjustment and its implications in the Bayesian

approach are still in development.
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1.3. Organization of The Dissertation

This dissertation focuses on adapting the Bayesian approach for MT of both continuous

and discrete data and is organized as follows.

Chapter 2 focuses on the Bayesian approach to multiple testing of continuous data

and investigates the sensitivity to the normality assumption when the data are actually

from a t-distribution. We consider multiple testing of means or location parameters

when the response variables follow a t-distribution. First, we determine suitable priors

for the parameters and develop a computational strategy for computing the posterior

probabilities of the hypotheses. Then, use it to study the sensitivity of the results under

normality assumption using a simulation study.

Chapter 3 presents the background of Bayesian and frequentist procedures for simul-

taneous testing discrete data and our novel formal Bayesian approach for testing the

equality of two binomial proportions. We develop two priors, Local prior and Threshold

(non-local) prior, for binomial testing and improve the convergence rates of Bayes factors

in testing true null hypotheses with our novel Threshold prior approach.

Chapter 4 will extend our proposed method for testing equality of two binomial propor-

tions to testing ordered binomial proportions. First, we modify the proposed Local and

Threshold prior approaches in chapter 3 for testing one-sided alternatives and compare

the results from two priors for convergence of Bayes factors under true null hypotheses.

As expected, the Threshold approach improves convergence rates of Bayes factors in

favor of true null hypotheses than the Local prior approach. Later on, we extend our

formal Bayesian approach under Local prior for testing more than two order-restricted

binomial proportions and apply it for simulated and real data examples.

4



Chapter 2
Bayesian multiple testing of means

and its sensitivity to normality

assumption

2.1. Introduction

Multiple testing has appeared as a critical problem in statistical inference as of its ap-

plicability in understanding extensive data involving many parameters [11]. One typical

example is analyzing DNA microarray data where several thousand genes are measured

simultaneously to detect the genes that are activated by a specific stimulus [11, 18, 21,

31]. Another example is genetics; researchers would like to see which genetic markers

make a difference in a treatment effect among thousands of them [12]. Making decisions

without adjusting for multiplicity can lead to error rates that are higher than the nomi-

nal rate [23]. Therefore, some multiplicity adjustment should always be taken to control

the overall error rate.

Although various ways of performing multiple tests have been proposed in the litera-

ture over the past few decades, the Bayesian approach is the only available method that
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adjusts for multiplicity inherently, without involving any post hoc multiplicity adjust-

ment. In the Bayesian approach, multiplicity adjustment starts right at the beginning

setting up priors for the parameters, including the proportion of true null, and then

it goes through. Therefore, multiple testing is a part of the model in the Bayesian

approach.

In this chapter, we considered the Bayesian multiple testing of means when the un-

derlying data distribution is not normal, specifically when the data is t-distributed. Our

work is a theoretical development of Bayesian multiple testing, which extends the work of

Scott and Berger [31] for a two-group model when the data is independent and Normally

distributed.

Most of the work involving continuous random variables, assume Normal distribution

assumptions in the literature. Nevertheless, in some situations, Normality assumption

may be too restrictive. Therefore, one way to address this issue is to assume a different

distribution like student’s t-distribution. It is necessary to consider different possible

distribution assumptions, as the final decision to reject or accept the null hypothesis

may vary depending on our distribution assumption. For a simple example consider

the situation x = 2 and we are testing one-sided hypothesis for population mean µ,

H0 : µ ≤ 0 vs.H1 : µ > 0 with significance level α = 0.05. On one hand, when

x ∼ N(0, 1) the p-value is 0.0228(< .05), which leads to reject the null hypothesis. On

the other hand, when x ∼ t5 the p-value is 0.051(> .05), which fails to reject the null

hypothesis. Here, in two situations, the answer is different depending on the distribution

assumption. So, it is important to develop methods for multiple testing when data is

possible from different distributions rather than blindly assuming Normal assumptions

for each situation.

Other than the Normal distribution, the student’s t-distribution is another more com-

monly plausible distribution for modeling continuous random variables. For instance,

even though almost everywhere in the literature Normality assumption has been us-
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ing in analyzing DNA microarrays, it has been shown that 5% to 15 % of the samples

deviate from Normality and are very close to t-distribution [21]. In that sense, it is

probably worth looking at if the data is coming from t-distribution rather than Normal

distribution. Since it is difficult to find the test statistic in the frequentist approach,

t-distribution in the frequentist framework is even more difficult, especially when the

sample size is small or moderate. So, our proposed work in this chapter is to implement

a method to perform multiple testing when data is actually from a t-distribution using

the Bayesian framework.

We first define our MT problem, discuss some criteria for choosing a prior in objective

Bayesian approach, and derive the distributions for the priors and posteriors for the

defined problem. Then in the next section, we discuss and compare the performance

of two possible approaches for computation, the importance sampling approach and

Monte Carlo Markov Chain(MCMC) approach. In the next section, we simulate data

and compare the posteriors to assess the sensitivity to the assumption of the sampling

and the prior distributions of non-zero means. In the last section, we present the overall

conclusion of this chapter.

2.2. The Statistical Model Specifications

Assume we observe data X = (x11, · · · , x1n; · · · ;xm1, · · · , xmn) of m different tests each

with n observations, where xik arises independently from a particular distribution with

unknown location µi and unknown scale σ2, xik
iid∼ f(location = µi, scale = σ2). We

are interested in finding which of µis are differentially expressed. In multiple testing

settings, the problem is to simultaneously assess whether each of µi is zero or nonzero

and estimate the magnitudes of their effect. Based on this information, we define the

multiple testing problem as below.

H0i : µi = 0 versus H1i : µi 6= 0 i = 1, 2, · · · ,m.
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Most of the literature for multiple testing with continuous response variables, conven-

tionally, Normal distribution has been used for modeling the data. So each observation

xik assumes coming from a Normal distribution with an unknown mean µi and variance

σ2, xik
iid∼ N(µi, σ

2).

However, since there are some situations where the Normality assumption might be

too restrictive and data more resemble the t-distribution, we here assess the sensitivity

to the choice of Normal sampling distributions when data is actually from a t distri-

bution. Therefore, in our work, we assume both Normal and t sampling distributions

and compare the results, xik
iid∼ N(µi, σ

2) or xik
iid∼ tυ(µi, σ

2). Here, while µi and σ2 are

assuming unknown and υ is assuming either known or unknown.

Since the Bayesian approach jointly uses available prior information of the unknown

parameters and the observed data to make inferences about the unknown quantity of

interest, selecting suitable prior probabilities is very important. Next, we focus on some

critical conditions for a prior to be satisfied in Bayesian hypothesis testing.

With the Normal sampling model, nonzero µis are also modeled as arising from a

Normal density with mean zero, and unknown variance τ2, N(µi|0, τ2) [31]. Nevertheless,

we are interested in not only the Normal sampling model but also the t sampling model.

So the question is, when assuming t sampling distribution, whether we can still use a

Normal prior as in the Normal sampling model or should we use a t prior to model

nonzero µis? Therefore, about choosing a prior for nonzero µis, π(µi|H1i), in section

2.2.1, we talk about some facts that may or may not be well known, called ”information

consistency.”

2.2.1. Information Consistency

Many criteria have been proposed in objective Bayesian analysis to define objective

prior distributions, and no single dominant criterion has emerged. Among those various

conditions said for a prior to satisfying in the objective Bayesian approach, information
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consistency is one condition that Bayarri et al. [16] proposed in 2012. The information

consistency criteria was originally proposed for objective Bayesian model selection as

defining below.

Let y be a data vector of size n from one of the models, M0 : f0(y|α) and Mi : fi(y|α, βi)

for i = 1, 2, · · · , N − 1, where α and βi are unknown model parameters. For any model

Mi, if {ym,m = 1, 2, · · · } is a sequence of data vectors of fixed size such that, as m→∞,

Λi0(ym) =
supα,βfi(ym|α, βi)
supαf0(ym|α)

→∞ then Bi0(ym)→∞

That is, priors must be chosen to satisfy the condition; as the evidence favoring Mi

increases, Bi0 also increases. Therefore, we adopt the information consistency criteria

to choice priors in terms of hypothesis testing context.

Information (In-)Consistency in Hypothesis Testing

Definition 2.2.1. (Information consistency in single testing)

Assume we observe data x = (x1, ..., xn)
iid∼ N(µ, σ2). Consider testing, H0 : µ = 0

versus H1 : µ 6= 0. Then, information consistency in terms of testing is Bayes factor,

B10(x)→∞ as x→∞ . As a result,

P (Ho|x) =

[
1 +

(1− p)
p

B10

]−1
→ 0 as x→∞.

Proposition 2.2.2. (Normal sampling model with Normal prior)

(a). Let x = (x1, .., xn)
iid∼ N(µ, σ2) with known σ. Assume a normal prior π(µ|H1) =

N(0, τ2), with a known τ . Then,

P (H0|x)→ 0 as x̄→∞
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(b). Let x = (x1, .., xn)
iid∼ N(µ, σ2) where σ is unknown and assigned the prior π(σ2) =

1/σ2. Assume a normal prior π(µ|H1) = N(0, τ2), with a known τ . Then,

P (H0|x) 6→ 0 as x̄→∞ (with s2 fixed)

Remark: Replacing π(σ2) = 1/σ2 by π(σ2) = IG(α0/2, β0/2), has same limiting

result(inconsistency).

Proposition 2.2.3. (t sampling model with normal prior)

Let x = {x1, ..., xn} with xi’s iid tυ(µ, σ2.), with known σ. Assume a prior π(µ|H1, τ
2) :

N(0, τ2).

(a). Assume τ is known.Then,

P (H0|x) 6→ 0 as x→∞

(b). Assume τ is unknown and assign a prior π(τ2). If the prior π(τ2) has finite

moments up to order n(υ + 1), then

P (H0|x) 6→ 0; as x→∞.

Note: The prior π(τ2) = σ2/(σ2 + τ2)2 does not satisfy the above condition and

hence may have information consistency.

Proposition 2.2.4. (t sampling model with t prior)

(a). Let x ∼ tυ(µ, σ2) with known σ. Assume a prior π(µ|H1, τ
2) : tν(0, τ2) with fixed

and known ν. Assume τ known.Then,

P (H0|x)→ 0 as x→∞ if υ > ν

Remark: Same result holds if τ is assigned a proper prior.
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(b). Let x = (x1, .., xn)
iid∼ tυ(µ, σ2) where σ is known and π(µ|H1) = tν(0, τ2) with

π(τ2) proper. Then,

P (H0|x)→ 0 as x→∞ if nυ > ν (with s2 fixed)

Remark: We conjecture that the result in 2.2.4(b) is true when σ is unknown and

assign a prior.

Proofs in Appendix A.1.

2.2.2. Prior Distributions

According to Westfall et al. [34], in the Bayesian setting, choosing the prior probabilities

of hypotheses in multiple testing has a significant effect on the posterior probabilities.

Using a common prior probability, p = P (µi = 0), for all the null hypotheses is natural in

Bayesian MT except when a known covariate that could influence the prior probability

of H0i is involved. In other words, if the hypotheses are exchangeable [28], then there is

a common prior probability, p, for all the null hypotheses. In our work, we assume the

hypotheses are exchangeable, and there is a common prior probability p, which is drawn

from Beta(1, 1) for each µi = 0, π(p) ∼ Beta(1, 1). Note that when α = β = 1, Beta

prior reduces to Uniform prior. Note that if the hypotheses are not exchangeable, much

more complicated prior probabilities should be considered [12].

To complete the model specification, next, we define priors on unknown parameters,

µi, and σ2. Let prior for non-zero µis is given by the distribution function f1,

µi|H1i ∼ f1(0, τ2) ], where τ is unknown.

Then, for either case sampling distribution, f is Normal, or t, the prior combination

f1 = N(0, τ2) and π(τ2, σ2) = (σ2 + τ2)−2 satisfy the findings in section 2.2.1, like
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information consistency and posterior existence. So that, we consider N(µi|0, τ2) as one

suitable prior for nonzero µis in our model. Other than Normal prior, in the literature,

t prior has been used to model location parameters of both Normal [19] and t sampling

distributions [3]. Therefore we use t prior, f1 = tν(0, τ), for nonzero µis as an alternative

and assess the sensitivity of f when the prior distribution, f1 is Normal, and t separately

using Bayesian hierarchical model. So we are considering following four model-prior

combinations.

Case I: Normal sampling model and Normal prior (NN)

xij ∼ N(µi, σ
2) and µi|H1i ∼ N(0, τ2) i.e. f ≡ N and f1 ≡ N

Case II: t sampling model (true model) and Normal prior (TN)

xij ∼ tυ(µi, σ
2) and µi|H1i ∼ N(0, τ2) i.e. f ≡ T and f1 ≡ N

Case III: Normal sampling model and t prior (NT)

xij ∼ N(µi, σ
2) and µi|H1i ∼ tν(0, τ2) i.e. f ≡ N and f1 ≡ T

Case IV: t sampling model and t prior (TT)

xij ∼ tυ(µi, σ
2) and µi|H1i ∼ tν(0, τ2) i.e. f ≡ T and f1 ≡ T

As mentioned above, for unknown σ2 and τ2, we use the joint prior,

π(τ2, σ2) = (σ2 + τ2)−2,

which Scott and Berger [31] used to model unknown σ2 and τ2. Scott and Berger [31]

have suggested this as a possible joint prior in the absence of vital information about

σ2 and τ2. Although this joint prior for σ2 and τ2 is improper, the conditional prior

for τ2|σ2 is proper. Also, this prior was motivated by Berger and Strawderman [10] for

admissibility considerations in hierarchical models.
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2.2.3. The Model

The model is specified by defining an index parameter γi, which can take values either

0 or 1 depending on which hypothesis is true.

γi =


0 if µi = 0

1 if µi 6= 0

When µi = 0, the corresponding observation is classified as a “noise” and otherwise as

a “signal.” Then, the original multiple testing problem of each µi equals zero or not can

be rewritten as

H0i : γi = 0 versus H1i : γi 6= 0, for i = 1, 2, · · · ,m.

Given f is N or tυ, the marginal distributions of xij has the form

xij ∼ p · f(0, σ2) + (1− p) · f(µi, σ
2).

Then the full likelihood functions under N and tυ can be written as

f(X|µ,γ, σ2) =
m∏
i=1

n∏
k=1

[
1√

2πσ2
exp

(
−1

2σ2
(xik − γiµi)2

)]

f(X|µ,γ, σ2) =

m∏
i=1

n∏
k=1

Γ[(υ + 1)/2]

Γ(υ/2)
√
υπσ

.

[
1 +

1

υ

(xik − γiµi)2

σ2

]−(υ+1)/2

(2.2.1)

Under the above modeling assumptions, the posterior distributions of p,µ,γ, σ2, and τ2

has the form

π(Θ|X) = C−1 ·
m∏
i=1

[ n∏
k=1

f(xik|µi, γi, σ2) · π(µi|0, τ2)p1−γi(1 − p)γi
]
· π(σ2, τ2)π(p)

(2.2.2)
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where Θ ≡ (p,µ,γ, σ2, τ2) and f is either Normal or t likelihood function define in

equation (2.2.1) and C is the normalization constant.

For case-I (NN), the posterior distribution 2.2.2 has a more straightforward form

due to the conjugacy of the sampling, and prior distributions [31]. However, when the

sampling and/or prior distributions are from a t distribution (case II to case IV), such

simplification no longer holds, presenting a challenge in computing pi. For case I to case

IV, proof of posterior existence is given in section 2.2.1.

2.2.4. Posterior Existence

Having specified the sampling distribution and priors, the priors are not all proper prior.

The joint prior, π(σ2, τ2) = (σ2 + τ2)−2, is improper. Therefore, posterior begin proper

is important to consider.

Lemma 2.2.5. The posterior distribution in (5) is proper (i.e., C is finite)

Proof of Lemma 2.2.5:

Case I: Normal sampling model and Normal prior (NN)

This proof has given in Scott and Berger [31].

Case II: t sampling model (true model) and Normal prior (TN)

Case III: Normal sampling model and t prior (NT)

Proofs of cases II and III are similar to case IV.

Case IV: t sampling model and t prior (TT)

We below provide the proof of the posterior existence of the TT model for a

particular case of m = 2 to keep the proof simple and easy to follow. Nevertheless,

this proof can be more general and extended to any number of tests, m > 2. Also,

this proof can easily be modified and used to show the posterior existence of the

other two models TN and NT.
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Consider we observe two data values, xi ∼ tυ(µi, σ
2) for i = 1, 2 independently with

means µ1 = 0 and µ2 6= 0, respectively. For each i, we are going to set two hypotheses,

H0i : µi = 0 versus H1i : µi 6= 0 . Now we assume that µ2 ∼ tν(0, τ2) and π(σ2, τ2) =

(σ2 + τ2)−2.

By introducing three new latent variables wi (for i = 1, 2 ) and w, we can rewrite

the above t variables, xi and µ2, in terms of Normal variables as, xi|wi ∼ N(µi, σ
2wi)

and µ2|w ∼ N(0, τ2w) where; wi ∼ IG(υ/2, υ/2), and w ∼ IG(ν/2, ν/2). Then, the

posterior distribution has the form

π(µ, σ2, τ2,w, w|X) ∝ 1√
2πσ2w1

e
−

x21
2σ2w1

1√
2πσ2w2

e
−

(x2 − µ2)2

2σ2w2

· 1√
2πτ2w

e
−

µ22
2τ2w

1

(σ2 + τ2)2
π(w)π(w)

(2.2.3)

where, µ = (µ1, µ2), w = (w1, w2), X = (x1, x2), π(w) = IG(υ/2, υ/2), and π(w) =

IG(ν/2, ν/2).

Now, let π(w)π(w) = f(w1, w2, w), A1 =
1√

2πσ2w2

1√
2πτ2w

, A2 =
1√

2πσ2w1

e
−

x21
2σ2w1 ,

andA3 =
1

(σ2 + τ2)2
f(w1, w2, w) and find the marginal posterior of Θ1 ≡ (σ2, τ2, w1, w2, w)

by integrating above formula 2.2.3 over µ2.

π(Θ1|X) ∝
∫ ∞
−∞

1√
2πσ2w2

e
−

(x2 − µ2)2

2σ2w2 · 1√
2πτ2w

e
−

µ22
2τ2wdµ2

· 1√
2πσ2w1

e
−

x21
2σ2w1

1

(σ2 + τ2)2
f(w1, w2, w)

∝
∫ ∞
−∞

A · exp
{
− x22τ

2w − 2x2µ2τ
2w + µ22τ

2w + µ22σ
2w2

2σ2τ2w2w

}
dµ2 ·A2 ·A3
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∝
∫ ∞
−∞

exp

{
− (σ2w2 + τ2w)

2σ2w2τ2w

[(
µ2 −

x2τ
2w

(σ2w2 + τ2w)

)2

+
τ2wx22

(σ2w2 + τ2w)

−
(

x22τ
2w

(σ2w2 + τ2w)

)2]}
dµ2 ·A1 ·A2 ·A3

∝
∫ ∞
−∞

1√
2π

σ2w2τ
2w

(σ2w2 + τ2w)

exp

{
−

(
µ2 −

x2τ
2w

(σ2w2 + τ2w)

)2

2πσ2w2τ2w/(σ2w2 + τ2w)

}
dµ2

·

√
2π

σ2w2τ
2w

(σ2w2 + τ2w)
exp

{
− τ2wx22

2σ2w2τ2w
+

x22τ
4w2

2(σ2w2 + τ2w)σ2w2τ2w

}

·A1 ·A2 ·A3

∝ 1√
2π(σ2w2 + τ2w)

exp

{
−τ2wx22(σ2w2 + τ2w) + x22τ

4w2

2σ2w2τ2w(σ2w2 + τ2w)

}
·A2 ·A3

∝ 1√
2πσ2w1

1√
2π(σ2w2 + τ2w)

e
−

x21
2σ2w1 e

−x22
2(σ2w2 + τ2w)

· 1

(σ2 + τ2)2
f(w1, w2, w)

Therefore the marginal posterior of Θ1 has the form,

π(Θ1|X) ∝ 1√
σ2w1(σ2w2 + τ2w)

e
−

x21
2σ2w1 e

−x22
2(σ2w2 + τ2w) 1

(σ2 + τ2)2
f(w1, w2, w)

(2.2.4)

Then, by proving the marginal posterior, π(Θ1|X) is finite, we can show that the poste-

rior, π(µ, σ2, τ2,w, w|X), does exist. In the expression, 2.2.4 for the marginal posterior

of Θ1 ≡ (σ2, τ2, w1, w2, w), since two exponential components are always finite and

bounded by (0, 1], in order to show 2.2.3 is finite, we only need to consider the integra-

tion of the rest of expression 2.2.4 over Θ1 and show it is finite.
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Let Θ1 ∈ [(0, δ), · · · , (0, δ)]C and first we want to show that

∫
([0,δ]5)C

π(Θ1) <∞. Since

e−x ∈ (0, 1)for all x > 0 consider,

∫
([0,δ]5)C

1√
σ2w1(σ2w2 + τ2w)

1

(σ2 + τ2)2
f(w1, w2, w) dσ2 dτ2 dw dw1 dw2

<

∫
([0,δ]5)C

1√
σ2δ(δ2 + δ2)

1

(σ2 + τ2)2
f(w1, w2, w) dσ2 dτ2 dw dw1 dw2

=

∫
([0,δ]5)C

1

(σ2)1/2
1

(2δ3)1/2
1

(σ2 + τ2)2
f(w1, w2, w) dσ2 dτ2 dw dw1 dw2

<

∫
w

∫
w1

∫
w2

{∫ ∞
δ

∫ ∞
0

1

(σ2)1/2
1

(2δ3)1/2
1

(σ2 + τ2)2
dτ2 dσ2

}
f(w1, w2, w) dw dw1 dw2

=

∫
w

∫
w1

∫
w2

{∫ ∞
δ

1

(σ2)1/2
1

(2δ3)1/2
1

(σ2)
dσ2

}
f(w1, w2, w) dw dw1 dw2

=

∫
w

∫
w1

∫
w2

1

(2δ3)1/2

{∫ ∞
δ

1

(σ2)3/2
dσ2

}
f(w1, w2, w) dw dw1 dw2

=

∫
w

∫
w1

∫
w2

1

(2δ3)1/2
2

(δ)1/2
f(w1, w2, w) dw dw1 dw2

=

√
2

δ2

∫
π(w)dw

∫
π(w1)dw1

∫
π(w2)dw2

=

√
2

δ2
<∞

Now we need to show that the integrand I is bounded in Θ1 ∈ (0, δ)5, i.e., given ξ > 0,

there is a finite value δ s.t. I =
e−x

2
1/2σ

2w1

√
σ2w1

e−x
2
2/2(σ

2w2+τ2w)

√
σ2w2 + τ2w

1
(σ2+τ2)2

< ξ for |Θ1| < δ.

Consider,

I <
e−x

2
1/2σ

2w1

(σ2)2.5
√
w1

e−x
2
2/2(σ

2w2+τ2w)

√
σ2w2 + τ2w

=
e−x

2
1/2σ

2w1

(σ2w1)2.5
· (w1)

2 · e
−x2

2/2(σ
2w2+τ2w)

√
σ2w2 + τ2w
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We know that for some k > 0,

e−c/y

yk
→ 0 as y → 0 and |e

−c/y

yk
| < ξ when |y| < δ.

Therefore,
e−x

2
1/2σ

2w1

(σ2w1)2.5
< ξ1/3 where |σ2w1| < δ′,

(w1)
2 < ξ1/3 where |w1| < δ′, and

e−x
2
2/2(σ

2w2+τ2w)

√
σ2w2 + τ2w

< ξ1/3 where |σ2w2 + τ2w| < δ′; here δ′ < 2δ2.

Then given ξ > 0, I < ξ when |Θ1| < δ. So that,

∫
· · ·
∫

[0,δ]5

1√
σ2w1(σ2w2 + τ2w)

e
−

x21
2σ2w1 e

−x22
2(σ2w2 + τ2w) 1

(σ2 + τ2)2
f(w1, w2, w) dΘ1 < ξ

i.e., the posterior distribution is bounded.

2.3. Computations

In Bayesian inference, we are interested in computing the full posterior joint distribu-

tion of data over a set of random variables to find various summaries. Often posterior

distribution of parameters of interest is not available in closed-form, and even if it is,

it is not possible to do closed-form evaluation of required integrals. In such cases, we

may proceed with sampling algorithms based on Monte Carlo Markov Chain (MCMC)

techniques.

As the magnitude of m gets large, the posterior computation’s complexity becomes

more challenging due to the increase in the number of integrals. In this kind of large m

situation, importance sampling is an efficient tool for computing posterior and its func-

tions. Scott and Berger [31] have shown that the posterior computations are straightfor-
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ward using an importance sampling scheme for NN model. Table 2.1 reports posterior

probabilities of alternative hypotheses for ten signals using importance sampling and

MCMC approaches under the NN model with forty tests.

x̄i -3.11 -1.7 -1.23 -0.61 0.44 0.89 1.03 1.41 2.54 3.06

P (H1i|X)
Imp 1 0.99 0.78 0.24 0.18 0.44 0.59 0.91 1 1

mcmc 1 0.99 0.75 0.21 0.16 0.40 0.54 0.90 1 1

Table 2.1.: Comparison of the posterior probabilities of H1i for 10 signals using im-
portance sampling (Imp) and mcmc approaches. Here each of 10 signals:
xik ∼ N(µi, 1), 30 noises: xik ∼ N(0, 1), and µi ∼ N(0, τ2). Importance
functions: p ∼ beta(9.80, 2.84) and ln(τ2) = ζ, ζ ∼ t3(1.03, 0.312)

Although importance sampling and MCMC approaches give very close results, the

importance sampling approach is more time-consuming, even on this small-scale data

set. However, it does not seem easy to implement an importance sampling approach

to get a good accuracy for models which involve t-distribution. For instance, in TN

model, when calculating pi using the equation 2.3.1, there is a triple integral outside,

and there is a marginal distribution with multiple integrals inside. So that makes it

difficult, and we found that the importance sampling approach is inefficient. Since the

MCMC approach seems to be working all right in the scope of the problem we try here,

we consider the MCMC approach as a better alternative and implement for all four

models in our simulations.

Importance Sampling Approach

Before implementing importance sampling approach, we use the transformations η =

ln(σ2) and ζ = ln(τ2) to make the things more convenient. Then, as importance func-

tions we use, tυ(µj : x̄i, si), tυ(ηj : lns2i , si), and tυ(ζj : 0, ś) where, x̄i =
∑n

k=1 xik,

s2i =
∑n

k=1(xik − x̄i)2/(n− 1), and ś is known.
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MCMC techniques are used to obtain samples from the desired posterior distribution

of the parameters. Specifically, we use Gibbs sampling (GS) and Metropolis-Hashing

(MH), well-known MCMC sampling methods for attaining such samples. To apply GS

and MH requires deriving full-conditional distributions for each parameter involved in

the posterior distribution. Then, to apply MH for specific parameters, we have to select

appropriate proposal distributions for those parameters. The proposal distributions are,

µj+1|µj ∼ cauchy
(
xmedian,max

(xrange
2

, τ
))

σ2j+1|σ2j ∼ tυ
(
σ2j ,
(xrange

2

)2)
τj+1|τj ∼ lognormal

(
µ́, σ́2

)
where xmedian and xrange are the median and range of observed data and µ́ and σ́2 are

assumed to be know.

Result 2.3.1. P (H0i|X) from importance sampling approach for TN model (proof in

Appendix A.2)

pi =

∫ ∫ ∫
p
∏
k

tυ(xi|µi = 0, σ2)
∏
j 6=i

{
p
∏
k

tυ(xj |µj , σ2) + (1− p)m(xj |σ2, τ2)

}

π(p)π(σ2, τ2)dpdσ2dτ2∫ ∫ ∫ ∏
j

{
p
∏
k

tυ(xj |µj , σ2) + (1− p)m(xj |σ2, τ2)

}
π(p)π(σ2, τ2) dp dσ2dτ2

(2.3.1)

MCMC Approach

In order to perform the MCMC approach, we start by assigning initial values for unknown

parameters µi, σ
2, τ2, and p. We need to calculate the fully conditional posterior of null

being true given by equation 2.3.2 for each test i. Now for each i, generate γi from
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Bernoulli distribution with success probability, P (γi = 0|X,µ, σ2, p), and update the

parameter value of µi. Then update the rest of the unknown parameter values σ2, τ2,

p and repeat the process. Here, to address the issue of varying dimensions in MCMC

when H0i is true, we used latent µ′is drawn from their prior distribution, π(µi : 0, τ2),

with an updated variance parameter.

P (γi = 0|X,µ, σ2, p) =

∏n
k=1 f(xik|µi = 0, σ2) · p∏n

k=1 f(xik|µi = 0, σ2) · p+
∏n
k=1 f(xik|µi, σ2) · (1− p)

(2.3.2)

2.4. Simulations and Results

The above ideas are illustrated on simulated samples using R and WINBUGS software.

The idea is to see if the data is from t distribution and we use a Normal distribution, how

that affects the posterior probability of each hypothesis. As mentioned in section 1.2,

nonzero µis are modeled with two prior distributions under each sampling distribution

assumption, N(µi|0, τ) and tν(µi|0, τ).

Data is generated from tυ(µi, 1) under two different degrees of freedom, υ = 3 or 7.

Each test either has a single observation (n = 1) or multiple observations (n = 5). The

number of tests (m) is either 40 or 110. Here the number of the test consists of 10

signals, and the rest are noises. For noise, set mean, µi equals zero. For signal, generate

mean µi from t3(0, 2). Then fit NN and TN models for these data.

2.4.1. Sensitivity When Using Normal Prior

We separate the sensitivity analysis into two parts assuming:

Part 1- data is coming from a t distribution with unknown degrees of freedom

Part 2- data is coming from a t distribution with known degrees of freedom
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Part I - Data come from a t-dist with unknown df

When the df is unknown, we must assign a suitable prior for df parameter υ and use the

uniform prior, Uni(3, · · · , 15, 50). Using this specific range is that we wanted to allow

lower df and larger df to account for Normality. We tried some other range of values

close to this range, but all those priors give similar posterior probabilities for µi 6= 0.

Table 2.2 shows how well the df has been estimated.

sample size

df 3 df 7

30 noise 100 noise 30 noise 100 noise

Est/Std Est/Std Est/Std Est/Std

1 10/10.0 8/4.1 12/11.4 10/3.2

5 3/0.5 3/0.5 10/3.1 10/2.8

Table 2.2.: Estimates and std of the estimates of υ for different data sets. Number of
signals 10 and number of noises 30 and 100. Data generated from two df: 3
and 7, and sample size 1 and 5.

When the sample size is one, df is not estimated well; when the sample size is five,

df is estimated quite well. However, estimating df is not very easy, and also, it is not

our goal here. Our goal is to see how well the posterior probability is estimated and

how sensitive it is to the choice of Normal versus t sampling distributions. Even if df is

not estimated well precisely here, the sensitivity of the posterior probability of µi equals

zero to Normal, or t sampling distributions is may or may not be affected by how well

the df is estimated, we are not going to address this issue in the scope of our work.
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Figure 2.1.: The posterior probability of H1i of some selected observations (max 5, mid-
dle 10, and min 5). Number of signals 10 and number of noises 30 and 100.
Sample size is 1 and υ is unknown.
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Figure 2.2.: The posterior probability of H1i of some selected observations (max 5, mid-
dle 10, and min 5). Number of signals 10 and number of noises 30 and 100.
Sample size is 5 and υ is unknown.
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Part II - Data come from a t-dist with known df

Now we assume df is known. Because according to the Table 2.2 results, depending on

sample size, df is estimated sometimes well and sometimes not. Therefore we want to

see whether the sensitivity to the sampling model showed by TN and NN models may

be due to unknown df; if df is known, does the sensitivity remains the same as before.

Figures 2.3 and 2.4 show posterior probabilities of alternative hypotheses of some se-

lected observations (minimum five maximum five and middle ten observations) under

TN and NN models at different simulation settings. Results from the known df assump-

tion are the same as unknown df assumptions results. With sample size one, there is

sensitivity to the sampling model, and posterior probabilities tend to be tight under the

t distribution assumption than the Normal distribution assumption. With sample size

five, sensitivity to the sampling model is disappearing.

Figures 2.5 and 2.6 represent another way to look at sensitivity to the sampling dis-

tribution. Figure 2.5 with sample size one and figure 2.6 with sample size five. We

get these two figures by increasing the value of one particular test sample and keeping

other samples fixed. The purpose of these two figures is also to compare Normal and t

sampling models by checking how the posterior probability of one selected observation

changes as its value(s) increase(s) in each model TN and NN. These two figures give

somewhat similar results to figures 2.3 and 2.4. If we are trying to study the sensitivity

figures 2.3 and 2.4 are more useful than figures 2.5 and 2.6. However, in figures 2.5 and

2.6, there is a difference between TN and NN models when the sample size is one, and

if we increase it to five, that difference tends to disappear somewhat.
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Figure 2.3.: The posterior probability of H1i of some selected observations (max 5, mid-
dle 10, and min 5). Number of signals 10 and number of noises 30 and 100.
Sample size is 1 and υ is known.

0.0

0.2

0.4

0.6

0.8

1.0
df  3 noise  30 df  7 noise  30 

TN NN0.0

0.2

0.4

0.6

0.8

1.0
df  3 noise  100 

TN NN

df  7 noise  100 

P
(H

1i
|X

)

Figure 2.4.: The posterior probability of H1i of some selected observations (max 5, mid-
dle 10, and min 5). Number of signals 10 and number of noises 30 and 100.
Sample size is 5 and υ is known.
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Figure 2.5.: The posterior probability of H1i of one selected signal as it’s value xi in-
creases. Number of signals 10 and number of noises 30 and 100. Sample size
is 1 and υ is known (equate to original value).
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Figure 2.6.: The posterior probability of H1i of one selected signal as it’s sample mean x̄i
increases. Number of signals 10 and number of noises 30 and 100. Sample
size is 5 υ is known (equate to original value).
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2.4.2. Sensitivity When Using t Prior

So far, we discussed sensitivity to the choice of sampling distribution with a typical

Normal prior. In the literature, t prior has been used to model location parameters of

both Normal [19] and t [3] sampling distribution for robustness purposes. Therefore it

is also of interest to see the sensitivity of sampling distribution when using a t prior.

Degrees of freedom of t prior, ν is always assumed to be known and set to be equal to

its original value ν = 3.

As in figures 2.1-2.4 , we also compare posterior probabilities of µi 6= 0 of some selected

observations (minimum 5, maximum 5, and middle 10). While figure 2.7 represents

results with sampling size one, figure 2.8 represents results with sampling size five. t

prior results are similar to Normal prior results, with sample size one, there is a sensitivity

to the sampling model, and this sensitivity is disappearing as the sample size increases

to five.
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Figure 2.7.: The posterior probability of H1i of some selected observations (max 5, mid-
dle 10, and min 5). Number of signals 10 and number of noises 30 and 100.
Sample size is 1 υ is unknown.
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Figure 2.8.: The posterior probability of H1i of some selected observations (max 5, mid-
dle 10, and min 5). Number of signals 10 and number of noises 30 and 100.
Sample size is 5 and υ is unknown.

2.4.3. Compare Normal and t Priors With Normal Sampling Distribution

Topically, Normal prior is used with Normal sampling distribution in multiple testing.

Some researchers are saying Normal sampling distribution with t prior is more robust

[3, 19]. We want to do one more sensitivity study to the choice of prior Normal vs. t

with Normal sampling distribution, i.e., we compare NN and NT models.

Figures 2.9 and 2.10 show posterior probabilities of H1i being true of some selected

observations (minimum 5, maximum 5, and middle 10) when the sample size is one (fig.

2.9) and five (fig. 2.10). There is a sensitivity to the choice of prior when the sample

size is one: posterior probabilities under t and Normal priors are different, posterior

probabilities tend to be tight under t prior than Normal prior, and t prior based posterior

probabilities ofH1i tend to be higher than the corresponding Normal based values. When

the sample size is increased to five, there is a slight sensitivity to the choice of prior and
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t prior based posterior probabilities tend to be a little higher than the corresponding

Normal based values.
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Figure 2.9.: The posterior probability of H1i of some selected observations (max 5, mid-
dle 10, and min 5). Number of signals 10 and number of noises 30 and 100.
Sample size is 1 and υ is unknown.
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Figure 2.10.: The posterior probability of H1i of some selected observations (max 5,
middle 10, and min 5). Number of signals 10 and number of noises 30 and
100. Sample size is 5 and υ is unknown.
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2.5. Conclusion

Literature on multiple testing and multiplicity adjustment with continuous response

variables mostly focus on normally distributed responses. The normality assumption

may be too restrictive in some cases, e.g. it has been shown that 5 to 15 % of the

DNA samples deviate from normality and very close to t-distribution [21]. It would be

of interest to study the sensitivity of normality assumption when the response variables

instead follow a t-distribution. We focus on Bayesian multiple testing of means, or

location parameters, when the response variable follows a t-distributions, determine

suitable priors for the parameters, develop a computational strategy for computing the

posterior probabilities of the hypotheses, and use it study the sensitivity of the results

under normality assumption using simulation study.

In conclusion, we observe that with sample size one, the posterior probabilities are

sensitive to the sampling model under both Normal and t priors for nonzero µis , and as

the sample size increase to five, sensitivity to the sampling model is disappearing under

both Normal and t priors for nonzero µis . So, in general, there is a sensitivity to the

sampling distribution when the sample size is small, and this sensitivity is gradually

decreased as the sample size increases.

When comparing for t and Normal priors for nonzero µis with the Normal sampling

model, there is a sensitivity to the prior distribution with both sample sizes; one and

five, but the sensitivity is getting smaller as the degrees of freedom and the number of

noises increases.We discover that t-prior based posterior probabilities of H1 tend to be

higher than the corresponding Normal based values. This discrepancy in the posterior

probabilities appears to be due to smaller degree of shrinkage when t-prior is used.
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Chapter 3
Multiple testing of equality of two

binomial proportions

3.1. Introduction

Even though there are many multiple testing (MT) scenarios where the data are discrete,

for example, clinical studies, genetics, next-generation sequencing technology, psycho-

logical applications, etc., most of the research in multiple testing has developed for

continuous data, the literature on multiple testing methods for discrete data is relatively

scarce.

Over the past few decades, a significant amount of MT methods have been proposed on

discrete data (based on false discovery rate (FDR) control) in the frequentist approach.

However, most of these procedures were initially developed for continuous data, such as

Benjamini-Hochberg (BH) procedure [5], and Storey’s procedure [32].

As in the frequentist MT approach, the literature on the Bayesian MT approach has

also focused chiefly on continuous data; not many formal Objective Bayesian approaches

are yet available for comparing two binomial proportions. There is one in the literature

which is done by Gecili [20]. However, this approach has a bit of asymmetry since one
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of the two proportions is considered control and the other as treatment. The proposed

method in this chapter considers the two proportions symmetrically, and two proportions

are not necessarily coming from control and treatment groups. We use some hierarchical

exchangeable prior to model two proportions and develop a formal objective Bayesian

method for comparing two proportions when the two proportions are exchangeable.

In Bayesian hypothesis testing, uncertainty about the unknown parameters are mod-

eled with prior distributions under each hypothesis. Local priors and Non-local priors

are two types of priors that can be used to model the unknown parameters under the

alternative hypothesis.

Assume we observe a random sample of size n, X = (x1, · · · , xn)
iid∼ N(µ, σ2) and

test a point null, H0 : µ = 0 against H1 : µ 6= 0. Let π1(µ) be the prior density for

µ under H1, classified as either Local or Non-local. A Local prior is prior in which its

density under H1 peaks at the null value of the parameter, i.e., in our example, π1(µ)

has its maximum at µ = 0. A prior is Non-local if its density under H1 goes to zero

near the null value of the parameter, π1(µ)→ 0 as µ→ 0.
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Figure 3.1.: (a) Local and (b) Non-local priors for µ|µ 6= 0.

A widely accepted condition that should be required of a prior for testing a hypothe-

ses is that the prior distribution under the alternative hypothesis should be centered
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and maximized at the null value of the parameter [7, 9, 13, 14], i.e., Local alternative

prior. Hence, under a Local prior, if the summary statistic is very close to the null value

of the parameter, then data not only strongly support H0 but also strongly support H1.

Accordingly, under certain regularity conditions, for a true alternative hypothesis, the

Bayes factor in favor of the null hypothesis decreases exponentially fast. In contrast,

for a true null hypothesis, the Bayes factor favoring the alternative hypothesis decreases

only at rate O(n−1/2). These contrasting rates of convergence of Local priors imply that

data is more likely to provide evidence in favor of a true alternative hypothesis than for

a true null hypothesis [24].

However, a faster convergence rate of the Bayes factor favoring the true null hypoth-

esis is desirable, especially when sparsity is desired, e.g., in MT with few signals. In

the literature, it has been shown that Non-local prior has faster convergence towards

the true null hypothesis compared to Local priors for continuous data. Using specific

Non-local priors, Johnson and Rossell [24] have shown that a summary statistic near

the null value of the parameter only strongly supports the null hypothesis, not both

hypotheses; improved the discrepancy of convergence rates of the Bayes factors. There-

fore, we consider Non-local priors as a good alternative to Local prior, especially when

the data is sparse, and extend the use of Non-local prior for comparing two binomial

proportions. The Threshold prior described in this chapter is a Non-local prior that

improves on the discrepancy of convergence rates of Bayes factors between in favor of

true null and true alternate hypotheses.

We adopt the formal objective Bayesian approach for testing equality of two bino-

mial proportions under Local and Threshold priors. First, we consider testing a single

hypothesis of a single proportion to select a suitable form for Threshold prior and inves-

tigate the convergence properties of the posterior disribution under each selected prior.

Then, we extend to single testing of the equality of two binomial proportions and later
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to MT of the equality of two binomial proportions with the appropriate prior choices

selected from sections 3.2 and 3.3.

3.2. Single Testing of a Binomial Proportion

Although testing a single proportion is an old problem, there are still recent developments

like using Threshold and other priors about testing proportions [24]. Also, testing a

binomial proportion is an illustration of two sample proportions. Therefore, we first

consider a single test of a binomial proportion. We assume that the data comes from a

binomial distribution with an unknown proportion, p1; x ∼ Bin(n, p1). Given that p0 is

a known constant, we are interested in testing the hypotheses,

H0 : p1 = p0 vs H1 : p1 6= p0. (3.2.1)

In the Bayesian approach, the uncertainty about the unknown parameters is expressed

by assigning suitable prior distributions. We consider adopting Local and Non-local

priors to model the unknown proportion p1 under the alternative hypothesis. Let π1(p1)

is the prior for p1 under H1.

First, we adopt a Local prior for π1(p1), which concentrates around p0 and can move

away from p0 sufficiently. A mode-base Beta prior is one such candidate prior that can

model the uncertainty of p1 under the alternative hypothesis. We use the mode-base

Beta prior, π(p1|r) ∼ Beta(rp0 + 1, r(1 − p0) + 1), where r = 1/w and w ∼ exp(1),

used in Gecili 2018 [20]. Under this setting, p1 has a mode value of p0, and variance

V ar(p1) = (rp0+1)(r(1−p0)+1)
(r+2)2(r+3)

. Here, r plays a vital role as it controls the variance of p1.

As r increases, V ar(p1) decreases so that p1 is increasingly centered at its mode, p0.

Hence, as illustrate in figure 3.2, the prior distribution for p1 would concentrate around

the null hypothesis.
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Later on, we propose two Non-local priors for π1(p1) whose densities go to zero as p1

goes to p0. Local priors and can be turned into Non-local priors using a threshold. The

term “Threshold prior” is used to refer to “Non-local prior” from now on.
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Figure 3.2.: Distribution of p1 at two different choices of r, (r = 5 and r = 10) when
p0 = 0.5 and P (H0) = 0.5.

3.2.1. Prior Distributions for p1

Local Prior

Here, we specify the prior distributions in two parts.

Under H0 : p1 = p0 (3.2.2)

Under H1 : p1|r ∼ Beta(rp0 + 1, r(1− p0) + 1), w ∼ exp(1), and w = 1/r

In order to give equal priorities to both hypotheses before the data is collected, we set

the prior probability of the null hypothesis, P (H0) = p, equals to 0.5. Note that under

H1, the prior for p1 is centered and has the maximum density at p1 = p0.
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Then the density of p1 under H1 is,

π1(p1) =

∫ ∞
0

π(p1|w) · π(w)dw (3.2.3)

Threshold Prior

Definition 3.2.1. (Threshold prior)

Here, we first consider a parameter p∗1, a continuous version of p1, with prior density

given by π(p∗1|r) ≡ Beta(rp0 + 1, r(1− p0) + 1) as before. Then, we define p1 as follows

p1 =


p0 if |LOR| < ε

p∗1 otherwise

where LOR = log

[
p∗1/(1− p∗1)
p0/(1− p0)

]
and ε is the threshold.

To complete the model specification under the Threshold prior method, we investigate

two Uniform priors for threshold parameter ε, U(0,Kw) and U(0,K).

Threshold prior-1

Unless a context involves substantive information to suggest the degrees of expected

sparsity, a uniform prior is the natural default [27]. Hence we assume that threshold

parameter ε has the Threshold prior-1, U(0,Kw), adopted from Nakajima and West

[27]. Here, w ∼ exp(1), w = 1/r, and K is a known constant.

Define p to be the prior probability that H0 is true or, in this case, the probability that
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|LOR| < ε. Given w, p has the form 3.2.4.

P (H0|w) = P (p1 = p0|w)

=

∫ 1

0

∫ Kw

0
I
(
ε > |LOR|

)
π(p1|w)π(ε)dεdp1

=

∫ 1

0

{∫ Kw

0
I
(
ε > |LOR|

)
dε

}[
1

Kw

]
π(p1|w) dp1

=

∫ 1

0

[
1− |LOR|

Kw

]
π(p1|w) dp1 (3.2.4)

By integrating 3.2.4 over w, p is a deterministic function of K, g(K).

g(K) =

∫ 1

0

∫ ∞
0

[
1− |LOR|

Kw

]
π(p1|w)π(w)I(|LOR| < Kw) dw dp1

=

∫ 1

0

∫ ∞
|LOR|/K

[
1− |LOR|

Kw

]
π(p1|w)π(w) dw dp1 (3.2.5)

Since g(K) is monontinically incresing in K when p0 is fixed, we can assign whatever

the value we want for p by choosing an appropriate value of K. As assumed under

the Local prior, here too we assume the prior probability of the null hypothesis, p, is

equal to 0.5. Now for a given p0, we want to find the value for K which satisfies the

condition, p = 0.5. Figure 3.3 below represents the value of p at different values of K

when p0 = 0.5. At the value p0 = 0.5, p is 0.5 when K equals to 2.607727.

Next, we need to find the prior distribution for p1 under the alternative hypothesis,

π1(p1). Induced by the prior specification in 3.2.1, we have to consider two situations,

|LOR| < Kw and |LOR| > Kw, separately.

π1(p1|w) =


∫
π(p1|w) I

(
ε < |LOR| < Kw

)
π(ε) dε if |LOR| < Kw

π(p1|w) if |LOR| > Kw
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Figure 3.3.: p as a function of K when p0 = 0.5.

This can be simplified as

π1(p1|w) = π(p1|w)

[
I
(
|LOR| > Kw

)
+

∫ Kw

0
I
(
ε < |LOR| < Kw

)
π(ε) dε

]

= π(p1|w)

[
B1 +B2

∫ |LOR|
0

π(ε) dε

]

= π(p1|w)

[
B1 +B2

(
|LOR|
Kw

)]
(3.2.6)

where B1 = I
(
|LOR| > Kw

)
and B2 = I

(
|LOR| < Kw

)
. Therefore the pdf of prior for

p1|p1 6= p0 can be defined as

π1(p1) =
1

(1− p)

∫ ∞
0

π1(p1|w) π(w) dw

=
1

(1− p)

[∫ |LOR|/K
0

π(p1|w) π(w) dw

+

∫ ∞
|LOR|/K

π(p1|w)

(
|LOR|
Kw

)
π(w) dw

] (3.2.7)

In order for π1(p1) to be a Non-local prior, π1(p1) must go to zero as p1 → p0. The first

term of π1(p1) will be zero due to the upper limit of the integral |LOR|/K being zero.
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In the second term of π1(p1),

(
|LOR|
Kw

)
goes to zero as p1 → p0. In both terms, the

remaining factors are bounded or constants. So,

lim
p1→p0

π1(p1) = 0 ∀ K and p0.

Hence, π1(p1) is, in fact, a Non-local alternative prior and thus may have some of the

desirable properties of a Non-local prior defined by Johnson and Rossell [24]. Figure 3.4

below displays the prior distribution of p1 under H1 for specific values of K and p0 when

densities are calculated from equation 3.2.7.
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Figure 3.4.: Prior distribution of p1|p1 6= p0 under Threshold prior-1 when K = 2.607727
corresponding to p0 = 0.5.

Threshold prior-2

Threshold prior-1 is influenced by the parameter w, which controls the variance of p1.

Now we want to try a prior, independent of the hyperparameters, to decide the values

thresholded to zero. So, we propose a slightly modified version of Threshold prior-1 for

ε, which is ε ∼ U(0,K).
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Under this specification, the prior probability of H0 is true can be written as

P (H0|w) =

∫ 1

0

∫ K

0
I
(
ε > |LOR|

)
π(p1|w)π(ε) dε dp1

=

∫ 1

0

[ ∫ K

0
I
(
ε > |LOR|

)
dε

] [
1

K

]
π(p1|w) dp1

and further simplified into

P (H0|w) =

∫ 1

0

[
1− |LOR|

K

]
π(p1|w) dp1.

Therefore p can be written as a function of K

g(K) =

∫ 1

0

∫ ∞
0

[
1− |LOR|

K

]
I
(
|LOR| < K

)
π(p1|w)π(w) dw dp1 (3.2.8)

We can modify equation 3.2.6 and get the formula of the prior density for

π1(p1|w) according to the Threshold prior-2.

π1(p1|w) = π(p1|w)

[
I
(
|LOR| > K

)
+ I
(
|LOR| < K

) |LOR|
K

]

Then the pdf of prior π1(p1) has the form

π1(p1) =
1

(1− p)

∫ ∞
0

π1(p1|w)π(w) dw

=
1

(1− p)

∫ ∞
0

π(p1|w)

[
I
(
|LOR| > K

)
+ I
(
|LOR| < K

) |LOR|
K

]
π(w)dw

(3.2.9)
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3.2.2. Posterior Probability of H0

Let P (H0|X) be the posterior probability of H0 or the probability of p1 = p0.

P (H0|X) =
f(x|p0) · p

f(x|p0) · p+

∫ 1

0
f(x|p1)π1(p1) dp1 · (1− p)

=
Bin(x|n, p0) · p

Bin(x|n, p0) · p+

∫ 1

0
Bin(x|n, p1)π1(p1) dp1 · (1− p)

(3.2.10)

In the expression 3.2.10, under each of the prior distribution assumption: Local,

Threshold prior-1, and Threshold prior-2, π1(p1) has the forms defined in 3.2.3, 3.2.7,

and 3.2.9, respectively.

3.2.3. Bayes Factor

According to Johnson and Rossell [24], a point null hypothesis test H0 : θ = θ0 with a

Local alternative prior density has convergence limitations of the Bayes Factor in favour

of the true null hypothesis. Further, they discover that Non-local priors overcome this

limitation and improve the convergence rate of the Bayes factor in favor of the true null

hypothesis. So, other than comparing the posterior probability of H0, we pay attention

to use the Bayes factor as an alternative way of comparing convergence rates of true

hypotheses under two prior choices, Local and Threshold priors.

The Bayes factor in favour of H1 is defined as

BF (1|0) =
m1(X)

m0(X)

where mi(X) is the marginal likelihood of data under the hypothesis Hi for i = 0, 1.

So, m0(X) = f(x|p0) and m1(X) =

∫
f(x|p1)π1(p1) dp1. Under Local prior, Threshold

prior-1 and Threshold prior-2, π1(p1) has the forms given by equations 3.2.3, 3.2.7, and

3.2.9, respectively.
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3.2.4. Computations

Since we are working on single testing here, posterior computations can be achieved

efficiently using R integration. We apply this single testing procedure to a couple of

simulated datasets to compare and evaluate the performances of proposed Threshold

priors with the Local prior method. Under each prior distribution, Threshold prior-1,

Threshold prior-2, and Local prior, we consider two sample sizes (n = 10 and 20) and

two p0 values (0.3 and 0.5).

We first compute K values for Threshold priors 1 and 2 so that p would be equal to

0.5 using equations 3.2.5 and 3.2.8, respectively. Then, we defined separate functions

for π1(p1) corresponding to equations 3.2.3, 3.2.7, and 3.2.9 relating to Local and two

Threshold priors: Threshold prior-1, and Threshold prior-2. Next, compute the posterior

probability of the null hypothesis for each case according to the equations 3.2.10.

Later we compute the average posterior probability of H0 and average log Bayes factor

in favour of H1 over the data as follow.

• Average posterior probability of H0 over x under hypothesis Hi

Avgx P (H0|X) = Σx P (H0|X) · P (X = x|Hi)

• Average log Bayes factor in favour of H1

Avgx log10[BF (1|0)] = Σx log10[BF (1|0)] · P (X = x|Hi)

where P (X = x|Hi) = Bin(x|n, pi) and i = 0, 1.

3.2.5. Simulations and Results

In this part, we present single testing simulation results for different settings. First,

we consider that the case p0 is fixed at 0.5, and the sample size n is 10. We obtain

the posterior probability of null, P (H0|X), at every value of x for x = 1, 2, · · · , 10

under each prior distribution: Local prior, Threshold prior-1, and Threshold prior-2.

42



We repeat simulations for few other settings with p0 = 0.5, n = 20; p0 = 0.3, n = 10;

and p0 = 0.3, n = 20 and below provide some of those results.

When comparing the results from Local prior with two Threshold priors (see Table

3.1), both Non-local priors provide more substantial evidence in favor of true null hy-

pothesis than Local prior. When comparing two Threshold priors, Threshold prior-2

provides relatively strong evidence than Threshold prior-1. Taking these results into

account, we select Threshold prior-2 for further comparisons.

x
p0 = 0.5 p0 = 0.3

P (H0|X)L P (H0|X)T1 P (H0|X)T2 P (H0|X)L P (H0|X)T1 P (H0|X)T2

0 0.0218 0.0157 0.01183 0.2621 0.2256 0.1998

1 0.1257 0.1046 0.0836 0.5170 0.5201 0.5408

2 0.3284 0.3117 0.2896 0.6378 0.6761 0.7456

3 0.5168 0.5324 0.5572 0.6608 0.7083 0.7896

4 0.6231 0.6643 0.7293 0.6094 0.6478 0.7150

5 0.6553 0.7045 0.7815 0.4789 0.4925 0.5176

6 0.6231 0.6643 0.7293 0.2824 0.2707 0.2526

7 0.5168 0.5324 0.5572 0.1066 0.0932 0.0746

8 0.3284 0.3117 0.2896 0.0240 0.0193 0.0140

9 0.1257 0.1046 0.0836 0.00312 0.0024 0.0017

10 0.0218 0.0157 0.0118 0.0002 0.0002 0.0001

K 2.607727 1.5378808 2.87295 1.7069674

Table 3.1.: Posterior probability of H0 under Local prior: P (H0|X)L, Threshold prior-1:
P (H0|X)T1 , and Threshold prior-2: P (H0|X)T2 at two values of p0 : 0.5 and
0.3 and n = 10.

We calculate and compare the average posterior probability of the null hypothesis over

x, Avgx P (H0|X), and the average log Bayes factor in favor of the alternative hypothesis,

Avgx log10[BF (1|0)], under Local prior and Threshold prior-2 for two cases: true null

and true alternative. Figures 3.5 and 3.6 represent the result for true null, and Figures
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3.7 - 3.12 represent results for a true alternative. Under each case, we plot Avgx P (H0|X)

and Avgx log10[BF (1|0)] versus either p0 or the sample size (n).

I. When the null hypothesis is true:

Figures 3.5 and 3.6 depict the performance of the Threshold prior versus the Local

prior under the null hypothesis when the null and alternative hypotheses are treated

equally. Each curve on figures 3.5 and3.6 (a) represents the average posterior probability

of the null hypothesis, and 3.5 and 3.6 (b) represents the average log Bayes factor in

favor of the alternative hypothesis when the null hypothesis is true and indicated the

sample size.

As these figures illustrate, the Threshold prior provides strong support in favor of the

null hypothesis than the Local prior. Also, the Threshold prior strongly supports the

null hypothesis quickly as the sample size increases, while the Local prior requires more

than 250 samples to achieve even the 80% of evidence in favor of the true null hypothesis.
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Figure 3.5.: (a) Average posterior probability of H0 (b) average log Bayes factor in favour
of H1, over data x, as p0 increases under Threshold prior-2 (red) and Lo-
cal prior (black) when the null hypothesis is true and sample size n= 10
(dashline) and n=20 (solidline).
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Figure 3.6.: (a) Average posterior probabilityof H0 (b) average log Bayes factor in favour
of H1, over data x, as n increases under Threshold prior-2 (red) and Local
prior (black) when the null hypothesis is true; p0 = 0.5 with K = 1.5378808
(dashline) and p0 = 0.8 with K = 2.0002(solidline).

II. When alternative hypothesis is true:

●
●

●

●

●

●

●

●

●

●

0.5 0.6 0.7 0.8 0.9

p1

A
vg

x P
 ( 

H
0 |

 X
 )

● ●

●

●

●

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6 ●

●

T2

L

(a)

●
●

●

●

●

●

●

●

●

●

0.5 0.6 0.7 0.8 0.9

0.
0

0.
5

1.
0

1.
5

p1

A
vg

x  
lo

g 
10

 [ 
B

F
 ( 

1 
| 0

 ) 
]

● ●
●

●

●

●

●

●

●

●

●

●

T2

L

(b)

Figure 3.7.: (a) Average posterior probabilityof H0 (b) average log Bayes factor in favour
of H1, over data x, as p1 increases and H1 is true, under Threshold prior-2
with K = 1.5378808 (red) and Local prior (black) when p0 = 0.5 and sample
size n= 10.
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Figure 3.8.: (a)Average posterior probabilityof H0 (b)average log Bayes factor in favour
of H1, over data x, as p1 increases and H1 is true, under Threshold prior-2
with K = 1.5378808 (red) and Localprior (black) when p0 = 0.5 and sample
size n= 20.
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Figure 3.9.: (a) Average posterior probabilityof H0 (b) average log Bayes factor in favour
of H1, as p1 increases and H1 is true, under Threshold prior-2 with K =
1.7069674 (red) and Local prior (black) when p0 = 0.3 and sample size n=
10.
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Figure 3.10.: (a) Average posterior probabilityof H0 (b) average log Bayes factor in
favour of H1, as p1 increases and H1 is true, under Threshold prior-2 with
K = 1.7069674 (red) and Local prior (black) when p0 = 0.3 and sample
size n= 20.
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Figure 3.11.: (a) Average posterior probabilityof H0 (b) average log Bayes factor in
favour of H1, over data x, as n increases under Threshold prior-2 with
K = 1.5378808 (red) and Local prior (black) when the alternative hypoth-
esis is true (p0 = 0.5 and p1 = 0.3).
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Figure 3.12.: (a) Average posterior probabilityof H0 (b) average log Bayes factor in
favour of H1, over data x, as n increases under Threshold prior-2 with
K = 1.7069674 (red) and Local prior (black) when the alternative hypoth-
esis is true (p0 = 0.3 and p1 = 0.7).

Figures 3.7 - 3.12(a) illustrate the average posterior probability of H0 and 3.7 - 3.12 (b)

illustrate the average log Bayes factor in favor of H1, under Local and Threshold prior-2

when the alternative hypothesis is true at different settings. Here, both Threshold and

Local priors provide pretty similar results, and the average posterior probabilities of the

null hypothesis are decreasing exponentially as the sample size increases (fig. 3.11 (a)

and 3.12 (a)).

3.2.6. Conclusion for Single Testing of a Binomial Proportion

In all above results, while the Threshold prior provides substantially more evidence in

favor of true null than the Local prior, for true alternative hypotheses, Threshold prior

provide quite similar evidence to the Local prior. So given these results, for a true null

hypothesis, under Local prior, the Bayes factor in favor of the alternative hypothesis

decreases at a low rate as n−1/2, and under the proposed Threshold prior, we improve

this rate to n−1 for single testing (proof in Appendix B.1).
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3.3. Single Testing of two Binormial Proportions

In this section, our interest is in testing equality of two unknown proportions against a

two-sided alternative defined by

H0 : p1 = p2 vs H1 : p1 6= p2 (3.3.1)

Data are observed from two independent binomial distributions, x1 ∼ Bin(n1, p1) and

x2 ∼ Bin(n2, p2). Assume that under H0, p1 = p2 = p0 and the prior probability of H0

is p = 0.5. As discussed in section 3.2, model specification is completed by considering

two priors, Local prior and Threshold prior-2.

3.3.1. Local Prior

We can adopt the prior specifications in 3.2.2 to testing two binomial proportions as

follows.

Under H0 : p1 = p2 = p0 and p0 ∼ U(0, 1) (3.3.2)

Under H1 : pj |p0, r
iid∼ Beta(rp0 + 1, r(1− p0) + 1) for j = 1, 2

p0 ∼ U(0, 1)

w ∼ exp(1) and w = 1/r

Denoting the joint prior for p1 and p2 under H1 by π1(p1, p2), the density of π1(p1, p2)

can be written as

π1(p1, p2) =

∫ 1

0

∫ ∞
0

2∏
j=1

π(pj |p0, w)π(w)dw dp0. (3.3.3)

Figure 3.13 illustrates the 3D surfaces of the density of π1(p1, p2) under the Local prior

in two perspective views.
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Figure 3.13.: π1(p1, p2) under Local prior at two different angles when p = 0.5.

3.3.2. Threshold Prior

Threshold prior definition 3.2.1 for testing a single binomial proportion can be modified

for testing two binomial proportions.

p∗j |p0, r
iid∼ Beta(rp0 + 1, r(1− p0) + 1) (3.3.4)

p1 = p∗1 and p2 =


p1 if |LOR| < ε

p∗2 otherwise

where LOR = log

[
p∗2/(1− p∗2)
p1/(1− p1)

]
, ε ∼ U(0,K), p0 ∼ U(0, 1), w ∼ exp(1), and w = 1/r.

We can get the expression for the prior probability of p as a function of K, g(K), by

modifing the equation 3.2.8 from section 3.2.1 as below. The value for K corresponding

to p = 0.5 is 2.151137.

g(K) =

∫ 1

0

∫ 1

0

∫ 1

0

∫ ∞
0

[
1− |LOR|

K

]
I
(
|LOR| < K

) 2∏
j=1

π(pj |p0, w)π(w) dw dp0 dp1 dp2

(3.3.5)
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Figure 3.14.: p as a function of K

Now let π1(p1, p2) be the pdf of joint prior for p1 and p2 under H1 and has the form

given by equation 3.3.6, which we can derive from equation 3.2.9 in section 3.2.1.

π1(p1, p2)

=
1

(1− p)

∫ 1

0

∫ ∞
0

2∏
j=1

π(pj |p0, w)

[
I
(
|LOR| > K

)
+ I
(
|LOR| < K

) |LOR|
K

]
π(w)dw dp0

(3.3.6)

Figures 3.15 and 3.16 display two 3D surface views of the density of π1(p1, p2) under

Threshold prior-2. While Figure 3.15 displays density values over the full range of p1

and p2, figure 3.16 displays density values after removing points so close to the corners

(0,0), (0,1), (1,0), and (1,1).
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Figure 3.15.: π1(p1, p2) under Threshold prior-2 at two different angles when p = 0.5 and
K = 2.151137.
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Figure 3.16.: π1(p1, p2) under Threshold prior-2 at two different angles when p =
0.5 and K = 2.151137, after removing points so close to the corners
(0, 0),(0,1),(1,0), and (1, 1)

3.3.3. Posterior Probability of H0

Let L(H0) = f(x1|p1)f(x2|p1) and L(H1) = f(x1|p1)f(x2|p2) then, the posterior proba-

bility of H0 has the form

P (H0|X) =

∫ 1

0
L(H0)π(p0) dp0 · p∫ 1

0
L(H0)π(p0) dp0 · p+

∫ 1

0

∫ 1

0
L(H1)π1(p1, p2) dp1 dp2 · (1− p)

(3.3.7)
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3.3.4. Computations

Posterior computations can achieve by using R integration efficiently as in the fixed p0

scenario. Under Threshold priors- 2, we first compute K using equation 3.3.5 in a way

that p equals 0.5. Then we define corresponding functions and compute the posterior

probability of the null hypothesis for each case according to equations 3.3.7.

To calculate the average and standard deviation of the posterior probability of H0

from an MCMC sample, for example, in figure 3.19 (a), we first set p1 = p2 = 0.5

and n1 = n2 = n then, select a value for n such that n = 20, 40, · · · , 200. At these

selected values of n, draw xi1 and xi2 from Bin(n, 0.5) and calculate P (H0|xi1, xi2).

Here i represents MCMC iteration and i = 1, 2, · · · ,M ′. Finally, calculate the average

P (H0|X) and 95%CIs using this MCMC sample of size M ′ and repeat the same steps

for all n.

Avg P (H0|X) =
ΣM ′
i=1P (H0|xi1, xi2)

M ′
SE =

std√
M ′

CI = Avg P (H0|X)± 1.96 ∗ SE

3.3.5. Results and Conclusion

The above figures in section 3.3.4 summarize the posterior and average posterior prob-

abilities of the null hypothesis under Local prior and Threshold prior-2 when the null

and alternative hypotheses are treated equally.

When the null hypothesis is true, Threshold prior-2 provides solid support favoring

H0 than the Local prior. Threshold prior-2 achieves strong support more quickly (with

less than 20 samples) as the sample size increases, while the Local prior require larger

samples to achieve even 80% of evidence favoring the true null.

In general, when comparing all these results, Threshold prior-2 provides substantially

more evidence in favor of true null and similar or quite more evidence in favor of true

alternative hypotheses than Local prior.
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Figure 3.17.: Posterior probability of H0 when p = 0.5 under Local prior (black) and
Threshold prior-2 with K = 2.151137 (red) when (a) x1 = x2 = 5 (b)
x1 = x2 = 0.5n, as sample size (n) increases.
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Figure 3.18.: Posterior probability of H0 when p = 0.5 under Local prior (black) and
Threshold prior-2 with K = 2.151137 (red) when (a) x1 = 1; x2 = 6 (b)
x1 = 0.2n; x2 = 0.6n, as sample size (n) increases.
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Figure 3.19.: (a) Average posterior probability of H0 (b) average log Bayes factor in
favour of H1, as a function of sample size (n)under Local prior (black)
and Threshold prior-2 with K = 2.151137 (red), when p = 0.5; xi1, xi2 ∼
Bin(n, 0.5); and number of replicates i = 1, · · · , 1000. Dash lines represent
95% CIs.
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Figure 3.20.: (a) Average posterior probability of H0 (b) average log Bayes factor
in favour of H1, as a function of sample size (n) increases under Lo-
cal prior (black) and Threshold prior-2 with K = 2.151137 (red), when
p = 0.5; xi1 ∼ Bin(n, 0.3); xi2 ∼ Bin(n, 0.7); and number of replicates
i = 1, · · · , 1000. Dash lines represent 95% CIs.
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3.4. Multiple Testing of Equality of Two Binormial Proportions

We extend the above-discussed methods to test multiple hypotheses for equality of two

binomial proportions simultaneously. The goal is simultaneously testing the hypotheses

given in equation 3.4.1 under the assumption that for each test i, two binomial counts

are observed independently from xi1 ∼ Bin(ni1, pi1) and x21 ∼ Bin(ni2, pi2), where

i = 1, · · · ,M denotes the number of tests.

H0i : pi1 = pi2 vs H1i : pi1 6= pi2 (3.4.1)

For each i, we further assume that under the null hypothesis pi1 and pi2 equal to a

common value pi0. The Local and Threshold prior specifications in 3.3.2 and 3.3.4 can

be modified for multiple testing as given below in 3.4.2 and 3.4.4.

3.4.1. Local Prior

Under multiple testing, for each test i, two parts of the Local prior distribution are

Under H0i : pi1 = pi2 = pi0 and pi0 ∼ U(0, 1) (3.4.2)

Under H1i : pij |pi0, r
iid∼ Beta(rpi0 + 1, r(1− pi0) + 1) for j = 1, 2

pi0 ∼ U(0, 1)

w ∼ exp(1) andw = 1/r

Let p be the proportion of true null hypotheses in M tests and assign the Uniform

prior U(0, 1), i.e., P (H0i) = p ∼ U(0, 1). Denote π(pij |pi0, w) for j = 1, 2 is the prior

distribution for each pij under H1i. Then the joint prior for (pi1, pi2) is π1i(pi1, pi2),

given by equation 3.4.3.
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π1i(pi1, pi2) =

∫ 1

0

∫ ∞
0

2∏
j=1

π(pij |pi0, w)π(w)dw dpi0 (3.4.3)

3.4.2. Threshold Prior Method

Given pi0 ∼ U(0, 1), w ∼ exp(1), and w = 1/r, for multiple testing, we define the

Threshold prior as

p∗ij |pi0, r
iid∼ Beta(rpi0 + 1, r(1− pi0) + 1) (3.4.4)

pi1 = p∗i1 and pi2 =


pi1 if |LORi| < ε

p∗i2 otherwise

where LORi = log

[
p∗i2/(1− p∗i2)
pi1/(1− pi1)

]
, ε ∼ U(0,K), and K ∼ π(K).

As in the Local prior method, we assume p be the prior probability of null hypotheses.

From previous sections, we know that given K, p is a fixed quantity. So, p is a deter-

ministic function of K. For a test i, when K is given, p has the form below derived from

equation 3.3.5 in section 3.3.2.

g(K) = P (pi1 = pi2|K)

=

∫ 1

0

∫ 1

0

∫ 1

0

∫ ∞
0

[
1− |LORi|

K

]
I
(
|LORi| < K

) 2∏
j=1

π(pij |pi0, w)π(w) dwdpi0dpi1dpi2

By assigning derived exponential prior under the section ‘Choose a Prior for K,’ Exp(0.3),

for K and integrating the above expression for g(K) over K, p can be written as

p =

∫ ∞
|LORi|

∫ 1

0

∫ 1

0

∫ 1

0

∫ ∞
0

[
1− |LORi|

K

] 2∏
j=1

π(pij |pi0, w)π(w)π(K) dwdpi0dpi1dpi2dK.

(3.4.5)
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Define π1i(pi1, pi2) as the joint prior for pi1 and pi2 under H1i. Then, we can get the

below expression for π1i(pi1, pi2) by upgrading corresponding notations and integrating

equation 3.3.3 in section 3.3.2 over K.

π1i(pi1, pi2) =
1

(1− p)

∫ ∞
0

∫ 1

0

∫ ∞
0

[ 2∏
j=1

π(pij |pi0, w)I
(
|LORi| > K

)
+

2∏
j=1

π(pij |pi0, w)I
(
|LORi| < K

) |LORi|
K

]
π(w)π(K)dwdKdpi0

=
1

(1− p)

∫ |LORi|
0

∫ 1

0

∫ ∞
0

2∏
j=1

π(pij |pi0, w)π(w)π(K)dw dK dpi0

+
1

(1− p)

∫ ∞
|LORi|

∫ 1

0

∫ ∞
0

2∏
j=1

π(pij |pi0, w)
|LORi|
K

π(w)π(K)dw dK dpi0

(3.4.6)

Choosing a Prior for K

Now we need to find a prior for K such that p ∼ U(0, 1). From section 3.3.2, we know

that when K = 0, p = 0; K = 2.15, p u 0.5; and K → ∞, p → 1. Based on this

information, we will find an exponential function that fits “best” to the curve of K vs. p

in figure 3.14 in section 3.3.2. Among the few different functions we tried, p = 1− e−aK

with both a = 0.3 and a = 0.32 best fits the curve K vs. p in figure 3.14. Knowing a,

we use variable transformation with p ∼ U(0, 1) to get the distribution for K, giving

K ∼ Exp(a). Finally, based on two histograms in figure 3.21, we pick Exp(0.3) as prior

for K to use in our future works.
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Figure 3.21.: Histogram of the prior probabilities of H0i at 500 random values of K
generated from (a) exp(0.3), with pmean = 0.49 and pstd = 0.268. (b)
exp(0.32), with pmean = 0.48 and pstd = 0.256.

3.4.3. Posterior Distributions

For each i, pi is the posterior probability of H0i given the data X = (xi1, xi2). Let

p1 = [p11, · · · , pM1], p2 = [p12, · · · , pM2], L(H0i) = f(xi1|pi0)f(xi2|pi0) and L(H1i) =

f(xi1|pi1)f(xi2|pi2). Then,

pi =
f(X|pi1 = pi2,p1−i,p2−i, p)π(p1,p2) · π(pi1 = pi2)

fX(x)

=
f(xi1|pi1)f(xi2|pi2) f(X−i|p1−i,p2−i, p)π(p1,p2) · p

fX(x)

=

∫ 1

0
L(H0i)π(pi0)dpi0 · p ×

M∏
q=1(q 6=i)

[ ∫ 1

0
L(H0q)π(pq0) dpq0 · p

+

∫ 1

0

∫ 1

0
L(H1q)π1q(pq1, pq2) dpq1dpq2 · (1− p)

]
M∏
q=1

[ ∫ 1

0
L(H0q)π(pq0) dpq0 · p+

∫ 1

0

∫ 1

0
L(H1q)π1q(pq1, pq2) dpq1dpq2 · (1− p)

]
(3.4.7)
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3.4.4. Implement Computations Via MCMC Approach

In sections 3.2.5 and 3.3.4 under single testing, we used R-integration to generate results

from the Local and Threshold priors. Since the complexity of the posterior is given by

3.4.7, we use the MCMC approach to compare the two methods for multiple testing. We

suggest two technical modifications to make MCMC computations better.

When using the Threshold prior defined in terms of LOR in section 3.4.2, having an

issue that affects MCMC for data with zero, for example, the posterior probability of

null hypothesis H0i from the MCMC approach is less than that from the numerical

integration approach when both xi1 and xi2 are zero. Therefore, we add the following

adjustment to the original LOR method to make MCMC run better. Let ζ be a

correction, a small value. If p∗ij ≤ ζ in 3.4.4, then we correct the value of p∗ij as p∗ij + ζ.

Only for j = 1 when p∗i1 ≥ 1− ζ, then p∗i1 is corrected as p∗i1− ζ. Otherwise, we keep the

value of p∗ij as it is.

Since the posterior probability of the null hypothesis depends on the correction ζ, we

need to find a reasonable value for it. As the numerical integration approach workes

fine with the original LOR for single testing, and ζ = 0.025 gives similar results using

MCMC as the integration result, we use this choice in our future works. Also, another

reason for this choice is, it is expected that the Threshold prior has at least a slightly

higher posterior probability of null than Local prior, and for single testing, that happens

for ζ = 0.025.

Modification 3.4.1. To help justify MCMC for varying dimensions when H0i is true

in the Local prior approach, rather than assuming the same value for pi1 and pi2 under

H0i, we assume that the model will have two slightly different proportions under H0i.

That is, we assume that the model will have two proportions under each of H0i and H1i.

So, the proportion corresponds to xi1 and xi2 under null and alternative hypotheses are
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as below.

p′ij =


pij0 under H0i

pij under H1i

where i = 1, · · · ,M ; j = 1, 2; and pij |pi0, r
iid∼ Beta(rpi0, r(1− pi0)) as defined in 3.4.2.

When selecting a prior for pij0, we need a distribution that concentrates pij0 very close

to pi0. This can be done by choosing a conditional distribution for pij0 (underH0i) similar

to the prior distribution for pij under H1i. Assume pij0|pi0, r0 ∼ Beta(r0pi0, r0(1−pi0)),

and r0 is a fixed large value. A larger value of r0 will make the variance small and keep

pij0 very close to pi0 and yet different. Since pi0 ∼ U(0, 1) and r0 are fixed, the joint

prior for π(pi0, pij0) ≡ π(pij0|pi0).

3.4.5. Simulations and Results

We illustrate the above two proposed Bayesian multiple testing procedures for different

settings and calculate the posterior probabilities of the null hypotheses for each test. We

first use synthetic datasets to evaluate the performances of two priors, and later we use

a real data example to compare the results from two priors.

Similar to the setting in 3.3.4, in MT, we perform repeated simulations to calculate the

average posterior probability of H0i for each test i from the MCMC approach. We here

consider three different cases for simulations; all the tests are null true, all the tests are

alt true, and mixed case. As depicted in figure 3.22 for Threshold prior under the true

null, the average posterior probability of H0i goes to 1 faster than the Local prior. Under

the true alternative (fig.3.23), the average posterior probability of H0i for both priors

goes to 0 exponentially fast. For mixed cases, out of m tests, k0 of the number of tests are

alternative true, and the rest are null true. We calculate the average posterior probability

of H0i for true null and true alternative hypotheses separately. Under the mixed case,

for true nulls, for Threshold prior, the average posterior probability of H0i goes to 1
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faster than the Local prior; for true alternatives, the average posterior probability of H0i

from both priors goes to 0 equally faster (fig.3.24).
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Figure 3.22.: Average posterior probability of H0i as a function of sample size for (a) M = 10 and (b)
M = 50 tests when all the tests are null true: xi1, xi2 ∼ Bin(n, 0.5), under Local prior
(black) and Threshold prior (red), for 500 replicates.
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Figure 3.23.: Average posterior probability of H0i as a function of sample size for (a) M = 10 and (b)
M = 50 tests when all the tests are alternative true: xi1 ∼ Bin(n, 0.3), xi2 ∼ Bin(n, 0.7),
under Local prior (black) and Threshold prior (red), for 500 replicates.
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Figure 3.24.: Average posterior probability of H0i as a function of sample size for (a) M = 10, k0 = 4
and (b) M = 50, k0 = 10 with k0 number of test are alternative true: xi1 ∼
Bin(n, 0.3), xi2 ∼ Bin(n, 0.7) and M − k0 number of test are null true: xi1, xi2 ∼
Bin(n, 0.5), under Local prior (black) and Threshold prior (red), for 500 replicates.
While solid lines represent the results for true null hypotheses, dash lines represent true
alternative hypotheses.

In figures 3.25 to 3.28, at each setting, we consider M number of tests. Out of these

M tests, the k0 number of tests are alternative true, and the rest of the M −k0 tests are

null true. Posterior probabilities of the null hypotheses are calculated for each of the M

tests under the two priors for different settings.

We present results in two parts,

Part I - When the true proportions are far part: For true alternative hypotheses,

we consider data are coming from two binomial distributions with proportions that

are far apart from each other (e.g., pi1 = 0.1 and pi2 = 0.9).

Part II - When the separation between true proportions is intermediate: For true

alternative hypotheses, data are coming from two binomial distributions with pro-

portions that are close to each other (e.g., pi1 = 0.3 and pi2 = 0.5).

In figures 3.25 and 3.26, while (a) and (b) give the results for case true proportions

are far apart, (c) and (d) give results for case the separation between true proportions is
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intermediate. All these results are based on 600K mcmc samples with a 200K burning

phase.

Part I - When true proportions are far part

Data for true null hypotheses are simulated from the binomial distribution with success

proportion 0.1 such that xi1 ∼ Bin(n, 0.1) and xi2 ∼ Bin(n, 0.1). For true alternative

hypotheses, data are simulated from two binomial distributions with success proportions

0.1 and 0.9 such that xi1 ∼ Bin(n, 0.1) and xi2 ∼ Bin(n, 0.9). Further, we consider the

sample sizes, n = 10, 15; the number of true alternatives, k0 = 5, 10; and r0 = 50.

Threshold prior-2 always gives the higher posterior probability of H0i than the Local

prior for true null hypotheses. When the alternative hypothesis is true, Threshold prior-2

gives either similar or a little higher result to Local prior.

As the sample size increases from 10 to 15, the posterior probability of H0i for true

nulls are increased; the posterior probability of H0i for true alternatives are decreased,

and the separation of the posterior probabilities of H0i between true null and alternative

hypotheses are very clearly visible ((a) and (b) in fig.3.25 and 3.27).

When the number of true alternatives, k0, increases from 5 to 10 posterior probability

of H0i decreases for both true null and alternative hypotheses(fig.3.26 (a) and (b)).
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Figure 3.25.: Mean of the posterior probabilities of H0i’s under Local prior (black) and
Threshold prior-2 (red) as the sample size, n increases from 10 to 15 and
M = 50. In (a) k0 = 5 and (b) k0 = 10: for true null xi1, xi2 ∼ Bin(n, 0.1)
and for true alternative xi1 ∼ Bin(n, 0.1), xi2 ∼ Bin(n, 0.9). In (c) k0 = 5
and (d) k0 = 10: for true null xi1, xi2 ∼ Bin(n, 0.3) and for true alternative
xi1 ∼ Bin(n, 0.3), xi2 ∼ Bin(n, 0.5). Circle-mean of P (H0i|X) of true null
hypotheses and triangle-mean of P (H0i|X) of alternative hypotheses.
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Figure 3.26.: Mean of the posterior probabilities of H0i’s under Local prior (black) and
Threshold prior-2 (red) as the number of true alternatives, k0 increases from
5 to 10 and M = 50. In (a) n = 10 and (b) n = 15: for true null xi1, xi2 ∼
Bin(n, 0.1) and for true alternative xi1 ∼ Bin(n, 0.1), xi2 ∼ Bin(n, 0.9). In
(c) n = 10 and (d) n = 15: for true null xi1, xi2 ∼ Bin(n, 0.3) and for true
alternative xi1 ∼ Bin(n, 0.3), xi2 ∼ Bin(n, 0.5). Circle-mean of P (H0i|X)
of true null hypotheses and triangle-mean of P (H0i|X) of alternative hy-
potheses.
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Part II - When the separation between true proportions is intermediate

Data for true null hypotheses are simulated from the binomial distribution with success

proportion 0.3; xi1 ∼ Bin(n, 0.3) and xi2 ∼ Bin(n, 0.3), and true alternative hypotheses

data are simulated from two binomial distributions with success proportions 0.3 and0.5;

xi1 ∼ Bin(n, 0.3) and xi2 ∼ Bin(n, 0.5). Further, we consider the sample sizes, n =

10, 15; the number of true alternative, k0 = 5, 10; and r0 = 50.

When the sample size is small (e.g., n = 10) under the true null, for some observa-

tions Threshold prior-2 gives somewhat larger posterior probabilities for H0i and some

other observations, somewhat lower posterior probabilities for H0i than Local prior

(fig.3.28(a)). As the sample size increases from 10 to 15, Threshold prior-2 always

gives larger posterior probabilities than local prior(fig.3.28(b)). However, in both cases,

sample size is 10 and 15, on average, under both true nulls and alternatives, Thresh-

old prior-2 gives a higher average posterior probability of H0i, i.e., Avg P (H0|X), than

the Local prior ( (c) and (d) in fig.3.25 and fig.3.28). The separation of the posterior

probabilities under the Local and Threshold priors is getting visible as the sample size

increases.

As the sample size increases from 10 to 15, the posterior probability of H0i for true null

and alternative hypotheses are increased. The separation of the posterior probabilities of

H0i between true null and alternative hypotheses are not visible ((c) and (d) in fig.3.25

and fig.3.28).

When the number of true alternatives, k0, increases from 5 to 10, the posterior prob-

ability of true H0i decreases. The separation of the posterior probability of H0i between

Threshold prior-2 and Local prior decrease(fig.3.26 (c) and (d)).
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Figure 3.27.: Posterior probability of H0i under Local (black) and Threshold prior-2
(red) when M = 50, k0 = 10 and (a) n = 10 (b)n = 15. xi1 ∼ Bin(n, 0.1)
for i = 1, · · · , 50; xi2 ∼ Bin(n, 0.1) for i = 1, · · · , 40 and xi2 ∼ Bin(n, 0.9)
for i = 41, · · · , 50. Dash lines represent the average of P (H0i|X).
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Figure 3.28.: Posterior probability of H0i under Local (black) and Threshold prior-2
(red) when M = 50, k0 = 10 and (a) n = 10 (b)n = 15. xi1 ∼ Bin(n, 0.3)
for i = 1, · · · , 50; xi2 ∼ Bin(n, 0.3) for i = 1, · · · , 40 and xi2 ∼ Bin(n, 0.5)
for i = 41, · · · , 50. Dash lines represent the average of P (H0i|X).
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3.4.6. Real Data Applications

DNA Sequence Data in Taron (1990)

We apply our two proposed methods (Local prior and Threshold prior) to the DNA

sequence data in Taron [33]. This data set compares the frequencies of nucleotide changes

in the transcript from the control and study cells to determine if the transcribed RNA in

the study cells differs from that in the control cells. The known sequence may be several

hundred nucleotides in length, so the multiple comparisons problem must be addressed.

Table 3.2 gives the frequencies of the nucleotide change observed at nine nucleotide sites

in such an experiment. Table 3.2 summarizes the data and observed significance level

with Bonferroni correction reported in Taron, along with the results of our two proposed

methods. According to Tarone [33], out of 9 tests, only one rejects the null hypothesis

at the nominal level α = 0.05 using Fisher’s exact test. Our two proposed Bayesian

methods also result in rejecting only one null hypothesis with the cutoff of 0.5.

Control Treated
Pi P (H0i|X)L P (H0i|X)T2

xi1/ni1 xi2/ni2

1/11 3/9 0.217 0.511 0.507

2/11 4/10 0.268 0.526 0.586

2/11 2/10 0.669 0.626 0.666

1/10 8/11 0.006 0.113 0.128

1/10 3/10 0.291 0.557 0.555

2/9 2/9 0.712 0.604 0.668

2/9 2/9 0.712 0.610 0.668

2/9 2/8 0.665 0.608 0.663

3/8 2/7 0.818 0.563 0.669

Table 3.2.: The observed significance level (Bonferroni)-Pi and posterior probability of
H0i under: Local prior -P (H0i|X)L and Threshold prior-2 -P (H0i|X)T2

. The
number of tests M = 9 and r0 = 200

√
ni1.
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Adverse Event Data in Heller and Gur (2011)

Now we consider the dataset relating treatment to an adverse event for ten studies con-

sidered by Gecili [20]. This dataset has also considered by Heller and Gur [23] and

developed one-sided testing. The table 3.3 presents the data for the number of occur-

rences and non-occurrences for treatment and control groups, results from Gecili, and

results from our Local prior and Threshold prior methods. Gecili investigates an objec-

tive Bayesian multiple testing procedure for testing equality of two binomial proportions

under different prior specifications under the alternative hypothesis and reveals that

“mode-based” Beta prior permits desirable characteristics and flexibility. In the table

3.3, MB1 represents the results from “mode-based” prior discussed by Gecili, similar

to the prior we use in our work, π(pij |pi0, r) ≡ Beta(rpi0 + 1, r(1 − pi0 + 1)) where

pi0 ∼ U(0, 1), w = 1/r, and w ∼ exp(1). Prosoed Local and Threshold prior methods

give similar results to Gecili, rejecting all the null hypotheses at the cutoff of 0.5 and for

relatively close proportions Threshold prior method reports a somewhat larger posterior

probability of H0i than Local prior.

Control Treated
MB1 P (H0i|X)L P (H0i|X)T2x0i/n0i x1i/n1i

5/25 7/21 0.234 0.229 0.328

7/22 3/14 0.249 0.266 0.384

12/32 2/38 0.003 0.005 0.004

12/20 10/40 0.025 0.026 0.034

13/16 1/16 0 .000 0.000 0.000

7/13 1/15 0.016 0.019 0.021

5/23 0/20 0.061 0.102 0.065

7/9 2/7 0.076 0.071 0.089

15/27 8/24 0.139 0.140 0.231

5/15 5/17 0.269 0.270 0.423

Table 3.3.: Posterior probability of H0i from: Gecili-MB1, Local prior-P (H0i|X)L, and
Threshold prior-2-P (H0i|X)T2

. The number of tests M = 10 and r0 =
200
√
ni1.
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Clinical safety data in Mehrotra and Heyse (2004)

Now we consider applying our proposed methods to the clinical safety study data in

Mehrotra and Heyse [25]. This study consist of a safety trial of a candidate quadriva-

lent vaccine against measles, mumps, rubella, and varicella (MMRV) conducted in 296

healthy toddlers. Participants are randomly assigned to receive either the quadrivalent

MMRV on day 0 (Group 1) or the trivalent MMR on day 0, followed by varicella (V) on

day 42 (Group 2). A comparison of adverse experiments between Group 1 (n1 = 148),

days 0-42, and Group 2 (n2 = 132), days 42-84 are considered to compare the safety

profile of MMRV to that of varicella component. Table1 in Mehrotra and Heyse [25]

reports the number of reported cases for each of 40 adverse events. The goal is to test

the null hypothesis that “variacella is not associated with the adverse event” for each of

40 adverse events. Therefore, for each adverse event, we test if the probabilities of the

adverse event are the same between the two groups by assuming that the numbers of

reported cases are counted from two Binomial distributions. For each i, posterior prob-

ability of H0i calculated from Local and Threshold priors are larger than 0.5. Hence,

with the cutoff of 0.5, we can conclude that varicella is not associated with any of the 40

adverse events. Also, the Threshold prior method reports a larger posterior probability

of H0i for all 40 tests than the Local prior.
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Figure 3.29.: P (H0i|X) for 40 tests under Local (black) and Threshold prior (red).
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3.5. Conclusion

The literature on the Bayesian MT approach has focused chiefly on continuous data; a

relatively small formal objective Bayesian approach is yet available in the literature for

testing discrete data, especially on testing binomial proportions. Gecilli [20] proposed

a formal objective Bayesian method to test the equality of two binomial proportions.

However, this method has a bit of asymmetry since the two proportions are not exchange-

able. In our proposed work, we consider that the two proportions are symmetric so that

they are exchangeable. We propose two formal objective Bayesian approaches for testing

equality of two binomial proportions based on the choice of prior under the alternative

hypothesis, the Local prior approach and the Threshold(Non-local) prior approach.

This proposed work has two novel contributions; introducing a formal objective Bayesian

method to test the equality of two binomial proportions when the two proportions are

exchangeable and developing a Threshold Prior approach for MT of equality of two

binomial proportions.

In a single testing problem, under certain regularity conditions, under a Local prior,

while for a true alternative hypothesis, the Bayes factor in favor of H0 decreases expo-

nentially fast, for a true null hypothesis, the Bayes factor in favor of H1 decreases only

at a rate of O(n−1/2). With the proposed Threshold prior approach, we prove that this

convergence rate for a true null hypothesis can improve to O(n−1).

Under both single and multiple testing, using repeated simulations, we show that under

the null, while Threshold prior has faster convergence toward the true null than Local

prior for true alternative, both Local and Threshold priors equally faster convergence

towards the true alternative.

In the MT problem, for the true null hypothesis, if the true proportions are far apart

Threshold prior approach always gives the higher posterior probability of H0i than the

Local prior approach; if the separation of true proportions is moderate, for some ob-

servations Threshold prior gives some larger posterior probabilities of H0i and for some
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other observations little lower posterior probabilities of H0i than Local prior. How-

ever, in general, Threshold prior gives a higher average posterior probability of H0i (i.e.

Avg P (H0|X)) than the Local prior. When considering true alternative hypotheses in the

MT problem, Threshold prior gives either similar or a little higher posterior probabilities

of H0i than Local prior. The posterior probabilities of the null hypotheses are impacted

by the number of true alternative hypotheses and when the sample size increased such

impact is diminished.
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Chapter 4
Order-restricted tests for binomial

proportions

4.1. Introduction

Simultaneous testing of multiple null hypotheses comparing binary response rates against

order-restricted alternatives is often encountered in various research areas, including

pharmaceutical research. While a significant number of frequentist work has been done

for testing discrete data, there is little literature on Bayesian. Especially for multiple

testing (MT) with order-restricted binomial proportions, there is only one paper avail-

able proposed by Sarkar and Chen [30]. They have proposed a Bayesian step-down

approach to simultaneous testing of multiple points null hypotheses against one-sided

alternatives where k treatments are compared with a control group in terms of some

binary response rates. However, this approach uses approximations by converting the

problem of testing binary proportions to the testing problem of normal means applying

arcsin transformation, and no formal Bayesian approach is yet available.

Traditionally, a prior density under the alternative hypothesis is centered and is a

maximum at the test value, indicating that the testing parameter’s most likely value is
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its null value under the alternative hypothesis [7, 9, 13, 14]. These priors are called Local

priors. Non-local priors are another type of priors that can be used under the alternative

hypothesis to model the unknown parameters whose density goes to zero near the null

value of the parameter under the alternative hypothesis [24, 27]. In this chapter, we

consider adopting Local and Non-local priors for Bayesian testing of order-restricted

binomial proportions.

This chapter extends the formal Bayesian approach discussed in chapter 3 to test

the equality of binomial proportions to test order-restricted binomial proportions. We

present this chapter in two parts; while in the first part, we consider only two binomial

proportions and perform one-sided testing in the second part, we generalize our method

for testing two or more ordered binomial proportions. This chapter is organized as

follows.

First, we consider a single one-sided testing problem of two binomial proportions

and discuss details of adopting our two prior choices, Local and Threshold priors. The

Threshold prior we use in this chapter is a Non-local prior. We compare the convergence

rates of the Bayes Factor under Local and Threshold prior approaches and find that

Threshold prior provides a faster convergence rate in favoring true null hypothesis than

Local prior in single testing. Next, we extend our methods for multiple testing of one-

sided alternatives and provide synthetic and real data examples.

In the second part, we generalize our Local prior approach to accommodate testing

two or more order-restricted binomial proportions. We give several actual data examples

and compare our results with other methods in the literature.

As mentioned before, no formal Bayesian method is yet available for testing ordered

binomial proportions in the literature. By doing the work presented in this chapter, we

expect to provide a novel formal Bayesian approach for testing order-restricted binomial

proportions.
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4.2. One-sided Testing of Two Binomial Proportions

4.2.1. Single Testing

Consider testing the hypotheses

H0 : p1 = p2 vs H1 : p1 < p2 (4.2.1)

based on observed data xj independently from Bin(nj , pj), where nj is the known sample

size, and pj is the unknown binomial proportion for two groups j = 1, 2.

We adopt two Bayesian models based on the prior choice for the unknown binomial

proportions pj under the alternative hypothesis (Local and Threshold priors) and we

assume that

• the prior probability of the null hypothesis (p) been true is 0.5

• under H0, p1 and p2 equal to a common value p0

Local Prior

In the literature for Bayesian MT, among various conditions required to satisfy for an

objective prior under the alternative hypothesis, two some what related conditions are

prior under the alternative hypothesis should concentrate around the null value, and the

range of pj |p0 should be large enough to allow pj to move away from p0 [9, 7, 14, 16, 26].

Beta priors specified in 4.2.3 satisfy these conditions by concentrating their densities

around the mode, p0, and decreasing away from the p0. In these Beta prior, r acts as the

conditional variance of pj |p0. As r increases, the value of pj concentrates more around

p0, and as r decreases, the value of pj falls away from p0. Gecili [20] has discussed details

about the characteristics of mode-based beta priors.
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For Local prior approach we define the model as below.

Under H0 : p1 = p2 = p0 where p0 ∼ U(0, 1) (4.2.2)

Under H1 : p∗j |p0, r
iid∼ Beta(rp0 + 1, r(1− p0) + 1) for j = 1, 2 (4.2.3)

(p1, p2) = (p∗(1), p
∗
(2)) ordered smallest to largest

Let π(p1, p2|p0, r) denotes the prior for (p1, p2) given p0 and r, which has the form

defined in 4.2.3 above. In order to complete the prior specification under the Local prior

approach, we further assume that p0 ∼ U(0, 1), w ∼ exp(1), and w = 1/r.

For MCMC calculation purposes, we modify the specification 4.2.2 and assume that the

model will have two different proportions under the null hypotheses. Therefore, under

H0, we now assume that the model has the specification defined in 4.2.4.

Under H0 : pj |p0, r0
iid∼ Beta(r0p0 + 1, r0(1− p0) + 1) (4.2.4)

p0 ∼ U(0, 1)

w0 = 1/r0 = 1/(50
√
nj)

The joint distributions of (p1, p2) under H0 and H1 have forms 4.2.5 and 4.2.6 below.

π0(p1, p2) =

∫ 1

0

2∏
j=1

π(pj |p0, w0)dp0 (4.2.5)

π1(p1, p2) =

∫ 1

0

∫ ∞
0

π(p1, p2|p0, w)π(w) dw dp0 (4.2.6)
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Threshold Prior

Although most of the time in Bayesian literature, Local priors have been using to model

the uncertainty of the unknown parameter under the alternative hypothesis, Johnson

and Rossell [24] show that under a valid null hypothesis, data not only strongly support

for the true null but also strongly support for the alternative hypothesis. Therefore, in

single testing under certain regularity conditions, while for a true alternative hypothesis,

the Bayes factor in favor of the null hypothesis decreases exponentially; for a true null

hypothesis, the Bayes factor favoring the alternative hypothesis decreases only at rate

O(n−1/2).

Using specific Non-local priors, Johnson and Rossell [24] show that the above dis-

crepancy of convergence rates of the Bayes factors can be improved. So that, Non-local

priors show higher power than Local priors in single testing. We now consider using a

Threshold prior (Non-local) for testing one-sided binomial proportions and comparing

the convergence rates of the Bayes factors with those of the above proposed Local prior.

For Threshold prior we define the model as below.

p∗j |p0, r
iid∼ Beta(rp0 + 1, r(1− p0) + 1) (4.2.7)

(p̃1, p̃2) = (p∗(1), p
∗
(2)) ordered smallest to largest

Given p0 and r, let π(p̃1, p̃2|p0, r) denotes the prior for (p̃1, p̃2) defined in 4.2.7, where

p0 ∼ U(0, 1), w ∼ exp(1), and w = 1/r. Then define

p1 = p̃1 and p2 =


p1 if 0 < LOR < ε

p̃2 otherwise

(4.2.8)

Here LOR = log

[
p̃2/(1− p̃2)
p1/(1− p1)

]
, ε ∼ U(0,K), and K is a known value to be determined.
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Motivation to use the Uniform prior U(0,K) for the threshold parameter ε is from

Nakajima and West [27]. They have recommended using a Uniform prior as the natural

default in the absence of a context that involves substantive information to suggest the

degrees of expected data sparsity.

Let π(p1, p2|p0, w) be the prior for (p1, p2) given p0 and w, then the prior probability of

H0, p, can be written as a function of K denoted by g(K).

g(K) = P (0 < LOR < ε)

=

∫ ∫ K

0
I
(
LOR < ε

)
π(ε) dε π(p1, p2|p0, w)π(w) dw dp0 dp1 dp2

=

∫ 1

0

∫ 1

0

∫ 1

0

∫ ∞
0

∫ K

LOR

1

K
dε π(p1, p2|p0, w)π(w) dw dp0 dp1 dp2

=

∫ 1

0

∫ 1

0

∫ 1

0

∫ ∞
0

[
1− LOR

K

]
π(p1, p2|p0, w)π(w) dw dp0 dp1 dp2 (4.2.9)

To give equal priority to both null and alternative hypotheses like in the Local prior, we

pick the value K = 2.365 so that g(K) = 0.5.
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Figure 4.1.: Prior probability of H0, p, as a function of K
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Then, under the Threshold prior method, the joint prior for (p1, p2) under H1 can be

written as

π1(p1, p2) =

1

(1− p)

[∫ ∫ K

0
I
(
ε < LOR < K

)
π(ε) dε π(p1, p2|p0, w)π(w) dw dp0

+

∫
I
(
LOR > K

)
π(p1, p2|p0, w)π(w) dw dp0

]

=

1

(1− p)

[∫
I
(
LOR < K

)(LOR
K

)
π(p1, p2|p0, w)π(w) dw dp0

+

∫
I
(
LOR > K

)
π(p1, p2|p0, w)π(w) dw dp0

] (4.2.10)

Posterior Probability of H0

Finally, given the data X = (x1, x2), the posterior probability of H0 under the Local

and Threshold priors are given by equations

For Local Prior:

P (H0|X) =

∫ 1

0

∫ 1

0

2∏
j=1

f(xj |pj)π0(p1, p2) dp1 dp2

∫ 1

0

∫ 1

0

2∏
j=1

f(xj |pj)
[
π0(p1, p2) + π1(p1, p2)

]
dp1 dp2

(4.2.11)

where π0(p1, p2) and π1(p1, p2) are given by equations 4.2.5 and 4.2.6.

For Threshold Prior:

P (H0|X) =

∫ 1

0

2∏
j=1

f(xj |p0) dp0

∫ 1

0

2∏
j=1

f(xj |p0) dp0 +

∫ 1

0

∫ 1

0

2∏
j=1

f(xj |pj)π1(p1, p2) dp1 dp2

. (4.2.12)

where π1(p1, p2) is given by the equation 4.2.10.
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Simulation

Even though we can achieve the posterior computations for single testing by direct

integration, to extend the single testing to multiple testing in the coming section, we use

MCMC techniques for posterior calculations.

Let n1 = n2 = n, p1 = p2 = 0.5 (under true null), and p1 = 0.3, p2 = 0.7 (under true

alternative). For a given n, for a true null, generate data from x1, x2 ∼ Bin(n, 0.5) inde-

pendently. For a true alternative hypotheses, generate data from x1 ∼ Bin(n, 0.3), x2 ∼

Bin(n, 0.7), for a given n. Then calculate the posterior probability of H0 and log Bayes

factor (log BF) under Local and Threshold priors. Finally, replicate 1000 simulations

and calculate the average posterior probability of H0, average log Bayes factor over the

data, and 95% confidence intervals for simulated data. For these simulations we use

R-jags software.

• Average posterior probability of H0 over x under hypothesis Hi

Avgx P (H0|X) = Σx P (H0|X) · P (X = x|Hi)

• Average log Bayes factor in favour of H1

Avgx log10[BF (1|0)] = Σx log10[BF (1|0)] · P (X = x|Hi)

where P (X = x|Hi) = Bin(x|n, pi) and i = 0, 1.

Below are some of the results illustrating the convergence rate of the Local and Thresh-

old priors under true null and alternative hypotheses as the sample size(n) increases.

Result and Conclusion

When comparing the convergence of Local and Threshold priors (Fig.4.2-Fig.4.3), under

the true null hypothesis, a faster convergence rate of the Threshold prior than the Local

prior is visible. For instance, in figure 4.2 (a), under the true null hypothesis, average log
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BF favoring H1 from the Threshold prior is always less than -0.5. After about n = 40,

average log BF is between -1 and -2, showing strong evidence against the alternative

hypothesis. But for the Local prior, even with a larger sample size, average log BF in

favor of H1 doesn’t deccrease beyond -0.5, which means insufficient evidence against H1

for true null under Local prior.

For a true alternative, average log BF in favor of H0 decreases faster as n increases

for both Local and Threshold priors. For example, in figure 4.3 (b), when about n > 20,

average log BF in favor of H0 is less than -2 for both priors, which gives strong evidence

against the null hypothesis.

Given figures 4.2 and 4.3, we see that for a true null hypothesis, under local prior,

average log BF in favor of the alternative hypothesis decreases at a low rate and with

the proposed Threshold prior, we can improve this convergence rate for single testing.
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Figure 4.2.: (a) Average posterior probability of H0 (b) average log Bayes factor in
favour of H1, as the sample size(n) increases under Local prior (black) and
Threshold prior with K = 2.336 (red) when x1j , x2j ∼ Bin(n, 0.5) for j =
1, · · · , 1000 number of replicates. Dash lines represent 95% CIs.
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Figure 4.3.: (a) Average posterior probability of H0 (b) average log Bayes factor in favour
of H0, as sample size (n) increases, under Local prior ( black) and Threshold
prior with K = 2.336 (red) when x1j ∼ Bin(n, 0.3), x2j ∼ Bin(n, 0.7) for
j = 1, · · · , 1000 number of replicates. Dash lines represent 95% CIs.

4.2.2. Multiple Testing

We now consider MT of equality of two binomial proportions against one-sided alter-

natives. For a given test i, we assume the data for two groups comes from Binomial

distributions, xij ∼ Bin(nij , pij), with known sample size nij and unknown proportion

pij for i = 1, 2, · · · ,M and j = 1, 2. For each test i, we want to test the hypotheses

H0i : pi1 = pi2 vs H1i : pi1 < pi2. (4.2.13)

Assuming that all the hypotheses are exchangeable, we use a common p as the prior

probability of H0i for each test i and has U(0, 1) distribution. To model the uncertainly

of the unknown proportions, pij , we modify our proposed Local and Threshold prior

approaches defined in section 4.2.1 as follows.
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Local Prior

For each test i, under H0i, we define

pij |pi0, r0
iid∼ Beta(r0pi0 + 1, r0(1− pi0) + 1) (4.2.14)

pi0|p00, r00 ∼ Beta(r00p00 + 1, r00(1− p00) + 1)

w0 = 1/r0 = 1/(200
√
nij)

p00 ∼ U(0, 1)

w00 ∼ exp(1) and w00 = 1/r00

and under H1i define

p∗ij |pi0, r
iid∼ Beta(rpi0 + 1, r(1− pi0) + 1) (4.2.15)

(pi1, pi2) = (p∗(i1), p
∗
(2)) ordered smallest to largest

For each i, let π(pi1, pi2|pi0, r) denotes the prior for (pi1, pi2) given pi0 and r defined in

4.2.15. Here, pi0 and r have prior distributions given below in 4.2.16.

pi0|p00, r00 ∼ Beta(r00p00 + 1, r00(1− p00) + 1) (4.2.16)

w ∼ exp(1) and w = 1/r

p00 ∼ U(0, 1)

w00 ∼ exp(1) and w00 = 1/r00

Let π0i(pi1, pi2) and π1i(pi1, pi2) be the joint priors of (pi1, pi2) under H0i and H1i

respectively. Now, by writting π(Θ3) = π(pi0|p00, w00)π(w00)π(p00) and π(Θ4) =

π(pi0|p00, w00)π(w)π(w00)π(p00), where Θ3 = (w00, p00, pi0) and Θ4 = (w00, p00, w, pi0),
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π0i(pi1, pi2) and π1i(pi1, pi2) has the forms given by equations 4.2.17 and 4.2.18.

π0i(pi1, pi2) =

∫ 1

0

∫ 1

0

∫ ∞
0

2∏
j=1

π(pij |pi0, w0)π(Θ3) dw00 dp00 dpi0 (4.2.17)

π1i(pi1, pi2) =

∫ 1

0

∫ ∞
0

∫ 1

0

∫ ∞
0

π(pi1, pi2|pi0, w)π(Θ4) dw00 dp00 dw dpi0 (4.2.18)

Threshold Prior

Under the Threshold prior approach, for each i, define

p∗ij |pi0, r
iid∼ Beta(rpi0 + 1, r(1− pi0) + 1) (4.2.19)

(p̃i1, p̃i2) = (p∗(i1), p
∗
(i2)) ordered smallest to largest

Now given pi0 and r, let π(p̃i1, p̃i2|pi0, r) denotes the prior for (p̃i1, p̃i2) defined in 4.2.19,

where pi0 and r are defined as under 4.2.21.

Then define

pi1 = p̃i1 and pi2 =


pi1 if 0 < LORi < ε

p̃i2 otherwise

(4.2.20)

Here LORi = log

[
p̃i2/(1− p̃i2)
pi1/(1− pi1)

]
, ε ∼ U(0,K), and K is to be determined.
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Prior distributions for other hyperparameters are

pi0|p00, r00 ∼ Beta(r00p00 + 1, r00(1− p00) + 1) (4.2.21)

w ∼ exp(1) and w = 1/r

p00 ∼ U(0, 1)

w00 ∼ exp(1) and w00 = 1/r00

Given the above prior specifications, we can modify equation 4.2.9 and write p as a

deterministic function of K, which has the form

g(K) =

∫ [
1− LORi

K

]
I
(
0 < LORi < K

)
π(pi1, pi2|pi0, r)π(Θ4) Θ4 dpi1 dpi2

where π(Θ4) = π(pi0|p00, w00)π(w)π(w00)π(p00) is the prior density of Θ4 = (w00, p00, w, pi0).

Choose a prior for K

Now we need to find a prior for K such that, p ∼ U(0, 1). From figure 4.4(a) we know

that when K = 0, p = 0; K = 2.365, p u 0.5; and K → ∞, p → 1. Based on this

information, we will find an exponential function that fits “best” to the curve p vs K

in Figure 4.4 (a). Among the few different functions we tried, p = 1−e−aK with a = 0.3

is the best fit for curve p vs.K in figure 3. Knowing a = 0.3, we use a variable transfor-

mation with p ∼ U(0, 1) to get the distribution for K and finally get K ∼ Exp(0.3).
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Figure 4.4.: (a) Different exponential fuctions to select best fit to p vs. K curve (b) His-
togram of the prior probability of H0 at 500 random values of K generated
from exp(0.3).

By assigning the prior Exp(0.3) for K and integrating the above expression of g(K)

over K, we get the expression for p as

p =

∫ ∞
0

g(K) · π(K) dK

=

∫ ∞
LORi

∫ [
1− LORi

K

]
π(pi1, pi2|pi0, w)π(Θ4) dΘ4 pi1 dpi2 · π(K) dK (4.2.22)

Under the Threshold prior approach, by modifying 4.2.10, the joint distribution of

(pi1, pi2) under H1i for MT can be written as

π1i(pi1, pi2) =

1

(1− p)

[∫ ∞
0

∫
I
(
LORi > K

)
π(pi1, pi2|pi0, w)π(Θ4) dΘ4 · π(K) dK

+

∫ ∞
0

∫
I
(
LORi < K

)(LORi
K

)
π(pi1, pi2|pi0, w)π(Θ4)dΘ4 · π(K)dK

]

=

1

(1− p)

[∫ LORi

0

∫
π(pi1, pi2|pi0, w)π(Θ4) dΘ4 · π(K) dK

+

∫ ∞
LORi

∫ (
LORi
K

)
π(pi1, pi2|pi0, w)π(Θ4) dΘ4 · π(K) dK

] (4.2.23)
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Posterior Probability of H0

Posterior probability H0i can be written as P (H0i|X) =
N1 ×N2

D
where for Local prior

N1 =

∫ 1

0

∫ 1

0

2∏
j=1

f(xij |pij)π0i(pi1, pi2) dpi1 dpi2 · p

N2 =
M∏

q=1(q 6=i)

[ ∫ 1

0

∫ 1

0

2∏
j=1

f(xqj |pqj)π0q(pq1, pq2) dpq1 dpq2 · p

+

∫ 1

0

∫ 1

0

2∏
j=1

f(xqj |pqj)π1q(pq1, pq2) dpq1dpq2 · (1− p)
]

D =
M∏
q=1

[ ∫ 1

0

∫ 1

0

2∏
j=1

f(xqj |pq1)π0q(pq1, pq2) dpq1 dpq2 · p

+

∫ 1

0

∫ 1

0

2∏
j=1

f(xqj |pqj)π1q(pq1, pq2) dpq1dpq2 · (1− p)
]

and for Threshold prior

N1 =

∫ 1

0

2∏
j=1

f(xij |pi0)π(pi1) dpi0 · p

N2 =
M∏

q=1(q 6=i)

[ ∫ 1

0

2∏
j=1

f(xqj |pq0)π(pq0) dpq0 · p

+

∫ 1

0

∫ 1

0

2∏
j=1

f(xqj |pqj)π1q(pq1, pq2) dpq1dpq2 · (1− p)
]

D =
M∏
q=1

[ ∫ 1

0

2∏
j=1

f(xqj |pq0)π(pq0) dpq0 · p

+

∫ 1

0

∫ 1

0

2∏
j=1

f(xqj |pqj)π1q(pq1, pq2) dpq1dpq2 · (1− p)
]

For each i, while under Local prior π0i(pi1, pi2) and π1i(pi1, pi2) are given by 4.2.17 and

4.2.18; under Threshold prior π1i(pi1, pi2) is given by 4.2.23 and π(pi0) ∼ Beta(r00p00 +

1, r00(1− p00) + 1).
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Simulations

We perform simulations to study the convergence of proposed Local and Threshold priors

for MT of one-sided two binomial proportions and present the results under three cases

(all the tests are null true, the number of true alternatives is fixed, and the number

of true alternatives is increasing with M). In all these settings, we assume two groups

have equal sample sizes. We generate xij for i = 1, · · · ,M ; j = 1, 2 from a Binomial

distribution with size n and success probability pij for a given sample size n. We calculate

the posterior probability of the null hypothesis for each test i using 500 thousand mcmc

samples with a 50 thousand burning phase and report the average posterior probabilities

of null hypotheses under different settings.

Results and Conclusions

Case 1: All null true

Figure 4.5 illustrates the average posterior probability of true M null hypotheses,

Avg P (H0i|X), as M increases at two different sample sizes, (a) n = 10 and (b) n = 50.

As M increases Avg P (H0i|X) increases for both priors. Threshold prior always has a

higher Avg P (H0i|X) than Local prior. As n increases from 10 to 50, Avg P (H0i|X)

increases for both Threshold and Local priors.

Figure 4.6 illustrates the average posterior probability of null hypotheses, Avg P (H0i|X),

as n increases when all the tests (M = 20) are null true: fig.4.6 (a) xi1, xi2 ∼ Bin(n, 0.05)

and (b) xi1, xi2 ∼ Bin(n, 0.2) independently. Threshold prior gives a higherAvg P (H0i|X)

than the Local Prior. However, Local prior reports improved posterior probabilities of

true nulls in multiple testing than in single testing.
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Figure 4.5.: Average of the posterior probabilities of H0is under Local (black) and
Threshold (red) priors as the number of tesets(M) increases when all null hy-
potheses are true: (a) xi1, xi2 ∼ Bin(10, 0.2) and (b) xi1, xi2 ∼ Bin(50, 0.2).
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Figure 4.6.: Average of the posterior probabilities of H0is under Local (black) and
Threshold (red)priors as the sample size(n) increases for M = 20 testes
for data (a)xi1, xi2 ∼ Bin(n, 0.05) (b) xi1, xi2 ∼ Bin(n, 0.2).

Case 2: Mixed- number of true alternative fixed

Figure 4.7 depicts the average posterior probability of H0is, Avg P (H0i|X), of 10 true

null and 10 true alternative hypotheses as sample size n increases when M = 20.

90



Figures 4.8 and 4.9 show the average posterior probability of H0is for true null and

true alternative hypotheses of M tests as M increases at two different sample sizes, (a)

n = 10 and (b) n = 50. Here the number of true alternative hypotheses is fixed at

10, and the number of true null hypotheses increases as M increases. For both priors,

Avg P (H0i|X) increases as M increases when the number of true alternatives is fixed.

Even though Avg P (H0i|X) is small for true alternatives, it also increases as M increases.

Except when the two proportions are close, and both n and M small (fig.4.7 and

fig.4.8(a)), generally, Threshold prior gives higher posterior probabilities for true the

null hypotheses than Local prior. Under both priors, as n increases, the average poste-

rior probability for an actual null increases, while the mean of the posterior probabilities

decreases for an actual alternative.
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Figure 4.7.: Average posterior probability of H0is under Local (black) and Thresh-
old (red) priors as sample size(n) increases when M = 20 (first 10 null
true and last 10 alternative true): for true null xi1, xi2 ∼ Bin(n, 0.2)
(circle-solidline)and for true alternative xi1 ∼ Bin(n, 0.2), xi2 ∼ Bin(n, 0.5)
(triangle-dashline).
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Figure 4.8.: Average posterior probability of H0is under Local (black) and Threshold
(red) priors as M increases (number of true null increases (circle) and num-
ber of true alternatives (triangle) is fixed at 10); for true null xi1, xi2 ∼
Bin(n, 0.2) and for true alternative xi1 ∼ Bin(n, 0.2), xi2 ∼ Bin(n, 0.5)
where (a) n = 10 and (b) n = 50.
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Figure 4.9.: Average posterior probability of H0is under Local (black) and Threshold
(red)priors as M increases (number of true null increases (circle) and num-
ber of true alternatives (triangle) is fixed at 10): for true null xi1, xi2 ∼
Bin(n, 0.2) and for true alternative xi1 ∼ Bin(n, 0.2), xi2 ∼ Bin(n, 0.9)
where (a) n = 10 and (b) n = 50.
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Case 3: Mixed- number of true alternative increases (10% to 20% of M)

Figures 4.10 and 4.11 illustrate the average of the posterior probabilities of H0i,

Avg P (H0i|X), for true null and true alternative hypotheses out of M tests as the num-

ber of true alternatives increases 10% to 20% of M at different combinations of sample

sizes and the number of tests (a) n = 10;M = 20 (b) n = 50;M = 20 (c) n = 10;M = 40

(b) n = 50;M = 40.

With Local prior Avg P (H0i|X) of true null, and alternative hypotheses decrease as

the number of true alternatives increases. With Threshold prior Avg P (H0i|X) of true

alternative hypotheses decreases as the number of true alternatives increases.

When comparing the Avg P (H0i|X) as the number of tests, M , increases for a fixed

sample size n (in both figures 4.10 and 4.11 compare (a) with (c) and (b) with (d)), for

the true null Avg P (H0i|X) increase as M increases.

Similarly, when compare Avg P (H0i|X) as the sample size n increases for a fixed

number of tests M(in both figures 4.10 and 4.11 compare (a) with (b) and (c) with (d)),

for the true null Avg P (H0i|X) increases as n increases.
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Figure 4.10.: Mean posterior probability of H0is under Local (black) and Threshold (red)
priors as the number of the number of true alternatives increases from 10%
to 20% of M : for true null xi1, xi2 ∼ Bin(n, 0.2) and for true alternative
xi1 ∼ Bin(n, 0.2), xi2 ∼ Bin(n, 0.5) where (a) M = 20;n = 10 and (b)
M = 20;n = 50 (c) M = 40;n = 10 (d) M = 40;n = 50.
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Figure 4.11.: Mean posterior probability of H0is under Local (black) and Threshold
(red)priors as the number of the number of true alternatives increases from
10% to 20% of M : for true null xi1, xi2 ∼ Bin(n, 0.2) and for true alterna-
tive xi1 ∼ Bin(n, 0.2), xi2 ∼ Bin(n, 0.9) where (a) M = 20;n = 10 and (b)
M = 20;n = 50 (c) M = 40;n = 10 (d) M = 40;n = 50.
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4.3. Order-Restricted Testing of Q Binomial Proportions

This section aims to generalize the above proposed Local prior method for one-sided

testing of two binomial proportions in section 4.2 to testing ordered restricted Q(≥ 2)

binomial proportions. First, consider single testing of equality of binomial proportions

in Q groups and later extend the approach to MT.

4.3.1. Single Testing of Q Order-Restricted Binomial Proportions

Suppose for each group j = 1, · · · , Q we observe xj from Bin(nj , pj) independently; njs

may be the same or different. Our interest is testing the hypotheses,

H0 : p1 = p2 = · · · = pQ vs H1 : p1 < p2 < · · · < pQ. (4.3.1)

We generalize the model proposed in section 4.2.1 for single one-sided testing of two

proportions to test Q order-restricted proportions by simply changing the number of

proportions from two to Q(≥ 2) as follows. Note that in testing Q order-restricted

proportions, we assume p0 has different values under H0 and H1 in 4.3.2 and 4.3.3.

Under H0 : p1, · · · , pQ|p0, r0
iid∼ Beta(r0p0 + 1, r0(1− p0) + 1) (4.3.2)

p0 ∼ U(0, 1)

w0 = 1/r0 = 1/(50
√
nj)

Under H1 : p∗1, · · · , p∗Q|p0, r
iid∼ Beta(rp0 + 1, r(1− p0) + 1) (4.3.3)

(p1, · · · , pQ) = (p∗(1), · · · , p
∗
(Q)) ordered smallest to largest

Let π(p1, · · · , pQ|p0, r) be the prior for (p1, · · · , pQ) given p0 and r which has the form

4.3.3. Further, under H1 we assume that p0 ∼ U(0, 1), w ∼ exp(1), and w = 1/r.

96



Then the joint prior for (p1, · · · , pQ) under H0 and H1 have the forms 4.3.4 and 4.3.5

respectively.

π0(p1, · · · , pQ) =

∫ 1

0

Q∏
j=1

π(pj |p0, w0)dp0 (4.3.4)

π1(p1, · · · , pQ) =

∫ 1

0

∫ ∞
0

π(p1, · · · , pQ|p0, w)π(w) dw dp0 (4.3.5)

Posterior Probability of H0

Let p be the prior probability of the null hypothesis and equals 0.5. Then given the data

X = {x1, · · · , xQ}, the posterior probability of the null hypothesis can be written as

P (H0|X) =

∫ 1

0
· · ·
∫ 1

0

Q∏
j=1

f(xj |pj)π0(p1, · · · , pQ) dp1 · · · dpQ

∫ 1

0
· · ·
∫ 1

0

Q∏
j=1

f(xj |pj)
[
π0(p1, · · · , pQ) + π1(p1, · · · , pQ)

]
dp1 · · · dpQ

(4.3.6)

Simulation, Result, and Conclusion

We illustrate the specified formal Bayesian hierarchical model using R-jags. We consider

several simulated datasets and calculate the posterior probability of H0 using equation

4.3.6. Table 4.1 displays the results for several simulated datasets at different values

of Q(= 3, 5) as the sample size increases (n = 10, 20, 50, 100, 200) under true null and

alternative hypotheses.

Table 4.1 results show that as the sample size and the number of binomial proportions

increase, the posterior probability of the true null hypothesis increases. Under the true

alternative, when the sample proportions are fixed, the posterior probability of the null

hypothesis increases as the sample size increases. When the sample proportions vary

with the sample size, then the posterior probability of the null hypothesis goes to zero
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fast by favoring the true alternative. Based on the results in table 4.1, we can conclude

that our proposed formal Bayesian approach is working fine, and it is worth expanding

to multiple testing.

Q X
P (H0|X)

n = 10 n = 20 n = 50 n = 100 n = 200

Null True

3
5,5,5 0.691 0.792 0.911 0.944 0.995

0.5n,0.5n,0.5n 0.704 0.7861 0.872 0.917 0.941

5 5,5,· · · ,5 0.859 0.930 0.963 0.999 0.999

0.5n,· · · ,0.5n 0.860 0.923 0.973 0.980 0.998

Alternative True

3
1,5,10 4.437e-04 0.015 0.097 0.269 0.508

0.1n,0.5,0.9n 2.848e-03 3.630e-06 0 0 0

5 1,3,5,7,9 3.838e-04 0.015 0.120 0.286 0.658

0.1n,0.3n, · · · ,0.9n 5.690e-04 0 0 0 0

Table 4.1.: The posterior probability of H0 for different data, X, at different values
of Q and n under true null and alternative hypotheses calculated from 700
thousand mcmc with 150 thousand burning phase.
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4.3.2. Multiple Testing of Q Order-Restricted Binomial Proportions

Suppose we want to simultaneously test the equality of Q(≥ 2) binomial proportions

stratified by M levels of a control variable. Each xij is observed independently from

Bin(nij , pij); nijs may be all the same or different, here i = 1, 2, · · · ,M and j =

1, 2, · · · , Q.

H0i : pi1 = pi2 = · · · = piQ vs H1i : pi1 < pi2 < · · · < piQ (4.3.7)

Next, we want to define a suitable prior for unknown binomial proportions, pi1, · · · , piQ.

Similar to the Local prior approach discussed in section 4.2.2, for each test i, we assume

that the model has Q proportions under both H0i and H1i; and use mode-based Beta

priors to model the uncertainty of pijs under each hypothesis. So that, we can modify

the models 4.2.14 and 4.2.15 under the null and alternative hypotheses as follows to

accommodate MT of Q order-restricted binomial proportions.

Prior Specifications

Define the joint prior for pi1, pi2, · · · , piQ under H0i and H1i as

Under H0i : pi1, · · · , piQ|pi0, r0
iid∼ Beta(r0pi0 + 1, r0(1− pi0) + 1) (4.3.8)

Under H1i : p∗i1, · · · , p∗iQ|pi0, r
iid∼ Beta(rp0i + 1, r(1− p0i) + 1) (4.3.9)

(pi1, · · · , piQ) = (p∗(i1), · · · , p
∗
(iQ)) ordered smallest to largest

For each i, let π(pi1, · · · , piQ|pi0, r) denotes the prior for (pi1, · · · , piQ) given pi0 and r

defined in 4.3.9.The hyperparameters in 4.3.8 and 4.3.9 have prior distributions given in

4.2.14 and 4.2.16, respectively.
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Joint Prior Distributions of (pi1, · · · , piQ)

Let π0i ≡ π0i(pi1, · · · , piQ) and π1i ≡ π1i(pi1, · · · , piQ) be the joint prior densities for

(pi1, · · · , piQ) under the null and alternative hypotheses for each test i.

π0i =

∫ 1

0

∫ 1

0

∫ ∞
0

Q∏
j=1

π(pij |pi0, w0)π(Θ3) dw00 dp00 dpi0 (4.3.10)

π1i =

∫ 1

0

∫ ∞
0

∫ 1

0

∫ ∞
0

π(pi1, · · · , piQ|pi0, w)π(Θ4) dw00 dp00 dw dpi0 (4.3.11)

where π(Θ3) = π(pi0|p00, w00)π(w00)π(p00) and π(Θ4) = π(pi0|p00, w00)π(w)π(w00)π(p00).

Posterior Probability of H0i

Given p ∼ U(0, 1) is the proportion of true nulls in M tests, the posterior probability of

each test i, H0i, can be written as

P (H0i|X) =
N1 ×N2

D
(4.3.12)

where,

N1 =

∫ 1

0
· · ·
∫ 1

0

Q∏
j=1

f(xij |pij)π0i dpi1 · · · dpiQ · p

N2 =
M∏

q=1(q 6=i)

[∫ 1

0
· · ·
∫ 1

0

Q∏
j=1

f(xqj |pqj)
(
π0q · p+ π1q · (1− p)

)
dpq1 · · · dpqQ

]

D =
M∏
q=1

[∫ 1

0
· · ·
∫ 1

0

Q∏
j=1

f(xqj |pqj)
(
π0q · p+ π1q · (1− p)

)
dpq1 · · · dpqQ

]
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Simulation, Result, and Conclusion

We implement the proposed method using synthetic data to evaluate the Bayesian MT

procedure and later use real data examples to illustrate and compare the results using

this method with some other approaches in the literature. We use several different

settings for synthetic data under three cases; all the tests are null true, all the tests are

alternative true, and mixed cases. In all of the settings, we assume equal sample size

(i.e. nij = n) for all i = 1, · · · ,M and j = 1, · · · , Q. We first calculate the posterior

probability of the null hypothesis for each test i using 500 thousand mcmc samples with

a 50 thousand burning phase and then the average of posterior probabilities of null

hypotheses. Below are the results for some of the simulation settings.

Case 1: All null true
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Figure 4.12.: Average of the posterior probabilities of H0is for M = 20 tests and Q = 3
proportions (a) as the number of test increases (M = 10, 20, 30, 40, 50) (b)
as the sample size increases from n = 10 to n = 20 for data xi1 = xi2 =
xi3 = 5.

Suppose we are interested in testing M independent hypotheses with Q binomial pro-

portions; all are null true. Figure 4.13 (a) depicts the average of the posterior probabili-

ties of H0is as n increases when Q = 3 with xi1 = xi2 = xi3 = 5. The average of posterior
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probabilities of the null hypotheses increases as M increases in the full null case. Figure

4.13(b) illustrates the average of posterior probabilities of H0i as n increases from 10 to

20 for the same data. Figure 4.13 shows the posterior probabilities of each individual

true null hypotheses for simulation settings M = 20, Q = 3, xij
iid∼ Bin(n, 0.2) when (a)

n = 10 and (b) n = 15. From figures 4.12 (b) and 4.13, we see that as n increases,

posterior probabilities of true null hypotheses increase, and posterior probabilities are

less sparse.
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Figure 4.13.: Posterior probability of H0i for M = 20 tests with Q = 3 as the sample
size increases from (a) n = 10 to (b) n = 15 when all the tests are null
true: xij ∼ Bin(n, 0.2) independently for i = 1, · · · , 20 and j = 1, 2, 3.

Case 2: All alternative true

Next we consider the situation, all the tests are alternative true. As in case 1, here

also we set M = 20, Q = 3 and n = 10, 15. Although we present the result for two

settings (fig.4.14), we consider few other different settings such as (i) xi1 ∼ Bin(n, 0.2),

xi2 ∼ Bin(n, 0.5), xi3 ∼ Bin(n, 0.7); (ii) xi1 ∼ Bin(n, 0.2), xi2 ∼ Bin(n, 0.3), xi3 ∼

Bin(n, 0.7); (iii) xi1 ∼ Bin(n, 0.2), xi2 ∼ Bin(n, 0.3), xi3 ∼ Bin(n, 0.4); (iv) xi1 ∼

Bin(n, 0.2), xi2 ∼ Bin(n, 0.25), xi3 ∼ Bin(n, 0.3); (v) xi1 ∼ Bin(n, 0.2), xi2 ∼ Bin(n, 0.25),

xi3 ∼ Bin(n, 0.3) for i = 1, · · · , 10 and xi1 ∼ Bin(n, 0.2), xi2 ∼ Bin(n, 0.5), xi3 ∼
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Bin(n, 0.7) for i = 11, · · · , 20. All of the settings give similar results as figure 4.14, as

the number of tests increases posterior probabilities are less sparse.
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Figure 4.14.: Posterior probability of H0is for M = 20 tests with Q = 3 as the sample size
increases from (a) n = 10 to (b) n = 15 when all the tests are alternative
true: xi1 ∼ Bin(n, 0.2), xi2 ∼ Bin(n, 0.25), and xi3 ∼ Bin(n, 0.3), for
i = 1, · · · , 20.

Case 3: Mixed case

Now we consider the setting while some of the tests are null true, rest of them are

alternative true. Figure 4.15 shows results when M = 20, Q = 3, and the number of

true alternatives, k0, increases 5 to 10 for data xij
iid∼ Bin(10, 0.2) for i = 1, · · · , 20;

j = 1, 2 and xi3
iid∼Bin(10, 0.2) for i = 1, · · · , k0; xi3

iid∼Bin(10, 0.7) for i = k0+1, · · · , 20.

As n increases, separation of the posterior probabilities of H0is for true null and true

alternative hypotheses is more apparent, and posterior probabilities are less sparse.

Figure 4.16 displays the average posterior probability H0is, Avg P (H0i|X), as the

sample size increases (fig.4.16 (a)) and as the number of true alternatives,k0, increases

(fig.4.16 (b)). As n increases, the average posterior probability of H0i for true null

increases, and true alternatives decrease. As the number of true alternatives increases,

Avg P (H0i|X) of true null increases; Avg P (H0i|X) of true alternatives decreases.
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Figure 4.15.: Posterior probability of H0i’s for M = 20 tests with Q = 3 as the num-
ber of true alternatives increases (a) k0 = 5 (b) k0 = 10 when xi1, xi2,∼
Bin(10, 0.2) for i = 1, · · · , 20 and xi3 ∼ Bin(10, 0.2) for i = 1, · · · , k0 and
xi3 ∼ Bin(10, 0.7) for i = k0 + 1, · · · , 20.
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Figure 4.16.: Average of P (H0i|X) for M = 20 tests with Q = 3 proportions (a) as
n increases for data: xi1, xi2,∼ Bin(n, 0.2) for i = 1, · · · , 20 and xi3 ∼
Bin(n, 0.2) for i = 1, · · · , 10 and xi3 ∼ Bin(n, 0.7) for i = 11, · · · , 20.
(b) as the number of true alternative increases from k0 = 5 to k0 = 10
when xi1, xi2,∼ Bin(10, 0.2) for i = 1, · · · , 20 and xi3 ∼ Bin(10, 0.2) for
i = 1, · · · , k0 and xi3 ∼ Bin(10, 0.7) for i = k0 + 1, · · · , 20.
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4.4. Real Data Applications

We provide three applications of the proposed formal Bayesian procedures in this chapter

for multiple testing of ordered binomial proportions.

4.4.1. Adverse event data from Heller and Gur (2011)

Consider applying proposed one-sided testing procedures, Local prior and Threshold

prior methods, in section 4.2.2 to the data set in Heller and Gur [23] that relates treat-

ment to an adverse event for ten studies. This data set reports the occurrences and

nonoccurrences of the adverse event among the treated and controls. Heller and Gur in-

vestigate the association between reporting the adverse event and the studies by conduct-

ing Fisher’s exact test (one-sided) for each study and adjusting for multiplicity by using

several discrete FDR procedures. In table 4.2 we give adjusted p-values from two dis-

create multiple testing procedures reported in Heller and Gur [23], discreate Benjamini-

Hochberg procedure (DBH) and discreate Benjamini and Liu procedure(DBL).

Given xiC ∼ Bin(niC , piC) and xiT ∼ Bin(niT , piT ) are data for controls and treated

groups for i = 1, · · · , 10, we apply Local and Threshold prior methods provided in section

4.2.2 to test the hypotheses

H0i : piT = piC vs H1i : piT < piC .
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Control Treated
DBH DBL P (H0i|X)L P (H0i|X)T

xiC/niC xiT/niT

13/16 1/16 0.000 0.000 0.000 0.000

12/32 2/38 0.001 0.002 0.004 0.002

7/13 1/15 0.012 0.023 0.011 0.009

12/20 10/40 0.012 0.023 0.012 0.016

5/23 0/20 0.038 0.077 0.097 0.029

7/9 2/7 0.062 0.078 0.021 0.041

15/27 8/24 0.082 0.107 0.059 0.110

7/22 3/14 0.351 0.200 0.218 0.212

5/15 5/17 0.442 0.200 0.263 0.238

5/25 7/21 0.846 0.200 0.467 0.212

Table 4.2.: Table relating treatment to adverse event, for 10 studies. Number of occur-
rences and total number of observations for controls and treated are labled as
Control and Treated repectively. Adjusted p-values from the multiple testing
procedures: DBH and DBL; psterior probability of H0i under Local prior-
P (H0i|X)L, and Threshold prior-P (H0i|X)T with r0 = 200

√
n0i are reported

in the table.

The DBH and DBL procedures with the nominal level α = 0.1 lead to reject 3 and

4 null hypotheses, respectively. When considering the posterior probabilities from our

proposed methods with 0.5 cutoff, both Local and Threshold prior methods reject all

the null hypotheses. However, for the last test, posterior probability from the Threshold

prior is smaller than Local prior.
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4.4.2. Clinical trial data from Chen and Sarkar (2004)

We now modify and apply our proposed Local and Threshold prior methods in section

4.2.2 for multiple testing of one-sided two binomial proportions to the data set in Chen

and Sarkar [15]. This data set considers a clinical trial that compares four formulations

(A, B, C, and D) of a pharmaceutical compound with a placebo control in terms of some

response rate. The goal here is to check if the additives used in the four formulations help

produce more responses. During the follow-up period after the product administration,

the number of patients who develop the event of interest in each group is recorded (Table

4.3).

Given that i = 1, 2, 3, 4 represent testing four formulations A, B, C, D against the Con-

trol, x0 ∼ Bin(n0, p0) data for control, and xi1 ∼ Bin(ni1, pi1) data for each formulation,

the interest is testing the hypotheses

H0i : pi1 = p0 vs H1i : pi1 < p0.

Based on the given details of the data set in table 4.3, model specifications discussed in

section 4.2.2 can be modified as follows.

For Local prior define

Under H0i : Under H1i :

pi1|p0, r0 ∼ Beta(r0p0 + 1, r0(1− p0) + 1) p∗i1|p0, r ∼ Beta(rp0 + 1, r(1− p0) + 1)

p0 ∼ U(0, 1) pi1 = p∗i1 · I(pi1 > p0)

w0 = 1/r0 = 1/(100
√
ni1) p0 ∼ U(0, 1)

w ∼ exp(1) and w = 1/r

and p = P (H0i) has U(0, 1) distribution.
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For Threshold prior define

p∗i1|p0, r ∼ Beta(rp0 + 1, r(1− p0) + 1)

p0 ∼ U(0, 1)

w ∼ exp(1) and w = 1/r

pi1 =


p0 if 0 < LORi < ε

p∗i1 otherwise

and p is calculated as P (0 < LORi < ε) where ε ∼ U(0,K) and K ∼ Exp(0.3).

Formulation # of # of Response B(r) P (H0i|X) P (H0i|X)

patients responders rate Local Threshold

Control 200 93 0.465

A 150 116 0.773 0.008 0.0000 0.0000

D 150 88 0.587 0.393 0.2347 0.2017

B 150 85 0.567 0.717 0.3239 0.2422

C 150 74 0.493 2.186 0.6296 0.5203

Table 4.3.: Summary statistics, stepwise Bayes factor-B(r) and posterior probability of
H0i- P (H0i|X), under Local and Threshold priors.

Chen and Sarkar has applied the Bayesian step-down approach to a general multiple

testing problem proposed by Sarkar et al. [30] to the data set in table 4.3. This applica-

tion of the Bayesian stepwise method in Chen and Sarkar indicates that formulations A,

B, and D differ from the control in terms of the response rate. While our proposed Local

and Threshold prior methods with cutoff 0.5 give the same results as the Bayesian step-

wise method, i.e., formulations A, B, and D differ from the control, the Threshold prior

method reports somewhat lower posterior probabilities than the Local prior method.
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4.4.3. Clinical trial data from Agresti and Coull (1996)

So far in our work, we only assume an order restriction in each test; we did not make any

further assumptions about how patterns of association vary across the tests. That is all

our work is based on the assumption that tests are heterogeneous. However, there are

situations where the patterns of association are not permitted to vary across the tests;

this approach is called homogeneous testing. For example, Agresti and Coull [2] assume

that the odds ratio between the response and a pair of treatment levels is identical in

each test in one of their models.

Even though our original model in section 4.3.2 is more general and does not assume

homogeneity, we can modify this model to get homogeneous tests under H1i by making

the odds ratio between the proportion and a pair of groups is identical in each test.

Test of Homogeneity

Step 1. Among the tests i = 1, 2, · · · ,M select a single test, say i = 1.

Step 2. Then under H11, generate p∗1j |p10, r
iid∼ Beta

(
rp10 + 1, r(1 − p10) + 1

)
for

j = 1, · · · , Q and set (p11, · · · , p1Q) = (p∗(11), · · · , p
∗
(1Q)) where (p∗(11), · · · , p

∗
(1Q)) is

ordered from smallest to largest.

Step 3. Now calculate the odds ratio for treatments j = 2, · · · , Q for the test i = 1

as OR1j =
p11 · (1− p1j)
p1j · (1− p11)

.

Step 4. Next for rest of the tests i = 2, · · · ,M ; for treatment j = 1; generate

pi1 ∼ Beta(rpi0 + 1, r[1− pi0] + 1).

Step 5. Finally for i = 2, · · · ,M and j = 2, · · · , Q set pij =
pi1[

pi1 + (1− pi1) ·OR1j

] .
The expression for pij is obtained by equating corresponding odd ratios from tests

1 and i, and then solve for pij .

pi1 · (1− pij)
pij · (1− pi1)

=
p11 · (1− p1j)
p1j · (1− p11)

=>
pi1 · (1− pij)
pij · (1− pi1)

= OR1j
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Agresti and Coull[2] presents the clinical trial data set in Table 4.4, which relates a

binomial response to ordered levels of an explanatory variable representing drug doses

with data collected at several centers. The study is conducted in 13 centers on 119

subjects with a certain medical condition. At each center, subjects are randomly assigned

to three dose levels of a drug; the number of observations and the number of ‘success’

responses at each dose level is recorded.

One of the study goals is to test the hypothesis of no treatment effect. The probability

of all the tests are null true, give the test at each center i, all the proportions pi1, · · · , piQ

are equal versus proportions are monotonically increasing function of dosage level.

Test the hypothesis of no treatment effect,

H0 : all the tests are null (H0i) true

given the test at each center i

H0i : pi1 = · · · = piQ vs H1i : pi1 < · · · < piQ

for i = 1, · · · , 13 and Q is either 1, 2, or 3.

We apply the order-restricted Local prior multiple testing procedure introduced in

section 4.3.2 to the data set in Agresti and Coull under both homogeneous and hetero-

geneous assumptions. Based on this given data set, in our simulation setting, M = 13,

and Q is either 1, 2, or 3, depending on the number of dosage levels used at each center.

r0 is fixed at 200 to avoid the sensitivity of posterior probabilities of each null hypothesis

to the choice of r0.

For each test i, we calculate the posterior probability of each null hypothesis H0i is

true and the estimate of proportions under homogeneous and heterogeneous assumptions.
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Finally, we also calculate the posterior probability that all null hypotheses are true under

both homogeneous and heterogeneous assumptions.

In Agresti and Coull, they introduce two likelihood-ratio tests, Homogeneous fit and

Heterogeneous fit, which are sensitive to order-restricted alternatives and find estimates

of exact p-values of the test statistics and success proportions under these two different

settings. These two approaches differ in terms of whether they permit patterns of asso-

ciation to varying among centers. While the ”Homogeneous fit” approach assumed that

the odds ratio between the response and a pair of treatment levels is identical in each

center, ”Heterogeneous fit” is a more general approach allowing the odds ratio to vary

in an unrestricted manner across centers.

We compare the results from our proposed order-restricted multiple testing procedures

under the homogeneous and heterogeneous assumptions with those from order-restricted

conditional independence tests in Agresti and Coull. Estimates of binomial proportions

from our proposed order-restricted multiple testing procedures (table 4.4) clearly show

that the binomial parameter is a monotonically increasing function of dosage level than

Agresti and Coull (table 4.5). The posterior probabilities of all null hypotheses being

true under homogeneous and heterogeneous assumptions are 0.026 and 0.049. Therefore,

with a cutoff of 0.5, our proposed order-restricted multiple testing procedures under ho-

mogeneous and heterogeneous assumptions reject the null hypothesis that all the tests

are null true. In comparison, the estimated exact p-values of the conditional indepen-

dence test under homogeneous and heterogeneous fits in Agresti and Coull are 0.070 and

0.128. Our proposed order-restricted multiple testing procedure provides more substan-

tial evidence of an association than the order-restricted conditional independence test

in Agresti and Coull.
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Center Dose
# of # of Success p̂ij p̂ij P (H0i|X) P (H0i|X)

trials success proportion Hom. Het. Hom. Het.

1 1 1 0 0.000 0.469 0.463 0.321 0.398

2 1 1 1.000 0.548 0.588

3 4 3 0.750 0.674 0.678

2 1 1 1 1.000 0.473 0.477 0.606 0.609

3 1 0 0.000 0.563 0.531

3 1 7 4 0.571 0.393 0.397 0.631 0.648

2 6 1 0.167 0.420 0.421

3 2 1 0.500 0.496 0.477

4 1 1 0 0.000 0.161 0.171 0.605 0.649

2 2 0 0.000 0.178 0.203

3 2 0 0.000 0.223 0.246

5 1 2 2 1.000 0.705 0.698 0.466 0.646

2 1 1 1.000 0.747 0.739

3 4 3 0.750 0.804 0.773 0.374

6 1 12 9 0.750 0.753 0.747 0.203 0.458

2 10 8 0.800 0.818 0.808

3 9 9 1.000 0.892 0.868

7 1 6 5 0.833 0.788 0.785 0.423 0.675

2 5 5 1.000 0.832 0.824

3 6 5 0.833 0.877 0.846

8 2 1 0 0.000 0.377 0.363 0.457 0.480

3 2 1 0.500 0.474 0.477

9 1 2 0 0.000 0.281 0.248 0.374 0.359

2 2 0 0.000 0.333 0.337

3 3 2 0.667 0.457 0.483

10 1 2 0 0.000 0.289 0.301 0.456 0.527

11 1 2 1 0.500 0.491 0.460 0.359 0.412

2 3 1 0.333 0.558 0.543

3 2 2 1.000 0.677 0.661

12 1 4 3 0.750 0.713 0.713 0.271 0.497

2 5 4 0.800 0.799 0.784

3 5 5 1.000 0.872 0.845

13 1 1 0 0.000 0.220 0.225 0.576 0.582

2 1 0 0.000 0.247 0.274

3 1 0 0.000 0.309 0.334

Table 4.4.: Estimates of binomial proportions, p̂ijHom. and p̂ijHet., and posterior proba-
bilities of H0is, P (H0i|X)Hom. and P (H0i|X)Het., from our proposed model
in section 4.3.2. While p̂ijHom. and P (H0i|X)Hom. represent results under
the homogeneity assumption, p̂ijHet. and P (H0i|X)Het. represent results
under the heterogeneous assumption.
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Center Dose
# of # of Success Hom. Het.

trials success proportion fit fit

1 1 1 0 0.000 0.486 0.000

2 1 1 1.000 0.486 0.800

3 4 3 0.750 0.757 0.800

2 1 1 1 1.000 0.355 0.500

3 1 0 0.000 0.645 0.500

3 1 7 4 0.571 0361 0.385

2 6 1 0.167 0361 0.385

3 2 1 0.500 0.651 0.500

4 1 1 0 0.000 0.000 0.000

2 2 0 0.000 0.000 0.000

3 2 0 0.000 0.000 0.000

5 1 2 2 1.000 0.775 0.857

2 1 1 1.000 0.775 0.857

3 4 3 0.750 0.919 0.857

6 1 12 9 0.750 0.801 0.750

2 10 8 0.800 0.801 0.800

3 9 9 1.000 0.930 1.000

7 1 6 5 0.833 0.847 0.833

2 5 5 1.000 0.847 0.909

3 6 5 0.833 0.948 0.909

8 2 1 0 0.000 0.176 0.000

3 2 1 0.500 0.412 0.500

9 1 2 0 0.000 0.182 0.000

2 2 0 0.000 0.182 0.000

3 3 2 0.667 0.423 0.667

10 1 2 0 0.000 0.000 0.000

11 1 2 1 0.500 0.495 0.400

2 3 1 0.333 0.495 0.400

3 2 2 1.000 0.763 1.000

12 1 4 3 0.750 0.736 0.750

2 5 4 0.800 0.814 0.800

3 5 5 1.000 0.935 1.000

13 1 1 0 0.000 0.000 0.000

2 1 0 0.000 0.000 0.000

3 1 0 0.000 0.000 0.000

Table 4.5.: Estimates of binomial proportions from Agresti and Coull: Hom.fit - results
under the homogeneity assumption and Het.fit - results under the heteroge-
neous assumption.
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4.5. Conclusion

Though much frequentist work has been done for testing discrete data, there is little

literature on Bayesian. Especially for MT with order-restricted binomial proportions,

there is only one paper from Sarkar et al. [30], but this paper uses approximations, not

the formal Bayesian approach. Since there is no formal Bayesian approach yet available

for testing order-restricted binomial proportions, by doing the work in this chapter, our

primary expectation is to provide a formal Bayesian approach for testing order-restricted

binomial proportions. We develop two different Bayesian approaches for testing order-

restricted binomial proportions based on the prior choice for modeling the unknown

proportions under the alternative hypotheses.

Our proposed work has two novel contributions. We provide a formal Bayesian ap-

proach for testing order-restricted binomial proportions,“Local prior approach”. The

second contribution is we developed a non-local prior to one-sided testing of two bino-

mial proportions,“ Threshold prior approach”.

In single testing of one-sided two binomial proportions, when using the Local prior

approach, we see a discrepancy between the convergence rates of the Bayes factors under

true null and alternative hypotheses. With the proposed Threshold prior approach, we

improve the convergence rate of the Bayes factor in favoring the true null. Also, when

comparing the Local and Threshold priors results for MT of one-sided two binomial

proportions, the Threshold prior approach is an acceptable alternative to the formal

Local prior approach.

Generally, when consider testing Q(≥ 2) order-restricted binomial proportions, based

on the given results in this chapter, we can conclude that our proposed Bayesian ap-

proaches are working well and give similar or improved results to the Frequentist and

Bayesian approaches relating to the studies in reference papers use in section 4.4.
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Appendix A
Appendix for Chapter 2

A.1. Information (In-)Consistency

Proof of Preposition 2.2.2:

(a). Let x = (x1, .., xn)
iid∼ N(µ, σ2) with known σ. Assume a normal prior π(µ|H1) =

N(0, τ2) with known τ .

First, consider the situation n = 1, i.e., x ∼ N(µ, σ2), then the marginal distribu-

tion of x under H1 has the form

m1(x) =

∫
f(x|µ 6= 0, σ2) · π(µ|0, τ2)dµ

=

∫
1√

2πσ2
.

1√
2πτ2

exp

{
− (x− µ)2

2σ2
− µ2

2τ2

}
dµ

=

∫
1√

2πσ2
.

1√
2πτ2

exp

{
−
(
τ2x2 − 2τ2xµ+ τ2µ2 + σ2µ2

)
2σ2τ2

}
dµ

=

∫
1√

2πσ2
.

1√
2πτ2

exp

{
− (σ2 + τ2)

2σ2τ2

[(
µ− xτ2

(σ2 + τ2)

)2

+
τ2x2

(σ2 + τ2)
− τ4x2

(σ2 + τ2)2

]}
dµ
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The above expression for m1(x) can be further simplified as below.

m1(x) =
1√

2πσ2
1√

2πτ2
.

√
2π

σ2τ2

(σ2 + τ2)
exp

{
−
(
x2 − x2τ2

(σ2+τ2)

)
2σ2

}
·

∫
1√

2π σ2v
(σ2+v)

exp

{(
µ− xτ2

(σ2+τ2)

)2
2σ2τ2

(σ2+τ2)

}
dµ

=
1√

2π(σ2 + τ2)
exp
{ −x2

2(σ2 + τ2)

}

Then, B10 =
m1(x)

f(x|0, σ2)

=

√
σ2

(σ2 + τ2)
exp

{
x2τ2

2σ2(σ2 + τ2)

}
→∞ as x→∞

∴ P (H0|x) =

[
1 +

(1− p)
p

B10

]−1
→ 0 as x→∞

From the above proof for n = 1, we found that the marginal distribution of x under

H1 has the form, m1(x) ∼ N(0, σ2 + τ2). Then, according to “ The sum of Normal

random variables follows Normal distribution,” the random sample x = (x1, .., xn)

also has the same marginal distribution m1(x) ∼ N(0, σ2 + τ2).

∴ P (H0|x)→ ∞ as x̄→∞
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(b). Let x = (x1, .., xn)
iid∼ N(µ, σ2) where σ is unknown and assigned the prior π(σ2) =

1/σ2. Assume a normal prior π(µ|H1) = N(0, τ2), with a known τ . Then,

P (H0|x) =

[
1 +

(1− p)
p

B10

]−1

Assuming that p = 0.5, then P (H0|x) =
[
1 + B10

]−1
. Here, B10 =

[
1 +

B1

A1

]−1
where

A1 =

∫
f(x|µ = 0, σ2).1/σ2 dσ2 and

B1 =

∫ [ ∫
f(x|µ, σ2).1/σ2 dσ2

]
.f(µ|0, τ2) dµ.

Defining C1 =

∫
f(x|µ, σ2). 1

σ2
dσ2, B1 can be written as B1 =

∫
C1 . f(µ|0, τ2) dµ

and C1 can be simplified as below.

C1 =

∫
f(x|µ, σ2). 1

σ2
dσ2

=
1

[2π]n/2

∫
e
−Σ(xi−µ)2

2σ2

[σ2]
n
2
+1

=
1

[2π]n/2

∫
e−

S2(µ)

2σ2

[σ2]
n
2
+1
dσ2 where, S2(µ) = s2(n− 1) + n(x̄− µ)2

=
Γ(n/2)

[2π]n/2[S2(µ)/2]n/2

∫
IG

(
σ2|α =

n

2
, β =

S2(µ)

2

)
dσ2 (∗)

Then, B1 has the form

B1 =
Γ(n/2)

[2π]n/2
[2]n/2

∫
e−µ

2/2τ2

√
2πτ2

[
s2(n− 1) + n(x̄− µ)2

]n/2 dµ.
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Next consider A1

A1 =

∫ n∏
i=1

1√
2πσ2

e
−
x2i
2σ2 dσ2

=
1

[2π]n/2

∫
e−

s2(n−1)+nx̄2

2σ2

[σ2]
n
2
+1

dσ2

=
Γ(n/2)

[2π]n/2
[(
s2(n− 1) + nx̄2

)
/2
]n/2 ∫ IG

(
σ2|α =

n

2
, β =

(
s2(n− 1) + nx̄2

)
2

)
dσ2

=
Γ(n/2)

[2π]n/2
[2]n/2

1[(
s2(n− 1) + nx̄2

)]n/2
Now P (H0|x) has the form

P (H0|x) =

[
1 +

∫ [
s2(n− 1) + nx̄2

s2(n− 1) + n(x̄− µ)2

]n/2
· 1√

2πτ2
e
−
µ2

2τ2 dµ

]−1

=

[
1 +

∫
C2(µ, x̄) · 1√

2πτ2
e
−
µ2

4τ2 dµ

]−1

where C2(µ, x̄) =

[
s2(n− 1) + nx̄2

s2(n− 1) + n(x̄− µ)2

]n/2
· e
−
µ2

4τ2 .

With s2 a constant, C2(µ, x̄) can be shown to be bounded. i.e., there exists K,

0 < K <∞ such that C2(µ, x̄) < K for all µ and x̄. Hence,

P (H0|x) >

[
1 +

∫
K
e−

µ2

4τ2

√
2πτ2

dµ

]−1

=

[
1 +
√

2K

]−1
> 0 i.e., P (H0|x) 6→ 0 as x̄→∞

Note:

(b)(i). Using a proper prior π(τ2) for τ , still can get the same results.
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(b)(ii). Replacing π(σ2) = 1/σ2 by π(σ2) = IG(α0/2, β0/2), gives the same results.

The change in the derivation is that, in the equation (*), parameters of

the inverse gamma distribution will have the forms, α → (n + α0)/2 and

β → (S2(µ) + β0)/2. Consequently, Γ(n/2) → Γ(n+α0
2 ) and [S2(µ)/2]n/2 →[(

S2(µ) + β0
)
/2
]n/2

etc.
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Proof of Preposition 2.2.4:

(a). Let x ∼ tυ(µ, σ2) with known σ, π(µ|H1, τ
2) : tν(0, τ2) with fixed and known ν,

and τ is known. Assuming p = P (H0) = 0.5, the posterior probability of H0 can

be written as

P (H0|x) =
tυ(0, σ)

tυ(0, σ) +

∫
tυ(µ, σ)tν(0, τ) dµ

Define P (H0|x) =
1

1 +m
where

m = A4

∫ ∞
−∞

(
1 + 1

υ
x2

σ2

)(υ+1)/2

(
1 + 1

υ
(x−µ)2
σ2

)(υ+1)/2
· 1(

1 + 1
ν
µ2

τ2

) dµ
> A4

∫ ∞
|x−µ|<δ

[
1 + 1

υ
x2

σ2

1 + 1
υ
(x−µ)2
σ2

](1+υ)/2
· 1(

1 + 1
ν
µ2

τ2

) dµ

Consider |x− µ| < δ and this implies that 1 < 1 +
(x− µ)2

σ2
< 1 +

δ2

σ2
. So that

[
1 + 1

υ
x2

σ2

1 + 1
υ
(x−µ)2
σ2

](1+υ)/2
>

[
1 + 1

υ
x2

σ2

1 + 1
υ
δ2

σ2

](1+υ)/2

∴ m > A4 ·

[
1 + 1

υ
x2

σ2

1 + 1
υ
δ2

σ2

](1+υ)/2 ∫ ∞
|x−µ|<δ

1(
1 + 1

ν
µ2

τ2

)(1+ν)/2 dµ
= A4 ·A5 ·A6

As x → ∞, A5 → ∞ at a rate (υ + 1), A6 → 0 at rate (ν + 1). Hence m → ∞ if

υ > ν. i.e., P (H0|x)→ 0 as x→∞ if υ > ν.
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(a). Let x = (x1, .., xn)
iid∼ tυ(µ, σ2) where σ is known and π(µ|H1) = tν(0, τ2) with

π(τ2) proper.

As before let P (H0|X) =
1

1 +m
where

m = A7

∫ n∏
i=1

[
1 + 1

υ
x2
i
σ2

1 + 1
υ
(xi−µ)2
σ2

](1+υ)/2
π(µ|τ2)π(τ2) dµ dτ2

>

∫ ∞
R=max|xi−µ|<δ

n∏
i=1

[
1 + 1

υ
x2
i
σ2

1 + 1
υ
(xi−µ)2
σ2

](1+υ)/2
π(µ|τ2)π(τ2) dµ dτ2

Here R implies that,
∏n
i=1

[
1 +

(xi − µ)2

σ2

]
<

[
1 +

δ2

σ2

]n
. Then,

m > A7 ·
n∏
i=1

[
1 + 1

υ
x2
i
σ2

1 + 1
υ
δ2

σ2

](1+υ)/2
·
∫ ∞
R

1(
1 + 1

ν
µ2

τ2

)(1+ν)/2 dµ dτ2
= A7 ·A8 ·A9 (A.1.1)

As x→∞, A8 →∞ at a rate n(υ + 1), A9 → 0 at rate (ν + 1). Hence m→∞ if

nυ > ν. i.e., P (H0|x)→ 0 as x→∞ if nυ > ν.
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A.2. P (H0i|X) for TN Model from Importance Sampling

Approach

Proof of Result 2.3.1:

pi = P (µi = 0|X) =
P (X, µi = 0)

P (X)

where,

P (X, µi = 0) =

∫
...

∫
P
(
X, µi = 0|p, µj(j 6=i), τ

2, σ2
)
π
(
p, µj(j 6=i), σ

2, τ2
)
dp dµ′js dσ

2dτ2

=

∫
...

∫
P
(
X|p, µi = 0, µj(j 6=i), τ

2, σ2
)
P
(
µi = 0|p

)
π
(
p, µj(j 6=i), σ

2, τ2
)

dµ′js dp dσ
2dτ2

=

∫ ∫ ∫ {∫
...

∫
P
(
X|p, µi = 0, µj(j 6=i), σ

2)π(µj(j 6=i)|τ
2, p) dµ′js

}
· p

π(p)π(σ2, τ2) dp dσ2dτ2

=

∫ ∫ ∫
pf(Xi|µi = 0, σ2)

{∫
...

∫ ∏
j 6=i

P
(
Xj |p, µj(j 6=i), σ

2
)
π
(
µj(j 6=i)|τ

2, p
)
dµj

}

π(p)π(σ2, τ2) dp dσ2dτ2

=

∫ ∫ ∫
pf(Xi|µi = 0, σ2)

{∏
j 6=i

∫
P
(
Xj |p, µj(j 6=i), σ

2
)
π
(
µj(j 6=i)|τ

2, p
)
dµj

}

π(p)π(σ2, τ2) dp dσ2dτ2

=

∫ ∫ ∫
p
∏
k

tυ(xi|µi = 0, σ2)
∏
j 6=i

{
p
∏
k

tυ(xj |µj , σ2)

+ (1− p)
∫ ∏

k

tυ(xj |µj , σ2)N(µj |0, τ2) dµj

}
π(p)π(σ2, τ2) dp dσ2dτ2
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P (X) =

∫ ∫ ∫ ∏
j

{
p
∏
k

tυ(xj |µj , σ2) + (1− p)
∫ ∏

k

tυ(xj |µj , σ2)N(µj |0, τ2) dµj

}

π(p)π(σ2, τ2) dp dσ2dτ2

Letting m(xj |σ2, τ2) =

∫ ∏
k

tυ(xj |µj , σ2)N(µj |0, τ2) dµj ; P (X, µi = 0) and P (X) can

be rewrite as

P (X, µi = 0) =

∫ ∫ ∫
p
∏
k

tυ(xi|µi = 0, σ2)
∏
j 6=i

{
p
∏
k

tυ(xj |µj , σ2) + (1− p)m(xj |σ2, τ2)

}

π(p)π(σ2, τ2)dpdσ2dτ2

P (X) =

∫ ∫ ∫ ∏
j

{
p
∏
k

tυ(xj |µj , σ2) + (1− p)m(xj |σ2, τ2)

}
π(p)π(σ2, τ2) dp dσ2dτ2
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Appendix B
Appendix for Chapter 3

B.1. Convergence of Bayes factor with Threshold prior - single

proportion

Suppose we observe X(n) ≡ (x1, · · · , xn) a random sample from a binomial distribution,

Bin(n, p1), with density function f(x|p1) and for a known p0 want to test

H0 : p1 = p0 vs H1 : p1 6= p0 (B.1.1)

Let, Pn
(
X(n)|p1

)
denote the joint sampling density of the data, Ln(p1) denote the log-

likelihood function, and p̂1 denote a maximum likelihood estimate of p1, where

Pn
(
X(n)|p1

)
=

n∏
i=1

f(xi|p1)

Ln(p1) = log
{
Pn
(
X(n)|p1

)}
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Given the prior for p1 under H1, π1(p1), be a continuous density function with respect

to Lebesgue measure, Bayes factor based on a sample size n is defined as

BFn
(
1|0
)

=
m1

(
X(n)

)
m0

(
X(n)

) =

∫
Pn
(
X(n)|p1

)
π1(p1) dp1

Pn
(
X(n)|p0

) (B.1.2)

Now consider the first three terms of Taylar’s expansion of Ln(p1) around p̂1.

Ln(p1) ≈ Ln(p̂1) + L′n(p̂1)(p1 − p̂1) +
1

2
L′′n(p̂1)(p1 − p̂1)2

Since Ln(p1) has maximum at p̂1 L
′
n(p̂1) = 0. ∴ Ln(p1) ≈ Ln(p̂1) + 1

2 L
′′
n(p̂1)(p1 − p̂1)2.

By taking exponent on both sides of the expression for Ln(p1)

Pn
(
X(n)|p1

)
≈ Pn

(
X(n)|p̂1

)
· exp

{
1

2
L′′n(p̂1)(p1 − p̂1)2

}

≈ Pn
(
X(n)|p̂1

)
· exp

{
− 1

2
n

[
−L′′n(p̂1)

n

]
(p1 − p̂1)2

}

≈ Pn
(
X(n)|p̂1

)
· exp

{
− 1

2

(p1 − p̂1)2

σ2/n

}
(B.1.3)

where σ2 =

[
−L′′n(p̂1)

n

]−1
. Then, multiply the formula B.1.3 by π1(p1) and integrate

with respect to p1

∫
Pn
(
X(n)|p1

)
π1(p1) dp1 ≈ Pn

(
X(n)|p̂1

)
· π1(p̂1) ·

√
2πσ2/n

∫
1√

2πσ2/n
exp

{
− 1

2

(p1 − p̂1)2

σ2/n

}
dp1

≈ Pn
(
X(n)|p̂1

)
· π1(p̂1) ·

√
2π ·

√
σ2/n · 1

Now by writing σn =
√
σ2/n, m1

(
X(n)

)
has the form below.

m1

(
X(n)

)
=
√

2π Pn
(
X(n)|p̂1

)
π1(p̂1) σn

(
1 +O(1/n)

)
(B.1.4)
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As n→∞ under H0, p̂1 → p0 and Pn
(
X(n)|p̂1

)
→ Pn

(
X(n)|p0

)
, hence

m1

(
X(n)

)
m0

(
X(n)

) ≈ √2π
Pn
(
X(n)|p̂1

)
Pn
(
X(n)|p̂0

) π1(p̂1) σn(1 +O(1/n)
)

≈
√

2π π1(p̂1) σn
(
1 +O(1/n)

)
(B.1.5)

In the formula B.1.5,

(a). for a Local prior, π1(p̂1) is a fixed constant as p̂1 → p0, i.e., π1(p̂1)→ π1(p0) 6= 0.

Therefore, for a Local prior
m1

(
X(n)

)
m0

(
X(n)

) → 0 at rate n−1/2.

(b). for a Non-local prior π1(p0) = 0 and as p̂1 → p0 π1(p̂1)→ π1(p0) = 0 at some rate.

Using the formula for π1(p1) given in equation 3.2.9 under the chapter 3.2.1, for a large

n under H0

π1(p̂1) =
1

(1− p)

∫
π(p̂1|w)

[
I
(
|LOR| > K

)
+ I
(
|LOR| < K

) |LOR|
K

]
π(w)dw

=
1

(1− p)

∫
π(p̂1|w)

[
0 + 1 ·

|LOR
(
p̂1, p0

)
|

K

]
π(w)dw

→ 1

(1− p)

∫
π(p̂1|w)e−wdw × 1

K
lim
n→∞

|LOR
(
p̂1, p0

)
|

Consider
[
LOR

(
p̂1, p0

)]2
and use Taylor series expansion around p0 as a function of p̂1.

[
LOR

(
p1, p0

)]2
= 0 +

[
2LOR

(
p̂1, p0

)∂LOR(p̂1, p0)
∂p̂1

]
p̂1=p0

·
(
p̂1 − p0

)
+

[
2

(
∂LOR

(
p̂1, p0

)
∂p̂1

)2

+ 2LOR
(
p̂1, p0

)∂2LOR(p̂1, p0)
∂p̂21

]
p̂1=p0

·
(
p̂1 − p0

)2
= 2

[
∂LOR

(
p̂1, p0

)
∂p̂1

]2
p̂1=p0

·
(
p̂1 − p0

)2

130



We know that as p̂1 → p0,

√
n(p̂1 − p0)√
p0(1− p0)

→ N(0, 1). So that, n(p̂1 − p0)
2 goes to a

constant in probability and (p̂1 − p0)2 ≈ O(1/n) under H0 as n→∞.

∴
[
LOR

(
p̂1, p0

)]2
→ O(1/n) and LOR

(
p̂1, p0

)
→ O(1/

√
n)

Hence, π1(p̂1) → 0 at a rate of O(1/
√
n). Therefore, under the Thrshold prior, from

formula B.1.5,
m1

(
X(n)

)
m0

(
X(n)

) → 0 at rate n−1.
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